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Abstract 
 

This work is focused on characterising and evaluating the intensity and selectivity of the 

marine fauna during the Tr/J mass extinction and recovery of the ecosystem in different 

localities throughout Pangaea. To address this, four localities were studied: St. Audrie’s 

Bay, Larne and Pinhay Bay in the UK, and Portezuelo Providencia in Chile. From each 

locality, samples were taken at approximately 1m intervals throughout the Tr/J sections. 

Species abundance per sample was estimated and each species was classified according 

to autoecological information derived from the literature. In order to assess changes in 

the structure and composition of the assemblages, NMDS and beta diversity index were 

performed, dominance and richness were estimated and the data were tested against five 

rank abundance (RAD) models. Ecospace modelling was used to estimate the loss in 

ecological diversity. Measures of the body size of bivalves and ichno-parameters were 

recorded on each section. Through the UK sections, the richness, dominance and the 

composition rate shifted abruptly during the extinction event. A geometric model shows 

the best fit during extinction events and, in contrast, a log-normal model best fits the 

pre-extinction and recovery event. The body size of the bivalves did not decrease during 

the Tr/J, while the coverage, richness and body size of ichnofossils increased during the 

recovery. The Chile Tr/J section records low richness, but the ecological complexity and 

richness decreases through the interval and composition records high turnover, while 

the dominance increases. The results indicate that the Tr/J disruption changed species 

composition in a relatively short time period, which decreased the ecological 

functionality of the invertebrate marine assemblage. In spatial terms, the UK fauna 

show a clear response to the extinction effect, but the diversity response of the Chilean 

assemblage is not clear at all, which may be related to taphonomical bias. 
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Alternatively, this work analysed stage-by-stage occupation of ecospace of 3181 genera 

recorded from Sepkoski`s compendium for the marine fauna from the Late Permian to 

Early Jurassic. The ecospace can be represented as a combination of the three axes of 

tiering, motility and feeding, each divided into six subcategories. From the Cambrian to 

Recent, ecospace utilisation has tripled, however the trend through the Phanerozoic 

remains unclear. This result indicates that from the Guadalupian to Sinemurian the 

number of modes of life did not increase significantly, but the ecospace packing does. 

There was a significant positive correlation between abundance of predators and both 

infaunalisation and motility. However, the ecospace utilisation decreased 35% and 16% 

at the end of Permian and Triassic, respectively. During the extinction events, non-

motile animals, organisms with little physiological control of biocalcification and the 

epifaunal forms, were heavily affected. This indicates that the mass extinction had a 

particular ecological effect on the biota and is an important episode of ecological 

changes due to ecological selectivity. Parallel, the appearance of adaptations to new 

trophic niches during the Triassic, like durophagy, presumably increased predation 

pressure and drove the increase in benthic infaunalisation. This series of adaptation 

could be potentially associated with the Marine Mesozoic Revolution. 
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Chapter 1 Introduction 

1.1 Brief history of mass extinctions 

The Phanerozoic generic diversity curve shows discontinuity over time resulting from 

changes in both origination and extinction dynamics, which play a significant role in the 

restructuring of ecosystems (Fig.1.1). Cuvier introduced the notion of discontinuity in 

the 18th century. He proposed that the history of the biosphere had known periods of 

creation, stasis and catastrophe. Nevertheless, some geologists considered all gaps or 

discontinuities in the fossil record to correspond only to stratigraphic hiatuses and 

therefore rejected Catastrophism in favour of Lyellian uniformitarianism and Darwinian 

evolution. Consequently, the discovery of large changes through the Mesozoic period as 

described by Phillips (1860) and Chamberlin and Moulton (1909) did not generate 

much interest. 

 

Figure 1.1 Diversity curve (Genus-level) of marine invertebrates through the 

Phanerozoic. The data plotted are based on a sampling-standardized analysis of the 

Paleobiology Database. From Alroy (2008). 
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A number of papers were published in the 20th century, which focused on changes in 

species composition during the Palaeozoic and Mesozoic (Newell 1962; Schindewolf 

1963). However, it was not until Newell’s (1967) work that the “discontinuity” in 

diversity during the Phanerozoic was reviewed and six events were recognised to be 

different from the normal or background extinctions and which were characterised as 

mass extinctions. Finally, this idea took hold in Raup and Sepkoski`s (1982) work. They 

suggested that there had been five mass extinction events, estimated through a 

parametric 95% confidence interval around linear regressions that describe the 

Phanerozoic decline in extinction rates (Fig. 1.2).  

 

Figure 1.2 The ‘‘big five’’ mass depletions are numbered. In red is indicated the Tr/J 

mass extinction event. Modified from Raup and Sepkoski (1982). 

A mass extinction may be defined as a substantial loss of biodiversity of wide 

geographic and taxonomic extent and relative short duration (Jablonski 1986; Raup 

1995; Hallam and Wignall 1997). This kind of event is an important component of the 

evolutionary process (Jablonski 1989). It characterises an extreme biodiversity crisis 

that not only had evolutionary consequences arising from the termination of clades, but 
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potentially also had severe ecological effects (Brenchley et al. 2001). The ecological 

and evolutionary patterns during a mass extinction are significantly different from the 

normal background, because they mark the termination of a period of ecologic stability–

an Ecologic Evolutionary Unit (EEU)—and precede a period of recovery (Sheehan 

1996b). The recovery stage is generally characterised by the occupation of new 

ecospace as well as a large pulse of evolutionary radiation and an evolutionary tendency 

toward new ecological features (Erwin and HuaZhang 1996; Erwin 1998a; Erwin 

1998b; Erwin 2001). Understanding the extinction process is, therefore, crucial in 

understanding the evolution of the biosphere, because it may provide insight into today's 

biodiversity crisis. 

Of the five mass extinction events previously mentioned, the Tr/J boundary is one of the 

most controversial, in term of the causes, duration, and selectivity (Hesselbo et al. 2007; 

Ruhl et al. 2010).The evidence for this event comes from the fossil record of bivalves, 

brachiopods, ammonites, corals, radiolarians, ostracods and foraminiferas of marine 

habitats, and plants and tetrapods of terrestrial environments (Hallam 1981; McRoberts 

and Newton 1995; Olsen et al. 2002; Kiessling and Aberhan 2007; Kiessling et al. 

2007b; McElwain et al. 2007; Tomas  ov ch and  ibl       ; Wignall and Bond 2008; 

McElwain et al. 2009; Thorne et al. 2011). The Tr/J mass extinction is ranked in third 

place (23%), in terms of ecological impact and fourth in terms of the number of species 

lost (McGhee et al. 2004).  The extinction event is strongly marked at specific level but 

is more complicated at generic and family levels (Deng et al. 2005).  

During this interval, dramatic changes of the environment, such as temperature rise due 

to the greenhouse effect (McElwain et al. 1999; McElwain 2004; Ruhl et al. 2009; 

Belcher et al. 2010; Bacon et al. 2011; Ruhl et al. 2011; Ruhl and Kurschner 2011), 
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marine anoxic habitats caused by a sudden transgression after the regression at the end 

of Triassic (Hallam and Wignall 1999; Hallam and Wignall 2000; Wignall 2001b; 

Hallam 2002; Barras and Twitchett 2007; Clemence et al. 2010; Paris et al. 2010), have 

been claimed to be the main causes of the extinction. Many hypotheses have been 

suggested to account for the environmental changes, however, the most plausible is 

volcanic eruption (Hallam and Wignall 1999; Palfy et al. 2001; Wignall 2001a; 

Hesselbo et al. 2004; Hesselbo et al. 2007; Wignall 2009). This triggered one of the 

largest turnovers in global biogeochemical cycles (Hesselbo et al. 2002), all possibly 

attributed to large-scale carbon release caused by a major volcanic episode, namely 

development of the Central Atlantic Magmatic Province (CAMP) during the break-up 

of Pangaea (Deenen et al. 2010; Ruhl et al. 2011). This led to an increased flux of CO2, 

SO2, and CH4 into the oceans and atmosphere, which generated extreme greenhouse 

conditions, which impacted on ocean chemistry, generating a substantial decrease of 

seawater pH that slowed down or inhibited precipitation of calcium carbonate minerals 

(Hautmann 2004; Hautmann et al. 2008a; Crne et al. 2011). The cessation of carbonate 

sedimentation affected organisms with aragonitic or high-Mg calcitic skeletons and 

little physiological control of biocalcification, which generated one of the biggest 

biological crises to have affected tropical reef systems (Hallam 1981; Hallam 2002; 

Hautmann 2004; Kiessling and Aberhan 2007; Kiessling et al. 2007a; Hautmann et al. 

2008a; Mander et al. 2008; Crne et al. 2011). 

1.2 The Triassic–Jurassic (Tr/J) boundary: stratigraphical 
framework 

At the first Jurassic colloquium in Luxemburg in 1962, the scientific community 

recommended that the Rhaetian Stage were placed at the top of the Triassic and that the 

zone of first appearance (FA) of the ammonite Psiloceras planorbis (J. de C. Sowerby) 

(Bed 13 in Fig. 1.3) correlate the basal unit of the Hettangian Stage at the base of the 
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Jurassic (Maubeuge 1964; Lloyd 1964 ; Cope et al. 1980). In 1968 the British National 

Committee for Geology proposed that the base of the Planorbis Zone, and hence the 

Tr/J boundary in UK, should be defined at the base of the Blue Lias Formation in St 

Audrie's Bay, in West Somerset (south west England; George 1969; Morton 1974: see 

Palmer (1972) and Whittaker and Green (1983) for descriptions of the Triassic-Jurassic 

succession in this area). In doing so, it was believed that correlation with sections 

internationally was facilitated (Cope et al. 1980; see also Warrington et al. 2008).  

Older, but poorly preserved Psiloceras spp. was recorded by Hodges (1994), however, 

in St Audrie's Bay. In contrast, better-preserved ammonites from Doniford Bay, to the 

east of  t Audrie’s Bay, and from boreholes in north west England, allowed Page and 

Bloos (1998) and Bloos and Page (2000) to establish a new ammonite succession in 

UK, as later reviewed by Page (2004). In Somerset, this included the recognition of the 

earliest ammonite species recorded in the UK, P. erugatum (Phillips), in Bed 8 (of 

Whittaker and Green (1983)), with “Neophyllites” in the lower part of Bed 9 and 

Psiloceras sp. cf. planorbis in the upper part – all below the first occurrence of P. 

planorbis as recorded previously in Bed 13. P. planorbis is abundantly represented in 

Beds 13 to 19. The base of Bed 23 above comprises at least 2 m of hard, laminated 

mudstone that contains abundant crushed “iridescent” (i.e. with preserved shell 

aragonite) specimens of P. planorbis, followed by P. sampsoni (Portlock),  P. 

plicatulum (Quenstedt) and ultimately P. bristoviense Donovan (Fig. 1.3; Page, 2005). 

The Planorbis Subzone extends up to the base of Bed 25 (Page 2005; Clémence et al. 

2010). 

The FA of Psiloceras has been identified in Nevada (USA; Guex et al. 2004) as the 

species Psiloceras spelae Hillebrandt et al. (2007) a member of the Psiloceras tilmanni 
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Lange group, and in Austria as P. spelae (Hillebrandt et al. 2007). These early species 

display characteristic small primary tubercles on their juvenile stages (Guex et al. 

2004). Initially, many localities were proposed as the Global Boundary Stratotype 

Section and Point (GSSP) for the Tr/J boundary, including in the USA, Canada, Peru, 

Hungary, England, the north of Ireland and Austria (Palfy et al. 2000; Ward 2001; Guex 

et al. 2004; Hillebrandt et al. 2007; Simms and Jeram 2006; Warrington et al. 2007) 

(Fig. 1.3). However, there were initially many problems with agreeing on a definition 

for the GSSP, resulting from the provincialism of the ammonite faunas (Hallam and 

Wignall 1997; Bloos and Page 2000; Page 2008) and because the FA of Psiloceras is 

demonstrably diachronous across Western Europe and often separated by up tens of 

metres from the last appearance (LA) of the ammonoid Choristoceras marshi, which 

characterises the uppermost Triassic ammonoid zone (Tanner et al. 2004). Finally, in 

2009, the Kuhjoch section, in the Northern Calcareous Alps, Austria, was accepted by 

vote of the members of the Tr/J Boundary Working Group (TJBWG) of the 

International Subcommission on Jurassic Stratigraphy (ISJS) as the GSSP for the base 

of the Hettangian Stage and hence the Jurassic System, and correlated with the FA of 

the P. spelae (Fig. 1.3). 

However, Psiloceras spelae has not been found in UK, probably due to more 

pronounced shallow-water conditions that made environments either unsuitable for this 

taxon during this time interval or prevented it from arriving, or alternatively, this could 

suggest the presence of a hiatus (Page 2010, Clémence et al. 2010). As a result, it is 

necessary to apply an integrated stratigraphical approach using ammonites and two 

negative Carbon Isotope Excursions (CIE), which are widely recorded at this level 

(Hesselbo et al. 2002; Clémence et al. 2010; Page 2010). 
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Figure 1.3 shows the biostratigraphical framework for the Tr/J boundary in the UK and 

Europe as updated by Page (2010), who included a Pre-Planorbis Zone (Tilmanni Zone) 

at the base of the Jurassic, below the Planorbis Zone, as established by Hildebrandt et 

al. (2007) - and corresponding to levels previously referred to as Pre-planorbis Beds in 

the UK. The figure indicates that the beginning of the first CIE approximates to the top 

of the Choristoceras crickmayi Zone of the Rhaetian. The second negative CIE begins 

close to FA of Neophyllites (Bed 7), while the FA of P. spelae occurs within the 

positive CIE between the two negative CIEs (Page pers. com. 2010). This suggests that 

the Tr/J boundary could be located within the upper part of Bed 1 of the  t Audrie’s 

Bay section. 

1.3 Palaeogeography and climate across the Tr/J boundary. 

The Tr/J boundary occurs around 201.31 ±0.18/0.38/0.43 Ma (Schoene et al. 2010; 

Whiteside et al. 2010). At this time almost all landmass was concentrated in the 

supercontinent Pangaea, which was centred across the equator (from 80°N to 80°S) 

(Fig. 1.3A). On the eastern border of Pangaea was the Tethys Ocean, a vast gulf that 

was surrounded by coasts that are now located in Antarctica, north eastern Africa, 

Eastern Europe, and southern Asia (Baltica). The vast ocean Panthalassa surrounded the 

supercontinent (Scotese 2002; Golonka 2004, 2007) and showing almost 

hemispherically symmetrical circulation patterns composed of two large subtropical 

gyres that rotated clockwise in the northern hemisphere and anti-clockwise in the 

southern hemisphere (Arias 2008). Pangaea comprised two large continental masses, 

Laurasia and Gondwana  (Fig.1.4A) (Arias 2008). 
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Figure 1.3. Correlation between sections in Austria, England and Chile. The red arrow show the first negative excursion, which coincided with the 

last occurrences of C. crickmayi. The orange line indicates the positive excursion, which peaks at 7 m, coincident with the first appearance of P. spelae 

and which marks the Tr/J boundary. This boundary is correlated to Bed 1 of the Blue Lias Formation in SW England. (See appendix 1.1 for ammonite 

correlations).The FA of Psiloceras spp. in the Portezuelo Providencia section is correlated to the FA of P. speale in the Kuhjoch section. (from 

Hillebrandt et al. 2007, Page 2010 and Clemence et al. 2010). The St Audrie’s Bay section was obteined from Clemence et al. (2010). The Kuhjoch 

section was modified from Hillebrandt et al. (2007). While the Chilean profile was constructed by R. Twitchett and the ammonite determinations was 

performed by A. Mourgues.
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The climate during the Late Triassic period was generally hot and dry and there is no 

evidence of glaciations at or near either pole. The polar regions were apparently humid 

and/or temperate  (Frakes et al. 1992) (Fig. 1.4A) (Shubin and Sues 1991; Frakes et al. 

1992; Belcher et al. 2010; Ezcurra 2010; Whiteside et al. 2011). 

Pangaea was formed by the Carboniferous, due to a large number of collisions of many 

smaller continental masses in different time intervals. In particular, Pangaea was 

ultimately formed due to the collision of the two supercontinents of Laurasia (to the 

north) and Gondwana (to the south) (Golonka 2007; Stanley 2008). However, from the 

Triassic through to the early Jurassic, Pangaea suffered a series of modifications that 

were determined mainly by the kinetics of the continental mass and which led to drastic 

changes in the biosphere. One of the first events was the formation of the “Rim of Fire” 

along the coast of Pangaea, which was active during the Triassic and Jurassic and 

generated active volcanism, terrain accretions, and back-arc basin development 

(Golonka 2007; Arias 2008) (Fig. 1.4B). 

The closure of the Palaeotethys, which had existed between Gondwana and Laurasia, 

generated the development of large carbonate platforms along the Neotethys and 

Palaeotethys margins. The later separation of North America from Gondwana, which 

was initiated by the Triassic stretching and rifting phase, continued during Early-Middle 

Jurassic time (Golonka 2007). This activity produced a volcanic belt around Africa-

North America known as the Central Atlantic Magmatic Province (CAMP)(Fig. 1.5): 

one of the largest known Phanerozoic flood basalt provinces (Olsen 1997; Marzoli et al. 

1999; Knight et al. 2004). Once the rift was open, a system of deltas developed on the 
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marine shelves. Pangaea was under stress during Late Triassic-Early Jurassic times due 

to the subduction zones surrounding the supercontinent (Fig.1.4B). 

 

Figure 1.4. (A) Late Triassic climate was apparently warm, without evidence for ice at 

either North or South Poles.  The warm temperate conditions extended towards the 

poles. (modified from Scotese (2002) http://www.scotese.com, PALEOMAP website). 

(B) Global plate tectonic map of Late Triassic. 1—oceanic spreading centres and 

transform faults, 2—subduction zone, 3—thrust fault, 4—normal fault, 5—transform 

fault. (from Golonka (2004)). 

 

 

http://www.scotese.com/
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1.4 Potential causes of Tr/J mass extinctions 

The evidence in the fossil record that suggested an accelerated biotic turnover during 

the Tr/J boundary has led to the idea of that a mass extinction event occurring during 

this period (Hallam 1981; Raup 1982; Olsen et al. 1987; Hallam 1990; Benton 1995; 

Sepkoski 1996; Hallam 1997; Sepkoski 1997; Olsen et al. 2002; Olsen and Rainforth 

2002; Bambach et al. 2004) 

Various mechanisms have been proposed to explain these diversity depletions, but two 

mechanisms have been identified as the most likely causes: gradualism (Tucker and 

Benton 1982; Hallam 1990; Hallam and Wignall 1999) and catastrophism (Olsen et al. 

1987; Marzoli et al. 1999; Mcelwain et al. 1999; McHone 2000; Palfy et al. 2001; 

Wignall 2001c; Olsen et al. 2002; Olsen and Rainforth 2002; Simms 2003). 

Nevertheless, some have suggested that this event may be the result of the interaction of 

both components (Tanner et al. 2004).  

 

The sea level changes during the Rhaetian are an example of a gradualist mechanism 

(Hallam 1990; Hallam and Wignall 1999; Hesselbo et al. 2004). They caused a 

reduction in habitat for marine organisms, in particular for those that lived on the 

shelves. Other gradualist mechanisms include anoxia resulting from transgression, and 

climatic changes, specifically widespread aridification (Tucker and Benton 1982). 

Catastrophic events offered as an explanation for the observed biological changes 

include: extraterrestrial impact (Olsen et al. 1987; Hodych and Dunning 1992; Spray et 

al. 1998; Olsen et al. 2002; Olsen and Rainforth 2002; Simms 2003; Tanner et al. 

2004), associated with a sudden opacity of the atmosphere; the release of huge volumes 

of CO2 and SO2, resulting from volcanic activity (Marzoli et al. 1999; Mcelwain et al. 
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1999; McHone 2000; Palfy et al. 2000; Palfy et al. 2001; McElwain et al. 2007; 

McElwain and Punyasena 2007); and the release of methane hydrates associated with 

instabilities in the sea floor (Palfy et al. 2001; Hesselbo et al. 2002).  

In summary, all these mechanisms produced significant physical and chemical changes 

in the atmosphere and played a significant role in the ecological changes through the 

Tr/J extinction in either a local or a global context. The precise cause and effect 

relationships, however, remain unproven. In the next section, the potential causal 

mechanisms that led to the mass extinction event are summarised. 

Climatic changes: Climate change was one of the first gradualist mechanisms 

proposed as an explanation for the deep biotic change at the end of the Triassic (Colbert 

1958). Tucker and Benton (1982) proposed that the climatic changes induced vegetation 

changes, which then triggered extinction among the tetrapods. Later, Simms and Ruffell 

(1990) suggested that a series of events occurred during the Carnian/Norian, and 

established that the change from humid to dry conditions happened during the latest 

Carnian. Lucas (1999) confirmed the changes between warm and dry, conditions. 

However, he established that those conditions were restricted to the high latitudes and 

that there was no evidence of glaciation.  

Similar aridity-related trends have been associated with southern Pangaea, ranging from 

southern Africa and Madagascar to the lower regions of Argentina. Olsen (1997) and 

Kent and Olsen (2000) were able to confirm the increase in aridity from their 

interpretations of facies changes, evaporite occurrences, and paleosols in the Upper 

Triassic to Lower Jurassic formations of the Newark Supergroup, but alternatively 

established that these conditions were restricted to central Pangaea, spanning 15° 
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palaeolatitude. This interpretation of zonal climatic gradients is supported by the 

interpretation of increasing humidity in low latitude zones. For example, humidity 

levels increased in Australia and Greenland during the Late Triassic (Clemmensen et al. 

1998).  

Models of the Late Triassic Pangaea climate suggest a largely azonal climatic pattern 

with mostly dry equatorial and continental interior regions and humid belts in higher 

regions and around the Tethyan margin (Dubiel et al. 1991; Parrish 1993). Nevertheless, 

more sedimentological evidence in support of this azonal model is required. Apparently, 

the climatic changes affected the terrestrial systems more severely than marine 

ecosystems and likely affected regions in Pangaea in different ways. Lastly, McElwain 

et al. (1999), and McElwain et al. (2007) suggested that CO2 concentration increases 

significantly across the Tr/J boundary and that global temperatures increased by up to 

4C. Belcher et al. (2010) suggested that temperatures were much higher, which led to a 

drastic compositional floral change. They concluded that global warming probably led 

to increased storm activity and this coupled with a climate-driven increase in vegetation 

flammability led to a significant rise in fire activity at the Tr/J boundary. 

Bolide impact: Similar to the K/T boundary, an asteroid impact has been suggested 

as a causal mechanism for the mass extinction. The first to propose this were Olsen et 

al. (1987), who used a crater with a 100-km diameter, found in Manicouagan, Quebec, 

as an argument in favour of this theory. However, support for this theory has declined 

since radiometric data suggested that this record may be associated with an older 

boundary: the Norian/Carnian (216.5 ± 41 ma) (Hodych and Dunning 1992).  
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Additionally, a multiple impact theory has been associated with the Tr/J boundary 

(Gerhard et al. 1982; Kohn et al. 1995; Kelly and Spray 1997; Masaitis 1999). It has 

been suggested that chains of craters were formed by multiple impacts in a matter of 

hours (Tanner et al. 2004). However, this hypothesis has been rejected due to the 

incongruence of the palaeomagnetic record (Kent and Olsen 1998). Finally, Simms 

(2003) showed suggestive evidence of a bolide impact in the Cotham Member of the 

Penarth Group, which is of  Late Triassic (Rhaetian) age.  His argument is based on the 

presence of extensive horizons (e.g. > 250,000 km
2
) showing evidence of contorted, soft 

sediments that can be interpreted as “seismite”. However, Nomade et al. (2007) 

proposed that these sedimentary structures resulted from tectonic activities associated 

with CAMP. Therefore, in spite of some claims of the presence of features such as 

craters of appropriate age and extensive alteration in some sedimentary layers, their 

chronological relation to the Tr/J boundary and the low Iridium concentration (<0.4 

ppb) (Mclaren 1990) makes extraterrestrial impact an unlikely causal mechanism for the 

Tr/J mass extinction. 

CAMP volcanism: One of the first associations between volcanism and extinctions 

was established by McHone (1996), who proposed that early Jurassic eruptions created 

a flood basalt province that covered at least 5×10
-5

 km
2
 of north-eastern America. This 

was based on similarities between compositions and ages of tholeiitic basalts within the 

Newark Supergroup. Marzoli et al. (1999) enlarged the extent of this basaltic flood 

province and applied the name Central Atlantic Magmatic Province (CAMP) (Fig. 1.5).  

They included regions in North America, South America, North Africa and south-

western Iberia (Marzoli et al. 1999; Knight et al. 2004), which meant an area increase of 
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7×106 km
2
 and an added volume of approximately 2.5×106 km

3
(McHone 2000; 

Nomade et al. 2007). Verati et al. (2007), revealed that pulses of volcanic activity 

probably occurred between 197.8 ± 0.7 and 201.7± 2.4 Ma, with a peak at 199.1 ± 1 Ma  

and with an estimated duration of 1 myr (Schubert et al. 1992; Marzoli et al. 1999; 

2004; Verati et al. 2007). 

 

Figure 1.5 Original extent of the CAMP inferred from locations of extant outcrops of 

lava flows, dykes and sills with radioisotopic age dates of Hettangian (adapted from 

Whiteside et al. 2010). 

Many studies have suggested the relationship between CAMP and the Tr/J boundary 

(Marzoli et al. 1999; Olsen 1999; McHone 2000; Beerling and Berner 2002; Marzoli et 

al. 2007; Nomade et al. 2007). Palfy et al. (2000) have estimated the age of the Tr/J 

boundary at 199.6 ± 0.3 Ma, using U-Pb zircon geochronology, and suggested an age of 

200.6 Ma for the extinction on land. A similar estimation was obtained by Mundil et al. 

(2005). Schaltegger et al.,(2008), made a more recent age estimation for the Tr/J 

boundary, also based on U-Pb zircon. They suggest that the Tr/J boundary is older 

(201.58 ± 0.17 Ma). However, recent studies by Schoene et al. (2010), Whiteside et al. 

(2010) and Ruhl et al. (2011), placed the Tr/J boundary at 201.33 ± 0.13 Ma with the 



26 
 

FA of P. spelae (Schoene et al.  2010). The first negative carbon excursion was located 

at 201.4 Ma with a duration of 10 to 20 ky (i.e. the onset of CAMP), which also serves 

as an estimate for the duration of the mass extinction event - although CAMP had a 

duration of around ~600 ky (Ruhl et al. 2011). The relationship between the biological 

extinction and the volcanic events, therefore, is still under debate. Nevertheless, the 

timing of the massive CAMP magmatic event seems to fall within the error ranges of 

modern estimates for the age of the Tr/J boundary, which supports the possibility of a 

connection with the extinction event.  

Sea level change:  Marine regression had been for long time considered as a 

possible cause of biotic turnover as it reduces the available shallow marine habitat 

(Hallam and Wignall 1999). Global eustasy results from a variety of processes, 

including continental uplift due to thermal underplating (e.g. by a mantle plume) or 

changes in volumes or rates of mid-ocean ridge production, but these processes occur 

on time scales longer than 1 my (e.g. Miller et al. 2005). Latest Triassic regression-

transgression is recognized in numerous sections in Europe and North America and is 

likely to be the result of global sea-level change (Hallam and Wignall 1999). 

 

There is very good evidence that extensive sea level changes occurring around the Tr/J 

boundary. Rapid sea level fall is quickly followed by abrupt rise, which is clearly 

indicated by a marked lithological changes from carbonates to mudrock facies (Hallam 

1997). There was extensive shallowing across northern Europe in the latest Rhaetian, 

which is marked by a widespread progradation of sandstone in Germany (Bloos 1990), 

while in the earliest Hettangian (Planorbis Zone) there was an evidently rapid sea level 

rise. This rise lasted throughout the Hettangian Stage and reached a maximum in the 

early Sinemurian (Bloos 1990). 
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The regressive pulse at the end of the Rhaetian can also be recognised in the Northern 

Calcareous Alps of Austria, southern Sweden, and northwest Poland. In England, 

however, the Tr/J boundary may be accompanied by a sedimentary hiatus between the 

Penarth Group (Lilstock Formation) and Blue Lias Formation (See Chapter 4, 5 and 6) 

(Hallam 1995; Hesselbo et al. 2004). In the Muller Canyon Member at New York 

Canyon in Nevada, the regression is marked by an upper Rhaetian siltstone unit that 

separates Norian-Rhaetian and Hettangian-Sinemurian calcareous units. In South 

America in the Utcubamba Valley, Peru, Hillebrandt (1994) reported a facies change 

from the north to the south, in which silty shales indicative of deeper water grade 

southwards into shallow-water siltstones and limestones. 

Records from Africa, Australasia and Asia are generally poor because of the paucity or 

absence of marine successions across the system boundary (Tanner et al. 2004). Hallam  

and Wignall (1997; 1999) suggested that the reduction of habitat and the consequent 

loss of species might have been regional rather than global, and was driven by thermal 

uplift of the region surrounding the Atlantic rift prior to the initiation of magmatism. 

From this evidence, they concluded that sea-level changes were not likely to be one of 

the principal mechanisms that caused the biotic changes during the Tr/J boundary. On 

the other hand, Guex et al. (2004), suggested a model with several triggering factors, in 

which the negative δ
13

C excursion is associated with extinction and primary 

productivity collapse caused by volcanic SO2 and heavy metal emissions and acid rain.  

They also proposed, however, a cooling and glacial event that caused a short but major 

drop in sea level. 
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1.5 Palaeoenvironmental scenario during the Tr/J boundary: 
CO2 outgassing  

The Tr/J mass extinction event is associated with a major perturbation in the carbon 

cycle recorded in stable carbon isotopes (McElwain et al. 1999; van de Schootbrugge et 

al. 2008). The immense activity of CAMP associated with volcanic outgassing has been 

suggested by some authors to be responsible for the environmental deterioration at the 

end of Triassic (McElwain et al. 1999; McHone 2000; 2003). The sudden release of 

CO2 has been considered to be one of the main factors, in that it triggered an interval of 

intense greenhouse warming conditions that resulted in the extinction (McElwain et al. 

1999; Olsen 1999; McHone 2000). 

One of the first studies that showed the CO2 anomalies across the Tr/J boundary was 

carried out by McElwain et al. (1999) who studied the stomatal characteristics of fossil 

leaves, which at the same time also provided a palaeoclimatic evidence for the semi-arid 

conditions during the Late Triassic. Their estimations indicated that at the end of the 

Triassic atmospheric CO2 averaged approximately 1400 ppmv. However, most 

estimations centre around 1500 ppmv and compilations of all available CO2 estimates 

suggest that on average CO2 increased 2- to 3-fold across the Tr/J boundary (Royer et 

al. 2001; Beerling and Berner 2002), which probably produced an environmental 

temperature increase of 3° to 4°C. 

For the same time interval, Tanner et al. (2004) alternatively proposed a steady increase 

of CO2 from ~250 ppmv to Late Triassic levels four times as high, based on isotopic 

composition studies using carbonates. However, the relative stability suggested by 

Tanner et al. (2004) has been rejected on the basis that the temporal resolution of the 

paleosol samples may have been inadequate to detect a rapid, transient rise in 
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atmospheric CO2 and that the carbon isotopic composition of terrestrial organic matter 

within the paleosol was not considered (Retallack 2002). 

Beerling and Berner (2002) recalibrated the CO2 estimations to the natural isotopic 

variation and estimated a 1032 ppmv rise of CO2 during the end Triassic, based on 

biogeochemical modelling of carbon cycle perturbations. They suggested that the CO2 

degassing alone could not produce the substantial negative carbon isotopic excursion (as 

much as -3.5 ‰) recorded in marine carbonates, organic matter, and terrestrial wood 

(McElwain et al. 1999; Palfy et al. 2001; Hesselbo et al. 2002). They established that 

volcanic CO2 triggered the release of massive amounts of CH4 into the ocean-

atmosphere system by destabilizing methane hydrate reservoirs. The oxidation of CH4 

to CO2 could then have raised atmospheric CO2 values to about 2500 ppmv during the 

Early Jurassic (Hodych and Dunning 1992). The most recent studies carried out by Ruhl 

et al. (2010) using compound-specific C-isotopes, showed that the initial carbon isotope 

excursion recorded a depletion of ~8.5 per mil (‰) atmospheric -
13

C, suggesting a total 

injection of ~12,000 to 38,000 Gt of carbon as methane in just 10-12 kyr, from three 

mechanisms: CAMP, a marine methane-hydrate reservoir and through volcanic sill 

intrusions and flood basalt emplacement. They suggest that these mechanisms triggering 

a strong warming event and an enhanced hydrological cycle directly coinciding with the 

marine and terrestrial assemblage changes and extinction event.  
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1.6 Faunal extinctions 

At the close of the Triassic, about 80 % of all species went extinct (Sepkoski 1997) and 

massive biotic turnover occurred in both the marine and terrestrial realms. Benton 

(1995) estimated that average familial extinction rates were as high as 15.2–23.9% for 

all organisms, 10.6–23.4% for continental organisms, and 12.7–16.9 % for marine 

organisms (Fig. 1.7). 

 

 

Figure 1.6 Atmospheric pCO2 through the Late Triassic to Early Jurassic. [Error bars 

are S(z) = 3000 to 1000 ppm]. Pre-CAMP pCO2 values of ~2000 parts per million 

(ppm), increasing to ~4400 ppm immediately after the first volcanic unit, followed by a 

steady decrease toward pre-eruptive levels over the subsequent 300 thousand years. 

pCO2 increase as a direct response to magmatic activity (primary outgassing or contact 

metamorphism). Adapted from Schaller et al. (2011). 
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Figure 1.7 Proportion of important benthic families becoming extinct during the Tr/J 

mass extinction event. Based on Benton (1993) and Hallam (2002) data. 

 

Recently, Kiessling et al. (2007a) analysed the diversity and abundance patterns of 

organisms throughout the Tr/J boundary based on the Paleobiology Database 

(http://paleodb.org/cgi-bin/bridge.pl). They reported that 41% of all mesobenthic and 

macrobenthic genera that crossed the Norian-Rhaetian boundary became extinct during 

the Rhaetian. With this extinction, they noted a significant reduction in origination and 

strong diversity depletion in the Early Hettangian. At the same time, they observed a 

selective extinction of certain taxa when separating species according to environmental 

setting. They suggested that reef dwellers had a significantly higher extinction risk than 

bottom dwellers, that near shore taxa suffered more than offshore taxa; that taxa with a 

preference for carbonate substrates were more strongly affected than taxa that preferred 

siliciclastic substrates, and that taxa that inhabited high latitudes showed lower 

extinction rates than taxa at intermediate and low latitudes. 

http://paleodb.org/cgi-bin/bridge.pl
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There are many studies that report the loss of diversity across the Tr/J boundary, but the 

information they provide varies between them and also depends on the time these 

studies were done (Benton 1993; Sepkoski 1996; Hallam and Wignall 1997; Hallam 

2002; Kiessling et al. 2007a). However, they all agree on that the Tr/J extinction event 

resulted from the intensification of background extinctions, that the risk of extinction 

was selective for certain taxa, and that this mass extinction is not the result of a decrease 

in origination rates (Kiessling et al. 2007a). 

1.7 Important faunal groups 

Mollusca: The traditional definition of the Tr/J boundary is based on the ammonoid 

record. Teichert (1988) indicated that more than 150 genera and subgenera existed 

during the Carnian, but were reduced to 90 during the Norian and finally to 6 or 7 

during the Rhaetian. Some authors suggested that the extinction occurred at the end of 

the Norian and not at the end of the Rhaetian. This is based on the studies of Taylor et 

al. (2000; 2001), who plotted the ammonoid distribution for the Gabbs and Sunrise 

formations in Nevada, USA. They reported that only 11 species lived through the 

Norian and just one crossed the Tr/J boundary. These results and the conclusion based 

on them are shared by Hallam (2002), although Page (2008) considered that the Late 

Triassic Phylloceratina that crossed the boundary into the Jurassic, actually gave rise to 

the first Psiloceras immediately above. Nevertheless, the most obvious change in 

ammonoid faunas across the Tr/J boundary is the replacement of Choristoceras of the 

Rhaetian by the earliest Jurassic Psiloceras.  

 
Bivalves are one of the most abundant and diverse macro-invertebrates in the early 

Mesozoic shallow marine facies and their stratigraphic distributions through the Tr/J 

boundary are relatively well known. They were not much affected at the family level by 
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the End-Triassic extinction, as only 2 out of 52 families went extinct (the Myophoridae 

and Mysidiellidae) (Benton 1993). However, there was a much higher extinction rate at 

the generic level, as was established by Hallam (1981) at 92%, although Skelton and 

Benton’s (1993) global compilation of bivalve family ranges showed a Tr/J extinction 

of only 5 families at the boundary. McRoberts and Newton (1995) established a 

selective and stepwise extinction through high resolution analysis, with the highest rates 

(percentage of species extinguished) occurring during the early (51%) and middle 

(71%) Rhaetian, and a significantly lesser extinction at the end of the Rhaetian.  

Later, Hallam and Wignall (1997) re-examined the bivalve record for the Tr/J boundary 

interval in north-western Europe and the northern Calcareous Alps in considerable 

detail. They found an extinction of only 4 out of 27 genera in northwest Europe and 9 

out of 29 genera in the Calcareous Alps across the boundary. Later, Hallam (2002) 

concluded that the biggest extinction in bivalves occurred during the Rhaetian with 

extinction close to 31% of genera and suggested that the gradual pattern in the 

disappearance of bivalves could be associated with an environmental bias related to 

changes of facies (Fig. 1.7). For gastropods, Tracey et al. (1993) suggested that no 

significant extinction occurred at the family level across the Tr/J boundary, with four 

families going extinct at the Norian-Rhaetian boundary, and only one at the Tr/J 

boundary, with 42 surviving (Fig. 1.7). 

 

Echinoderms: Only one crinoid family became extinct at the end of the Rhaetian 

(Somphocrinidae) (Fig. 1.7). 

 
Brachiopods: This group shows a series of stepwise extinctions and diversifications 

through different stages of the Triassic. However, 17 brachiopod families went extinct 
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at the end of the Triassic. A recent compilation of brachiopods at the generic level 

(Manceñido 2000) does not indicate a substantial loss or turnover. Alternatively, 

Austrian studies indicated the disappearance of 6 species in the Marshi Zone with just 

one species persisting in the top of the section (Ulrichs 1972). This fails to provide 

evidence of a sudden mass extinction (Fig. 1.7). 

 
Sponges and corals: At the end of the Triassic, there was a dramatic decline in reef 

corals and sponges, which appears to reflect mass extinctions on a global scale. 

Kiessling (2001) recognised the strong effect of this mass extinction in the fact that the 

global distribution of reef-building corals and sponges was restricted to a zone around 

30°N. According to Benton (1993), three families of corals went extinct during the 

Rhaetian. At the generic level, however, the extinction was more pronounced: Beauvais 

(1984) reported that of the 50 scleractinian genera in the Upper Triassic only 11 

survived into the Jurassic. The sponges were most severely affected by the decline in 

the demosponge sphinctosoiids, of which 16 families went extinct at the end of the 

Rhaetian. Similarly, the spongiomorphs were another reef-building group that went 

extinct at the end of the Triassic (Fig. 1.7). 

1.8  Ecological effects, selectivity, extinction and recovery 

The Tr/J mass extinction represents the collapse of biological systems, reducing the 

ecological complexity to more simple levels of organisation and changing the species 

dominance, the ecological structure, complexity, and functionality of marine 

communities (Sheehan 1996a; Droser et al. 2000; Brenchley et al. 2001; Bambach et al. 

2004; McGhee et al. 2004; Layou 2009). It has been ranked third in terms of its 

ecological impact (Sheehan 1996a), which involves the collapse of the reef systems, 

turnover of the evolutionary subunits, and deep structural changes in ecology (Droser et 
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al. 2000; McGhee et al. 2004). One of the most recent compilations developed by 

Kiesling et al. (2007), indicated that 41% of the genera that crossed the Norian-Rhaetian 

became extinct at the end of the Triassic, and that tropical systems, calcareous 

organisms, and reef systems were preferentially affected (Kiessling and Aberhan 2007; 

Kiessling et al. 2007). 

The effects of the extinction on the ecosystems did not just result in species loss 

(diversity), but also included loss of modes of life or ecological traits (Fig. 1.8). Modes 

of life can be defined as the ways in which species groups use particular resources (Fig. 

1.8). These relate species traits to habitat characteristics and provide important insights 

into the structure and functioning of palaeocommunities.  

Alternatively, the ecological traits of the fauna have the potential to indicate changes in 

community structure that relate to function as an alternative to using traditional 

taxonomic descriptors (Bush et al. 2007; Novack-Gottshall 2007). The Tr/J mass 

extinction is known to have exerted selective pressure on ecological traits (Kiessling et 

al. 2007a; Mander and Twitchett 2008). For example, Hallam (1981) indicated that 

there is a smooth transition in the number of epifaunal and infaunal occurrences and 

feeding mode. Similarly, Aberhan (1994) recognised 10 ecological traits in the Late 

Triassic to Early Jurassic bivalve communities that are characterised by specific 

turnover in the relative contribution of each group through time. McRoberts and 

Newton (1995) concluded that burrowing suspension-feeders suffered high extinction 

rates (92%) compared to epifaunal suspension-feeders and attributed this pattern to 

differences in efficiency rates of feeding in periods of low productivity. Finally, Mander 

and Twitchett (2008) confirmed the pattern of differential selection in favour of 
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epifaunal suspension-feeding through bias control of lithofacies. They established the 

necessity of fine-resolution studies in order to obtain a more convincing pattern.  

Alternatively, Kiessling et al. (2007a) used compiled data and sample-standardised 

analysis of occurrences. They established that only a few ecological traits are 

significantly associated with extinction risk during the End Triassic extinction. They 

found that the probability of survival increased with mobility, mainly due to the 

extinction of reef builders and brachiopods, and that there is a tendency towards 

increased survival of epifaunal rather than infaunal bivalves. 

The selective changes in the modes of life were not the only ecological modification to 

the benthic communities across the Tr/J boundary. The trace fossils showed a severe 

decrease in the number of ichnotaxa, as well as in burrowing depth and size. Twitchett 

and Barras (2004) and Barras and Twitchett (2007) analysed records from three 

localities in southern England, which included the former candidate GSSP at St 

Audrie’s Bay. Their data reveals how eight ichnogenera show significant patterns of 

infaunal changes through the interval, with a notable gap in the “Pre-Planorbis Beds”. 

Although this study only involved the Jurassic recovery phase, it clearly shows the 

selective extinction (infaunalisation) and the almost complete disappearance of 

burrowing organisms, which is likely as result of marine anoxia. 

The ecological impact can also be observed in community reorganisation. Tomasovych 

and Siblík (2007) evaluated the compositional changes in the brachiopod communities 

in the Northern Calcareous Alps (Austria) using multivariate techniques. They 

demonstrated a marked effect of the Tr/J extinction on the composition, indicating that 

there was a high extinction rate and large species turnover, which led to fundamental 
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reorganisation of the community structure. Similarly, Mander et al. (2008) studied the 

turnover in benthic assemblages in two sites in the southwest of the United Kingdom (St 

Audrie’s Bay and Lavernock Point). They reported a 73% species loss in taxa at the end 

of the Rhaetian, with just 6 species surviving into the Hettangian. These changes caused 

a severe depletion in diversity, dominance, and evenness, and a small turnover in 

species composition. This constitutes good evidence of a real biotic crisis occurring in 

the marine ecosystem during the short stratigraphic interval spanning the uppermost 

Westbury Formation and the lower Lilstock Formation (both Rhaetian).  

It has been shown that altered palaeoenvironmental conditions, such as carbonate under-

saturation (Hautmann 2004), anoxia in benthic ecosystems (Wignall 2001c), and a 

productivity decrease in marine ecosystems (Twitchett 2006) resulted in substantial 

changes in the functional communities. 

These changes in the organisation of the assemblage are not the only feature from which 

the Tr/J extinction can be recognised. Morphological changes (shape and size) in 

individuals of different species have also been observed (Urbanek 1993; Twitchett 

2001; Hautmann et al. 2008b; Mander et al. 2008). Although there are no direct surveys 

focusing on this phenomenon for the Tr/J mass extinction, some studies have reported a 

change in body size. For example, Dommergues et al. (2002) recorded a temporal 

increase in the shell size of ammonites, including a significant size increase through the 

Early Hettangian. Although the aim of their survey was to correlate the trend with 

Cope’s rule, they considered that the size increase in the beginning of the Jurassic was 

linked to the nutrient scarcity during the latest Triassic.  
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In contrast, Hautmann (2004; 2006) analysed the evolutionary response of 8 bivalve 

families to changes in sea water chemistry. He found a strong decrease in shell size in 

the earliest Jurassic (from 108-420 mm in the Rhaetian to 34-60 mm in the Hettangian). 

This phenomenon was most obvious in the family Megalodontoidea, which he 

associated with problems resulting from their inability to adapt their shell mineralogy to 

seawater chemistry.  

Similarly, analysis of the trace fossil record (Twitchett and Barras 2004; Barras and 

Twitchett 2007) in the “Pre-Planorbis beds” showed a significant reduction in body size 

in the ichnofauna. Although some authors related this size reduction to low oxygen 

concentrations, e.g. Rhoads and Morse (1971), it is very likely that other factors such as 

decreased food supply, productivity reduction, and suboptimal salinity are also 

involved. Despite all this, it is still not clear which factors are of greatest importance 

and why this phenomenon was selective across the Tr/J boundary. 

After the extinction event, other phenomena that can be related to the recovery of 

ecosystems can be observed. These types of phenomena involve the reorganisation of 

all community components. Typical characteristics include an increase in the 

complexity of the ecological structure, which results from the appearance of new clades 

that diversify rapidly, and the re-establishment of old clades that survived the mass 

extinction. In summary, modification of the life strategy in life history (generalist versus 

specialist), an increase in complexity, dominance, and species size, and the filling of 

new ecospace are all part of the recovery process (Twitchett 2006; Layou 2009). 

Although certain indications of recovery processes taking place after the Tr/J mass 

extinction are well-studied, such as the re-appearance of ichnofauna, increasing 
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infaunalisation, increasing species size, composition turnover, increasing diversity, and 

the diachronous recovery of benthic and reef systems (Stanley 2006; Tomas  ov ch     ; 

Barras and Twitchett 2007; Hautmann et al. 2008b; Mander et al. 2008), insufficient 

attention is given to understanding the ecological re-organisation processes or the 

dynamics of changes between stages and co-evolving taxa (Twitchett et al. 2004; 

Twitchett 2006). Recently, Clémence et al. (2010) attempted to construct a “local versus 

regional” extinction model for the Tr/J interval, integrating geochemical and 

sedimentological data. However, as these studies were based on calcareous nannofossils 

and foraminiferal assemblages, they may not be representative of the complete 

ecological succession process. In fact, the study places more emphasis on productivity 

and does not record a descriptive component relevant to the structure of the 

palaeocommunities (e.g. compositional change, rank abundance, richness). 

 

Recently there has been increasing interest in studying the Tr/J boundary interval and 

more information regarding the causes of this mass extinction is continuously being 

gathered. However, there are a restricted number of marine sections available for study 

and knowledge of the time interval and the ecological and taxonomical effects on 

marine ecosystems is incomplete. The lack of knowledge basically relates to elements 

associated with structure, functionality, and complexity of benthic communities. These 

elements include extinction and origination rates, geographical effects (deep versus 

shallow water), selective extinction of certain guilds (including trophic level), changes 

in the modes of life, and morphological changes. 
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1.9 Statement and objectives 
 

During the Late Triassic, about 80 % of all species went extinct (Sepkoski 1997) and 

massive biotic turnover occurred in both the marine and terrestrial realms (Hallam and 

Wignall 1997). This extinction event was concurrent with the onset of environmental 

changes associated with the appearance of CAMP and one of the biggest drops in the 

sea level (Hesselbo et al. 2002; 2004; 2007). Although the loss of taxonomic diversity is 

well-documented through the extinction, the trajectory of the marine fauna through the 

extinction and recovery period has not been studied in detail, specifically in the context 

of a quantitative, community-level palaeoecological approach. Hitherto, there has been 

greater emphasis on understanding the environmental scenario that triggered this 

extinction event (Section 1.5). However, knowledge of the exact timing of changes in 

the structure of communities and the function of ecosystems relative to this 

environmental disruption is currently poor, which suggests that more research needs to 

be done. Finally, as result of a small number of outcrops, mainly located in the northern 

hemisphere, there is no clear understanding of the palaeoecological response over 

different spatial scales (local-regional).  

The overall aims of this study are (1) to evaluate the ecological changes of marine 

assemblages through the Tr/J mass extinction event and (2) to compare patterns of 

ecological changes at local and regional scale, in order to estimate the timing, intensity, 

and geographical dispersion of the changes in marine palaeocommunities. To achieve 

these aims, a series of questions regarding the effects of the Tr/J mass extinction over 

different ecological elements, such as diversity, ecological complexity, and changes in 

body size, will be addressed. 
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1.9.1 Richness, abundance and composition 

In terms of diversity, there is limited knowledge about the changes in richness, 

abundance and composition across the Tr/J boundary (Hallam 2002). Additionally, most 

previous work on the Tr/J mass extinction has focused on compilations (e.g. Kiessling 

et al. 2007) or is restricted to the evaluation of a single higher taxonomic group, rather 

than quantitative palaeoecological approaches that incorporate palaeocommunity-level 

data (Droser et al. 2000; Bottjer 2001) (See section 1.8). To improve our understanding 

in this area, the following questions were addressed: 

1) How does species richness in a local community change through the Tr/J mass 

extinction? Do different Tr/J sections record the same patterns?  

2) Is the abundance of certain species higher during the extinction event? Is species 

abundance more evenly distributed before or after the Tr/J extinction event?  

3) Does species composition change drastically after the extinction? If so, does it 

happen in a short period of time? And which species survived and which ones 

did not? 

4) Are the extinction and recovery dynamics during the Tr/J mass extinction event 

comparable to other mass extinctions? Are ecological parameters (richness, 

abundance and composition) associated with environmental changes?  

1.9.2 Ecological Complexity 

Complexity can be defined as a “function of the number of different types of parts or 

interactions” that characterizes a system (Mc hea 199 ). A complex ecosystem is 

characterized by organisms that perform many functions and by numerous types of 

ecological interactions. In contrast, organisms in a simple ecosystem would fill fewer 

ecological roles and would interact in fewer ways (Bush and Bambach 2011). 

Ecological complexity is related to taxonomic diversity; therefore any decrease in 
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species richness will affect ecological complexity. Ecological studies have demonstrated 

that the loss of biodiversity can imperil ecosystem services and functions (Erwin 2008). 

Consequently, is expected that during a regime of mass extinction the community will 

suffer a loss of functional richness. 

A more operational measure of ecological complexity is the Ecospace concept (as 

described in detail by Bambach et al. 2007, Bush et al. 2007 and Novack-Gottshall 

2007), which employs a series of categories, or life styles, to describe the way in which 

available resources are divided among a group of species (see section 3.1 for details).  

Although, this concept has been applied mainly to studies of megatrends, the ecospace 

concept has not commonly been used to study extinction events (Erwin 2008; Layou 

2009) and there are even fewer studies of Tr/J marine assemblages (Hallam 2000; 

Aberhan et al. 2006; Kiessling et al. 2007; Mander et al. 2008). Most Tr/J studies 

describe the selective impact of a mode of life such as infaunal, suspension-feeding 

marine taxa (Section 1.7). Despite this, the ecospace changes before, during and after 

the Tr/J extinction are totally unknown.  In order to better understand changes in 

ecological complexity through the Tr/J interval, the following questions were addressed: 

1) How does the ecological complexity in a local community change through the 

Tr/J mass extinction?  

2) There is a decrease in the density of each mode of life during the extinction 

event? 

3) There is a selective extinction of the infaunal, suspension-feeding marine taxa? 

4) Do different Tr/J sections record the same patterns?  

5) How is the recovery pattern in the ecospace after Tr/J extinction event? 
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1.9.3 Reduction in body size 

Body size is an important morphometric measure, since it influences almost every 

aspect of the biology of a species and is considered one of the single most important 

attributes of an organism (Roy et al. 2000). Body size spectra are widely used to assess 

the state of marine ecosystems at regional and global scales (Shin et al. 2005). 

Measurements from a range of fossil marine taxa and trace fossils demonstrate that the 

majority of animals suffered a reduction in body sizes through the biotic crisis (i.e. the 

Lilliput effect in the strict sense) (Twitchett et al. 2004; Twitchett 2006; Twitchett 

2007; van de Schootbrugge et al. 2007).  

However, this phenomenon has been little studied in the Tr/J extinction event. Some 

studies had described small body size of bivalves and ammonites in the Early 

Hettangian (Hallam 1960; Kennedy 1977; Dommergues et al. 2002). Additionally, 

Hautmann (2004) indicates that just one family of bivalve (Megalodontidae) is affected 

across the Tr/J boundary, suggesting that this reduction could be a response to changes 

in seawater chemistry (e.g. under-saturation of dissolved carbonate) (Section 1.9). More 

recently, Mander et al. (2008) suggested a size reduction in bivalves in bivalve 

communities. Although their study records a good temporal resolution of changes in 

body size through two Tr/J sections in England, their analysis did not separate out 

individual families, genera or species of bivalve. 

Although these studies possibly demonstrate a global change in body size, the trends are 

still not clear. In order to better understand changes in body size through the Tr/J 

interval three questions are addressed:  

1) Is there a reduction of the body size of marine bivalves through the studied 

interval?  
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2) If there is a size reduction, does it affect all bivalves?  

3) If there is a size reduction, does it occur before, during or after the Tr/J mass 

extinction event?  

1.9.4 Trace fossils  

Trace fossils are good indicators of environmental conditions and evidence the 

composition and behaviour of the marine fauna (Droser and Bottjer 1991). Studies of 

mass extinction events have recorded a severe decrease in the number of ichnotaxa, as 

well as in burrowing depth and diameter, which has mostly been attributed to the result 

of marine anoxia (Twitchett and Wignall 1996; Wignall 2001; Twitchett and Barras 

2004; Twitchett 2006; Barras and Twitchett 2007). 

The Tr/J extinction event does not escape to this pattern. Twitchett and Barras (2004) 

and Barras and Twitchett (2007), analysed carefully the records of three Tr/J boundary 

sections in southern England. Their data reveals a notable gap immediately after the 

extinction events but a rapid reappearance during the recovery stage. Using parameters 

such as the number of ichnotaxa, burrowing depth and diameter, this work intends to 

answer the following questions: 

1) Is there a correlation between the trace fossil and body fossil records?  

2) If so, do their respective recoveries take place simultaneously?  
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Chapter 2 Methodology 

2.1 Study approach  

This research focuses on the effects of the mass extinction on different organizational 

levels (individuals, species, and communities). High resolution spatial-temporal analysis 

was performed to describe and evaluate the timing, the intensity, and the amplitude of 

the changes in marine palaeocommunities through the Tr/J boundary. For this, four 

locations were selected with the aim of evaluating the changes in the marine fauna 

through the Tr/J in different locations of Pangaea. Three localities are in the United 

Kingdom and one in northern Chile. Those localities were selected for their high quality 

fossil record and high stratigraphic resolution, allowing a good comparison between the 

sites (Hillebrandt 1990; 1994; McRoberts et al. 2007; Lucas et al. 2007; Simms and 

Jeram 2006; 2007; Longridge et al. 2007; Hillebrandt et al. 2007). 

2.2 Study sites 

2.2.1 Southwest UK 

The sequences of Upper Triassic and Lower Jurassic strata in Southwest UK are 

exposed continuously in sea cliffs widespread over 300 metres. The sediments were 

deposited in a series of east – west trending extensional basins (Mander et al. 2008). 

Throughout the Late Triassic and Early Jurassic, Palaeozoic basement rock cropped out 

along the northern margin of the depositional area and formed an elongated region of 

high ground that was not finally buried until the Mid-Jurassic. The depositional 

environments in the Norian were lacustrine and commonly evaporitic; however 

conditions became generally marine through the Rhaetian (Hesselbo et al. 2004). 
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Figure 2.1 Geological setting of studied sections. (1) Triassic-Jurassic palaeogeography (modified from Scotese 2002). CAMP, Central 

Atlantic Magmatic Province. A: Larne, Northern Ireland (See fig. 2.2), B:  t Audrie’s Bay; C: Pinhay Bay; and D: Northern Chile. (2) Maps of 

the locations sampled in UK, the dots and the red letters indicate the three localities. Figures 3 and 4 show the section of St. Audrie’s Bay. 

Figures 5 and 6 show the section of St. Audrie’s Bay. Each pictures show their lithostratigraphy (Larne is shown in the figure 2.2).   
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Figure 2.2 Geological setting of studied sections. (1 and 2) Map of the Triassic-

Jurassic strata exposed on the foreshore at the Waterloo Bay, Larne. (3 and 4) Strata 

exposed on Portezuelo Providencia, Northern Chile. Each pictures show their 

lithostratigraphy.  

The Tr/J boundary has been studied for 200 years and many of studies have focused on 

the localities of  t Audrie’s Bay and Lyme Regis. Both sections are of international 

importance, since they incorporate one of the former candidate global stratotype 

sections for the base of the Hettangian Stage (Warrington et al. 2008) and the GSSP of 

the Sinemurian base (Bloos and Page 2002). 

 t Audrie’s Bay section, is located at the north end of the sea cliff on the west side of  t 

Audrie’s Bay, west  omerset, England (51°1 '53.99"N; 3°1 '9.37"W) (Fig. 2.1).  The 

site is a headland located to the south side of the Bristol Channel, separating St Audrie’s 

Bay, to the east, from Doniford Bay, to the west. Exposure of the succession seen here 

in vertical section continues south-eastwards for 200 m in a strike section in the cliff 

(Fig.  .1) at the west side of the  t Audrie’s Bay, and westwards, into Doniford Bay. 
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The same vertical section is exposed on the adjacent foreshore. The stratigraphic 

succession is continuous downwards, to the east in St Audrie’s Bay, and upwards, to the 

west, in Doniford Bay. 

The Pinhay Bay section is located in a broad embayment 2.45 km west of Lyme Regis 

round to Seven Rock Point (50°42'44.94"N; 2°58'2.81"W). Hallam (1960) described the 

cliff sections as “incomparably the best section in the country”. The Pinhay Bay section 

is a vertical succession which extends from the Rhaetian to Sinemurian in an eastward 

direction (Fig. 2.1). Pinhay Bay records the uppermost Triassic Penarth Group 

(Rhaetian Stage) (Lord 2010). Due to the regional dip, the White Lias descends to beach 

level in the centre of the bay and passes onto the foreshore at the eastern end of the bay. 

2.2.2 Northern Ireland 

Larne is located on the east coast of county Antrim, Northern Ireland, 28 km NNE of 

Belfast (Fig. 2.1). The section is very well exposed and is located on a wave-cut 

platform on the foreshore at Waterloo Bay (54°51’   ’’N; 54°8’18’’W) (Fig.  .1). The 

section is continuously exposed from the Norian to the Sinemurian (Bucklandi Zone), 

covering approximately 115 m (Ivimey-Cook 1975). The strata dipping to beach level in 

the centre of the bay between 20° and 30° to the NW and are cut by a few minor faults 

(Fig. 2.1) (Simms and Jeram 2007). 

2.2.3 Northern Chile 

Portezuelo Providencia is located 164 km from Antofagasta, Northern of Sierra 

Argomedo, North of Chile (24°43'29.93"S; 69°18'45.50"W) (Fig.2.1). The Portezuelo 

Providencia strata are relatively well expose, and represent continuous marine 

sedimentation. This section mostly consists of sandstones, siltstones and calcareous 

intercalations. The section is approximately 60 m thick, spanning from the Norian to 
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uppermost Hettangian. Through the section the benthic fauna is relatively poor, 

although ammonites are found in many horizons, which allows a good correlation with 

other sections through the world (Hillebrandt 1994; 2000). Previous studies in this area 

have been done by Hillebrandt (1990) and Hillebrandt and Chong (1985) and more 

recently by Sansom (2000). This investigation is, however the first ecological 

characterisation of the marine fauna through the Tr/J boundary in Chile. 

 2.3 Methodology of sampling 

Sedimentary logs were produced for each locality in the field. In each section bed 

numbers were the same as those used by Hesselbo et al. (   4) for  t Audrie’s Bay; 

Simms and Jeram (2007) for Larne; Lang (1924) and Page (2002) for Pinhay Bay. The 

beds in the section in Chile do not have bed numbers. The correlation between localities 

was made through ammonite zone (e.g. Hillebrandt 1994; Hillebrandt et al. 2007).  

To decrease the lithological bias and capture the spatial and temporal variation in the 

marine fauna, one random sample of 1.5 ± 0.2 kg of each lithofacies encountered 

(limestone, mudstone) was taken approximately every 1 ± 0.5 m. Lastly, each sample 

was wrapped in plastic bags and transported to the laboratory.  

The samples from different lithologies were processed in two ways. The limestone rock 

samples were cut perpendicular to the bedding plane surface, generating slabs of 

approximately 2.5 cm thickness. Later each slab was polished with wet emery paper 

(three steps from 200 grit, 400 grit and then 800 grit), and afterwards the polished 

surfaces were soaked in 37% hydrochloric acid for about 10 seconds and washed under 

water. This technique allowed the precise recognition of fossil features and the 

identification of trace fossils. However, when the slabs showed poor preservation of the 

fossils, it was broken in to pieces for a more precise identification of the fossils.  
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Each sample of mudstone was broken into 45 cm
2
 chips. Water was used to soak the 

rock and separate the fossils without damaging them. In both cases the macrofauna of 

marine invertebrates was identified as far as possible and the number of individuals per 

species was counted. All the specimens were classified according to Hallam (1960), 

Chong and Hillebrandt (1985), Swift and Martill (1999), Moghadam and Paul (2000), 

Hodges (2000), Simms & Jeram (2007), Mander et al. (2007), Paul et al. (2008), 

Warrington et al. (2008) and Lord and Davis (2010). 

Additionally, other measurements were made in the field, such as the body-size of the 

organisms and the number and size of ichnofossils (see 2.4.4 and 2.45). In this case, all 

the observations and the measurements were performed at the same horizons where 

samples were taken. Finally, richness, dominance, composition, abundance, ichnometric 

and morphometric indices were calculated to document the ecological changes in the 

marine palaeocommunities.  

2.4 Data analysis 

2.4.1 Richness 

Richness is a fundamental property of any biotic assemblage. It is defined as the number 

of different categories observed in one collection (any unit e.g. area, volume, weight) 

(Olszewski 2010). Richness characterises the assemblage and gives information about 

ecosystem condition (Gaston 1996). Many techniques have been developed for 

estimating the richness in one sample (Magurran 2004). Here, to evaluate the changes in 

richness in the palaeocommunities through the Tr/J boundary, the number of species 

was estimated through individual-based and sample-based rarefaction techniques 

(Gotelli and Cowell 2001).  
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Individual-based rarefaction is a sequential sampling of the individuals of each sample, 

or the expected number of species in a random sub-sample of individuals from a single, 

large collection (Gotelli and Cowell 2001). The advantage of this technique is that it 

avoids the biases due to differences in sample effort between sampling (Gotelli and 

Cowell 2001). Sample-based is the mean value of repeated re-sampling of all pooled 

samples (Gotelli and Cowell 2001; Appendix 2.1).  

Rarefaction curves of each sample were estimated as sampling size (SaS) increases, 

where SaS was defined by sequentially increasing the number of individuals from 1 to 

N (Gotelli and Cowell 2001). In the analysis, for each SaS (from 1 to N) the sample was 

randomly resampled 5000 times and the followed parameters were estimated: the 

number of species (species richness); Shannon-Wiener H’ diversity index (Haye  & 

Buzas, 1997); and the fraction of the collection that is represented by the most abundant 

species (a species dominance index). After 5,000 rarefactions were performed, species 

richness at each SaS was estimated as the average number of species calculated from the 

10,000 re-samples obtained for each SaS (Gotelli and Entsminger 2006). Richness 

estimators like Mao Tau (Colwell et al. 2004), Chao1 (Chao 1984), and Jackknife1 

(Burnham and Overton 1978; 1979) were calculated to confirm the observed patterns 

(Appendix 2.1). 

The Shannon-Wiener H’ diversity index of each SaS was calculated using the natural 

logarithm as:  

   ∑     [  ]                                             

Where pi is the proportion of the sample represented by the species ith in the sample 

(Gotelli & Colwell 2001); then, these 5,000 values of this index obtained for each 

sample were averaged to estimate the mean diversity of the respective SaS. In all 

procedures richness was estimated for the whole locality, for each bed and for the 
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different stratigraphic units. The stratigraphic units considered were the Westbury 

Formation, Cotham Member, Langport Member, Pre-Planorbis Zone, Planorbis Zone, 

Liasicus Zone and Angulata Zone. 

All the rarefaction analyses were performed with software EcoSim 7.72 (Gotelli and 

Entsminger 2006) and Estimates 7.5 (Colwell 2005). The values of species richness and 

Shannon-Wiener H’ diversity index were plotted against SaS to assess variation as the 

number of individuals included in the samples increased. The statistical differences 

between different samples, localities and stratigraphic units were evaluated through the 

estimation of 95% confidence intervals at each SaS. Significant differences were 

considered when the confidence intervals did not overlap.  

2.4.2 Abundance 

Abundance is defined as the number of entities (individuals) of a specific category 

(species) and represents the structure and complexity of the community (Begon et al. 

2006). Its properties are estimated by evenness, which quantifies how equal the 

community is numerically, or by dominance, which shows that one species is 

particularly abundant or controls a major portion of the resources in a community. 

Three methods were used to calculate temporal differences in abundance. The first is 

kurtosis (see Appendix 2.4.2 for definitions), which is a measure of whether species 

abundance is peaked or flat relative to a normal distribution. If the kurtosis is positive it 

indicates assemblages with high dominance; more even communities record negative 

kurtosis (Webb et al. 2010). This measure was plotted against stratigraphic height and 

lithostratigraphic units. The kurtosis values were estimated with the program Statistica 

6.0 (Statsoft, Inc. 2001).  
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The second method applied is the Rank Abundance Distribution Curve (RADs) 

(Whittaker 1965). This method displays the logarithmic species abundances against 

species rank order. Different RADs reflect specific ecological scenarios (environmental 

gradients or disturbance). Five of the most popular RADs models following Wilson 

(1991) were tested against the palaeoecological data: Broken stick, Geometric series, 

Log normal, Zipf and Zipf – Mandelbrot (Appendix 2.2). 

 The Figure 2.3 shows the five main rank abundance models, which reflect different 

ecological scenarios (Magurran 2004). The geometric model is interpreted to reflect a 

situation in which the majority of the resource is dominated by one to few species 

within the community (Harnik 2009). The plot of the geometric model is a straight line 

with a high slope, which represents the ranking from the most to the least abundant 

species. Field data have shown that the geometric model is found primarily in species-

poor (and often harsh) environments or in the very early stages of a succession (low 

ecological complexity) (Bastow 1991).  

The log normal model is one of the most common patterns that appear in large 

assemblages studied by ecologists (Magurran 2004). The log normal distribution has a 

shallower slope, which is associated with the highest evenness, and is generally 

associated with more “stable” ecosystems (Magurran    4). Associated with the log 

normal distribution is the Zipf-Mandelbrot model, which reflects successional processes 

in which the later colonists have more specific requirements and hence are rarer than the 

first species that arrive. Finally, the broken stick model represents a more uniform 

distribution of abundance and is the most uniform distribution ever found in natural 

communities (Bastow 1991). The model could be viewed as representative of a group of 
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species of equal competitive ability jostling for niche space (Tokeshi 1993; Magurran 

2004).  

 

Figure 2.3. Rank/abundance plot illustrating the typical shape of three well-known 

species abundances models: the geometric, log normal and broken stick models. 

During the extinction event the rank abundance distribution will best fit to the geometric 

model, because the expectation is that the assemblages will be dominated by few 

species, showing low ecological structure (Magurran 2004). Or could also, fits to 

Broken Stick model, which predicts a very uniform RADs, where the group of species 

have the same competitive ability jostling for niche space (Magurran 2004). 

Before the extinction (i.e. the Westbury Formation) and from late recovery onwards (i.e. 

the Angulata Zone) assemblages should reflect a mature and stable system (Barras and 

Twitchett 2007), represented by a more even abundance of species, and should conform 

to Zipt or Zipf - Mandelbrot model (Harnik 2009). During the post-extinction recovery 

stages assemblages should fit to a log normal distribution. 
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The choice of the best fit model is based on maximum-likelihood-estimation, performed 

through the Akaike Information Criterion (AIC), which balances the goodness-of-fit 

against model complexity (Johnson and Omland 2004; Wang 2010). Briefly, the 

likelihood is defined as the probability of obtaining the observed data given a specific 

model. The objective of this metric is to choose values for parameters that maximise the 

likelihood i.e. that yield the highest probability of producing the data at hand. 

Summarising the models with higher AICc (Akaike weights) are the best candidates to 

represent an assemblage through the Tr/J extinction event.   

Finally the third method consisted of estimating a dominance index by lithology, 

locality and stratigraphic unit. This index was calculated as the fraction of the (re-

sampled) collection that is represented by the most common species (a species 

dominance index) at each run (Gotelli and Entsminger 2011; Appendix 2.4.1). The 

dominance was estimated in the same way as described for the Shannon-Wiener index 

(as SaS increases). The statistical differences between different samples, localities and 

stratigraphic units were evaluated through the estimation of 95% confidence intervals at 

each SaS. Differences were considered significant when the confidence intervals did not 

overlap. All data were analysed using R programming (R Development Core Team., 

2006), EcoSim version 7 (Gotelli and Entsminger 2011) and Statistica 6.0 (Statsoft, Inc. 

2001).  

2.4.3 Composition 

Composition refers to the different “taxonomical entities” that constitute an assemblage 

(Magurran 2004). One of the measurements is beta diversity , which measures the 

difference in species composition either between two or more local assemblages 

through any gradient, e.g. spatial or temporal (Koleff et al. 2003). In this work two 
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different  diversity indices were estimated with the aim of observing the turnover of 

the fossils organisms through the Tr/J boundary. Whittaker (w) (Whittaker 1960) and 

Wilson and  hmida’s index (T) (Wilson and Shmida, 1984) (Appendix 2.3). Both 

indices are the most robust against sample size and changes in -diversity, but overall, 

they are sensitive enough to detect gradients in composition (Wilson and Shmida 1984, 

Magurran 2004). The indices were estimated by using the statistical program PAST 

Version 2.07 (Hammer and Harper 2006).  

To observe composition patterns in the assemblage, multivariate analysis was 

performed on the square root transformed abundance data. Additionally, Euclidian 

distance was calculated (McCune and Grace 2002) (Appendix 2.3). Non-metric 

Multidimensional scaling (nMDS) (Appendix 2.4) ordination was used to identify 

whether the samples are strongly grouped by lithologies, stratigraphic unit, or localities. 

Statistical differences between groups were analysed by means of analysis of similarity 

(one and two way ANOSIM) (Clark 1993) (Appendix 2.3). The relative importance of 

each group with the highest dominance was identified by similarity of percentage 

(SIMPER procedure). All multivariate analyses were performed by using the Program 

PRIMER 5.2.2 computer package (Plymouth Routines in Multivariate Research).  

2.4.4 Ecospace 

Ecospace is a combination of 3 elements; tiering, motility and feeding. Each of these 

categories is subdivided into 6 subcategories (See Figure 3.1), which generate a cube 

with 216 combinations that synthesise organism performance in the environment 

(Bambach et al. 2007; Bush et al. 2007). In this work, species were categorised sample-

by-sample in terms of tiering, motility and feeding using the autecological information 

derived from Mander & Twitchett (2008) and from the Paleobiology Database 
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(http://paleodb.org/cgi-bin/bridge.pl). The proportion of each mode of life used by the 

fauna was estimated based on the total number of species recorded in each stratigraphic 

unit. This was repeated for each lithology and study site. To test patterns of selective 

extinction: e.g., the selective extinction of infaunal bivalves hypothesis (McRoberts and 

Newton 1995), the proportion of each ecological trait was correlated by Spearman rank-

order and Pearson product-moment. The significance of each correlation was evaluated 

by a student’s t test with a α =  . 5.  

2.4.5 Trace fossils 

In palaeoecological studies, trace fossils provide important palaeoenvironmental 

information and evidence of the composition and behaviour of the macrofauna (Droser 

and Bottjer 1991). In order to characterise and evaluate the bioturbation recorded 

through the Tr/J boundary; this work assessed the trace fossil response through three 

methodologies estimating the degree of bioturbation using the vertical section of each 

bed sampled. For that, the slabs or “cores” obtained from each cut limestone sample 

were analysed in three ways.  

The first method was the utilisation of a vertical ichnofabric index (Droser and Bottjer 

1993). The ichnofabric index is a semi-quantitative ranking of the extent of bioturbation 

(Droser and Bottjer 1986). The ichnofabric index is based on 6 categories that measure 

the percentage of the original sedimentary fabric that has been disturbed (Droser and 

Bottjer 1986; 1993). The index can be represented by schematic diagrams such as those 

shown in Figure 2.4. Each sample obtained from the field could be categorised by visual 

recognition of similarities of pattern. In this way it, it is possible to give a percentage 

value to each sample from each specific stratigraphic horizon.  

http://paleodb.org/cgi-bin/bridge.pl
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The second method estimates the relative abundance of each ichnotaxa through the 

random placing of three quadrats of 5×5 cm on the vertical cross section area of each 

plate. This method reported information of the richness, relative abundance per 

ichnotaxa, and the bioturbation percentage per specific unit area (Fig. 2.5C).  

The third method consisted of estimating various ichnometric parameters. The most 

simple and informative measure is the burrow diameter (McIlroy 2004). For that, the 

diameter of each ichnotaxa found on the vertical cross section area of each plate from 

each stratigraphic horizon was measured by electronic callipers (Fig. 2.5). Also, 

measurements of composition and diameter were obtained from the field by using a tape 

measure (standard error ± 0.1mm) (Fig. 2.5). Finally, the ichnofabric index, percentage 

covered and burrow diameter were plotted against their stratigraphic setting. Several 

models were fitted into the data (linear, exponential and logistic) in order to observe a 

general trend. The ichnotaxonomic determination was performed following the work of 

Swift and Martill (1999), McIlroy (2004), Twitchett and Barras (2004), Barras and 

Twitchett (2007) and Lord and Davis (2010).  
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Figure 2.4 Schematic diagrams of ichnofabric indices represented by five categories in 

four different environments. A) Shelf environments, B) High-energy near-shore sandy 

environments dominated by Skolithos, C) High-energy near-shore sandy environments 

dominated by Ophiomorpha; D)  Deep-sea deposits. 1. No bioturbation recorded. 2. 

Discrete, isolated trace fossils up to 10% of the original bedding disturbed. 3. 

Approximately 10-40% of original bedding disturbed. 4. Last vestiges of bedding 

discernible; approximately 40-60% disturbed. 5. Bedding is completely disturbed. 

Modified from Droser & Bottjer (1986; 1991; 1993).  
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Figure 2.5 Cross section plates that show a perpendicular view to bedding plane 

surface. (A) Shelf environments, with no-bioturbation. (B) And (E) Shelf 

environmental, highly disturbed, the black arrow shows Diplocraterion; Thalassinoides 

is also observed. (C) Cover quadrant of 5×5 cm on the vertical cross section area. (F). A 

vertical cross section, with approximately 10 % disturbance, apparently the sediment 

was deposited under high-energy near-shore sandy environment. (D) and (G) show a 

cross vertical view of one bed horizon; Skolithos is indicated by a black arrow and 

Arenicolites by a yellow arrow. 
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Figure 2.6 Photographs showing the variables measured to estimate the geometric 

mean. A) Pteromya langportensis (Richardson and Tutcher 1916). B) Plagiostoma 

giganteum (J. Sowerby 1815). C) Modiolus minimus (J. Sowerby 1818). (D) 

Promathildia rhaetica (Moore 1861). (E) Chlamys valoniensis (DeFrance 1825). 

2.4.6 Body size 

In each sample, the width and length of complete individuals of groups such as 

bivalves, gastropods, brachiopods and ammonites were measured by electronic calliper 

(standard error ± 0.01 mm) (Fig. 2.6). In addition, in order to increase the sample size 

per each stratigraphic horizon, individual measurements were made in the field from 

bedding plane exposures using a tape measure (standard error ± 0.5 mm) (Fig. 2.6). 

Later, the size was calculated as the geometric mean of the length and width following 

Jablonski (1996), which represents the square root of the product of length and width 

and/or height:  
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In order to determine whether any significant interspecific changes in the body size 

occurred in the section, four quantitative analyses were performed.  The first is based on 

a scatter plot of the % changes in the maximum and minimum body size (Jablonski 

1996) (Fig. 2.7).  

 

Figure. 2.7. Graphical approach to the analysis of evolutionary changes in body size. 

Modified from Jablonski (1996). 

 

Through this plot it is possible to represent different evolutionary patterns. The right 

upper quadrant represents Cope’s Rule which is an active and directional trend of size 

increase (Fig. 2.7). The lower left quadrant indicates a strong pattern of size decrease, 

for example “The Lilliput Effect” (Twitchett     ; Metcalfe et al. 2010; He et al. 

2010). The upper left quadrant represents an increase in the variance; the range of the 

adult body size has expanded through the time, which means an increase in the largest 

size and a decrease in the smallest size. Finally, the lower right quadrant (Fig. 2.7) 

represents a decrease in the variance, the evolutionary loss of both extremes, resulting in 

a constriction of the sizes contained within the group or clade (Jablonski 1996). In order 
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to perceive passive evolutionary changes in size through the Tr/J boundary, Jablonski 

target plots were produced for each stratigraphical unit and study site.  

The second methodology was to perform size-frequency distribution plots of the genera 

with the most extensive stratigraphic ranges through the Tr/J boundary pooled by 

stratigraphic unit. The third method was to estimate a simple size rate change through 

successive samples. This was developed by pooling all the individuals’ sizes per species 

per sample, and then the rate was estimated as follows:  

                       [
           

          
] 

Where,    represents the average size of all individuals measured in   , while that   , 

represents the average size of all individuals measured in   , and (     ) indicate the 

difference in time or the stratigraphic distance between sample two and one. The 

objective of this metric is to observe if the rate of change in body size shows a 

directional trend, whether they are negative rates through extinction events or positive 

values through recovery.  

Finally, the data were compared to a “null model” in body size. A null model is 

designed with respect to some ecological or evolutionary process of interest. A null 

model is a pattern-generating model that is based on randomisation of ecological data. 

Certain elements of the data are held constant and others are allowed to vary 

stochastically to create new assemblage patterns. The randomization is designed to 

produce a pattern that would be expected in the absence of a particular ecological 

mechanism (Gotelli and Graves 1996).  
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Figure 2.8 Null model in body size thought the Tr/J boundary. The null model is 

expressed as randomised data (red line), the grey shadow represents the 95% confidence 

intervals. The blue line represents four possible size change scenarios. A) A decrease of 

average body size spanning the extinction event with significant increase following. B) 

No-changes in body size. C) No-changes before and after the extinction event and a 

significant decrease in body size during the event and D) The mean size observed is 

higher than expected by chance and trend to increase through the time. 

The reason for generating null models is that they emphasise the potential importance of 

stochastic mechanisms in producing natural patterns (Gotelli and Graves 1996). A 

matrix of individual body sizes was obtained from the samples, and these values were 

randomised 10,000 times by individuals and samples. The idea of this randomisation is 

to produce patterns of body size generated just by chance. This “randomised data” was 

contrasted with data observed in field. The mean, confidence intervals and density 

distributions were plotted. A t test was calculated, in order to evaluate the differences 

between constraints-data (randomised) and sampled-data (Zar 1999). Finally, four 

hypothetical scenarios are proposed (see Figure 2.8) for more explanations. All the 

analyses were performed using R programming (R DEVELOPMENT CORE TEAM., 

2006).  
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Chapter 3 Ecospace and ecological trends of 
marine organisms through the late Palaeozoic and early 
Mesozoic 

3.1 Introduction 

The publication of the Sepkoski diversity curve (1979; 1984; 1997) led to a clearer 

understanding of the dynamics of marine diversity throughout the Phanerozoic. 

Nevertheless, the patterns of change are still widely debated, e.g. Stanley (2007), Alroy 

et al.(2008), Alroy (2010).The material compiled since the 1970s has demonstrated: (1) 

how diversity changes, (2) the different phases of diversification, and (3) the structure 

of the fossil record throughout the Phanerozoic. 

The diversity curve through time does not just represent a secular increase in species 

richness but also demonstrates a continuous increase in ecological diversity: this means 

that complex ecosystems are generated through the incorporation of new species with 

new morphological adaptations to exploit new ecological spaces, which give rise to new 

ecological interactions (Bambach et al. 2007). One of the ways to study the 

evolutionary trends of ecological interactions is through ecomorphology. Morphological 

adaptations can be used as a proxy for the ecological traits of an organism and can 

consequently be pooled into ecological groups (e.g. microhabitat, mobility, 

reproduction, diurnal activity, and ecomorphology) (Schoener 1974; Bambach 1983, 

1985; Simberlof and Dayan 1991; Winemiller 1991; Wainwright 1994; Novack-

Gottshall, 2007). 

Bambach (1977; 1983 and 1985) presented one of the first ecological approaches to the 

classification of organisms, developing the idea of ecospace or ecological space, using 

the morphology of marine fossil taxa to generate mega-guilds. The ecospace model 

reveals adaptive strategies in the marine community over time, describing how 
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organisms exploit the resources on which competition develops or are limited in their 

attempts to do so (Bambach 1983; 2007; Bush et al. 2007; Novack-Gottshall 2007). 

According to Bambach’s model, ecospace consists basically of three attributes that 

describe the autoecology of an organism (Fig. 3.1; Table3.1).Tiering is the relationship 

of the organism with the substrate and the water column; the feeding mechanism is the 

manner in which the organism feeds; and motility is the organism’s capacity to move 

on its own. Bambach divided each of these axes into six subcategories, the 

combinations of which generate a cube with 216 possible combinations for describing 

the performance of each species (see Bambach et al. 2007; Bush et al. 2007). 

Table 3.1 Examples of fossil organisms which display determinate modes of life (from 

Bush et al. 2007). 

Number Modes of life Representative groups 

 Tiering  

1 Pelagic Chondrichthyes, Amphibia,Cephalopoda 

2 Erect Crinoidea 

3 Surficial Gastropoda, Echinoidea, Polyplacophora 

4 Semi infaunal Bivalvia, Asteroidea, Echinoidea 

5 Shallow infaunal Bivalvia, (clams) 

6 Deep infaunal Bivalvia (clams), Annelida 

   

 Motility  

1 Freely, Fast Osteichthyes, Reptilia, Marrelomorpha 

2 Freely, Slow Echinoidea, Asteroidea, Polychaeta 

3 Facultative, unattached Bivalvia ( mussels, Pectinidae) 

4 Facultative, attached Holothuroidea, Bivalvia 

5 Non motile, unattached Rostroconchia, Bivalvia 

6 Non motile, attached Cirripedia, Crinoidea, Rhynchonellata 

   

 Feeding  

1 Suspension Bivalvia, Crinoidea, Holothuroidea 

2 Surface deposit Bivalvia, Echinoidea, Gastropoda 

3 Mining Echinoidea, Gastropoda 

4 Grazing Gastropoda, Echinoidea, Polyplacophora 

5 Predatory Cephalopoda, Osteichthyes, Reptilia 

6 Chemothropic, parasites Bivalvia, Nematoda 
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The ecospace model offers a way to approach the changes in community structure over 

time, identifying the factors that influence the life modes of organisms and evaluating 

changes in the community on both spatial and temporal scales. For example, Bambach 

(1983) and Bambach et al. (2007) described the adaptive strategies of the major faunal 

turnovers documented by Sepkoski (1981), who reported that the Cambrian fauna 

consisted mainly of epifauna, with no deep-infauna or passive shallow forms and few 

pelagic forms. Epifaunal forms increased during the Mid and Late Palaeozoic and, at the 

same time, pelagic and infaunal forms began to expand. In the Mid-Cenozoic, diversity 

is concentrated in infaunal and pelagic habitats, which replaced the epifaunal life mode, 

and the well documented increase in predation. 

 

Bush et al. (2007) also used this tool from a biogeographic perspective. These authors 

performed a temporal comparison of the life modes from Mid-Palaeozoic and Cenozoic 

and compared communities of the same age from tropical and temperate regions from 

the Late Cenozoic. Their results showed that the categories associated with 

infaunalisation, motility and predation increase from the Palaeozoic to Cenozoic and 

from temperate to tropical zones. 

 

Extinction events can also be evaluated using the ecospace model, since massive 

extinctions reduce ecosystems to simpler organization levels. Fraiser and Bottjer (2005) 

used ecospace to observe the recovery of benthic palaeocommunities after the extinction 

in the Late Permian. They reported a severe contraction of the ecospace: only four life 

modes were in use in the Early Triassic and eight in the Mid-Triassic. Layou’s (   9) 

recent use of ecospace to evaluate spatial-temporal changes after the mass extinction 

event in the Late Ordovician indicates that ecospace is sensitive enough to identify 

transitional changes in ecological traits on a regional scale. 
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The Bambachian ecospace model was designed to observe ecological components from 

an evolutionary perspective. It is a flexible, informative tool that synthesizes the life 

modes of organisms in a few variables, allowing us not just to detect and evaluate 

changes in the community structure, but also to apply the ecospace model to observed 

radiation or extinction events. This work focuses on the Late Permian, Triassic and 

Early Jurassic in terms of assessing the total number of life modes occupied, correlating 

richness with ecological space, the observation of contraction and ecospace expansion 

through the Late Triassic mass extinction event (Tr/J event) and a comparison of the 

magnitude of the mass extinction in question compared to the Permian-Triassic event 

(P/Tr). 

Biologically, the Late Palaeozoic and Early Mesozoic (i.e. Triassic) constituted a 

transition period (cf. Payne and Van de Schootbrugge 2008) during which one of the 

greatest faunal turnovers was generated through the mass extinctions of the Late 

Permian and Late Triassic. In addition, a series of evolutionary novelties appeared in the 

subsequent radiations, triggering a series of changes in the functioning and structure of 

marine systems and the beginning the Mesozoic Marine Revolution (MMR) (Stanley 

1974; Vermeij 1977). This present work, therefore, will not only describes the dynamics 

of the changing ecospace model, it also evaluates the behaviour and relationship of the 

axes that construct the ecospace model in order to determine the ecological factors and 

evolutionary processes related to the MMR. 

3.2 Database and methods 

Changes in the ecospace utilisation in marine habitats from the Late Permian (Wordian-

Changhsingian), Triassic (Induan-Rhaetian), and Early Jurassic (Hettangian-

Sinemurian), covering a total of 80.9 ± 1.1 Myr (Gradstein et al. 2005), were analysed 



69 
 

from data obtained from  ep os i’s Online Genus Database, at the site maintained by S. 

E. Peters (http://strata.geology.wisc.edu/jack/). This is one of the most complete records 

of marine diversity over time. However, it does not consist strictly of sampled diversity; 

rather, this database lists only the first and last occurrences, deriving standing diversity 

estimates from taxa for time intervals in which they were not always sampled (Smith 

and McGowan 2007). 

The geographic coverage of the Sepkoski database is not homogeneous due to 

geographic variations in outcrops and sampling paleontological in detail (Smith and 

McGowan 2007; McGowan and Smith 2008). The data from the Northern Hemisphere 

constitute 58% of average occurrences, with North America, Europe, Indian Ocean and 

Asia, respectively representing 12.6%, 23.1%, 0.59% and 21.8% of the records. Records 

from the southern hemisphere constitute 41.9% of the records with data from Oceania, 

Africa and South America (Appendix 3.1). 

In contrast, the temporal coverage seems to be more homogeneous; there are no 

significant differences in the average number of occurrences of taxa in the fossil record 

for the 14 stages considered (X
2 

= 20.87; D.F. = 12; p > 0.05) (Appendix 1.2). That 

could suggest that the stages are equally distributed temporally. This point is important, 

because the over-representation of any of the stages would generate spurious patterns, 

marred by differential sampling efforts (Vermeij and Leighton 2003). 

http://strata.geology.wisc.edu/jack/
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Figure 3.1 Ecospace as defined by the axes of tiering, motility level, and feeding 

strategy. The ecospace cube expanded, showing 216 cubes or modes of life specified by 

the combination of the categories on each ecospace axis (from Bambach et al. 2007). 

Additionally,  ep os i’s database does not detail the changes in richness and the 

interactions of organisms in a particular environment. However, from this data base it is 

possible to: (1) approximate when changes (in structure, richness and ecological 

functionality) occur in local systems (Bambach et al. 2002; Aberhan et al. 2006); (2) 

observe the maximum level of potential use of ecological space, considering that 

different habitats present different proportions of life modes (e.g. coral reef, coastal, 

deep-water environments) (Bush et al. 2007); and (3) observe the relations between the 

roles and functions of species that made up the communities or ecosystems. 

The Sepkoski Database was used to generate a presence-absence matrix, registering a 

total of 3810 genera grouped in 11 phyla. Each genus was assigned to an ecological 
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category (Table 3.1) according to its ecomorphological traits, using auto-ecological 

information derived from The Paleobiology Database (http://www.paleodb.org/cgi-

bin/bridge.pl) and from information obtained from the literature for the different taxa 

(Table 3.2). In some cases, for example in genera such as Lingularia, Modiolus, 

Arenicola, Nannastacus, Limulitella, and Goniada, the inferences were based on current 

living groups.  

Table 3.2 References used to categorise species into each mode of life. 

Mollusca 

(Hallam 1960; 1981; 2002; Rohr and Bloodgett 1985; Anderson et al. 

1990; Aberhan 1992; 1994; Aberhan et al. 2006; Bambach et al. 2007; 

Mander and Twitchett 2008; Hendy et al. 2009). 

Osteichthyes 
(Carroll 1988; Tintori 1990; 1998; Arratia 1996; Arratia and Tintori 2004; 

Mutter and Herzog 2004). 

Chondrichthyes 

 
(Underwood 2006; Arratia and Tintori 2004).  

Arthropoda 
(Alessandrello et al. 1991; Wilson and Edgecombe 2003; Feldmann and 

Goolaerts 2005; Knopf et al. 2003; Schweigert 2007). 

Brachiopoda (Kowalewski et al. 2000). 

Reptilia 

 
(Carrol 1988; Rieppel 2002; Müller 2005; 2007). 

Echinodermata (Villieret al. 2004; Hendy et al. 2009; Saucede et al. 2007).  

Amphibia (Tverdokhlebov 2002). 

Bryozoa 

 
(Smith et al. 2006). 

Annelida (Grossmann and Reichardt 1991; Magnusson et al. 2003). 

Ostracoda (Lethiers and Whatley 1995). 

Corals (Turnsek 1997). 

 

 

The time division used in the Sepkoski Database corresponds to a combination of 

stages, substages, and ages. These temporal categories were standardised at the stage 

level following the time scale of Gradstein et al. (2005). Finally, in order to identify 

general tendencies in the data, diversity was estimated as the total number of genera; the 

number of life modes derived for the categories given by Bambach et al. (2007) and 

Bush et al. (2007); and the relative abundance of each mode of life was estimated as the 

number of genera per life mode in each stage. 95% confidence intervals were estimated 

assuming a binomial distribution for each category per stage. The statistical significance 

http://www.paleodb.org/cgi-bin/bridge.pl
http://www.paleodb.org/cgi-bin/bridge.pl
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of the ecological tendencies was evaluated using Spearman and/or Pearson’s correlation 

of the data transformed through logit (ln [p/(1-p)]) over time (see Fig. 3.8). 

3.3 Results and Discussion 
 

 

Figure 3.2 Theoretical ecospace uses by the marine fauna from the Wordian to 

Sinemurian. The colours indicate the relative abundance values (%) estimated as 

number of genera by each mode of life by stage. See Appendix 3.3 for the list of taxa. A 

total of 33 modes of life (15.3% of the theoretical ecospace) were recorded from the 

Wordian to the Upper Sinemurian (Mean: 25, range: 21 to 29).The average relative 

abundance per ecological trait varied greatly between modes of life. 20 life modes 

(60.6% of the used ecospace) recorded proportion <1%; 15.2 % of the realised ecospace 

has densities between 1-2%; 2 modes of life (6.1 %) contain densities among 3-4%, 

while just 1 mode of life represented a proportion between 2-3% and another 4-5%. 

Finally, only 12.1% of the realised ecospace had relative densities > 5%, spanning a 

proportion between 5-36 % (Appendix 3.6). 
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3.3.1 Ecospace through the Phanerozoic 

 

Figure 3.3 Graph of the expansion of realised ecospace representing the number of 

modes of life of the skeletal fauna through the Phanerozoic, plotted from Bambach et al. 

(2007). The solid circles represents all recorded modes of life, the open circles represent 

the skeletal fauna only; the solid square record alpha diversity (). The red circle 

containing a black dot represents those modern taxa with a diverse fossil record. 

Previous studies appear to indicate that the number of modes of life employed by the 

skeletal marine fauna through the Phanerozoic, had increased steadily and expanded 

across all categories through the ecological space, which has brought about the 

development of more complex and structured ecological systems (Clapham et al. 2003; 

Bambach et al. 2007; Bush et al. 2007; Xiao and Laflamme 2009). During the 

Ediacaran Period, the fauna occupied 6% of the theoretical ecospace (Fig. 3.4).The 

Ediacaran fauna appear to be restricted to just sessile organisms, surface deposit-feeders 

and grazing forms of little motility. The ecological structure appears to be similar to 

current deep-sea communities, with short food chains, although apparently without 

predators (Clapham et al. 2003; Bambach et al. 2007; Xiao and Laflamme 2009). 
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Figure 3.4 Ecospace realised used by skeletal marine fauna through the Phanerozoic. 

4A, D-E, represent data obtained from Bambach et al. (2007). 4B-C represents Ediacara 

fauna, plot by Xiao and Laflamme (2008). 4F-J, corresponded to data record from this 

works. The black boxes are modes of life utilised by the designated fauna. 
 

The Cambrian represents the biggest species radiation of body plan at the beginning of 

the Phanerozoic and the expansion of marine organisms into new areas of ecological 

space (Fig. 3.4D). In terms of tiering, pelagic organisms appear for first time, the 

number of the surficial modes of life increases to 9 and the burrowing mode of life 

originates and intensifies, impacting and modifying marine ecosystems. The feeding 

mechanism diversifies with the appearance of herbivorous and predating forms. 

Although 14% of the total ecospace was occupied, in terms of complexity, these 

communities are composed of simple structures as the result of a low packing (Erwin et 

al. 1987). 
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Thirty modes of life were recorded during the Late Ordovician (Fig. 3.4E), with 14 new 

modes of life recorded in just 59.9 Myr. The Ordovician is considered to be the second 

greatest diversification event of the marine fauna, in term of species number and at 

higher taxonomical levels (Munnecke et al. 2010). This period is characterised by the 

generation of new types of communities, particularly associated with deeper water and 

around reefs (Munnecke et al. 2010). In terms of their ecological complexity the 

communities were better structured and densely packed with an expansion of the 

number of ecological guilds falling into new feeding and tiering categories.  

From the Guadalupian to Sinemurian, an interval of 79.6 Myr (Fig. 3.4 F-J), the skeletal 

marine fauna expanded into new eco-morphological areas; new pelagic, burrowing and 

moving forms, appear to generate more complex ecosystems with large trophic chains 

and greater interconnectedness, which may have intensified biotic interaction and drove 

the fauna towards new ecological and evolutionary scenarios. During this interval, the 

number of modes of life correlates significantly with taxonomic diversity and the 

packing tends to increases, that means that more species began to fill each mode of life 

(e.g. suspension feeders made up of 15 classes) (Fig. 3.5A). 

 

3.3.2 Late Permian 

Taxonomic diversity reached a peak during the Guadalupian to Lopingian (at 1253 

recorded genera) (Fig. 3.4 F and 3.5A). During this interval, the occupied ecospace 

comprised 28 modes of life, of which 77% correspond to surficial forms. Of these, the 

brachiopods dominated the Palaeozoic epibenthic communities with a relative 

abundance of ~35% of all genera, followed by the Mollusca with 24% and the 

Bryozoans with 13% (Appendix 3.2). Of surficial forms, 26% have some degree of 

motility and were mainly represented by herbivorous classes like Patelogastropoda, 

Echinoidea and Polyplacophora. Concurrently, faster predators (14% of the ecospace) 
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invaded the pelagic realms, of which the Cephalopoda were the dominant-group 

(~90%), followed by key predators such as Chondrichthyes (8%) and Osteichthyes 

(1%).  

During this period, semi - and shallow infaunal ecospace comprised 12 modes of life 

with a relative abundance of ~10%. Bivalvia, an incipient but highly diverse group, 

represented ~54% of the total infaunal guild followed by Ostracoda, Holothuroidea, 

Scaphopoda and Rostroconcha. Infaunal motile forms appear to have been restricted to 

the groups Ostracoda (Palaeocopida) and Bivalvia (Arcoida, Trigonioida, 

Pholadomyoida and Nuculoida). 

3.3.3 Early Triassic 

When analysing the Late Palaeozoic to Early Mesozoic (i.e. Triassic) period, it is 

possible to determine that 90% of the modes of life were generated during the 

Palaeozoic, of which 60% pass through into the Triassic. The Late Permian mass 

extinction is considered to be the most devastating extinction event; decreasing diversity 

by more than 95% of all species, modifying ecological structure and generating one of 

the biggest turnovers of marine communities.  

 

The Early Triassic records the disappearance of three pre-existent modes of life, the 

recovery of the marine ecosystems End-Permian mass extinction and the reorganisation 

of marine communities (Fig. 3.4G). 
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Figure 3.5 (A) Changes in marine diversity and the number of modes of life from the 

Wordian to the Pliensbachian. The continuous red lines represent 95% confidence 

intervals; calculated by bootstrap procedure (number of iterations = 50,000). (B) Plot of 

residuals of the first component of DCA obtained of the relative abundance per mode of 

life. Dashed red lines equal to two standard deviations around the mean, standard 

deviation was estimated through bootstrap procedure that resampled (with replacement) 

the number of  modes of life per stage (number of iterations = 50,000).  Wor = Wordian, 

Cap = Capitanian, Wuc = Wuchiapingian, Cha = Changhsingian, Ind = Induan, Ole = 

Olenekian, Ani = Anisian, Lad = Ladinian, Car = Carnian, Norian, Nor = Norian, Rha = 

Rhaetian, Het = Hettangian, Sin = Sinemurian, Pli = Pliensbachian.  P = Permian; Tr = 

Triassic; J = Jurassic. L= Lower, M = Middle, U = Upper. 
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The Early Triassic recorded an average species richness of 200 ± 22 genera with 25 

modes of life. Pelagic fast-moving suspension feeders, semi infaunal, non-motile 

unattached, suspension feeders and shallow infaunal, facultatively motile unattached, 

suspension feeders disappear after the extinction event. Of these, the fast-moving 

suspension feeders reappear in the Hettangian and semi-infaunal, non-motile, 

unattached suspension feeders reappear in the Middle Triassic. However the shallow 

infaunal facultative unattached suspension feeding mode of life became extinct never to 

reappear (Appendix 3.2). Through this epoch there was no appearance of new modes of 

life and the number of genera per mode of life decreased in average by ~47%. 

At higher temporal resolution (stage level), just 168 genera cross into the Induan, 

reducing occupied ecospace to 20 modes of life. Erect suspension feeders (Crinoidea) 

disappeared completely from this database in the Induan. However, apparently 

Holocrinus (Holocrinidae, Isocrinida) is considered the only Induan forms know to 

cross through the Late Permian (Twitchett and Oji 2005). Erect suspension feeders 

increased in abundance during the Olenekian and persisted through the early Mesozoic 

with low proportional abundance (~5%).  

Apparently the forms most affected were surficial suspension feeders, which dropped 

from ~53% to ~39%. The pelagic forms increased from 10% to 19% from the previous 

period. Semi-shallow infaunal categories increases from 11% to 17%. In terms of their 

ecological structure, 50% of the genera exploited filter feeder modes and just less than 

10% of the genera recorded modes of life associated with predation and herbivory (Fig. 

3.6). According to Fraiser et al. (2005) in a local scale (alpha), four modes of life were 

used by the benthic fauna during the Early Induan, which suggests that those 

communities showed a similar ecological structure to Cambrian benthic communities. 
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Later, on during the Olenekian, the environmental conditions improved and the 

organisms expanded into new ecological space (Bottjer et al. 2008). The reptiles 

appeared in marine systems with the appearance of two genera (Placodontia: Placodus 

and Ichthyosauria: Cymbospondylus). While the Osteichthyes proliferated quickly 

increasing their abundance from 2 genera in the Late Permian to 10 genera, of which 

40% of them were represented by herbivorous forms.  

The disappearance of large proportion of surficial life forms triggered the turnover of 

the Palaeozoic fauna. The brachiopods reduced their abundance progressively to ~6%, 

while bivalves became the most dominant surficial organisms with a relative abundance 

of ~45%.  Motility slightly increased from the Induan (46%) to the Olenekian (~53%). 

This pattern was driven by the diversification of groups like Gastropoda, Echinoidea, 

Patelogastropoda and Polyplacophora (Fig. 3.6). Crinoids occupied the erect non-

moving filter-feeder mode of life, with just two genera Holocrinus and Dadocrinus. In 

addition, burrowing life forms increased significantly to ~33%, following the radiation 

in the Bivalvia (to 9 orders) and Holothuroidea (to 4 orders). ~50% of the burrowing 

fauna shows some degree of motility (fast, slow and facultative unattached), in 

particular the bivalves, annelids and ostracods. 
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Figure 3.6. Average proportional abundance of tiering, motility and feeding 

mechanisms based on taxonomic occurrences from the Guadalupian to Sinemurian 

(268-196.5 Ma). The average proportional abundance were estimated through bootstrap 

procedure that resampled (with replacement) the number of modes of life per stage 

(number of iterations = 50,000). 
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3.3.4 Middle Triassic 

The Middle Triassic records 27 modes of life employed by 840 recorded genera. 

Through this epoch two new modes of life appeared associated with shallow forms; 

facultative unattached deposit feeders (Bivalvia – Nuculoida: Nuculidae) and predators 

(Bivalvia – Pholadomyoida: Cuspidariidae) (Appendix 3.2) (Fig. 3.4H). During this 

time, surficial organisms constitute 61% of all genera of which just 40% are represented 

by non-motile filter-feeders and ~50% are represented by taxa with some motility level. 

The latter includes grazers and micro-predators. Epifaunal non-motile filter feeders 

were represented by 14 Classes, comprising 23% of all surficial forms (12 modes of 

life). 42% of epifaunal non-motile filter feeders constitute reef building organisms. 

Despite the fact that they are the numerically dominant group, the proportional 

abundance decreased to 50% from the Early Triassic (Fig. 3.6).  

In constrast, burrowing forms expanded to 12 new ecological categories, with a parallel 

increase in relative abundance to ~10% (Fig. 3.6). 53% of the infaunal forms were 

represented by Bivalvia, with the rest of the infauna comprising motile facultative 

unattached and facultative attached modes of life represented by Holothuroidea (35%), 

Polychaeta (4%), Scaphopoda (4%), Ostracoda (1%), and Lingulata (1%).  

Pelagic forms were represented by 270 genera, of which 69% are ammonids. Of the 

rest, the reptiles reach a maximum richness of 21 genera grouped in the four Orders 

Ichthyosauria, Notosauria, Placodontia and Thalattosauria; the Osteichthyes were 

composed of 40 genera from 12 orders; the Chondrichthyes were made up of 8 genera, 

all from the Order Ctenacanthida; finally, the Thylacocephala, which constitute four 

genera grouped into the orders Concavicarida and Conchyliocarida.  
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Through the Middle and Late Triassic, the biotic interaction intensified as a result of the 

high guild packing and of the highly connected trophic network. Fast moving predators 

spread through different ecological categories (infaunal, surficial and pelagic). More 

organisms began to explore benthic environments by burrowing deeply; modifying the 

substrate chemically and physically. Simultaneously, surficial grazers intensified the 

pressure on the sessile dwelling organisms. 

3.3.5 Late Triassic 

This epoch records the maximum richness through the Triassic, in which the reef 

builders become highly dominant. The ecosystems of the Middle Triassic seem to be 

very complex and the interrelation between species becomes more intense (Flugel 2002; 

Kiessling 2008).Throughout the Late Triassic, the marine fauna used 29 modes of life 

(Fig. 3.4I), amongst which two new modes of life appeared: surficial non-motile miners 

and deep facultative unattached miners.  

At this time, surficial ecospace comprised 12 modes of life. Two of these were slow 

moving grazers and non-motile filter feeders constituted the most abundant groups with 

densities of 10% and 41%, respectively. Of the non-motile filter feeders ~81% were reef 

builders. The motility of the surficial taxa increased by ~7%, more than observed in 

previous periods, this trend was crowded by echinoderm and mollusc herbivores. 

On other hand, semi and shallow infauna was made up of 79 genera, of which each was 

represented six modes of life. The deep infauna made its first appearance with the genus 

Archarenicola (Polychaeta). As the previous interval, Bivalvia still show high 

dominance reaching ~80% of all genera. In terms of motility, ~30% of the genera 

possessed a level of motility whether fast, slow or facultatively motile forms. 
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Predation increased from the previous period, although the relative abundance of 

pelagic predators dropped by ~5%, apparently driven by the almost complete 

disappearance of the ammonoids at the end of the Rhaetian (Fig. 3.6). In constrast, the 

number of orders of Osteichthyes kept steadily increasing from 5 orders in the Early 

Triassic to double that number in the Late Triassic and so kept proportional abundance 

relatively high (~10%).  

The number of genera of Chondrichthyes tripled from the end of the Palaeozoic to the 

Late Triassic (15 genera). At the ordinal level there is little compositional turnover and 

just the Ctenacanthida remains through all of the Triassic and Jurassic.  Finally, marine 

reptiles such as the Ichthyosauria, Notosauria, Placodontia, Plesiosauria and 

Thalattosauria had, by the Late Triassic, become key organisms in the marine seascape 

reaching proportions of ~5% with 16 genera.  

3.3.6 Early Jurassic 

The Earliest Jurassic marked the recovery following the Late-Triassic mass extinction 

and the collapse of reef building communities. During this time, 27 modes of life 

comprised the occupied ecological space (Fig. 3.4J). At the same time, three modes of 

life disappeared: surficial non-moving deposit feeders and deep infaunal facultative 

unattached miners (both from the Class Polychaeta) and surficial fast moving miners, 

made up by three genera of the Class Marrelomorpha (Appendix 3.2). On average, the 

number of species by mode of life dropped by ~ 42%. The groups associated with 

pelagic and semi, shallow and deep infauna tiers recorded a considerable loss in term of 

number of genera by modes of life (~65%) (Fig. 3.4J). This mass extinction drastically 

affected the ecosystems generating the second biggest turnover in the ecospace and 

overall in those organisms associated with to reef building. Even though the ecosystems 

were affected by this mass extinction, Early Jurassic communities are robust and highly 
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interconnected, in which the marine fauna colonised pelagic and deep benthic 

environments, with different levels of motility and a wide dietary spectrum.   

3.4 Diversity and ecological diversity 

The ecospace increases rapidly from the Ediacaran fauna to the Late Permian. However, 

through the Guadalupian to the Sinemurian the number of modes of life of the marine 

fauna remains relatively constant (Mean ~26) (except after the End Permian and End 

Triassic mass extinction) (Fig. 3.6). These results are not totally consistent with the 

model proposed by Bambach et al. (2007), which predicts a steady increase of the 

skeletal fauna from the Ediacaran to the Neogene (Fig.3.7). 

Bambach et al. (2007), considered all the known modes of life represented by the 

marine fauna on a global scale in all environments (reef, rocky shore and pelagic realm), 

establishing that from the Ediacaran to the Ordovician, the skeletal fauna increased from 

12 to 30 modes of life, while from the Ordovician to the Recent, the number of modes 

of life doubled. Similarly, Bush et al. (2007) although analysing the marine fauna in a 

local scale, showed that the ecospace increases from the Mid-Palaeozoic to Late 

Cenozoic from 21 to 25 modes of life. The number of modes of life used by the marine 

fauna recorded in this work (Guadalupian to the Sinemurian; 81 Myr) is low compared 

with previous periods. 
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Figure 3.7 Secular trend of number of modes of life used by the skeletal fauna through 

the Phanerozoic. The white dots represent the secular trend hypothesised by Bambach et 

al. (2007). The red dots represent the number of modes of life recorded in this study. 

Shaded area indicates the Mesozoic Era.  

 

This study focused mainly in the Triassic Period, during this period two mass 

extinctions affected the marine fauna, generating loss of 90% in the end Permian and 

65% in the end Triassic (Fig. 3.5). Biologically, the Triassic is a period of transition 

from the Late Palaeozoic diversity plateau to the roughly exponential diversification in 

the marine realm through the Jurassic. Recent estimation by standardized diversity 

curves, shows that this interval has a relative low richness (maximum peak 400 genera), 

compared to the Permian, with 600 genera and the Jurassic with 500 genera (Alroy 

2008). Despite this low richness and relatively low number of modes of life, ecospace 

does not fluctuate through this period. It seems that modes of life with low abundance 

(<  .1%, i.e. “rare”) are more susceptible to disappearance (Fig. 3.8, Appendix 3. ) (i.e. 
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surficial, no motile attached, deposit feeders and deep infaunal, facultative unattached 

miners). 

Although the ecospace did not record an expansion in the number of modes of life, the 

relative abundance of certain modes of life co-vary in different intensities and 

magnitude through this interval, which indicates that the marine ecosystems tends to 

increase in complexity and functionality (Fig. 3.8). These findings confirm and extend 

the suggestions that the Triassic represents the beginning of the Marine Mesozoic 

Revolution (MMR) (Tintori 1998; Bambach et al. 2002; Nutzel 2002; Hautmann and 

Golej 2004; Aberhan et al. 2006; Bambach et al. 2007; Bush et al. 2007; Vermeij 2008; 

Bush and Bambach 2011). 

Vermeij (2008) established that the Triassic has the highest average rates of production 

of innovation compared to the Jurassic, suggesting that the escalation began no later 

than the Carnian Stage. For example, between the Triassic and Early Jurassic there were 

two innovations in infaunalisation - obligate deep-boring bivalves (Vermeij 1987) and 

infaunal echinoids. In terms of predation, five innovations took place: suckered arms in 

squid (Vermeij 2008), fish-like marine tetrapods (Motani 2005), mineralized ammonoid 

jaws (Vermeij 2008), protrusible upper jaws in teleosts (Tintori 1998) and meat-cutting 

sharks (Underwood 2006). In term of grazing, bioerosive herbivory arose (Vermeij 

1987).  
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Figure 3.8 Correlations between logit-transformed proportion of occurrences of 

grazing vs. surficial, non-motile, attached and predatory taxa (A and B). surficial, non-

motile, attached vs. predator (C), non-motile vs. motile taxa (D) and infaunalisation vs. 

surficial, and benthic predator (E and F). The dashed lines represent last-square lines of 

best fit. 

The non-motile suspension feeders always showed a higher relative abundance during 

the Triassic, which reflects the high primary productivity of the marine habitats (Madin 

et al. 2006; Aberhan et al. 2006; Bush et al. 2007; Falwoski et al. 2004). The evolution 

of the epibenthic filter feeders is extensive through all phyla. After the Palaeozoic, the 

non-motile suspension feeders records one of the biggest turnovers in faunal 
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composition. Before of the P/Tr mass extinction the stationary epifaunal constituted 

over half of the fossilised marine genera, their diversity plunged as a result of the 

extinction, and they never regained dominance. Instead of expanding in the Triassic, the 

Late Palaeozoic fauna was hit again by the end-Triassic extinction and petered out in the 

Jurassic (Bush and Bambach 2011) (Fig. 3.6). 

During the Triassic, the stationary epifaunal was strongly influenced by modes of life 

associated with bioturbation, grazing and predation (Fig. 3.8 A, C, E). The number of 

bioturbator organisms such as bivalves increased steadily during the Late Triassic. The 

burrowing and mixing of unconsolidated sediment are particularly potent agents of 

disturbance. This action modifies chemically and physically the upper layer of 

sediment. Bioturbations can structure entire communities, acting as ecosystem engineers 

(Berke 2010; Woodin et al. 2010). Additionally, the frequency of herbivores increases 

from the Early Triassic to the Early Jurassic (Fig. 3.8), having a negative effect on the 

stationary epifauna as a result of the bioerosive herbivory (Steneck 1983; Vermeij 1987; 

2006 and 2008). The Osteichthyes, Gastropoda, Echinoidea and Polyplacophora are 

groups that potentially drove this trend. Recent studies have established that these 

organisms structure and modulate different ecological scenarios in marine benthic 

communities (Chazottes et al. 1995; Brown-Saracino et al. 2007).  

Predation also impacted on epibenthic life forms (Fig. 3.8). Ammonites, marine reptiles 

and fishes were probably the main predators in Triassic ecosystems although groups 

such as mobile epifaunal predators occur with a low abundance during the Triassic (e.g. 

neoasteriods, neogastropod and Decapoda) (Fig. 3.8F). Predation was one of the 

ecological features that increased considerably in relative frequency (Fig. 3.13 B-C and 

F) and the effects of this group were an important ecological and evolutionary 
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determinant for faunas from the Late Palaeozoic to Early Mesozoic (Stanley (1977), 

Vermeij et al. (1977), Bush et al. (2007), Aberhan et al. (2006) and Bambach et al. 

(2007). 

Through the Phanerozoic, 5 radiation events have been characterised by intensified 

predation: a) Cambrian explosion, b) Ordovician radiation, c) Devonian, d) Triassic and 

e) Cretaceous–Tertiary (Bambach et al. 2007). From the Triassic to the Jurassic the 

predation was by Ammonoids, Gastropoda, Reptilia, Chondrichthyes, and Osteichthyes. 

Predation rates, however, were also heavily influenced by the extinctions of the P/Tr 

and Tr/J from the Late Palaeozoic to the Early Jurassic, its relative abundance 

increasing from ~6% to ~13%, with a peak (~17%) in the Carnian (Fig. 3.8). 

At the same time, modes of life like fast-low moving epifauna brought new adaptive 

strategies like shell-breaking (e.g. by decapods) and shell-drilling, which increased with 

the incorporation of gastropods belonging to the Heterostrophia, Cephalaspida and 

Neotaenioglossa. From the Early Triassic, the Merostomata, Malacostraca, Reptilia, and 

Thylacocephala increased steadily their relative frequency, whereas the Asteroidea and 

Bivalvia only started to increase from the Early Jurassic (Hettangian). According to 

Bush and Bambach (2011), members of the group of the solemyoids (Bivalvia) evolved 

successful ecological strategies in the Palaeozoic and were capable of coping with the 

disturbances that characterized the Mesozoic. That could explain why this group 

remained constant for the End Palaeozoic to the Early Jurassic without recording 

changes in proportions (Fig 8.4; Shallow, facultative motile attached, chemotrophic). 

Aberhan et al. (2006) identified the Early Jurassic as the starting point of a marine 

diversification, and observed that the predation effect increases significantly (although 

as observed by Harper (2003), the major predatory taxa had already appeared in the 
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Triassic). This increase in predators was accompanied by a series of adaptive 

innovations such as predation by breakage, prying, crushing, and drilling (Vermeij 

1977; 1987). For example, modern asteroids (starfish) radiated from the Jurassic (Blake 

and Hagdorn 2003) although they were ready present in the Late Triassic. The homarid 

arthropods and palinuirud lobsters evolved in the Triassic, giving rise to the 

malacostracan crustaceans with crushing chelae in the Jurassic and Early Cretaceous 

(Vermeij 1977; 1987) and cephalopods (ammonoids, nautiloids and coleoids) also 

developed as shell-breaking predators. In vertebrates, a series of reptiles from the 

Triassic showed a moderate increases in diversity with representatives such as 

chelonids, placodonts, nothosaurus, pachypleurosaurus, plesiosaurs, and ichthyosaurs, 

although only the latter two continued during the Jurassic (Harper 2003). Predatory 

bony fishes appeared in the Early Triassic with groups such as pycnodontiformes and 

semionotiformes, joining Chondrichthyes (mainly represented by hybodonts), which 

had appeared in the Devonian and radiated into the Triassic. These marine reptiles, bony 

fishes, and Chondrichthyes were characterized by a feeding behaviour known as 

“brea ing predation” (Vermeij 2007). 

Infaunalisation has been essential for developing structurally complex communities. 

Infaunalisation is positively related to primary production, as the activities of 

bioturbations change nutrient fluxes and improve conditions for production by the 

microphytobenthos (sedimentary microbes and unicellular algae) (Lohrer et al. 2004). 

Bioturbation improves the oxygen concentration, which modifies components 

associated with primary productivity (organic matter and/or nutrients), negatively 

affecting immotile and/or low-motility organisms. The same effect is observed with 

mechanical removal from the sediment through movement, filtering, or feeding (e.g. by 

mining feeders) (Thayer 1979; 1983; Vermeij, 1987; Harper 2003; Aberhan et al. 2006). 
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Irregular echinoids, decapods, gastropods, hetorodont bivalves, and rays are some of the 

important bioturbating agents that appeared in the Late Triassic and Early Jurassic 

(Stanley, 2008; Baumiller et al. 2010; Stanley 1977; Kier 1982; Smith, 1984; Vermeij 

1987; Harper 2003).  

Burrowing behaviour may have been associated with the Ediacaran fauna, but it 

increased significantly in the Early-Middle Cambrian and into the Ordovician (Sheehan 

and Schiefelbein 1984). From Triassic to the Early Jurassic, is a period of intensification 

of major morpho-functional changes associated with infaunalisation (Baumiller et al. 

2010). For example, veneroid bivalves under predatory pressure generated ontogenetic 

changes reducing the probably of attack by epifauna or nektonic predators (Stanley 

2008) and expanded their ability to burrowing more deeply. Irregular echinoids evolved 

from regular echinoids in the Early Jurassic due to a range of morphological adaptations 

for a deep burrowing habit, as a direct result of the increase in predation pressure 

(Stanley 1977; Kier 1982; Smith 1984; Vermeij 1987; Harper 2003). Naticids and 

cassids among gastropods became important infaunal predators of echinoids and 

bivalves. Decapod crustaceans also adopted a deep burrowing habit (Vermeij 1987; 

Harper 2003).  

There is an important turnover period between epifauna and infauna from the Late 

Palaeozoic to the Early Jurassic (Fig. 3.8 E, F). The benthic communities of the Late 

Palaeozoic were dominated by epifaunal-suspension-feeders such as crinoids, 

brachiopods, and molluscs. Nevertheless, after the P/Tr boundary, mostly semi- and 

shallow infaunal traits were led by the bivalves which were ecologically dominant 

(Ausich and Bottjer 2001), reaching high abundances towards the Mid-Triassic and the 

Early Jurassic.  



92 
 

The infauna included groups such as the Asteroidea, Echinoidea, Holothuroidea, 

Bivalvia, Lingulata, Polychaeta, Ostracoda, and Rostroconchia, whereas shallow-

infaunal groups comprised mainly Bivalvia, Craniata, and Scaphopoda. In contrast, the 

largest proportion of the ecospace (~58%) tended to be occupied by surficial life modes. 

However, the rate of expansion of their relative frequency over time was lower than that 

observed for the semi, shallow and infaunal group (Fig. 3.8 E). The greater frequency of 

occurrence of infaunal taxa apparently resulted from the selective pressures associated 

with durophagic predation, tied to the development of more complex communities (Fig. 

3.8 F).  

Finally, motility is one of the categories that increased in proportion (Fig. 3.13D). The 

ability to control movement and manipulate the environment is critical to coping with a 

wide range of difficulties, including predation and disturbance. From the Late 

Palaeozoic to the Early Jurassic, the proportion of motile taxa increases by ~10% (Fig. 

3.8). This tendency was much more pronounced for epifauna, infauna, and pelagic life 

forms, and correlates with higher predation, infaunalisation, and a motile epibenthic life 

style such as that of gastropods and echinoids, which are generally considered to be 

prey. Likewise, the increase in motility was much more accelerated in semi- and 

shallow infaunal suspension-feeders. This adaptation was developed as an escape 

mechanism for dealing with predation and/or environmental perturbations (e.g. the 

bulldozer effect) (Thayer 1979; 1983). For example, the ability of the pteroids to swim 

and the rapid burrowing ability of groups like Trigonioida, Arcoida and Veneroida is 

associated with semi- and infaunal life modes. 

The correlations found between the relative frequencies of the life modes observed, 

establishes the existence of a causal relationship between ecospace parameters and the 
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escalation hypothesis (Vermeij 1977; 1978; 1982; 1987; Signor and Brett 1984; 

Kowalewski et al. 1998, 2006; Aberhan et al. 2004; Kosnik 2005, Madin et al. 2006; 

Bush et al. 2007). These tendencies show that factors such as carnivory and disturbance 

follow a directional selection pressure, controlling and replacing surface non-motile 

benthic forms, reducing epifauna, and expanding infaunal life modes (Aberhan et al. 

2006). 

The Triassic set the scene for the MMR, leading to the reconstruction of marine 

communities as a result of the intensification of specific life modes and the innovation 

of specific morphological adaptations (Harper 2003). The latter work summarizes the 

most important adaptive tendencies from the Late Palaeozoic and Early Mesozoic, 

extending the previous observations by Bush et al. (2007) and Bambach et al. (2007) 

and Bush and Bambach (2011).  

Regarding this issue, Vermeij (2008) determined that one of the greatest pulses of 

innovation, with a rate of 0.45 per million years, was generated in the Mid-Triassic and 

Early Jurassic. This author established that these pulses were a response to the high 

supply of energy incorporated into the ecosystems associated with volcanic activity 

and/or related phenomena (e.g. higher CO2 and temperatures) that affected primary 

productivity (Vermeij 1995). Vermeij (1995; 2008) found that the break-up of Pangaea 

in the Late Triassic generated the energetic input for the development of this process. 

3.5 Mass extinction events and ecological space. 

Figure 3.5B shows the deviations of the residues of the first component of the 

Detrended Correspondence Analysis (DCA), calculated over the relative proportion of 

each life mode from the Wordian to the Pliensbachian. Positive values on this graph 

shows, how the morphospace reached a maximum before the extinction of the Late 
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Permian and in the Early Jurassic. In contrast, negative values indicate the greatest 

decreases in diversity associated with the highest turnovers in the ecospace. This 

verifies that the extinctions of the Late Permian and Late Triassic not only affected the 

highest number of life modes but also decreased the relative density of each ecological 

category, generating significant contractions in ecospace and demonstrating the 

coupling of ecological functionality and diversity. 

3.5.1 Permian/Triassic mass extinction 

Figure 3.9 (A-B) shows the effect of the Late Permian extinction (Changhsingian to 

Induan) in the ecospace. Five life modes disappeared, of which four were associated 

with the filter feeders: pelagic-fast moving (Malacostraca, Ostracoda), erect forms 

(Crinoidea), surficial facultatively motile unattached (Bivalvia: Hyolithida, Pterioida, 

Arcoida), shallow-facultatively motile-unattached (Bivalvia, Craniata) and finally, the 

predatory-fast moving-surficial (Malacostraca: Decapoda). 

In terms of taxonomic loss, according to this data, the number of genera dropped from 

436 to 168 genera (genera that cross to the Induan stage), which represents a reduction 

of 61%. At the ordinal level, ~20% of the orders underwent extinction and 15 classes 

were affected. The mean number of genera per mode of life dropped drastically at the 

generic and ordinal levels, and slightly at class level, but there were no significant 

changes at the level of phyla. In terms of the proportional abundance, each ecological 

category decreased in average more than 50% (Fig. 3.10, appendix).  
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Figure 3.9 theoretical ecospace occupations for marine genera through the P/Tr and 

Tr/J mass extinction events. The black boxes represent the ecospace occupation prior to 

mass extinction events (A) Changhsingian and (C) Rhaetian. The coloured boxes 

represent the ecospace occupation after the mass extinction events, (B) Induan and (D) 

Hettangian. Red indicates the modes of life lost after the extinction event. Green 

indicates a > 50% decrease, yellow represent < 50% decrease and the blue indicates no 

change in the relative abundance of the mode of life after the extinction event. 

The pelagic forms record a decrease of ~60%. This category was made up by 4 groups, 

Cephalopoda, Chondrichthyes, Osteichthyes, and Ostracoda, which finally disappeared 

in the Induan. The Cephalopoda lost 44% of its orders, of which the Anarcestida 

became extinct, while dominant groups like the Ceratida, Goniatitida and Nautilida 

decreased by > 50%. Among the Osteichthyes, the Coelocanthiformes disappeared 
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entirely and ~80% of the Palaeonisciformes disappeared (all grazing forms), while 

Semionotiformes crossed into the Induan. Finally, Chondrichthyes did not record losses, 

and the Ctenacanthida and Eugeneodontida crossed into the Induan. 

The erect forms comprised Cladida and Monobathrida, which disappeared completely 

during the Late Permian. At the same time, surficial life forms suffered one of the 

greatest decreases, from 345 genera recorded in the Changhsingian to 125 genera in the 

Induan. Two modes of life disappeared, one being the facultative, unattached filter 

feeders – only represented by Pernopecten (Pteroidea) - and the other being the fast 

motile predatory modes of life represented by the decapod, Protoclytiopsis.  

In addition, the average number of genera per mode of life decreased from 28.5 in the 

Late Permian to 10.41 in the Induan (Fig. 3.8). This means that packing decreased more 

than 50% by mode of life. The greatest extinction was observed in non-motile filter 

feeders, where 70% of the extinct taxa belong to the Brachiopoda. Porifera, Cnidaria 

and Bryozoa represent 30% of the extinction pool associated with the collapse of reef 

systems (Brayard et al. 2011). With the depletion of sessile filter feeding forms 

(primary consumers), predators and consumers in upper trophic levels also responded 

negatively. Groups like Decapoda (fast motile) and Gastropoda (Neotaenioglossa and 

Bellerophontida) decreased significantly. Simultaneously, slow motile grazers almost 

disappeared, with the loss of groups such as Archeogatropoda, Neotaenioglossa, 

Cephalapsida and Euomphalina (Gastropoda). Fast and slow motile miners decreased by 

more than 50%, of this group the Trilobites and Ostracoda (Podocopida) disappeared, 

while Gastropoda record a loss of just 5 orders. Finally, fast motile deposit feeders 

made up by Isopoda and Tanaidacea, crossed through the Induan without significant 

variation (Fig. 3.8). 
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During the Changhsingian, 26 genera occupied 10 modes of life related to semi-infaunal 

and shallow-infaunal habits. Bivalvia represented 46%, followed by Holothuroidea 

38%, Scaphopoda and Palaeocopida both with 3%. Of these taxa, the Paleocopida - 

shallow facultative, attached suspension feeders - dropped by >80% with the 

disappearance of 11 genera. The fast motile filter feeders mode of life, comprised three 

genera, Pseudopermophorus and Gujocardia (both veneroids), and Orbiculoidea 

(Lingulida), and was the only mode of life that became extinct through this interval. 

Most of the infaunal forms used suspension and deposit-feeding mechanisms, while just 

one form was a predators (Scaphopoda: Dentaloida) and another chemotrophic feeder 

(Acharax: Solemyoida). In terms of motility, only two modes of life were recorded as 

facultative, attached and just one mode showed fast motile qualities. 

Apparently, these data suggest that during the P/Tr extinction taxa associated with 

surficial modes of life were more susceptible to extinction than those that were infaunal 

(Fig. 3.10). Modes of life with low packing were more susceptible to extinction than 

groups with more species (Fig. 3.11). Motile forms were less affected than non-motile 

taxa and slow motile forms, apparently, were more affected than fast-motile modes of 

life. 

3.5.2 End Triassic mass extinction 

A total of 386 recorded genera cross to the Hettangian from 682 genera recorded in the 

Rhaetian. At the level of the higher taxa, 57 orders went extinct, whilst no extinctions 

were recorded at class, or phylum level (Fig. 3.9). Compositional analysis of the 

taxonomic loss revealed that annelids dropped slightly with the extinction of three 

genera: Microtubus, Palaeoaphrodite and Archarenicola. Arthropoda recorded a 

significant loss at generic level (12 genera), with the disappearance of the 

Concavicarida, Tanaidacea and Cyclina. Brachiopods recorded one the largest 
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turnovers, with the Spiriferida, Rhynchonellida and Terebratulida recording losses of 

80%, 34% and 85% of genera, respectively.  

Bryozoa recorded the extinction of the classes Trepostomata and Cryptostomata. 

Echinodermata recorded a generic loss of the taxa Tulipacrinus (Isocrinida), 

Bihaticrinus, Lanternocrinus, Lotocrinus (order uncertain), whilst at ordinal level taxa 

related to Encrinida and Roveacrinida (Crinoidea) disappeared. The Cnidaria record the 

loss of Conulariida, Pennatulacea and the almost complete disappearance of the 

Scleractina. In addition the Chordata recorded the loss of the orders Perleidiformes, 

Palaeonisciformes, Pachycormiformes, Placodontia and Squatinactida.  

The Mollusca lost ~55% of all genera (682 genera records in the Rhaetian) and a 

significant loss at class level. For example, gastropods recorded a loss of 73 genera 

(45% of all recorded gastropods) with a significant decrease of the groups 

Neotaenioglossa, Archaeogastropoda, Bellerophontida and Euomphalina. The Bivalvia 

lost 43 genera (43% of all bivalve genera), with a significant impact in groups such as 

the Hippuritoida, Nuculoidea, Veneroidea, Trigonoida and Pholadomya. Another group 

that was severely affected was the Cephalopoda, of which just 6 genera (12%) cross to 

the Hettangian. Finally, the Porifera lost 41 genera, of which ~86% belonged to 

Demospongea and the rest to the Pharetronida (Calcarea). 

In terms of ecological complexity, ecospace utilisation decreased by only three life 

modes (Fig. 3.9C-D): surficial fast-miners (Marrelomorpha), surficial non-motile 

deposit feeders (Polychaeta) and deep infaunal facultative, unattached miners 

(Polychaeta). As in the previous extinction (P/Tr), those modes were occupied by very 

few genera, which suggest that modes of life with low packing are more susceptible to 

extinction (Fig. 3.9).  
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The biggest decreases were observed in modes of life associated with pelagic forms, 

which fell ~71% with respect to the previous period. Semi and shallow infaunal modes 

recorded a loss of ~ 66%, while the surficial category recorded a loss of ~57%, and 

predatory and grazing modes of life lost 57% and 61 % of all genera, respectively (Fig. 

3.10). Finally, the average number of genera per mode of life decreased from 21.89 to 

9.25 genera (Fig. 3.9) (Appendix 3.3). 

Pelagic forms were made up by marine reptiles, Cephalopoda, Osteichthyes, 

Chondrichthyes and Thylacocephala, which were fast motile predators and grazing 

forms (the latter, filled just by fish). In the Rhaetian, 96 genera were pelagic predators, 

of which the Cephalopoda were numerically dominant. Through the End Triassic 

extinction this group suffered the biggest decrease with an 88 % loss of genera. 50% of 

Chondrichthyes became extinct, of which the Squatinactida disappeared completely, the 

Ctenacanthidalost 3 genera and just the Chimaeriformes ranged into the through 

Hettangian without loss. 
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Figure 3.10 Proportional abundance of each ecological category before and after each 

extinction event. 

Osteichthyes used two feeding mechanisms, predatory and grazing modes of life. The 

predators were represented by 20 genera and 8 orders in the Rhaetian and, of these, one 

order and 50% of genera became extinct. Grazing modes of life were made up by 

Palaeonisciformes, which disappear completely but the Pachycormiformes did not 

record any depletion. Finally, the reptiles recorded 8 genera in the Rhaetian and just 2 

genera belonging to Plesiosauria and Ichthyosauria cross to the Hettangian.  
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Figure 3.11 Rank abundance curve of each mode of life before and after each mass 

extinction event. 

 



102 
 

The End Triassic extinction event did not bring about the complete disappearance of 

erect forms; however they did decrease by ~50% genera, from two orders, Encrinida 

and Roveacrinida. Surficial modes of life were made up of 485 genera and 13 modes of 

life in the Rhaetian. In contrast, in the Hettangian the number of genera dropped to 207 

genera, filling 11 modes of life (Fig. 3.9). This represents an average decrease of ~42% 

of the genera per mode of life (Fig. 3.10). Motile epifaunal miners and non-motile 

epifaunal deposit feeders were the only two modes of life that disappear through the 

Tr/J extinction. These modes were constituted by the Cyclina (3 genera) and 

Terebellomorpha (1 genus), respectively. In contrast, fast motile suspension feeders, 

which comprise the Metacopida (Ostracoda), do not record changes in abundance 

through the Tr/J boundary. From surficial modes, non-motile suspension feeders were 

the most numerous mode of life, comprising 301 genera, 29 orders and 13 families. This 

group recorded a loss of 65% of all genera (Fig. 3.9). The biggest decreases were 

observed in the Brachiopoda (~79% genera loss), Cnidaria (68%), Porifera (66%), 

Bryozoa (47%) and Bivalvia (42%).  

Most of the marine epifauna was composed of fast, slow and facultative, unattached 

forms (Fig. 3.10).  Slow motile forms spanned 5 of the 6 feeding categories and this 

group was made up mostly by Gastropoda (104 genera), Ostracoda (14 genera), 

Polychaeta (7 genera), Echinoidea (6 genera), Tergomya (2 genera), and one genus each 

of Polyplacophora and Merostomata. The modes associated with surface deposit and 

grazing feeding mechanisms lost >50% of this genera. The deposit-feeding surficial 

mode of life was made up exclusively by Gastropoda, of which the Neotaenioglossa 

were the most abundant, but recorded the highest taxonomic loss. Additionally, slow 

motile grazers form a polyphyletic group made up by 79 genera belonging to 



103 
 

Echinoidea, Tergomya and Polyplacophora and Gastropoda, of which cidaroids and 

archeogastropods recorded a loss of 2% and 39% of their genera, respectively. 

Epifaunal fast motile forms were represented by the Arthropoda. The fast-motile filter-

feeding Metacopida (Ostracoda) did not experience any extinction. Miners are 

represented by Tanaidacea and Isopoda, of which the latter crossed into the Jurassic. 

The genera Aeger and Tropifer (Decapoda) were the only fast moving epifaunal 

predators recorded in the Rhaetian, of which only Aeger crossed into the Hettangian. 

The facultative, unattached forms represented ~2% (10 genera) of the epifaunal modes 

of life and recorded an average decrease of ~54% in the Hettangian. This group was 

composed of categories like filter feeders and grazing forms. Filter feeders were 

represented exclusively by the pteroid bivalves, of which just one genus went to 

extinction (Tosapecten) through the Tr/J event. Of the forms, only one genus (from 

Gastropoda) crosses through the Tr/J boundary. 

During the Rhaetian, the shallow, deep and semi-infaunal tiers comprised 4 phyla, 6 

classes, 21 orders and 84 genera, which used 12 modes of life. The semi infaunal tier 

was made up by 33 genera of molluscs, annelids, arthropods, echinoderms and 

brachiopods, which used 5 modes of life. The facultatively motile, attached suspension 

feeder group was the richest mode of life, and was made up by holothuroids (21 

genera), bivalves (1 genus) and lingulids (1 genus). This group crossed to the 

Hettangian with the loss of 2 genera belong to the orders Apodida and Dendrochirotida, 

both from the Holothuroidea. 

Non-motile filter feeder forms record the biggest loss (Fig. 3.9). This category was 

made up by 3 orders in the Rhaetian (Mytiloidea, Pterioida and Hippuritoida). The 
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Pterioida cross into the Hettangian without loss, the Mytiloidea suffer the extinction of 

one genus and the Hippuritoida disappear, which reduced the packing by more than 

50%. Facultatively - attached predatory feeders record the loss of just one genus 

Palaeoaphrodite (Polychaeta), while facultatively motile and fast motile suspension 

feeder forms were made up by Paleocopida and Arcoida and crossed the Tr/J boundary 

without changes (Fig. 3.9). 

The shallow infaunal forms were made up of 43 genera (all bivalves) which occupied 

six modes of life. Of these, three modes of life recorded the major depletions in 

taxonomical richness: the facultative-attached filter feeders, which lose ~50% of the 

veneroid bivalve; the facultative unattached filter feeders, with a reduction of ~50% of 

the orders Trigonioida, Pholadomyoida and Nuculoida; and, facultatively unattached 

deposit feeders, of which Palaeonucula, was the only genus that went through into the 

Hettangian (Fig. 8.9). The no motile filter feeding mode of life decreases by ~38%, and 

four veneroid genera and 1 genus of Nuculida disappear. In contrast, shallow infaunal 

facultative-attached chemothropic feeders (Acharax: Solemyoida) and facultative 

unattached predatory feeders (Cuspidaria: Cuspidariidae) did not record changes 

through the Tr/J boundary. Finally, the deep infaunal tier was occupied by 

Archarenicola (Polychaeta) in the Rhaetian and was the only deep-infaunal group that 

disappears to the end Triassic extinction. 

To summarise, three modes of life disappear across the Tr/J boundary. The End Triassic 

extinction event was intense at generic and ordinal levels. Modes of life with low 

numbers of species were more susceptible to extinction than modes of life with high 

packing. On average ~38% of the total epifauna and 65% of the total infauna cross 

through to the Hettangian. In parallel, 50% of the infaunal bivalves underwent 
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extinction through the End Triassic extinction event compared to 40% of epibenthic 

bivalves.  Seventy-three percent of the pelagic forms disappear through the Tr/J 

boundary. Finally, eighty-six motile genera disappeared compared to 196 non-motile 

genera that became extinct, which suggests a strong selective pressure on non-motile 

mode of life. 

3.6 Mass extinction and Ecospace 

The ecospace data shows that the Late Permian and the Late Triassic extinction events 

affected the proportional abundance of each ecological category. In the same way the 

skeletal physiology seems to relate to extinction vulnerability in both extinction events. 

Motility apparently results in an adaptive advantage, which reduces significantly the 

likelihood of extinction in modes of life associated with fast, slow and facultative-

unattached modes of life. Finally, dominant modes of life tended to decrease 

significantly, while the modes of life made up by  just a few genera are most susceptible 

to extinction (Figure 3.10 and 3.11). 

The Late Permian and the Late Triassic extinction events coincide with large volcanic 

events: the Siberian Traps large igneous province and CAMP (Central Atlantic 

Magmatic Province), respectively. In both situations hypercapnia has been suggested as 

a major factor that triggered the extinction in the marine ecosystems (Knoll et al. 2007 

and Hautmann et al. 2008), with effects on skeletal physiology and the capacity to 

buffer chemical stress potentially being some of the main selectivity factors in marine 

organisms (Portner et al. 2004; 2005; Raven et al. 2005).   

Knoll et al. (2007), using this approach, generated the following classification: (1) 

heavily calcified organisms with little physiological control over mineralization (for 

example, corals and calcite brachiopods), (2) calcified organisms with physiological 



106 
 

control with respect to the factors that govern carbonate precipitation (principally 

molluscs and arthropods), and (3) animals with skeletons made of materials other than 

calcium carbonate (lingulid brachiopods, conodonts, cartilaginous fish, etc.). 

The epifaunal mode of life was the category that suffered the biggest depletion in the 

number of taxa. Most epifaunal organisms were heavily carbonated and without 

physiological buffering, with the exception of surficial, fast motile deposit feeders 

(occupied only by bivalves), which survived through without change (Figure 3.8). Taxa 

associated with shallow and semi infaunal modes of life were made up by organisms 

with high physiological control (Group 2 and Group 3). Of this group, 8 modes of life 

were recorded and only one mode of life decreased by more than 50% (made up by 

Ostracoda). This pattern is interesting from an evolutionary point of view, and could 

explain the replacement of a brachiopod-dominant fauna by a bivalve-dominant fauna. 

Pelagic forms were composed physiologically of groups (2) and (3). The three largest 

taxonomic groups were the cephalopods (ammonites and nautiloids), cartilaginous and 

bony fishes. For cephalopods (moderate carbonate load-potential physiological 

buffering) the selectivity was apparently differential and the Nautiloidea were the only 

group which did not record large losses. Cartilaginous fishes do not have such 

physiological constraints, although predator and grazer modes of life still recorded 

depletion, apparently associated with trophic collapse, such as the bottom-up effect 

initialised by primary productivity depletion. 

For the end Triassic mass extinction, Hautmann et al. (2008) divided the end Triassic 

fauna in three groups; (1) heavy calcified and little physiological control (Scleractina 

and Sphinctozoa), (2) heavy calcified and with physiological control, but with more 

susceptibility to extinction in aragonite groups (Bivalvia and Foraminifera), and (3) 
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non-calcareous taxa (Polychaeta and Radiolaria) (with a low extinction rate). However, 

it seems that physiological control is not reflected in the occupied ecospace, with the 

largest extinction occurring among surficial groups and only ~38% of the total epifauna 

crossing through to the Hettangian, of which the majority comprised brachiopods, 

sponges and corals. In contrast, 65% of the infauna crossed the end Triassic into the 

Jurassic. Only the bivalves record a selective extinction, of which 50% of the infaunal 

bivalves underwent extinction compared to 40% of epibenthic bivalves. This selective 

extinction has been widely documented (McRoberts 2001; Hallam 2002; Aberhan and 

Baumiller 2003; Hautmann 2004; Aberhan et al. 2006; Hautmann 2006; Kiessling and 

Aberhan 2007a; Kiessling et al. 2007; Hautmann et al. 2008; Mander and Twitchett 

2008; Mander et al. 2008; Wignall and Bond 2008). A potential explanation is that 

burrowing bivalves are exclusively aragonite (Group 2), whilst most epifaunal bivalves 

at the time had calcitic outer shell layers suggesting that selective extinction of shell 

mineralogies occurred in bivalves during the end-Triassic. 

The disappearance of groups of non-calcareous taxa such as Marrelomorpha and 

Polychaeta (group 3), which were surficial fast miners, surficial non motile deposit 

feeders and deep infaunal facultative, unattached miners, however, contradicts the 

hypothesis of physiological control. This could mean that this mode of life had a low 

relative abundance or the number of species per mode of life was low (i.e. low packing). 

This pattern is not strange and seems to repeat through the P/Tr extinction event (Fig. 

3.11). Five life modes disappeared in this interval, four associated with filter feeding: 

pelagic fast moving (Malacostraca, Ostracoda), erect forms (Crinoidea), surficial 

facultative-unattached (Bivalvia: Hyolithida, Pterioida, Arcoida), shallow facultative 

unattached (Bivalvia, Craniata) and fast moving surficial predators (Malacostraca: 
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Decapoda). All of these modes of life record an average of 2 genera per mode of life 

before the extinction (Fig. 3.11, Appendix 3.3).  

Figure 3.11 summarises the structure of the ecospace before and after the mass 

extinction. Each mode of life represents a guild constituted by different clades. From the 

ecological view, each mode of life represents a combination of different variable of 

niche, where specialised rare species, use rare modes of life. Those species are 

associated with restrictive habitats with a narrower tolerance to change, using small 

areas of the potential morphospace and are characterised by a restrictive geographic 

range. Observations on the extinction risk of rare and abundant species have been made 

up by Kiessling and Aberhan (2007b). Those authors established that the Tr/J extinction 

event did not show a selective effect and the end-Triassic mass extinction equally 

affected common and rare genera. In contrast, Payne and Finnegan (2007) and Payne et 

al. (2011) studied the relationship between abundance and extinction risk in gastropods 

from the Palaeozoic to the Mesozoic. They established that global genus occurrence 

frequency is inversely associated with extinction risk (i.e. positively associated with 

survival) and suggest that abundance has been a more important influence on extinction 

risk throughout the Phanerozoic. This apparently could support the hypothesis that the 

probability of extinction is reduced in abundant modes of life (with high packaging). 

Another factor associated with survival through each extinction event is motility. 

Organisms with some degree of motility (fast, slow and facultative unattached), shows 

greater advantage compared to the no motile fauna. Through the P/Tr extinction event 

~47% of the motile fauna and 33% of the no motile fauna survive through this event. 

Through the Tr/J, 86 motile genera disappeared compared to 196 non-motile genera. 

From the Guadalupian to the Sinemurian the motile fauna increased steadily by ~20%. 
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At the Tr/J boundary the ecosystem was made up by an ecologically diverse fauna, 

which incorporated different clades with motile modes of life and had expanded through 

the ecospace (e.g. Mollusca). This pattern has been documented before (Bambach et al. 

2002; Aberhan et al. 2006; Bush and Bambach 2011). The ability to move is 

ecologically important, allowing escape against potential predators and disturbance, and 

a as  mechanism of dispersion, which would allow expansion of the distribution range 

avoiding local extinction as a result of environmental stochasticity (Bambach and Bush 

2011). 

In summary, modes of life with a few species, combined with certain physiological 

constraints and a high degree of specialization seem to be more susceptible to 

extinction. Organisms with motile modes of life show high survivorship compared to 

non-motile taxa through both, the P/Tr and Tr/J mass extinctions. This is very 

important, because the proportion of mobile species increases greatly after each mass 

extinction event (Bush and Bambach, 2010). However, there is one potential question to 

evaluate: The relationship between abundance of species, modes of life and 

susceptibility to the extinction event. This question can be extended to include 

physiological studies on the Tr/J fauna and correlations with ecological space, and 

evaluation of this ecospace on a geographical scale, in terms of differences in the filling 

of the ecospace and/or temporal changes related to extinction and/or recovery event. 

Finally, in mass extinctions involving the collapse of biological systems, ecological 

complexity is reduced to low levels of organization. This leads to changes in the 

dominant species, ecological structure, and the complexity and functionality of 

communities. However, the pattern in the dynamic of the extinction seems to respond 

canonically.  
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3.7 Conclusions 

Ecospace does not expand from the Ordovician to the Jurassic; however the proportion 

of genera per mode of life does increase, and generates complex marine communities in 

the Early Mesozoic. The use of ecological space by marine communities through time 

correlates with secular changes in richness, but also with turnovers in composition 

associated with the mass extinctions of the P/Tr and Tr/J. These mass extinctions 

significantly decreased the relative frequency of some ecological categories. 

Physiological control was an important factor through the P/Tr event, and seems to 

influence patterns of selectivity in the ecospace. In addition, the Tr/J mass extinction 

event, shows some correlation with physiological constrains.  

To generate a more precise rate of change of ecological features by community, 

including different extinction and origination regimens, future studies should analyse 

comparatively changes in ecological space between similar communities (for example 

between coral reef, shallow marine or deep water systems). The concept of ecospace, 

however, does not necessarily incorporate “sensu stricto” the idea of ecological guilds, 

although it is possible to organise each mode of life by entities belonging to trophically-

similar groups (for example, for epifaunal, shallow and semi infaunal filter feeding 

organisms) and to evaluate the distribution of rank abundance models and the rate of 

changes of species, compared to neutral models (Hubbel 2001). Such studies would 

allow the dynamics of species turnover and distribution to be observed under different 

scenarios and the development of hypotheses concerning the potential factors that could 

determinate changes in the composition of each guild.  

Initially, however, it is necessary to generate a detailed curve of the ecospace 

composition through the Phanerozoic, to see how different phases of adaptive radiation 

are related to ecological and taxonomic diversity and, crucially, observation on how 
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ecological complexity has increased in the communities in which the clades had 

participated. 
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Chapter 4 St Audrie’s Bay section 

4.1 Geological setting 

The  t Audrie’s Bay section is one of the most complete known across the Tr/J 

boundary interval (see Chapter 2).This section is 89 m thick from the base of the 

Westbury Formation to up to a level within the Hettangian, the Angulata Zone. The 

Rhaetian Stage is represented by the Penarth Group, which is subdivided into the 

Westbury Formation and the Lilstock Formation. The Lilstock Formation is divided into 

the Langport and the Cotham members. The Blue Lias Formation overlies the Penarth 

Group, and includes the base of the Jurassic System near its base (Warrington et al. 

2008; Clémence et al. 2010). Four chronostratigraphical zones comprise the Hettangian: 

the Tilmanni Zone, the Planorbis Zone, the Liasicus Zone and the Angulata Zone. 

4.1.1 The Westbury Formation 

This unit has a thickness of 10.90 m and is a marine unit, consisting predominantly of 

siliciclastic-rich calcareous mudstone with subordinate interbedded, calcareous 

sandstone, bioclastic packstone, wackestones and intraformational conglomerates (Fig. 

4.1). The calcareous sandstones have been considered to represent barrier bar deposits, 

whilst the bioclastic packstone represents winnowed shallow marine concentrations, and 

the intraformational conglomerates and “bone-beds” have been variously interpreted as 

transgressive lag deposits, condensed horizons or storm deposits (Macquaker 1999; 

Warrington et al. 2008). 

The sea was shallow and deposition took place under generally quiet-water offshore 

conditions, although periodically wave base impinged upon the sea floor as shown by 

the occurrence of wave-ripples (Macquaker 1994).The main part of the Westbury 

Formation, however, is interpreted as having been deposited in deeper water below 
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wave base. Upward-coarsening and upward-fining successions on a stacked 

parasequence scale within the Westbury Formation suggest that sediment distribution 

was controlled by relative sea-level change (Macquaker 1999). 

Bivalves are the most common and fossils within the Westbury Formation and occur 

predominantly in shell-beds (Ivimey-Cook et al. 1999).Vertebrate debris is abundant at 

some levels and includes fish teeth, spines and scales, and some bones and teeth from 

larger marine reptiles (Martill 1999). This material commonly occurs together with 

coarse siliciclastic sediment and phosphatic coprolites in well-defined ‘bone-beds’ 

(Macquaker 1999; Martill 1999).  

4.1.2 The Cotham Member 

The Cotham Member is of Rhaetian age and forms the lower part of the Lilstock 

Formation, The Cotham Member is 1.70 m thick and can be divided into a lower and 

upper unit, separated by an erosion surface characterised by desiccation cracks (Fig. 

4.1). The lower part is 1.30 m thick and comprises thinly laminated siltstones and fine-

grained sandstone with bands of ripple-marked limestone. The top of the unit shows a 

contorted, slump structures (Fig. 4.1). The upper part of the Cotham Member has a 

thickness of 0.6 m and comprises thinly inter-bedded mudstone, limestone and greenish 

grey shale. 
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Figure 4.1 Lithostratigraphical log of the Westbury Formation, Lilstock Formation and basal Blue Lias Formation exposed at  t Audrie’s Bay. Occurrences (limestone ● and mudstone ●) and ranges (black lines) of taxa 

recorded from 56 samples taken from the  t Audrie’s Bay section. 
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The Cotham Member fauna typically includes only a few bivalve species, only in the 

lower part. The upper part of the Member, however, has yielded a few microfossil 

species, the ostracods Baridia and Ogmoconchella (Boomer et al. 1999; Hesselbo et al. 

2004). The lower Cotham is a shallowing-upward succession, capped by a surface 

characterised by deep desiccation cracks that indicate a sudden fall in relative sea level 

(Swift 1999; Hesselbo et al. 2004).The deformed unit has been interpreted as a 

‘seismite’, formed as a result of a massive regional shock caused by extra-terrestrial 

impact (Simms 2003). Overall, however, the upper Cotham Member represents a 

coastal environment which developed during a relative sea level rise (Swift 1999, 

Hesselbo et al. 2004). The initial negative carbon-isotope excursion recorded in many 

sections across the Tr/J boundary commences around 10 to 30 cm above the 

desiccation-cracked erosion surface (Fig. 4.1; 12 m above the base of the section). 

4.1.3 The Langport Member 

The Langport Member overlies the Cotham Member and has a thickness of 1.30 m. This 

unit is made up of pale grey limestone with inter-bedded grey or blue-grey mudstone. 

The lower part of the Langport Member comprises lenticular or nodular limestone, 

locally micritic or laminated, intercalated by dark grey mudstone. The higher beds 

include three limestones which weather to a cream colour and which form a unit with 

irregular base (Fig. 4.1). Deposition occurred in warm, very shallow water in a saline 

lagoonal environment (Gallois 2007). The fauna of the Langport Member includes 

bivalves, echinoderms, gastropods and corals. Ammonites have not been recorded in 

previous studies (Fig. 4.1). 
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4.1.4 The Blue Lias Formation 

The base of the Blue Lias Formation of the Lias Group lies close to the base of the 

Jurassic System in Britain (see references in Page (2010)). The section comprises 74 m 

of the Blue Lias Formation, up to a level in the Hettangian Angulata Zone. The detailed 

stratigraphy of the Blue Lias Formation of the  t Audrie’s Bay area was first described 

by Palmer (1972) and later by Whittaker and Green (1983). The correlation of the 

Hettangian of the West Somerset Coast has been revised by Page (2004), with the base 

of the Jurassic System re-correlated by Clémence et al. (2010) using the carbon isotope 

curve to level around Beds 1-3 of Whitta er and Green (i.e. the base of the ‘Pre-

Planorbis Zone’ – or more correctly the Tilmanni Zone according to Page 2010 after 

Hildebrandt et al. 2007, etc.). The base of the Planorbis Zone would then probably lie at 

the base of Bed 9 (cf. first occurrence of Neophyllites-like ammonites at Doniford Bay 

to the west– K. Page pers. comm. 2011) with the base of the Liasicus Zone in Bed 43 

and the base of the Angulata Zone in Bed 80 (Fig. 5.1; 60 m above the base) (Page 

2004). 

The Blue Lias Formation comprises rhythmic sedimentary units of organic-rich shale, 

marl and limestone. The marl is often blocky, but sometimes more fissile, and medium 

to pale grey in colour. The limestone is dark bluish grey to medium grey in colour and 

typically hard, compact and splintery micrite, sometimes argillaceous. It occurs mostly 

in thin, laterally persistent beds, some of which are lenticular, but also forms laterally 

persistent horizons of nodules. The well-developed very fine laminations, occasional 

presence of pyrite and the lack of a benthic surface dwelling and burrowing fauna in the 

shale units, reflects anoxic sea-floor and substrate conditions. The calcareous mudstones 

(i.e. marls) and carbonate-rich beds with a benthic fauna reflect, in contrast, oxygenated 
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conditions. Similar observations have also been made by Whittaker & Green (1983), 

Hesselbo et al. (2004) and Warrington et al. (2008). 

The lower around 5.7 m corresponds the Pre-Planorbis Zone and includes at least the 

higher part of Bed A1 to Bed A18 (Fig. 4.1, 14. 60 m above the base of the section). No 

ammonites have been recorded in this interval in the  t Audrie’s Bay area, although 

Psiloceras erugatum (Phillips), as Pinhay Bay section, has been placed in the upper part 

of the Zone (Page 2010).The base of the succeeding the Planorbis Zone is placed at the 

first occurrence of Neophyllites in Bed A18 and the zone ranges up to Bed 42, a total of 

7.60 m (Fig. 4.1). The Liasicus Zone succeeds the Planorbis Zone, and is around 30.7 m 

thick, ranging from Bed 43-44 to Bed 80 (Fig. 4.1). Finally, the Angulata Zone spans 

beds 80-82 to 145 and is 21 m thick (Page 2010) (Fig. 4.1). 

4.2 Richness 

Two-thousand five-hundred ninety-eight macrofossil specimens corresponding to 51 

species, grouped in 30 families, 17 orders, 5 classes, 2 phyla were recorded from 56 

samples collected from the Tr/J section at  t Audrie’s Bay (Appendix 4.1). Mollusca are 

the dominant group, comprising Bivalvia 38 species, followed by Cephalopoda (5 

species) and Gastropoda (2 species). Two classes of Echinodermata are also present, 

represented by one species of each of Echinoidea and Crinoidea.   

4.2.1 Limestone samples 

Thirty-eight species were recorded from 31 limestone samples. Around 20% of these 

were recorded in the Westbury Formation (15 spp.), 12% of the species disappearing at 

the base of the Cotham Member. From the Langport Member to the Planorbis Zone, the 
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number of the species increases rapidly from 10 spp. to 19 spp. Subsequently, the 

richness drops slightly through the Liasicus Zone, to 11 spp. 

Average species richness from the 31 limestone samples through the Tr/J boundary 

section shows a significant decrease from the Westbury Formation to the Cotham 

Member (Fig. 4.2A). Between the Cotham and the Langport members the richness 

remains low (mean ~ 3 species). From the base of the Pre-Planorbis Zone the richness 

increases rapidly to 10 species at 21.2 m above the base of the studied section. 

Subsequently, richness begins to decrease smoothly. From the base of the Liasicus Zone 

to the Angulata Zone the mean richness decreases significantly (mean ~4 species) to 

reach 5 species at 61 m above the base of the section (Fig. 4.2A). 

Individual rarefaction performed by increasing the sample size, indicated that the lowest 

expected richness is recorded in the Cotham Member (mean = 5.59 ± 1.5), whilst the 

highest values are observed in the Planorbis Zone (mean = 19.58 ± 1.58) (Fig. 5.3A). 

The Westbury Formation and the Pre-Planorbis Zone do not record significant 

differences (14.85 ± 0.85 and 13.90 ± 0.9, respectively). Similarly, the Langport 

Member and the Liasicus Zone do not record differences (~10 spp.). 

In addition, the sample rarefaction estimated by three extrapolative techniques (Fig. 

5.4), confirms the abrupt decrease of species number in the Cotham Member and the 

rapid increase in the number of the species up to the Planorbis Zone. The Shannon-

Wiener diversity index shows a slightly different scenario, however (6.5A).The Cotham 

Member has the lowest diversity score (1.37 ± 0.13), whilst the Planorbis Zone records 

the highest diversity (2.06 ± 0.02), followed by, in order of decreasing diversity, the 

Pre-Planorbis Zone and Langport Member and the Liasicus Zone and the Westbury 

Formation, which have the same richness (6.5A). 
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Figure 4.2 Raw (black line) and mean species richness (red line ± 2 S.D.)recorded for 

each sample collected. The mean species richness represents the rarefied within-sample 

marine invertebrate richness estimated by 10.000 iterations. The blue line is the LOESS 

regression through the data point (α=  .3). LF: Lilstock Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone, AZ: Angulata zone. 
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Figure 4.3 Average values (± 95% confidence intervals) of species richness estimated 

as sampling size increases through the Tr/J section in  t Audrie’s Bay.  ignificant 

differences were assumed if 95% confidence intervals did not overlap. 
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Figure 4.4 Boxplot of the rarefied within-sample marine fauna (Mao Tau, Chao1 and 

Jacknife1) during the study interval in  t Audrie’s Bay section. Each box represents the 

95% confidence interval. The median is shown by an inner black line and the mean by a 

red line. WF: Westbury Formation, LM: Langport Member, CM: Cotham Member, 

PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. 

4.2.2 Mudstone samples 

Thirty-eight species were recorded from 25 mudstone samples through the Tr/J 

boundary section (Appendix 4.1). In contrast to limestone samples, the highest richness 

was observed in the Liasicus Zone with 32% of the species, following by the Planorbis 

Zone and the Westbury Formation with 24%, and the Pre-Planorbis Zone with 16% of 
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all species recorded. In contrast, the Langport Member only records 5% (3 spp.) of the 

total number of species recorded in the entire Tr/J section. 

The diversity curve drawn using these samples (Fig. 4.2B) shows an increase in the 

average richness from the base of the section to 10.05 m (sample W7). However, the 

richness drops sharply within the Langport Member where values of 0 and 3 species at 

13 m and 13.3 m, respectively, above the base of the section (sample LM1 and LM2). 

Later, the richness increases rapidly to 8 species at 18 m above the base of the section 

(sample PPZ3). From this level in the Pre-Planorbis Zone to 24.6 m (Sample PZ4) in 

Planorbis Zone, although the richness fluctuates, it has a tendency to decrease (Fig. 

4.2B). At 26.7 m above the base of the section the richness increases again to 10 spp. 

(sample PZ5) and decays gradually to 3 species (Sample LZ3) at 36.2 m above the base 

(Fig. 4.2B). Up to the Angulata Zone, the average richness increases slightly to 8 

species at 61.5 m (Sample AZ1). The raw richness by sample, however, shows high 

fluctuations, recording two peaks; the first at 46.7 m (10 spp. sample LZ4) and the 

second at 58.6 m (9 spp. sample LZ7) above the base of the section (Fig. 4.2B, 

Appendix 4.1). 

Individual rarefaction performed by increasing the sample size, shows that the Langport 

Member records the lowest expected richness through the section (2.59 ± 0.59) (Fig. 

4.3B). From the Pre-Planorbis Zone to the Liasicus Zone, the richness values increase 

rapidly from 9.67 ± 1.67 in the Pre-Planorbis Zone to 14.58 ± 1.58 in the Planorbis 

Zone and 19.73± 1.73 in the Liasicus Zone. The Westbury Formation records slightly 

lower values (13.90 ± 0.90) than observed in the Planorbis Zone (Fig. 4.3B). 
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Figure 4.5 Average values (±95% confidence intervals) of Shannon-Wiener diversity 

estimated as sampling size increased during the study interval. Significant differences 

were assumed if 95% confidence intervals did not overlap. 

 

The sample rarefaction estimated by the three sampling techniques (Fig. 4.4B), 

confirms the sharp decrease in the number of the species from Westbury Formation to 

the Langport Member. From the Pre-Planorbis to the Liasicus Zone the expected 
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richness increases from 13 to 27 species. In addition, the Shannon-Wiener diversity 

index (Fig. 4.5B) confirms the richness depletion observed in the Langport Member. As 

with previous results, the diversity increases from the Pre-Planorbis to the Liasicus 

Zone. The lower Westbury Formation records intermediate values between those of the 

Pre-Planorbis and the Planorbis Zone. 

4.3 Abundance  

4.3.1 Limestone samples 

Kurtosis values estimated from limestone samples tend to decrease through the studied 

section. In the Westbury Formation, the kurtosis (dominance) reaches an average value 

of 28.85 ± 5.53 (Fig. 4.6A). The trajectory of kurtosis through the Westbury Formation 

tends to decrease from the base of the section to 10.2 m (Appendix 4.2). From the base 

of the Cotham Member to the top of the Langport Member (11 m to 14.24 m above the 

base of the sampled section) kurtosis increases significantly (mean = 35.83 ± 3.00) 

reaching a values of 41.26 at 14.2 m (sample Lang4). This gradual increase is 

interrupted, however, by a negative peak at 11.4 m (Fig. 4.6) due to the absence of any 

fauna (sample CO2), and also at 12.4 m (sample CO4) and 12.9 m (Sample LM1) above 

the base of the section. From the base of the Blue Lias Formation, the kurtosis values 

tend to increase to a maximum peak at 35.5 m (score 50.96) (Sample LZ2).From this 

level to the first Angulata Zone sample (61 m above the base of the section), the 

kurtosis (dominance) tends to decrease significantly.  

The Westbury Formation records a total of 15 species, the dominant being Isocyprina 

concentricum (32.48%), followed by Isocyprina waldi (29.91%) and Permophorus 

elongatus with 17.26%. Two species show a rank abundance of >5% (Placunopsis 

alpine and Chlamys valoniensis), whilst 9 species have an abundance of < 1%.The 
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abundance distribution tends to decay smoothly to values under 1%. The behaviour of 

this curve is best explained by the Geometric model, which states that most species 

show a similar abundance, while few species have a low abundance (Fig. 4.7A, Table 

4.1, Appendix 4.3). 

The Cotham Member assemblage contains 6 species; the dominant species is C. 

valoniensis (48.15%) followed by Modiolus sp. and I. concentricum with 22.22 % and 

14.81%, respectively, whilst the abundance of Protocardia rhaetica, Cardinia regularis 

and Rhaetavicula contorta falls slightly to between 8 and 3% (Fig. 4.7A, Appendix 4.3). 

Despite the low species number, the Rank abundance distribution fits a Broken Stick 

model (Table 4.1). Rank abundance models such as Zipf, Mandelbrot and Log normal 

generally indicate assemblages under undisrupted ecological conditions, while the 

Broken stick model assume a more even distribution of the species abundance. 

The Langport Member assemblage comprises 10 species and the rank abundance decays 

gradually. In this sequence Liostrea hisingeri has the highest abundance (46.61%), 

Pholadomya sp. and Myoconcha sp. show abundances between 10-15%, whilst 

Modiolus hillanus, Pteromya langportensis and Grammatodon hettangiensis occur at 

between 5-9%. Three species have an abundance between 1-3% and C. valoniensis has 

the lowest abundance at <1% (Figure 4.7A, Appendix 4.3). The Zipf Model was the 

best fit for this assemblage (Table 4.1). 
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Figure 4.6 Dominance (Kurtosis ±95% confidence intervals) of marine fossils 

assemblages through Tr/J section in  t Audrie’s Bay. The red line is the LOESS 

regression through the data point estimated with an alpha 0.3. LF: Lilstock Formation, 

CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis 

Zone, LZ: Liasicus Zone. 
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L. hisingeri is the dominant species in the Pre-Planorbis Zone assemblage (35.82%) 

followed by Modiolus minimus and Diademopsis tomesi with abundances of 23.28 and 

15.52 %, respectively. The abundance of the remaining species drops to proportions 

between 7 and 0.3%. Within this range, eight species record abundances between 7-1%, 

whilst three specimens record an abundance of <1% (Figure 4.7A, Appendix 4.3). The 

abundance distribution of the fifteen recorded species fits a Mandelbrot model (Table 

4.1).  

The Planorbis Zone records the highest richness through the study section. However, 

the proportional abundance between species shows the highest differences. D. tomesi is 

the dominant species with an abundance of 32.32%, the abundance of other species, 

however, falls to proportions between 17 and 12%, with species such as L. hisingeri, I. 

psilonoti and P. giganteum. Six species record abundances of between 10 to 1%, whilst 

9 species have an abundance of less than 1% (Figure 4.7A, Appendix 4.3). Due to a 

rapid fall of the rank abundance and high dominance of just a few species, this 

assemblage fits closely with a Geometric model (Table 4.1).   

As for the Planorbis Zone, the Geometric model, also explains very well the rank 

abundance distribution through the Liasicus Zone assemblage. Eleven species were 

recorded in the Zone of which M. ventricosus is the dominant at 34.44%, followed by 

D. tomesi at 26.67% and I. psilonoti at16.67%.The rank abundance of the next four 

species falls sharply to between 7 to 1%, whilst three species have single occurrences 

with abundances of 0.56%.  

Figure 4.8A shows the species dominance index computed by increasing the sample 

size. This plot shows 2 homogeneous groups; the first group with high dominance is 

represented by the assemblages of the Cotham and Langport members, whilst the 
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remaining assemblages show a low dominance (mean ~ 0.32 ± 0.01), without 

significant differences between them. 

4.3.2 Mudstone samples 

Figure 4.6B shows the trajectory of the kurtosis (dominance) through the study section 

in  t Audrie’s Bay. Kurtosis tends to decrease from a value of 45.8  ( ample W1) at 2.5 

m above the base of the recorded section, 16.50 at 10.5 m above the base (sample W7), 

reflecting a relatively high mean dominance through the sequence. Through the 

Langport Member dominance increases, although only one sample provided results, at  

13.3 m above the base of the recorded section (score 48.75; Sample LM2). In the Blue 

Lias Formation above, the mean kurtosis fluctuates highly between zones.  

Through the Pre-Planorbis Zone, kurtosis values increase from a value of 26.83 at 14.8 

m to 38.0 at 19.25 m above the base of the section (samples PPZ1 to PPZ4). From 20.5 

m above the base of the section (sample = PZ1), kurtosis decreases significantly to 

21.20 m (sample = PZ2). From this level, the kurtosis increaseto a peak at 35.5 m above 

the section (score = 51; sample = LZ2). From this level, the kurtosis tends to decrease 

smoothly to 60 m above the base of the section, with a score of 24.66 in the Angulata 

Zone. 

Fourteen species are recorded in the Westbury Formation, with R. contorta showing the 

highest proportional abundance at 35.04 %. The abundance distribution of the 

remaining species drops more than 50% with I. concentricum, I. ewaldi and P. rhaetica 

having a recorded abundance of between 18 and 11%. Three species show abundances 

between 8 and 2% (M. sodburiensis, Cassianella sp. and P. rhaetica). M. minimus and 

Astarte sp. record abundances of around 1.02%, whilst the remaining 28% of the 

species in this assemblages record abundances of < 1%. Due to the high dominance of 
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the one species (R. contorta), the Geometric model is the best fit for this assemblage 

(Fig. 4.7B, Table 4.1, Appendix 4.3). 

 

Figure 4.7 RACs derived from the abundance of marine invertebrate fossil 

communities through the Tr/J study interval. Y-axis on log(n) scale. 
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Table 4.1 Comparison of RAD models derived from abundance distribution of marine 

invertebrates through the Tr/J section in  t Audrie’s Bay. The models were ranked 

based on A ai e’s weight (ωi)following Burnham & Anderson's (2002) 

recommendation. AICc sample-size corrected was estimated as AICc = 

AIC+(2K[K+1])/(n-K-1). AIC is report only for completeness. K is the number of 

parameters; T is the number of taxa; n is the number of specimens. The highest ωi gives 

the best fit (In bold). 
Limestone 

    RAD models 

 T n AIC Broken stick Geometric Log normal Zipf Mandelbrot 

Parameters (K)    0 1 2 2 3 

Westbury 

Formation 

  AIC 350.88 94.17 180.58 236.27 98.17 

15 585 AICc 350.88 94.18 180.60 236.29 98.21 

  ωi 1.59×10-19 0.88 1.50×10-19 1. ×10-31 0.11 

Cotham Member 

  AIC 18.96 20.32 22.29 22.57 24.14 

6 27 AICc 18.96 20.48 22.79 23.07 25.18 

  ωi 0.560 0.261 0.082 0.072 0.025 

   AIC 59.61 55.13 47.92 47.88 49.88 

Langport Member 11 120 AICc 59.61 55.16 48.02 47.98 50.09 

   ωi 1.26×10-3 0.01 0.41 0.42 0.14 

Pre-Planorbis Zone 

  AIC 136.28 79.13 80.10 93.54 73.39 

14 335 AICc 136.28 79.14 80.14 93.58 73.46 

  ωi 2.09×10-14 0.05 0.03 3.92×10-5 0.91 

Planorbis Zone 

  AIC 217.61 91.84 115.83 152.41 93.70 

19 397 AICc 217.61 91.85 115.86 152.44 93.76 

  ωi 3.5×10-28 0.72 4.40×10-6 5.02×10-14 0.27 

Liasicus Zone 

  AIC 72.94 46.67 60.36 74.57 50.67 

11 180 AICc 72.94 46.70 60.43 74.64 50.80 

  ωi 1.77×10-6 0.88 9.24×10-4 7.59×10-7 0.11 

 
Mudstone 

    RAD models 

 T n AIC Broken stick Geometric Log normal Zipf Mandelbrot 

Parameters (K)    0 1 2 2 3 

Westbury 

Formation 

  AIC 125.61 68.39 81.59 108.68 71.94 

14 351 AICc 125.61 68.40 81.62 108.72 72.01 

  ωi 3.23×10-13 0.85 1.15×10-3 1.51×10-9 0.14 

   AIC 9.99 10.91 12.90 12.38 14.38 

Langport Member 3 10 AICc 9.99 11.41 14.62 14.09 18.38 

   ωi 0.57 0.28 0.05 0.07 8.68×10-3 

Pre-Planorbis Zone 

  AIC 60.97 56.24 67.76 90.03 60.17 

10 197 AICc 60.97 56.26 67.82 90.09 60.30 

  ωi 0.07 0.81 2.51×10-3 3.66×10-8 0.10 

Planorbis Zone 

  AIC 74.34 61.54 58.38 63.35 61.14 

15 143 AICc 74.34 61.57 58.47 63.44 61.31 

  ωi 2.33×10-4 0.13 0.65 0.05 0.15 

Liasicus Zone 

  AIC 84.80 80.18 84.27 98.74 83.34 

20 200 AICc 84.80 80.20 84.33 98.80 83.46 

  ωi 0.07 0.70 0.08 6.42×10-5 0.13 
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Figure 4.8 Average values (±95% confidence intervals) of species dominance index 

estimated as sampling size increased during the Tr/J section in  t Audrie’s Bay. 

Significant differences were assumed if 95% confidence intervals did not overlap. 
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The Langport Member shows the lowest abundance and just 3 species were recorded: P. 

langportensis has an abundance of 80%, whilst M. minimus and L. hisingeri, both have 

abundances of 10% (Fig. 4.7B, Table 4.1, Appendix 4.1). Despite the low species 

number, the abundance distribution of this assemblage fits a Broken Stick model, which 

predicts an even rank abundance distribution (Fig. 4.7B, Table 4.1, Appendix 4.3).  

The Pre-Planorbis Zone records 14 species, although the rank abundance by species 

does not exceed 30%, and the abundance distribution drops rapidly. D. tomesi was the 

most abundant species at 30%, followed by Modiolus sp. and L. hisingeri, at 19% and 

15%, respectively. Seven species record abundances between 10 and 1%, whilst 4 

species occurred at< 1%. Despite the high number of specimens found in the Pre-

Planorbis Zone, the assemblage shows a high dominance, which fits a Geometric model 

(Fig. 4.7B, Table 4.1, Appendix 4.3). 

The Planorbis Zone records a total of 15 species, the relative abundances of which are 

more equally distributed, although the rank abundance distribution tends to behave as a 

Log Normal model (Table 4.1). In this assemblage the ammonite Caloceras is the 

dominant species (37.07%), whilst L. hisingeri and P. langportensis both have relative 

abundance of 14%. Eight species show a relative abundance of between 9 and 1% 

(Appendix 4.3). I. psilonoti and P. sampsoni record proportions between 1-2% and four 

species have unique occurrences with abundances of <1% (Fig. 4.7B, Table 4.1, 

Appendix 4.3).  

The 200 collected specimens from the Liasicus Zone can be grouped into 19 species. 

The rank abundance distribution tends to decay sharply, with just 3 species recording 

high dominance, although with a high difference between them (D. tomesi with a 

relative abundance of 21.5%, Modiolus spp. 6.5% and C. regularis with 14.55 %). The 
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proportional abundance of the remaining species drops an order of magnitude to 9-1%, 

but includes 63% of the species in the assemblage (10 spp.). The remaining six species 

in the assemblage show an abundance of <1%. As for the Pre-Planorbis Zone, the 

geometric model was the best fit for this assemblage (Fig. 4.7B, Table 4.1, and 

Appendix 4.3). 

Figure 4.8B shows the species dominance index calculated by increasing the sample 

size and indicates that the dominance is relative low (< 50%). The Langport Member 

records the highest dominance through the section at 0.8 ± 0.07, whilst lower values 

were observed within the Liasicus Zone (0.21± 0.01). The Planorbis Zone and the 

Westbury Formation did not show significant differences in dominance (0.35 ± 0.01 and 

0.37 ± 0.02, respectively) although they both recorded higher values than the Pre-

Planorbis Zone (0.28 ± 0.02). 

4.4 Composition  

4.4.1 Limestone samples 

Non-metric multidimensional scaling clearly separated the limestone samples 

generating three groups with similar fauna (1) Westbury Formation and the Cotham 

Member; (2) The Langport Member and the Pre-Planorbis Zone and (3) those from the 

Planorbis and Liasicus zones (Fig 4.9A). One-Way ANOSIM indicated significant and 

gradual differences in species composition between stratigraphic units. The Westbury 

Formation and the Cotham assemblages are more similar between then, however its 

differs from The Langport Member and the Pre-Planorbis Zone, which are in the same 

time, more similar between then, but differs from the Planorbis and Liasicus zones (R= 

0.14; p = 0.0032).  
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SIMPER analysis shows that the dissimilarity is higher between samples from the 

Westbury Formation, the Cotham Member and the Langport Member (85.97%) than 

between samples from higher levels in the Blue Lias Formation (Appendix 4.5). Fifteen 

species were recorded in the Westbury Formation, of these 5 continued into the Cotham 

Member, recording a dissimilarity of 87.3% between both assemblages. 3 species 

present become extinct globally, whilst the remainder only became extinct regionally. L. 

hisingeri, Modiolus spp. C. valoniensis and C. regularis pass through into the Blue Lias 

Formation, although L. hisingeri disappears through the Cotham Member and C. 

valoniensis disappears from Langport Member assemblages (Appendix 4.6). 

 

Figure 4.9 Non-metric multidimensional scaling (NMDS) plot resulting from the 

ordination analysis (Chord distance) of the marine invertebrate fauna from the St 

Audrie’s Bay section, using abundance data transformed by taking the fourth root of 

[×]. 
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The Cotham Member records 6 species, from which only 3 range through to the base of 

the Blue Lias Formation (Appendix 4.6). Assemblages between the Cotham and the 

Langport members record a dissimilarity of 84.6%. R. contorta, I. concentricum, P. 

rhaetica and C. valoniensis disappear at this unit, although only R. contorta becomes 

globally extinct, whilst I. concentricum and P. rhaetica become regionally extinct. 

The Langport Member records 9 species, seven of which appear in this assemblage, two 

of them recorded as single specimens (G. hettangiensis and Myoconcha sp.), whilst the 

remaining 5 range through to the Blue Lias Formation, although M. hillanus disappears 

in the Pre-Planorbis Zone. The Langport Member records a dissimilarity of 81% when 

compared with the Pre-Planorbis assemblage (Appendices 4.5 and 4.6). 

The Pre-Planorbis Zone records a total of 14 species, six of which appear for the first 

time at this zone. O. inequivalvis, Mytilus spp. and Parellodon sp. are exclusive to this 

zone, whilst D. tomesi, I. psilonoti and M. minimus persist to higher levels in the Blue 

Lias Formation (Appendix 4.6). The Pre-Planorbis Zone and the Planorbis Zone records 

a dissimilarity of 50%. The Planorbis assemblage recorded a total of 20 species, nine 

appearing at this level, although seven are recorded as single specimens and hence have 

a very low abundance (< 1%). Two species from this assemblage persist upwards into 

the Liasicus Zone, although the ranges of three species terminate at this level (M. 

minimus, P. langportensis and Pholadomya sp.).Through the Liasicus Zone, the number 

of the species decreases by 11, whilst sharing a similarity of more than 50% with the 

Planorbis Zone assemblages. Psilophyllites hagenowi is unique to the Liasicus Zones 

and only one specimen was recorded (Appendix 4.6). 

The Whittaker and Routledge beta index is used to estimate the composition turnover 

between pairwise samples. This indicates that the greatest compositional changes 
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happened between the Cotham and the Langport members, with two high peaks at 11.7 

and 13.1 m above the base of the recorded section (Fig. 4.10A). In contrast to 

ANOSIM, another significant peak is observed at 54.65 m above the base of the section, 

at the end of the Liasicus Zone (Appendix 4.2). 

4.4.2 Mudstone samples 

Non-metric multidimensional scaling separates the mudstone samples from the 

Westbury Formation from those of the Langport Member and the Blue Lias Formation 

(Fig 4.9B). Conversely, One-Way ANOSIM indicates however, that there are no 

significant differences in composition between samples from the Westbury and 

Langport Member, and from samples taken in the Blue Lias Formation. However, there 

are significant differences in the species composition between samples from the Blue 

Lias Formation and from the Westbury Formation and the Langport Member. SIMPER 

analysis shows that the similarity is higher between samples from the Westbury 

Formation and the Langport Member (85.97%) than between those of higher levels in 

the Blue Lias Formation (Appendix 4.7). 

Ninety-two percent of the species (13 species) disappear between the Westbury 

Formation and the Langport Member (no species were recorded for the Cotham 

Member). Modiolus sp. is the unique taxon that ranges through to the Blue Lias 

Formation. Eight per cent of the species record global extinction, whilst Protocardia 

rhaetica, Promatilda rhaetica and 3 species of the genus Isocyprina recorded regional 

extinction (undergone extinction on Langport Member).  
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Figure 4.10 Beta diversity (ß) estimated by Whittaker and Routledge indices. These 

indices reflect the temporal difference in species composition between samples. The 

percentiles represent the 95% confidence intervals calculated by bootstrap procedure 

(number of iterations = 10000).LF: Lilstock Formation, CM: Cotham Member, LM: 

Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. 
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The Langport Member to the Pre-Planorbis Zone shares a dissimilarity of 85.54%. Five 

species range through the Langport Member to Pre-Planorbis Zone; C. regularis, L. 

hisingeri, M. minimus and P. langportiensis appears for first time in the Langport 

Member, whilst Modiolus sp. remained since the Westbury Formation assemblage 

(Appendix 4.8). Between the Pre-Planorbis Zone and the Planorbis Zone, nine species 

appear; of this, six species records a single occurrence, two species record its last 

appearance and eight species went through the Liasicus Zone (see Appendices 4.7 and 

4.8). Through the Liasicus zone, the number of species increases slightly (14 species). 

40% of this species are unique records, whilst nine species terminate at this level 

(Appendices 4.7 and 4.8). 

4.4.3 Mudstone and Limestone comparison 

Mudstone and limestone samples record a significant difference in species composition 

(Fig. 6.9C, R = 0.08, p = 0.0092, Dissimilarity = 79.64%). SIMPER analysis shows that 

fourteen taxa only appear in the mudstone samples, while thirteen are exclusively 

recorded in limestone samples (Appendix 4.9). 

4.5 Ecospace 

The marine fauna sampled from the limestone and mudstone lithologies through the 

Tr/J boundary at  t Audrie’s Bay, used fourteen modes of life, which corresponds to  % 

of the total theoretical ecospace (Fig. 4.11). As for the Pinhay Bay section (see Chapter 

5), samples of different lithologies were grouped by stratigraphic unit with the aim of 

observing potential interaction networks (e.g. predator-prey relationships) and the 

ecological complexity of each assemblage. 
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The results demonstrate that ecological complexity increases through the study section 

at  t.  t Audrie’s Bay (Fig. 4.11).  ix modes of life were recorded in the Westbury 

Formation and occupied ecospace decreases by 68% into the Cotham Member of the 

Lilstock Formation. Subsequently, occupied ecospace expands rapidly through the 

Langport Member (4 modes of life), whilst in the Pre-Planorbis Zone, the number of 

modes of life doubles to 8. In the Planorbis Zone, the number of modes of life occupied 

apparently reaches a maximum of 10, which is maintained in the Liasicus Zone.  

The Westbury Formation assemblage uses 6 modes of life (Fig. 4.11, Appendices 4.10 

and 4.11), although no pelagic forms were found. 45% of the modes of life used were 

surface types. Six of the bivalve species use a facultative-motile, attached suspension 

feeder mode of life; two gastropod species show slow moving grazing and predatory 

forms and one species, L. hisingeri, was a sessile-suspension feeder (Fig. 4.10, 

Appendices 4.8 and 4.9). 20% of the species (all bivalves) were semi-infaunal, 

facultatively-attached suspension feeders and 35% (also bivalves) used a shallow 

infaunal, facultatively motile, unattached suspension feeder mode of life. The 

assemblage is ecologically simple, with organisms restricted to a benthic existence, with 

a very short trophic network and with small predators and suspension feeder’s forms 

with limited locomotion (45% of the species) (Fig. 4.12).   

The Cotham Member assemblages occupied 3 modes of life; C. valoniensis and R. 

contorta were surficial, facultatively-motile, attached, suspension feeders. Modiolus sp. 

used a semi-infaunal, facultative motile attached, suspension feeder mode. I. 

concentricum, P. rhaetica and C. regularis occupied the shallow-infaunal, facultatively-

motile, unattached, suspension feeders niche. From the Westbury Formation to the 

Cotham Member the relative abundance of surface dwelling modes of life decreases by 
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77%, whilst semi- and shallow infaunal modes decrease by 57% (Fig. 4.11, Appendices 

4.10 and 4.11). The only feeding mechanisms recorded were the suspension feeders and 

motility was restrictive to facultatively motile or non-moving species (Fig.4.11, 

Appendix 4.10).   

Although the Langport Member records the same modes of life as the previous 

assemblages, the species composition has changed completely. Ten species are present 

in this assemblage and one ‘new’ mode of life is added: surficial, non-moving 

suspension feeders, represented by L. hisingeri and P. duplicata (14% relative 

abundance) (Fig. 4.11). Associated semi-infaunal and shallow infaunal modes were 

occupied by three species (all bivalves) (Fig. 4.11, Appendices 4.10 and 4.11). Through 

this unit the number of species increases by 40%, with the number of species per mode 

of life (i.e. the packing) also increasing. The Langport Member assemblage is also, 

however, relatively simple and dominated by only benthic filter bivalves with restricted 

movement (Fig. 4.12, Appendix 4.12).  
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Figure 4.11 Theoretical ecospace occupations of the marine invertebrate fauna through 

the Tr/J interval in  t Audrie’s Bay. 
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Figure 4.12 Mean proportional abundance of tiering, motility and feeding mechanisms 

based on number of species recorded from the Westbury Formation to the Liasicus Zone 

of the Blue Lias Formation.  
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The Pre-Planorbis Zone records a total of 16 species, occupying 7 modes of life. Pelagic 

predators colonised new areas of the ecospace, as represented by P. erugatum. Erect 

forms appear for the first time in the assemblage with I. psilonoti and surficial slow 

moving grazing forms reappear, although now occupied by D. tomesi (Fig. 4.11, 

Appendices 4.10 and 4.11). The bivalves represent 37% of the surficial faunal, 

occupying two ecological categories: epifaunal non-moving suspension feeders 

represented by P. duplicata and L. hisingeri and epifaunal facultatively-motile, attached 

suspension feeders, represented by C. valoniensis, P. giganteum, Mytilus sp. and O. 

inequivalvis. The semi-infaunal, facultative attached and shallow infaunal, facultative 

unattached, suspension feeder categories continue to be used exclusively by bivalves. 

However, the semi-infaunal component increased by 2% (from below), now represented 

by 5 species, whilst the relative abundance of the shallow infaunal element decreases by 

55% from the Langport Member (Fig. 4.11, Appendices 4.10 and 4.11). The Pre-

Planorbis Zone assemblage records both a high richness and a high ecological 

complexity. The species present enhance the trophic spectrum and with them all the tier 

categories now being used (from pelagic to shallow infaunal), which increase the 

functionality of the ecosystem. 

Ten species were recorded in the Planorbis Zone assemblage, with the pelagic fast 

moving predator modes of life increasing from the previous assemblage by 50% - three 

species of ammonites occupying this mode of life (Fig. 4.11 and 4.12, Appendices 4.11 

and 4.12). The erect category is used by the crinoid I. psilonoti, although with an 

abundance decreasing by 4% from the Pre-Planorbis Zone. Surficial forms also decrease 

by 4%, despite being the group with most species (10). Four modes of life are 

represented by this category: surficial slow moving P. undulata (surface deposit); D. 

tomesi (grazing); surficial, facultatively motile attached represented by 6 bivalve species 
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(Appendix 4.11) and surficial, non-moving stationary forms represented by L. hisingeri 

and P. duplicata. The semi-infaunal content increased by 2%, with the appearance of 

two new modes of life: slow-mining by R. bronni and P. navis, and the stationary 

suspension feeder, Pinna spp. The relative abundance of the shallow infaunal modes of 

life remained, nevertheless, constant when compared to earlier assemblages. The 

Planorbis Zone assemblage has a high complexity, redundancy and functional diversity. 

This indicates large trophic chains and a high motility which increases the potential for 

interactions between species and increases the number of species with the same 

ecological role, thereby conferring more ecological stability. 

Twenty-two species and nine modes of life comprise the Liasicus Zone assemblages. 

Ecospace through this unit shows the same structure and species composition as that 

observed for the Planorbis Zone (Fig. 4.11 and 4.12, Appendices 4.10 and 4.11). Only 

the semi-infaunal categories, however, recorded large compositional changes. The semi-

infaunal non-motile attached suspension feeder mode of life is no longer recorded in 

this assemblage. 

4.6 Body size 

Figure 4.13 shows mean body size of bivalves and the rate of change of body size 

through the study interval. Body size tends to increase slightly from the base of the 

section (9.79 ± 0.51mm) to 14 m above the base into the Langport Member (17.11 ± 

0.75 mm) (Sample: LM4, Appendix 4.2). From this level average size tends to decrease 

smoothly to reach an inflexion point at 40.9 m above the base, where 6.17 ± 0.71 mm 

was recorded (sample: LZ3). From 40.2 m to 61 m above the base, the body size 

increases to 16.17 ± 1.04 mm (Appendix 4.13). 
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Throughout the Westbury Formation, an average body size of 12.14 ± 1.35 mm (min.: 

8.62; max.: 16.41) was recorded. Throughout this sequence, 26% of the measurements 

corresponded to genera as Isocyprina (8.09 ± 0.39 mm); 25% P. alpina (14.92 ± 0.82 

mm); 14.17% C. valoniensis; 13.92% Liostrea sp.(11.44 ± 0.8 mm) and 9.11% R. 

contorta (7.65 ± 0.50 mm), whilst taxa, such as Modiolus sp. Cassianella, Cardinia, 

Plagiostoma, P. rhaetica and P. elongatus, contributed <3% to the measurements 

(Appendix 4.13). 

 

Figure 4.13 The average body size (●) and rate of change (●) of the bivalve 

assemblage sampled through the Triassic-Jurassic boundary at  t Audrie’s Bay section. 

The red line is the LOESS regression through the data point estimated with an alpha 0.3. 

LF: Lilstock Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-

Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, AZ: Angulata zone. 
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Average body size throughout the Westbury Formation tends to increase although with 

fluctuation (Appendix 4.13). Three outlying values are observed throughout this unit; 

the first two are observed at 2.9 m with an average value of 16.85 mm and the third at 9 

m with 16.41 mm (samples WF2 and WF5, Appendix 4.2). In both cases, three species 

were responsible for this size increase; C. valoniensis (17.34 ± 0.38 mm; min.: 

4.97,max.: 40.81), P. alpina (14.92 ± 0.82 mm; min.: 4.24,max.: 50.20) and the species 

of Plagiostoma (21.16 ± 1.35 mm; min.: 11.7,max.: 30.72). The third outlier was 

recorded at 10.2 m (sample: WF6) above the base of the section where a significant 

decrease in body size was recorded. At this point the assemblage was mainly made up 

of taxa of small sizes, such as Cassianella sp. (3.38 ± 0.5 mm), Modiolus spp. (8.83 ± 

0.91 mm), R. contorta (7.65 ±0.5 mm) and M. cloacinus (8.34 ±1.27 mm) (Appendix 

6.13). 

Throughout the Cotham and Langport Member, an average body size of 13.09 ±1.67 

mm was recorded. At the base of the Cotham Member (Sample: CM1), the body size 

decreases significantly, recording a mean value of 7.69 ± 0.37 mm. At this level the 

assemblage comprises I. concentricum (5.92 ± 0.8 mm), P. rhaetica (8.69 ±1.72 mm), 

C. regularis (14.58 mm; n = 1) and Modiolus spp. (4.09 mm; n = 1). From 12 m into the 

Cotham Member (Sample: CM3) to the last sample of the Langport Member (Sample: 

LM3), the body size increases rapidly. At 12 m, 54% of the species is made up of C. 

valoniensis with a mean size of 19.27 ± 3.87 mm followed by Modiolus spp. (5.81 ± 

0.35 mm) and one specimen of R. contorta (8.07 mm). In the Langport Member, new 

species with larger sizes are incorporated into the assemblage, for example, 

Pholadomya sp. (18.07 ± 1.82 mm) and P. langportensis. Also, some taxa experience an 

increase of body size throughout the sequence, compared to previous assemblages, such 
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as: C. regularis (14.96 ± 1.62 mm), Liostrea sp. (19.07 ± 0.76 mm) and Mytilus sp. 

(17.01± 1.18 mm). 

Throughout the Pre-Planorbis beds, an average body size of 13.65 ± 0.11 mm was 

recorded, without any fluctuations. Some species during this interval increased in body 

size significantly; this phenomenon is well represented in taxa, such as P. giganteum, 

Pholadomya sp. C. regularis, Liostrea sp. Oxytoma sp. and P. langportensis (Appendix 

6.13). On the other hand, more small size taxa are incorporated into the assemblage, 

such as M. minimus (7.31 ± 0.34 mm), Mytilus sp. (20.70± 0.38 mm), Gervillella sp. 

(18.87 ± 1.09 mm), R. doris (3.83 mm) and Myoconcha sp. (10.34 ±1.09 mm). The 

assemblage variance is increased by both an increase in body size of the previous fauna 

and appearance of new taxa into the assemblage. 

Throughout the Planorbis Zone, an average body size of 15.68 ± 4.86 mm was recorded 

for the bivalve assemblage. Pholadomya sp. Chlamys sp. Modiolus spp. and P. 

giganteum display a steady increase in body size (Appendix 4.13). Small-sized species, 

such as P. navis (2.45 mm) and M. ventricosus (4.99 mm), are incorporated into the 

assemblage. Some large-sizes species, such as P. langportiensis, Liostrea sp. and M. 

minimus, are highly represented in the assemblage (>50% of total specimens). They do 

not show a significant change in body size throughout the section, but introduce more 

variance into the assemblage, which therefore shows a relatively high body size value. 

From the base of the Liasicus Zone to 61 m above the base of the section, the body size 

tends to decrease slightly (12.66 ± 2.03 mm). This trend was mainly driven by species, 

such as Liostrea sp. (14.82 ± 078 mm), C. valoniensis (12.56 ± 1.86 mm), C. regularis 

(14.64 ± 1.52 mm) and Pholadomya sp. (11.67 ±3.99 mm), which represent >50% of 

the fauna. Additionally, more taxa are incorporated in the Liasicus Zone; however, they 
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are of relative small size: P. eliptica, M. sodburiensis, Camponectes sp. and Myoconcha 

sp. By contrast, few species tend to increase in body size throughout the sequence: P. 

giganteum (41.83 ± 4.88 mm), Modiolus spp. (8.28 ± 1.60 mm) and M. ventricosus 

(6.75 ± 0.90 mm) (Appendix 4.13). Finally, there is a not significant change in the rate 

of body size throughout the study section. A linear model fitted to the rate of change 

indicates an absence of any trend (F1, 27: 0.0005, P >0.05) (Fig. 4.13).  

Figure 4.14 shows the size-frequency distribution estimated from 969 bivalve 

specimens from the Tr/J  t Audrie’s Bay section. Throughout the St Audrie’s Bay 

section the assemblages do not display significant changes in body size (Fig. 4.14). 

However, the variances tend to increase throughout the section (Fig. 4.14A, see class 

intervals), which is associated with the incorporation of new species in each 

stratigraphic unit. 

The changes in the minimum and maximum body size of Cardinia, Modiolus, Chlamys, 

Plagiostoma, Liostrea and Mytilus throughout the Tr/J section in  t Audrie’s Bay are 

visualised using the Jablonski target plot (Fig. 4.15), which records the change in 

percentages between minimum and maximum size and is useful for determining 

whether the change is simply due to a change in variance (Jablonski, 1996). None of the 

genera seem to decrease in body size during the extinction event (WF-CM), except for 

Chlamys, which does decrease in body size from the Cotham Member to the Pre-

Planorbis Zone and Modiolus, which tends to decrease in body size from the Planorbis 

Zone to Liasicus Zone (Fig. 4.15). In the remaining cases, the genera show three trends: 

(1) an increase in body size (to use the right upper corner); (2) an increase in variance 

(decrease of the minimum size, upper left corner) and (3) a decrease in variance (lower 
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right quadrant), which means a decrease of the maximum size without a change in 

minimum size (Table 4.2) (Appendix 4.14). 

 

Figure 4.14 Frequency distribution of log geometric mean of bivalve size sampled 

through Triassic-Jurassic boundary at  t Audrie’s Bay section. (A) Shows the 

distribution frequency of raw data by each lithostratigraphy (B) Showed the distribution 

frequency of resampled data by bootstrapping procedure (10,000 iterations with 

replacement). The red lines indicate the percentiles of 2.5% and 97.5% around the 

mean. 
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Figure 4.15 Change in size in four bivalve genera through the St Audrie’s Bay section. 

Top left and bottom right indicate variance in size whilst the top right and lower left 

represent Cope’s Rule and size decrease, respectively. (After Jablons i 199 ). The 

legend indicates the pairwise combinations between stratigraphical units. WF: Westbury 

Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, 

PZ: Planorbis Zone, LZ: Liasicus Zone. 
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Table 5.2 Body size parameters of four bivalve’s genera with high occurrences trough 

the Tr/J interval in  t Audrie’s Bay. LM: The Langport Member, PP: The Pre-Planorbis 

Zone, PZ: The Planorbis Zone, LZ: The Liasicus Zone, AZ: Angulata Zone. (*): no data 

point was recorded. 

 WF CM LM PPZ PZ LZ 

 Cardinia 

Mean 11.32 **** 14.96 18.24 39.37 17.84 

Std. error 1.79 **** 1.67 1.15 2.82 1.61 

n 4 **** 9 27 25 20 

Min. size 7.87 **** 9.06 8.7 4.11 11.72 

Max. size 15.98 **** 24.49 39.81 60.9 43 

       

 Chlamys 

Mean 17.35 19.27 **** 10.82 18.19 12.57 

Std. error 1.05 3.88 **** 1.49 2.82 1.87 

n 55 6 **** 6 5 2 

Min. size 4.98 5.77 **** 5.45 8.74 10.7 

Max. size 40.48 31.16 **** 14.85 26.04 14.43 

       

 Liostrea 

Mean 17.20 **** 19.07 14.17 15.18 14.98 

Std. error 1.58 **** 0.78 0.53 1.01 0.76 

n 16 **** 30 77 51 17 

Min. size 8.92 **** 11.69 5.02 4.23 8.97 

Max. size 31.38 **** 26.58 29.54 37.15 20.2 

       

 Modiolus 

Mean 8.76 4.97 8.61 9.05 8.09 6.91 

Std. error 0.64 0.35 0.82 0.58 0.61 0.70 

n 44 5 26 59 33 32 

Min. size 2.79 4.1 3.65 2.95 3.17 1.62 

Max. size 26.36 5.82 18.48 28.29 17.56 15.96 

       

 Plagiostoma 

Mean 21.17 **** 22.33 27.29 26.81 45.03 

Std. error 2.20 **** 3.17 5.52 3.73 5.72 

n 8 **** 4 5 13 10 

Min. size 11.74 **** 13.92 15.6 8.19 25.72 

Max. size 30.73 **** 29.32 44.69 52.46 73.82 

       

 Mytilus 

Mean 9.29 **** 17.11 20.71 **** **** 

Std. error 1.00 **** 1.18 0.38 **** **** 

n 9.00 **** 5.00 3.00 **** **** 

Min. size 6.18 **** 14.57 20.20 **** **** 

Max. size 14.80 **** 20.54 21.45 **** **** 
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The frequency distribution of the most common genera throughout the study interval 

was plotted to observe the trajectory of the body size (Fig. 4.16). In these histograms, 

Modiolus shows a complete trajectory of body size throughout the entire study section 

in  t Audrie’s Bay. The body size of this genus fluctuates slightly, but there is no 

significant difference throughout the Tr/J intervals (ANOVA one-way: F(5,193)= 1.95; 

P<0.05). The same trend is observed in Cardinia (F(4,80)= 0.52; p<0.05) and Chlamys 

(F(4,69)= 1.37; p<0.05). Conversely, Liostrea (F(4,186)= 4.82; p<0.05) shows a significant 

increase in body size from the Westbury Formation to the Langport Member; later the 

mean body size tends to decrease throughout the Blue Lias Formation. The body size of 

Plagiostoma remains constant from the Westbury Formation to the Planorbis Zone, 

however, the body size increases significantly throughout the Liasicus Zone (F(4,39) = 

4.70; p<0.05), whilst Mytilus shows a steady increase in body size from the Westbury 

Formation to the Pre-Planorbis Zone (F(2,16): 26.41; P = 0.001) (Table 4.2). 

Finally, the mean body size of all bivalve assemblages through the study section was 

significantly higher than the null model values, which presumes a random distribution 

of body sizes throughout the study interval. This seems to indicate that the bivalves as a 

whole show a directional trend towards larger body size throughout the section (t-value 

= 7.25, d.f. = 29; p<0.001) (Fig. 4.17, Appendix 4.15). 
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Figure 4.16 Frequency distribution of geometric mean of the four most common 

bivalve genera found through the study section at  t Audrie’s Bay. The red line 

indicates the average values. Average values, standard error (±) and sample size (n) are 

indicates upper corner of each histogram.   

 

4.7 Trace Fossils 

The number of ichnotaxa increases from the Langport Member to the Liasicus Zone 

(Fig. 5.18). Throughout the study section, five ichnogenera were identified: Chondrites 

with a total occurrence of 80%; Palaeophycus (60%); Thalassionides (20%); Planolites 

(2%) and Skolithos (1%). 
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Figure 4.17 The average size of bivalves sampled through the study interval at St 

Audrie’s Bay (Red Line: raw data ± percentile  .5 % and 9 .5 %). Null model (blue line 

± percentile 2.5 % and 97.5 %) was calculated by row-permutation (number of 

iterations = 10000) of the geometric mean of each individual by specie through 36 

samples (see Appendix 4.11).LF: Lilstock Formation, CM: Cotham Member, LM: 

Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, 

AZ: Angulata zone. 

During the Langport Member, four ichnogenera were identified; Chondrites and 

Palaeophycus at 17.40 m above the base of the section (Sample: PPZ2), followed by 

Thalassinoides at 18.40 m (Sample: PPZ3) and Skolithos at 19.6 m (sample: PPZ4). 

Throughout the Pre-Planorbis and Planorbis Zones three ichnogenera are presented; 

Chondrites, which is present throughout all the sequence, except at 19.6 m above the 

section; Palaeophycus, except at 23.6 m (samples: PZ2) and Thalassinoides, which is 

recorded from 23.6 m (sample: PZ3) to 25 m above the base of the section (Sample: 

PZ4). From the base of the Liasicus Zone to 58 m above the base of the section, four 

ichnogenera are recorded; Chondrites range throughout all the sequence; Palaeophycus, 
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with occurrences at 35.5 m and 51.5 m (samples LZ2 and LZ5). Finally, Thalassinoides 

and Planolites are recorded at 46 m and 58 m above the base of the section respectively 

(Sample LZ4 and LZ6) (Fig. 4.1). 

Figure 4.18 shows the trajectory of three ichnological parameters through the study 

section in St Audrie’s Bay. The mean cover percentage of each ichnogenera (see 

Chapter 2 methodology) increases rapidly from the Langport Member to the Planorbis 

Zone reaching the maximum value at 25.9 m (sample: PZ5). From this level, the cover 

decreases significantly to reach 50% in the top of the Liasicus Zone (Fig. 4.17, 

Appendix 4.2). The trajectory of the burrow diameter throughout the Tr/J section shows 

three stages. The first stage is a significant and rapid increase of the burrow diameter , 

which reaches its maximum size of 10.49 mm at 23.7 m above the base of the section 

(sample: PZ3). The second stage, spanning from 23.7 to 35.5 m above the section, 

comprises a decrease in burrow diameter, and finally, the third stage constitutes an 

increase in burrow diameter from5.51 mm at 40.9 m to 11.21 mm at 58 m (samples: 

LZ3 to LZ6) (Fig. 4.17, Appendix 4.2). The ichnofabric index remains relatively 

constant throughout the Westbury Formation and drops throughout the Cotham 

Member, however, during the Langport Member, the index increases significantly to 

reach its maximum value during the Planorbis Zone. Later the Ichnofabric Index drops 

slightly to the top of the Liasicus Zone (Fig. 4.17, Appendix 4.2). 



154 
 

 
Figure 4.18 Response of bioturbation estimates through three methodologies along the 

Tr/J boundary at  t Audrie’s Bay section. LF: Lilstock Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone, AZ: Angulata zone. 
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4.8 Summary 

The  t Audrie’s Bay shows a complete record (preservation) of the marine fauna 

through the Tr/ J boundary. In this section, the samples from mudstone and limestone, 

records a significant loss of the species number through the Cotham Member 

(>90%).The richness estimated from limestone samples reaches a maximum peak 

during the Planorbis Zone and later the richness decreases slightly, whilst the taxon 

richness obtained from mudstone samples, like limestone samples reach the maximum 

species richness in the Planorbis Zone, the richness drops slightly and tend to increase 

top of the section. 

Kurtosis (dominance values) tends to decrease from the Westbury Formation to the 

Liasicus Zone. The dominance index indicates that the Cotham and the Langport 

members are the assemblages with dominant species, compared to other stratigraphical 

units. In contrary, the assemblages associate mudstone samples shows more evenness. 

The rank abundance curves, mainly fitted lognormal distributions, however during the 

extinction event (the Cotham and Langport members) the distribution of the rank 

abundance in these assemblages tend to fit to the Geometric and Broken Stick models. 

In term of composition, largest change occurs during the Cotham and Langport 

members. Whilst during the Blue Lias Formation and the Westbury Formation the 

assemblage remains in relative stasis.    

Ecospace tends to expand from the Westbury Formation to the Liasicus Zone occupying 

14 modes of life at the top of the section. However, the ecospace decreases to 3 modes 

of life during the Cotham Member. During this sequence the proportional abundance of 

semi infaunal modes of life decreases >50% compare with other stratigraphic units.   
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The body size of the bivalve assemblage seems increases through the study section. The 

richness of ichnogenera, abundance and burrow diameter tend to increase through the 

Blue Lias Formation, however. These variables reach a maximum peak during the 

Planorbis Zone. After this level, the ichno-parameters tend to decreases gradually, 

except by mean burrow diameter, which increase staidly to top of the section. 
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Chapter 5 Pinhay Bay section  

5.1 Geological setting 

The Tr/J section studied at Pinhay Bay ranges from the end of the Rhaetian to the Early 

Jurassic (Hettangian) (see Chapter 2 for locality details). The Rhaetian Stage in Pinhay 

is represented by the Langport Member of the Lilstock Formation formerly known as 

the “White Lias” (Swift 1999; Wignall 2001).  

5.1.1 The Langport Member  

This unit is made up mainly by micritic limestone with a series of complex sedimentary 

features, which reaches 6.90 m thickness in the Pinhay Bay section (Fig. 5.1). The first 

metre near to the base is made up of slumped limestone separated by porcellanous 

hardground surfaces (Beds 1a to 1b). From one to three m above the base of the section 

(Beds 2 to 3), the sequence consists of modular limestone with marl partings, where a 

channel system is filled in with slumps and dewatering structures (Fig. 5.1). From 3 to 

4.20 m above the base of the section (Beds 4 - 8) the sequence is made up of laminated 

limestone, parallel bedded remobilised limestone with clasts that include shells and 

bored pebbles.  

From 4.8 to 5.80 m above the base, the section consists of a slumped limestone bed 

(Bed 9) (Fig. 5.1), with abundant clasts up to boulder size; with a high clast 

concentration at the base of the bed. From 6 m above the base to the top of the Langport 

Member (Beds 10 to 11), the sequence comprises finely, wavy laminated limestone with 

marl partings. The topmost bed (Bed 12) consists of an intra-formational conglomerate, 

with Diplocraterion burrows. 
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Figure 5.1 Lithostratigraphic log of the 

Lilstock Formation and basal Blue Lias 

Formation exposed at Pinhay Bay. 

Occurrences (limestone● and mudstone 

●) and ranges (black lines) of taxa 

recorded from 30 samples taken from the 

Pinhay Bay section. 
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The Langport Member has been interpreted as representing an abnormal system with 

varying salinity, deposited in a shallow, warm, lagoonal marine environment (Hallam 

1960  ; Wignall 2001; Hesselbo et al. 2004). In the same time, slumped horizons 

observed at 6 m above the sections is attributed to earthquake activity (Gallois 2007). 

The fauna in this unit includes bivalves, gastropods, corals, echinoderms, rare 

conodonts and ostracods (Swift 1999). Ammonites are not present. However, as the 

system apparently records variable salinities, the presence of fossils of stenohaline 

organisms could suggest that their occurrence could be the result of transport or re-

worked, rather than salinity control (Hesselbo et al. 2004). 

4.1.2 The Blue Lias Formation 

The base of the Blue Lias Formation lies close to the base of the Jurassic System in 

Britain (Page 2010, p.39; see Introduction: Stratigraphical framework). The Blue Lias 

Formation in Pinhay Bay represents a relatively condensed sequence (compared to St 

Audrie’s Bay), around 18 m thick from the base of Lias Group to the top of the 

Angulata Zone. The detailed stratigraphy of the Blue Lias Formation of the Lyme Regis 

area was first described by Lang (1924) who allocated the lower part of the sequence to 

his beds H1-H91 (The Pre-Planorbis Zone to lower Angulata Zone), with Beds 1 to 18 

representing the middle and upper Angulata Zone above. Lang’s original zonation of the 

sequence has been revised most recently by Page (2010), whose scheme is used here. 

The Blue Lias Formation consists by sedimentary rhythms of homogeneous and 

inhomogeneous limestone beds and marls to shales (Moghadam and Paul 2000; Wignall 

and Bond 2008). Limestone beds are mostly impure micrite mud- to wackestones and 

are 10 to 20 cm thick with extremes up to 50 cm. The limestone facies consists of fine-

grained, predominantly clay grade sediments containing varying proportions of 

siliciclastic clay minerals and micrite (Paul et al. 2008). Limestones are interspersed by 
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siliciclastic marl and shale intervals, which are a few centimetres up to several meters in 

thickness. These beds mainly consist of pale-grey marls, dark-grey marls and organic-

rich laminated black-shales (Paul et al. 2008). Siliciclastic sediments consist of (land-

derived) clay minerals and marine and terrestrial organic matter (Weedon 1986). 

Sedimentary rhythms in the Blue Lias Formation consist of a laminated black-shale that 

grades into a dark-grey marl, and a pale-grey marl commonly with concretionary to 

tabular (cemented) micritic limestone, which on top turns back into dark-grey marls and 

shales (Paul et al. 2008). These rhythms appear not always symmetrical because 

(organic-rich) shales or marls/limestones did not always develop or carbonate-rich 

sediments were diagenetically altered (Ruhl et al. 2010). 

 

The Blue Lias Formation represents an offshore sedimentary setting, where the 

depositional environment was susceptible to anoxia, as well as the formation of 

laminated, organic-rich shales (Hallam 1995; Hallam 1997; Wignall 2001; Barras and 

Twitchett 2007). Carbonate-rich lithologies generally reflect well-oxygenated 

conditions whereas organic-rich lithologies generally reflect oxygen depletion 

(Hesselbo et al. 2004; Mander et al. 2008). The fauna of the lower Blue Lias is marine, 

although the first 2.5 m lacks ammonites. From the base of the sequence, environmental 

controls lead to successive faunal changes, although diversity is often high with records 

of fish remains, marine reptiles and marine invertebrates, mainly ammonites and 

bivalves. In addition, towards the upper part of this sequence, trace fossils begin to be 

more common, increasing in abundance as well as diversity although usually associated 

with episodic oxygen supply events (Moghadam and Paul 2000; Martin 2004; Barras 

and Twitchett 2007). 

The first part of The Blue Lias Formation, approximately 2.7 m, corresponds to The 

Pre-Planorbis Zone and includes at least the higher part of Bed H1 to Bed H24 – based 
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on available carbon isotope excursion data (Clemence et al. 2010). No ammonites have 

been recorded in this interval in the Lyme Regis area, although Psiloceras erugatum 

(Phillips), which has been recorded in the upper part of the Zone, has been recorded in 

West Somerset at bed number H24 (Page 2010).   

The base of the succeeding Planorbis Zone is placed at the first occurrence of 

Neophyllites in Bed H25 and the Zone ranges up to Bed H56, a total of 3.67m. The 

Liasicus Zone succeeds the Planorbis Zone, and is around 3.7 m thick, ranging from 

Bed H57 to Bed H83. Finally, the Angulata Zone spans beds H84 to 18 and is 4 m thick. 

(Page 2010) (Fig. 5.1).  

5.2 Richness 

865 individuals corresponding to 39 species, grouped in 26 families, 20 orders, 7 classes 

and 4 phyla were recoded from 30 samples taken from Tr/J section at Pinhay Bay. The 

Bivalvia represent 56% of all species recorded; followed by Gastropoda and 

Ammonoidea each with 14%. Groups such as crinoids, echinoids, brachiopods and 

chordates were represents by a single taxon (Appendix 5.1). 

5.2.1 Limestone samples 

The number of taxa increases significantly through the Tr/J section at Pinhay Bay. 

Thirty-one species were record from limestone samples. Fifteen of these were records 

from the Langport Member, representing 27% of the total number of species recorded. 

Through the Langport Member, species richness was variable, fluctuating from zero to 

seven taxa (with a mean of four) (Fig. 5.2A, Appendix 5.3).  
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Figure 5.2 Raw (black line) and mean species richness (red line ± 2 S.D.) recorded for 

each sample collected. The mean species richness represents the rarefied within-sample 

marine invertebrate richness estimated by 10.000 iterations. The blue line is the LOESS 

regression through the data point (α=  .3). PPZ: Pre-Planorbis Zone, PZ: Planorbis 

Zone, LZ: Liasicus Zone, AZ: Angulata zone. 



163 
 

Through the Pre-Planorbis to Planorbis Zone, the average species richness tends to 

increase rapidly until 10.6 m above the base. This segment is characterised by an initial 

exponential increase in the number of species present, followed by a decrease in the rate 

of appearance (Fig. 5.2A, Appendix 5.2). 

In contrast, from the base of the Liasicus Zone to the Angulata Zone, the average 

species richness tended to decrease slowly. Through this interval, the number of species 

recorded in samples is highly variable. In both the Liasicus Zone and the Angulata Zone 

eight species are recorded; however, the average species number per sample decreases 

through the Angulata Zone (Fig. 5.2A, Appendix 5.2). 

 

5.2.2 Mudstone samples 

Thirty species were identified from mudstone samples, but the average richness does 

not record a significant change through the section. However, there was a high variation 

in the observed richness between samples (Fig. 5.2B). Thirteen species were identified 

from the Pre-Planorbis Zone; the richness trajectory through this interval showing a 

maximum peak of 10 species at 8.1 m above the base. In the Planorbis Zone, sixteen 

species were identified and the highest peak recorded was at 12.3 m above the base. 

Fourteen species were recorded from the Liasicus Zone, with the highest peak of 10 

species at 14.9 m. Finally, the Angulata Zone with 15 species, records the highest peak 

of 12 species at 17.20 m - above the base of the Blue Lias (Fig. 5.2B, Appendix 5.2 and 

5.3). 

Sample rarefaction was performed by increasing the sampling size in limestone 

samples, indicated that Langport Member record the highest richness following by the 

Planorbis, the Liasicus, and the Angulata Zone, while Pre-Planorbis recorded the lowest 

richness (Fig. 5.3A). Richness estimate from mudstone samples show a different 
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pattern. The species richness is higher in the Planorbis Zone, following by the Angulata, 

the Liasicus and the Pre-Planorbis Zone (Fig. 5.3B).  

 

Figure 5.3 Average values (± 95% confidence intervals) of species richness estimated 

as sampling size increases through the Tr/J section in Pinhay Bay. Significant 

differences were assumed if 95% confidence intervals did not overlap. 
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Figure 5.4 Boxplot of the rarefied within-sample marine fauna (Mao Tau, Chao1 and 

Jacknife1) during the study interval in Pinhay Bay section. Each box represents the 95% 

confidence interval. The median is shown by an inner black line and the mean by a red 

line. LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone, AZ: Angulata Zone. 
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Figure 5.5 Average values (±95% confidence intervals) of Shannon-Wiener diversity 

estimated as sampling size increased during the study interval. Significant differences 

were assumed if 95% confidence intervals did not overlap. 
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Sample rarefaction estimates by Mao Tau, Chao1, and Jackniffe1 metrics shows that the 

species richness decreases significantly from the Langport Member to the Pre-Planorbis 

Zone and reaches a maximum in the Planorbis Zone (Fig. 5.4). Afterwards the richness 

decreases toward the Angulate Zone (Fig. 5.4). Estimation of the richness based on 

samples from mudstone, indicated that the species number increases from the Langport 

Member to the Planorbis Zone, however afterward, the diversity decreases toward the 

Angulata Zone (Fig. 5.4). 

In contrast, estimates of the Shannon-Wiener index [H’] performed by increasing the 

sampling size in limestone, show three significantly different groupings (Fig. 5.5A). 

The Planorbis and Pre-Planorbis zones recorded the highest richness values. In the 

second place, the Langport Member and the Liasicus Zone. Finally, the Angulata Zone 

recorded the lowest diversity values. In mudstone samples, the pattern is different (Fig. 

5.5B). The Pre-Planorbis and Liasicus zones present the lowest H’ index values and did 

not record significant differences between them. On the other hand, the Angulata Zone 

recorded the highest diversity followed by the Planorbis Zone. 

5.3 Abundance 

5.3.1 Limestone samples 

Kurtosis values estimated from limestone samples, decrease from within the Langport 

Member (mean = 25.6 ± 1.27) to 10.1 m above the base of the Blue Lias Formation, 

within the Planorbis Zone (mean = 7.38 ± 3.64) and remain low until 13 m above the 

base. Later, the dominance (kurtosis) increases rapidly up to the Angulata Zone (mean = 

30 ± 01) (Fig. 5.6A; Appendix 5.2).  

Fifteen species are recorded in limestone samples from the Langport Member, the most 

dominant being I. concentricum (>50%). Three species comprised between 10- 5% of 

the assemblage (P. rhaetica, S. waltonii and M. hillanus) and eleven species record 



168 
 

densities at < 5% (Fig. 5.7A; Appendix 5.3). Examination of the shape of the rank 

abundance model using an Akaike weighting, shows that a Zipf–Mandelbrot provides 

the best fit for the invertebrate community of the Langport Member (Table 5.1). Zipf, 

Zipf-Mandelbrot and Lognormal model, are associated with assemblages with high 

richness and low dominance, generally relating to undisturbed systems or “normal 

condition”. Whilst the geometric model is related to systems with high dominance, 

generally associated with ecosystems that are highly disrupted. The broken stick model, 

supposes an even distribution of the species in the communities and is also referred to as 

a “null model” ( ee Chapter   for details). 

Nine species are recorded in the Pre-Planorbis Zone, their relative abundance, however, 

never exceeding 20%.  L. hisingeri and P. giganteum are the dominant species in 

assemblages at this level, both with relative abundance of around 18%. Three species 

have relative abundances of between 10 and 18% (I. psilonoti, D. tomesi and P. 

langportiensis) and four additional species are present at between 10 and 2% (Fig. 5.7A; 

Appendix 5.3). As for the Langport Member, the Zipf–Mandelbrot model was the best 

fit for this invertebrate assemblage (Table 5.1). 

Fourteen species are recorded in the Planorbis Zone, I. psilonoti being the most 

abundant at ~25%; four species have abundances between 15-10%, five species between 

<10 - 1% and four species < 1% (Fig. 5.7; Appendix 5.3). Like the previous sequence, 

the Zipf–Mandelbrot model, is the best fit to the Planorbis assemblage (Table 5.1). 

The Zipf–Mandelbrot model provides the best fit for the invertebrate community of the 

Liasicus Zone. Seventy-nine specimens are grouped into eight species. P. undulate has 

the highest abundance (30.14%), followed by D. tomesi (21.92%), I. psilonoti (17.81%) 

and P. giganteum (16.44%). The remaining species recorded have abundance between 

8.22% and 1.37% (Fig. 5.7; Table 5.1; Appendix 5.3).  
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Figure 5.6 Dominance (Kurtosis ± 95% confidence intervals) of marine fossils 

assemblages through Tr/J section in Pinhay Bay. The red line is the LOESS regression 

through the data point estimated with an alpha 0.3. PPZ: Pre-Planorbis Zone, PZ: 

Planorbis Zone, LZ: Liasicus Zone, AZ: Angulata Zone. 

 

Despite the Angulata Zone having a low species richness (8 species), the relative 

abundance per species was relatively uniform. This species abundance distribution fits a 

Broken Stick model (Fig. 5.7; Table 5.1; Appendix 5.3). Calcirhynchia calcaria are 
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very abundant at >50%, follow by P. undulate, at ~16%. The remaining species 

abundance sharply drops to <5%, which is characteristic of the Broken Stick model. 

 

Figure 5.7 RACs derived from the abundance of marine invertebrate fossil 

communities through the Tr/J study interval. Y-axis on log(n) scale. 

 

5.3.2 Mudstone samples 

The kurtosis values estimated from mudstone samples increase significantly and rapidly 

up to the Liasicus Zone (at 15 m above the base of the section). Towards the Angulata 
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Zone, however, the kurtosis values tend to decrease slightly up to a level 19 m above 

the base of the section (Sample = AZ2; Fig. 5.6B; Appendix 5.2). 

All the rank abundance distribution obtained from mudstone samples fits the Zipf–

Mandelbrot model, which are interpreted as systems with high diversity (Fig. 5.7; Table 

5.1). The Pre-Planorbis Zone contains 13 species, represented by 122 specimens. The 

rank distribution of the abundance decays smoothly, with D. tomesi the dominant 

species (proportional abundance >30%), follow by L. hisingeri with 22% and Modiolus 

sp. with 18%. The rank abundance of the remaining species drops to between 10% and 

0.8%, but includes 70% of the total number of species recorded in this horizon (Fig. 5.7, 

Appendix 5.3 and 5.4).  

Sixteen species were recorded through the Planorbis Zone: D. tomesi is dominant (32% 

proportional abundance), followed by Modiolus sp. (15%) and L. hisingeri (12%). Nine 

species have an abundance of between 9 and 1% (within the latter range, abundance 

decreases smoothly) and four species occur at <1% (Fig. 5.7, Appendix 5.3 and 5.4).  

The Liasicus Zone records almost the same pattern as the Planorbis Zone, with D. 

tomesi the most abundance at ~36%, two further species at 20-22% and eleven species 

at a  proportional abundance of only 1–7%, (Fig. 5.7, Appendix 5.3 and 5.4). 

The Angulata Zone recorded a drastic change in composition. Fifteen species are 

recorded in this assemblage, which shows a more even distribution (Table 5.1). C. 

calcaria and G. obliquata were the most abundance species (22%), followed by 

Modiolus sp. (11%). The relative abundance of the rest of the species decreases 

gradually from 9-6% to 5-1% (Fig. 5.7, Appendix 5.3 and 5.4).  
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Table 5.1 Comparison of RAD models derived from abundance distribution of marine 

invertebrates through the Tr/J interval. The models were ran ed based on A ai e’s 

weights (ωi) following Burnham and Anderson’s (2002) recommendation. AICc 

sample-size corrected was estimated as AICc = AIC+(2K[K+1])/(n-K-1). AIC is 

reported only for completeness. K is the number of parameters; T is the number of taxa; 

n is the number of specimens. The highest ωi gives the best fit (In bold). 

      

Limestone 

  

    
RAD models 

 
T n AIC 

Broken 

stick 
Geometric Lognormal Zipf 

Zipf – 

Mandelbrot 

Parameters (K) 
   

0 1 2 2 3 

   
AIC 83.373 76.085 60.169 52.498 54.498 

Langport Member 15 80 AICc 6.798 6.237 6.431 5.792 8.318 

   
ωi 0.188 0.142 0.156 0.113 0.401 

 

Pre - Planorbis 

Zone 

 

  
AIC 38.554 36.585 38.061 41.147 39.486 

9 55 AICc 6.222 5.941 9.177 9.691 15.297 

  
ωi 0.009 0.008 0.042 0.054 0.887 

 

Planorbis Zone 

 

  
AIC 40.087 42.216 45.738 51.054 46.036 

14 129 AICc 3.757 3.935 5.703 6.187 8.304 

  
ωi 0.056 0.061 0.149 0.189 0.545 

 

Liasicus Zone 

 

  
AIC 49.227 47.691 53.825 60.919 51.647 

8 73 AICc 6.367 6.758 11.296 12.604 19.105 

  
ωi 0.002 0.002 0.019 0.036 0.941 

 

Angulata Zone 

 

  
AIC 88.956 45.589 47.126 47.285 44.960 

8 102 AICc 17.668 7.647 10.550 9.472 17.340 

  
ωi 0.526 0.004 0.015 0.009 0.447 

         

      
Mudstone 

  

 
T n AIC 

Broken 

stick 
Geometric Lognormal Zipf 

Zipf – 

Mandelbrot 

Parameters (K) 
   

0 1 2 2 3 

 

Pre - Planorbis 

Zone 

 

 

13 

 

 

122 

 

AIC 63.513 48.291 58.703 67.522 52.251 

AICc 6.228 4.845 7.570 8.452 9.917 

ωi 0.078 0.039 0.153 0.237 0.493 

 

Planorbis Zone 

 

  
AIC 70.694 66.545 62.452 69.225 66.755 

16 160 AICc 5.407 5.110 6.112 6.633 8.646 

  
ωi 0.098 0.085 0.140 0.181 0.496 

 

Liasicus Zone 

 

  
AIC 78.158 56.910 53.179 53.103 53.158 

14 85 AICc 6.930 5.159 6.380 6.373 9.016 

  
ωi 0.173 0.072 0.132 0.131 0.492 

Angulata Zone 

 

  
AIC 47.329 47.401 50.468 51.707 50.452 

15 59 AICc 4.025 4.031 5.622 5.726 7.950 

  
ωi 0.073 0.073 0.162 0.171 0.520 
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Figure 5.8 Average values (±95% confidence intervals) of species dominance index 

estimated as sampling size increased during the Tr/J section in Pinhay Bay. Significant 

differences were assumed if 95% confidence intervals did not overlap. 
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5.3.3 Species dominance index 

 ample rarefaction of the “species dominance index” from limestone samples (Fig. 

5.8A), shows that the Angulata Zone assemblage record on average a high dominance. 

Assemblage of the Pre-Planorbis, Planorbis and Liasicus zones recorded lower 

dominance values of <0.5 (more even), whilst, samples from the Langport Member 

showed intermediate dominance values of ~0.5. In contrast, assemblages recorded in 

mudstone samples show that communities from the Lias Group recorded very low 

dominance of < 0.5 (Fig. 5.8B), which is consistent with the RAD model, Zipf–

Mandelbrot model (all data are shown in Appendix 5.3 and 5.4). 

5.4 Composition  

5.4.1 Limestone samples 

Non-metric multidimensional scaling separates the limestone samples of the Langport 

Member from those of the younger stratigraphic units (Fig 4.9A). One-Way ANOSIM 

indicated significant differences in composition between the Langport and the higher 

levels (R= 0.329; p = 0.012). The SIMPER analysis shows that the dissimilarity is 

higher in samples from the Langport Member (87.85%) than at higher levels in the Blue 

Lias Formation (Appendix 5.5). This latter analysis indicates changes in the relative 

abundance of each species by stratigraphic unit and by the number of shared species 

across all stratigraphic units (dissimilarity).  

The Langport Member records 15 species, 67% of them being exclusive to this 

stratigraphic unit; five species range through to the Blue Lias Formation, with just P. 

langportiensis disappearing within the Pre-Planorbis Beds and not reappearing higher in 

the Pinhay Bay sequence (Appendix 5.6). Within Langport Member assemblages, only 
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I. concentricum, P. rhaetica and M. hillanus are species that became regionally extinct, 

despite their abundance in the Member (Appendix 5.6). The Pre-Planorbis and the  

 

Figure 5.9 Non-metric multidimensional scaling (NMDS) plot resulting from the 

ordination analysis (Chord distance) of the marine invertebrate fauna from the Pinhay 

Bay section, using abundance data transformed by taking the fourth root of [×]. 

Planorbis zones show a dissimilarity of 77.12% (Appendix 5.5). Three taxa recorded 

occur uniquely in the Pre-Planorbis Zone (M. minimus, Myoconcha sp. and P. cognate), 

whilst P. undulata and I. psilonoti appear for the first time at this level and persist until 

the Angulata Zone (Appendix 5.6). 
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The assemblage of the Planorbis and the Liasicus zones records a dissimilarity of 

59.04% with seven shared species (Appendix 5.5 and 5.6). The Planorbis Zone contains 

14 species, six of which show an average contribution of >1%. Of these, three are 

present in the assemblages from the Langport Member (Appendix 5.6), two from the 

Pre-Planorbis Zone and one species first occurs at this unit. Seven species first appear in 

this unit, although five are represented by single specimens (with contribution <1%), 

whilst two species, M. ventricosus and L. hisingeri, range upwards into the Liasicus 

Zone and the Angulata Zone, respectively (Appendix 5.6). Modiolus sp. and C. 

valoniensis reappear, although, with an abundance of ≤ 1%.  

The Liasicus and the Angulata zones record the same species richness (8 species), but 

show a high dissimilarity of 66.45% in terms of species composition. The Liasicus Zone 

sample includes three unique records, L. hisingeri, M. ventricosus and A. laqueus; the 

last represented by a single specimen (Appendix 5.6).  Similarly, the Angulata Zone 

includes three unique species records, C. calcaria, S. complanata and G. obliquata. 

However, there is no significant difference between the Liasicus and the Angulata zone 

(Appendix 5.5 and 5.6). 

5.4.2 Mudstone samples  

In contrast to the limestones, the samples from the mudstones do not record significant 

differences in composition between stratigraphic units (R = -0.049, p = 0.508) (Fig. 

5.9B), but there are significant differences between the two different lithologies (R = 

0.289; P< 0.001) (Fig. 5.9C). Mudstone and limestone samples record differences of 

80%. SIMPER analysis shows that nine species only occur in limestone samples 

(Appendix 5.7), whilst 13 species are exclusively recorded in mudstone samples 

(Appendix 5.7). 
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Figure 5.10 Beta diversity (ß) estimated by Whittaker and Routledge indices. These 

indices reflect the temporal difference in species composition between samples. The 

percentiles represent the 95% confidence intervals calculated by bootstrap procedure 

(number of iterations = 10,000). PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone, AZ: Angulata zone. (See data appendix 5.2). 
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Like previous results (NMDS), the Whittaker and Routledge Beta indices show a 

significant peak at 2 m above the base of the section (i.e. within the Langport Member) 

(Fig. 5.10A), which decreases smoothly to a minimum value at 7 m – above this level 

the beta values (species composition) do not show significant changes. This indicates 

that the greatest turnover happens within the Langport Member, the faunal composition 

subsequently remaining in relative stasis. In contrast, the species composition estimated 

from mudstone samples, does not record significant differences. This indicates that the 

species composition does not change drastically through the Blue Lias Formation (Fig. 

5.10B, Appendix, 5.2).  

5.5 Ecospace 

The marine fauna identified from limestone and mudstone samples used thirteen modes 

of life through the study interval, which corresponds to 6% of theoretical ecospace 

(Fig.5.10).  In this case, samples of different lithologies were grouped by stratigraphic 

unit with the aim to observe potential interaction networks (e.g. predator-prey 

relationships) and the ecological complexity in each assemblage. 

The number of modes of life increased from the Langport Member (8 modes of life) to 

the Liasicus Zone (10 modes of life) and later decreased to nine modes of life in the 

Angulata Zone. The relative abundance in Figure 5.10 was estimated as the number of 

species that use each mode of life as a percentage of the total number of species 

observed in each specific stratigraphic units. i.e. The Langport Member. (See data at 

Appendix 5.8; 5.9 and 5.10). 

Three tiering categories were used by the marine assemblage of the Langport Member; 

surficial, semi-infaunal and shallow-infaunal. The surficial group: was made up by five 

modes of life. Three of which have slow or facultative motility (Fig. 5.10).   
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Figure 5.11 Ecospace occupations by the marine invertebrate assemblages of the Tr/J 

interval at Pinhay Bay. 

Those categories were filled by echinoids, herbivorous gastropods and predatory 

gastropods, whilst facultative moving is occupied by Z. henrici (gastropod). The other 

two modes of life were made up by P. giganteum and C. valoniensis (facultative 

attached suspension feeders), and the stationary suspension feeders (L. hisingeri). The 
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semi-infaunal group was made up by three species; G. precursor (no motile) and two 

species of Modiolus (Facultative motile attached). The shallow-infaunal group was 

occupying by suspension feeders bivalves with facultative motility. The Langport 

assemblage represents a slightly complex benthic ecosystem, with restrictive motility (> 

20% moving species) and with three trophic levels; suspension feeders (~70% of the 

species), herbivores and intermediate carnivores (both ~15%) (Figure 5.11) 

(Appendices 5.8, 5.9 and 5.10). 

The Pre-Planorbis Zone assemblage comprises nine modes of life, four new modes 

being occupied in comparison to the Langport Member fauna (Fig. 5.10). Crinoids (I. 

psilonoti) represent erect forms; pelagic predators (P. erugatum) appear at the end of the 

Zone; deposit feeders were represented by Pseudokatosira undulata and Pleurotomaria 

cognata; and slow moving forms appeared for the first time in the shallow tier (R. 

doris). Three modes of life disappeared from the previous interval: Non-motile-semi-

infaunal and epifaunal-facultative-motile-unattached, both modes of life that occupied 

by G. precursor and Z. henrici, respectively; and the epifaunal slow moving predators, 

which is occupied by two gastropod species, P. decorata and P. rhaetica (Appendix 

4.9). The Pre-Planorbis assemblages are dominated by epifaunal species, whilst shallow 

and semi-infaunal modes of life are subordinate (Fig. 5.11, Appendix 5.8, 5.9 and 5.10). 

The Planorbis fauna includes 10 modes of life, two new modes of life are using; the 

semi-infaunal slow moving miner appears in the study section for first time, represented 

by R. bronni and the semi infaunal, non-motile attached, suspension feeders which is 

occupying by Pinna sp. The shallow infaunal slow moving mining feeders disappear (R. 

doris). More predatory species (4 spp.) are incorporated into the trophic network and 

marine reptiles are recorded as being part of this marine assemblage (Fig. 5.10 and Fig. 

5.11).   



181 
 

P
e

la
g

ic

E
re

c
t

S
u
rf

ic
ia

l

S
e

m
i

S
h
a

llo
w

D
e

e
p

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n
a

l 
a

b
u

n
d

a
n

c
e

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
Tiering

F
a

s
t

S
lo

w

F
a

c
u
lta

ti
ve

-u
n
a

tt
a

c
h
e

d

F
a

c
u
lta

ti
ve

-a
tt
a

c
h
e

d

N
o

n
-m

o
ti
le

, 
u
n
a

tt
a

c
h
e

d

N
o

n
-m

o
ti
le

, 
a

tt
a

c
h
e

d

Motility level Feeding

S
u
s
p

e
n
s
io

n

D
e

p
o

s
it

M
in

in
g

G
ra

zi
n
g

P
re

d
a

to
ry

O
th

e
rs

A
n
g
u
la

ta
 Z

o
n
e

L
a
n
g
p
o
rt

 M
e
m

b
e
r

P
re

 -
 P

la
n
o
rb

is
 Z

o
n
e

P
la

n
o
rb

is
 Z

o
n
e

L
ia

s
ic

u
s
 Z

o
n
e

 
Figure 5.12 Mean proportional abundance of tiering, motility and feeding mechanisms 

based on the number of species in the Langport Member to the Angulata Zone of the 

Blue Lias Formation.  

 

Crinoids represent the erect forms. The epifaunal facultatively motile attached 

suspension feeder guild records one more genus (Camponectes), while the species 
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occupying the shallow facultative motile unattached suspension feeder group change 

completely (Appendix 5.8, 5.9 and 5.10). In terms of the proportional abundance, 

pelagic and semi-infaunal categories increase to ~50%, surficial and erect forms remain 

constant, while shallow forms tend to decrease (Fig. 5.11). In term of motility, slow and 

facultatively attached forms decrease on average by ~28%, while the other categories 

increase by ~50%. Suspension feeders increase by ~5%, predatory forms increase 

(double), surface miners and grazers decrease by ~5%, while deposit decrease > 50% 

(Fig. 5.11, Appendix 5.10). 

The Liasicus Zone assemblage occupied 10 modes of life (Fig. 5.10). Surficial, 

facultatively motile, unattached suspension feeders are added into the assemblage, 

which is using by P. navis. In contrast, shallow facultatively motile unattached 

suspension feeders disappear. The Fast pelagic predator group is filled by just two 

species. Surficial-facultatively motile, attached suspension feeders incorporate one new 

species (P. dubius) whereas the semi-infaunal, non-motile suspension feeders record a 

complete compositional change. The rest of the modes of life do not record any changes 

(Fig. 5.10, Appendix 5.9).  

Surficial and semi-infaunal groups increase their proportional abundance by ~9% 

compared to the Planorbis Zone. The pelagic tier decreases by ~10%, while shallow 

infaunal organisms disappear. In terms of motility, although 50% of the fauna have 

some level of motility, their relative abundance dropped on average by ~15%, while the 

stationary fauna increased by the same percentage. In terms of feeding, suspension 

feeders are the most abundant category, and increased by ~6% compared to the 

Planorbis Zone unit, while predators decreased by ~8% (Fig. 5.11, Appendix 5.10).  
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The Angulata Zone records nine modes of life (Fig. 5.10). Pelagic fast moving predators 

feeder are represented by just S. complanata. The surficial, facultative motile attached 

suspension and semi-infaunal, facultative motile attached suspension feeder are 

occupying by P. giganteum and G. precursor, respectively. The latter mode lost 50% of 

species compared to the Liasicus Zone. The stationary epifaunal suspension feeders 

incorporate two new species (C. calcaria and G. obliquata). Shallow, facultatively 

motile unattached suspension feeders newly appear, and are represented by M. 

cardioides, C. regularis and Pholadomya sp. The semi-infaunal miners, which were 

used by R. bronni disappear at the Liasicus Zone (Fig. 5.10, Appendix 5.9). 

Compare with the Liasicus Zone, the proportion of pelagic forms in the Angulata Zone 

decreases by ~5%, semi infaunal forms decrease by 10% and superficial categories by 

3%, whilst erect forms remain constant. In terms of motility, this increases by ~3%, 

whilst the non-motile proportion decreases by ~8%, when compared to the Liasicus 

Zone. Suspension feeders are the only group that increases during the Angulata Zone. 

Grazing and deposit feeders do not change, whilst predation decreases by ~5% and 

miners disappear from the assemblage (Fig. 5.11, Appendix 5.10). 

5.6 Body Size 

Figure 5.12 shows the trajectory of the body size and the rate of change of the body size 

of bivalves through the study interval. From the Langport Member to the Angulata Zone 

the mean body size tends to increase smoothly, although with a low increase rate and 

high variation associate (~60%).   

The Langport Member records a mean body size of ~13.18 ± 11.21 mm. Of this, 80% of 

the measurements corresponded to I. concentricum (mean = 8.28 ± 2.57 mm) and the 

residual percentage was made up by seven species (Appendix 5.13). The body size 

values do not change significantly through this stratigraphic unit, except by one outlier 

value recorded by Plagiostoma sp. (33 mm) at 1.3 m. Toward the top of the Langport 
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Member, species with large body sizes appear, but their occurrences are low. For 

example, C. valoniensis (13.07 ± 8.87 mm), P. langportiensis (11.34± 6.09 mm) and 

Plagiostoma sp. 

Through the Pre-Planorbis and Planorbis zones, species composition changes and the 

mean size tends to increase quickly until reaching a value of 29.17 mm at 11.5 m as 

result of high occurrences of species such as M. minimus, L. hisingeri, C. valoniensis , C 

regularis and P. giganteum (Appendix 5.11).  
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Figure 5.13 The average body size (●) and rate of change (●) of the bivalve 

assemblage sampled through the Triassic-Jurassic boundary at Pinhay Bay section. The 

red line is the LOESS regression through the data point estimated with an alpha 0.3. 

PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, AZ: Angulata zone. 
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Figure 5.14 Frequency distribution of log geometric mean of bivalve size sampled 

through Tr/J boundary at Pinhay Bay section. (A) Shows the distribution frequency of 

raw data by each lithostratigraphy (B) Shows the distribution frequency of resampled 

data by bootstrapping procedure (10,000 iterations with replacement). The red lines 

indicate the percentiles of 2.5% and 97.5% around the mean. 
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Figure 5.15 Frequency distribution of geometric mean of the four most common 

bivalve genera found through the study section at Pinhay Bay. The red line indicates the 

average values. Average values, standard error (±) and sample size (n) are indicates 

upper right corner of each histogram.   

Through the Liasicus Zone, average body size decreases significantly at 15.8 m (10 ± 

0.35 mm). In the Angulata Zone, the body sizes tend to increase again towards the top 

of the section, reaching average values of 24 mm (Fig. 5.13, Appendix 5.2). From the 

top of the Liasicus Zone to the Angulata Zone, species composition changes and bigger 

species are integrated to the community. (i.e. Pholadomya sp. M. cardioides).  In the 

Angulata Zone, L. hisingeri decreases in abundance, C. valoniensis disappears and is 
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replaced by Camponectes sp. G. obliquata and C. calcarea, and P. giganteum increases 

in occurrence (Appendix 4.11).  

In contrast, the rate of change of body size indicates that there is no significant change 

in the rate of change along the study section (Fig. 4.13, Appendix 4.2). A linear model 

fitted to rate of changes confirm the absence of trends (F(1,14)= 0.0005; P > 0.05). Size-

frequency distribution based on 449 individual measurements of bivalves from the 

studied section at Pinhay Bay, shows a significant increase in body size from the 

Langport Member to the Liasicus Zone. However, at the Angulata Zone the average 

body size tended to decrease slightly (Fig. 5.14). As well as the average size change, the 

variance also increases through the section (mainly the Liasicus and Angulata zones), 

which reflects the appearance of new species of different sizes.  

Frequency distributions of the more common genera through the study interval were 

plotted to observe the trajectory of the body sizes of those taxon (Fig. 5.15). This figure 

shows that Plagiostoma (F(3,28) = 2.54; p<0.05) and Liostrea (F(4,127) = 2.98; p<0.05) 

increase significantly its body sizes from the Langport Member to the Angulata Zone 

for Liostrea and. However, the mean size of Liostrea recorded more fluctuations 

through the section. The mean body size of Chlamys also increases significantly, but 

only in the Liasicus Zone (F(3,20) = 3.38; p<0.05). From the Langport Member to the 

Planorbis Zone mean body size did not record significant changes (Fig. 5.15). In 

contrast, Modiolus did not record significant changes through the section (F(4,130) = 0.57; 

p>0.05) (Fig. 5.15, Table 5.2). 

The changes in the minimum and maximum body sizes of Chlamys, Modiolus, Liostrea 

and Plagiostoma through the Langport Member and Blue Lias Formation are visualized 

using Jablonski target plots (Fig. 5.16), which record the percentage change in 
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maximum and minimum size and are useful for determining whether the changes are 

simply due to changes in variance (Jablonski, 1996). In this case, Chlamys increases the 

body size only between the Planorbis Zone and the Liasicus Zone, whilst between the 

Langport Member and the Pre-Planorbis Zone and between the Pre-Planorbis to the 

Planorbis Zone, the body size shows increases and decreases their variance, 

respectively. Modiolus tends to increases its body size between the Langport Member 

and the Pre-Planorbis Zone, However, towards younger assemblages; the body size 

tends to decreases the variance (decrease in the largest size and a increases in the 

smallest size) and decreases in body size (lower left quadrant).  
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Figure 5.16 Change in size in four bivalve genera through the Pinhay Bay section. Top 

left and bottom right indicate variance in size whilst the top right and lower left 

represent Cope’s Rule and size decrease, respectively. (After Jablons i 199 ). 

Liostrea, like its mean body size values did not show a clear pattern and just tend to 

increase or well decreases in variance through the section. In contrast, Plagiostoma 

tends constantly use upper left quadrant, which means an increase in variance (increase 

in the largest size and a decrease in the smallest size). Although through the Liasicus 
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Zone and the Angulata Zone, Plagiostoma is plotted within the upper right quadrant, 

which indicates an increase in size, or a directional trend toward larger body sizes (Fig. 

5.16, Table 5.2). 

Table 5.2 Body size parameters of four bivalve’s genera with high occurrences trough 

the Tr/J interval in Pinhay Bay. LM: The Langport Member, PP: The Pre-Planorbis 

Zone, PZ: The Planorbis Zone, LZ: The Liasicus Zone, AZ: Angulata Zone. (*): just 

one data point was recorded. 

 

 
LM PP PZ LZ AZ 

 
Chlamys 

Mean 13.74 12.16 12.48 31.563 3.811* 

Stand. Error 3.624 3.904 1.708 2.3989 0 

n 6 9 3 3 1 

Min. size 3.24 2.904 10.21 28.954 0 

Max. size 26.25 33.92 15.82 36.354 0 

      

 
Liostrea 

Mean 8.386 19.81 16.72 22.544 17.51 

Stand. Error 0.487 1.215 1.083 1.4981 2.254 

n 2 55 35 22 14 

Min. size 7.899 4.331 9.37 11.745 7.72 

Max. size 8.873 41.22 40.47 36.333 39.38 

      

 
Plagiostoma 

Mean 33.18* 36.77 46.78 55.584 92.47 

Stand. Error 0 4.133 3.602 12.562 30.31 

n 1 3 13 9 4 

Min. size 33.18 29.67 24.4 17.992 21.81 

Max. size 33.18 43.99 65.9 115.1 143.6 

      

 
Modiolus 

Mean 6.351 7.607 7.058 6.8811 6.538 

Stand. Error 0.867 0.409 0.56 1.3836 1.345 

n 3 73 35 14 6 

Min. size 4.71 1.313 2.552 1.9542 2.753 

Max. size 7.65 21.77 20.45 16.471 10.71 

 

 

Finally, the mean body size of bivalves was significantly higher that the null model 

values, which assumed a random distribution of the body sizes through the study 
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interval. This suggests that overall the bivalves show a directional trend to larger body 

size throughout the section (t-value = 5.16, d.f. = 32; p<0.001) (Fig. 5.16, Appendix 

5.13). 
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Figure 5.17 The average size of bivalves sampled through the study interval at Pinhay 

Bay (Red Line: raw data ± percentile 2.5 % and 97.5 %). Null model (blue line ± 

percentile 2.5 % and 97.5 %) was calculated by row-permutation (number of iterations 

= 10000) of the geometric mean of each individual by species through 36 samples (see 

Appendix 4.11). PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, AZ: 

Angulata zone. 
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5.7 Trace Fossils 

The number of ichnotaxa increased from the Top of the Langport Member to the 

Angulata Zone (Fig. 5.11) (see methodology for sampling). Through the Pre-Planorbis 

Zone, four ichnogenera were identified: Chondrites, Diplocraterion, Palaeophycus and 

Arenicolites, of which Chondrites was the first taxon recorded at the base of the Blue 

Lias Formation, while the remaining taxa were identified at 8.80 m – above the base of 

section (Fig.5.1) (See appendices 5.2 for ichno-parameters and 5.14 for trace fossils). 

In the Planorbis Zone, five ichnogenera were identified, including two new 

appearances: Planolites, which was record at 10.10 m and Thalassinoides at 11.40 m. In 

the Liasicus Zone, Thalassinoides, Chondrites, Arenicolites and Palaeophycus were 

recorded at 13.8 m, of which Thalassinoides and Chondrites were the most frequent.  In 

the Angulata Zone, Rhizocorallium contributed a single record at 19.50 m. While at the 

same height, the last occurrences of Thalassinoides, Chondrites and Arenicolites are 

recorded in this study (Fig. 5.1). 

Burrow diameter and ichnofabric index both increase sharply from the base of Blue Lias 

Formation to the base of the Planorbis Zone. However, both variables remain “relatively 

constant” from the Planorbis to the Angulata Zone (Fig. 5.18). An apparently  “ceiling” 

is reach at 10.4 m from the base of the Blue Lias Formation, which point, the maximum 

taxonomic richness of marine invertebrates’ recorded in this work is reached. On the 

other hand, the percentage of cover of each ichnotaxa tends to increase through the 

section without reaching any “ceiling”. 
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Figure 5.18 Response of the bioturbation estimates through three methodologies along 

the Tr/J boundary in Pinhay Bay. 
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5.8 Summary  

The assemblages sampled through the study section at the Pinhay Bay, represent the 

recovery of ecosystems after the Tr/J mass extinction event (Barras and Twitchett 2007; 

Mander et al. 2008; Wignall and Bond 2008). Species richness estimated from 

limestone samples increases significantly from the Langport Member toward the 

Liasicus zone, and later drops in the Angulata Zone. In contrast, species richness 

estimated from mudstone samples does not seem to change through the study section. 

The limestone samples record higher species richness than the mudstone samples.   

The assemblages describe in this section shows a high evenness, which is confirmed the 

RACs models, Zipf – Mandelbrot and Broken stick. However, dominance was lower in 

assemblages associated with the Pre-Planorbis, the Planorbis and the Liasicus zones. 

The assemblages from mudstone samples have lower dominance than those from 

limestone samples. 

In terms of composition, the samples show significant differences between lithologies. 

When the limestone samples are binned in stratigraphic units, however, only the 

Langport Member is significantly different and only in the limestone samples (the 

Langport Member has not mudstone samples). In contrast, when mudstone samples are 

binned in stratigraphic units (from the Pre-Planorbis Zone to the Angulata Zone), do not 

record significant differences between stratigraphic units. The beta index shows a slight 

compositional turnover between the Langport Member and assemblages associated with 

the Lias Group. Later, the assemblages seem to be very similar in composition. 

Finally, ecospace expanded quickly from the Langport Member to the Angulata Zone, 

in the same time, as more species appeared, the number of species by mode of life also 

increased, which generated communities that are more complex. At the same time, the 
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mean body sizes of bivalve species and the abundance occurrence and sizes of 

ichnofossils increase significantly from the Langport Member to the Angulata Zone.  
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Chapter 6 Larne section 

6.1 Geological setting 

6.1.1 The Westbury Formation 

The Larne section consists of the same stratigraphic units as Somerset (England), the 

Penarth Group is a thin, but widely distributed and distinctive unit, consisting of the 

Westbury Formation and Lilstock Formation (Fig. 6.1). The Westbury Formation is 

constituted predominantly a dark grey mudstone, shale and subordinate sandstone. The 

Westbury Formation fauna is a low diversity, marine fauna, dominates by bivalves. 

Subordinate sandstones commonly contain vertebrate debris and a rich ichnofauna. 

About 7.5 m of the Westbury Formation are absent in the Larne section, although they 

are present in The Larne borehole and at the outcrop at Whitehead and Cloghfin Port 

(Simms and Jeram 2007) (Fig. 6.1). The Westbury Formation comprises a series of 

coarsening-up and fining-up cycles (Macquaker, 1999). Simms and Jeram (2007) 

suggest that the Larne Basin is related to 4
th

 order cyclicity. They based this assumption 

in apparent initial transgression in the lower 9 m of the Larne Basis succession, whilst 

the upper part (5m) generally coarsens-upward into the Lilstock Formation. Evidence of 

deposition above storm wave-base is ubiquitous in the Westbury Formation (Simms and 

Jeram 2007) (Fig. 6.1). 

6.1.2 The Cotham Member 

The Cotham Member Overlies the Westbury Formation and is divided into a lower part, 

which is dominated by finely interbedded (mm-scale) mudstone and siltstone (= 

heterolith); and an upper part, with limestones, calcareous marls, mudstone, and more 

thickly-bedded heterolith. The lower Cotham Member is commonly cross-bedded, with 

rippled surfaces, and represents a very shallow shoreface facies. It exhibits frequent, and 
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locally intense, soft sediment deformation (Simms and Jeram 2007). A prominent dark 

grey shale bed indicates transgressive phase of a 4
th

 order cycle, and suggests that the 

entire lower part was deposited during within two 4
th

 order cycle. A desiccation-cracked 

emergent surface occurs near the top of the lower Cotham Member (Simms and Jeram 

2007) (Fig. 6.1). However there is no evidence of erosion at the surface. Macrofossils 

and bioturbation are largely absent (Simms and Jeram 2007). 

The Upper Cotham fines up, indicating deep water environments above the emergent 

surface. Three distinctive, laminated micritic limestones occur just above this surface 

and can be correlated to other sites in the basin (Simms and Jeram 2007). Above the 

limestones, abundant bivalves reappear in marly siltstone and dark shale of similar 

facies to the underlying Westbury Formation. Bioturbation is present in the thicker-

bedded heterolith at the top of the member, along with convex-up shell pavements on 

discontinuous siltstone laminae.  

6.1.3 The Langport Member 

The Cotham Member is overlain by the Langport Member, which is divided into lower 

and upper part. The part of The Langport Member consists of inter-bedded siltstone and 

micaceous mudstone, with the frequency and thickness of the siltstones decreasing up-

section. The next half generally coarsens-upward, with siltstones and the heterolith 

facies. The upper part of The Langport Member is characterised by a distinctive series 

of thin micritic limestone ribs and laminae, containing rounded and angular clasts of 

mudstone (Simms and Jeram 2007). 
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6.1.4 The Lias Group 

Above the Langport Member a 1m thick, dark grey, shaly mudstone is taken to mark the 

base of Lias Group. This unit is pyrite-rich and can be correlated with the “paper shale” 

found throughout Southwest of Britain (Wignall, 2000, Simms and Jeram 2007), which 

reflects rapid deepening (Fig. 6.1). The base of the Lias Group is generally referred to as 

the ‘Pre-Planorbis Beds’ in the UK. Bivalves are abundant throughout the basal Lias 

Group at Larne but, in contrast to those in the Penarth Group, convex-up shell 

pavements do not occur, suggesting deeper water. The Waterloo Mudstone Formation 

was deposited primarily as hemipelagic marine mudstone in the extensive, but relatively 

shallow, north-western European seaway. It consists of rhythmically-bedded mudstone, 

marl and shale, with variable organic carbon and silt content, and with a diverse, fully 

marine fauna (Simms and Jeram 2007).  

6.2 Richness 

A total of 1,561 individuals corresponding to 42 species, grouped in 26 families, 14 

orders, 5 classes and 2 phyla were identified from 36 samples taken along the Jurassic-

Triassic section at Larne (Appendix 6.1).  
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Figure 6.1 Lithostratigraphic log of the Penarth Group and basal Lias Group exposed at Waterloo Bay. Occurrences (●) and ranges (black lines) of taxa recorded from 36 samples taken from the Larne section. 

The author would like to extend a big thank you to A. Jeram for his support in drawing-up this log.   
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Figure 6.2 Raw (black line) and Mean species richness (red line ± 2 S.D.) recorded for 

each sample collected. The mean represents the rarefied within-sample marine 

invertebrate richness estimated by 10000 iterations. The blue line is the LOESS 

regression through the data point estimated with an alpha 0.3. CM: Cotham Member, 

LM: Langport Member, PP: Pre-Planorbis Zone. 

Fifteen species were recorded from the Westbury Formation, which represent the 36% 

of the total species recorded through the section (Appendix 6.2). Mean taxonomic 

diversity through this unit remained constant (Fig. 6.2, Blue line), although the 

minimum and maximum values of species number fluctuated between 2 and 7 species 

per sample (mean ~4). The minimum values were observed at -14.2 and -3.4 m from the 

mud-cracked surface of the mid-Cotham Member (0 m; Fig. 6.1), whilst the two highest 

peak (7 species) were recorded at -13 and -4.1 m, respectively (Fig. 6.2). 

The Cotham Member contained 14% (6 sp.) of the total species observed along the 

section, which indicates a decrease of 20% with respect to the taxonomic diversity 
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observed in the Westbury Formation. Through the Cotham Member, species number 

fluctuates between samples (mean ~2), with peaks at -1.2 m (3 spp.) and 2 m (4 spp.). 

The minimum richness value (0 occurrences) was observed at 1.45 m (Sample CM3) 

after the mud-cracked surface (MCS) (0 m). Above this horizon, the number of species 

fluctuated between 4 and 1 species before cross through the Langport Member (Fig. 

6.2). 

The number of species increases through the Langport Member reaching a maximum of 

4 spp. at 5.2 and 6.2 m above the base of the MCS. Despite this, the Langport Member 

still records comparatively a low taxonomic diversity through the section with a total of 

just 7 spp. representing 17% of all species found in this section. Despite this, the 

Langport Member records the onset of ecosystem recovery and the biggest composition 

turnover after the Tr/J boundary (Fig. 6.2).  

From the base of the Pre-Planorbis Zone (7.10 m above the MCS) to the highest sample 

in the Planorbis Zone (28.15 m) 26 spp. (63% of the total) were recorded. Throughout 

this interval species number increases although at a lower rate than observed in the 

Langport Member. From the base of the Pre-Planorbis Zone to 22 metres above the 

MCS, the species richness shows three biggest peaks at 9.1, 12.9 and 22.8 m with 9, 11 

and 13 spp. respectively. The lowest richness (5 spp.) values were recorded at 7.1 m, 

11.2 m, and 17.8 m above the MCS (Fig. 6.2).  Between 24 and 35 m above the MCS, 

species number increases rapidly and reaches a maximum of 12 species. From 35 to 45 

m above the MCS, the species number drops to the same values than observed in the 

Pre-Planorbis Zone (mean ~7 spp.). The Liasicus Zone contains 40% (17 spp.) of all the 

species observed throughout the section (Appendix 5.2). 
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Figure 6.3 Average values (±95% confidence intervals) of species richness estimated 

as sampling size increases through the Tr/J boundary in the Larne section. Significant 

differences were assumed if 95% confidence intervals did not overlap. 

Sample rarefaction, performed by increasing the sampling size (see Chapter 2), showed 

that the number of species drops from the Westbury Formation (15 sp. 362 individuals) 

to the Cotham Member (6 sp.  37 individuals) and increases significantly throughout the 

Hettangian, reaching a maximum species richness on Planorbis Zone (22 spp.  628 

individuals) (Fig. 6.3). Estimations based on among-sample richness using Mao Tau, 

Chao1 and Jackniffe1 metrics (Fig. 6.4) confirm the decrease of taxonomic diversity 

from the Westbury Formation to the Cotham Member and the later, the richness 

increase from the Langport Member to the Planorbis Zone. However the species number 

tends throughout the Liasicus Zone (Fig. 6.4).  
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Figure 6.4 Boxplot of the rarefied within-sample marine fauna (Mao Tau, Chao1 and 

Jacknife1) during the study interval in Larne section. Each box represents the 95% 

confidence interval. The median is indicated by inner black line and the mean by a red 

line. WF: Westbury Formation, CM: Cotham Member, LM: Langport Member, PPZ: 

Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone.  

Alternatively, estimates of the Shannon-Wiener index [H’] with increasing sampling 

size (Fig. 6.5) indicates that mean diversity [H’] is lower in the Westbury Formation. 

The fauna associate with the Cotham Member and the Langport Member did not record 

differences in mean diversity [H’] values, equally the Pre-Planorbis and the Planorbis 

faunas did not show significant differences; however records higher diversity [H’] 

values that observed during the Cotham and the Langport members. The Liasicus Zone 
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shows the higher mean diversity [H’] values throughout the section. The discrepancies 

observed between the Shannon-Wiener index [H’] and the rarefied expected richness are 

due to the fact that the [H’] index weights abundance values rather than just the number 

of the species when it is performed. 

 

 

Figure 6.5 Average values (±95% confidence intervals) of Shannon-Wiener diversity 

estimated as sampling size increases before, during the Tr/J interval. Significant 

differences are assumed if 95% confidence intervals did not overlap. 

6.3 Abundance 

The kurtosis tends to decrease along the Tr/J section at Larne (slope = - 0.19). Despite 

this the assemblages shows high variation in term of dominance (Fig. 6.6). Through the 

Westbury Formation the mean dominance tends to decrease until the base of the 

Cotham Member. Above this, the mean values increase quickly until 4 m in the 

Langport Member. Later, the kurtosis decrease to the base of the Pre-Planorbis Zone. 
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That increase in dominance coincides with the loss of species and with the negative 

carbon isotope excursion (Fig 6.1 for isotope excursion). Through the Hettangian, the 

assemblage records more even communities (average ~18.8± 2.14), although at the end 

of the Pre-Planorbis Zone, the dominance increase significantly (Fig 6.6, Appendix 6.2). 
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Figure 6.6 Dominance (Kurtosis ± 95% confidence intervals) of marine fossils 

assemblages through the Tr/J boundary in the Larne section. The red line is the LOESS 

regression through the data point estimated with an alpha 0.3. CM: Cotham Member, 

LM: Langport Member, PP: Pre-Planorbis Zone. 

From 15 species identified during the Westbury Formation, Rhaetavicula contorta was 

the most abundant, comprising 82% of the individuals. Pteromya crowcombeia 

comprised 8%, Dacryomya sp. 3% and Cardinia regularis ~2%. Five taxa showed 

abundance greater than 0.3% and 6 species show singleton occurrences with abundances 

<0.3% (Appendix 6.3 and 6.4). Examination of the shape of the rank abundance curves 

through A ai e’s weight showed that the Zipf Model provided the best fit to the 

invertebrate community the Westbury Formation (Fig. 6.7; Table 6.1). 
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Figure 6.7 Rank abundance curves derived from the abundance of marine invertebrate 

fossil assemblages throughout the Tr/J boundary. Y-axis on log(n) scale. 

The assemblages sampled in the Cotham Member record on average a high dominance. 

P. crowcombeia was the most dominant species (52%), followed by Modiolus sp. (17%) 

and P. alpina (14%). The remainder of the species recorded a relative abundance less 

than 8% (Appendix 6.3 and 6.4). The geometric model was the best fit of this RACs 

distribution through this stratigraphic unit (Fig. 6.7; Table 6.1). 

During the Langport Member the assemblages display a more even abundance 

distribution (Fig. 6.6; Appendix 6.3 and 6.4). P. philippiana was the super-dominant 

reaching 44% of all species, follow by P. tatei (28%) and Liostrea sp. (10%). C. 

regularis, P. punctatus and C. hettangiensis reappear with an abundance of 8%, 6% and 

1%, respectively. Finally, Pleuromya sp. recorded a single occurrence with a relative 

abundance ~3% (Appendix 6.3 and 6.4). Finally, the broken stick model was the best 
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descriptor of the rank abundance distribution (Fig. 6.7; Table 6.1). This model indicates 

that the abundance of the species are equally distributed. 

Table 6.1 Comparison of RAD models derived from abundance distribution of marine 

invertebrates through the End Triassic mass extinction event. The models were ranked 

based on A ai e’s weight (ωi) following Burnham & Anderson's recommendation. 

AICc sample-size corrected was estimated as AICc = AIC+(2K[K+1])/(n-K-1). AIC is 

report only for completeness. K is the number of parameters; T is the number of taxa; n 

is the number of specimens. The highest ωi gives the best fit (In bold). 

    
RAD models 

 
T n AIC 

Broken 

stick 
Geometric 

Log 

normal 
Zipf 

Zift 

Mandelbrot 

Parameters (K) 
   

0 1 2 2 3 

Liasicus Zone 

  AIC 75.839 75.319 87.817 111.987 79.187 

17 230 AICc 4.739 5.421 7.701 9.427 9.322 

  ωi 0.468 0.333 0.106 0.044 0.047 

Planorbis Zone 

  AIC 412.950 153.735 111.503 143.003 108.269 

23 663 AICc 19.664 7.986 6.921 8.579 8.348 

  ωi 6.797×10-4 0.233 0.397 0.173 0.194 

Pre-Planorbis 

Zone 

  AIC 65.796 59.554 54.851 58.535 58.999 

14 127 AICc 5.0612 5.462 6.804 7.139 10.099 

  ωi 0.374 0.306 0.156 0.132 0.030 

   
AIC 35.556 36.174 38.151 44.469 40.093 

Langport 

Member 
7 107 AICc 5.926 8.4349 14.537 16.117 27.364 

   
ωi 0.766 0.218 0.010 0.004 1.695×10-5 

Cotham 

Member 

  AIC 24.117 25.257 26.410 25.231 27.231 

6 42 AICc 7.291 7.204 14.776 14.984 34.040 

  ωi 0.478 0.498 0.011 0.010 7.439×10-7 

Westbury 

Formation 

  AIC 698.305 238.036 104.859 74.454 76.454 

15 392 AICc 49.878 18.772 10.404 7.871 10.768 

  ωi 4.96×10-10 0.002 0.185 0.657 0.154 

The number of species recorded in the Pre-Planorbis Zone is relatively high (14 sp.), 

although the differences in relative abundance between species decrease smoothly 

(range: 39% - 0.8%). In this assemblage the dominant species are Modiolus minimus, 

Diademopsis tomesi, Cardinia regularis, Liostrea sp. and P. tatei abundance (Appendix 

6.3). Like the Langport Member the broken stick model best fits this RAC (Fig. 6.7; 

Table 6.1). 
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More even assemblages were recorded in the Planorbis Zone, in which  23 species were 

recorded, within (> 5%) are M. minimus, M. ventricosus, C. regularis, Modiolus sp. 

Within this unit, the crinoid I. angulatus appears for first time and pelagic carnivores 

such as P. planorbis and C. johnstoni recorded relative average abundance ~1.8 %. In 

this unit, the lognormal RACs distribution model best fits recorded rank abundances as 

a majority of the assemblages are associated with highest evenness (Fig. 6.7; Table 6.1; 

Appendix 6.3).  

During the Liasicus Zone, kurtosis values increase slightly. Through this zone the 

species number remains relatively high (17 sp.), although the RACs of this assemblage 

best fit to the broken stick model (Fig. 6.7; Table 6.1; Appendix 6.3). Sample 

rarefaction of the “species dominance index” (Fig. 6.8), also shows a decrease of 

dominance from the Westbury Formation to the Liasicus Zones of the Waterloo 

Mudstone Formation. Five groups were identified (see confidence intervals, Fig. 5.8). 

The first group comprising the Westbury Formation, which shows a highest dominance 

(average = 0.87 ± 0.014) (Fig. 6.8). The second group correspond to assemblages 

associate with the Cotham Member (Fig. 6.8). The third group, a less dominant 

assemblage, is made up by the Langport Member (0.55 ± 0.048). The fourth group is 

made up by the Pre-Planorbis and the Planorbis Zones (0.41± 0.022) (Fig. 5.8). Finally, 

The Liasicus Zone constitutes the fifth group with the lowest dominance values (0.24 ± 

0.044) (Fig. 6.8). 
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Figure 6.8 Average values (±95% confidence intervals) of dominance estimated as 

sampling size increases through the Tr/J interval at Larne section. Significant 

differences are assumed if 95% confidence intervals do not overlap. 

6.4 Composition 

The Non-Metric Multidimensional scaling ordination shows that the samples from the 

Triassic are significantly separate from the Jurassic, perhaps due to major richness 

showed during the Hettangian Stage (Fig. 6.9). One-way ANOSIM shows significant 

differences between the composition fauna from each unit (R = 0.633; p = 0.0001). 

SIMPER analysis reveals that assemblages associate with the Cotham Member records 

higher dissimilarity compare to assemblage relate to the Westbury Formation, the 

Langport Member and the Waterloo Formation (Appendix 6.5). 
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Figure 6.9 No metric multidimensional scaling (NMDS) plot resulting from the 

ordination analysis (Euclidean distance) of the marine invertebrate fauna from the from 

Larne section, using abundance data. 

The faunal composition from the Westbury Formation to the Cotham Member records 

an average dissimilarity of 89.2% (Appendix 6.5). From the 15 species recorded in the 

Westbury Formation, seven species recorded singleton occurrences (Fig. 6.1), eleven 

species disappeared (Appendix 6.6) and just three species cross into the Cotham 

Member (Appendix 6.5). Gervillella sp.  Permophorus elongatus, R. contorta and 

Dacryomya sp. became extinct, while seven other species reappeared from the Langport 

Member (Appendix 6.6).  

The Cotham and Langport members record an average dissimilarity ~94% (Appendix 

6.5).  During the Cotham Member, 4 species disappear: I. concentricum, P. alpina, M. 

cloacinus and P. crowcombeia, while just Modiolus sp. and P. philippiana cross into the 

Langport Member. During the Cotham Member two species shows unique occurrences 

(Fig. 6.1, Appendix 6.6).   
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The dissimilarity between the Langport Member to the Pre-Planorbis Zone dropped to 

~84%. Within the Langport Member just two species disappeared: P. punctatum and C. 

hettangiensis. Three new species appear and Cardinia re-appears into the assemblage, 

while P. philippiana is the only specie that crosses into the Pre-Planorbis Zone 

(Appendix 6.6). Thought the Langport Member 5 species showed singleton occurrences 

(Fig. 5.1). 

From the Pre-Planorbis to the Planorbis Zone two species disappeared at the boundary, 

12 new species appeared, two genera re-appear (C. hettangiensis and M. hillanus), 10 

species cross through the Liasicus zone and 9 species occurred in both zones. The mean 

dissimilarity between both units decreased to ~82%, showing a high similarity between 

periods (Appendix 6.5 and 6.6) (Fig. 6.1). 

The dissimilarity increases 88% between the Planorbis and the Liasicus zones, both 

stratigraphic units sharing 10 species (Appendix 6.3). The Planorbis Zone recorded 13 

unique occurrences, whilst the Liasicus Zone recorded 7 single species, perhaps due to 

colonisation of new species. In addition, the Liasicus Zone underwent one of the biggest 

decreases in species richness; however it was not enough for generating significant 

differences in composition (Appendix 6.6). 

In summary, 82% of the Westbury Formation assemblage disappears at the base of the 

Cotham Member. From the residual fauna, 67% underwent extinction before to reach 

the base of the Langport Member. In addition, dissimilarity percentage of the marine 

assemblage increases within the Cotham Member (94%; Appendix 6.5), which 

confirmed the compositional turnover estimates by Bw and Br indices (Fig. 6.10; 

Appendix 6.2), which suggest that the extinction could be placed at the Cotham 

Member. 
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On the other hand, the random disappearance of some taxa and the high frequency of 

singleton occurrences through the Larne section could reflect facies changes, sampling 

bias or well, biological process as, migration and/or dispersal. For that, stratigraphic 

ranges of taxa recorded in this study were compared with stratigraphic ranges of 

previous studies in the way to confirms global or regional extinction of some species 

(see Appendix 6.6).  

 
Figure 6.10 Beta diversity (ß) estimated by Whittaker and Wilson-Shmida indices. 

Those indices reflect the temporal difference in species composition between samples. 

The percentiles represent the 95% confidence intervals calculated by bootstrap 

procedure (number of iterations = 10000). CM: Cotham Member, LM: Langport 

Member, PPZ: Pre-Planorbis Zone. 
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Of the taxa recorded of this locality, just three genera show global extinction, 

Permophorus, Rhaetavicula and Pteromya. Permophorus and Rhaetavicula disappear at 

the top of the Westbury Formation. While Pteromya, disappears at the base of the 

Planorbis Zone (Appendix 6.6). On the other hand, five species shows regional 

extinction; P. alpina, M. cloacinus, I. concentricum, P. rhaetica. Although, Mytilus, re-

appear in the Planorbis Zone. 

6.5 Ecospace 

A total of 10 modes of life are occupied by the marine invertebrate fauna within the 

study interval (Fig. 6.11). The fauna found in the Westbury Formation include four 

modes of life, occupying 1.1% of the theoretically available ecospace. The fauna was 

made up almost completely by facultative attached suspension feeders as surficial (6 

species), semi-infaunal (4 species) and shallow infaunal (4 species) (Appendix 6.6). 

Dacryomya sp. was the only species that records slow motility (Fig. 6.11, Appendix 

6.6). The fauna of the Westbury Formation, contains high number of species, but its 

ecological categories are restricted to just benthic filters species with low motility (Fig. 

6.12, Appendix 6.6 and 6.7).  

Although three modes of life are recorded in the Cotham Member, the relative 

proportion of the modes of life associated to semi-infaunal and surficial categories 

drops in average ~10% and the composition of each ecological category changed 

drastically (Fig. 6.12, Appendix 6.6 and 6.7). The fauna of the Langport Member 

records just three modes of life; (1) surficial, sessile, suspension feeders, which 

appeared for the first time and are represented just by one genus, Liostrea (Fig. 6.11); 

(2) Surficial, facultatively attached, suspension feeders, which recorded a complete 

compositional change from underlying strata (Appendix 6.6); and (3) shallow infaunal, 
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facultatively unattached, suspension feeders which increase the species number and 

record high compositional change from the Westbury Formation and the Cotham 

Member assemblages (Fig. 6.12; Appendix 6.6 and 6.7). 

 

 

 

 

 

 

Figure 6.11 Theoretical ecospace occupations through the Tr/J interval at Larne 

section. 
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Figure 6.12 Proportional abundance of tiering, motility and feeding mechanisms based 

on species occurrences from the Westbury Formation to the Liasicus Zone.  
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From the Westbury Formation to the Langport Member there was a “gradual” 

disappearance of semi-infaunal genera such as Modiolus, Permophorus and Gervillella 

and a decrease in the abundance of shallow infaunal taxa (Dacromya sp.  Cardinia sp.  

Isocyprina sp.  Protocardia sp. and Pteromya sp.), which would suggest a selective 

extinction of taxa associated with semi-and shallow infaunal lifestyle during these 

intervals (see Semi-infaunal Fig. 6.12). 

Through the Pre-Planorbis Zone the ecospace utilisation expanded. Eight modes of life 

were used by the Hettangian marine fauna including three new modes of life: fast 

pelagic predators (Psiloceras spp.), sessile erect suspension feeders (Isocrinus 

angulatus) and slow-moving epifaunal herbivores (Diademopsis tomesi) (Fig. 6.11) 

(Appendix 6.4). The semi faunal suspension feeder re-appears comprising the genus 

Modiolus, whilst Ryderia on the other hand, occupies a new category of slow-moving 

shallow miners mode of life (Fig. 6.11). Surficial, facultatively attached, suspension 

feeders and shallow infaunal, facultatively unattached, suspension feeders continue to 

occupy the ecospace. However, only the shallow-infaunal category records an increase 

in species occurrences (Fig. 6.12).  

In the Planorbis Zone, the marine invertebrate fauna occupy 10 modes of life, eight 

modes in the previous assemblages. Two new modes of life are incorporated into the 

assemblage: surficial, facultative-unattached, filter feeders and epifaunal slow-moving 

deposit feeders (Fig. 6.11). Surficial, facultatively unattached, filter feeders made up by 

Palaeonucula navis (Bivalvia), while the slow- moving epifaunal was made up by the 

gastropod Pseudokatosira undulata. The abundance of groups as surficial, semi- and 

shallow-infaunal, decreases slightly in comparison to the Pre-Planorbis Zone (Fig. 6.12, 

Appendix 6.7). 
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Finally, 10 modes of life are used by the Liasicus Zone assemblage. Nine modes of life 

were used by the previous fauna, where slow moving, epifaunal, deposit feeders (P. 

undulata) is replaced by shallow slow-moving miners (Rollieria bronni) (Appendix 

6.6). During this time the number of species per mode of life increases (packing) in the 

surficial and semi-infaunal categories (> 10%, Fig. 6.11).  

6.6 Body Size 

Figure 6.13 shows the trajectory of the body size and the rates of the change of body 

size of bivalves through the study interval. Through the Westbury Formation to the 

Cotham Member the mean body size did not changes until the base of the Cotham 

Member (mean ~7.84 ± 0.56). Mean body size then increase to a maximum peak at the 

base of the Pre-Planorbis Zone (mean ~17.29 ± 1.72) due to the appearance of genera 

like Cardinia (15.94 ± 4.9 mm), Plagiostoma (27.74 ± 11.75 mm), Liostrea (18 ± 7.17 

mm) and Protocardia (14.76 ± 3.5 mm) (Appendix 6.8). Later, the mean body size 

decrease significantly before to cross into the Planorbis Zone; species recorded in this 

level were Chlamys valoniensis (5.52 ± 1.14 mm), Cardinia regularis (12.50 ± 3.14 

mm), Liostrea hisingeri (14.31 ± 3.14) and Modiolus minimus (4.81 ± 1.56 mm).  

The second highest peak of the average mean body size is observed at the base of the 

Liasicus Zone (31.99 mm) at 32.6 m (Appendix 6.3). Above this the average size 

decreases to reach an average size of 8.76 ± 4.98 mm. At this level the fauna were 

constitutes mainly by Plagiostoma giganteum (27.90± 13.67 mm) and Cardinia sp. 

(9.46 ± 5.06 mm) (Appendix 6.8). In addition, the rate of change of body size shows 

that through the Cotham Member, the rate increase 68% respect from previous levels 

(Fig. 6.13). From the Langport Member to the Liasicus Zone the rate of changes did not 

record variation, which indicates that there was not variation in body size.  
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Figure 6.13 Time series of the average size (red dots) and rate of change (black dot) of 

bivalve's assemblage sampled through the Tr/J boundary from Larne section. The 

shading is used to indicate the negative carbon excursion. The red line is the LOESS 

regression through the data point estimated with an alpha 0.3. CM: Cotham Member, 

LM: Langport Member, PP: Pre-Planorbis Zone. 

Size-frequency distribution based on 926 individuals measurements of bivalves from 

the studied section at Larne show a significant increase in size from the Westbury 

Formation to the Liasicus Zone, with a significant reduction of body size between the 

Pre-Planorbis and the Planorbis zones (Fig. 6.14). The variance associated with the 

mean body size increases throughout the section, which is related to the incorporation of 

new species of small size (Fig. 6.14, Appendix 6.8). 
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Figure 6.14 Frequency distribution of log mean of bivalve size sampled through the 

Tr/J interval at Larne section. (A) Shows the distribution frequency of raw data by each 

stratigraphic unit. (B) Shows the distribution frequency of re-sampled data by 

bootstrapping produce (10,000 iterations with replacement). The red lines indicate the 

percentiles of 2.5 and 9.75% around the mean. 
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Figure 6.15 Frequency distributions of four bivalve genera commonly found through 

the study interval at Larne section. The red line indicates the average value. Average 

values, standard error (±) and number of individuals (n) are indicated in each graph.  
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Table 6.2 Body size parameters of four bivalve genera with frequent occurrences along 

the study interval at Larne section. WF: Westbury Formation, CM: Cotham Member, 

LM: Langport Member, PP: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone 

(Appendix 3.9). 

 

 
WF CM LM PP PZ LZ 

 

Liostrea 

Mean ---  19.686 19.666 15.511 15.346 6.873 

Stand. Error ---  4.886 1.667 2.097 1.846 0.964 

n ---  2 8 5 13 5 

Max ---  24.571 25.458 23.145 24.279 8.613 

Min ---   14.800 12.893 10.937 3.150 3.970 

       

 

Plagiostoma 

Mean 21.71  ---  ---   16.932 20.007 27.947 

Stand. Error ---  ---  ---  1.334 2.031 13.672 

n 1 ---  ---  6 11 7 

Max 21.71 ---  ---  20.408 30.497 96.317 

Min 21.71 ---   ---   11.809 8.981 2.694 

       

 

Modiolus 

Mean 9.562 ---    ---  3.919 5.055  ---  

Stand. Error 0.372 ---  ---  0.221 0.140 ---  

n 90 ---  ---  48 179 ---  

Max 18.546 ---  ---  8.304 10.644 ---  

Min 2.428 ---    ---  2.007 2.000 ---   

       

 

Cardinia 

Mean 8.864 ---   16.731 15.470 13.246 9.107 

Stand. Error 1.304 ---  2.276 1.492 1.059 1.698 

n 12 ---  12 17 74 8 

Max 19.684 ---  33.483 28.265 68.350 17.382 

Min 4.672 ---   7.289 7.086 2.773 4.132 

Figure 6.15 shows the size distribution of 4 genera that are highly represented in the 

succession in Larne. The size trajectory of each taxon seems to be highly variable. 

Modiolus records a high occurrence through the interval (309 individuals). Mean body 

size through the section decreases significantly from the Westbury Formation 9.56 ± 

0.37 mm to the Pre-Planorbis (F(2,316)= 3.18×10-
41

; p<0.05). However from the Pre-

Planorbis to the Planorbis Zone the body size increases from 3.19 ± 0.21 to 5.05 ± 0.14 

mm, respectively.  
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The mean size of Cardinia increases from the Westbury Formation (8.86 ± 1.30 mm) to 

the Langport Member (16.73 ± 2.27 mm) and continues without significant changes to 

reach the Liasicus Zone were the body size drops to 9.10 ± 1.69 mm (F(4,122)= 3.65; 

p<0.05) (Table 6.2). On the contrary, the mean size of Plagiostoma did not recorded 

significant difference between assemblages (F(2,23)= 0.65; p>0.05). The mean size of 

Liostrea decreases significantly only from the Planorbis Zone (15.51 ± 2.09 mm) to the 

Liasicus Zone (6.87 ± 0.96 mm). The body size did not show a difference from previous 

assemblages (F(4,28) = 0.01; p< 0.05) (Fig. 6.15, Table 6.2).  

Graphically, changes in the minimum and maximum body sizes of Plagiostoma, 

Cardinia, Liostrea and Modiolus through the study interval (Rhaetian to Hettangian) 

can be visualised best by using Jablonski target plot (Fig. 6.16), which record the 

percentage of change in maximum and minimum size and are useful for determining 

whether the changes are simply due to changes in variance (Jablonski 1996).  

The size trends in Modiolus did not experiments changes from the Westbury Formation 

to the Pre-Planorbis Zone the maximum and minimum sizes. However from the Pre-

Planorbis to the Planorbis Zone, Modiolus tends to occupy the plot within the upper left 

quadrant, which indicates that body size tend to increase in variance (increase in the 

largest size and a decrease in the smallest size) (Fig. 6.16, Table 6.2).  

From the Westbury Formation to the Langport Member the body size of Cardinia tend 

to increase (upper right quadrant) (Fig. 6.16, Table 6.2). From the Langport Member to 

the Planorbis Zone, the body size decreases. While from the Pre-Planorbis zone to the 

Planorbis Zone the body size tend to increase in variance and between the Planorbis to 

Liasicus Zones the Cardinia body size decreases in variance (increase in smallest the 

size and a decrease in the largest size) (Fig. 6.16, Table 6.2). 
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The body size of Plagiostoma tend to occupy the plot within the upper left quadrant, 

which indicates that body size tend to increase in variance (Fig. 6.16, Table 6.2). In 

contrary Liostrea, tend to shows an increase in variance (upper left quadrant) between 

the Langport Member and the Pre-Planorbis Zone and between, the Pre-Planorbis Zone 

and the Planorbis Zone. However at the Liasicus Zone the body size tend to decrease 

which is reflected by using the lower left quadrant (Fig. 6.16, Table 6.2).  

 

Figure 6.16 Change in frequency size in four bivalves genera through Late Triassic 

extinction event (after Jablonski, 1996). Top left and bottom right indicate variance in 

size whilst the top right and lower left represent Cope’s Rule and size decrease, 

respectively.   
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Figure 6.17 The average size of bivalves sampled through the study interval (red line, 

raw data ± percentile 2.5 % and 97.5 %). Null model (blue line ± percentile 2.5 % and 

97.5 %) was calculated by row-permutation (number of iterations = 10000) of the 

geometric mean of each individual by specie through 35 samples (see appendix 6.10). 

The shading is used to indicate the negative carbon excursion. CM: Cotham Member, 

LM: Langport Member, PP: Pre-Planorbis Zone. 

Finally, the mean body size of bivalves was significantly higher that the null model 

values that assume a random distribution of body sizes through the study interval. This 

indicates that overall bivalves show a directional trend to increase body size through the 

section (t-value = 6.56, df = 68; p < 0.001) (Fig. 6.17). 

6.7 Summary  

Sixty percent of the species disappear during the Cotham Member and the Langport 

Member, representing the onset of the recovery in which the number of the species 

reaches a maximum richness in the Planorbis Zone. In terms of abundance, the Cotham 

Member represents assemblages with few species and high dominant, condition 

reflected by Geometric model, which suggests to disturbed environments. On the other 
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hand, assemblages sampled from the Westbury Formation, the Langport Member and 

the Lias Group, present low dominance, which the rank abundance distribution tended 

to fit to lognormal or bro en stic  models, which reflect “normal communities”.   

The marine fauna shows a constant, but low turnover of species composition through 

the study interval at Larne. However from the Cotham Member to the Langport 

Member the compositional differences reached 94%.  

Ten modes of life were used by the marine fauna through the Tr/J boundary succession. 

In the Cotham Member, 3 modes of life were occupied by the marine fauna and the 

number of species per mode of life decrease >50%. Ecological categories as infaunal 

suffered a gradual decreases until disappear in the Langport Member. However from the 

Pre-Planorbis Zone to the Liasicus Zone, the number of modes of life used by the 

marine fauna increase and in the same time the abundance by mode of life. 

Finally, the body size of marine bivalves did not decrease during the extinction event 

(The Cotham Member). Although the body size through the Tr/J in the Larne section 

seems highly variable between species and through the stratigraphic units, the general 

trend indicates that the marine bivalves tend to increase the body size. 
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Chapter 7 Portezuelo Providencia section 

7.1 Geological setting 

The sedimentary marine rocks of the Antofagasta region constitute a discontinuous band 

of outcrops located between  3º  ’  and   º3 ’ . These roc s were deposited from the 

Middle Triassic to the Middle Jurassic in a sedimentary basin of approximately 10,500 

km
2
. The lower part consists of intermediate to acid volcanic rocks of 1000 m thickness, 

while the upper part is constituted mainly by sedimentary rocks, which reach 100-150 m 

in thickness (Chong and Hillebrandt 1985). 

 

Figure 7.1 Sedimentary sequences of Northern Chile. The black square indicates the 

location of the study, Portezuelo Providencia, which is located at “El Profeta 

Formation” in pale blue [J1m]. In green is denoted La Table Formation [CP3]. Scale = 

1:1.000.000 (Sernageomin 2003). El Profeta Formation is a sedimentary marine 

sequence comprising clastic and carbonate rocks: limestone, lutite, calcareous 

sandstone, conglomerate, gypsum and subordinate intercalations of clastic volcanic 

sediments (Sernageomin 2003). More details see Chapter 2. 
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The Tr/J units of northern Chile are mainly arranged in erosive unconformity on 

Palaeozoic intrusive rocks (granites), or in tectonic contact through faults with rocks of 

different ages. The Tr/J boundary is made up of relatively deep-water facies, without 

discordance with Hettangian sediments. From the west part of Sierra Argomedo to the 

Portezuelo Providencia a long band of outcrops range in age from the Middle Triassic to 

the Upper Jurassic, which are known as the El Profeta Formation. Towards the north-

west, this sequence overlies with angular unconformity volcanic rocks from the  

Carboniferous-Permian, which are called the La Tabla Formation (Hervé et al.  1991) 

(Fig. 7.1). 

The study site was located in a section named Portezuelo Providencia (for details see 

Chapter 2). This section was measured from the lower half of the north-western part of 

the syncline, which constitute the outcrops of the Profeta Formation (Fig. 7.2). It is 

made up mainly by fine grained sandstones and siltstones in the lower part, gradually 

changing to silty mudstones and bioclastic packstones in the upper part. The section 

measures more than 100 m in thickness, and ranges from the Upper Triassic to the 

Upper Jurassic (Hillebrandt 1994; 1990; 2000). 

 
Figure 7.2 Study site; Portezuelo de Providencia. More details see Chapter 2. 

 

Jurassic 

Triassic 

Portezuelo Providencia 

5 m 
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Figure 7.3 
Lithostratigraphical log of the 

Triassic-Jurassic section in 

Chile. Occurrences () and 

ranges (black lines) of taxa 

recorded from 33 samples 

taken from Portezuelo 

Providencia. Log drew by R. 

Twitchett and the ammonites 

determinations were 

performed by A. Mourgues 

(pers. comm.  2010).   
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Chong and Hillebrandt (1985; pag. 176) described the sedimentary succession of this 

locality and defined the Tr/J boundary based on the last appearance of the ammonite 

genus Choristoceras and the first records of the first genera Psiloceras (Hillebrandt 

1990; 1994; 2000). The outcrop is characterised by a monotonic succession more than 

200 m thick (Fig. 7.2). 

In the first 46 m of the section, dark grey siltstones dominate (Fig. 7.3). They alternate 

with blocky muddy silts, thin beds of fine grained sandstones, and grey siltstones with 

small intercalations of carbonate concretions. Small slumps (cm-scale) affect muddy 

silts from 17.71 to 21.31 m. At 0.55 m above the base of the section the first specimen 

of Choristoceras marshi was found. Plant remains of Dicroidium zuberi are frequent 

between 4.81 to 45.28 m. At 39.80 m above the section, the genus Choristoceras 

recorded the last appearance (LA), while 6.97 m afterwards, a purple–orange mottled 

layer of crumbly claystone. The bivalve fauna is relatively poor; however specimens 

such as Schafhaeutlia, Parellodon, Otapiria and Pseudolimea are common through the 

first 40 m above the section (Fig. 7.3). 

At 49.54 m above the base of the section, the first appearance (FA) of Psiloceras is 

recorded. From this level to 56 m above the base of the section, the units comprise of 

phosphatic concretions with limestones, pale to grey paper shale with finely bedded 

siltstones and fine beds of gypsum and black organic mudstone. At the top, a series of 

30 cm thickness limestone beds are intercalated among thin bedded siltstone and paper 

shales (Fig. 7.3).  

At 56.82 m above the base, Psiloceras rectocostatum Hillebrandt recorded the FA on a 

laminated grey siltstone bed. Above this level, 12 cm of volcanic ash was observed (Fig. 

7.3). From this level to the FA of Psiloceras callyphylloides (Pompeck), the unit 
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comprising almost completely of dark grey to black shale composed of thin layers, with 

thin beds of clay, calcareous siltstone and some phosphatic concretions. From P. 

callyphylloides to the first record of Kammerkarites bayoensis (Hillebrandt) (Fig. 7.3). 

The sequence is made up by intercalated paper shales, laminated siltstones and thin 

limestone beds. From K. bayoensis to the FA of Psiloceras crassicostatum (Guex), the 

sequence comprises black paper shale, siltstone, grey-mudstone, laminate mudstone and 

concretions of limestone. The P. crassicostatum units are made up of paper shale inter-

bedded by limestone layers and calcareous concretions. From the FA of Storthoceras 

australe (Hillebrandt) to top of the section, phosphatic concretions and limestone beds 

are more frequent, although paper shales and laminated siltstones are dominant 

lithologies throughout the sequence.  

From the LA of C. marshi to the top of the section, the plant remains are absent. The 

diversity of the marine fauna is low; bivalves are scarce through this segment, while 

ammonites are more diverse, but record a low abundance. The high occurrences of 

ammonites and the high proportion of siltstone and silt shale would suggest that the 

beds were deposited under conditions in which winnowing currents were rare or absent, 

which suggests that the deposits originated from pelagic suspension or turbidity 

currents.  In this sense, Chong and Hillebrandt (1985) mention that these sections could 

be interpreted as a distal submarine fan. Parallel, in the region of the Pre-Cordillera, 

several sections with continuous sedimentation are found, some of them without 

significant facies changes from the Upper Triassic through the Upper Jurassic 

(Hillebrandt 1990).  

To correlate the Chilean section with other Tr/J sections around the world; bed by bed 

sampling was performed throughout the Portezuelo Providencia section. The ammonite 
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fauna recorded was correlated and fit to the zonal terminology obtained from 

Hillebrandt’s biostratigraphy framewor  (1990; 1994; 2000) (See appendix 1.2). In this 

work, the Portezuelo Providencia section is subdivided into four ages: the Upper 

Rhaetian, which is defined by the LA of C. marshi; the Lower Hettangian, which is 

defined by the FA of Psiloceras tilmanni (Lange) and corresponds to the Planorbis 

Zone; the Middle Hettangian, which is correlated to the Liasicus zone and is defined by 

the FA of Kammerkarites bayoensis (Hillebrandt); and the Upper Hettangian was 

defined by the FA of Sunrisites sp. and is correlated with the upper part of the 

Peruvianus Zone and Extranodosa Subzone from the Angulata Zone, see also Riccardi 

(2008). 

7.2 Species Richness  

A total of 261 individuals were recorded from 33 samples taken along the Tr/J section at 

Portezuelo Providencia (Appendix 7.1). Of these, two were identified to the species 

level (Appendix 6.1), eleven to genus level, one to family and one to subclass level.  

The curve of species richness throughout the study interval at Portezuelo Providencia 

did not exceed 6 taxa per sample (Fig. 7.4). From the base to the top of the section, the 

trajectory of the average richness shows a progressive decrease of the number of taxa, 

reaching the minimum value at 32 m above the base of the section. From this point to 

64.8 m above the base of the section the species richness remains constant to reach 70 m 

above the base; except for the biggest peak (5 taxa) observed at 33.40. From 70 m to 

104.9 m above the base the species number decreases slightly reaching a mean ~2 taxa 

(Appendix 7.1).  
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Figure 7.4 Raw (black line) and Mean species richness (red line ± 2 S.D.) recorded for 

each sample collected. The mean represents the rarefied within-sample marine 

invertebrate richness estimated by 10000 iterations. The blue line is the LOESS 

regression through the data point (α=  .3).  

The rarefied curve performed by increasing the sample size (Fig. 7.5) shows that there is 

no significant difference in the number of taxa sampled in the Triassic and Jurassic 

assemblages. The Triassic fauna reached a maximum richness value of 8.52 (95% Conf. 

High: 10.05 - Conf. Low: 2.00), whereas the Jurassic fauna recorded a richness of 8.79 

(95% Conf. High: 9.59 – Conf. Low: 1.00). Estimates of the Shannon-Wiener index 

[H’] with increasing sampling size (Fig. 7.6) indicate that the mean diversity [H’] is 

significantly lower in Jurassic assemblages than in those of the Triassic.  
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Figure 7.5 Average values (±95% confidence intervals) of species richness estimated 

as sampling size increases during study interval at Portezuelo Providencia section. 

Significant differences were assumed if 95% confidence intervals did not overlap. 

 

Sampling size (number of individuals analysed)

0 20 40 60 80 100 120 140 160

S
h
a

n
n
o

n
-W

e
a

ve
r 

H
' D

iv
e

rs
it
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Triassic

Jurassic

 

Figure 7.6 Average values (±95% confidence intervals) of Shannon-Wiener diversity 

estimated as sampling size increases during the Tr/J interval. Significant differences 

were assumed if 95% confidence intervals did not overlap. 
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7.3 Abundance  

The assemblages sampled through the study interval at Portezuelo Providencia did not 

record significant differences in the kurtosis values (overall mean ~ 13.45 ± 0.72) (Fig. 

7.7; Appendix 7.2). However, the rank abundance curves indicate that the Triassic 

assemblages show higher dominance compared to the Jurassic ones (Fig. 7.8 and Table 

7.1). 
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Figure 7.7 Dominance (Kurtosis ± 95% confidence intervals) of marine fossils 

assemblages through the study interval at Portezuelo Providencia section. The blue line 

is the LOESS regression through the data point (α=  .3). 

  
The assemblages from the Triassic are best described by the geometric RAD model, or 

well, communities with high dominance (Table 7.1). The rank abundance curve shows a 
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high slope, which reflects big differences in the proportional abundances of the taxa. 

For example, just four genera show high dominance: Pseudolimea (58%), Otapiria 

(31%), Schafhaeutlia (5%) and Choristoceras (3.3%), whereas more than half of the 

taxa (5 genera) recorded abundance less than 1% (Appendix 7.3). 

The Jurassic samples showed a more even distribution. Storthoceras is the only taxon 

that is well represented (78% relative abundance), while the rest of the genera (8 

genera) show abundances between 2 and 5% (Appendix 7.3). The ranking based on 

A ai e’s weight indicates that the Zipf model is the best candidate to explain the rank 

distribution observed during the Jurassic (Fig. 7.8 and Table 7.1). 
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Figure 7.8 Rank Abundance Curves derived from the abundance of marine 

invertebrate fossil communities during the Tr/J interval. Y-axis on log(n) scale. 
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Table 7.1 Comparison of RAD models derived from abundance distribution of marine 

invertebrates through the Tr/J interval. The models were ran ed based on A ai e’s 

weight (ωi) following Burnham & Anderson's (2002) recommendation. AICc sample-

size corrected was estimated as AICc = AIC+(2K[K+1])/(n-K-1). AIC is report only for 

completeness. K is the number of parameters; T is the number of taxa; n is the number 

of specimens. The highest ωi gives the best fit (In bold). 

 

    
RAD models 

 
T n AIC 

Broken 

stick 
Geometric 

Log 

normal 
Zipf 

Zift 

Mandelbrot 

Parameters (K) 
   

0 1 2 2 3 

Triassic 
  

AIC 128.47 46.13 53.25 56.65 47.43 

9 150 AICc 16.05 7.44 12.20 12.77 17.88 

  
ωi 0.010 0.79 0.073 0.05 0.061 

Jurassic 
  

AIC 134.06 80.62 59.7 46.07 48.07 

9 111 AICc 16.75 12.37 13.28 11.01 18.01 

  
ωi 0.029 0.264298 0.168 0.52 0.015 

 

The dominance index estimates by increasing the sample size (Fig. 7.9), shows that the 

Jurassic assemblages are significantly more dominant that those observed during the 

Triassic. Both assemblages shows a high dominance (>50%), but in the Triassic 

assemblages two taxa record a dominance of >30%: Pseudolimea sp. and Otapiria sp.  

whereas in Jurassic assemblages, Storthoceras sp. was the only dominant taxon (> 60%) 

(Appendix 7.3). 
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Figure 7.9 Average values (±95% confidence intervals) of dominance estimated as 

sampling size increases through the Tr/J interval at lo Providencia. Significant 

differences are assumed if 95% confidence intervals do not overlap. 

 

7.4 Composition 

The Non-Metric Multidimensional scaling ordination showed that the samples from the 

Triassic are significantly separated from the Jurassic ones (Fig. 7.10). One-way 

ANOSIM shows significant differences between the faunal composition of each period 

(R = 0.299; p < 0.001). SIMPER analysis reveals a dissimilarity of 96.41% (Appendix 

6.4), with just three taxa shared by both assemblages: Pseudolimea, Otapiria and 

Chlamys (Appendix 7.4).  
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Figure 7.10 No metric multidimensional scaling (NMDS) plot resulting from the 

ordination analysis (Euclidean distance) of the marine invertebrate fauna from the Tr/J 

section from Portezuelo Providencia section, using abundance data. 

Along the Portezuelo Providencia section, the transition from the Triassic to the Jurassic 

is abrupt. Between 36 to 40 m, 40% of all recorded taxa disappear and just Otapiria 

crosses the Tr/J boundary (Figure 7.1 and Appendix 7.1), whereas Pseudolimea 

disappears at 38.1 m and reappears just at 81.9 m in the Jurassic. 58% of the taxa are 

singletons, four of them appear at 33.4 m and one specimen of Heterodonta at 35 m 

above the base of the section. Despite the big species turnover through the Tr/J interval, 

only Choristoceras records a pattern of global extinction. 

7.5 Ecospace 

A total of 5 modes of life were used by the marine fauna within the study interval (Fig. 

7.11). The fauna found in the Late Triassic use 5 modes of life, occupying 1.8% of the 

theoretically available ecospace. In this period, the fauna was made up by fast moving 

pelagic carnivores (1 taxon), surficial filters feeding forms (5 taxa), facultative motile 

attached (3 taxa) and motile unattached forms (2 taxa).  Finally, semi-infaunal forms 

comprising 2 taxa: facultative motile attached chemo-symbiotic feeders and motile 

unattached filter feeders (Appendix 7.5).  
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Despite the marine Late Triassic fauna having low numbers of taxa associated with each 

mode of life, the assemblage has a relatively high ecological complexity. 10 ecological 

categories were used by the marine fauna, 75% of the taxa showed some degree of 

motility, the trophic spectrum spanned from carnivorous to chemotrophic taxa and 50% 

of the tiering categories were occupied (Figure 7.12, Appendix 7.6).  

During the Tr/J, all the semi-infaunal forms disappeared and the marine fauna just 

recorded three modes of life (Fig. 7.11; Appendix 7.5). The abundance of each mode of 

life increases by an average ~20%, of which surficial, facultative-unattached suspension 

feeders record >50% of the relative abundance. Despite this, the ecological complexity 

is low and just 7 ecological categories are used (Fig 7.12, Appendix 7.6). 

 

Figure 7.11 Theoretical ecospace occupations during the Tr/J boundary at Portezuelo 

Providencia, Chile. 
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Figure 7.12 Proportional abundance of tiering, motility and feeding mechanisms, 

based on taxa occurrences across the Tr/J section at the Portezuelo Providencia section. 

In summary, despite the fact that the number of taxa recorded during the Rhaetian and 

Hettangian (9 taxa) was the same, the number of taxa fluctuated significantly between 

samples. The Tr/J assemblage, in general, recorded high dominance values, but the 

assemblage associated with the Hettangian stage is highly dominant. The taxon 

composition changes abruptly from the Triassic to the Jurassic, generating a turnover of 

more than 95% of the entire fauna. Finally, during the Jurassic all the taxa associated 

with the semi-infaunal mode of life disappear, decreasing the ecological diversity by 

~40% compared to the previous period. 
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Chapter 8 Discussion 

8.1 Timing, recovery and species richness patterns through 
the Tr/J mass extinction event. 

The St Audrie’s Bay and Larne sections both show a complete trajectory of the marine 

fauna through the Tr/J boundary. In these successions the disappearance of the marine 

fauna occurred in the stratigraphic interval spanning the top of the Westbury Formation 

and the lower Lilstock Formation (the Cotham Member). During this interval, the 

species richness on average dropped to ~52%. Three modes of life were used by the Tr/J 

assemblages and high ecological dominance values are recorded and a sharp 

compositional turnover was detected by the beta index. Later, from the Langport 

Member to the middle of the Planorbis Zone, taxonomical and ecological richness 

reaches a maximum, but with a low compositional turnover. From this level and 

throughout the Liasicus Zone and the Angulata Zone, the number of species decreases 

and the ecological richness remains constant although with low compositional changes. 

In addition, the Pinhay Bay section also shows the same recovery pattern as the Larne 

and  t Audrie’s Bay sections (Fig. 4.2, 5.2 and 6.2). 

The results observed in this work correspond with previous studies on U.K. sections 

(e.g. Hallam 2002; Mander et al.  2008; Wignall and Bond 2008), which indicate an 

elevated extinction rate (>50%) at the top the Westbury Formation and the base of the 

Cotham Member. For example, Wignall and Bond (2008) report that of 26 bivalve 

species present in the Westbury Formation, 20 became extinct (77% species extinction), 

while Mander et al. (2008), through a more exhaustive analysis, report an extinction of 

65% across the Westbury Formation/Cotham Member boundary. In the present work, a 

total of 12 species (all bivalves) passed through the Cotham Member, where the 

extinction level was  
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demonstrated to be less severe at generic level. According to Mander and Twitchett 

(2008), Rhaetavicula, Cassianella, Permophorus and Lyriomyophoria were the only 

genera that experienced regional extinction, whilst other genera failed to survive into 

the Jurassic, except for Isocyprina and Mesomiltha, which underwent extinction during 

the Langport Member. 
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Another pattern observed across the Westbury Formation/Cotham Member boundary is 

the extinction of the infaunal forms (see appendices 4.11 and 6.11). Of 23 infaunal 

species recorded during the present study, only Modiolus spp., Cardinia regularis and 

Protocardia philippiana continued into the Jurassic, although during this interval, they 

kept a very low abundance (Appendices 4.3 and 6.3). In addition, Protocardia rhaetica 

and Isocyprina were also infaunal taxa that crossed the Westbury Formation/Cotham 

Member boundary, although they went extinct during the Langport Member. These 

observations are consistent with studies by Wignall and Bond (2008), Mander et al. 

(2008) and Mander and Twitchett (2008), which confirm the pattern of the Tr/J 

extinction event within marine faunas and the preferential decreases of the infaunal 

bivalves. 

The Cotham Member and the Langport Member were interpreted as possible “extinction 

zones” immediately after the extinction event (Mander et al. 2008). In the present study, 

the main disappearance took place at two levels: across the Westbury 

Formation/Cotham Member boundary and during the Cotham Member. However, from 

the Langport Member onward, the number of species increased rapidly, which at this 

level could be considered as the onset of the recovery phase. Harries et al. (1996) state 

that the first stage of the marine recovery is characterised by a very diverse and very 

rapid increase of the marine fauna (over 100-500 ka). In this context, Wignall and Bond 

(2008) mention that the re-diversification began rapidly in the Langport Member, 

estimating an origination rate of ~39%. The present study confirms Wignall and Bond’s 

observation. An estimation based on the Langport Member fauna indicates that the 

mean rate of origination increases to ~30%, of which ~26% of all taxa recorded in this 

work (25 spp.) corresponding to bivalves, ~9% to gastropods and 2% to echinoids 

(Appendix 4.1, 5.1 and 6.1). 
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Despite the compositional changes of species between samples and lithologies, 

however, the recovery patterns are very similar and consistent between localities (Fig. 

4.4; 5.4 and 6.4). This is strongly demonstrated by the three sample-rarefied estimations 

(Mao tau, Chao1 and Jack1), which indicate that the species richness decays through the 

Westbury Formation and Cotham Member and increases rapidly from the Langport 

Member to the Planorbis Zone. This could suggest that the timing of the extinction and 

the recovery event does not seem to vary between different UK sections. 

The Planorbis Zone is characterised by reaching a maximum richness, low dominance, 

high compositional similarity and high ecological complexity (Fig. 8.1). Following the 

recovery model of Twitchett (2006), the Planorbis Zone could be classified as Stage 3. 

In this interval, crinoids (I. psilonoti), infaunal bivalves and epibenthic forms 

(herbivores, carnivores, miners) show high occurrences (Ecospace: Fig.4.11; 5.10; 

6.11). However, burrow diameters do not exceed 20 mm, as in  t Audrie’s Bay as well 

as in the Pinhay Bay section (see Fig. 4.17 and 5.18), which is a condition that can be 

categorised as Stage 4 (mature assemblages). Younger assemblages such within the 

Bucklandi Zone (Lower Sinemurian), potentially record a burrow diameter of > 20 mm 

(Barras and Twitchett 2007). Hallam (1996) mentions that the recovery of assemblages 

after the Tr/J event is slow and it could have taken place in the Pliensbachian Stage. 

This contradicts ecospace values, since the ecological complexity does not change much 

from the Planorbis Zone to the Angulata Zone (between 10 to 9 modes of life) (Fig. 

4.11; 5.10; 6.11). This would indicate that despite the species’ expansion across the 

ecospace (high ecological complexity), the number of species by mode of life is still 

low, which is recorded by the low packing. 
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From the Planorbis Zone to the top of the Hettangian, the species richness estimated 

from limestone samples decreased gradually, while the richness calculated from 

mudstone samples through this sequence increased to the top of the Hettangian (Fig. 

4.4; 5.4 and 6.4). These differences could be a consequence of taphonomical factors 

rather than biological control, however. For example, through the limestone samples the 

specimens were difficult to identify due to high fragmentation. In addition, assemblages 

were commonly made up of specimens of large size, but with low abundance, i.e.: 

Mactromya cardioides, Cardinia regularis, Pleuromya spp., Gryphea spp., 

Calcirhynchia calcarea, Plagiostoma giganteum and Pinna spp. (Appendices 4.3; 5.3 

and 6.3). Another important associated factor is the proportion of limestone and 

mudstone through the section. Through the Planorbis Zone to the top of the Hettangian, 

mudstone dominates with 75%, which in  t Audrie’s Bay is more evident (see figure 

4.1 and 5.1). This would produce a potential sampling-bias, which would explain the 

differences in richness in mudstone and limestone (Fig. 5.4 limestone/mudstone). 

Figure 8.1 summarises the trajectory and the dynamic of the diversity through the Tr/J 

sections. This graph shows the timing of the Tr/J event and the duration of each 

stratigraphic unit. In this sense, it would allow an understanding of the velocity of 

response of marine communities to the mass extinction event. The Triassic part of UK 

Tr/J sections have a duration of ~1.37 Ma, which spans from 201.67 Ma at the base of 

the Westbury Formation to the top of the Langport Member at 200.3 ± 0.1 Ma (the Tr/J 

boundary), where the carbon isotope excursion would take place at 201.42 Ma, with a 

length of ~20-40kyr. In addition, estimates by Whiteside et al.(2010) and Ruhl et al. 

(2010), indicate that the Cotham and Langport members would both have a duration of 

~120 kyr., of which the separation would be located at 201.4 Ma. Finally, the 

Hettangian/Sinemurian boundary is placed at 199.5 Ma, with the Hettangian having a 
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duration of 1.8 Ma (Whiteside et al. 2010), whereas the Pre-Planorbis interval has a 

duration of ~100 kyr. The Lower Jurassic ammonite zones, therefore, appear to be 

unequal in duration: Planorbis Zone ~250 kyr, Liasicus Zone ~750 kyr and the 

Angulata Zone ~800 kyr (Ruhl et al. 2010; Whiteside et al. 2010). 

The results indicate that extirpation of the palaeocommunity during this extinction event 

was extremely rapid, which happened at 201.44 Ma, clearly before the first negative 

carbon excursion (201.43 Ma and with a length of ~20-40 kyr). The duration of the 

Dead Zone spanned ~100 kyr without recording any speciation event. The recovery, on 

the other hand, apparently took over ~120 kyr, before reaching the ceiling at the 

Planorbis Zone (Ruhl et al. 2010). Compared to the End-Permian or End-Cretaceous, 

the recovery of the End-Triassic ecosystems was very rapid and could be compared to 

the End-Ordovician mass extinction (Sole et al. 2010). 

The recovery is an interval which is succeeded by the diversification of new species and 

eventual rebuilding of communities (Erwin 2008). The detailed studies of individual 

recovery events have demonstrated the variety of roads to success, and these models 

have explored the possible range of ecologic strategies that could aid survival and 

trigger the recovery process (Kauffman and Erwin 1994; Kauffman and Erwin 1995; 

Erwin and HuaZhang 1996; Harries et al. 1996; Erwin 1998; Erwin 2001; Sole et al. 

2002; Benton and Twitchett 2003; Erwin 2008). Generally, those models describe 

increases in diversity after the mass extinction, with opportunistic blooms of some 

species, presumably taking advantage of empty ecological niches. 

Previously, it was suggested that this data fits very well into a model, as proposed by 

Twitchett (2006), which divides the recovery phase after an extinction event into four 
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stages. However, the recovery stage observed though the Tr/J section in this work 

reaches Stage 3, which means that the assemblages have high richness, low dominance 

and a well-developed tier level. However, this data shows that burrow diameters remain 

small (< 20 mm) (Fig 4.17 and 5.18), which indicates that these assemblages are 

successional-early. 

Kauffman and Harries (1996) show a model of extinction and recovery divided into 

three stages: (a) background conditions, or the assemblages associated with the 

Westbury Formation, which have a relative high number of species, low dominance and 

low ecological complexity; (b) the extinction interval (the Cotham Member), divided 

into three stages (early, mid and late extinction) and (c) repopulation which involves 

internal survival, characterised by blooms of disaster and opportunistic species and the 

first radiation of the progenitor taxa (assemblages from Langport Member to the 

Planorbis Zone). The second stage of the repopulation is the internal recovery by 

species that evolve from surviving lineages and the radiation of new lineages. In 

addition, Kauffman and Harries (1996) add survival mechanisms, which give specific 

strategies to the species that went through the extinction event. Cardinia, Plagiostoma, 

Modiolus, L. hisingeri and C. valoniensis were the only species that went through the 

extinction zone, while Cardinia, Plagiostoma and Modiolus show a strategy of rapid 

evolution (e.g. M. hillanusM. minimus) (Kauffman and Harries 1996). C. valoniensis 

and L. hisingeri would have generalist strategies (eurytopes), i.e. high abundance before 

and after the extinction event (Appendices 4.3, 5.3 and 6.3). 

From the Langport Member to the Planorbis Zone, the assemblage is characterised by a 

high colonisation of opportunistic species, which probably explains the high richness 

peak during the Planorbis Zone. However, during this stage there is no radiation of new 
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lineages. In terms of time and intensity, the Tr/J extinction event could be labelled as a 

catastrophic mass extinction. Generalist species or taxa with rapid evolution apparently 

could survive. The first stage of the ecosystem recovery was very rapid, however, as 

noted by Hallam (1996), although the complete recovery of the system is very slow, 

probably related to a slow rate of evolution of the survivor taxa as a result of 

environmental stress. This observation corresponds with studies carried out by Barras 

and Twitchett (2007), which suggest that late succession of the recovery stage could be 

located within the Sinemurian Stage. 

8.2 Abundance and species composition 

Through the Tr/J sections in Northern Ireland and St Audrie’s Bay, the kurtosis values 

from limestone samples decreases significantly until the Planorbis Zone (Fig. 4.6 and 

6.6). From this level to the Angulata Zone, the kurtosis tends to increase slightly, but 

significantly (Fig. 4.6, 5.6 and 6.6). Through the extinction event (i.e. within the 

Cotham Member) the kurtosis reached maximum values, which indicates: (1) structural 

changes in the assemblage and (2) high dominance by a few species. The kurtosis 

values estimated through mudstone samples records a variable response. Through the 

Tr/J section in  t Audrie’s Bay (Fig. 5.6B), the kurtosis decreases significantly from the 

Westbury Formation to the base of Blue Lias Formation, but through the entire 

Hettangian the assemblage did not record significant changes. Through the Pinhay Bay 

section, however, the kurtosis tends to increase only during the Liasicus Zone. 

Webb et al. (2009) use the kurtosis values as a measure of the dominance and a proxy 

of the RADs to evaluate the ecological response of micro-benthic organisms through the 

Palaeocene-Eocene extinction event. As in this example, kurtosis detects the change in 

ecological structure through the Tr/J mass extinction, which is associated with increases 
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in dominance through the extinction zone. As the RADs proxy indicates, high kurtosis 

would be related to geometric models (assemblages under stress or under extinction). In 

contrast, low kurtosis could be related to background and recovery assemblages, with 

high ecological complex scenarios, where RADs models as Zipf or Lognormal are to be 

expected. In contrast, assemblages associated with the extinction zone (the Cotham 

Member), show a relatively “simple” ecological scenario in which RADs fit to a 

geometric or broken stick model. In addition, the dominance index values confirm the 

trend and indicate that assemblages of the “extinction zone” (i.e. the Lilstock 

Formation) recorded high dominance (>50%, Fig. 4.8, 5.8 and 6.8). Through the 

Cotham Member, not only does the taxonomical richness decrease, the structure and 

ecological complexity are also affected. 

Applications of the Rank-Abundance Distributions (RADs) show that the Westbury 

Formation, the Langport Member, the Pre-Planorbis ‘Zone’ and the Planorbis Zone fit 

generally to Log-normal, Zipf or Zipf-Mandelbrot Models (Table 4.1, 5.2 and 6.1). 

Additionally, the assemblages from the Cotham Member in the Larne section was the 

only one that fitted to Geometric RADs during the extinction event. The geometric 

model is found primarily in species-poor environments of very early stages of a 

succession (Magurran 2004). Conversely, the assemblage of the Cotham Member in the 

 t Audrie’s Bay section fits the Broken Stick model, which predicts a very uniform 

RADs, where the group of species have the same competitive ability jostling for niche 

space (Magurran 2004). 

Several studies have evaluated RADs through palaeoassemblages (Peters and Bork 

1999; Buzas and Hayek 2005; Wagner et al. 2006; McElwain et al. 2009; Webb et al. 

2009). However, only Wagner et al. (2006) and McElwain et al. (2009) used A ai e’s 
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information criteria to evaluate the increase of complexity after the Permian extinction 

and changes in RADs of fossil plants after the Late Triassic extinction. In both cases, 

the results agree almost completely with the present study. These results indicate that 

during the extinction event the community shifts from ecologically complex scenarios 

(RADs:  Zipf or Lognormal) to ecologically “simple” RADs (geometric or broken stick 

models). Later, assemblages return to normal conditions or ecologically complex 

scenarios during the recovery stages. 

The geometric series occur in situations where one or a few factors dominate the 

ecology of a community (Magurran, 1988). For example, Magurran (1981) 

demonstrated that understory plants in a conifer forest - where light is the single most 

important factor controlling diversity - fit a geometric-series distribution. Miller (1986) 

showed that some Pleistocene fossil assemblages also approached log-series and 

geometric distributions in estuarine environments, where salinity and substrate were 

chiefly responsible for controlling diversity. 

In this work, it is observed that probably the diversity seems to be controlled by factors, 

such as oxygen-concentration and sea level changes. During the Westbury Formation 

the marine fauna is associated with deep water environment dominate by infaunal 

organisms (i.e. P. elongatus, M. sodburiensis, G. precursor, I. concentricum, I. ewaldi, 

C regularis), although with a diverse epibenthic community (i.e. P. rhaetica, R. 

contorta, P. alpina, C. valoniensis, M. cloacinus, P. punctatum, L. hisingeri). The high 

abundance of infaunal filter feeders would reflect ecosystems of high productivity, with 

well-oxygenated conditions and high environmental heterogeneity due to 

infaunalisation effects (bulldozer effect). Through this ecological scenario, the resources 

cannot be a limiting factor under a log normal model. 
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On the other hand, the assemblages from the Cotham Member (extinction event), 

represent very shallow conditions, with a possibly lower-oxygen environment, where 

the habitat heterogeneity was minimal and disturbance was limited to quiet water; thus, 

uniform soft substrate predominated. Biodiversity in this environment was low (± 6 

species) and superficial bivalves were numerically dominant (i.e. P. crowcombeia, 

Modiolus sp. P. alpina, M. cloacinus, I. concentricum and P. philippiana) (Appendix 

6.3). However, in some cases, as the Cotham and Langport Members in  t Audrie’s Bay 

and the Langport Member in the Larne section, the evenness was quite high because of 

equitable allocation of abundant niche space between species. That rank abundance 

curve tends to decreases slightly, which indicates that the abundance between species 

tends to be similar (Appendices 4.3 and 6.3). Although too few species are present in 

those communities, the observed distribution of bivalves most closely matches the 

broken stick model. This distribution is most commonly found in communities where 

resources are shared rather equally among species. In the Cotham and Langport 

Members communities, harsh environmental factors may have limited the number of 

successful species, but offered plenty of resources to those few that were able to survive 

(Peters and Bork 1994). 

The environmental conditions during the recovery stage improved significantly (the 

Pre-Planorbis Zone, the Planorbis Zone, the Liasicus Zone and the Angulata Zone). The 

sea level rose and the bioturbation re-appeared (Fig. 4.18 and 5.18) as a consequence of 

increases in oxygen concentrations and with them, an enhancement of the habitats’ 

heterogeneity. During this scenario the resources are often more abundant, partitioned 

more equitably in a community; variation in the habitat is greater and sources of 

environmental stress are fewer. Through the recovery stage, 54% of the assemblages fit 

the log normal, Zipf or Mandelbrot distribution models. Of these, 28% of the 
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assemblages fit to log normal model when they reach the maximum species richness 

(Planorbis Zone at  t Audrie’s Bay and Larne section, Table 4.1 and 6.1), while the rest 

of the assemblages (72%) fit to Zipf and Mandelbrot models (Table 4.1, 5.1 and 6.1). 

Those models (Zipf and Mandelbrot models) have been interpreted as reflecting 

successional processes (like early recovery), in which later colonists have more specific 

requirements and hence are rarer than the first species to arrive (Magurran 2004). 

Apparently the gradual environmental modification through the Tr/J boundary resulted 

mainly in a sea level fall and decreases in oxygen concentrations, which generated an 

ecological filter with a loss of biodiversity. The ecological changes in the Tr/J involved 

several of the processes mentioned by Mander et al. (2008) and Barras and Twitchett 

(2007), which included: (1) expansion and contraction of the relative abundance of 

dominant species, (2) exchange of rank-abundance among less dominant species, (3) 

rapid demotion and promotion of minor taxonomic components, and (4) deletion of less 

abundant taxa. In this sense, the ecological response suggests that reorganisation of the 

Tr/J assemblages was driven by organism-environment interactions, of which sea level 

changes and oxygen levels could have been factors that strongly modulate the structure 

of the local palaeocommunities. 

NMDS ordination indicates that pre-extinction assemblages (i.e. of the Westbury 

Formation), during-extinction assemblages (in the Cotham and Langport members) 

were compositionally different from post-extinction assemblages (e.g. of the Blue Lias 

Formation). Beta diversity confirms the high species turnover into the Lilstock 

Formation, mainly within the Cotham Member. 

Pooling all the data from the figures 4.9, 5.9 and 6.9 and the centroids of each 

stratigraphic unit are plotted and joins each centroid with a line; summarises the 
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trajectory of palaeocommunity change through the Tr/J boundary (Appendix 8.1). This 

axis, reflects a general depth gradient, meaning that the compositional changes observed 

through the Tr/J section obey related to sea level fall (Holland et al. 2001; Webber 

2002; Holland and Patzkowsky 2004; Layou 2009).. The fauna associated with the 

Westbury Formation is mainly related to a relatively deep water environment with high 

dominance of infaunal forms, whilst the fauna associated with the Lilstock Formation is 

related to very shallow marine systems (Hesselbo et al. 2004). The Blue Lias 

Formation, however, represents a system with a high compositional similarity, in which 

the species composition represents an assemblage of moderate depth (Hesselbo et al. 

2004). This work agrees with previous observations by Tomašov ch and  ibli  (    ); 

Mander et al. (2008), Tomasovych (2006) and Hesselbo et al. (2004), which suggest 

that during the end Triassic, sea level changes produced one of the largest turnovers in 

marine assemblages during the Phanerozoic. During the sea level fall, more than 80% of 

the fauna associated with surficial environments disappear (see Appendix 4.11 and 6.7) 

while >60 % of the infaunal taxa range through to the Cotham Member. 

This indicates that composition changes of the assemblages were abrupt and substantial, 

although consistent through different sections in UK. At the generic level, ~33% of the 

genera disappear, whilst at family level ~25% disappear. Families such as the 

Gryphaeidae and Pectinidae show local extinction. During the Langport Member, 

Arcticidae and Pteriidae disappear, with nine families disappearing between the 

Westbury Formation and the Cotham Member - of these, however, only Anomiidae, 

Limidae, Astartidae and Mathildidae show a global extinction. At a generic level, only 

six taxa show global extinction. In addition, the beta diversity increases slightly across 

the extinction boundary and then declines into the base of the Lias Group (Fig. 4.10, 

5.10 and 6.10). This suggests that the assemblages should be more distinct immediately 
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following the extinction. This peak is repetitive through the section that records the 

Westbury Formation and Cotham Member interval. In contrast, the Blue Lias 

assemblages are characterised by the highest rate of incorporation of new taxa and high 

compositional similarity. This could suggest that environmental conditions through this 

sequence remained relatively stable, driving a relative stasis. 

In term of spatial differences (Appendix 7), the fauna records significant differences 

between the sections of Pinhay Bay, St. Audrie’s Bay and Larne. That could be 

explained by the Larne and Pinhay Bay sections representing environments with 

shallower conditions than St. Audrie’s Bay, which could, therefore be deeper. Although 

the St. Audrie’s Bay section recorded more richness, probably due to the greater 

thickness and high number of species found in the Westbury Formation (Appendix 7). 

However, most of the fauna associated with the Lias Group shows more affinity to 

deep-water conditions. For example, St. Audrie’s Bay records a low abundance of 

bivalves, but a dominance of ammonites. In contrast, the assemblages of Pinhay Bay 

records high richness with assemblages being more complex. e.g. echinoids, crinoids, 

brachiopods, marine reptiles, bivalves, ammonites (Appendix 5.1). In addition, the 

Larne section, records a high diversity, although just restricted to bivalves, ammonites 

and echinoderms (appendices 4.1, 5.1 and 6.1). In summary, the spatial and temporal 

analysis of the marine fauna through the Tr/J boundary shows significant differences 

between localities due to environmental conditions. However, through the three sections 

there is a large turnover of species during the extinction event (i.e. across the Cotham 

and Langport members), with both regional and local extinctions. 
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8.3 Ecospace 

A total of 10 modes of life were used by the Tr/J marine assemblages through the UK 

sections. The number of modes of life used by the marine fauna decreases during 

Cotham Member, however, from the Langport Member to the Blue Lias Formation, the 

number of modes of life increased gradually until a total of 10 modes of life were 

recorded. 

Ecospace is a measurement of ecological complexity and can be used complementarily 

to describe palaeoecological patterns before, during and after an extinction event, 

because it describes the dynamics of the diversification into empty niches (Bambach et 

al. 2007; Bush et al. 2007; Novack-Gottshall 2007; Villeger et al. 2011). In this context, 

the recovery model proposed by Twitchett (2006) and Sole et al. (2010), will be used to 

categorise the information derivate from the ecospace studies. 

The Westbury Formation can be defined as a background condition or pre-extinction 

condition (Harries et al. 1996), which presents a relatively high richness, however, with 

a low packing (number of species by mode of life) and low ecological complexity 

(number of feeding groups). This assemblage records herbivorous and carnivorous 

gastropods with restrictive moving and three suspension feeder categories that 

occupying surficial, semi and shallow infaunal modes of life. One important point 

through this analysis is that the observations are based only on standardised samples by 

stratigraphic units, which represent a value of local scale or alpha level, i.e. many papers 

describe the fauna associated with the Westbury Formation as including fish remains, 

reptile bones, bivalves and trace fossils (which expand the occupied ecospace). The 

incorporation of such information into the database overestimates the comparison scale, 
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however, and published studies are often only useful for comparing different scales i.e. 

regional versus local. 

The Cotham Member represents the “Dead Zone” in which only 3 or 4 modes of life are 

used by species that explored basal trophic levels (see ecospace plots). Within this unit, 

two or three species fill each mode of life, resulting in a system with low packing, and 

ecologically very simple. Generally, this assemblage has high dominance, low richness 

and high values of beta diversity. The Langport Member, like the previous assemblage, 

shows few numbers of modes of life, however, the species packing increases, making 

the assemblage more robust, although the ecological complexity is low. In agreement 

with Twitchett’s model, this unit corresponds to Recovery  tage 1, with a low richness, 

high dominance (High kurtosis, fitting Geometric or Broken Stick models) and limited 

tiering (shallow and semi filter feeders). At this level, small traces fossils (Chondrites 

and Diplocraterion) are observed in the last beds of this Member (see  t Audrie’s Bay 

and Pinhay Bay sections). 

The Pre-Planorbis ‘Zone’ mar s the Recovery  tage   (Mander et al. 2008), and in this 

level the fauna increases the number of trophic groups with the incorporation of pelagic 

predators (ammonites), miners and herbivores (echinoids), which indicates an influx of 

primary productivity into the assemblage. In terms of tiering, the species packing 

increases and almost all categories are used by the marine fauna (excepting deep-

infaunal). At this level, the burrow diameter of ichnogenera (e.g. Chondrites and 

Palaeophycus) increases significantly through the sequence. In addition, the crinoid, I. 

psilonoti occupied for first time the erect category. At this time, the assemblage presents 

a high species richness, low kurtosis and a log normal distribution is presented by the 

species rank (i.e. mature and stable communities). 
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The Planorbis Zone represents Stage 3 or 4 of the recovery, which marks the return of 

the normal marine conditions. With high richness, the rank abundance distribution fits 

to Log normal models, with high species packing, wide expansion of the fauna through 

different axis of the ecospace and high ecological complexity. On average, 10 modes of 

life are used by the marine fauna at this level. Mining feeders, herbivores and pelagic 

carnivorous - as marine reptiles and ammonites - are found in this level. The burrow 

diameter of ichnofossils reaches a maximum point in this level. 

The Liasicus and Angulata zones represent, in many cases, the same ecological structure 

that was observed in the Planorbis Zone and potentially could represent Stage 4 of the 

recovery stage - the complexity, however, at this level is high. Trace fossils are also 

present through these levels, with constant records of the number of ichnogenera and 

burrow diameter. 

The results obtained by the present study are concurrent with previous observations by 

Twitchett and Barras (2004), Barras and Twitchett (2007) and Mander et al. (2008). The 

Planorbis Zone could be considered the final stage of the recovery, representing a 

ceiling in the species richness, the number of modes of life and the maximum values 

reached by ichno-parameters. The dynamic of the diversification after the extinction 

event was less intense (more genera extinct than upper taxa). It is probable that the rapid 

recovery (~125 kya) and occupation of ecospace was by closely related clades, meaning 

that the taxa were more likely to use the same mode of life, increasing the packing, 

redundancy and functional ecology. 

Future studies could analyse the filling of the ecospace, considering the phylogenetic 

diversity of the ecospace and, in addition, measure complexity, functionality and 
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ecological redundancy (Villeger et al. 2011). This would allow a comparison of 

extinction events and generate a ranking base on a true biological index. 

8.4 Environmental factors related to the extinction event: Sea 
level fall, CO2 increase, or factor combinations. 

When changes to the guild abundance structure are examined between stratigraphic 

units, environmental variation within the basin is apparent (see NMDS). The same 

pattern was previously observed by Hesselbo et al. (2004) in a detailed 

sedimentological analysis of the Tr/J section in St. Audrie’s Bay. Hesselbo et al. (2004) 

interpreted the main facies changes across the Tr/J boundary using sequence 

stratigraphy. According to this study, the Cotham Member was deposited during a 

regression of the sea level, representing a low-stand system track. 

Afterwards, the sea level started to rise again during the deposition of the Langport 

Member. As a consequence, the Cotham Member represents a sequence boundary, as 

the base of a sequence form when the relative sea level is falling at its most rapid rate. 

As shown by Holland (1995), the clustering of first and last occurrences of taxa is 

expected at sequence boundaries, indicating that changes in sea levels may trigger 

ecological collapse and reorganisation. As a matter of fact, the first main changes in 

faunal composition in the Tr/J in the UK sections are linked to sea level falls and 

occurred at the base of the Cotham Member. 

Close to the top of the Cotham Member is a second major environmental disturbance, 

expressed by a raise in the CO2 levels (Ruhl et al. 2011), generating a bio-calcification 

crisis and collapse of the productivity (Ward et al. 2001). This CO2 change apparently 

did not affect the marine macrofauna immediately (Mander and Twitchett 2008), but 

rapidly affected marine photosynthetic phytoplankton and benthic foraminifers, through 
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the extinction and malformation of calcareous nannoplankton and with the apparition of 

blooms of organic-walled, green algal ‘disaster’ species (acritarchs and prasinophytes) 

(van de Schootbrugge et al. 2007; 2008; Clémence et al. 2010). 

Consequently, the response of the macrofauna to ocean acidification (Hautmann 2004, 

2006, Hautmann et al. 2008) is observed throughout the Tr/J section from the Langport 

Member to the Pre-Planorbis Beds, with a selective extinction of infaunal bivalves. This 

data concords with observations by McRoberts (1995), Hallam (2002), Mander and 

Twitchett (2008) and Kiessling et al. (2007), indicating the selective extinction of 

infaunal organisms during the Early Jurassic (See ecospace results). As indicated by 

Hautmann et al. (2008), hyper-calcifying organisms with an aragonitic or high-Mg 

calcitic skeletal mineralogy and little physiological control of biomineralisation are 

predicted to suffer most. 

In addition, the shell mineralogy co-varies with the substrate relationship, where 

burrowing bivalves are exclusively aragonitic, whereas the vast majority of epifaunal 

and semi-infaunal Triassic bivalves had calcitic outer shell layers. In addition to this 

environmental scenario, a potentially localised anoxic phase is present in north-west 

European sections. Under benthic anoxic conditions, the redox boundary may be close 

to the sediment-water interface, resulting in the presence of toxic H2S within the 

sediment. This model has been invoked to explain the apparent absence of infaunal 

suspension-feeders from other Early Jurassic low-oxygen bivalve assemblages 

(Aberhan and Baumiller 2003; Twitchett and Barras 2004; Barras and Twitchett 2007).  

Ecological variable estimates in this study have a high probability of fit with the 

trajectory of physical variables such as sea level change, CO2 increase and oxygen 

depletion observed across the Tr/J boundary. However, sea level changes led to the 
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greatest turnover of the fauna between the Westbury Formation and the Cotham 

Member. Later, ocean acidification and anoxic events directly affected the primary 

productivity and in addition, generated a selective extinction front for infaunal 

organisms, for which it can be stated that the Tr/J is a clear case of mass extinction, 

although related with two stages of extinction that acted a-synchronically. 

8.5 Body size 

The results of the analysis in body size indicate that the bivalve assemblage does not 

show a reduction in body size throughout the Tr/J study sections, whilst the mean body 

size tends to increase or remain constant throughout the sequence. 

The ‘Lilliput effect’ is a term used to describe the temporary appearance of a subnormal 

phenotype (small body size) in surviving taxa in the immediate aftermath of an 

extinction event. This phenomenon has been widely documented over different 

extinction events and for different organisms (Jablonski and Raup 1995; Twitchett 

2006; Twitchett 2007; Keller and Abramovich 2009; Wade and Twitchett 2009; 

Brayard et al. 2010; Huang et al. 2010; Bosetti et al. 2011; Song et al. 2011). 

However, during the Tr/J extinction event only Hautmann (2004, 2006) and Mander et 

al. (2008) have observed this phenomenon, although from a holistic point of view. 

Mander et al. (2008) studied the  t Audrie’s Bay section, defining the extinction 

between the Westbury Formation and Cotham Member and suggested that the reduction 

in body size of bivalve assemblage occurs after the extinction event, but without an 

exhaustive analysis. Hautmann (2004) generated a more elaborate explanation for body 

size reduction, and proposed that the reduction was caused by changes in the seawater 

chemistry (e.g. changes from aragonite to calcite). Infaunal bivalves are invariably 
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aragonite-shelled and were slightly more affected by the Tr/J extinction event than 

epifaunal bivalves, which frequently had partly calcitic shells (McRoberts 2001). In 

addition, Hautmann concluded that the largest and thickest shelled bivalve clades 

retained their aragonitic shell, but reduced their body size distinctly, as a way to 

compensate the metabolic cost of  dissolution, e.g. within the Megalodontoidea 

(Hippuritoida). 

In the present study, ~30% of the bivalve species recorded went through from the 

Westbury Formation to the Cotham Member and ~17% of this assemblage comprises 

infaunal bivalves. Despite this, none of the species recorded decreased their body size 

through the extinction event. Differences in aforementioned observations could be due 

to the fact that Hautmann (2004; 2006) based his conclusion on the fauna from the 

Kendelbach Gorge of the Alps (Austria), the species composition of which differs from 

that observed in the United Kingdom. For example, he extrapolated his conclusion 

based on the reduction of the size of taxa associated with the Megalodontoidea, 

however, representatives of these taxa are not present in the U.K. sections. 

In parallel, epifaunal taxa did not experience a reduction in body size and are over-

represented through the studied section, which masks the reduction in size of certain 

groups. Similarly, groups, such as Pectinidae, Plicatulidae, Ostreidae and Gryphaeidae, 

are recurrent taxa throughout the section and it has been documented that they tend to 

increase their body size between 25-100% across the Tr/J boundary (McRoberts and 

Carter 1994, Hautmann 2001, 2004). The Rhaetian fauna (from the Westbury 

Formation, the Cotham Member and the Langport Member) does not present specimens 

of large size (< 20 mm), even specimens of genera such as Chlamys, Cardinia and 
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Plagiostoma show a reduced body size. The species that went through the Tr/J 

extinction event, therefore, already have a small size (see histogram by species). 

In addition, the evaluation of the change in body size through the Jablonski target plot 

(Jablonski et al. 1996) allows the separation of (a) directional trends (Lilliput effect and 

Cope Rule) from (b) trends that simply result from changes in variance (Metcalfe et al. 

2011). 

These plots demonstrate that size changes through the extinction event in basically two 

ways: (1) towards an increase in body size and (2) an increase and decrease in variance. 

The observed increases in body size are driven by Chlamys, Cardinia, Mytilus and 

Plagiostoma and this phenomenon is most frequently to observed from the Langport 

Member to the top the Blue Lias Formation - although directional trends towards a 

reduction of the body size were not observed during the extinction event (from the 

Westbury Formation to the Cotham Member). Conversely, in most cases, Modiolus 

showed a more restrictive response; either a directional trend in reduction of the body 

size, or towards a decrease in variance (i.e., a decrease in the maximum size co-

occurring with an increase in minimum size). 

Most probably, the decrease of body size and increased variance in body size could be 

related to: (1) quality of the data, i.e., the sample size is not “big enough” to represent 

the general trend that happened to the assemblage through time (i.e., low occurrence of 

some taxa: Mytilus, Plagiostoma and Chlamys) and (2) a biological response, which 

could affect the change in variance, i.e. in other extinction events, an increase in 

variance has been described as coinciding with intervals of lowered diversity and 

abundance (Morten and Twitchett 2009) and as a result of reduced interspecific 

pressures (Metcalfe et al. 2011). 
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The increase in body size of the assemblage is highly evident in specimens of the genus 

Plagiostoma, which could be explained by an improvement of environmental 

conditions. One of the major controls upon the body size is food supply (Twitchett 

2007) and productivity and oxygen are two of the potential factors that control the 

ecological parameters. Twitchett and Barras (2004) and Barras and Twitchett (2007) 

demonstrated an increase in productivity and oxygen levels through the increase of 

burrow diameter and the intensity of bioturbation using trace fossils. 

This was the first detailed study that incorporated systematic measurement of several 

species through the Tr/J section in the UK. However, it is necessary to increase the 

sampling intensity by species and by stratigraphic horizon in order to obtain a best 

representation of the distribution of size of each species. This will allow for a 

determination of certainty: firstly, to establish whether the changes in variance are due 

to biotic (intraspecific pressures) or abiotic factors (terrigenous input or even 

taphonomic biases) and secondly, to confirm the directional trends of increases in body 

size across the Tr/J boundary. 

The different methods used to evaluate the reduction in body size in bivalve 

assemblages indicates that it is not possible to observe a Lilliput Effect through the 

section in the UK and that, in agreement with Hautmann’s conclusions, this is most 

probably only a local phenomenon associated with a “calcification crisis”, which 

involved some bivalve clades. Similarly, the body size tends to show high variations 

between different temporal assemblages (i.e. from the Langport Member to the Pre-

Planorbis ‘Zone’), which drive reductions and increases in variance, which in turn may 

be associated with physical or biological factors. 
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Finally, the increase in body size at the top of the section could be related to an 

improvement of the environmental condition, as productivity and oxygen availability 

are increased. More detailed observations are necessary; not only of body size, but also 

of morphological features, possibly spanning a wider period of time (i.e. Norian to 

Hettangian) as well as different clades. This will allow the relationships between 

disparity (morphological diversity), the extinction event and clade selection to be 

determined. In parallel, it is of high importance to correlate palaeo-proxies (temperature, 

oxygen, carbon and nitrogen) in order to determine with which variable the body size is 

associated and which of these variables has more effect on the organisms and the 

assemblage. 

8.6 Tr/J in Chile 

The section of the Portezuelo Providencia records a very low number of taxa (33) 

compare with the UK sections. Of 33 samples taken from the section, just 57% of the 

samples contained species, and of these, 12 samples came from the Rhaetian (Marshi 

Zone) and seven samples from the Hettangian (Fig. 7.3). In addition, the specimens 

were not scattered uniformly through the section, which made it difficult to pool the 

samples by biozone in such a way that they could be compare with other sections. For 

this reason, the numbers of specimens were pooled in two assemblages: Triassic and 

Jurassic. The separation between both periods was established by the FA of the 

ammonite of the genus Psiloceras, which was recorded in the field (Appendix 5.8). The 

genus Psiloceras recorded in this study indicated the base of the Tilmanni Zone (Table 

7.4; South America), which correlates with the base of the Blue Lias in the UK sections 

(Page 2010). 
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Despite the low number of specimens recorded in this section, the number of taxa did 

not record differences between assemblages (Triassic and Jurassic) (Fig. 7.4). However, 

the trajectory of the mean taxonomic richness tended to decrease from the base 

(Triassic) to the top of the section (Jurassic) (Fig. 7.2). This diversity drop seemingly 

coincides stratigraphically with the diversity drop observed in the UK sections (the 

Cotham Member and the Langport Member). However, the richness curve through the 

section records high fluctuation. 

In terms of composition, the fauna recorded a drastic turnover from the Triassic 

assemblage to the Jurassic assemblage. The Triassic assemblages are made up by taxa 

with high affinity to relatively shallow systems with high richness of bivalves (see 

appendix 7.4) which is replaced by a fauna dominated by ammonites and composed of 

just 3 genera; Chlamys sp., Pseudolimea sp. and Otapiria sp. (see fig. 7.8). 

Previous observations, based on Hillebrandt (1990) and Chong and Hillebrandt (1985), 

indicate that the upper Triassic was made up by a very rich fauna, which includes 

species of the genus Schafhaeutlia, Gryphea, Liostrea, Septocardia, Paleocardita, 

Pseudolimea and Oxytoma. The cosmopolitan ammonite, Choristoceras marshi, and 

gastropods such as Planospirina and Chartronella were very common. Brachiopods 

such as Zugmayerella and Clavigera were typical in the Upper Triassic. Even in closer 

localities (Punta del Viento and Quebrada Vaquillas), conodonts genera such as 

Epigondella and Neogondolella have been described, as well as ichthyoliths associated 

with the genus Glabisubcorona sp. (Samson 2000). As additional information, remains 

of marine reptiles were found in the beds associated with the upper Triassic (“ex situ”). 

This can give an idea of how complex the End-Triassic assemblages were. In contrast, 

the Early Hettangian was constituted by a very poor assemblage, with genera like 
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Pseudolimea, Chlamys, Entolium and Plagiostoma, being most common through the 

assemblages, yet dominated by ammonites.  

In contrast to the previous description, the ecological complexity of this assemblage is 

very poor. The fauna is restricted to pelagic, surficial and semi faunal forms, with just 

one specimen as a pelagic form. Just 2% of the ecospace is used by the Tr/J fauna in 

Chile. Five modes of life are used by the Triassic assemblages, whilst 3 modes are used 

by the Jurassic assemblages. Comparatively, ten modes of life were recorded from the 

UK sections. Of these, a minimum of 3 modes of life were occupied by the Cotham 

member assemblages (Figure. 3.11; 4.11; 5.11), but none of these assemblages shared 

any modes of life. Despite the fact that this Triassic assemblage from Chile records the 

first pelagic forms in the Triassic seascape, it is in agreement with the selective 

extinction of the infaunal bivalves (Hallam 1981; McRoberts 2001; Hallam 2002; 

Aberhan and Baumiller 2003; Hautmann 2004; Kiessling et al., 2007; Mander and 

Twitchett 2008; Mander et al., 2008). The Jurassic section does not record infaunal 

bivalve taxa, which suggests that the selectivity of the extinction against infaunal 

bivalves was potentially in response to a global phenomenon. 

Aberhan and Baumiller (2003) performed a comparative study of the marine fauna from 

the early Jurassic between the Andean base and northwestern Europe. In this study, they 

made two important observations: that the richness of the marine fauna in the Andean 

basin is much lower that the richness observed in Europe and that the extinction rates 

are higher than observed in the Andean basin. They relate this drop to an anoxic event, 

adding that this extinction could change as a funtion of the geographic range. 

In this work, it is observed that the richness, composition and structure of the 

assemblage changes abruptly through the Tr/J boundary. Many of the studied fossils are 
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poorly preserved due to heavily altered thin beds of silty clay shale. However, the 

results of this work are consistent with previous studies, which demonstrate a disruption 

in the marine assemblages. This is the first palaeoecological description performed in 

the Triassic/Jurassic section in Chile, which confirms the sudden change in the marine 

fauna. 

The sample size uses in this assemblage is not sufficient for an accurate representation, 

due to the low preservation quality of the fossil record in the Andean basin. This 

implicates that it is necessary to increase the sampling intensity in spatial terms. This 

could give a better approach to the effect of the Tr/J extinction event in terms of 

intensity and would also generate a more appropriate biological model for the factors 

that control the turnover and richness in the fauna. On the other hand, it is necessary to 

perform a detailed study of the ammonite fauna through the Tr/J boundary, even though 

Hillebrandt (2000) analysed the ammonite fauna in detail, because there is not a clear fit 

between the South America zones and the Northwest Europe subzones (i.e.: the 

correlation The Tilmanni Subzone with the Planorbis Zone). 

8.7 Geographical variation of the Tr/J extinction event 

The Tr/J palaeocommunities sampled in St Audrie’s Bay, Larne and Pinhay Bay 

recorded a higher diversity than the ones observed in Chile. However, the dynamics of 

changes in each sampled community showed a drastic change in each ecological 

parameter. The Tr/J palaeocommunities in the UK have been well documented (Hallam 

1960; Hallam 1996; Hallam and Wignall 2000; Twitchett and Barras 2004; Hesselbo et 

al. 2004; Barras and Twitchett 2007; Mander et al. 2008; Wignall and Bond 2008; 

Mander and Twitchett 2008; Korte et al. 2009; Clémence et al. 2010). However, an 

ecological approach has not been seen in detail until now. This work shows that the 
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dynamic of change of the biodiversity in St Audrie’s Bay, Larne and Pinhay Bay is very 

similar. Despite that there are few differences in the species composition; all the 

localities described a significant and simultaneous drop in species richness from the 

Cotham Member to the Langport Member and a very similar recovery process (from the 

Pre-Planorbis Zone to the Angulata Zone). 

The assemblages from the northern hemisphere recorded a selective disappearance of 

the infaunal bivalves; the species composition changed from deep systems to shallow-

water conditions and the species dominance increased during the extinction regime. All 

the changes have been observed equally in other studies. However, those works were 

made in localities situated in the north of Pangaea. 

The assemblages from Tr/J communities in Chile and the UK are ecologically not 

compatible. The section from Chile represents a deep-sea environment with poor-

species, low ecological complexity and high dominance (Fig. 7.1 and Table 7.1); on 

which the sea level change had little or no effect in terms of the ecological structure of 

the assemblage. On the other hand, the assemblages from the UK represent a more 

shallow condition with high complexity and taxonomical diversity; however, they were 

strongly modulated by changes in sea level (list of taxa in appendices 4.1, 5.1, 6.1 and 

7.1). This point is very important, because probably other environmental factors (apart 

from the sea level) could modulate the ecological replacement (i.e. Anoxia, CO2, 

temperature). 

Additionally, it is difficult to establish the simultaneity of the extinction due to absence 

of a good correlation (See appendix 1.2). Figure 1.3 summarises the correlations 

between the Chile (Portezuelo Providencia), the UK and the Austria (Kuhjoch) sections 

(the Austrian stratotype section).  The Tr/J boundary through the Chilean and Austrian 
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section seems to be well correlated due to FA of Psiloceras (Appendix 7.8). However, 

unlike St Audrie’s Bay, the Chilean sections do not have an isotopic analysis that allows 

linking one of the main CO2 disturbance events with the onset of the extinction event 

(which is related to LA of C. crickmayi in Austria). This is another important point, 

because it does not allow comparison and a precise estimation of the response time and 

the intensity of the ecological changes in local assemblages (See section 7.1). In this 

sense, it is difficult to infer if the low biodiversity observance in the Chilean 

palaeoassemblages is the result of the extinction regime caused by increases in CO2 

concentrations. 

The studies through the Tr/J boundary in South America has been mostly descriptive 

and focused on the establishment of a stratigraphical framework (Hillebrandt 1990, 

1994, 2000, Riccardi and Llanos 1999, Riccardi 2008). In this sense, the 

palaeontological knowledge of the biotic crisis, especially during the Tr/J extinction 

event still remains unclear. This work is one of the first palaeoecological studies 

performed in South America, however, the information records in this work do not 

allow to establish the intensity and time span in which this event occurred. The data 

suggest a significant dynamic of changes of the species composition and a selective 

extinction of certain modes of life (infaunal forms), similar to observations through the 

UK sections (St Audrie’s Bay, Larne). 

Future investigation through the Chilean section should increase the sampling intensity 

and to incorporate other localities. Besides, for that would be necessary to develop 

isotopic analysis which permits identified environmental factors related to this 

extinction, correlated precisely with another section and determine the response times of 

the communities though the Tr/J extinction event. 
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Conclusions 

Quantitative, palaeocommunity-level analyses of assemblages across Tr/J boundary 

sections clearly suggest a marked disruption in the evolution of marine fauna taxa and 

emphasise the variability of the ecological response to the extinction. Based on these 

analyses, the following aspects of this event may be highlighted: 

1) More than 60% of the species disappear during the Cotham Member interval, 

whilst the Langport Member represents the onset of the recovery with the 

maximum taxonomical richness being reached in the Planorbis Zone.  

2) Rapid sea level fall established the sudden disappearance of the marine fauna 

associated with the Westbury Formation. Through the Cotham Member and the 

Langport Member, ocean acidification produced a selective extinction of 

infaunal and aragonitic-shell organisms. 

3) The extirpation of the palaeocommunity during this extinction event was 

extremely rapid, which happened at 201.44 Ma, clearly before the first negative 

carbon excursion (201.43 Ma and with a length of ~20-40 kyr). The duration of 

the Dead Zone spanned ~100 kyr without recording any speciation event.  

4) In term of abundance, the Cotham Member represents assemblages with few 

species and high dominance, generally associated with RADs that fit a 

geometric or broken stick model. In contrast, assemblages sampled from the 

Westbury Formation, Langport Member and Blue Lias Formation, have a low 

dominance, and their RADs generally fit to a Lognormal, Zipf or Mandelbrot 

model, reflecting species-rich assemblages or assemblages from late 

successional stages. 
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5) NMDS ordination confirms that pre-extinction communities (of the Westbury 

Formation) were compositionally different from post-extinction communities 

(of the Blue Lias Formation). Similarly, examining the response of the beta 

diversity in all the section confirms the high species turnover into the Lilstock 

Formation, mainly within the Cotham Member. 

6) Compositional analysis indicates that the extinction event acted significantly at 

a generic level rather than at family, order, or class level. This indicates that the 

ecological modifications were high; however, the phylogenetic structure did 

not show significant changes into the Early Jurassic. 

7) The number of modes of life used by the marine fauna decreased during the 

Cotham Member. However, from the Langport Member to the Blue Lias 

Formation, the numbers of modes of life increased gradually, until a total of 10 

were recorded; those changes in the ecospace are closely relating with the 

ecological complexity of the Tr/J assemblages. 

8) The recovery of the Tr/J mass extinction was relatively quick (~1.8 Ma), 

compared to other mass extinctions (e.g. End-Permian), and spanned from the 

Pre-Planorbis Zone to the Angulata Zone. During the recovery stage the ichno-

parameters, such as borrow diameter, cover and ichnofabric index increases 

from the Pre-Planorbis Zone to Angulata Zone, however, the increase was 

faster from the base to the top of the Pre-Planorbis Zone. Additionally, the 

ichno-parameter values increase simultaneously with the increase of the 

ecological variables. 

9) Body size of marine bivalves did not decrease during the extinction event 

within the Cotham Member). Although the general trend indicates that the 
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marine bivalves tend to increase their body size, the trajectory of each body 

size seems high through the stratigraphic sequence. 

10) The palaeoassemblages from the Portezuelo Providencia section recorded very 

low species richness (7 species). However, variables, such as abundance, 

demonstrate that the dominance increased in the assemblage; that the marine 

fauna suffered a compositional change of more than 90% and that diversity 

(Shannon-Weaver index) decreased after the Tr/J mass extinction event. Those 

parameters (composition and abundance) would suggest a Tr/J mass extinction 

effect. The Portezuelo Providencia section and the UK section do not show 

ecological compatibility. The Chilean section represents deep-water 

environment with a low richness, whilst all UK sections represent species-rich 

environments with deep-shallow water conditions. 

11)  The low number species in the Chilean section, the lack of a precise correlation 

of ammonites and the absence isotopic analysis do not allow correlation and 

comparison of the ecological response with the UK sections through the Tr/J 

mass extinction event.  
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Appendix 1.1 Major events around the Tr/J boundary observed in key sections. Successions are correlated on the basis of: 1) carbon isotope 

stratigraphy; 2) ammonite biostratigraphy; 3) radiolarian biostratigraphy, and; 4) magnetostratigraphy. QCI=Queen Charlotte Islands; 

OM=Orange Mountain; LU=Lower Unit. [Obtained from Hesselbo et al., 2007]. 
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Appendix 1.2 Correlation of Early Hettangian ammonites zones, subzones and 

horizons (grey). Broken Lines = approximated correlations (obtained from Hillebrandt 

et al., 2007; Tanner et al., 2004; Clémence 2008). This section summarise the 

Hillebrandt et al., (2007) and Tunner et al., (2004) works. However, complementary 

works can be observed in Hesselbo et al., (2007), Bloos & Page, (2000), Bloos, (2000); 

Wignall (2001); Simms, (2006), Hillebrandt, (1990), (1994), Riccardi et al., (2004); 

Schaltegeer et al., (2008),; McRoberts et al., (1997); Ward et al., (2007); Longridge et 

al., (2007). ?= not ammonite record. 
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Appendix 1.3 Other marine sections 

Europe: The best studied marine sections that are relevant to the Tr/J extinctions are 

concentrated in Western Europe, North America, and the Andes Cordillera (Fig.1.10). 

 t Audrie’s Bay,  omerset, England in north-western Europe was proposed by 

Warrington et al., (1994) as GSSP for the base of the Hettangian, and Bed 13 (thought 

to represent the first occurrence of the genus Psiloceras – at that time P. planorbis) as 

definition of the stratotype point. Later results (Bloos and Page, 2000) demonstrated, 

however, that the oldest psiloceratid of NW Europe (Great Britain) is Psiloceras 

erugatum, with the first occurrence (FO) in Bed 8 at Doniford Bay (near  t Audrie’s 

Bay), followed closely above by Psiloceras planorbis in the upper part of Bed 9. 

Though P. erugatum has inner whorls with nodes (‘Knoetchenstadium’), li e most of 

the Psiloceras of the Northern Calcareous Alps, it has never been found there and 

therefore cannot be fitted into the Alpine Psiloceras sequence.  

Considering the more or less pronounced ribbing on the inner whorls, and the 

occurrence closely below Neophyllites in NW Europe, P. erugatum should be younger 

than any of the Karwendel ammonites found below the Calliphyllum Zone, in which 

Neophyllites occurs in the Northern Calcareous Alps (Bloos, 2004; von Hillebrandt et 

al., 2007). 

North America: Tr/J sections in New York Canyon (Nevada, USA) have been described 

and show an almost complete ammonite record (Guex 1995; Guex et al., 1998; Guex et 

al., 2002; Guex et al., 2003). This locality has been proposed as the Tr/J GSSP in 

various ways: an initial negative isotope excursion (McRoberts et al., 1997; Fraser et 

al., 2004; Ward 2007), the FO of Psiloceras (Guex et al., 1998). However, the section 

seems to be complicated in a tectonic sense.  
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The GSSP horizon proposed by Guex et al., (1998), with the FO of Psiloceras spelae as 

boundary event, can be correlated with ammonite level (2) of the Karwendel Syncline. 

The beds with Choristoceras minutum, Odoghertyceras deweveri, Psiloceras marcouxi, 

P. tilmanni and cf. Neophyllites (Guex et al. 2002; Lucas et al., ) occurring 7.2 m higher 

in the section, may be correlated with ammonite level (3), but choristoceratids and 

psiloceratids similar to Psiloceras marcouxi do not occur in the Hettangian of Europe, 

and the determination of Neophyllites is doubtful.  

The lower part of the beds with Psiloceras pacificum (excluding specimens with ribbed 

inner whorls) may correlate with ammonite horizon (4). The pelecypod Agerchlamys 

occurs slightly earlier than Psiloceras spelae, mirroring the situation in the NCA. 

Hettangian microfossils of biostratigraphic value were not found in the Nevada sections.  

South America: The Andes section in the Utcubamba Valley of northern Peru was also 

proposed as GSSP candidate for the Tr/J (Hillebrandt 2000), but the proposal was 

withdrawn in 2006. The first Hettangian ammonite bed is characterised by a species of 

Psiloceras that is distinguished from Psiloceras tilmanni by a steeper umbilical wall. 

Odoghertyceras was also found in this bed. Above follow several beds with Psiloceras 

tilmanni. Below this bed, a limestone sample contains radiolarians transitional to basal 

Hettangian radiolarians, with just a few Rhaetian holdovers. The radiolarian turnover is 

probably older than the ammonite turnover (Lucas et al., 2005). 

There are other complete Tr/J sections in the Utcubamba Valley (Hillebrandt, 2000), but 

the ammonites are mostly compressed and not yet studied in detail. Recently, Guex 

(Guex et al. 2004) discovered Psiloceras cf. spelae close to a section described by 

Hillebrandt (1994). P. cf. spelae was found just above Choristoceras crickmayi and 10 

m below Psiloceras tilmanni. The Utcubamba Valley could eventually provide the 
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possibility of a correlation of ammonite and radiolarian biostratigraphy. (Guex et al. 

2004) 

Other Tr/J sections are found in northern Chile, but the lowest Hettangian ammonite 

horizons are missing (Hillebrandt 1990; Hillebrandt 2000). However, Chong (personal 

comm.) indicated that there are more complete marine sections of the Tr/J close to those 

reported by Chong and Hillebrandt, (Chong and Hillebrandt 1985). The oldest 

ammonite level can be correlated with part of the beds with Psiloceras polymorphum in 

Nevada and the Planorbis and Calliphyllum Zones in Europe.  
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Appendix 2.1 List of Index richness estimator described in the Chapter 2. 

 

 
 
 
 

Richness Estimator Calculation Elements Concept 

Individual-based 

Rarefaction 

(Coleman curves) 

   ∑[  
(    

 
)

( 
 
)

]

 

    

 

Sm: is the total number of species 

expected; ni is the number of 

individuals of the ith species; m is 

the  subsample of the entire 

collection of size N. 

This tool estimates how many taxa you would expect to find in a sample with a smaller 

total number of individuals. With this method, it is possible compare the number of taxa 

in samples of different size. Using rarefaction analysis on the largest sample, it is 

possible to read out the number of expected taxa for any smaller sample size (including 

that of the smallest sample) (Coleman et al., 1982; Olszewski 2010; Magurran 2004; 

Hammer and Harper, 2006). 

Sample-based 

Rarefaction 

(Mao Tau = expected 

species accumulation 

curves) 

   ∑[  
(    

 
)

( 
 
)

]

      

    

 

A: number of total collections; a: 

number of the collection in the 

subset; Oi: number of the number 

collection in which the taxon i 

occurs, and Sa: expected richness 

at a collections. 

(Also called) Collector’s curves are conceptually very similar to individual-based 

rarefaction. However, Sample-based Rarefaction depicts the trajectory of richness as a 

series of the entire collection is added successively. The collection can be replicates from 

a single sampling location or a set of sampling units from different locations in a region 

or different beds in a stratigraphic succession (Gotelli and Colwell, 2001; Olszewski 

2010). 

Chao1            

  
 

   
 

Sobs: number of species observed 

in the sample; F1: the number of 

observed species represented by a 

single individual (singletons); F2: 

number of observed species 

represented by two individuals 

(doubletons). 

Richness estimator of the absolute number of species in assemblage. Chao1, is non-

parametric, but also requires relative abundance data. It is based on the number of rare 

species in the sample. The richness estimation produced by Chao1 is a function of the 

ratio of singletons and doubletons and will exceed observed species richness by ever 

greater margin as the relative frequency of singletons increases. (Coddington et al., 1996; 

Magurran 2004; Colwell 2005) 

Chao2            

  
 

   
 

Q1: the number of species that 

occur in one sample (unique 

species); Q2: the number of 

species that occur in two samples. 

Chao2 is a richness estimator using an incidence-based approach. The disadvantage of 

Chao1, is that requires abundance data (Magurran 2004). However, Chao2 is a modified 

estimator that uses present /absence data. In this case, it is only necessary to know the 

number of species found in just one and two samples (Magurran, 2004; Foggo et al., 

2003).    

Jackniffe1                 (
   

 
) 

Sobs: number of species observed 

Q1: number of species found in 

one sample; m: number of 

samples.  

Jackkniffe1, is a first order estimator that employs the number of species that occur in 

only a single sample (Magurran 2004). It is based on presence/absence data rather than 

species abundances.  It is useful to reduce bias and estimates species richness. It has a 

closed form (Smith and Pontius 2006). 
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Appendix 2.2 List of Rank abundance Models and of the estimators used for inferred the most competence model.  

 
Estimator Calculation Elements Concept 

Broken stick model    
  

 
∑

 

 

 

    

 

Where ni: the abundance of the 

ith species; Nt: is the total 

number of individuals (site 

total) and S is the total number 

of species in the community. 

Developed by MacArthur (1957), broken stick is the closest nature gets to maximal evenness. 

MacArthur likened the subdivision of niche space within a community to a stick broken 

randomly and simultaneously into S pieces. It is the most uniform distribution ever found in 

natural communities. The model could be viewed as representative of a group of species of 

equal competitive ability jostling for niche space (Tokeshi 1993; Magurran, 2004). 

Geometric series                  

Where the ni : the total number 

of individuals in the ith species; 

N : the total number of 

individuals; k : the proportion of 

the remaining niche space 

occupied by each successively 

colonizing species (k is the 

constant); Ck = [1-(1-k)S]-1 and 

is a constant that insures that 
∑    . 

The Geometric model (Motomura 193 , 194 ; Whitta er 19 5) suggests that the ‘most 

successful species’ (presumably the one with the highest competitive ability) ta es fraction k 

of the resources, and therefore forms approximately (Whittaker 1965) fraction k of the 

abundance. The ratio of abundance of each species to the abundance of its predecessor is 

constant through the ranked list, so that the plot of abundance/species rank appears like a 

straight line that decays. Empirical data showed that this model is found in species-poor (and 

often harsh) environments or early stages of a succession (Magurran 2004). 

Log normal                  

S(R): is the number of species 

in the Rth octave to the right, 

and to the left, of the symmetric 

curve; S0: the number of species 

in the modal octave; and 

         

 
 : the inverse width 

of the distribution. 

The majority of the largest assemblages studied by ecologists appear to follow a log normal 

pattern of specie abundance. Preston (1948) proposed the use of a Lognormal dominance/ 

diversity distribution for empirical reasons. “The organism growth is affected by several 

species, and by several environmental factors. The result will tend to a normal distribution. 

Since organisms have intrinsic logarithmic growth, effects will tend to be proportional, and the 

result will be a General Lognormal distribution” (May 19 5; Wilson 1991; Magurran 2004). 

In summary, the log normal distribution presents a shallower slope, which is associated with 

the highest evenness, generally associated with more “stable” ecosystems (Magurran    4). 

Zipf-Mandelbrot          

Where: A1: the fitted abundance 

of the most abundant species 

and represents the average 

probability of the appearance of 

a species, all previous 

conditions necessary for this 

species being realised. 

Graphically, it is the slope of 

log abundance on log rank, so 

near 1 gives greater evenness of 

abundance; it is rarely less than 

1 (Frontier 1985). 

It reflects successional process in which the later colonists have more specific requirements 

and hence are rarer than the first species that arrive. The Mandelbrot model related originally 

to information systems assesses the cost of information. “Applied to plant communities, the 

presence of a species can be seen as dependent on previous physical conditions and previous 

species presences - the costs. Pioneer species have low cost, requiring few prior conditions. 

Late successional species have a high cost, viz. the energy, time, and organisation of the 

ecosystem required before they can invade. On this basis they will be rare” (Frontier 198 ; 

Wilson 1991). 
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Appendix 2.3 Statistical tools 

Estimator Calculation Elements Concept 

Whittaker (w) w     ̅⁄  

Where S: the total number of species recorded in the 

system, and  : is the average sample diversity, 

where the samples are standardised and the diversity 

is measured as like species richness.  

Beta reflects the biotic change or species replacement. 

That meas, beta diversity is a measure of the extent to 

which the diversity of two or more spatial units differs 

(Magurran 2004). For more information about the 

performed of each index, see Wilson and Shmida 

(1984), Koleff et al., (2003); and Magurran (2004). 

Wilson and  hmida’s 

index (T) 
T   

 [         ]

   ̅
 

    : is the number of species gained;     : is the 

number of the species lost and   ̅: is the total 

number of species recorded in the system. 

ANOSIM  

(Analysis of 

similarities) 

   
 ̅    ̅ 

       ⁄
 

Its statistic is based on the mean ranks of within 

group   ̅   and between group   ̅   dissimilarities, 

scaled into the rank       , and R = 0: indicating 

independence.  

Analysis of similarities (ANOSIM) evaluates if the 

group generate by NMDS are different.  ANOSIM is 

often represents as a non-parametric variant of analysis 

of variance. The statistic uses only rank –order 

information, and is conceptually related to NMDS. The 

significance is based on permutation test. 

Euclidean distance       √∑          

 

   

 

 

This formula is the Pythagorean theorem applied to 

p dimension rather than the usual two dimensions. 

Each element of the matrix,      , is the abundance of 

species j in sample unit i or h. 

This is probably the most commonly chosen type of 

distance. It simply is the geometric distance in the 

multidimensional space.  

SIMPER 

SIMPER (Similarity Percentage) is a method for assessing which taxa are primarily responsible for an observed difference between groups of samples (Clarke 1993). 

“The overall significance of the difference is often assessed by ANOSIM”. The Bray-Curtis similarity measure (multiplied by 100) is implicit to SIMPER. The 

description is based on the program PAST (Hammer and Harper 2006). 



308 
 

Appendix 2.4 Definitions 

 

2.41 Species dominance index estimation: This is simply the fraction of the 

collection that is represented by the most common species. Dominance can be a 

useful index of resource monopolization by a superior competitor, particularly in 

communities that have been invaded by exotic species (e.g., Porter and Savignano 

1990). Like species richness, dominance is sensitive to sample size. In the extreme 

case of a collection of only 1 individual, dominance would always equal 1.0” (Gotelli 

and Entsminger 2011). 

2.42 Kurtosis: A statistical measure used to describe the distribution of observed 

data around the mean. The fourth power of the deviations from the mean, provide a 

measure of  urtosis.  Kurtosis ≈ “pea edness” or “tailed-ness, but in fact, is the 

dispersion around µ-σ and µ+σ. A leptokurtic distribution has values highly 

concentrated around the mean. The platykurtic distribution records a great variation 

around the mean or a more inflated curve. Finally, mesokurtic reflects a “normal” 

distribution. 

2.43 Null Models: Gotelli and Graves (1996: 3) provide an operational definition 

of a null model as it has been applied in community ecology: ...‘‘A null model is a 

pattern-generating model that is based on randomization of ecological data or 

random sampling from a known or specified distribution. The null model is designed 

with respect to some ecological or evolutionary process of interest. Certain elements 

of the data are held constant, and others are allowed to vary stochastically to create 

new”. See also Gotelli (2006). 
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2.44 Randomisation (permutation): A Nonparametric resampling method 

applied solely to a particular data set (i.e., not generalisable to the sampled 

population) that involves re-assigning observations without replacement to the 

probability of observing some outcome (Kowalewski and Novack-Gottshall 2010). 

2.45 Non-metric Multidimensional scaling (nMDS): Is a method that groups 

elements (samples) based on a Similarity matrix. In this case the matrix built was based 

on Euclidian distance. The nMDS attempts to place the data points in a two- or three-

dimensional coordinate system such that the ranked differences are preserved (Clarke 

and Gorley 2006; Hammer 2001; Clarke 1993).
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Appendix 3.1 Occurrences average per stage and continent from Sepkoski Compendium, data obtained from Paleobiology Database. 
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Antarctica 0 0 0 0 0 0 0 0 0 0 0 0 0 

Indian Ocean 0 0 2 0 0 0 0 0 0 0 0 0 0 

Africa 5.6 2.5 0 0 0 0 0 3 1 1 2.2 0 3 

North America 4.7 2.3 2 4 2.4 4.3 2.7 3.2 4.7 3.4 4.3 2.3 2.4 

South America 0 0 0 0 0 0 0 0 0 4.5 27.2 3.2 8.4 

Asia 3.7 4.8 6.5 4.4 4.1 4.4 15.7 4.3 6.6 6 5 4.7 3.4 

Europe 11.4 1.5 8.1 6.7 2.3 3.6 4.7 4.5 8.6 9.7 4.4 6.7 5.8 

Oceania 15.8 3.7 5.3 2.7 1 2.9 1.5 1.9 9.3 6.3 23.8 6 0 

AVERAGE 5.15 1.85 2.9875 2.225 1.225 1.9 3.075 2.1125 3.775 3.8625 8.3625 2.8625 2.875 

SUM 41.2 14.8 23.9 17.8 9.8 15.2 24.6 16.9 30.2 30.9 66.9 22.9 23 

% 12.18 4.37 7.06 5.26 2.89 4.49 7.27 4.99 8.93 9.139 19.78 6.77 6.80 
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Appendix 3.2 Number of genera and mode of life recorded through P/Tr and Tr/J 

obtain from  ep os i’s data base. Cog: Codification of each mode of life based in the 

the numeration of the table 7.1. This code is made up by 3 numbers. The first one, 

indicate tiering level (listed at table 7.1). The second, indicate the level of motility and 

third one indicate the feeding mechanism. Example, 111 mean Pelagic-Fast-Filter 

feeders. 

 

Cog Modes of life                               Number of  Genera 

 
111  Pelagic, Freely-Fast, Suspension  (7) 
ARTRHPODA  

 Malacostraca                                      
 Cumacea 

 Mysidacea  

Ostracoda 
Myocopida 

 

114 Pelagic, Freely-Fast, Grazing  (31) 

CHORDATA  
Osteichthyes  

Pachycormiformes 

 

115 Pelagic, Freely-Fast, Predatory 

 (876) 

MOLLUSCA 

Cephalopoda 
Ammonoidea 

Anarcestida 

Aulacocerida 

Belemnitida 

Ceratitida 

Goniatitida 

Nautilida 

Orthocerida 

Phragmoteuthida 

Phylloceratida 

Prolecanitida 

Teuthida 

ARTHROPODA 

Malacostraca 
Lophogastrida 

Thylacocephala 
Concavicarida 

Conchyliocarida 

CHORDATA 

Amphibia 
Temnospondyli 

Chondrichthyes 
Chimaeriformes 

Ctenacanthida 

Eugeneodontida 

Galeomorphii Incertae Sedis 

Hexanchiformes 

Holocephali Incertae Sedis 
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Orectolobiformes 

Petalodontida 

Osteichthyes 
Amiiformes 

Bobasatraniformes 

CephaloxeniformesCoelocanthiformes 

Macrosemiiformes 

Peltopleuriformes 

Perleidiformes 

Pholidopleuriformes 

Ptycholepiformes 

Pycnodontiformes 

Saurichthyiformes 

Semionotiformes 

Reptilia 
Crocodilia 

Ichthyosauria 

Notosauria 

Placodontia 

Plesiosauria 

Thalattosauria 

  

261 Erect, Non-motile-attached, Suspension 

 (135) 

ECHINODERMATA 

Crinoidea 
Cladida 

Comatulida 

Disparida 

Encrinida 

Isocrinida 

Millericrinida 

Monobathrida 

Roveacrinida 

Sagenocrinida 

 

311 Surficial, Freely-Fast, Suspension  (10) 

ARTHROPODA 

Malacostraca 
Leptostraca 

Ostracoda   
Metacopida   

 

312 Surficial, Freely-Fast, Deposit  (8) 

ARTHROPODA 

Malacostraca 
Isopoda  

Tanaidacea 

 

313 Surficial, Freely-Fast, Mining   (24) 

ARTHROPODA 

Marrelomorpha 
Cyclina 

Trilobita 
Proetida 
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315 Surficial, Freely-Fast, Predatory  (16) 

ARTHROPODA 

Malacostraca 
Decapoda 

 

321 Surficial, Freely-Slow, Suspension 

 (108) 

ARTHROPODA 

Ostracoda 
Platicopida 

MOLLUSCA 

Gastropoda 
Cephalaspida 

Heterostrophia 

Neotaenioglossa 

 

322 Surficial, Freely-Slow, Surface deposit  (39) 

ECHINODERMATA 

Ophiuroidea 
Ophiurida 

MOLLUSCA 

Gastropoda 
Architaenoglossa 

Cephalaspida 

Heterostrophia 

Neotaenioglossa 

 

323 Surficial, Freely-Slow, Mining   (92) 

ARTHROPODA 

Ostracoda 
Podocopida 

ECHINODERMATA 

Echinoidea 
Disasteroida 

Echinocystitoida 

Pedinoida 

324 Surficial, Freely-Slow, Grazing 

 (257) 

ECHINODERMATA 

Echinoidea 
Cidaroida 

Diadematoida 

Hemicidaroida 

Phymosomatoida 

Plesiocidaroida 

MOLLUSCA 

Gastropoda 
Archaeogastropoda 

Architaenoglossa 

Cephalaspida 

Neotaenioglossa 

Polyplacophora 
Neoloricata 
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Paleoloricata 

Tergomya 
Patellogastropoda 

325 Surficial, Freely-Slow, Predatory  (55) 
 

ANNELIDA 

Polychaeta 
Eunicemorpha 

ARTHROPODA 

Merostomata 
Xiphosurida 

ECHINODERMATA 

Asteroidea 
Forcipulatida 

Notomyotida 

Trichasteropsida 

Valvatida 

MOLLUSCA 

Gastropoda 
Bellerophontida 

Cephalaspida 

Heterostrophia 

Neotaenioglossa 

 

331 Surficial, Facultative-Unattached, Suspension  (10) 

MOLLUSCA 

Bivalvia 
Arcoida 

Pterioida 

Hyolitha 
Hyolithida 

 

334 Surficial, Facultative-Unattached, Grazing (13) 

MOLLUSCA 

Gastropoda 
Euomphalina 

 

361 Surficial, Non-motiles, attached, Suspension  

 (1254) 

ANNELIDA 

Polychaeta 
Serpulimorpha 

ARTHROPODA 

Cirripedia 
Pedunculata 

Acrothoracica 

Scalpelliformes 

BRACHIOPODA 

Craniata 
Craniida 

Rhynchonellata 
Orthida 

Rhynchonellida 



315 
 

Spiriferida 

Terebratulida 

Thecideida 

Athyridida 

Strophomenata 
Orthotetida 

Productida 

Strophomenida 

BRYOZOA 

Gymnolaemata 
Ctenostomata 

Stenolaemata 
Cryptostomata 

Cyclostomata 

Cystoporata 

Fenestrata 

Trepostomata 

CNIDARIA  

Anthozoa  
Alcyonacea  

Pennatulacea  

Rugosa  

Scleractina  

Tabulata  

Scyphozoa  
Conulariida  

Hydrozoa  
Hydroida  

Lemniscaterina  

Milleporina  

ECHINODERMATA  

Blastoidea  

Fissiculata  

Spiraculata  

HEMICHORDATA  

Pterobranchia  

Rhabdopleurida  

Order uncertain (genus: Megaderaion) 

MOLLUSCA  

Bivalvia  

Arcoida  

Hippuritoida  

Pectinoida  

Pholadomyoida  

Pterioida  

Gastropoda  
Neotaenioglossa 

PORIFERA 

Calcarea 
Pharetronida 

Sycones 

Demospongea 
Agelasida 

Astrophorida 

Axinellida 
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Guadalupiida 

Hadromerida 

Haplosclerida 

Lithistida 

Permosphincta 

Poecilosclerida 

Tabulospongida 

Verticillitida 

SILICISPONGEA 

Hexactinellida 
Amphidiscosa 

Hexactinosa 

Lychniscosa 

Lyssacinosida 

Reticulosa 

HEMICHORDATA 

Enteropneusta 
Megaderaion 

 

 

362 Surficial, Non-motiles, Attached, Surface-Deposit   (1) 

ANNELIDA  

Polychaeta 
Order uncertain (genus: Microtubus) 

 

411 Semi-infaunal, Freely-Fast, Suspension (23) 

ARTHROPODA   

Ostracoda  
Palaeocopida  

 

422 Semi-infaunal, Freely-Slow, surface deposit (3) 

MOLLUSCA 

Scaphopoda 
Dentaliida 

 

424 Semi-infaunal, Freely-Slow, Grazing  (1) 

ECHINODERMATA  

Echinoidea  
Pygasteroida 

 

425 Semi-infaunal, Freely-Slow, Predatory  (1) 

ECHINODERMATA  

Asteroidea  
Velatida 

 

431 Semi-infaunal, Facultative-Unattached, Suspension         (10) 

MOLLUSCA 

Bivalvia 
Arcoida 

Order uncertain (genus: Cruciella) 

Order uncertain (genus: Laubeia) 

Order uncertain (genus: Taeniodon) 
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435 Semi-infaunal, Facultative-Unattached, Predatory  

 (4 )  

ANNELIDA  

Polychaeta 
Phyllodocemorpha 

 

441 Semi-infaunal, Facultative-Attached, Suspension  (53) 

MOLLUSCA 

Bivalvia 
Pterioida 

ECHINODERMATA 

Holothuroidea 
Apodida 

Aspidochirotida 

Dactylochirotida 

Dendrochirotida 

Elasipodida 

Molpadiida 

Order uncertain (genus: Acanthocaudina) 

Order uncertain (genus: Calclyra) 

Order uncertain (genus: Conisia) 

Order uncertain (genus: Crucivirga) 

Order uncertain (genus: Curvatella) 

Order uncertain (genus: Semperites) 

Order uncertain (genus: Triradites) 

Order uncertain (genus: Uniramosa) 

BRACHIOPODA 

Lingulata 
Lingulida 

 

451 Semi-infaunal, Non-motile-Unattached, Suspension  (2) 

MOLLUSCA 

Rostrochonchia 
Conocardioida 

 

461 Semi-infaunal, Non-motile-Attached, Suspension (16) 

MOLLUSCA 

Bivalvia 
Mytiloida 

Pterioida 

Hippuritoida 

 

 531 Shallow-infaunal, Facultative-Unattached, Suspension (53) 

MOLLUSCA 

Bivalvia 
Trigonioida 

Arcoida 

Pholadomyoida 

Nuculoida 

 

532 Shallow-infaunal, Facultative-Unattached, Surfacedeposit  (6) 

MOLLUSCA 

Bivalvia 
Nuculoida 
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535 Shallow-infaunal, Facultative-Unattached, Predator  (1) 

MOLLUSCA 

Bivalvia 
Pholadomyoida 

 

541  Shallow-infaunal, Facultative-attached, Suspension  (33) 

MOLLUSCA 

Bivalvia 
Veneroida 

 

546 Shallow-infaunal, Facultative-attached, Chemotrophic  (5) 

MOLLUSCA 

Bivalvia 
Solemyoida 

 

561  Shallow-infaunal, Non-motile-attached, Suspension  (32) 

MOLLUSCA 

Bivalvia 
Pholadomyoida 

Myoida 

Veneroida 

Unionoida 

Nuculoida 

 

633 Deep-infaunal, Facultative-Unattached, Mining  (1) 

MOLLUSCA 

Bivalvia 
Drilomorpha 
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Appendix 3.3 Number of genera per mode of life present before and after an extinction event. 

   
Changhsingian Taxa that cross to Induan Rhaetian Taxa that cross to Hettangian 

T M F Phylum Class Order Genera Phylum Class Order Genera Phylum Class Order Genera Phylum Class Order Genera 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 4 1 1 1 6 1 1 1 1 1 1 2 6 1 1 2 2 

1 1 5 2 3 13 36 2 3 11 16 3 5 22 90 3 5 16 25 

2 6 1 1 1 2 2 0 0 0 0 1 1 5 13 1 1 2 7 

3 1 1 1 1 1 3 1 1 1 2 1 1 1 4 1 1 1 4 

3 1 2 1 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 

3 1 3 1 2 2 3 1 1 1 1 1 1 1 3 0 0 0 0 

3 1 5 1 1 1 1 0 0 0 0 1 1 1 2 1 1 1 1 

3 2 1 1 1 3 8 1 1 3 7 2 2 3 45 2 2 3 24 

3 2 2 1 1 3 7 1 1 2 3 1 1 4 17 1 1 4 8 

3 2 3 1 1 1 28 1 1 1 3 2 2 2 19 2 2 2 14 

3 2 4 2 4 7 44 2 4 5 25 2 4 6 74 2 4 5 33 

3 2 5 2 2 4 21 2 2 4 13 3 3 5 12 3 3 4 11 

3 3 1 1 1 1 1 0 0 0 0 1 1 1 6 1 1 1 5 

3 3 4 1 1 1 6 1 1 1 4 1 1 1 4 1 1 1 1 

3 6 1 8 13 27 221 8 12 21 65 9 13 29 296 9 12 22 105 

3 6 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

4 1 1 1 1 1 13 1 1 1 2 1 1 1 1 1 1 1 1 

4 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 3 1 1 1 1 2 1 1 1 2 1 1 1 3 1 1 1 3 

4 3 5 1 1 1 2 1 1 1 2 2 2 3 5 2 2 3 4 

4 4 1 2 2 5 11 2 2 5 11 3 3 7 23 3 3 7 21 

4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 6 1 1 1 2 2 1 1 2 2 1 1 3 8 1 1 2 4 

5 3 1 1 1 3 5 1 1 3 4 1 1 3 14 1 1 3 6 

5 3 2 0 0 0 0 0 0 0 0 1 1 1 2 1 1 1 1 

5 3 5 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

5 4 1 2 2 2 3 0 0 0 0 1 1 1 12 1 1 1 5 

5 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 6 1 1 1 2 3 1 1 2 2 1 1 4 13 1 1 4 8 

6 3 3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

Average 1.48 1.84 3.52 17.28 1.24 1.52 2.72 6.72 1.709 3.61 3.61 21.83 1.34 1.56 2.81 9.25 
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Appendix 3.4 Relative abundance by mode of life and geological stages. T: Tiering, M: Motility, F: Feeding Mechanisms. Average: 

represent the average of the relative abundance of each mode of life by geological stage. Each category is described at appendix 3.2. 

 
 

T M F Average

3 6 2 0.15 0.00636578

6 3 3 0.15 0.00636578

4 2 4 0.19 0.00832917

4 2 5 0.24 0.01052742

4 5 1 0.21 0.21 0.01848225

5 3 5 0.18 0.16 0.14 0.14 0.14 0.17 0.17 0.15 0.26 0.24 0.19 0.18 0.09229433

1 1 1 0.53 0.42 0.36 0.23 0.24 0.19 0.18 0.09386673

5 3 2 0.21 0.21 0.18 0.16 0.14 0.14 0.29 0.17 0.17 0.29 0.51 0.73 0.57 0.54 0.18776754

5 4 6 0.43 0.21 0.36 0.23 0.49 0.52 0.4 0.3 0.24 0.26 0.21 0.18 0.16 0.14 0.14 0.14 0.17 0.17 0.15 0.51 0.48 0.38 0.36 0.28819594

3 1 3 1.71 2.11 1.26 0.68 0.49 0.52 0.4 0.3 0.24 0.26 0.21 0.18 0.16 0.14 0.14 0.43 0.17 0.17 0.44 0.4355685

3 1 5 0.23 0.4 1.52 1.18 1.54 0.64 0.18 0.16 0.28 0.28 0.14 0.17 0.17 0.29 0.51 0.48 1.34 1.25 0.46863173

3 1 2 0.32 0.42 0.36 0.46 0.97 1.03 0.8 0.91 0.95 0.77 0.85 0.37 0.32 0.28 0.28 0.29 0.34 0.7 0.29 0.26 0.24 0.19 0.18 0.50290565

4 1 1 1.18 1.06 3.43 2.97 0.97 1.03 0.4 0.3 0.24 0.26 0.21 0.18 0.16 0.14 0.14 0.14 0.17 0.17 0.15 0.26 0.24 0.59969993

4 3 1 0.21 0.21 0.36 0.46 0.97 1.03 0.8 0.91 0.47 0.77 0.43 0.37 0.48 0.7 0.69 0.43 0.51 0.52 0.44 1.28 1.21 0.77 0.72 0.64047506

3 1 1 0.53 0.32 0.9 0.68 0.97 1.03 0.8 0.61 0.47 0.51 0.43 0.37 0.32 0.28 0.28 0.29 0.34 0.35 0.59 1.53 1.45 1.15 1.07 0.66381838

4 2 2 0.32 0.32 0.54 0.68 1.46 1.55 1.2 0.91 0.71 0.77 0.64 0.55 0.48 0.42 0.41 0.43 0.51 0.52 0.44 0.77 0.73 0.57 0.54 0.67227202

3 3 1 0.21 0.21 0.18 0.23 0.3 0.95 1.03 0.85 0.73 0.8 0.98 0.97 0.86 1.01 1.22 0.88 1.28 1.21 0.96 0.89 0.6852077

4 6 1 0.64 0.63 0.36 0.46 0.97 1.03 0.8 0.91 0.71 0.77 0.64 0.92 0.8 0.98 0.97 0.86 1.01 1.04 1.17 1.02 0.97 0.77 0.89 0.84053014

1 1 4 0.11 0.11 1.08 1.37 0.97 1.03 1.2 0.91 1.18 0.77 1.07 0.92 0.8 0.7 0.69 0.43 1.01 0.52 0.88 1.02 0.97 1.72 1.43 0.90837164

3 3 4 1.18 0.95 1.08 1.37 1.94 2.06 1.59 1.22 1.18 1.29 1.07 0.92 0.8 0.7 0.69 0.58 0.68 0.7 0.59 0.26 0.24 0.19 0.18 0.93198818

5 4 1 0.21 0.21 0.36 0.68 0.61 0.47 1.03 1.07 1.65 1.44 1.12 1.11 1.87 1.52 1.57 1.76 3.32 3.39 2.49 2.33 1.22612199

4 3 5 0.53 0.53 0.9 1.14 2.43 2.58 2.39 1.82 1.65 1.8 1.49 1.28 1.12 0.98 0.97 1.01 1.18 1.22 1.02 1.53 1.45 1.34 1.07 1.36763443

5 6 1 1.07 1.27 0.9 0.68 1.46 1.55 1.2 1.52 1.65 1.8 1.49 1.47 1.28 1.97 1.94 1.87 2.2 2.26 1.9 3.57 3.39 2.49 2.33 1.79330437

2 6 1 4.06 9.2 0.36 0.46 0.61 1.89 2.57 1.71 1.28 1.59 1.97 1.11 1.73 1.52 1.91 1.9 2.3 2.18 2.11 3.76 1.92202821

5 3 1 1.28 2.01 1.81 1.14 2.43 2.06 1.59 1.82 1.65 1.54 1.28 1.47 1.28 2.11 2.21 2.31 2.2 2.26 2.05 2.55 2.42 2.68 2.68 1.94927712

3 2 2 1.28 1.27 1.26 1.6 1.94 2.06 2.39 1.82 2.36 2.57 2.35 2.57 2.71 2.11 2.07 2.45 2.7 2.78 2.49 2.3 2.42 2.87 2.68 2.22042606

3 2 3 2.03 2.01 6.5 6.39 1.94 2.06 2.39 3.34 2.36 2.06 2.56 2.39 2.55 1.97 2.07 2.02 2.2 2.26 2.78 4.59 4.84 3.64 4.29 3.01077351

3 2 5 2.78 2.54 4.15 4.79 6.31 5.67 4.78 3.65 3.07 3.08 2.77 2.39 1.75 1.54 1.52 1.59 1.86 1.91 1.76 3.32 3.63 3.07 2.86 3.07803723

4 4 1 1.5 1.48 2.35 2.51 5.34 5.67 4.78 3.65 3.78 4.63 4.05 4.22 3.67 2.95 3.18 4.32 5.41 5.91 3.37 5.36 5.57 4.41 3.94 4.00123573

3 2 1 0.96 1.06 1.44 1.83 3.4 4.12 3.59 3.04 3.55 4.11 3.84 9.72 12.8 7.72 7.61 6.48 7.09 7.3 6.59 7.65 7.26 6.13 5.72 5.34750159

3 2 4 9.83 7.72 9.75 10 12.1 13.9 12 10.9 13.2 14.1 12.6 13.2 17.7 11.5 11.2 10.5 9.97 10.3 10.8 9.69 9.44 10.5 10.6 11.3776952

1 1 5 8.76 7.29 8.84 8.22 17.5 18 29.9 36.5 24.6 20.8 27.3 23.3 19.5 18.7 20.5 16.6 19.8 16 13.2 11.2 12.3 15.3 16.6 17.8542873

3 6 1 57.9 56 51.1 50.5 35 31.4 26.3 21.6 31.2 30.8 30.3 28.8 27 39.3 38.6 41.8 36 37.7 43.3 33.2 32 33.7 32.7 36.7900133
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Appendix 4.1 Lists of taxa and abundance of each species by lithology recorded at each sample along the Audrie’s Bay section. 

 height (m) 1.9 2.9 4.9 6.8 9 10.2 11 11.4 12 12.4 12.9 13.3 14 14.2 15.8 17.2 18.4 19.6 20.3 21.2 23.7 25 25.9 27.6 32 35.5 40.9 46 51.3 58 61

Species Plyla Class Order Family / sample code WF1 WF2 WF3 WF4 WF5 WF6 CM1 CM2 CM3 CM4 LM1 LM2 LM3 LM4 PPZ1 PPZ2 PPZ3 PPZ4 PZ1 PZ2 PZ3 PZ4 PZ5 PZ6 LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 AZ1

Astarte  sp. Mollusca Bivalvia Carditoida Astartidae 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Briozoa Briozoa ?? ?? ?? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Caloceras johnstoni (Sowerby) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

Cardinia regularis (Terquem) Mollusca Bivalvia Carditoida Cardiniidae 0 2 0 0 0 0 1 0 0 0 0 0 0 3 4 1 0 0 0 0 3 0 7 3 0 0 1 0 0 0 6

Chlamys valoniensis  (Defrance) Mollusca Bivalvia Pectinoida Pectinidae 0 0 1 6 11 12 0 0 13 0 0 1 0 0 0 0 8 1 0 3 1 0 0 0 0 0 0 0 1 0 0

Diademopsis tomesi (Wright) Echinodermata Echinoidea Pedinoida Pedinidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 32 9 10 42 20 10 5 45 6 21 2 6 0 11 8 0

Grammatodon hettangiensis (Terquem) Mollusca Bivalvia Arcoida Parallelodontidae 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocrinus psilonoti (Quenstedt) Echinodermata Crinoidea Articulata Isocrinidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 5 16 2 9 1 18 17 1 2 2 0 8 0

Isocyprina concentricum (Moore) Mollusca Bivalvia Veneroida Arcticidae 43 96 50 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocyprina depressum (Moore) Mollusca Bivalvia Veneroida Arcticidae 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocyprina ewaldi (Bornemann) Mollusca Bivalvia Veneroida Arcticidae 0 106 67 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Liostrea hisingeri (Nilsson) Mollusca Bivalvia Pterioida Gryphaeidae 0 0 0 1 2 2 0 0 0 0 0 0 8 47 10 40 8 62 17 23 2 3 16 4 1 0 0 1 0 3 14

Liriomyophoria postera  (Quenstedt) Mollusca Bivalvia Trigonioidea Myophoriidae 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Modiolus hillanus (Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 5 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0

Modiolus minimus  (J. Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 36 6 32 31 0 0 2 3 2 0 0 0 0 0 0 0

Modiolus  sp. Mollusca Bivalvia Mytiloida Mytilidae 1 1 0 1 2 0 1 0 5 0 0 0 0 3 0 17 3 3 2 3 4 0 1 2 1 1 0 0 9 0 0

Modiolus ventricosus (Roener) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 48 5 3 0 6 2

Myoconcha sp. Mollusca Bivalvia Pholadomyoidea Permophoridae 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

Mytilus cloacinus  (Tutcher) Mollusca Bivalvia Mytiloida Mytilidae 1 1 1 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mytilus  sp. Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Oxytoma inequivalvis (J. Sowerby) Mollusca Bivalvia Pectinoida Oxytomidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Paleonucula navis (Piette) Mollusca Bivalvia Nuculoida Nuculidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Parellodon  sp. Mollusca Bivalvia Arcoida Parallelodontidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Permophorus elongatus  (Moore) Mollusca Bivalvia Pholadomyoida Permophoridae 3 24 72 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pholadomya  sp. Mollusca Bivalvia Pholadomyoidea Pholadomyidae 0 0 0 0 0 0 0 0 0 0 0 16 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

Pinna  sp. Mollusca Bivalvia Pterioida Pinnidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

Placunopsis alpina  (Winkler) Mollusca Bivalvia Pectinoida Anomiidae 2 0 0 1 15 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Plagiostoma giganteum (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 10 0 0 18 0 4 11 15 7 0 1 1 0 4 1

Plagiostoma punctatum (J. Sowerby) Mollusca Bivalvia Limoida Limidae 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Promathilda rhaetica  (Moore) Mollusca Gastropoda Heterostropha Mathildidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Protocardia rhaetica  (Merian) Mollusca Bivalvia Veneroida Cardiidae 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pseudokatosira undulata (Benz) Mollusca Gastropoda Murchisoniina Zygopleuridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

Pseudolimea duplicata (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 4 0 0 0 2 0

Psiloceras planorbis (J. Sowerby ) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Psilophyllites hagenowi (Dunker) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Pteromya langportensis (Richardson and Tutcher) Mollusca Bivalvia Pholadomyoida Pholadomydae 0 0 0 0 0 0 0 0 0 0 0 6 1 1 2 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0

Rhaetavicula contorta  (Portlock) Mollusca Bivalvia Pterioida Pteriidae 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rollieria bronni (Andler) Mollusca Bivalvia Nuculanoida Yoldiidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 height (m) 2.4 3.8 6 8.2 9.7 10.5 13 13.3 14.8 16.6 18 19.3 20.8 22 23.2 24.6 26.7 28.1 32.6 36.2 41.6 46.7 52.3 58.6 62

Species Plyla Class Order Family / sample code W1 W2 W4 W5 W6 W7 LM1 LM2 PP1 PP2 PP3 PP4 PZ1 PZ2 PZ3 PZ4 PZ5 PZ1 PZ2 PZ3 PZ4 PZ5 PZ6 PZ7 PA1

Antiquilima  sp. Mollusca Bivalvia Pterioida Limidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Asalties laqueus (Quenstedt) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0

Caloceras johnstoni (Sowerby) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0

Camptonectes  sp. Mollusca Bivalvia Pectinoida Pectinidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 4 0 0

Cardinia regularis (Terquem) Mollusca Bivalvia Carditoida Cardiniidae 0 0 0 0 0 0 0 0 2 4 6 3 0 0 0 0 0 5 2 2 0 2 0 18 1

Cassianella  sp. Mollusca Bivalvia Pterioida Cassianellidae 0 2 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chlamys valoniensis  (Defrance) Mollusca Bivalvia Pectinoida Pectinidae 0 0 1 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Diademopsis tomesi (Wright) Echinodermata Echinoidea Pedinoida Pedinidae 0 0 0 3 0 0 0 0 0 24 28 5 7 1 4 0 1 2 5 0 12 11 7 6 4

Gervillella precursor (Quenstedt) Mollusca Bivalvia Pterioida Bakevelliidae 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocrinus psilonoti (Quenstedt) Echinodermata Crinoidea Articulata Isocrinidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0

Isocyprina concentricum (Moore) Mollusca Bivalvia Veneroida Arcticidae 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocyprina depressum (Moore) Mollusca Bivalvia Veneroida Arcticidae 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocyprina ewaldi (Bornemann) Mollusca Bivalvia Veneroida Arcticidae 9 3 22 1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Liostrea hisingeri (Nilsson) Mollusca Bivalvia Pterioida Gryphaeidae 0 0 0 0 0 0 0 1 0 25 1 3 7 0 6 1 6 0 1 0 0 0 0 0 16

Modiolus hillanus (Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0

Modiolus minimus  (J. Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 1 0 2 0 4 4 0 0 1 1 0 0 0 0 0 0 0

Modiolus sodburiensis  (Vaughan) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 14 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Modiolus  sp. Mollusca Bivalvia Mytiloida Mytilidae 2 1 0 0 1 0 0 1 11 30 5 2 1 1 2 2 1 3 2 1 4 0 0 23 1

Modiolus ventricosus (Roener) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1

Myoconcha sp. Mollusca Bivalvia Pholadomyoidea Permophoridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Mytilus cloacinus  (Tutcher) Mollusca Bivalvia Mytiloida Mytilidae 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bositra  sp. Mollusca Bivalvia Pterioida Posidoniidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Palaeoneilo elliptica (Goldfuss) Mollusca Bivalvia Nuculanoida Malletiidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2 0 1 0

Paleonucula navis (Piette) Mollusca Bivalvia Nuculoida Nuculidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 3 0

Pholadomya  sp. Mollusca Bivalvia Pholadomyoidea Pholadomyidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Plagiostoma giganteum (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 0 0 0 0 1 1

Promathilda rhaetica  (Moore) Mollusca Gastropoda Heterostropha Mathildidae 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Protocardia rhaetica  (Merian) Mollusca Bivalvia Veneroida Cardiidae 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pseudomitiloides dubius (Sowerby) Mollusca Bivalvia Pterioida Inoceramidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 6 1 1 0 0 0

Psiloceas erugatum (Phillips) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0

Psiloceras planorbis (J. Sowerby ) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0

Psiloceras sampsoni (Portlock) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Psilophyllites hagenowi (Dunker) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0

Pteromya langportensis (Richardson and Tutcher) Mollusca Bivalvia Pholadomyoida Pholadomydae 0 0 0 0 0 0 0 8 7 3 15 0 1 15 1 1 2 0 0 0 0 0 0 0 0

Rhaetavicula contorta  (Portlock) Mollusca Bivalvia Pterioida Pteriidae 0 0 3 9 38 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rollieria bronni (Andler) Mollusca Bivalvia Nuculanoida Yoldiidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0

Ryderia doris (d'Orbigny) Mollusca Bivalvia Nuculanoida Nuculanidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Waehnoceras portlocki  (Wright) Mollusca Cephalopoda Ammonoidea Schlotheimiidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 1 0 0 2 2 0 0

Limestone

Mudstone
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Appendix 4.2 Summary of palaeoecological parameters estimated in this study. SC: Sample cog; H: Height (m), R: Richness, MR: Mean Richness, K: Kurtosis, BW: Whittaker index, BR: Routledge index; 

AC: Average cover %; II: Ichnofabric indices; NM = mean values of null model (mm); GM = Geomean of body size (mm), RT = Rate of change in body size, BD=Burrow diameter (mm), CI: Carbon isotope 

data, (0.00) = No Data. 
 

 
Limestone 

 
 

 
Mudstone 

Sample Code H R MR K BW BR AC II NM GM RT BD CI  Sample code H R MR K BW BR 

WF1 1.90 6.00 3.97 51.11 0.00 0.00 0.00 2.00 5.12 9.79 0.00 0.00 -25.4  WF1 2.4 3 0.14 45.87 0 0 

WF2 2.90 7.00 5.38 22.14 0.38 0.11 0.00 1.00 4.76 16.85 7.06 0.00 -25.8  WF2 3.8 3 0.07 23.53 0.33 0.10 

WF3 4.90 8.00 5.73 15.31 0.47 0.14 0.00 3.00 3.94 8.63 -4.11 0.00 -26.2  WF3 6 4 0.39 49.62 0.71 0.21 

WF4 6.80 8.00 5.07 23.31 0.50 0.15 0.00 4.00 6.99 11.46 1.49 0.00 -26.7  WF4 8.2 4 0.20 40.05 0.50 0.15 

WF5 9.00 8.00 5.80 21.75 0.38 0.11 0.00 3.00 7.29 16.42 2.25 0.00 -26.5  WF5 9.7 7 3.06 21.23 0.64 0.18 

WF6 10.20 5.00 3.89 39.50 0.38 0.10 0.00 4.00 12.48 9.74 -5.56 0.00 -25.9  WF6 10.5 6 5.32 16.50 0.69 0.21 

CM1 11.00 4.00 2.78 27.60 1.00 0.30 0.00 1.00 1.05 7.70 -2.55 0.00 -26.4  LM 1 13 0 0.00 0.00 1.00 0.28 

CM2 11.40 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 -24.6  LM 2 13.3 3 0.11 48.75 0.00 0.12 

CM3 12.00 3.00 2.38 38.90 0.71 0.00 0.00 0.00 1.24 13.13 5.43 0.00 -28.6  PPZ1 14.8 4 0.34 26.83 0.43 0.10 

CM4 12.40 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 -29.2  PPZ2 16.6 5 1.99 14.20 0.33 0.06 

LM1 12.90 0.00 0.00 0.00 0.00 0.00 0.00 1.00 3.68 10.55 -2.86 0.00 -29  PPZ3 18 8 1.78 28.23 0.23 0.12 

LM2 13.30 5.00 3.96 28.35 1.00 0.00 10.00 3.00 2.73 17.00 16.11 3.00 -26.2  PPZ4 19.25 6 0.73 38.02 0.43 0.16 

LM3 14.00 4.00 2.77 43.19 0.56 0.16 11.00 3.00 5.03 17.12 0.17 3.53 -26.8  PZ1 20.8 7 0.58 14.88 0.54 0.04 

LM4 14.20 6.00 4.87 41.26 0.60 0.17 60.00 3.00 0.00 0.00 0.00 4.91 -26.6  PZ2 22 5 0.38 44.01 0.17 0.14 

PPZ1 15.80 7.00 5.21 17.71 0.54 0.16 65.00 4.00 5.92 14.05 -1.70 4.04 -26.4  PZ3 23.2 6 0.47 12.10 0.45 0.14 

PPZ2 17.20 7.00 5.74 11.98 0.43 0.13 96.00 3.00 12.83 13.42 -0.45 4.98 -27  PZ4 24.6 5 0.12 11.51 0.45 0.16 

PPZ3 18.40 9.00 7.65 4.44 0.50 0.15 80.00 4.00 3.04 13.56 0.11 4.63 -27.2  PZ5 26.7 10 2.34 49.81 0.60 0.15 

PPZ4 19.60 7.00 5.54 31.00 0.25 0.07 78.00 3.00 0.78 13.58 0.02 6.97 -29.3  LZ1 28.1 7 0.77 29.10 0.53 0.14 

PZ1 20.30 5.00 4.44 20.41 0.33 0.09 56.00 4.00 3.43 10.97 -3.73 7.87 -29.1  LZ2 32.6 8 0.59 17.70 0.47 0.09 

PZ2 21.20 10.00 8.24 6.59 0.47 0.12 35.00 4.00 5.55 14.28 3.68 3.82 -28.9  LZ3 36.2 3 0.10 39.76 0.45 0.14 

PZ3 23.70 8.00 5.51 28.02 0.44 0.13 78.00 5.00 1.48 8.14 -2.45 10.49 -28  LZ4 41.6 4 0.38 27.98 0.50 0.15 

PZ4 25.00 7.00 5.15 18.43 0.60 0.18 80.00 4.00 0.43 12.23 3.15 10.02 -28.1  LZ5 46.7 10 1.17 19.70 0.57 0.15 

PZ5 25.90 10.00 7.21 34.88 0.41 0.12 90.00 3.00 3.77 39.54 30.34 7.79 -27.4  LZ6 52.25 5 0.33 20.48 0.57 0.20 

PZ6 27.60 10.00 7.51 18.11 0.20 0.06 60.00 3.00 1.46 8.87 -18.04 6.82 -28.2  LZ7 58.6 9 2.26 15.73 0.71 0.09 

LZ1 32.00 5.00 3.85 21.18 0.33 0.08 45.00 4.00 3.15 22.61 3.12 5.48 0.00  AZ1 61.5 8 0.66 44.09 0.29 0.14 

LZ2 35.50 6.00 4.02 50.96 0.45 0.14 70.00 3.00 2.09 9.17 -3.84 5.06 0.00  
       

LZ3 40.90 5.00 3.58 19.69 0.45 0.14 75.00 3.00 0.69 6.17 -0.56 5.51 0.00  
       

LZ4 46.00 6.00 3.80 15.32 0.45 0.14 56.00 4.00 0.23 10.27 0.80 6.80 0.00  
       

LZ5 51.30 3.00 2.43 24.21 1.00 0.28 47.00 4.00 1.14 12.49 0.42 4.20 0.00  
       

LZ6 58.00 6.00 5.01 10.08 0.78 0.21 50.00 3.00 1.96 11.35 -0.17 11.21 0.00  
       

AZ1 61.00 5.00 3.96 24.66 0.45 0.14 40.00 2.00 3.53 16.17 1.61 10.01 0.00  
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Appendix 4.3 Total species abundance (%) by Lithology and lithostratigraphy: WF: Cotham Member, CM: Cotham Member, LM Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis zone, LZ: 

Liasicus zone, AZ: angulate zone. 

Limestone

Species WF Species CO Species LANG Species PPZ Species PZ Species LZ

Isocyprina concentricum 32.48 Chlamys valoniensis 48.15 Liostrea hisingeri 46.61 Liostrea hisingeri 35.82 Diademopsis tomesi 32.32 Modiolus ventricosus 34.44

Isocyprina ewaldi 29.91 Modiolus  sp. 22.22 Pholadomya sp. 14.41 Modiolus minimus 23.28 Liostrea hisingeri 16.41 Diademopsis tomesi 26.67

Permophorus elongatus 17.26 Isocyprina concentricum 14.81 Myoconcha sp. 10.17 Diademopsis tomesi 15.52 Isocrinus psilonoti 12.88 Isocrinus psilonoti 16.67

Placunopsis alpina 8.72 Protocardia rhaetica 7.41 Modiolus hillanus 8.47 Modiolus  sp. 6.87 Plagiostoma giganteum 12.12 Plagiostoma giganteum 7.22

Chlamys valoniensis 5.13 Cardinia regularis 3.70 Pteromya langportensis 6.78 Modiolus hillanus 3.58 Modiolus minimus 9.60 Modiolus  sp. 6.11

Mytilus cloacinus 2.22 Rhaetavicula contorta 3.70 Grammatodon hettangiensis 5.93 Isocrinus psilonoti 2.99 Pteromya langportensis 4.80 Pseudolimea duplicata 3.33

Liostrea hisingeri 0.85 Modiolus sp. 2.54 Plagiostoma giganteum 2.99 Cardinia regularis 3.28 Liostrea hisingeri 2.78

Modiolus  sp. 0.85 Cardinia regularis 2.54 Chlamys valoniensis 2.69 Modiolus  sp. 3.03 Psilophyllites hagenowi 1.11

Plagiostoma punctatum 0.68 Plagiostoma giganteum 1.69 Mytilus  sp. 1.79 Chlamys valoniensis 1.01 Cardinia regularis 0.56

Liriomyophoria postera 0.51 Chamys valoniensis 0.84 Cardinia regularis 1.49 Modiolus ventricosus 1.01 Chlamys valoniensis 0.56

Astarte  sp. 0.34 Oxytoma inequivalvis 1.49 Pinna  sp. 0.76 Pseudokatosira undulata 0.56

Cardinia regularis 0.34 Pseudolimea duplicata 0.60 Caloceras johnstoni 0.51

Rhaetavicula contorta 0.34 Pteromya langportensis 0.60 Pholadomya  sp. 0.51

Isocyprina depressum 0.17 Parellodon  sp. 0.30 Pseudolimea duplicata 0.51

Promathilda rhaetica 0.17 Briozoa 0.25

Paleonucula navis 0.25

Pseudokatosira undulata 0.25

Psiloceras planorbis 0.25

Rollieria bronni 0.25

Mudstone

Species WF Species CO Species LANG Species PPZ Species PZ Species LZ

Rhaetavicula contorta 35.04 Pteromya langportensis 80 Diademopsis tomesi 28.93 Caloceras johnstoni 37.06 Diademopsis tomesi 21.5

Isocyprina concentricum 17.66 Modiolus  sp. 10 Modiolus  sp. 18.78 Liostrea hisingeri 13.99 Modiolus  sp. 16.5

Isocyprina ewaldi 14.81 Liostrea hisingeri 10 Liostrea hisingeri 14.72 Pteromya langportensis 13.99 Cardinia regularis 14.5

Promathilda rhaetica 11.68 Pteromya langportensis 9.137 Diademopsis tomesi 9.091 Waehnoceras portlocki 9

Modiolus sodburiensis 7.692 Psiloceas erugatum 8.629 Modiolus minimus 6.294 Asalties laqueus 6.5

Cassianella  sp. 4.558 Cardinia regularis 6.599 Modiolus  sp. 4.895 Psilophyllites hagenowi 5.5

Protocardia rhaetica 2.849 Asalties laqueus 5.584 Psiloceras planorbis 4.196 Palaeoneilo elliptica 4.5

Chlamys valoniensis 1.14 Antiquilima  sp. 3.553 Pseudomitiloides dubius 2.797 Pseudomitiloides dubius 4.5

Isocyprina depressum 1.14 Astarte  sp. 1.015 Modiolus hillanus 2.098 Plagiostoma giganteum 4

Modiolus  sp. 1.14 Modiolus minimus 1.015 Isocrinus psilonoti 1.399 Paleonucula navis 3.5

Diademopsis tomesi 0.855 Caloceras johnstoni 0.508 Psiloceras sampsoni 1.399 Modiolus ventricosus 3

Gervillella precursor 0.57 Chlamys valoniensis 0.508 Antiquilima  sp. 0.699 Camptonectes  sp. 2.5

Mytilus cloacinus 0.57 Isocrinus psilonoti 0.508 Camptonectes  sp. 0.699 Rollieria bronni 1.5

Plagiostoma giganteum 0.285 Pholadomya  sp. 0.508 Plagiostoma giganteum 0.699 Liostrea hisingeri 0.5

Rollieria bronni 0.699 Myoconcha sp. 0.5

Ryderia doris 0.5

Modiolus minimus 0.5

Bositra  sp. 0.5

Pholadomya  sp. 0.5  
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Appendix 4.4 Total species abundance by Lithology and lithostratigraphy: WF: 

Westbury Formation, CM: Cotham Member, LM Langport Member, PPZ: Pre-

Planorbis Zone, PZ: Planorbis zone, LZ: Liasicus zone. 

WF CM LM PPZ PZ LZ WF LM PPZ PZ LZ

101 0 0 0 0 0 123 0 0 0 0

190 4 0 0 0 0 3 0 57 13 43

175 0 0 0 0 0 4 1 48 7 33

13 0 0 0 0 0 62 0 0 0 0

2 1 0 0 0 0 0 0 0 53 0

3 0 0 0 0 0 0 8 25 20 0

1 0 0 0 0 0 52 0 0 0 0

30 13 0 9 4 1 0 1 29 20 1

5 6 3 23 12 11 0 0 15 0 29

2 1 3 5 13 1 41 0 0 0 0

4 0 0 0 0 0 27 0 0 0 0

51 0 0 0 0 0 0 0 17 0 0

5 0 55 120 65 5 16 0 0 0 0

2 0 0 0 0 0 0 0 0 0 14

1 0 0 0 0 0 0 0 0 0 13

0 0 7 0 0 0 0 0 3 9 1

0 0 8 2 19 0 0 0 0 4 9

0 0 17 0 2 0 0 0 0 0 11

0 0 2 0 0 0 1 0 0 1 8

0 0 1 2 2 6 10 0 0 0 0

0 0 2 10 48 13 0 0 0 0 9

0 0 10 12 0 0 0 0 0 0 7

0 0 12 0 0 0 0 0 0 1 5

0 0 0 52 128 48 0 0 0 0 6

0 0 0 5 0 0 0 0 0 6 0

0 0 0 78 38 0 4 0 1 0 0

0 0 0 6 0 0 4 0 0 0 0

0 0 0 10 51 30 0 0 0 1 3

0 0 0 1 0 0 0 0 0 0 4

0 2 0 0 1 0 0 0 1 2 0

0 0 0 0 3 0 0 0 0 3 0

0 0 0 0 1 0 2 0 0 0 0

0 0 0 0 1 0 2 0 0 0 0

0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 0 0 0 2 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 4 62 0 0 0 0 1

0 0 0 0 2 0 0 0 0 0 1

0 0 0 0 0 2 0 0 0 0 1

Individuals 585 27 120 335 397 180 351 10 197 143 200

Species 15 6 11 14 20 11 14 3 10 15 20

Limestone Mudstone
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Appendix 4.5 Pairwise comparisons of the faunal composition of each stratigraphic 

units taken from limestone samples. The values showed were estimated by Bray Curtis 

dissimilarity index. WF: Westbury Formation, CM: Cotham Member, LM: Langport 

Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. Overall 

average dissimilarity between stratigraphic units = 81.15%. 
 

Taxa WF CM LM PPZ PZ LZ 

% Dissimilarity 

87.3     

 84.6    

  81   

   50  

    54.2 
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Appendix 4.6 SIMPER analysis. C: Percentage contribution = average 

contribution/average dissimilarity between stratigraphic units. AC%: represents the 

average contribution of the taxon i to the average dissimilarity between lithostratigraphy 

(overall average = 71.40%. See appendix 4.4). Mean abundance of each taxon by 

stratigraphic units. WF: Westbury Formation, CM: Cotham Member, LM: Langport 

Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, §: Taxa 

with regional extinction, †: Taxa with global extinction.   

 
Taxon Contribution Cumulative % WF CM LM PPZ PZ PZ

Diademopsis tomesi 7.541 9.247 0 0 0 1.72 2.01 1.4

Liostrea hisingeri 7.143 18.01 0.563 0 1.08 2.2 1.69 0.553

Isocrinus psilonoti 5.539 24.8 0 0 0 0.445 1.58 1.18

Modiolus  sp. 4.976 30.9 0.698 0.624 0.329 1.17 1.02 0.622

Plagiostoma giganteum 4.651 36.6 0 0 0.297 0.445 1.21 0.84

Modiolus minimus 4.542 42.17 0 0 0 1.95 1.01 0

Chlamys valoniensis 4.501 47.69 1.04 0.475 0 0.67 0.386 0.167

Isocyprina concentricum § 3.9 52.47 1.56 0.354 0 0 0 0

Modiolus ventricosus 3.543 56.82 0 0 0 0 0.386 1.17

Cardinia regularis 3.342 60.91 0.198 0.25 0.329 0.604 0.71 0.167

Permophorus elongatus † 3.043 64.65 1.41 0 0 0 0 0

Placunopsis alpina 2.722 67.98 1.09 0 0 0 0 0

Mytilus cloacinus 2.711 71.31 1.17 0 0 0 0 0

Pteromya langportensis 2.567 74.46 0 0 0.891 0.297 0.348 0

Isocyprina ewaldi § 2.397 77.4 1.21 0 0 0 0 0

Pseudolimea duplicata 2.255 80.16 0 0 0.25 0.297 0.333 0.434

Pholadomya sp. 1.775 82.34 0 0 0.75 0 0.198 0

Modiolus hillanus 1.745 84.48 0 0 0.445 0.78 0 0

Oxytoma inequivalvis 1.235 85.99 0 0 0 0.829 0 0

Rhaetavicula contorta † 1.161 87.41 0.333 0.25 0 0 0 0

Protocardia rhaetica § 0.8938 88.51 0 0.297 0 0 0.167 0

Psilophyllites hagenowi 0.8896 89.6 0 0 0 0 0 0.333

Plagiostoma punctatum 0.8292 90.62 0.386 0 0 0 0 0

Pseudokatosira undulata 0.7591 91.55 0 0 0 0 0.167 0.167

Grammatodon hettangiensis 0.7529 92.47 0 0 0.407 0 0 0

Myoconcha sp. 0.7286 93.37 0 0 0.465 0 0 0

Mytilus  sp. 0.6753 94.19 0 0 0 0.391 0 0

Promathilda rhaetica † 0.4384 95.41 0.167 0 0 0 0 0

Astarte  sp. 0.4337 95.94 0.198 0 0 0 0 0

Rollieria bronni 0.4124 96.44 0 0 0 0 0.167 0

Psiloceras planorbis 0.4124 96.95 0 0 0 0 0.167 0

Liriomyophoria postera † 0.4069 97.45 0.219 0 0 0 0 0

Briozoa 0.3922 97.93 0 0 0 0 0.167 0

Pinna sp. 0.3611 98.37 0 0 0 0 0.219 0

Caloceras johnstoni 0.3588 98.81 0 0 0 0 0.198 0

Parellodon  sp. 0.3502 99.24 0 0 0 0.25 0 0

Paleonucula navis 0.3097 99.62 0 0 0 0 0.167 0

Isocyprina depressum § 0.3092 100 0.167 0 0 0 0 0  
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Appendix 4.7 Pairwise comparisons of the faunal composition of each stratigraphic 

units taken from mudstone samples. The values showed were estimated by Bray Curtis 

dissimilarity index. WF: Westbury Formation, CM: Cotham Member, LM: Langport 

Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. Overall 

average dissimilarity between stratigraphic units = 89.81%. 

 

Taxa WF LM PPZ PZ LZ 

% Dissimilarity 

97.52    

 85.54   

  79.56  

   86.55 
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Appendix 4.8 SIMPER analysis of mudstone samples. C: Percentage contribution = 

average contribution/average dissimilarity between stratigraphic units. AC%: represents 

the average contribution of the taxon i to the average dissimilarity between 

lithostratigraphy (overall average = 81. 15%. See appendix 4.4). Mean abundance of 

each taxon by stratigraphic units. WF: Westbury Formation, LM: Langport Member, 

PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone, §: Taxa with regional 

extinction, †: Taxa with global extinction.   
Taxon Contribution Cumulative % WF LM PPZ PZ LZ

Antiquilima  sp. 0.08482 99.83 0 0 0 0.2 0

Asalties laqueus 1.032 90.41 0 0 0 0 1.86

Caloceras johnstoni 4.496 65.53 0 0 0 10.6 0

Camptonectes  sp. 0.9997 92.63 0 0 0 0.2 0.714

Cardinia regularis 4.589 60.54 0 0.667 4.33 0 4.14

Cassianella sp. 1.586 80.19 2.67 0 0 0 0

Chlamys valoniensis 0.427 98.33 0.667 0 0.333 0 0

Diademopsis tomesi 12.02 13.34 0.5 0 19 2.6 6.14

Gervillella precursor 0.07229 100 0.333 0 0 0 0

Isocrinus psilonoti 0.4962 97.86 0 0 0.333 0.4 0

Isocyprina concentricum § 2.241 74.02 10.3 0 0 0 0

Isocyprina depressum § 0.2574 99.37 0.667 0 0 0 0

Isocyprina ewaldi § 8.141 31.47 8.67 0 0 0 0

Liostrea hisingeri 5.834 55.45 0 0.333 9.67 4 0.143

Modiolus hillanus 0.5512 97.31 0 0 0 0.6 0

Modiolus minimus 1.943 78.43 0 0.333 0.667 1.8 0.143

Modiolus sodburiensis 1.371 86.65 4.5 0 0 0 0

Modiolus  sp. 8.2 22.44 0.667 4 12.3 1.4 4.71

Modiolus ventricosus 1.003 91.52 0 0 0 0 0.857

Myoconcha  sp. 0.07937 99.92 0 0 0 0 0.143

Mytilus cloacinus 0.4109 98.79 0.333 0 0 0 0

Bositra sp. 0.1654 99.55 0 0 0 0 0.143

Palaeoneilo elliptica 1.183 87.97 0 0 0 0 1.29

Paleonucula navis 0.8101 94.43 0 0 0 0 1

Pholadomya  sp. 0.2669 99.08 0 0 0.333 0 0.143

Plagiostoma giganteum 1.556 81.92 0.167 0 0 0.2 1.14

Promathilda rhaetica § 1.482 83.56 6.83 0 0 0 0

Protocardia rhaetica § 0.6436 96.7 1.67 0 0 0 0

Pseudomitiloides dubius 2.397 71.53 0 0 0 0.8 1.29

Psiloceas erugatum 3.011 68.87 0 0 5.67 0 0

Psiloceras planorbis 1.17 89.26 0 0 0 1.2 0

Psiloceras sampsoni 0.6693 95.98 0 0 0 0.4 0

Psilophyllites hagenowi 1.417 85.13 0 0 0 0 1.57

Pteromya langportensis 8.12 40.48 0 5 6 4 0

Rhaetavicula contorta † 7.651 48.97 20.5 0 0 0 0

Rollieria bronni 0.8129 93.53 0 0 0 0.2 0.429

Ryderia doris 0.1654 99.74 0 0 0 0 0.143

Scholethemia complanata 0.7263 95.24 0 0 0 0 0.571

Waehnoceras portlocki 2.034 76.27 0 0 0 0 2  
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Appendix 4.9 SIMPER analysis. AC: represents the average contribution of the 

taxon i to the average dissimilarity between lithology (overall average = 89.35 %). C%: 

Percentage contribution = average contribution/average dissimilarity between 

lithologies. Mean abundance of each taxa by lithology.  
Taxon Contribution Cumulative % Limestone Mudstone

Diademopsis tomesi 11.35 12.71 7.6 4.8

Liostrea hisingeri 9.924 23.81 8.33 2.68

Isocyprina ewaldi 5.896 30.41 5.83 2.08

Modiolus sp. 5.715 36.81 2 3.76

Isocyprina concentricum 5.235 42.67 6.47 2.48

Pteromya langportensis 4.478 47.68 0.967 2.12

Isocrinus psilonoti 4.202 52.38 3.03 0.12

Modiolus minimus 3.698 56.52 3.87 0.52

Modiolus ventricosus 3.554 60.5 2.2 0.28

Rhaetavicula contorta 3.548 64.47 0.1 4.92

Plagiostoma giganteum 3.459 68.34 2.43 0.44

Chlamys valoniensis 3.314 72.05 1.9 0.2

Cardinia regularis 2.936 75.34 0.833 1.8

Placunopsis alpina 2.38 78 1.7 0

Caloceras johnstoni 1.994 80.23 0.0667 2.12

Permophorus elongatus 1.614 82.04 3.37 0

Pholadomya sp. 1.186 83.37 0.633 0.08

Pseudomitiloides dubius 1.135 84.64 0 0.52

Psiloceas erugatum 1.083 85.85 0 0.68

Waehnoceras portlocki 0.9429 86.91 0 0.56

Cassianella sp. 0.824 87.83 0.0667 0.64

Psilophyllites hagenowi 0.8078 88.73 0.0667 0.44

Mytilus cloacinus 0.8074 89.64 0.433 0.08

Modiolus hillanus 0.7938 90.52 0.733 0.12

Promathilda rhaetica 0.7273 91.34 0.0333 1.64

Modiolus sodburiensis 0.6212 92.03 0 1.08

Palaeoneilo elliptica 0.5513 92.65 0 0.36

Protocardia rhaetica 0.5506 93.27 0.1 0.4

Psiloceras planorbis 0.5468 93.88 0.0333 0.24

Pseudolimea duplicata 0.5134 94.45 0.367 0

Asalties laqueus 0.496 95.01 0 0.52

Myoconcha  sp. 0.4882 95.55 0.4 0.08

Camptonectes  sp. 0.4659 96.08 0 0.24

Rollieria bronni 0.4469 96.58 0.0333 0.16

Paleonucula navis 0.4152 97.04 0.0333 0.28

Grammatodon hettangiensis 0.4117 97.5 0.233 0

Mytilus  sp. 0.3837 97.93 0.2 0

Scholethemia complanata 0.334 98.3 0 0.16

Psiloceras sampsoni 0.2947 98.63 0 0.08

Oxytoma inequivalvis 0.2028 98.86 0.167 0

Pseudokatosira undulata 0.1567 99.04 0.0667 0

Ryderia doris 0.1471 99.2 0 0.08

Isocyprina depressum 0.1291 99.35 0.0333 0.16

Plagiostoma punctatum 0.1256 99.49 0.133 0

Astarte  sp. 0.1052 99.6 0.0667 0

Bositra sp. 0.07625 99.69 0 0.04

Pinna  sp. 0.07263 99.77 0.1 0

Briozoa 0.07017 99.85 0.0333 0

Liriomyophoria postera 0.04388 99.9 0.1 0

Antiquilima sp. 0.03661 99.94 0 0.04

Gervillella precursor 0.03344 99.98 0 0.08

Parellodon sp. 0.02052 100 0.0333 0  
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Appendix 4.10 Modes of life, number of species and relative abundance of each 

mode mode of life by stratigraphic unit. WF: Westbury Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone. Modes of Life; T: Tiering, M: Motility level; FM: Feeding Mechanism. 

 

T M FM WF CM LM PPZ PZ LZ WF CM LM PPZ PZ LZ

1 1 5 1 3 3 0.00 0.00 0.00 0.06 0.12 0.14

2 6 1 1 1 1 0.00 0.00 0.00 0.06 0.04 0.05

3 4 1 6 2 2 4 6 5 0.30 0.33 0.20 0.25 0.24 0.23

3 6 1 1 2 2 2 2 0.05 0.00 0.20 0.13 0.08 0.09

3 2 2 1 1 0.00 0.00 0.00 0.00 0.04 0.05

3 6 3 0.00 0.00 0.00 0.00 0.00 0.00

3 2 4 1 1 1 1 0.05 0.00 0.00 0.06 0.04 0.05

3 2 5 1 0.05 0.00 0.00 0.00 0.00 0.00

4 4 1 4 1 3 5 5 4 0.20 0.17 0.30 0.31 0.20 0.18

4 6 1 1 0.00 0.00 0.00 0.00 0.04 0.00

4 4 2 0.00 0.00 0.00 0.00 0.00 0.00

4 2 3 2 3 0.00 0.00 0.00 0.00 0.08 0.14

5 3 1 7 3 3 2 3 2 0.35 0.50 0.30 0.13 0.12 0.09

Proportional abundanceNumber of speciesModes of life
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Appendix 4.11 Modes of life used by species of each stratigraphy unit. WF: 

Westbury Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-

Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. 

 

WF T M F 

D. tomesi Surficial Slow Grazing 

P. rhaetica Surficial slow Predatory 

R. contorta Surficial Facultative Motile Attached Suspension 

P. alpina Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Cassianella sp. Surficial Facultative Motile Attached Suspension 

M. cloacinus Surficial Facultative Motile Attached Suspension 

P. punctatum Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. elongatus Semi-faunal Facultative Motile Attached Suspension 

M. sodburiensis Semi-faunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

G. precursor Semi-faunal Facultative Motile Attached Suspension 

Astarte sp. Shallow-infaunal Facultative Motile Unattached Suspension 

I. concentricum Shallow-infaunal Facultative Motile Unattached Suspension 

I. ewaldi Shallow-infaunal Facultative Motile Unattached Suspension 

P. rhaetica Shallow-infaunal Facultative Motile Unattached Suspension 

I. depressum Shallow-infaunal Facultative Motile Unattached Suspension 

L. postera Shallow-infaunal Facultative Motile Unattached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

    CM T M F 

C. valoniensis Surficial Facultative Motile Attached Suspension 

R. contorta Surficial Facultative Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

I. concentricum Shallow-infaunal Facultative Motile Unattached Suspension 

P. rhaetica Shallow-infaunal Facultative Motile Unattached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

    LM T M F 

G. hettangiensis Surficial Facultative Motile Attached Suspension 

P. giganteum Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

Myoconcha sp. Semi-infaunal Facultative Motile Attached Suspension 

M. hillanus Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

Pholadomya sp. Shallow-infaunal Facultative Motile Unattached Suspension 

P. langportensis Shallow-infaunal Facultative Motile Unattached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 
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PPZ T M F 

P. erugatum Pelagic  Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

D. tomesi Surficial Slow Grazing 

C. valoniensis Surficial Facultative Motile Attached Suspension 

P. giganteum Surficial Facultative Motile Attached Suspension 

Mytilus sp. Surficial Facultative Motile Attached Suspension 

O. inequivalvis Surficial Facultative Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

M. minimus Semi-faunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

P. langportensis Semi-faunal Facultative Motile Attached Suspension 

M. hillanus Semi-faunal Facultative Motile Attached Suspension 

Parellodon sp. Semi-faunal Facultative Motile Attached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

Pholadomya sp. Shallow-infaunal Facultative Motile Unattached Suspension 

    PZ T M F 

C. johnstoni Pelagic  Fast Predatory 

P. planorbis Pelagic  Fast Predatory 

P. sampsoni Pelagic  Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

P. dubius Surficial Facultative Motile Attached Suspension 

Antiquilima sp. Surficial Facultative Motile Attached Suspension 

Briozoa Surficial Facultative Motile Attached Suspension 

Camptonectes sp. Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

R. bronni Semi-infaunal Slow Mining 

P. navis Semi-infaunal Slow Mining 

M. minimus Semi-infaunal Facultative Motile Attached Suspension 

P. langportensis Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus Semi-infaunal Facultative Motile Attached Suspension 

M. hillanus Semi-infaunal Facultative Motile Attached Suspension 

Pinna sp. Semi-infaunal Non-Motile Attached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

Pholadomya sp. Shallow-infaunal Facultative Motile Unattached Suspension 
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    LZ T M F 

W. portlocki Pelagic  Fast Predatory 

A. laqueus Pelagic  Fast Predatory 

P. hagenowi Pelagic  Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. giganteum Surficial Facultative Motile Attached Suspension 

P. dubius Surficial Facultative Motile Attached Suspension 

Camptonectes sp. Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Bositra sp. Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

P. navis Semi-infaunal Slow Mining 

P. elliptica Semi-infaunal Slow Mining 

R. bronni Semi-infaunal Slow Mining 

Ryderia doris Semi-infaunal Slow Mining 

M. ventricosus Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. minimus Semi-infaunal Facultative Motile Attached Suspension 

Myoconcha sp. Semi-infaunal Facultative Motile Attached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

Pholadomya sp. Shallow-infaunal Facultative Motile Unattached Suspension 
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Appendix 4.12 Proportion of mode of life. WF: Westbury Formation, CM: 

Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis 

Zone, LZ: Liasicus Zone. 

 
Stratigraphy 

Ecological Categories WF CM LM PPZ PZ LZ 

Pelagic 0.00 0.00 0.00 0.06 0.12 0.14 

Erect 0.00 0.00 0.00 0.06 0.04 0.05 

Surficial 0.45 0.33 0.40 0.44 0.48 0.55 

Semi-infaunal 0.20 0.17 0.30 0.31 0.32 0.32 

Shallow-infaunal 0.35 0.50 0.30 0.13 0.12 0.09 

Deep-infaunal 0.00 0.00 0.00 0.00 0.00 0.00 

       
Fast 0.00 0.00 0.00 0.06 0.12 0.14 

Slow 0.10 0.00 0.00 0.06 0.16 0.23 

Facultative, unattached 0.35 0.50 0.30 0.13 0.12 0.09 

Facultative, attached 0.50 0.50 0.50 0.56 0.44 0.41 

Non-Motile unattached 0.00 0.00 0.00 0.00 0.00 0.00 

Non-Motile Attached 0.05 0.00 0.20 0.19 0.16 0.14 

       
Suspension 0.90 1.00 1.00 0.88 0.72 0.64 

Surface deposit 0.00 0.00 0.00 0.00 0.04 0.05 

Mining 0.00 0.00 0.00 0.00 0.08 0.14 

Grazing 0.05 0.00 0.00 0.06 0.04 0.05 

Predatory 0.05 0.00 0.00 0.00 0.00 0.00 

Other 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix 4.13 Geometric mean (mm) by species through the Tr/J section in Audrie’s Bay.  WF: Westbury Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, SP: species. IC: I. concentricum; PG: P. giganteum; CV; C.valoniensis; MESO: 

Mesomiltha sp.; MH: M. hillanus; G; Gervillella sp.; M; Modiolus sp.; MM: M. minimus; CR: C. regularis; PH: Pholadomya sp.; PT: P. 

langportiensis; L: Liostrea; MY; Myoconcha sp.; MC: M. cardioides; PD: P. duplicata; GRE: G. obliquata; CC: C. calcarea; CA: Camponectes 

sp.; RB: R. bronni. 

 
SP WF1 SP WF2 SP WF3 SP WF4 SP WF5 SP WF6 SP CM1 SP CM3 SP LM1 SP LM2 SP LM3 SP PPZ1 SP PPZ 2 SP PPZ3 SP PPZ4 

CV 9.38 CR 15.98 CAS 3.57 IC 7.59 RC 6.26 CAS 2.57 PR 12.35 CV 28.13 M 5.33 PHO 25.52 MYT 16.81 M 28.29 PT 12.44 OXY 38.60 M 9.23 

IC 5.78 CV 6.76 CAS 2.63 IC 8.74 RC 4.59 CAS 4.85 PR 7.82 CV 12.88 M 4.83 COS 14.33 L 23.60 LH 8.53 LH 16.30 CR 2.72 CR 22.16 

IC 3.87 CV 6.66 IC 7.34 IC 9.34 RC 5.58 CV 13.35 PR 6.72 CV 2.82 M 5.59 CR 15.71 L 19.52 LH 1.98 LH 9.50 PG 33.29 CR 12.49 

IC 3.95 CV 4.98 IC 4.46 IC 6.57 RC 3.17 CV 14.54 CR 14.59 M 4.77 M 3.65 CR 24.49 L 23.64 PL 1.46 MM 8.26 PG 27.18 CR 12.72 

IC 3.75 CV 1.23 IC 6.76 IC 8.49 PG 24.59 CV 13.26 M 4.95 M 4.40 M 7.89 PHO 18.70 L 14.55 PL 22.65 CR 16.80 CV 14.86 L 21.75 

IC 4.55 CV 8.69 IC 7.87 IC 5.75 RC 2.91 CV 14.90 IC 4.32 RC 8.79 M 4.50 PHO 21.68 MYT 14.57 PL 11.40 LH 23.27 CV 1.87 L 15.22 

IC 5.34 CV 22.64 IC 6.47 IC 6.26 RC 3.46 CV 9.12 IC 4.12 CV 5.77 M 8.33 PHO 11.58 MH 2.00 CR 1.90 LH 9.34 RD 3.84 MH 6.79 

L 1.55 CV 9.26 IC 11.16 IC 9.96 PA 25.58 CV 11.25 IC 5.22 CV 16.83 MM 5.66 PHO 14.49 MH 8.48 LH 13.28 MM 4.79 MM 6.26 MH 8.27 

L 13.93 CV 14.84 IC 5.37 IC 8.45 CV 11.94 CV 19.99 IC 1.33 M 5.82 M 4.45 PHO 2.46 MH 18.48 CR 8.73 MM 5.98 CV 8.23 0 0 

M 4.33 CV 11.57 IC 27.45 IC 4.87 CV 2.32 CV 16.55 0 0 M 5.76 CR 1.77 CR 14.45 MH 1.42 CR 2.61 LH 14.99 PG 15.60 0 0 

M 2.79 CV 7.88 IC 7.12 IC 1.94 CV 26.46 CV 5.43 0 0 CV 31.16 M 4.97 PHO 21.89 MH 13.12 CR 18.83 LH 9.17 PG 44.69 0 0 

M 4.56 CV 4.48 IC 6.91 IC 5.85 PA 18.22 CV 8.64 0 0 0 0 CR 9.63 PD 11.75 L 23.76 PT 12.49 LH 5.78 CV 5.45 0 0 

MH 12.67 CV 2.93 IC 9.25 IC 6.58 MH 13.24 CV 17.13 0 0 0 0 M 4.25 P 14.18 CR 19.84 PT 14.12 LH 5.25 MM 7.44 0 0 

PE 13.53 CV 34.80 IC 7.53 CV 6.12 CV 17.86 IC 1.42 0 0 0 0 PT 1.36 P 29.46 m 16.70 MM 3.79 MM 4.59 PG 15.69 0 0 

PE 11.96 IC 1.15 IC 6.82 IC 5.67 CV 23.30 IC 8.48 0 0 0 0 PT 9.60 P 11.92 L 12.37 MM 8.45 LH 16.59 LH 15.65 0 0 

PE 9.78 L 11.23 IC 6.65 IC 5.98 L 15.68 IC 1.13 0 0 0 0 PT 6.18 P 24.67 MH 7.63 MYO 2.49 MM 7.31 CV 1.88 0 0 

PE 8.24 L 11.38 IC 5.23 IC 8.88 CV 16.29 IC 9.27 0 0 0 0 PT 11.12 P 19.62 L 15.75 LH 14.17 MH 1.50 MM 5.50 0 0 

PE 13.42 L 18.33 IC 8.51 RC 1.25 CV 23.34 IC 8.76 0 0 0 0 M 9.53 CR 1.25 M 7.16 MYO 11.57 CR 17.65 CV 14.62 0 0 

PE 1.73 M 5.87 IC 7.15 RC 1.68 CV 29.52 IC 7.93 0 0 0 0 M 1.16 P 18.97 L 16.40 LH 19.90 PT 16.42 M 3.69 0 0 

PE 8.39 M 9.78 IC 7.84 IC 4.39 CV 18.44 IC 6.91 0 0 0 0 M 5.76 PG 13.92 L 24.13 LH 21.59 PHO 27.92 PT 6.54 0 0 

PE 13.65 MCL 7.87 IC 8.29 MYT 7.53 CV 2.39 IC 8.24 0 0 0 0 PT 11.45 P 19.53 CR 12.75 LH 17.29 M 12.60 PT 8.47 0 0 

PE 11.45 MM 5.77 IC 9.99 CV 17.28 CV 2.11 IC 8.37 0 0 0 0 L 13.65 PT 8.96 MH 16.32 OXI 9.19 PT 8.96 PT 8.53 0 0 

PE 9.79 MYO 17.95 IC 6.68 L 13.78 M 11.22 IC 5.86 0 0 0 0 PT 11.64 PT 11.43 MYT 14.64 LH 13.41 M 6.38 PT 1.54 0 0 

PE 1.80 PA 15.57 IE 1.26 CV 16.78 CV 26.42 IC 9.64 0 0 0 0 PT 8.45 P 15.75 L 16.66 LH 12.87 CR 16.97 PT 12.63 0 0 

PE 6.48 PA 36.41 IE 7.77 L 16.95 CV 25.20 IC 8.40 0 0 0 0 PT 18.65 P 14.23 L 23.68 MYT 21.45 CR 11.23 PT 8.16 0 0 

PE 9.31 PA 1.36 IE 1.41 PG 18.88 CV 12.54 IC 6.79 0 0 0 0 L 13.19 0 0 MH 12.00 PHO 16.28 CR 24.95 PT 8.54 0 0 

PE 11.12 PA 7.77 IE 5.94 CV 26.85 CV 18.43 IC 8.34 0 0 0 0 PT 11.78 0 0 L 2.69 LH 18.22 CR 13.93 PT 7.49 0 0 

PE 15.15 PA 1.52 M 5.85 IC 8.00 L 8.92 IC 14.31 0 0 0 0 L 13.50 0 0 L 2.32 L 16.86 CR 11.48 PT 6.94 0 0 

PE 13.62 PA 12.75 MCL 14.80 CV 1.16 CV 24.84 IC 5.66 0 0 0 0 L 24.23 0 0 MYT 18.97 L 2.15 MM 4.54 0 0 0 0 
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PE 13.58 PA 26.75 PA 2.47 PA 26.88 PA 3.21 IC 8.21 0 0 0 0 PG 29.33 0 0 L 17.68 PT 1.28 MM 7.30 0 0 0 0 

PE 11.67 PA 15.45 PE 9.77 PA 17.16 CV 2.57 IC 8.81 0 0 0 0 PG 23.23 0 0 L 2.74 L 13.87 LH 7.86 0 0 0 0 

PE 11.52 PA 28.25 PE 1.26 PG 24.63 CV 23.45 IC 6.27 0 0 0 0 L 17.42 0 0 L 22.83 L 1.11 MM 5.29 0 0 0 0 

PE 1.17 PA 16.85 PE 12.31 MH 26.36 PA 25.46 IC 5.49 0 0 0 0 L 11.69 0 0 L 15.57 CR 39.81 LH 19.52 0 0 0 0 

PE 9.58 PA 7.52 PR 6.16 PE 19.23 CV 21.68 IC 8.86 0 0 0 0 0 0 0 0 CR 17.32 CR 18.86 MM 8.96 0 0 0 0 

PE 14.62 PA 38.69 RC 9.60 PA 35.45 CV 34.29 IC 5.00 0 0 0 0 0 0 0 0 L 21.37 M 13.68 MM 9.88 0 0 0 0 

PE 12.76 PA 22.62 0 0 MS 4.37 LH 19.29 IC 9.42 0 0 0 0 0 0 0 0 L 17.77 M 11.74 LH 8.16 0 0 0 0 

PE 16.20 PA 36.84 0 0 IC 8.87 CV 16.42 IC 8.27 0 0 0 0 0 0 0 0 MM 7.30 M 1.97 MM 2.96 0 0 0 0 

PE 15.38 PA 5.25 0 0 IC 8.15 CV 15.69 IC 9.24 0 0 0 0 0 0 0 0 MM 12.90 M 5.57 MM 6.34 0 0 0 0 

PE 8.33 PE 17.37 0 0 IC 8.95 CV 18.98 IC 5.43 0 0 0 0 0 0 0 0 MYT 2.54 L 1.29 LH 7.60 0 0 0 0 

PE 8.73 PE 13.37 0 0 IC 9.27 CV 17.23 IC 1.39 0 0 0 0 0 0 0 0 PG 22.83 L 12.77 LH 23.14 0 0 0 0 

PE 11.72 PE 2.93 0 0 IC 7.99 CV 22.80 IC 8.94 0 0 0 0 0 0 0 0 L 26.58 L 14.95 LH 19.19 0 0 0 0 

PE 11.27 PE 12.72 0 0 IC 8.75 PR 7.19 IC 6.76 0 0 0 0 0 0 0 0 L 16.54 L 13.28 MM 8.60 0 0 0 0 

PE 1.68 RC 1.56 0 0 IC 11.46 PG 11.74 IC 8.63 0 0 0 0 0 0 0 0 L 22.57 M 12.26 LH 8.59 0 0 0 0 

PE 7.82 0 0 0 0 IC 1.14 MS 5.48 IE 9.54 0 0 0 0 0 0 0 0 L 24.64 M 12.34 MM 7.22 0 0 0 0 

PE 1.13 0 0 0 0 IC 8.68 PE 13.82 IE 3.82 0 0 0 0 0 0 0 0 PT 9.87 MM 14.46 OXI 7.60 0 0 0 0 

PE 8.76 0 0 0 0 PE 19.76 PE 18.47 IE 9.30 0 0 0 0 0 0 0 0 L 19.69 L 8.30 MM 9.13 0 0 0 0 

PE 6.95 0 0 0 0 PE 6.92 PR 14.78 IE 11.79 0 0 0 0 0 0 0 0 0 0 PT 7.47 LH 11.85 0 0 0 0 

0 0 0 0 0 0 PE 18.26 PE 8.12 IE 8.38 0 0 0 0 0 0 0 0 0 0 MM 11.62 LH 14.52 0 0 0 0 

0 0 0 0 0 0 PE 4.54 M 1.43 IE 4.86 0 0 0 0 0 0 0 0 0 0 MM 11.79 LH 12.75 0 0 0 0 

0 0 0 0 0 0 PE 1.19 M 1.52 IE 9.22 0 0 0 0 0 0 0 0 0 0 MM 4.26 LH 11.53 0 0 0 0 

0 0 0 0 0 0 IC 9.77 M 12.93 IE 4.79 0 0 0 0 0 0 0 0 0 0 MM 12.82 LH 2.24 0 0 0 0 

0 0 0 0 0 0 IC 8.35 MS 6.22 L 17.59 0 0 0 0 0 0 0 0 0 0 PT 14.25 LH 13.65 0 0 0 0 

0 0 0 0 0 0 IC 12.18 MS 6.71 L 17.22 0 0 0 0 0 0 0 0 0 0 PT 15.52 LH 18.82 0 0 0 0 

0 0 0 0 0 0 CR 9.32 PR 6.92 M 11.89 0 0 0 0 0 0 0 0 0 0 L 13.26 LH 14.50 0 0 0 0 

0 0 0 0 0 0 IC 5.37 PR 11.69 M 12.52 0 0 0 0 0 0 0 0 0 0 L 15.94 LH 19.82 0 0 0 0 

0 0 0 0 0 0 CR 7.87 PR 13.84 M 13.31 0 0 0 0 0 0 0 0 0 0 L 11.79 LH 18.74 0 0 0 0 

0 0 0 0 0 0 PE 13.14 M 5.93 M 1.64 0 0 0 0 0 0 0 0 0 0 0 0 MM 7.73 0 0 0 0 

0 0 0 0 0 0 PE 26.73 PE 11.25 MC 6.18 0 0 0 0 0 0 0 0 0 0 0 0 LH 13.54 0 0 0 0 

0 0 0 0 0 0 PE 4.25 PR 14.98 MCL 1.58 0 0 0 0 0 0 0 0 0 0 0 0 MM 7.14 0 0 0 0 

0 0 0 0 0 0 PE 5.23 MH 3.31 MCL 7.22 0 0 0 0 0 0 0 0 0 0 0 0 LH 11.76 0 0 0 0 

0 0 0 0 0 0 MS 8.71 MH 5.87 MCL 6.18 0 0 0 0 0 0 0 0 0 0 0 0 MM 6.67 0 0 0 0 

0 0 0 0 0 0 IC 5.77 MH 7.96 MCL 11.56 0 0 0 0 0 0 0 0 0 0 0 0 LH 11.54 0 0 0 0 

0 0 0 0 0 0 IC 36.91 PG 3.73 MH 7.15 0 0 0 0 0 0 0 0 0 0 0 0 LH 6.77 0 0 0 0 

0 0 0 0 0 0 IC 6.83 L 15.74 MS 16.86 0 0 0 0 0 0 0 0 0 0 0 0 LH 29.54 0 0 0 0 

0 0 0 0 0 0 PE 13.54 L 28.24 MS 5.86 0 0 0 0 0 0 0 0 0 0 0 0 MM 8.38 0 0 0 0 

0 0 0 0 0 0 CR 12.11 L 25.95 MS 1.95 0 0 0 0 0 0 0 0 0 0 0 0 MM 8.61 0 0 0 0 

0 0 0 0 0 0 IC 8.75 PG 13.67 MS 13.99 0 0 0 0 0 0 0 0 0 0 0 0 MM 6.92 0 0 0 0 
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0 0 0 0 0 0 MY 11.74 PA 29.39 MS 7.95 0 0 0 0 0 0 0 0 0 0 0 0 MYO 8.90 0 0 0 0 

0 0 0 0 0 0 0 0 PG 23.36 MS 8.84 0 0 0 0 0 0 0 0 0 0 0 0 LH 21.12 0 0 0 0 

0 0 0 0 0 0 0 0 L 31.39 MS 8.73 0 0 0 0 0 0 0 0 0 0 0 0 LH 13.58 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 8.13 0 0 0 0 0 0 0 0 0 0 0 0 LH 15.87 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 9.24 0 0 0 0 0 0 0 0 0 0 0 0 MYO 8.56 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 7.75 0 0 0 0 0 0 0 0 0 0 0 0 MM 7.28 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 11.83 0 0 0 0 0 0 0 0 0 0 0 0 MYO 4.45 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 4.32 0 0 0 0 0 0 0 0 0 0 0 0 MYO 8.26 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 6.18 0 0 0 0 0 0 0 0 0 0 0 0 M 11.73 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 7.42 0 0 0 0 0 0 0 0 0 0 0 0 M 6.39 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 6.98 0 0 0 0 0 0 0 0 0 0 0 0 MYO 1.21 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 MS 4.88 0 0 0 0 0 0 0 0 0 0 0 0 LH 1.75 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PA 31.75 0 0 0 0 0 0 0 0 0 0 0 0 MM 6.43 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PA 17.85 0 0 0 0 0 0 0 0 0 0 0 0 M 7.61 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PC 9.36 0 0 0 0 0 0 0 0 0 0 0 0 M 7.91 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PC 11.13 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.73 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 7.75 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.15 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 12.70 0 0 0 0 0 0 0 0 0 0 0 0 L 18.54 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 11.52 0 0 0 0 0 0 0 0 0 0 0 0 L 13.27 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 7.85 0 0 0 0 0 0 0 0 0 0 0 0 L 14.26 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 12.75 0 0 0 0 0 0 0 0 0 0 0 0 L 17.14 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 9.86 0 0 0 0 0 0 0 0 0 0 0 0 L 14.58 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 11.58 0 0 0 0 0 0 0 0 0 0 0 0 L 11.26 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 16.36 0 0 0 0 0 0 0 0 0 0 0 0 M 9.26 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 13.90 0 0 0 0 0 0 0 0 0 0 0 0 L 8.92 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 13.72 0 0 0 0 0 0 0 0 0 0 0 0 L 1.54 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 15.43 0 0 0 0 0 0 0 0 0 0 0 0 L 1.68 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 7.64 0 0 0 0 0 0 0 0 0 0 0 0 L 12.97 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 15.36 0 0 0 0 0 0 0 0 0 0 0 0 CR 2.53 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 11.58 0 0 0 0 0 0 0 0 0 0 0 0 CR 19.95 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PE 12.46 0 0 0 0 0 0 0 0 0 0 0 0 MYT 2.23 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PG 21.73 0 0 0 0 0 0 0 0 0 0 0 0 OXY 4.87 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PR 17.47 0 0 0 0 0 0 0 0 0 0 0 0 PHO 26.73 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PR 11.57 0 0 0 0 0 0 0 0 0 0 0 0 MH 17.16 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 1.14 0 0 0 0 0 0 0 0 0 0 0 0 MH 16.84 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 4.32 0 0 0 0 0 0 0 0 0 0 0 0 L 21.47 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 11.32 0 0 0 0 0 0 0 0 0 0 0 0 MYT 2.47 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 9.18 0 0 0 0 0 0 0 0 0 0 0 0 LH 12.11 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 RC 4.88 0 0 0 0 0 0 0 0 0 0 0 0 LH 8.22 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 8.83 0 0 0 0 0 0 0 0 0 0 0 0 PHO 14.62 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 11.38 0 0 0 0 0 0 0 0 0 0 0 0 PHO 23.52 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 1.86 0 0 0 0 0 0 0 0 0 0 0 0 CR 24.13 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 7.85 0 0 0 0 0 0 0 0 0 0 0 0 MH 15.71 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 7.49 0 0 0 0 0 0 0 0 0 0 0 0 GER 16.47 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 8.22 0 0 0 0 0 0 0 0 0 0 0 0 GER 21.96 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.41 0 0 0 0 0 0 0 0 0 0 0 0 CR 18.21 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 8.36 0 0 0 0 0 0 0 0 0 0 0 0 GER 16.29 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.68 0 0 0 0 0 0 0 0 0 0 0 0 L 11.76 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.39 0 0 0 0 0 0 0 0 0 0 0 0 L 2.53 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 4.45 0 0 0 0 0 0 0 0 0 0 0 0 CR 2.16 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 18.14 0 0 0 0 0 0 0 0 0 0 0 0 CR 2.31 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 9.94 0 0 0 0 0 0 0 0 0 0 0 0 PHO 31.96 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 4.50 0 0 0 0 0 0 0 0 0 0 0 0 L 14.72 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 7.41 0 0 0 0 0 0 0 0 0 0 0 0 L 13.83 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.76 0 0 0 0 0 0 0 0 0 0 0 0 GER 2.27 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.90 0 0 0 0 0 0 0 0 0 0 0 0 MH 14.79 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 5.84 0 0 0 0 0 0 0 0 0 0 0 0 CR 16.15 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 6.15 0 0 0 0 0 0 0 0 0 0 0 0 CR 19.93 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 9.34 0 0 0 0 0 0 0 0 0 0 0 0 CR 16.20 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 RC 7.76 0 0 0 0 0 0 0 0 0 0 0 0 GER 19.37 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CR 2.78 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MH 18.96 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHO 24.35 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PHO 23.48 0 0 0 0 
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Appendix 4.13 (Continuation) Geometric mean (mm) by species through the Tr/J section in Audrie’s Bay. PZ: Planorbis Zone, LZ: 

Liasicus Zone; SP: species. IC: I. concentricum; PG: P. giganteum; CV; C. valoniensis; MESO: Mesomiltha sp.; MH: M. hillanus; G; Gervillella 

sp.; M; Modiolus sp.; MM: M. minimus; CR: C. regularis; PH: Pholadomya sp.; PT: P. langportiensis; L: Liostrea; MY; Myoconcha sp.; MC: 

M. cardioides; PD: P. duplicata; GRE: G. obliquata; CC: C. calcarea; CA: Camponectes sp.; RB: R. bronni. 

 
SP PZ1 SP PZ2 SP PZ3 SP PZ4 SP PZ5 SP PZ6 SP LZ1 SP LZ2 SP LZ3 SP LZ4 SP LZ5 SP LZ6 SP AZ1 

L 12.68 L 7.26 M 5.47 PT 8.54 L 37.16 MV 6.47 PG 7.47 MV 3.72 PE 6.92 L 12.24 CR 43.47 MV 3.42 MYT 19.54 

L 9.96 PG 17.95 M 11.27 RB 2.64 L 19.26 PG 17.45 L 2.23 MV 4.71 PA 9.17 MV 8.52 CR 11.94 MV 6.27 L 15.85 

L 15.79 PG 26.58 L 6.52 M 5.22 MM 4.96 PNA 2.45 L 13.45 MV 2.97 MS 7.39 0 0 M 8.93 CA 7.89 L 16.18 

L 11.84 PG 33.93 L 14.56 LH 14.73 PG 52.46 PH 14.22 PG 63.54 MV 8.28 PE 5.17 0 0 CV 1.70 CR 14.26 MV 6.73 

L 1.76 CR 1.90 L 1.46 0 0 L 18.34 MV 3.52 M 14.82 PE 2.93 CO 6.45 0 0 CA 6.67 PE 3.86 MV 6.32 

L 9.92 PG 8.19 L 2.23 0 0 PG 19.40 P 8.39 PG 51.46 MV 2.24 MS 4.55 0 0 CA 12.00 PE 4.78 CR 16.29 

L 6.89 CV 18.49 M 6.65 0 0 CR 21.55 CR 19.58 PG 33.24 PH 11.57 PE 3.67 0 0 CA 9.27 CR 13.44 CR 18.25 

L 18.29 L 7.65 PD 6.24 0 0 L 2.77 CR 7.19 M 1.22 PH 18.54 0 0 0 0 MS 3.15 CR 11.72 MYO 15.36 

MM 1.78 L 9.48 M 4.35 0 0 CR 69.76 CA 9.85 PG 29.50 PH 4.92 0 0 0 0 CA 13.32 MV 5.39 CR 15.42 

MM 6.43 L 13.13 CR 6.12 0 0 PG 21.57 CR 5.93 CR 11.94 PE 4.93 0 0 0 0 MS 6.59 CR 14.32 CR 24.92 

MM 8.50 L 13.25 CR 4.19 0 0 PG 1.63 MM 5.96 PG 33.88 PE 5.51 0 0 0 0 0 0 MV 2.00 CR 19.69 

LH 22.35 CR 13.36 M 3.17 0 0 L 29.39 CR 6.20 PG 32.25 MV 2.28 0 0 0 0 0 0 CR 13.97 MYO 34.93 

MM 14.53 L 13.73 LH 6.98 0 0 L 35.72 M 8.53 RD 31.99 MV 7.14 0 0 0 0 0 0 CR 12.32 MYO 19.76 

LH 19.92 PT 7.82 0 0 0 0 L 28.52 0 0 RD 22.22 MV 7.81 0 0 0 0 0 0 CR 23.88 MYO 14.77 

MM 6.23 PT 8.13 0 0 0 0 L 2.39 0 0 L 11.23 PE 3.22 0 0 0 0 0 0 CV 14.43 CR 17.58 

MM 7.47 PT 1.35 0 0 0 0 CR 23.38 0 0 M 4.40 PE 5.39 0 0 0 0 0 0 MV 15.96 L 13.14 

M 5.83 CV 16.90 0 0 0 0 CR 42.15 0 0 PG 37.12 MV 2.28 0 0 0 0 0 0 MV 14.59 MV 6.45 

MM 5.21 PG 22.27 0 0 0 0 CV 26.40 0 0 M 9.49 MV 1.97 0 0 0 0 0 0 MV 14.47 L 15.63 

L 1.59 PG 32.96 0 0 0 0 CR 16.22 0 0 CR 14.83 PG 73.83 0 0 0 0 0 0 0 0 L 12.83 

L 24.63 MM 17.56 0 0 0 0 L 12.74 0 0 CR 24.29 0 0 0 0 0 0 0 0 0 0 L 17.83 

MM 13.39 L 18.15 0 0 0 0 L 11.36 0 0 PG 25.72 0 0 0 0 0 0 0 0 0 0 L 8.97 

L 6.26 L 11.56 0 0 0 0 PN 15.82 0 0 L 19.85 0 0 0 0 0 0 0 0 0 0 L 18.94 

LH 1.85 L 11.24 0 0 0 0 PN 23.11 0 0 M 1.62 0 0 0 0 0 0 0 0 0 0 CR 19.65 

MM 6.76 L 15.79 0 0 0 0 PN 20.00 0 0 PD 6.52 0 0 0 0 0 0 0 0 0 0 MYO 17.18 

L 4.23 L 1.93 0 0 0 0 PN 15.19 0 0 MC 28.25 0 0 0 0 0 0 0 0 0 0 L 12.32 

MM 1.25 L 9.96 0 0 0 0 PG 47.65 0 0 MC 17.72 0 0 0 0 0 0 0 0 0 0 MYO 28.95 

MH 7.69 L 11.86 0 0 0 0 L 12.93 0 0 PD 6.60 0 0 0 0 0 0 0 0 0 0 L 14.59 

MM 6.97 L 15.57 0 0 0 0 L 2.47 0 0 PD 6.44 0 0 0 0 0 0 0 0 0 0 CR 15.78 

L 9.54 CV 8.74 0 0 0 0 MM 14.42 0 0 PD 4.23 0 0 0 0 0 0 0 0 0 0 M 9.77 

PL 8.33 PG 37.64 0 0 0 0 L 25.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MYO 13.98 

L 17.95 PT 8.16 0 0 0 0 MM 1.61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 16.79 
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0 0 PT 9.44 0 0 0 0 PT 2.35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 14.99 

0 0 PT 9.12 0 0 0 0 L 17.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 PT 6.97 0 0 0 0 CV 2.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 2.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 19.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 17.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 5.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 16.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 18.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 13.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 8.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 21.71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 15.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 4.77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 1.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 13.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 11.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 9.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 17.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 CR 15.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 MM 8.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 4.14 Data used to build the frequency distribution and Jablonski plot target. 

LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis zone, LZ: Liasicus zone. 

Average values in bold. 

 
Modiolus 

 

Cardinia 

 

Chlamys 

WF CM LM PPZ PZ LZ 

 
WF LM PPZ PZ LZ 

 

WF CM PPZ PZ LZ 

4.33 4.10 5.33 28.29 5.80 14.82 

 

15.98 10.77 10.90 6.12 11.94 

 

9.38 28.13 14.85 18.49 10.70 

2.79 4.77 4.83 13.61 5.47 10.22 

 

9.30 9.06 8.70 4.11 14.83 

 

6.76 12.88 10.86 16.90 14.43 

4.56 4.40 5.51 11.74 11.27 4.31 

 

7.87 15.71 20.06 10.90 24.29 

 

6.66 20.82 8.23 8.74 

 
5.87 5.82 3.65 10.91 6.60 9.05 

 

12.11 24.49 18.83 13.36 16.00 

 

4.98 5.77 5.45 26.04 

 
9.78 5.76 7.89 5.57 4.35 1.62 

  

14.45 39.81 20.98 18.25 

 

10.23 16.83 10.88 20.79 

 
5.85 

 

4.00 12.26 3.17 9.08 

  

10.25 18.86 19.49 15.42 

 

8.69 31.16 14.62 

  
11.22 

 

8.33 12.34 5.02 8.93 

  

19.84 16.70 17.60 24.92 

 

22.64 

    
10.43 

 

4.45 12.51 8.53 7.39 

  

12.75 17.65 16.99 19.69 

 

9.26 

    
10.51 

 

4.96 6.38 7.69 4.50 

  

17.32 16.97 18.40 17.58 

 

14.84 

    
12.93 

 

4.21 11.73 10.78 3.15 

   

11.02 21.71 19.65 

 

11.57 

    
5.93 

 

9.53 6.39 6.00 6.01 

   

24.95 15.19 15.70 

 

7.80 

    
11.88 

 

10.11 7.61 8.50 6.73 

   

13.93 13.79 43.00 

 

40.48 

    
12.52 

 

5.76 7.91 14.53 6.32 

   

11.48 11.11 11.94 

 

20.93 

    
13.31 

 

16.61 9.26 6.23 6.45 

   

20.53 9.78 14.03 

 

34.79 

    
10.64 

 

7.16 3.68 7.47 3.72 

   

19.91 17.80 13.40 

 

6.12 

    
12.67 

 

10.10 9.23 5.20 4.71 

   

24.13 15.19 11.72 

 

17.28 

    
26.36 

 

8.48 10.49 13.39 2.96 

   

18.21 19.58 14.32 

 

16.71 

    
13.20 

 

18.48 17.16 6.76 8.28 

   

20.16 7.19 13.97 

 

26.85 

    
3.31 

 

10.41 16.84 10.25 2.24 

   

20.03 5.93 12.32 

 

10.16 

    
5.87 

 

13.00 15.71 6.97 2.28 

   

16.15 6.20 23.88 

 

11.94 

    
7.96 

 

7.63 14.08 17.56 7.10 

   

19.09 21.55 

  

20.32 

    
7.15 

 

16.32 18.96 5.10 7.81 

   

16.20 609.76 

  

26.46 

    
5.77 

 

11.99 6.79 13.00 2.28 

   

20.78 23.38 

  

17.86 

    
4.04 

 

5.07 8.27 8.20 1.97 

   

20.07 42.01 

  

23.29 

    
8.70 

 

7.30 3.79 4.77 8.52 

   

22.16 16.22 

  

16.29 

    
5.48 

 

12.81 8.45 10.48 3.42 

   

12.49 

   

23.34 

    
6.22 

  

14.46 8.13 6.27 

   

12.72 

   

29.05 

    
6.71 

  

11.62 5.96 5.39 

 

11.32 14.96 18.24 39.37 17.84 

 

18.44 

    
16.86 

  

11.79 4.91 11.00 

       

20.39 

    
5.86 

  

4.21 14.42 15.96 

       

20.11 

    
10.95 

  

12.82 10.61 14.06 

       

26.42 

    
13.99 

  

8.26 6.47 14.47 

       

25.20 

    
7.94 

  

4.79 3.52 

        

12.54 

    
8.84 

  

5.01 

         

18.40 

    
8.72 

  

4.59 

         

24.84 

    
8.13 

  

7.00 

         

20.57 

    
9.02 

  

4.53 

         

23.45 

    
7.75 

  

7.29 

         

21.68 

    
11.83 

  

5.29 

         

34.29 

    
4.32 

  

8.96 

         

16.42 

    
6.18 

  

9.88 

         

15.69 

    
7.04 

  

2.95 

         

18.98 

    
6.97 

  

6.30 

         

17.23 

    
4.87 

  

8.60 

         

22.08 

    

   

7.22 

         

13.30 

    

   

9.13 

         

14.54 

    

   

7.70 

         

13.26 

    

   

7.14 

         

14.09 

    

   

6.67 

         

9.12 

    

   

8.38 

         

11.25 

    

   

8.61 

         

19.99 

    

   

6.92 

         

16.06 

    

   

7.21 

         

5.43 

    

   

6.43 

         

8.64 

    

   

5.70 

         

17.13 

    

   

5.15 

         

17.35 19.27 10.81 18.19 12.56 

   

6.25 

              

   

7.44 

              

   

5.50 

              
8.76 4.97 8.61 9.05 8.09 6.91 
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Appendix 4.14 (Continuation) Data used to build the frequency distribution and 

Jablonski plot target. LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis zone, 

LZ: Liasicus zone. Average values in bold. 

 
Liostrea 

 
Mytilus 

 
Plagiostoma 

WF LM PPZ PZ LZ 
 

WF LM PPZ 
 

WF LM PPZ PZ LZ 

10.55 13.07 16.86 12.68 20.20 
 

6.18 16.81 21.45 
 

18.88 29.32 33.29 17.95 70.05 

13.92 13.19 20.14 9.96 13.45 
 

7.87 14.57 20.20 
 

24.63 23.23 27.18 26.58 63.54 

11.20 13.50 13.87 15.79 11.23 
 

14.80 14.64 20.47 
 

24.59 13.92 15.60 33.90 51.45 

11.38 24.23 10.11 11.84 19.85 
 

10.58 18.97 
  

11.74 22.83 44.69 8.19 33.02 

18.33 17.42 10.03 10.76 15.85 
 

7.22 20.54 
  

30.73 
 

15.69 22.27 29.50 

13.78 11.69 12.77 9.92 16.18 
 

6.18 
   

13.67 
  

32.96 33.88 

16.95 23.60 14.95 6.89 13.13 
 

11.56 
   

23.36 
  

37.60 32.25 

15.68 19.50 13.03 18.21 15.63 
 

11.74 
   

21.73 
  

17.45 37.10 

8.92 23.64 8.30 10.59 12.80 
 

7.53 
      

52.46 25.72 

15.74 14.55 13.26 24.63 17.83 
 

9.29 17.11 20.71 
    

19.31 73.82 

28.24 23.08 15.94 6.26 8.97 
        

21.57 
 

25.10 12.37 11.79 4.23 18.94 
        

10.63 
 

31.38 15.07 18.54 9.54 12.30 
        

47.65 
 

17.59 16.40 13.27 17.95 14.51 
     

21.16 22.32 27.29 26.81 45.03 

17.22 24.13 14.26 6.52 16.71 
          

19.29 16.66 17.14 14.55 14.99 
          

 
23.68 14.58 10.46 12.02 

          

 
20.69 11.26 20.23 

           

 
20.30 8.92 7.03 

           

 
17.68 10.54 7.65 

           

 
20.74 10.68 9.48 

           

 
22.83 12.97 13.13 

           

 
15.57 21.47 13.25 

           

 
21.31 11.76 13.73 

           

 
17.77 20.52 18.15 

           

 
26.58 14.72 11.56 

           

 
16.54 13.83 11.24 

           

 
22.06 21.75 15.79 

           

 
24.64 15.22 10.93 

           

 
19.69 8.53 9.96 

           

  
10.98 11.86 

           

  
13.28 15.57 

           

  
14.16 37.15 

           

  
19.81 19.26 

           

  
21.06 18.30 

           

  
17.02 20.77 

           

  
13.40 29.39 

           

  
12.87 35.72 

           

  
18.22 28.51 

           

  
16.30 20.39 

           

  
9.50 12.74 

           

  
23.27 11.36 

           

  
9.34 12.93 

           

  
14.99 20.47 

           

  
9.17 25.13 

           

  
5.78 17.27 

           

  
5.02 22.04 

           

  
16.51 19.92 

           

  
7.09 10.85 

           

  
19.52 6.98 

           

  
8.16 14.73 

           

  
7.51 

            

  
23.14 

            

  
19.19 

            

  
8.59 

            

  
11.85 

            
17.21 19.07 14.17 15.18 14.98 
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Appendix 4.15 Matrix used to generate null model. 
S WF1 WF2 WF3 WF4 WF5 WF6 CM1 CM3 LM1 LM2 LM3 PPZ1 PPZ 2 PPZ3 PPZ4 PZ1 PZ2 PZ3 PZ4 PZ5 PZ6 LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 AZ1 

H 1.9 2.9 4.9 6.8 9 10.2 11 12 12.9 13.3 14 15.8 17.2 18.4 19.6 20.3 21.2 23.7 25 25.9 27.6 32 35.5 40.9 46 51.3 58 61 

1 9.38 15.98 3.51 7.59 6.26 31.70 12.35 28.13 5.33 25.52 16.81 28.29 12.44 38.60 9.23 12.68 7.03 5.47 8.54 37.15 6.47 70.05 3.72 6.92 12.02 43.00 3.42 19.05 

2 5.78 6.76 2.63 8.07 4.59 10.42 7.82 12.88 4.83 14.33 23.60 8.53 16.30 20.07 22.16 9.96 17.95 11.27 20.64 19.26 17.45 20.20 4.71 9.16 8.52 11.94 6.27 15.85 

3 3.87 6.66 7.34 9.34 5.58 11.88 6.72 20.82 5.51 15.71 19.50 10.98 9.50 33.29 12.49 15.79 26.58 6.52 5.02 4.91 2.45 13.45 2.96 7.39 0.00 8.93 7.01 16.18 

4 3.95 4.98 4.46 6.57 3.17 16.86 14.59 4.77 3.65 24.49 23.64 10.46 8.26 27.18 12.72 11.84 33.90 14.55 14.73 52.46 14.20 63.54 8.28 5.17 0.00 10.70 14.03 6.73 

5 3.75 10.23 6.07 8.49 24.59 8.41 4.10 4.40 7.89 18.70 14.55 22.65 16.70 14.85 21.75 10.76 10.90 10.46 0.00 18.30 3.52 14.82 2.93 6.45 0.00 6.67 3.86 6.32 

6 4.55 8.69 7.87 5.75 2.91 12.52 4.32 8.08 4.00 21.68 14.57 11.31 23.27 10.86 15.22 9.92 8.19 20.23 0.00 19.31 8.04 51.45 2.24 4.50 0.00 11.91 4.78 16.00 

7 5.34 22.64 6.47 6.26 3.46 13.30 4.12 5.77 8.33 11.58 10.10 10.90 9.34 3.84 6.79 6.89 18.49 6.60 0.00 21.55 19.58 33.02 11.57 3.61 0.00 9.27 13.40 18.25 

8 10.55 9.26 11.16 9.91 25.58 17.59 5.22 16.83 5.07 14.49 8.48 13.28 4.79 6.25 8.27 18.21 7.65 6.02 0.00 20.77 7.19 10.22 18.54 0.00 0.00 3.15 11.72 15.31 

9 13.92 14.84 5.37 8.41 11.94 10.12 10.03 5.82 4.45 20.46 18.48 8.70 5.01 8.23 0.00 10.78 9.48 4.35 0.00 609.76 9.80 29.50 4.92 0.00 0.00 13.32 5.39 15.42 

10 4.33 11.57 27.05 4.87 20.32 10.58 0.00 5.76 10.77 14.45 10.41 20.06 14.99 15.60 0.00 6.00 13.13 6.12 0.00 21.57 5.93 11.94 4.93 0.00 0.00 6.01 14.32 24.92 

11 2.79 7.80 7.12 1.94 26.46 9.27 0.00 31.16 4.96 21.09 13.00 18.83 9.17 44.69 0.00 8.50 13.25 4.11 0.00 10.63 5.96 33.88 5.51 0.00 0.00 0.00 11.00 19.69 

12 4.56 40.48 6.91 5.85 18.22 21.73 0.00 0.00 9.06 11.07 23.08 12.49 5.78 5.45 0.00 22.04 13.36 3.17 0.00 29.39 6.20 32.25 2.28 0.00 0.00 0.00 13.97 34.93 

13 12.67 20.93 9.02 6.58 13.20 10.14 0.00 0.00 4.21 14.18 19.84 14.12 5.02 7.44 0.00 14.53 13.73 6.98 0.00 35.72 8.53 31.99 7.10 0.00 0.00 0.00 12.32 19.71 

14 13.50 34.79 7.05 6.12 17.86 8.71 0.00 0.00 10.31 29.46 16.61 3.79 4.59 15.69 0.00 19.92 7.80 0.00 0.00 28.51 0.00 22.22 7.81 0.00 0.00 0.00 23.88 14.77 

15 11.96 10.01 6.82 5.67 23.29 7.90 0.00 0.00 9.60 11.92 12.37 8.45 16.51 15.65 0.00 6.23 8.10 0.00 0.00 20.39 0.00 11.23 3.22 0.00 0.00 0.00 14.43 17.58 

16 9.78 11.20 6.65 5.98 15.68 6.91 0.00 0.00 6.18 24.67 7.63 20.49 7.00 10.88 0.00 7.47 10.35 0.00 0.00 23.38 0.00 4.31 5.39 0.00 0.00 0.00 15.96 13.13 

17 8.24 11.38 5.23 8.88 16.29 8.24 0.00 0.00 11.10 19.06 15.07 14.16 10.49 5.50 0.00 5.80 16.90 0.00 0.00 42.01 0.00 37.10 2.28 0.00 0.00 0.00 14.06 6.45 

18 13.42 18.33 8.51 10.25 23.34 5.86 0.00 0.00 9.53 10.25 7.16 11.57 17.65 14.62 0.00 5.20 22.27 0.00 0.00 26.04 0.00 9.05 1.97 0.00 0.00 0.00 14.47 15.63 

19 10.73 5.87 7.15 10.68 29.05 4.32 0.00 0.00 10.11 18.10 16.40 19.81 16.40 3.68 0.00 10.59 32.96 0.00 0.00 16.22 0.00 14.83 73.82 0.00 0.00 0.00 0.00 12.80 

20 8.30 9.78 7.84 4.39 18.44 8.37 0.00 0.00 5.76 13.92 24.13 21.06 27.92 6.05 0.00 24.63 17.56 0.00 0.00 12.74 0.00 24.29 0.00 0.00 0.00 0.00 0.00 17.83 

21 13.64 7.87 8.29 7.53 20.39 7.22 0.00 0.00 11.45 19.50 12.75 17.02 12.51 8.47 0.00 13.39 18.15 0.00 0.00 11.36 0.00 25.72 0.00 0.00 0.00 0.00 0.00 8.97 

22 11.40 5.77 9.10 17.28 20.11 14.54 0.00 0.00 13.07 8.96 16.32 9.19 8.96 8.53 0.00 6.26 11.56 0.00 0.00 15.08 0.00 19.85 0.00 0.00 0.00 0.00 0.00 18.94 

23 9.78 17.95 6.68 13.78 11.22 13.26 0.00 0.00 11.64 11.43 14.64 13.40 6.38 10.54 0.00 10.85 11.24 0.00 0.00 23.11 0.00 1.62 0.00 0.00 0.00 0.00 0.00 19.65 

24 10.80 15.57 10.26 16.71 26.42 5.86 0.00 0.00 8.45 15.70 16.66 12.87 16.97 12.63 0.00 6.76 15.79 0.00 0.00 20.00 0.00 6.52 0.00 0.00 0.00 0.00 0.00 17.18 

25 6.48 36.41 7.77 16.95 25.20 6.18 0.00 0.00 18.65 14.23 23.68 21.45 11.02 8.15 0.00 4.23 10.93 0.00 0.00 15.19 0.00 28.25 0.00 0.00 0.00 0.00 0.00 12.30 

26 9.31 10.36 10.41 18.88 12.54 9.64 0.00 0.00 13.19 0.00 11.99 16.28 24.95 8.54 0.00 10.25 9.96 0.00 0.00 47.65 0.00 17.71 0.00 0.00 0.00 0.00 0.00 28.95 

27 11.12 7.71 5.94 26.85 18.40 11.56 0.00 0.00 11.78 0.00 20.69 18.22 13.93 7.49 0.00 7.69 11.86 0.00 0.00 12.93 0.00 6.06 0.00 0.00 0.00 0.00 0.00 14.51 

28 15.15 10.52 5.85 7.90 8.92 14.09 0.00 0.00 13.50 0.00 20.30 16.86 11.48 6.94 0.00 6.97 15.57 0.00 0.00 20.47 0.00 6.44 0.00 0.00 0.00 0.00 0.00 15.70 

29 13.62 12.75 14.80 10.16 24.84 8.31 0.00 0.00 24.23 0.00 18.97 20.14 4.53 0.00 0.00 9.54 8.74 0.00 0.00 14.42 0.00 4.23 0.00 0.00 0.00 0.00 0.00 9.08 

30 13.58 26.75 20.47 26.88 30.21 17.22 0.00 0.00 29.32 0.00 17.68 10.20 7.29 0.00 0.00 8.33 37.60 0.00 0.00 25.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.98 

31 11.67 15.45 9.77 17.16 20.57 9.12 0.00 0.00 23.23 0.00 20.74 13.87 7.09 0.00 0.00 17.95 8.15 0.00 0.00 10.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.71 

32 11.05 28.25 10.26 24.63 23.45 11.25 0.00 0.00 17.42 0.00 22.83 10.11 5.29 0.00 0.00 0.00 9.44 0.00 0.00 20.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.99 

33 10.02 16.85 12.30 26.36 25.46 10.95 0.00 0.00 11.69 0.00 15.57 39.81 19.52 0.00 0.00 0.00 9.12 0.00 0.00 17.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

34 9.58 7.52 6.16 19.20 21.68 6.79 0.00 0.00 0.00 0.00 17.32 18.86 8.96 0.00 0.00 0.00 6.97 0.00 0.00 20.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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35 14.62 38.69 9.60 35.45 34.29 6.18 0.00 0.00 0.00 0.00 21.31 13.61 9.88 0.00 0.00 0.00 20.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

36 12.76 22.06 0.00 4.04 19.29 13.99 0.00 0.00 0.00 0.00 17.77 11.74 8.16 0.00 0.00 0.00 19.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

37 16.20 36.84 0.00 8.86 16.42 19.99 0.00 0.00 0.00 0.00 7.30 10.91 2.95 0.00 0.00 0.00 17.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

38 15.38 50.20 0.00 8.15 15.69 11.32 0.00 0.00 0.00 0.00 12.81 5.57 6.30 0.00 0.00 0.00 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

39 8.33 17.37 0.00 8.94 18.98 9.18 0.00 0.00 0.00 0.00 20.54 10.03 7.51 0.00 0.00 0.00 16.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40 8.73 13.37 0.00 9.27 17.23 2.57 0.00 0.00 0.00 0.00 22.83 12.77 23.14 0.00 0.00 0.00 18.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

41 11.07 20.93 0.00 7.99 22.08 7.94 0.00 0.00 0.00 0.00 26.58 14.95 19.19 0.00 0.00 0.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

42 11.21 12.72 0.00 8.75 7.19 8.84 0.00 0.00 0.00 0.00 16.54 13.03 8.60 0.00 0.00 0.00 8.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

43 10.61 10.56 0.00 11.46 11.74 8.72 0.00 0.00 0.00 0.00 22.06 12.26 8.59 0.00 0.00 0.00 21.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

44 7.80 0.00 0.00 10.14 5.48 9.36 0.00 0.00 0.00 0.00 24.64 12.34 7.22 0.00 0.00 0.00 15.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

45 10.13 0.00 0.00 8.68 13.80 4.81 0.00 0.00 0.00 0.00 9.87 14.46 7.59 0.00 0.00 0.00 4.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

46 8.76 0.00 0.00 19.76 18.41 8.13 0.00 0.00 0.00 0.00 19.69 8.30 9.13 0.00 0.00 0.00 10.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

47 6.10 0.00 0.00 6.92 14.71 8.34 0.00 0.00 0.00 0.00 0.00 7.47 11.85 0.00 0.00 0.00 13.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

48 0.00 0.00 0.00 18.26 8.01 14.31 0.00 0.00 0.00 0.00 0.00 11.62 14.52 0.00 0.00 0.00 11.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

49 0.00 0.00 0.00 4.54 10.43 8.83 0.00 0.00 0.00 0.00 0.00 11.79 12.75 0.00 0.00 0.00 9.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

50 0.00 0.00 0.00 10.02 10.51 11.38 0.00 0.00 0.00 0.00 0.00 4.21 11.50 0.00 0.00 0.00 17.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

51 0.00 0.00 0.00 9.77 12.93 10.86 0.00 0.00 0.00 0.00 0.00 12.82 20.24 0.00 0.00 0.00 15.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

52 0.00 0.00 0.00 8.35 6.22 11.13 0.00 0.00 0.00 0.00 0.00 14.24 13.65 0.00 0.00 0.00 8.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

53 0.00 0.00 0.00 12.18 6.71 7.15 0.00 0.00 0.00 0.00 0.00 15.52 18.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

54 0.00 0.00 0.00 9.30 6.92 5.66 0.00 0.00 0.00 0.00 0.00 13.26 14.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.00 0.00 0.00 5.37 11.69 9.02 0.00 0.00 0.00 0.00 0.00 15.94 19.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

56 0.00 0.00 0.00 7.87 13.83 8.21 0.00 0.00 0.00 0.00 0.00 11.79 18.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

57 0.00 0.00 0.00 13.01 5.93 16.06 0.00 0.00 0.00 0.00 0.00 0.00 7.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

58 0.00 0.00 0.00 26.73 11.25 5.43 0.00 0.00 0.00 0.00 0.00 0.00 13.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

59 0.00 0.00 0.00 4.25 14.98 7.85 0.00 0.00 0.00 0.00 0.00 0.00 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

60 0.00 0.00 0.00 5.23 3.31 7.49 0.00 0.00 0.00 0.00 0.00 0.00 11.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

61 0.00 0.00 0.00 8.70 5.87 8.22 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

62 0.00 0.00 0.00 5.77 7.96 6.41 0.00 0.00 0.00 0.00 0.00 0.00 11.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

63 0.00 0.00 0.00 36.91 30.73 8.36 0.00 0.00 0.00 0.00 0.00 0.00 6.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

64 0.00 0.00 0.00 6.83 15.74 9.54 0.00 0.00 0.00 0.00 0.00 0.00 29.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

65 0.00 0.00 0.00 13.05 28.24 6.68 0.00 0.00 0.00 0.00 0.00 0.00 8.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

66 0.00 0.00 0.00 12.11 25.10 6.39 0.00 0.00 0.00 0.00 0.00 0.00 8.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

67 0.00 0.00 0.00 8.75 13.67 4.45 0.00 0.00 0.00 0.00 0.00 0.00 6.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

68 0.00 0.00 0.00 11.74 29.39 7.75 0.00 0.00 0.00 0.00 0.00 0.00 8.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

69 0.00 0.00 0.00 0.00 23.36 11.83 0.00 0.00 0.00 0.00 0.00 0.00 21.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

70 0.00 0.00 0.00 0.00 31.38 18.10 0.00 0.00 0.00 0.00 0.00 0.00 13.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

71 0.00 0.00 0.00 0.00 0.00 9.94 0.00 0.00 0.00 0.00 0.00 0.00 15.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

72 0.00 0.00 0.00 0.00 0.00 4.85 0.00 0.00 0.00 0.00 0.00 0.00 8.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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73 0.00 0.00 0.00 0.00 0.00 3.82 0.00 0.00 0.00 0.00 0.00 0.00 7.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

74 0.00 0.00 0.00 0.00 0.00 9.30 0.00 0.00 0.00 0.00 0.00 0.00 4.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

75 0.00 0.00 0.00 0.00 0.00 11.70 0.00 0.00 0.00 0.00 0.00 0.00 8.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

76 0.00 0.00 0.00 0.00 0.00 8.64 0.00 0.00 0.00 0.00 0.00 0.00 11.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

77 0.00 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 0.00 0.00 6.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

78 0.00 0.00 0.00 0.00 0.00 7.41 0.00 0.00 0.00 0.00 0.00 0.00 10.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

79 0.00 0.00 0.00 0.00 0.00 4.32 0.00 0.00 0.00 0.00 0.00 0.00 10.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

80 0.00 0.00 0.00 0.00 0.00 6.08 0.00 0.00 0.00 0.00 0.00 0.00 6.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

81 0.00 0.00 0.00 0.00 0.00 6.18 0.00 0.00 0.00 0.00 0.00 0.00 7.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

82 0.00 0.00 0.00 0.00 0.00 6.90 0.00 0.00 0.00 0.00 0.00 0.00 7.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

83 0.00 0.00 0.00 0.00 0.00 5.84 0.00 0.00 0.00 0.00 0.00 0.00 5.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

84 0.00 0.00 0.00 0.00 0.00 8.38 0.00 0.00 0.00 0.00 0.00 0.00 5.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

85 0.00 0.00 0.00 0.00 0.00 8.81 0.00 0.00 0.00 0.00 0.00 0.00 18.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

86 0.00 0.00 0.00 0.00 0.00 6.03 0.00 0.00 0.00 0.00 0.00 0.00 13.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

87 0.00 0.00 0.00 0.00 0.00 5.05 0.00 0.00 0.00 0.00 0.00 0.00 14.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

88 0.00 0.00 0.00 0.00 0.00 6.15 0.00 0.00 0.00 0.00 0.00 0.00 17.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

89 0.00 0.00 0.00 0.00 0.00 4.86 0.00 0.00 0.00 0.00 0.00 0.00 14.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

90 0.00 0.00 0.00 0.00 0.00 9.30 0.00 0.00 0.00 0.00 0.00 0.00 11.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

91 0.00 0.00 0.00 0.00 0.00 17.47 0.00 0.00 0.00 0.00 0.00 0.00 9.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

92 0.00 0.00 0.00 0.00 0.00 8.86 0.00 0.00 0.00 0.00 0.00 0.00 8.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

93 0.00 0.00 0.00 0.00 0.00 9.22 0.00 0.00 0.00 0.00 0.00 0.00 10.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

94 0.00 0.00 0.00 0.00 0.00 7.75 0.00 0.00 0.00 0.00 0.00 0.00 10.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

95 0.00 0.00 0.00 0.00 0.00 4.79 0.00 0.00 0.00 0.00 0.00 0.00 12.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

96 0.00 0.00 0.00 0.00 0.00 7.04 0.00 0.00 0.00 0.00 0.00 0.00 20.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

97 0.00 0.00 0.00 0.00 0.00 17.13 0.00 0.00 0.00 0.00 0.00 0.00 19.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

98 0.00 0.00 0.00 0.00 0.00 17.81 0.00 0.00 0.00 0.00 0.00 0.00 20.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

99 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 4.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100 0.00 0.00 0.00 0.00 0.00 7.75 0.00 0.00 0.00 0.00 0.00 0.00 26.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

101 0.00 0.00 0.00 0.00 0.00 12.70 0.00 0.00 0.00 0.00 0.00 0.00 17.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

102 0.00 0.00 0.00 0.00 0.00 11.52 0.00 0.00 0.00 0.00 0.00 0.00 16.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

103 0.00 0.00 0.00 0.00 0.00 6.97 0.00 0.00 0.00 0.00 0.00 0.00 21.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

104 0.00 0.00 0.00 0.00 0.00 7.85 0.00 0.00 0.00 0.00 0.00 0.00 20.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

105 0.00 0.00 0.00 0.00 0.00 4.87 0.00 0.00 0.00 0.00 0.00 0.00 12.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

106 0.00 0.00 0.00 0.00 0.00 12.75 0.00 0.00 0.00 0.00 0.00 0.00 8.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

107 0.00 0.00 0.00 0.00 0.00 9.42 0.00 0.00 0.00 0.00 0.00 0.00 14.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

108 0.00 0.00 0.00 0.00 0.00 8.27 0.00 0.00 0.00 0.00 0.00 0.00 23.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

109 0.00 0.00 0.00 0.00 0.00 9.24 0.00 0.00 0.00 0.00 0.00 0.00 24.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

110 0.00 0.00 0.00 0.00 0.00 5.43 0.00 0.00 0.00 0.00 0.00 0.00 15.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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111 0.00 0.00 0.00 0.00 0.00 13.31 0.00 0.00 0.00 0.00 0.00 0.00 16.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

112 0.00 0.00 0.00 0.00 0.00 10.39 0.00 0.00 0.00 0.00 0.00 0.00 21.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

113 0.00 0.00 0.00 0.00 0.00 9.09 0.00 0.00 0.00 0.00 0.00 0.00 18.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

114 0.00 0.00 0.00 0.00 0.00 11.58 0.00 0.00 0.00 0.00 0.00 0.00 16.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

115 0.00 0.00 0.00 0.00 0.00 16.36 0.00 0.00 0.00 0.00 0.00 0.00 11.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

116 0.00 0.00 0.00 0.00 0.00 13.90 0.00 0.00 0.00 0.00 0.00 0.00 20.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

117 0.00 0.00 0.00 0.00 0.00 13.72 0.00 0.00 0.00 0.00 0.00 0.00 20.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

118 0.00 0.00 0.00 0.00 0.00 15.43 0.00 0.00 0.00 0.00 0.00 0.00 20.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

119 0.00 0.00 0.00 0.00 0.00 7.64 0.00 0.00 0.00 0.00 0.00 0.00 31.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

120 0.00 0.00 0.00 0.00 0.00 8.09 0.00 0.00 0.00 0.00 0.00 0.00 14.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

121 0.00 0.00 0.00 0.00 0.00 11.57 0.00 0.00 0.00 0.00 0.00 0.00 13.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

122 0.00 0.00 0.00 0.00 0.00 15.00 0.00 0.00 0.00 0.00 0.00 0.00 20.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

123 0.00 0.00 0.00 0.00 0.00 10.64 0.00 0.00 0.00 0.00 0.00 0.00 14.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

124 0.00 0.00 0.00 0.00 0.00 11.58 0.00 0.00 0.00 0.00 0.00 0.00 16.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

125 0.00 0.00 0.00 0.00 0.00 12.05 0.00 0.00 0.00 0.00 0.00 0.00 19.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

126 0.00 0.00 0.00 0.00 0.00 6.76 0.00 0.00 0.00 0.00 0.00 0.00 16.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

127 0.00 0.00 0.00 0.00 0.00 8.63 0.00 0.00 0.00 0.00 0.00 0.00 19.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

130 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 9.79 16.85 8.63 11.46 16.42 9.74 7.70 13.13 10.55 17.00 17.12 14.05 13.42 13.56 13.58 10.97 14.28 8.14 12.23 39.54 8.87 22.61 9.17 6.17 10.27 12.49 11.35 16.17 

n 47 43 35 68 70 127 9 11 33 25 46 56 131 28 8 31 52 13 4 34 13 29 19 7 2 10 18 32 
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Appendix 4.16 Trace Fossils: Plates 1 to 6 (Westbury Formation).  
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Appendix 4.16 Trace fossils: Plates 7 - 8 (The Cotham Member); Plates 9 to 11 (the 

Langport Member); Plate 12 (Pre-Planorbis Zone). 
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Appendix 4.16 Trace fossils: Plates 13 - 14 (Pre-Planorbis Zone); Plate 15 - 18 

(Planorbis Zone). 
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Appendix 4.16 Trace fossils: Plates 19 - 20 (Planorbis Zone); Plate 21-24 (Liasicus 

Zone). 
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Appendix 4.16 Trace fossils: Plates 25 - 26 (Liasicus Zone); Plate 28 (Angulata Zone). 
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Appendix 4.17  pecimens found through the  t Audrie’s Bay section. 
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Appendix 4.18  pecimens found through the  t Audrie’s Bay section. 
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Appendix 4.17: 1. Psilophyllites hagenowi (Dunker); 2. Cassianella sp; 3. Modiolus sp; 

4. Cardinia regularis (Terquem); 5. Liostrea hisingeri (Nilsson); 6. Pteromya langportensis 

(Richardson and Tutcher); 7. Permophorus elongatus (Moore); 8. Waehnoceras portlocki 

(Wright); 9. Modiolus ventricosus (Roener); 10. Myoconcha sp.; 11. Modiolus minimus  (J. 

Sowerby); 12. Modiolus sodburiensis (Vaughan); 13. Liostrea hisingeri (Nilsson); 14. 

Pholadomya sp. 

 

Appendix 4.18: 1. Plagiostoma giganteum (Sowerby); 2. Paleonucula navis (Piette); 3. 

Diademopsis tomesi (Wright); 4. Mytilus cloacinus (Tutcher); 5. Caloceras johnstoni 

(Sowerby); 6. Pteromya langportensis (Richardson and Tutcher); 7. Camptonectes sp; 8. 

Chlamys valoniensis (Defrance); 9. Gervillella precursor (Quenstedt); 10. Permophorus 

elongatus (Moore); 11. Protocardia rhaetica (Merian);12. Isocyprina depressum (Moore); 

13. Chlamys valoniensis (Defrance); 14. Mytilus sp. 
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Appendix 5.1 Lists of taxa and abundance of each species by lithology recorded at each sample along the Pinhay Bay section. 

0 1.3 2.6 3.6 4.8 6.05 7 8.1 8.9 10.1 11.5 12.3 13.1 13.8 14.9 15.8 17.2 19.2

Species Phylum Class Order Family LLM1 LLM2 LLM3 LLM4 LLM5 LLM6 PP1 PP2 PP3 PZ1 PZ2 PZ3 PZ4 LZ1 LZ2 LZ3 AZ1 AZ2

Mesomiltha  sp. Mollusca Bivalvia Lucinoida Lucinidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Liostrea hisingeri (Nilsson) Mollusca Bivalvia Pterioida Gryphaeidae 1 1 0 1 0 0 2 8 0 3 0 0 11 1 1 0 0 0

Pteromya langportensis (Richardson and Tutcher) Mollusca Bivalvia Pholadomyoida Pholadomydae 1 1 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0

Modiolus hillanus (Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Promathildia decorata (Moore) Mollusca Gastropoda Heterostropha Mathildidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isocyprina concentricum (Moore) Mollusca Bivalvia Veneroida Arcticidae 5 0 0 14 24 0 0 0 0 0 0 0 0 0 0 0 0 0

Modiolus  sp. Mollusca Bivalvia Mytiloida Mytilidae 0 0 2 0 0 0 0 0 0 5 2 0 3 0 0 0 0 0

Plagiostoma giganteum (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 1 0 0 0 0 0 10 5 3 0 11 7 3 2 4 0

Gervillella precursor (Quenstedt) Mollusca Bivalvia Pterioida Bakevelliidae 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Promathildia rhaetica (Moore) Mollusca Gastropoda Heterostropha Mathildidae 0 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Chlamys valoniensis  (Defrance) Mollusca Bivalvia Pectinoida Pectinidae 0 0 0 1 2 0 0 0 0 0 0 0 3 0 0 0 0 0

Zygopleura henrici (Martin) Mollusca Gastropoda Apogastropoda Zygopleuridae 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Solarioconulus waltonii (Moore) Mollusca Gastropoda Archaeogastropoda Trochidae 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0

Astarte  sp. Mollusca Bivalvia Carditoida Astartidae 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Pseudokatosira undulata (Benz) Mollusca Gastropoda Murchisoniina Zygopleuridae 0 0 0 0 0 0 3 0 0 10 1 0 6 0 0 22 7 9

Diademopsis tomesi (Wright) Echinodermata Echinoidea Pedinoida Pedinidae 0 0 0 0 1 0 3 4 1 3 6 0 0 1 13 2 1 0

Modiolus minimus  (J. Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 0 0

Myoconcha sp. Mollusca Bivalvia Pholadomyoidea Permophoridae 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

Isocrinus psilonoti (Quenstedt) Echinodermata Crinoidea Articulata Isocrinidae 0 0 0 0 0 0 0 0 9 10 7 0 15 11 0 2 1 0

Pleurotomaria cognata (Chapuis and Dewalque) Mollusca Gastropoda Vetigastropoda Pleurotomariidae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Pinna  sp. Mollusca Bivalvia Pterioida Pinnidae 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

Pseudolimea duplicata (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 0 0 0 0 0 0 0 3 7 0 4 3 2 1 0 1

Modiolus ventricosus (Roener) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Psiloceas erugatum (Phillips) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Mactromya cardioides  (Phillips) Mollusca Bivalvia Veneroida Mactromyidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Cardinia regularis (Terquem) Mollusca Bivalvia Carditoida Cardiniidae 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0

Caloceras johnstoni (Sowerby) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Scholethemia complanata Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

Calcirhynchia calcaria (Buckman) Brachiopoda Rhynchonellata Rhynchonellida Wellerellidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 60

Gryphaea obliquata (Sowerby) Mollusca Bivalvia Pterioida Gryphaeidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Asalties laqueus (Quenstedt) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Limestone
Meters above Langport Member(m)
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Appendix 5.1 (Continuation).  

7 8.1 9.05 10.1 11.5 12.3 13.1 13.8 14.9 15.8 17.2 19.2

Species Phylum Class Order Family PP1 PP2 PP3 PZ1 PZ2 PZ3 PZ4 LLZ1 LLZ3 LLZ4 AZ1 AZ2

Liostrea hisingeri (Nilsson) Mollusca Bivalvia Pterioida Gryphaeidae 3 20 4 5 3 2 9 1 6 10 4 0

Pteromya langportensis (Richardson and Tutcher) Mollusca Bivalvia Pholadomyoida Pholadomydae 2 1 0 0 0 0 0 0 0 0 0 0

Modiolus hillanus (Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 0 0 1 0 0 0 0

Modiolus  sp. Mollusca Bivalvia Mytiloida Mytilidae 6 0 16 3 6 16 0 11 5 2 7 0

Plagiostoma giganteum (Sowerby) Mollusca Bivalvia Limoida Limidae 0 1 0 1 1 4 7 0 1 0 1 0

Gervillella precursor (Quenstedt) Mollusca Bivalvia Pterioida Bakevelliidae 0 0 0 0 0 0 0 0 1 0 1 0

Chlamys valoniensis  (Defrance) Mollusca Bivalvia Pectinoida Pectinidae 8 1 1 0 2 6 0 0 0 2 0 0

Pseudokatosira undulata (Benz) Mollusca Gastropoda Murchisoniina Zygopleuridae 0 2 0 0 11 0 0 0 0 0 0 0

Diademopsis tomesi (Wright) Echinodermata Echinoidea Pedinoida Pedinidae 3 24 10 9 0 23 19 2 27 2 1 3

Modiolus minimus  (J. Sowerby) Mollusca Bivalvia Mytiloida Mytilidae 5 6 0 0 1 0 0 0 0 0 0 0

Myoconcha sp. Mollusca Bivalvia Pholadomyoidea Permophoridae 0 1 0 0 0 0 0 0 0 0 0 0

Isocrinus psilonoti (Quenstedt) Echinodermata Crinoidea Articulata Isocrinidae 0 1 4 0 0 2 0 0 0 0 2 0

Pseudolimea duplicata (Sowerby) Mollusca Bivalvia Limoida Limidae 0 0 0 0 0 0 3 0 1 0 3 0

Modiolus ventricosus (Roener) Mollusca Bivalvia Mytiloida Mytilidae 0 0 0 0 0 7 0 0 0 0 0 1

Psiloceas erugatum (Phillips) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 1 0 0 0 0 0 0 0 0 0 0

Mactromya cardioides  (Phillips) Mollusca Bivalvia Veneroida Mactromyidae 0 0 0 0 0 0 0 0 0 0 1 0

Cardinia regularis (Terquem) Mollusca Bivalvia Carditoida Cardiniidae 0 0 1 3 0 4 0 0 0 0 0 1

Caloceras johnstoni (Sowerby) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 1 0 0 0 0 0 0

Scholethemia complanata Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 0 0 0 2

Calcirhynchia calcaria (Buckman) Brachiopoda Rhynchonellata Rhynchonellida Wellerellidae 0 0 0 0 0 0 0 0 0 0 10 3

Gryphaea obliquata (Sowerby) Mollusca Bivalvia Pterioida Gryphaeidae 0 0 0 0 0 0 0 0 0 0 2 11

Rollieria bronni (Andler) Mollusca Bivalvia Nuculanoida Yoldiidae 0 0 0 0 0 1 0 0 1 0 0 0

Ryderia doris (d'Orbigny) Mollusca Bivalvia Nuculanoida Nuculanidae 0 0 1 0 0 0 0 0 0 0 0 0

Camptonectes  sp. Mollusca Bivalvia Pectinoida Pectinidae 0 0 0 3 0 2 0 3 3 0 2 3

Euryclidus sp. Chordata Reptilia Plesiosauria Plesiosauridae 0 0 0 0 0 0 1 0 0 0 0 0

Psilophyllites hagenowi (Dunker) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 3 0 0 0 0

Paleonucula navis (Piette) Mollusca Bivalvia Nuculoida Nuculidae 0 0 0 0 0 0 0 1 0 0 0 0

Pseudomitiloides dubius (Sowerby) Mollusca Bivalvia Pterioida Inoceramidae 0 0 0 0 0 0 0 0 1 0 0 0

Asalties laqueus (Quenstedt) Mollusca Cephalopoda Ammonoidea Psiloceratidae 0 0 0 0 0 0 0 0 1 0 0 0
Pholadomya  sp Mollusca Bivalvia Pholadomyoidea Pholadomyidae 0 0 0 0 5 0 0 0 0 0 1 0

Mudstone
Meters above Langport Member(m)

  



357 
 

Appendix 5.2 Summary of palaeoecological parameters estimated in this study. SC: Sample cog; H: Height (mm), R: Richness, MR: Mean 

Richness, K: Kurtosis, BW: Whittaker index, BR: Routledge index; AC: Average cover %; II: Ichnofabric indices; NM = mean values of null model; 

GM = Geomean of body size, RT = Rate of change in body size, BD=Burrow diameter, (0.00) = No Data. 
  

Limestone 
 

Mudstone 

SC H R MR K BW BR AC II NM GM RT BD 
 

N H R MR K BW BR 

LM1 0.00 6.00 4.10 22.50 0.00 0.00 0.00 0.00 1.67 8.32 19.12 0.00 
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LM2 1.30 2.00 2.00 17.28 0.5 0.09 0.00 0.00 0.16 33.18 -20.38 0.00 
 

0.00 1.30 0.00 0.00 0.00 0.00 0.00 

LM3 2.60 2.00 1.83 25.61 1 0.30 0.00 0.00 0.16 6.69 2.49 0.00 
 

0.00 2.60 0.00 0.00 0.00 0.00 0.00 

LM4 3.60 6.00 4.29 30.31 1 0.24 0.00 0.00 7.64 9.17 -0.49 0.00 
 

0.00 3.60 0.00 0.00 0.00 0.00 0.00 

LM5 4.80 7.00 5.21 32.68 0.53 0.16 0.00 0.00 7.18 8.58 1.01 0.00 
 

0.00 4.80 0.00 0.00 0.00 0.00 0.00 

LM6 6.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 6.05 0.00 0.00 0.00 0.00 0.00 

PPZ1 7.00 5.00 3.96 14.38 0.83 0.24 17.00 1.00 9.94 10.85 5.50 3.25 
 

PP1 7.00 6.00 1.97 8.01 0.00 0.00 

PPZ2 8.90 3.00 2.47 24.94 0.25 0.06 5.00 2.00 9.17 17.18 -2.95 2.08 
 

PP2 8.10 10.00 5.65 16.28 0.37 0.09 

PPZ3 9.05 6.00 4.60 13.68 0.55 0.14 37.00 5.00 9.69 13.06 -0.08 7.06 
 

PP3 8.90 7.00 2.79 17.71 0.52 0.15 

PZ1 10.10 9.00 7.05 7.73 0.6 0.17 44.00 5.00 12.95 12.97 12.47 7.13 
 

PZ1 10.10 6.00 1.66 14.11 0.38 0.11 

PZ2 11.50 8.00 6.06 6.98 0.29 0.08 34.00 5.00 4.19 29.18 -7.90 7.00 
 

PZ2 11.50 7.00 2.23 14.81 0.53 0.16 

PZ3 12.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.07 20.49 5.07 0.00 
 

PZ3 12.30 11.00 8.46 14.44 0.55 0.15 

PZ4 13.10 10.00 8.10 7.43 0.33 0.09 48.00 5.00 2.84 26.06 -13.09 5.81 
 

PZ4 13.10 5.00 2.36 20.33 0.62 0.15 

LLZ1 13.80 7.00 4.88 18.31 0.52 0.15 125.00 5.00 2.20 12.97 11.02 7.89 
 

LLZ1 13.80 7.00 1.56 27.21 0.66 0.19 

LLZ2 14.90 4.00 3.11 33.81 0.27 0.06 34.00 5.00 5.91 25.09 -9.15 5.81 
 

LLZ2 14.90 10.00 4.57 32.81 0.52 0.15 

LLZ3 15.80 5.00 3.67 37.89 0.33 0.09 61.00 3.00 1.17 9.53 2.32 8.53 
 

LLZ3 15.80 4.00 0.72 31.49 0.57 0.13 

AZ1 17.20 7.00 5.06 22.74 0.33 0.09 110.00 4.00 4.68 14.40 5.10 5.44 
 

AZ1 17.20 12.00 4.19 11.75 0.62 0.13 

AZ2 19.20 4.00 2.95 38.08 0.00 0.00 71.00 4.00 5.90 24.60 0.00 7.57 
 

AZ2 19.20 7.00 1.79 24.31 0.57 0.15 
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Appendix 5.3 Total species abundance (%) by Lithology and lithostratigraphy: LM Langport Member, PPZ: Pre-Planorbis Zone, PZ: 

Planorbis zone, LZ: Liasicus zone, AZ: Angulate Zone. 

Limestone 

Species LM 
 

Species PPZ 
 

Species PZ 
 

Species LZ 
 

Species AZ 

I. concentricum 53.75 
 

L. hisingeri 18.18 
 

I. psilonoti 24.81 
 

P. undulata 30.14 
 

C. calcaria 73.53 

P. rhaetica 8.75 
 

P. giganteum 18.18 
 

P. giganteum 14.73 
 

D. tomesi 21.92 
 

P.  undulata 15.69 

S. waltonii 7.5 
 

I. psilonoti 16.36 
 

P.  undulata 13.18 
 

I. psilonoti 17.81 
 

P. giganteum 3.92 

M. hillanus 6.25 
 

D. tomesi 14.55 
 

L. hisingeri 10.85 
 

P. giganteum 16.44 
 

S. complanata 2.94 

L. hisingeri 3.75 
 

P. langportensis 10.91 
 

P. duplicata 10.85 
 

P. duplicata 8.22 
 

D. tomesi 0.98 

C. valoniensis 3.75 
 

M. minimus 9.09 
 

Modiolus sp. 7.75 
 

L. hisingeri 2.74 
 

I. psilonoti 0.98 

Z. henrici 3.75 
 

P.  undulata 5.45 
 

D. tomesi 6.98 
 

M. ventricosus 1.37 
 

P. duplicata 0.98 

P. langportensis 2.5 
 

Myoconcha sp. 5.45 
 

C. regularis 3.88 
 

A. laqueus 1.37 
 

G. obliquata 0.98 

Modiolus sp. 2.5 
 

P. cognata 1.82 
 

C. valoniensis 2.33 
      

Mesomiltha sp. 1.25 
    

Pinna sp. 1.55 
      

P. decorata 1.25 
    

M.  ventricosus 0.78 
      

P. giganteum 1.25 
    

P. planorbis 0.78 
      

G. precursor 1.25 
    

M. cardioides 0.78 
      

Astarte sp. 1.25 
    

W. portlocki 0.78 
      

D. tomesi 1.25 
            

   
Mudstone 

   
Species PPZ 

 
Species PZ 

 
Species LZ 

 
Species AZ 

   
D. tomesi 30.33 

 
D. tomesi 31.88 

 
D.  tomesi 36.47 

 
C. calcaria 22.03 

   
L. hisingeri 22.13 

 
Modiolus sp. 15.63 

 
Modiolus sp. 21.18 

 
G. obliquata 22.03 

   
Modiolus sp. 18.03 

 
L. hisingeri 11.88 

 
L. hisingeri 20.00 

 
Modiolus sp. 11.86 

   
M. minimus 9.02 

 
P. giganteum 8.13 

 
Camptonectes sp. 7.06 

 
Camptonectes sp. 8.47 

   
C. valoniensis 8.20 

 
P. undulata 6.88 

 
P. hagenowi 3.53 

 
L. hisingeri 6.78 

   
I. psilonoti 4.10 

 
C. valoniensis 5.00 

 
C. valoniensis 2.35 

 
D. tomesi 6.78 

   
P. langportensis 2.46 

 
M. ventricosus 4.38 

 
M. hillanus 1.18 

 
P. duplicata 5.08 

   
P. undulata 1.64 

 
C. regularis 4.38 

 
P. giganteum 1.18 

 
I. psilonoti 3.39 

   
P. giganteum 0.82 

 
Camptonectes sp. 3.13 

 
G. precursor 1.18 

 
S. complanata 3.39 

   
Myoconcha sp. 0.82 

 
Pholadomya sp 3.13 

 
P. duplicata 1.18 

 
P. giganteum 1.69 

   
P. planorbis 0.82 

 
P. duplicata 1.88 

 
R. bronni 1.18 

 
G. precursor 1.69 

   
C.  regularis 0.82 

 
I. psilonoti 1.25 

 
P. navis 1.18 

 
M. ventricosus 1.69 

   
R. doris 0.82 

 
M.  minimus 0.63 

 
P.dubius 1.18 

 
M. cardioides 1.69 

      
R. bronni 0.63 

 
A. laqueus 1.18 

 
C. regularis 1.69 

      
Plesiosaurus sp. 0.63 

    
Pholadomya sp. 1.69 

      
C.  johnstoni 0.63 
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Appendix 5.4 Total species abundance by Lithology and lithostratigraphy: LM 

Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis zone, LZ: Liasicus zone, 

AZ: angulate zone. 

 
Limestone 

 
Mudstone 

 
LM PPZ PZ LZ AZ 

 
PPZ PZ LZ AZ 

 
1 0 0 0 0 

 
0 0 0 0 

 
3 10 14 2 0 

 
27 19 17 4 

 
2 6 0 0 0 

 
3 0 0 0 

 
5 0 0 0 0 

 
0 0 1 0 

 
1 0 0 0 0 

 
0 0 0 0 

 
43 0 0 0 0 

 
0 0 0 0 

 
2 0 10 0 0 

 
22 25 18 7 

 
1 10 19 12 4 

 
1 13 1 1 

 
1 0 0 0 0 

 
0 0 1 1 

 
7 0 0 0 0 

 
0 0 0 0 

 
3 0 3 0 0 

 
10 8 2 0 

 
3 0 0 0 0 

 
0 0 0 0 

 
6 0 0 0 0 

 
0 0 0 0 

 
1 0 0 0 0 

 
0 0 0 0 

 
0 3 17 22 16 

 
2 11 0 0 

 
1 8 9 16 1 

 
37 51 31 4 

 
0 5 0 0 0 

 
11 1 0 0 

 
0 3 0 0 0 

 
1 0 0 0 

 
0 9 32 13 1 

 
5 2 0 2 

 
0 1 0 0 0 

 
0 0 0 0 

 
0 0 2 0 0 

 
0 0 0 0 

 
0 0 14 6 1 

 
0 3 1 3 

 
0 0 1 1 0 

 
0 7 0 1 

 
0 0 1 0 0 

 
1 0 0 0 

 
0 0 1 0 0 

 
0 0 0 1 

 
0 0 5 0 0 

 
1 7 0 1 

 
0 0 1 0 0 

 
0 0 0 0 

 
0 0 0 0 3 

 
0 0 0 2 

 
0 0 0 0 75 

 
0 0 0 13 

 
0 0 0 0 1 

 
0 0 0 13 

 
0 0 0 0 0 

 
0 1 1 0 

 
0 0 0 0 0 

 
1 0 0 0 

 
0 0 0 0 0 

 
0 5 6 5 

 
0 0 0 0 0 

 
0 1 0 0 

 
0 0 0 0 0 

 
0 0 3 0 

 
0 0 0 0 0 

 
0 0 1 0 

 
0 0 0 0 0 

 
0 0 1 0 

 
0 0 0 1 0 

 
0 0 1 0 

 
0 0 0 0 0 

 
0 5 0 1 

 
0 0 0 0 0 

 
0 1 0 0 

Total individuals 80 55 129 73 102 
 

122 160 85 59 

Species 15 9 14 8 8 
 

13 16 14 15 
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Appendix 5.5 Pairwise comparisons of the faunal composition of each stratigraphic 

unit. The values showed were estimated by Bray Curtis dissimilarity index. LM: 

Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. 

Overall average dissimilarity between stratigraphic units = 81.15%. 
 

Taxa LM PPZ PZ LZ AZ 

% Dissimilarity 

87.85    

 77.12   

  59.04  

   66.45 
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Appendix 5.6 SIMPER analysis. C: Percentage contribution = average 

contribution/average dissimilarity between stratigraphic units. AC%: represents the 

average contribution of the taxon i to the average dissimilarity between lithostratigraphy 

(overall average = 81. 15%. See appendix 4.4). Mean abundance of each taxon by 

stratigraphic units. LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis 

Zone, LZ: Liasicus Zone, AZ: Angulata Zone, §: Taxa with regional extinction.  

 

Taxon C AC % LM PPZ PZ LZ AZ 

Diademopsis tomesi  7.553 9.307 0.167 1.24 0.72 1.36 0.5 

Pseudokatosira undulata  7.379 18.4 0 0.439 1.09 0.722 1.68 

Plagiostoma giganteum 7.262 27.35 0.167 0.593 1.16 1.38 0.707 

Isocrinus psilonoti 6.599 35.48 0 0.577 1.34 1 0.5 

Liostrea hisingeri  6.416 43.39 0.5 0.957 0.784 0.667 0 

Pseudolimea duplicata 5.861 50.61 0 0 1.09 1.17 0.5 

Calcirhynchia calcaria 4.772 56.49 0 0 0 0 2.38 

Isocyprina concentricum § 3.667 61.01 0.941 0 0 0 0 

Modiolus sp. 3.602 65.45 0.198 0 1 0 0 

Modiolus minimus  3.539 69.81 0 1.11 0 0 0 

Pteromya langportensis  3.334 73.92 0.333 0.522 0 0 0 

Scholethemia complanata 2.136 76.55 0 0 0 0 1.09 

Chlamys valoniensis 1.941 78.94 0.365 0 0.329 0 0 

Modiolus hillanus § 1.74 81.08 0.418 0 0 0 0 

Promathildia rhaetica §  1.714 83.2 0.455 0 0 0 0 

Cardinia regularis 1.565 85.12 0 0 0.626 0 0 

Modiolus ventricosus 1.395 86.84 0 0 0.25 0.333 0 

Myoconcha sp. 1.158 88.27 0 0.439 0 0 0 

Solarioconulus waltonii 0.9137 89.4 0.261 0 0 0 0 

Pleurotomaria cognata  0.88 90.48 0 0.333 0 0 0 

Gryphaea obliquata  0.8741 91.56 0 0 0 0 0.5 

Asalties laqueus 0.8464 92.6 0 0 0 0.333 0 

Zygopleura henrici  0.7683 93.55 0.219 0 0 0 0 

Promathildia decorata 0.7232 94.44 0.167 0 0 0 0 

Mesomiltha sp. 0.7232 95.33 0.167 0 0 0 0 

Mactromya cardioides  0.704 96.2 0 0 0.25 0 0 

Gervillella precursor 0.6687 97.02 0.167 0 0 0 0 

Pinna sp. 0.6576 97.83 0 0 0.297 0 0 

Psiloceas planorbis 0.6235 98.6 0 0 0.25 0 0 

Astarte sp. 0.5838 99.32 0.167 0 0 0 0 

Caloceras johnstoni 0.553 100 0 0 0.25 0 0 
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Appendix 5.7 SIMPER analysis. AC: represents the average contribution of the 

taxon i to the average dissimilarity between lithology (overall average = 80 %). C%: 

Percentage contribution = average contribution/average dissimilarity between 

lithologies. Mean abundance of each taxa by lithology.  

 
Taxon AC C % Limestone Mudstone 

Modiolus   sp. 1.697 10.21 0.288 1.21 

Diademopsis tomesi 1.515 19.32 0.706 1.52 

Liostrea hisingeri 1.229 26.71 0.612 1.36 

Pseudokatosira undulata 1.12 33.45 0.621 0.251 

Isocrinus psilonoti 1.015 39.55 0.618 0.399 

Calcirhynchia calcaria 0.9172 45.07 0.264 0.258 

Plagiostoma giganteum 0.908 50.53 0.72 0.67 

Chlamys valoniensis 0.8251 55.49 0.195 0.635 

Camptonectes sp. 0.8131 60.38 0 0.637 

Pseudolimea duplicata 0.7142 64.67 0.492 0.303 

Isocyprina concentricum 0.6043 68.31 0.314 0 

Modiolus minimus 0.5565 71.65 0.184 0.338 

Cardinia regularis 0.5427 74.92 0.139 0.394 

Gryphaea obliquata 0.4219 77.45 0.0556 0.251 

Pteromya langportensis 0.3761 79.72 0.198 0.182 

Modiolus ventricosus 0.3663 81.92 0.111 0.219 

Pholadomya sp. 0.2697 83.54 0 0.208 

Modiolus hillanus 0.2349 84.95 0.139 0.0833 

Scholethemia complanata 0.2279 86.32 0.122 0.0991 

Promathildia rhaetica 0.2073 87.57 0.152 0 

Gervillella precursor 0.2037 88.79 0.0556 0.167 

Myoconcha sp. 0.1674 89.8 0.0731 0.0833 

Rollieria bronni 0.1667 90.8 0 0.167 

Psilophyllites hagenowi 0.1443 91.67 0 0.11 

Solarioconulus waltonii 0.1361 92.49 0.0869 0 

Caloceras johnstoni 0.1296 93.27 0.0556 0.0833 

Mactromya cardioides 0.1296 94.05 0.0556 0.0833 

Psiloceas planorbis 0.1296 94.83 0.0556 0.0833 

Asalties laqueus 0.1296 95.61 0.0556 0.0833 

Zygopleura henrici 0.0962 96.19 0.0731 0 

Pseudomitiloides dubius 0.0833 96.69 0 0.0833 

Paleonucula navis 0.0833 97.19 0 0.0833 

Plesiosaurus sp. 0.0833 97.69 0 0.0833 

Ryderia doris 0.0833 98.19 0 0.0833 

Pinna sp. 0.0786 98.66 0.0661 0 

Astarte sp. 0.0556 99 0.0556 0 

Pleurotomaria cognata 0.0556 99.33 0.0556 0 

Promathildia decorata 0.0556 99.67 0.0556 0 

Mesomiltha sp. 0.0556 100 0.0556 0 
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Appendix 5.8 Modes of life, number of species and relative abundance of each 

mode of life by stratigraphic unit. LM: Langport Member, PPZ: Pre-Planorbis Zone, 

PZ: Planorbis Zone, LZ: Liasicus Zone, AZ: Angulata Zone. Modes of Life; T: Tiering, 

M: Motility level; FM: Feeding Mechanism. 

 

Modes of life 
 

Number of species 
 

Proportional abundance 

T M FM 
 

LM PPZ PZ LZ AZ 
 

LM PPZ PZ LZ AZ 

1 1 5 

   

4 2 1   0.00 0.00 20.00 11.76 6.25 

2 6 1 

  

1 1 1 1 

 

0.00 7.69 5.00 5.88 6.25 

3 2 2 

  

2 1 1 1 

 

0.00 15.38 5.00 5.88 6.25 

3 2 4 

 

2 1 1 1 1 

 

13.33 7.69 5.00 5.88 6.25 

3 2 5 

 

2 

     

13.33 0.00 0.00 0.00 0.00 

3 3 1 

 

1 

  

1 

  

6.67 0.00 0.00 5.88 0.00 

3 4 1 

 

2 2 3 4 2 

 

13.33 15.38 15.00 23.53 12.50 

3 6 1 

 

1 1 2 2 4 

 

6.67 7.69 10.00 11.76 25.00 

4 2 3 

   

1 1 

  

0.00 0.00 5.00 5.88 0.00 

4 4 1 

 

2 2 3 3 2 

 

13.33 15.38 15.00 17.65 12.50 

4 6 1 

 

1 

 

1 1 1 

 

6.67 0.00 5.00 5.88 6.25 

5 2 3 

  

1 

    

0.00 7.69 0.00 0.00 0.00 

5 3 1   4 3 3   3   26.67 23.08 15.00 0.00 18.75 
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Appendix 5.9 Modes of life used by species of each stratigraphy unit. 

 
  Langport member   

 
Tiering Motility 

Feeding 

mechanism 

S. waltonii Surficial Slow Grazing 

D. tomesi Surficial Slow Grazing 

P. decorata Surficial slow Predatory 

P. rhaetica Surficial slow Predatory 

Z. henrici Surficial Facultative Motile Unattached Suspension 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

M. hillanus Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

G. precursor Semi-infaunal Non-Motile Attached Suspension 

Mesomiltha sp. Shallow-infaunal Facultative Motile Unattached Suspension 

P. langportensis Shallow-infaunal Facultative Motile Unattached Suspension 

I. concentricum Shallow-infaunal Facultative Motile Unattached Suspension 

        

  
Pre-Planorbis 

 
P. erugatum Pelagic Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

P. cognata Surficial slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. minimus Semi-infaunal Facultative Motile Attached Suspension 

R. doris Shallow-infaunal Slow Mining 

P. langportensis Shallow-infaunal Facultative Motile Unattached Suspension 

Myoconcha sp. Shallow-infaunal Facultative Motile Unattached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 
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Planorbis Zone 

 P. planorbis Pelagic Fast Predatory 

W. portlocki Pelagic Fast Predatory 

Eurycleidus sp. Pelagic Fast Predatory 

C. johnstoni Pelagic Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Camptonectes sp. Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P.  duplicata Surficial Non-Motile Attached Suspension 

R. bronni Semi-infaunal Slow Mining 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. minimus Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus Semi-infaunal Facultative Motile Attached Suspension 

Pinna sp. Semi-infaunal Non-Motile Attached Suspension 

M. cardioides Shallow-infaunal Facultative Motile Unattached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

Pholadomya sp Shallow-infaunal Facultative Motile Unattached Suspension 

    

  
Liasicus Zone 

 
P. hagenowi Pelagic  Fast Predatory 

A.laqueus Pelagic  Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. navis Surficial Facultative Motile Unattached Suspension 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Camptonectes sp. Surficial Facultative Motile Attached Suspension 

P. dubius Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

R. bronni Semi-infaunal Slow Mining 

M. hillanus Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus Semi-infaunal Facultative Motile Attached Suspension 

G. precursor Semi-infaunal Non-Motile Attached Suspension 
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Angulata Zone 

 S. complanata Pelagic Fast Predatory 

I. psilonoti Erect Non-Motile Attached Suspension 

P. undulata Surficial Slow Surface deposit 

D. tomesi Surficial Slow Grazing 

P. giganteum Surficial Facultative Motile Attached Suspension 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Camptonectes 

sp. 
Surficial Facultative Motile Attached Suspension 

L. hisingeri Surficial Non-Motile Attached Suspension 

P. duplicata Surficial Non-Motile Attached Suspension 

C. calcaria Surficial Non-Motile Attached Suspension 

G. obliquata Surficial Non-Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus Semi-infaunal Facultative Motile Attached Suspension 

G. precursor Semi-infaunal Non-Motile Attached Suspension 

M. cardioides 
Shallow-

infaunal 

Facultative Motile 

Unattached 
Suspension 

C. regularis 
Shallow-

infaunal 

Facultative Motile 

Unattached 
Suspension 

Pholadomya sp. 
Shallow-

infaunal 

Facultative Motile 

Unattached 
Suspension 
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Appendix 5.10 Proportion of mode of life. LM: Langport Member, PP: Pre-

Planorbis Zone, PZ: Planorbis zone, LZ: Liasicus Zone, AZ : Angulata Zone. 

 

 
Stratigraphy 

Ecological Categories  LM PP PZ LZ AZ 

Pelagic 0 0.07 0.2 0.11 0.06 

Erect 0 0.07 0.05 0.05 0.06 

Surficial 0.53 0.43 0.35 0.53 0.50 

Semi-infaunal 0.20 0.14 0.25 0.29 0.19 

Shallow-infaunal 0.26 0.29 0.15 0 0.18 

Deep-infaunal 0 0 0 0 0 

       Fast 0 0.07 0.2 0.11 0.06 

Slow 0.27 0.29 0.15 0.18 0.13 

Facultative, unattached 0.33 0.21 0.15 0.06 0.19 

Facultative, attached 0.27 0.29 0.30 0.41 0.25 

Non-Motile unattached 0.00 0.00 0.00 0.00 0.00 

Non-Motile Attached 0.13 0.14 0.20 0.24 0.38 

      Suspension 0.73 0.64 0.65 0.71 0.81 

Surface deposit 0.00 0.14 0.05 0.06 0.06 

Mining 0.00 0.07 0.05 0.06 0.00 

Grazing 0.13 0.07 0.05 0.06 0.06 

Predatory 0.13 0.07 0.2 0.11 0.06 

Other 0.00 0.00 0.00 0.00 0.00 
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Appendix 5.11 Geometric mean (mm) by species through the Tr/J section in Pinhay Bay.  Tr1-Tr5: Samples from Langport Member; PPZ: Pre-

Planorbis; PZ: Planorbis Zone; LZ: Liasicus Zone and AZ: Angulata Zone; SP: species. IC: I. concentricum; PG: P. giganteum; CV; C.valoniensis; 

MESO: Mesomiltha sp.; MH: M. hillanus; G; Gervillella sp.; M; Modiolus sp.; MM: M. minimus; CR: C. regularis; PH: Pholadomya sp.; PT: P. 

langportiensis; L: Liostrea; MY; Myoconcha sp.; MC: M. cardioides; PD: P. duplicata; GRE: G. obliquata; CC: C. calcarea; CA: Camponectes sp.; 

RB: R. bronni. 
Sp LM1 Sp LM2 Sp LM3 Sp LM4 Sp LM5 Sp PP1 Sp PP2 Sp PP3 Sp PZ1 Sp PZ2 Sp PZ3 Sp PZ4 Sp LZ1 Sp LZ2 Sp LZ3 Sp AZ1 Sp AZ2 

CV 22.8 PG 33.17 M 6.69 CV 11.3 IC 10.6 CV 4.56 CV 33.9 CR 13.9 CA 17.9 CR 20.2 CA 30.5 CV 29.4 CA 10.4 CA 14.9 CV 3.81 CA 9.6 CA 4.33 

CV 8.46 0 0 0 0 CV 26.2 IC 8 CV 2.9 CV 14.7 CR 11.1 CA 15.7 CV 11.4 CV 15.8 CV 36.4 CA 6.48 CA 11.3 L 20 CA 8.68 CA 10.6 

IC 5.7 0 0 0 0 CV 10.3 IC 3.45 CV 3.43 CV 28.8 CV 7.15 CR 12.4 L 19.3 L 22.6 CV 29 CA 13.4 GE 19.5 L 13.7 CA 79.8 CC 7.65 

IC 7.92 0 0 0 0 CV 3.24 IC 6.43 CV 2.44 L 8.28 CV 11.5 CR 13.5 L 40.5 L 30.3 L 18.7 M 3.64 GE 17.9 L 15 CC 9.64 CR 10.5 

IC 4.07 0 0 0 0 G 6.09 IC 6.54 L 7.19 L 7.34 L 25 CR 19.2 M 6.46 L 19.2 L 19.7 M 1.95 L 27.6 L 8 CC 10.4 CR 22.1 

IC 7.49 0 0 0 0 IC 12.1 IC 6.04 L 35.9 L 23 L 29.3 CR 15.2 M 9.18 L 30.5 L 15.7 M 3.65 L 36.3 M 3.42 CC 11 GRE 28.6 

IC 5.18 0 0 0 0 IC 7.72 IC 5.77 L 28.1 L 18.4 L 27.2 CR 12.9 M 2.55 L 12.1 L 17.6 M 1.98 L 14.1 M 2.75 CC 10 GRE 24.1 

IC 10.4 0 0 0 0 IC 8.25 IC 8.54 L 24.9 L 7.43 L 40.5 CR 10.5 M 8 L 23.9 L 20.4 M 4.82 L 11.7 0 0 CC 8.32 GRE 7.07 

MESO 6.56 0 0 0 0 IC 6.65 IC 6.1 L 24.2 L 9.61 L 17.2 CR 12.4 M 6.99 L 19.1 L 24.1 M 15.6 L 22.3 0 0 CC 4.49 GRE 4.69 

MH 4.71 0 0 0 0 IC 7.23 IC 8.54 L 19.3 L 6.23 L 25.9 CR 23.9 PG 56.7 L 18.3 L 14.3 M 13.3 L 26.3 0 0 CC 11 GRE 5.91 

0 0 0 0 0 0 IC 9.34 IC 5.1 L 7.67 L 15.7 L 29.5 CR 10.7 PG 25 L 17.8 L 21.5 M 7.58 L 17.7 0 0 CC 5.23 GRE 6.65 

0 0 0 0 0 0 IC 8.96 IC 6.02 L 18.4 L 26.3 L 12.8 CR 22.7 PG 55.2 L 14.2 PD 3.52 M 16.5 L 36 0 0 CC 9.76 GRE 6.3 

0 0 0 0 0 0 IC 7.55 IC 17.1 L 12.8 L 33.9 M 6.51 CR 11.2 PG 50 L 9.37 PG 51.9 PG 69.4 L 34.2 0 0 CR 25.7 GRE 4.6 

0 0 0 0 0 0 IC 6.2 IC 10.5 L 14.3 L 22.7 M 5.76 CR 12.1 PG 60.7 L 11.3 PG 65.5 0 0 L 30.4 0 0 CR 21 GRE 4.68 

0 0 0 0 0 0 IC 9.68 IC 13.7 L 10.8 L 23.9 M 3.15 CR 4.9 PG 56.6 M 4.3 PG 18 0 0 L 25.7 0 0 L 17 GRE 17.5 

0 0 0 0 0 0 IC 9.77 IC 14.2 L 12.9 L 26 M 3 CR 10 PH 17.9 M 20.4 PG 31.4 0 0 L 24.4 0 0 L 21.5 GRE 42.9 

0 0 0 0 0 0 IC 7.24 IC 12.2 L 4.33 L 26.6 M 6.56 CR 9.97 PH 33.6 MY 14.5 0 0 0 0 L 17.5 0 0 L 21.1 L 39.4 

0 0 0 0 0 0 IC 7.47 IC 8.96 L 14.2 L 41.2 M 5.58 CR 4.68 PH 26.1 PG 65.9 0 0 0 0 L 19.8 0 0 L 7.72 L 14.3 

0 0 0 0 0 0 IC 8.96 IC 6.83 L 18.1 L 18.2 M 6.79 CR 4.18 PH 40 PG 24.4 0 0 0 0 M 4.33 0 0 L 8.03 L 27.4 

0 0 0 0 0 0 IC 10.4 IC 7.24 L 19.1 L 9.93 M 7.53 CR 15.8 PH 33.6 PT 15.8 0 0 0 0 M 2.37 0 0 L 17.1 M 10 

0 0 0 0 0 0 IC 8.67 IC 11.9 L 24.5 L 17.8 M 11.2 CR 12.4 PH 32.1 PT 8.61 0 0 0 0 M 3.78 0 0 L 14.9 M 6.46 

0 0 0 0 0 0 IC 5.9 IC 5.06 LH 11.5 L 34 M 9.57 CR 15.3 PH 36.6 PT 21.8 0 0 0 0 M 12 0 0 M 5.85 M 10.7 

0 0 0 0 0 0 IC 7.39 IC 8.71 M 2.64 L 23.3 M 9.45 CR 12.5 PT 22.4 0 0 0 0 0 0 M 4.95 0 0 PD 12.7 PD 7.83 

0 0 0 0 0 0 IC 7.69 IC 14 M 2.38 L 19 M 8.24 CR 9.23 0 0 0 0 0 0 0 0 PD 5.48 0 0 PD 4.88 PD 12.3 

0 0 0 0 0 0 IC 10.9 IC 10.2 M 3.76 L 28.4 M 11 CR 12.1 0 0 0 0 0 0 0 0 PG 15.5 0 0 PD 4.66 PD 6.93 

0 0 0 0 0 0 IC 9.49 IC 11.4 M 3.52 L 14.7 M 8.7 CR 12.1 0 0 0 0 0 0 0 0 PG 110 0 0 0 0 PG 21.8 

0 0 0 0 0 0 IC 7.16 IC 10 M 3.09 L 9.35 M 8.57 CR 25.1 0 0 0 0 0 0 0 0 PG 24 0 0 0 0 PG 144 

0 0 0 0 0 0 IC 6.55 IC 8.52 M 7.3 L 20.8 M 11 CR 8.13 0 0 0 0 0 0 0 0 PG 115 0 0 0 0 PG 142 
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0 0 0 0 0 0 IC 6.9 IC 3.47 M 1.37 L 32.7 M 8.02 CV 10.2 0 0 0 0 0 0 0 0 PH 23.2 0 0 0 0 PG 62 

0 0 0 0 0 0 IC 7.82 IC 10.1 M 2.64 L 10.9 M 6.8 L 10.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 7.22 IC 6.27 M 4.58 L 18.3 M 8.56 L 16.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 10.6 IC 5.52 M 4.61 L 20.3 M 8.17 L 15.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 7.62 IC 5.85 M 1.46 M 9.9 M 8.07 L 14.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 6.07 L 8.87 M 2.58 M 15.1 M 9.58 L 9.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 7.66 M 7.65 M 1.31 M 5.66 M 10.2 L 10.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 9.18 PT 13.8 M 4.27 M 11.2 M 8.62 L 11.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 IC 9.94 PT 5.33 M 4.75 M 10.6 M 10.8 L 17.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 L 7.9 PT 7.42 M 5.63 M 8.12 M 6.07 L 15.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 MESO 9.75 0 0 M 2.46 M 9.31 M 9.02 L 16.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 MY 18.9 0 0 M 6.36 M 12.3 M 11.9 L 14.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 MY 8.47 0 0 M 6.94 M 7.48 M 12 L 15.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 PT 18.7 0 0 PT 18.5 M 5.13 MM 7.68 L 11.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 9.54 M 7.24 MM 10.9 L 14.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 26.7 M 10.2 MM 8.7 L 13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 17.9 MM 9.82 MM 6.66 L 13.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 20.8 MM 7 MM 9.13 L 13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 13 MM 10.7 MM 9.24 L 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 13.2 MM 21.8 MM 8.23 L 16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 9.26 MM 10.7 MM 10.4 L 14.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 15.4 PG 36.7 PG 29.7 L 15.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 11.1 PT 15.9 PG 44 M 5.97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 6.78 0 0 PT 20.4 M 5.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 6.61 0 0 PT 40.5 M 5.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 17.7 0 0 RB 8 M 5.69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 PT 17.3 0 0 0 0 M 3.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 3.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 4.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 4.71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 7.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 6.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 5.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 4.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 8.71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 9.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 10.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 6.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 6.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 11.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 7.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 12.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 11.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 7.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 5.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MM 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PG 48.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PG 48.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PG 37.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PG 36.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PG 42.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 5.12 Data used to build the frequency distribution and Jablonski plot target. 

LM: Langport Member, PP: Pre-Planorbis Zone, PZ: Planorbis zone, LZ: Liasicus zone. 

Average values in bold. 
Plagiostoma 

 

Chlamys 

LM PP PZ LZ AZ 

 

LM PP PZ LZ AZ 

33.2 36.7 24.4 51.9 21.8 

 

LiasiLias 4.56 10.21 29.38 3.81 

 

29.7 25.0 65.5 143.6 

 

8.46 2.90 11.40 36.35 

 

 

44.0 36.7 18.0 142.4 

 

11.33 3.43 15.82 28.95 

 

  

37.5 31.4 62.0 

 

26.25 2.44 

   

  

42.4 69.4 

  

10.34 33.92 

   

  

48.4 15.5 

  

3.24 14.69 

   

  

48.6 109.5 

   

28.82 

   

  

50.0 24.0 

   

7.15 

   

  

55.2 115.1 

  

  11.49       

  

56.6 

   
11.922 12.156 12.4764 31.56 3.811 

  

56.7 

        

  

60.7 

            65.9     

      33.1783062 36.7723 46.77857 55.58 92.5 
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Appendix 5.12 (Continuation) Data used to build the frequency distribution and 

Jablonski plot target. LM: Langport Member, PP: Pre-Planorbis Zone, PZ: Planorbis zone, 

LZ: Liasicus zone. Average values in bold. 
Modiolus 

 
Liostrea 

LM PP PZ LZ AZ 
 

LM PP PZ LZ AZ 
6.69 1.31 2.55 1.95 2.75 

 
7.90 4.33 9.37 11.75 7.72 

7.65 1.37 3.93 1.98 3.42 
 

8.87 6.23 9.42 14.05 8.00 

4.71 1.46 3.99 2.37 5.85 
  

7.19 10.55 14.26 8.03 

 
2.38 4.18 3.64 6.46 

  
7.34 10.93 15.70 13.75 

 
2.46 4.30 3.65 10.04 

  
7.43 11.25 17.49 14.32 

 
2.58 4.45 3.78 10.71 

  
7.67 11.45 17.64 14.89 

 
2.64 4.71 4.33 

   
8.28 11.93 17.75 14.97 

 
2.64 5.00 4.82 

   
9.35 12.11 18.71 16.96 

 
3.00 5.10 4.95 

   
9.61 13.39 19.70 17.08 

 
3.09 5.19 7.58 

   
9.93 13.50 19.77 20.04 

 
3.15 5.28 11.97 

   
10.76 13.52 20.40 21.14 

 
3.52 5.39 13.29 

   
10.90 14.16 21.51 21.48 

 
3.76 5.41 15.56 

   
11.52 14.21 22.25 27.36 

 
4.27 5.69 16.47 

   
12.82 14.45 24.11 39.38 

 
4.58 5.93 

    
12.85 14.63 24.37 

 

 
4.61 5.97 

    
12.89 14.78 25.69 

 

 
4.75 5.99 

    
14.17 14.87 26.27 

 

 
5.13 6.07 

    
14.33 15.32 27.60 

 

 
5.58 6.14 

    
14.71 15.34 30.40 

 

 
5.63 6.21 

    
15.66 15.61 34.21 

 

 
5.66 6.46 

    
17.20 15.68 36.00 

 

 
5.76 6.99 

    
17.80 16.11 36.33 

 

 
6.07 7.00 

    
18.11 16.52 

  

 
6.36 7.54 

    
18.23 16.91 

  

 
6.51 7.73 

    
18.29 17.81 

  

 
6.56 7.74 

    
18.38 17.83 

  

 
6.66 8.00 

    
18.43 18.33 

  

 
6.79 8.71 

    
19.01 19.11 

  

 
6.80 9.18 

    
19.14 19.19 

  

 
6.94 9.80 

    
19.27 19.29 

  

 
7.00 10.69 

    
20.25 22.57 

  

 
7.24 11.10 

    
20.80 23.89 

  

 
7.30 11.35 

    
22.66 30.26 

  

 
7.48 12.82 

    
22.97 30.53 

  

 
7.53 20.45 

    
23.25 40.47 

  

 
7.68 

     
23.93 

   

 
8.02 

     
24.20 

   

 
8.07 

     
24.45 

   

 
8.12 

     
24.88 

   

 
8.17 

     
24.97 

   

 
8.23 

     
25.90 

   

 
8.24 

     
26.02 

   

 
8.56 

     
26.27 

   

 
8.57 

     
26.58 

   

 
8.62 

     
27.21 

   

 
8.70 

     
28.10 

   

 
8.70 

     
28.35 

   

 
9.02 

     
29.30 

   

 
9.13 

     
29.45 

   

 
9.24 

     
32.66 

   

 
9.31 

     
33.91 

   

 
9.45 

     
34.00 

   

 
9.57 

     
35.89 

   

 
9.58 

     
40.48 

   

 
9.82 

     
41.22 

   

      8.39 19.81 16.72 22.54 17.51 

 
9.90 

   
      

 
10.20 

         

 
10.20 

         

6.35 7.61 7.06 6.88 6.54 
      

 

 



373 
 

Appendix 5.13 Matrix used to generate null model 
Samples Tr 1 Tr 2 Tr 3 Tr 4 Tr 5 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J12 J14

Height (m) 0 1.3 2.6 3.6 4.8 7.05 8.2 9.6 10.6 11.9 13 14.1 15.1 16.2 17.9 20 22

1 5.7 33.2 6.7 6.1 10.6 11.5 9.9 6.5 17.9 20.2 22.6 18.7 10.4 27.6 3.4 9.6 7.8

2 7.9 0.0 0.0 12.1 8.0 18.5 8.3 5.8 15.7 17.9 30.3 19.7 3.6 36.3 3.8 10.4 10.5

3 4.1 0.0 0.0 7.7 3.5 2.6 7.3 8.0 12.4 33.6 19.2 15.7 2.0 14.1 2.8 25.7 39.4

4 7.5 0.0 0.0 8.2 6.4 2.4 23.0 3.2 13.5 26.1 30.5 17.6 3.7 4.3 20.0 21.0 14.3

5 22.8 0.0 0.0 6.6 6.5 3.8 18.4 3.0 48.4 19.3 12.1 20.4 2.0 11.7 13.7 11.0 28.6

6 5.2 0.0 0.0 7.2 6.0 3.5 7.4 6.6 19.2 6.5 23.9 24.1 6.5 14.9 15.0 12.7 24.1

7 8.5 0.0 0.0 9.3 8.9 4.6 15.1 5.6 10.9 9.2 65.9 14.3 13.4 15.5 8.0 17.0 27.4

8 10.4 0.0 0.0 18.7 5.8 2.9 5.7 25.0 16.1 2.6 19.1 3.5 4.8 11.3 0.0 21.5 7.1

9 4.7 0.0 0.0 9.0 13.8 3.4 9.6 29.7 15.3 8.0 18.3 51.9 15.6 19.5 0.0 21.1 4.7

10 6.6 0.0 0.0 11.3 8.5 3.1 6.2 29.3 15.2 7.0 17.8 65.5 13.3 2.4 0.0 4.9 10.0

11 0.0 0.0 0.0 7.5 6.1 7.3 11.2 20.4 14.6 22.4 15.8 18.0 7.6 3.8 0.0 10.0 6.5

12 0.0 0.0 0.0 6.2 8.5 1.4 10.6 27.2 9.4 40.0 24.4 31.4 16.5 12.0 0.0 8.3 10.7

13 0.0 0.0 0.0 7.9 5.1 2.6 8.1 7.1 10.7 33.6 14.2 21.5 69.4 22.3 0.0 4.5 5.9

14 0.0 0.0 0.0 9.7 6.0 4.6 9.3 40.5 5.2 32.1 15.8 29.4 0.0 5.0 0.0 11.0 6.7

15 0.0 0.0 0.0 9.8 17.1 7.2 15.7 7.7 6.1 36.6 8.6 36.4 0.0 17.9 0.0 5.2 6.3

16 0.0 0.0 0.0 18.9 10.5 9.5 26.3 10.9 6.2 56.7 9.4 29.0 0.0 109.5 0.0 7.7 4.3

17 0.0 0.0 0.0 7.2 5.3 4.6 33.9 8.7 11.1 25.0 14.5 0.0 0.0 26.3 0.0 5.8 10.6

18 0.0 0.0 0.0 7.5 13.7 1.5 22.7 6.7 5.4 55.2 4.3 0.0 0.0 17.7 0.0 4.7 4.6

19 0.0 0.0 0.0 9.0 14.2 2.6 23.9 6.8 12.9 50.0 11.3 0.0 0.0 36.0 0.0 8.0 4.7

20 0.0 0.0 0.0 10.4 12.2 1.3 12.3 7.5 10.5 60.7 21.8 0.0 0.0 34.2 0.0 9.8 22.1

21 0.0 0.0 0.0 26.2 7.4 35.9 26.0 11.2 7.5 56.6 30.5 0.0 0.0 30.4 0.0 9.6 7.6

22 0.0 0.0 0.0 8.7 9.0 28.1 7.5 9.6 12.8 40.5 20.4 0.0 0.0 25.7 0.0 8.7 17.5

23 0.0 0.0 0.0 5.9 6.8 4.3 5.1 9.5 5.9 11.4 0.0 0.0 0.0 24.4 0.0 17.1 12.3

24 0.0 0.0 0.0 7.4 7.2 4.7 26.6 17.2 11.4 0.0 0.0 0.0 0.0 17.5 0.0 14.9 42.9

25 0.0 0.0 0.0 7.7 11.9 5.6 41.2 8.2 12.4 0.0 0.0 0.0 0.0 19.8 0.0 79.8 21.8

26 0.0 0.0 0.0 10.9 5.1 2.5 18.2 25.9 23.9 0.0 0.0 0.0 0.0 24.0 0.0 0.0 143.6

27 0.0 0.0 0.0 8.5 8.7 6.4 9.9 13.9 10.7 0.0 0.0 0.0 0.0 23.2 0.0 0.0 142.4

28 0.0 0.0 0.0 10.3 14.0 2.4 17.8 11.0 6.0 0.0 0.0 0.0 0.0 115.1 0.0 0.0 6.9

29 0.0 0.0 0.0 9.5 10.2 24.9 9.8 29.5 5.4 0.0 0.0 0.0 0.0 5.5 0.0 0.0 62.0

30 0.0 0.0 0.0 7.2 11.4 26.7 34.0 9.1 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

31 0.0 0.0 0.0 6.5 10.0 17.9 23.3 9.2 22.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

32 0.0 0.0 0.0 9.8 8.5 24.2 19.0 8.2 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

33 0.0 0.0 0.0 6.9 7.7 19.3 28.4 10.4 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

34 0.0 0.0 0.0 7.8 3.5 7.7 14.7 8.7 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.0 0.0 0.0 7.2 10.1 20.8 9.3 8.6 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

36 0.0 0.0 0.0 10.6 6.3 18.4 7.2 11.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

37 0.0 0.0 0.0 7.6 5.5 12.8 33.9 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

38 0.0 0.0 0.0 6.1 5.8 14.3 7.0 6.8 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

39 0.0 0.0 0.0 7.7 0.0 10.8 14.7 8.6 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 0.0 0.0 0.0 9.2 0.0 13.0 10.7 8.2 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

41 0.0 0.0 0.0 9.9 0.0 12.9 21.8 8.1 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

42 0.0 0.0 0.0 3.2 0.0 4.3 20.8 9.6 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

43 0.0 0.0 0.0 0.0 0.0 6.9 32.7 10.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

44 0.0 0.0 0.0 0.0 0.0 14.2 36.7 11.1 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0 0.0 13.2 10.9 8.6 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

46 0.0 0.0 0.0 0.0 0.0 9.3 10.7 10.8 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

47 0.0 0.0 0.0 0.0 0.0 18.1 10.2 6.1 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

48 0.0 0.0 0.0 0.0 0.0 19.1 15.9 9.0 17.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

49 0.0 0.0 0.0 0.0 0.0 15.4 28.8 11.9 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 0.0 0.0 11.1 18.3 40.5 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

51 0.0 0.0 0.0 0.0 0.0 6.8 20.3 11.5 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

52 0.0 0.0 0.0 0.0 0.0 6.6 0.0 12.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

53 0.0 0.0 0.0 0.0 0.0 17.7 0.0 12.8 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

54 0.0 0.0 0.0 0.0 0.0 17.3 0.0 44.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

55 0.0 0.0 0.0 0.0 0.0 24.5 0.0 0.0 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

59 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

72 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

77 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

79 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

81 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average 8.3 33.2 6.7 9.2 8.6 10.9 17.2 13.1 13.0 29.2 20.5 26.1 13.0 25.1 9.5 14.4 24.6

N 10 1 1 42 38 55 51 54 83 23 22 16 13 29 7 25 29    
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Appendix 5.14 Trace Fossils: Plates 1 to 6: LM1–LM6; LM: the Langport Member 
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Appendix 5.14 (continuation) Plates 7 to 9: PPZ1-PPZ3; the Pre-Planorbis Zone. Plates 

10 to 12: PZ1-PZ3; Planorbis Zone Plates. 
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Appendix 5.14 (continuation) Plate 13 : PZ4. Planorbis Zone, 14-16: LZ1-LZ3; 

Angulata zone and Plates 17 to 18:AZ1-AZ2. Angulata zone 
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Appendix 5.15 Specimens found through Pinhay Bay section. 
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Appendix 5.16 Specimens found through Pinhay Bay section. 
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Appendix 5.15: 1. Asaltites laqueus (Quenstedt), 2. Astarte sp., 3. Chlamys valoniensis 

(Defrance), 4. Pinna sp., 5. Modiolus sp., 6. Calcirhynchia calcaria (Buckman), 7. Asaltites 

laqueus (Quenstedt), 8. Pteromya langportensis (Richardson and Tutcher), 9. Isocyprina 

concentricum (Moore), 10. Chlamys valoniensis (Defrance), 11. Mesomiltha sp., 12. 

Isocyprina concentricum (Moore), 13. Pleurotomaria cognata (Chapuis and Dewalque), 14. 

Montivaltia sp., 15. Montivaltia sp., 16. Montivaltia sp., 17. Promathildia decorata (Moore), 

18. Caloceras johnstoni (Sowerby), 19. Euryclidus spp., 20. Pseudokatosira undulata (Benz). 

 
 

Appendix 5.16: 1. Plagiostoma punctatum (Sowerby), 2. Chlamys valoniensis 

(Defrance), 3. Oxytoma sp., 4. Gryphaea obliquata (Sowerby), 5. Calcirhynchia calcaria 

(Buckman), 6. Mactromya cardioides (Phillips), 7. Cardinia regularis (Terquem), 8. 

Pseudolimea duplicata (Sowerby), 9. Isocrinus psilonoti (Quenstedt), 10. Diademopsis 

tomesi (Wright), 11. Pholadomya sp., 12. Liostrea hisingeri (Nilsson), 13. Plagiostoma 

giganteum (Sowerby), 14. Scholethemia complanata, 15. Isocyprina concentricum (Moore), 

16. Liostrea hisingeri (Nilsson), 17. Liostrea hisingeri (Nilsson), 18. Pleurotomaria cognata 

(Chapuis and Dewalque), 19. Chlamys valoniensis (Defrance). 
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Appendix 6.1 List of taxa and abundance of each species recorded at each sample along the Larne section. 

 
 

 

 

  

Number sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Stratigraphic height (m) -14.2 -13 -12.1 -6.6 -5.8 -5 -4.1 -3.4 -1.2 0 1.45 2 2.9 3.2 4 4.65 5.25 6.2 7.1 9.1 11.2 12.9

Phyla Class Order Famliy Species WF 1 WF 2 WF 3 WF 4 WF 5 WF 6 WF 7 WF 8 CM1 CM2 CM3 CM4 CM5 LM1 LM2 LM3 LM4 LM5 PPZ1 PPZ2 PPZ3 PPZ4

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras erugatum  (Phillips) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras planorbis (J. Sowerby ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras plicatulum (Quenstedt) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Caloceras johnstoni (Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Alsatites sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Echinodermata Crinoidea Articulata Isocrinidae Isocrinus angulatus  (Quenstedt) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2

Mollusca Gastropoda Murchisoniina Zygopleuridae Pseudokatosira undulata  (Benz) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Echinodermata Echinoidea Pedinoida Pedinidae Diademopsis tomesi (Wright) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 15

Mollusca Bivalvia Nuculoida Nuculidae Palaeonucula navis (Piette) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Pteriidae Rhaetavicula contorta (Portlock) 3 79 1 66 12 2 4 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Arcoida Parallelodontidae Cosmetodon hettangiensis (Terquem) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Mollusca Bivalvia Pectinoida Pectinidae Chlamys valoniensis  (Defrance) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Mollusca Bivalvia Mytiloida Mytilidae Mytilus cloacinus (Tutcher) 0 0 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Limoida Limidae Plagiostoma giganteum  (J. Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Limoida Limidae Plagiostoma punctatum (J. Sowerby) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0

Mollusca Bivalvia Pectinoida Oxytomidae Oxytoma  sp. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

Mollusca Bivalvia Pectinoida Anomiidae Placunopsis alpina (Winkler) 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Mytilus  sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Inoceramidae Pseudomytiloides dubius (Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Gryphaeidae Liostrea sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 5 2 2 7 0 1

Mollusca Bivalvia Limoida Limidae Pseudolimea duplicata (Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Yoldiidae Rollieria bronni (Andler) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Permophoridae Permophorus elongatus (Moore) 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus hillanus (J. Sowerby) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Bakevelliidae Gervillella  sp. 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus  sp. 0 0 0 0 3 0 1 0 0 4 0 3 0 0 0 0 0 0 0 1 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus minimus (J. Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 32 14

Mollusca Bivalvia Mytiloida Mytilidae Modiolus ventricosus (Roener) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Permophoridae Myoconcha sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Nuculanidae Dacryomya  sp. 0 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Nuculanidae Ryderia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Mollusca Bivalvia Nuculanoida Malletiidae Palaeoneilo elliptica  (Goldfuss) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Carditoida Cardiniidae Cardinia regularis  (Terquem) 3 1 0 0 4 0 1 0 0 0 0 0 0 0 3 3 3 0 7 4 1 4

Mollusca Bivalvia Veneroida Arcticidae Isocyprina concentricum (Moore) 0 3 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Veneroida Cardiidae Protocardia rhaetica  (Merian) 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Veneroida Cardiidae Protocardia philippiana  (Dunker) 0 0 0 0 0 0 0 0 0 0 0 2 0 28 9 3 0 7 0 1 0 0

Mollusca Bivalvia Pholadomyoida Pholadomydae Pteromya crowcombeia (Moore) 0 0 6 0 11 2 8 3 3 0 0 3 16 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Pholadomydae Pteromya langportensis (Richardson and Tutcher) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 25 1 7 1 0 1

Mollusca Bivalvia Carditoida Astartidae Astarte  sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Mollusca Bivalvia Pholadomyoida Pleuromyidae Pleuromya sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6 1 0 0

Mollusca Bivalvia Veneroida Mactromyidae Mactromya cardioides (Phillips) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Carditoida Cardiniidae Cardinia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 6.1 (continuation) List of taxa and abundance of each species recorded at each sample along the Larne section. 

 
 

Number sample 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Stratigraphic height (m) 14.8 15.6 17.8 20 22.8 24 25 28.2 30 33 35 38 41 45

Phyla Class Order Famliy Species PZ1 PZ2 PZ3 PZ4 PZ5 PZ6 PZ7 PZ8 LZ1 LZ2 LZ3 LZ4 LZ5 LZ6

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras erugatum  (Phillips) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras planorbis (J. Sowerby ) 5 8 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Psiloceras plicatulum (Quenstedt) 0 0 6 7 1 0 0 0 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Caloceras johnstoni (Sowerby) 0 0 0 0 0 1 6 1 0 0 0 0 0 0

Mollusca Cephalopoda Ammonoidea Psiloceratidae Alsatites sp. 0 0 0 0 0 0 0 0 1 1 0 0 3 0

Echinodermata Crinoidea Articulata Isocrinidae Isocrinus angulatus  (Quenstedt) 1 0 0 2 2 1 1 0 4 2 17 20 0 1

Mollusca Gastropoda Murchisoniina Zygopleuridae Pseudokatosira undulata  (Benz) 0 1 0 4 1 0 4 3 0 0 0 0 0 0

Echinodermata Echinoidea Pedinoida Pedinidae Diademopsis tomesi (Wright) 5 4 0 1 2 1 4 8 1 0 1 7 0 5

Mollusca Bivalvia Nuculoida Nuculidae Palaeonucula navis (Piette) 0 0 0 0 2 0 0 0 3 7 6 0 8 0

Mollusca Bivalvia Pterioida Pteriidae Rhaetavicula contorta (Portlock) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Arcoida Parallelodontidae Cosmetodon hettangiensis (Terquem) 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pectinoida Pectinidae Chlamys valoniensis  (Defrance) 0 0 0 1 1 0 0 4 0 1 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Mytilus cloacinus (Tutcher) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Limoida Limidae Plagiostoma giganteum  (J. Sowerby) 0 1 1 0 9 0 0 2 3 18 4 9 4 0

Mollusca Bivalvia Limoida Limidae Plagiostoma punctatum (J. Sowerby) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pectinoida Oxytomidae Oxytoma  sp. 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pectinoida Anomiidae Placunopsis alpina (Winkler) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Mytilus  sp. 0 0 0 1 8 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Inoceramidae Pseudomytiloides dubius (Sowerby) 0 0 0 0 0 0 0 0 0 6 15 0 0 0

Mollusca Bivalvia Pterioida Gryphaeidae Liostrea sp. 0 0 0 3 3 0 0 0 8 2 1 3 0 0

Mollusca Bivalvia Limoida Limidae Pseudolimea duplicata (Sowerby) 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Mollusca Bivalvia Nuculanoida Yoldiidae Rollieria bronni (Andler) 0 0 0 0 0 0 0 0 0 0 1 0 0 9

Mollusca Bivalvia Pholadomyoida Permophoridae Permophorus elongatus (Moore) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus hillanus (J. Sowerby) 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Mollusca Bivalvia Pterioida Bakevelliidae Gervillella  sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus  sp. 7 0 0 0 0 0 0 46 0 0 0 1 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus minimus (J. Sowerby) 96 41 111 4 0 0 2 0 0 0 0 0 0 0

Mollusca Bivalvia Mytiloida Mytilidae Modiolus ventricosus (Roener) 43 32 34 0 0 2 7 0 1 0 1 1 0 0

Mollusca Bivalvia Pholadomyoida Permophoridae Myoconcha sp. 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Nuculanidae Dacryomya  sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Nuculanidae Ryderia sp. 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Mollusca Bivalvia Nuculanoida Malletiidae Palaeoneilo elliptica  (Goldfuss) 0 0 0 7 2 5 6 0 0 0 5 0 0 0

Mollusca Bivalvia Carditoida Cardiniidae Cardinia regularis  (Terquem) 0 0 1 1 5 1 7 78 11 2 7 3 0 0

Mollusca Bivalvia Veneroida Arcticidae Isocyprina concentricum (Moore) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Veneroida Cardiidae Protocardia rhaetica  (Merian) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Veneroida Cardiidae Protocardia philippiana  (Dunker) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Pholadomydae Pteromya crowcombeia (Moore) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Pholadomydae Pteromya langportensis (Richardson and Tutcher) 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Carditoida Astartidae Astarte  sp. 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Mollusca Bivalvia Pholadomyoida Pleuromyidae Pleuromya sp. 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Mollusca Bivalvia Veneroida Mactromyidae Mactromya cardioides (Phillips) 0 0 0 0 0 0 0 0 0 0 2 0 1 0

Mollusca Bivalvia Carditoida Cardiniidae Cardinia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 21
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Appendix 6.2 Summary of palaeoecological parameters estimated in this study. N = number, GS = Lithostratigraphy, SC= Sample cog, H = Height (mm), R = Richness, MR = Mean Richness, A = Abundance, K = 

Kurtosis, BW = Whittaker index, BT = Wilson-Shmida index, MF = modes of life, GM = Geomean of body size, n = sample size used for estimate the geomean, Min = Minimum geomean, Max. = maximum geomean, 

σ
2
 = Variance, NM = mean values of null model, (*) = Not recorded. 

           
Body size parameters 

N L SC H (m) R MR A K Bw BT MF GM n Min. Max. σ
2
 NM 

1 WF I- W-1B -14.2 2 1.90 6 17.29 7.8 4.4 2 5.64 4 4.16 6.50 1.06 0.70 

2 WF I-W- 3A -13 7 5.20 99 38.57 6.27 7.27 4 8.72 76 3.36 15.25 7.35 11.29 

3 WF I-W- 4A -12.1 4 2.82 9 33.80 10 17.143 3 8.12 14 4.37 21.72 19.83 2.12 

4 WF W1A -6.4 3 2.01 68 39.96 9 20 1 8.73 47 3.52 28.43 16.83 6.03 

5 WF W2A1 -5 5 4.12 31 13.96 7.88 26.66 3 7.16 29 4.50 15.14 5.07 3.98 

6 WF W3A1 -3.6 4 3.07 6 10.21 6.27 32.72 2 8.44 38 4.31 17.10 10.80 4.96 

7 WF W4A1 -2.2 7 4.65 17 22.76 7.8 31.11 4 5.67 23 2.79 11.13 3.32 3.22 

8 WF W5A1 -0.8 2 1.76 156 39.97 15 36 2 10.24 75 3.37 18.55 10.43 11.12 

9 CM W6A1 0 3 2.69 12 17.57 15 40 2 3.25 5 2.43 5.20 1.28 0.86 

10 CM W6-1A1 0.6 2 1.70 5 35.11 19 40 2 7.23 12 1.93 12.50 11.71 1.83 

11 CM W6-2A1 1 0 0.00 0 0.00 9 40 0 * * * * * 0.00 

12 CM W6-3A1 2 4 3.21 9 10.09 15 40 2 14.05 7 8.98 19.68 14.10 1.16 

13 CM TopCot 2.9 1 1.00 16 40.00 25.66 40 1 11.17 33 2.13 27.96 60.42 4.43 

14 LM Cot-Lan 3.2 2 1.85 32 38.29 15 40 2 13.41 27 5.03 25.31 19.56 3.76 

15 LM L1B 4 3 2.42 13 31.28 12.33 40 2 15.67 12 4.95 33.48 58.41 1.84 

16 LM L2B 4.8 3 2.70 10 11.07 10.42 40 1 15.82 11 7.86 28.45 47.41 1.72 

17 LM L2-5B 5.4 4 3.45 36 34.78 9 40 2 17.78 44 7.29 38.74 34.52 5.64 

18 LM L3A 6.2 4 3.22 16 15.56 7.88 35.55 3 16.15 16 7.12 23.05 13.65 2.37 

19 PP 10 PP 7.1 5 4.32 25 7.77 4.71 31.42 3 17.30 27 7.36 37.79 79.90 3.65 

20 PP 11 PP 9.1 9 5.94 20 15.10 4.71 31.42 6 15.71 15 3.74 28.26 58.58 2.26 

21 PP 12 PP 11.95 5 3.11 36 39.69 4 25 5 3.98 40 2.01 14.14 4.91 5.21 

22 PP 13 PP 12.9 11 7.61 46 13.88 3.4 24.44 8 6.69 25 2.65 15.31 15.29 4.43 

23 PZ 14 PZ 14.2 7 5.57 158 27.10 4.71 25.7 5 4.27 61 2.00 14.68 5.02 8.15 

24 PZ 15 PZ 15.6 7 5.24 88 17.42 5.66 30 5 6.54 44 2.80 24.28 23.00 6.13 

25 PZ 16 PZ 17.8 5 3.86 153 32.88 3.7 30.58 4 5.82 59 2.67 14.20 3.76 7.55 

26 PZ 17 PZ 20 12 8.22 33 6.41 2.2 25.6 9 6.51 16 1.90 23.38 44.30 3.08 

27 PZ 19 PZ 22 13 9.14 39 8.27 3.21 27.36 10 13.28 15 2.06 30.50 105.06 2.50 

28 PZ 20 PZ 24 6 4.10 11 22.50 4.3 26.66 6 14.35 13 3.41 68.35 338.99 2.13 

29 PZ 21 PZ 26.2 9 7.07 38 3.19 3.7 25.88 7 8.13 27 2.81 19.10 14.84 4.07 

30 PZ 22 PZ 28.1 8 6.15 143 22.23 4 30 6 12.39 75 2.77 28.52 35.01 11.22 

31 LZ 1 LZ 30.1 8 5.93 32 12.88 3.7 28.23 8 17.84 4 3.57 59.61 775.61 0.71 

32 LZ 2 LZ 32.6 9 6.47 40 23.12 2.8 28.57 6 31.99 4 3.82 96.32 1880.69 0.70 

33 LZ 3 LZ 35 12 8.68 61 10.29 3.21 29.47 9 21.03 8 6.66 50.69 238.50 1.30 

34 LZ 4 LZ 38 7 5.45 44 20.76 5.66 26.66 6 6.61 7 2.69 11.93 9.86 1.15 

35 LZ 5 LZ 40.9 5 3.81 17 19.45 7.88 20 5 15.14 6 3.21 53.68 381.99 0.99 

36 LZ 6 LZ 45 3 3.28 36 25.47 * * 4 8.76 7 4.52 17.38 24.83 1.15 
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Appendix 6.3 Relative species abundance (%) by Lithostratigraphy. WF: Westbury Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone. 

 

Species WF   Species CM   Species LM   Species PPZ   Species PZ   Species LZ 

R. contorta  81.633 

 

P. crowcombeia 52.381 

 

P. philippiana 43.925 

 

M. minimus  38.583 

 

M. minimus  38.311 

 

I. angulatus 19.1304 

P. crowcombeia 7.653 

 

Modiolus sp. 16.667 

 

P. tatei  28.037 

 

D. tomesi 13.386 

 

M. ventricosus  17.798 

 

P. giganteum 16.5217 

Dacryomya sp. 2.551 

 

P. alpina  14.286 

 

Liostrea sp. 10.280 

 

C. regularis  12.598 

 

C. regularis  14.027 

 

P. navis   10.4348 

C. regularis  2.296 

 

M. cloacinus  7.143 

 

C. regularis  8.411 

 

Liostrea sp. 7.874 

 

Modiolus sp. 7.994 

 

C. regularis  10 

P. elongatus  1.020 

 

I. concentricum  4.762 

 

P. punctatum  5.607 

 

P. tatei  7.087 

 

D. tomesi 3.771 

 

P. dubius  9.13043 

Modiolus sp. 1.020 

 

P. philippiana 4.762 

 

Pleuromya sp. 2.804 

 

Pleuromya sp. 5.512 

 

P. elliptica  3.017 

 

Cardinia sp. 9.13043 

I. concentricum  1.020 

    

G. hettangiensis  0.935 

 

I. angulatus 4.724 

 

P. plicatulum 2.112 

 

D. tomesi 6.08696 

P. rhaetica  0.765 

       

C. valoniensis  3.150 

 

P. undulata  1.961 

 

Liostrea sp. 6.08696 

M. cloacinus  0.510 

       

Oxytoma sp. 2.362 

 

P. planorbis 1.961 

 

R. bronni 4.34783 

C. hettangiensis  0.255 

       

Ryderia sp. 1.575 

 

P. giganteum 1.961 

 

Alsatites sp. 2.17391 

C. valoniensis  0.255 

       

P. erugatum 0.787 

 

Mytilus sp. 1.357 

 

P. elliptica  2.17391 

P. punctatum  0.255 

       

Modiolus sp. 0.787 

 

C. johnstoni  1.207 

 

M. ventricosus  1.30435 

Oxytoma sp. 0.255 

       

P. philippiana 0.787 

 

I. angulatus 1.056 

 

M. cardioides  1.30435 

M. hillanus  0.255 

       

Astarte sp. 0.787 

 

Liostrea sp. 0.905 

 

P. duplicata 0.86957 

Gervillella sp. 0.255 

          

C. valoniensis  0.905 

 

C. valoniensis  0.43478 

            

P. navis   0.302 

 

Modiolus sp. 0.43478 

            

P. tatei  0.302 

 

Pleuromya sp. 0.43478 

            

M. hillanus  0.302 

   

            

Ryderia sp. 0.151 

   

            

Oxytoma sp. 0.151 

   

            

Myoconcha sp. 0.151 

   

            

G. hettangiensis  0.151 

                           Astarte sp. 0.151       
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Appendix 6.4 Total species abundance by stratigraphy. WF: Westbury Formation, CM: 

Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: 

Liasicus Zone. 
 

Taxa WF CM LM PPZ PZ LZ 

P. erugatum 0 0 0 1 0 0 

P. planorbis 0 0 0 0 13 0 

P. plicatulum 0 0 0 0 14 0 

C. johnstoni 0 0 0 0 8 0 

Alsatites sp. 0 0 0 0 0 5 

I. angulatus 0 0 0 6 7 44 

P. undulata 0 0 0 0 13 0 

D. tomesi 0 0 0 17 25 14 

P. navis 0 0 0 0 2 24 

R. contorta 320 0 0 0 0 0 

C. hettangiensis 1 0 1 0 1 0 

C. valoniensis 1 0 0 4 6 1 

M. cloacinus 2 3 0 0 0 0 

P. giganteum 0 0 0 0 13 38 

P. punctatum 1 0 6 0 0 0 

Oxytoma sp. 1 0 0 3 1 0 

P. alpina 0 6 0 0 0 0 

Mytilus sp. 0 0 0 0 9 0 

P. dubius 0 0 0 0 0 21 

Liostrea sp. 0 0 11 10 6 14 

P. duplicata 0 0 0 0 0 2 

R. bronni 0 0 0 0 0 10 

P. elongatus 4 0 0 0 0 0 

M. hillanus 1 0 0 0 2 0 

Gervillella sp. 1 0 0 0 0 0 

Modiolus sp. 4 7 0 1 53 1 

M. minimus 0 0 0 49 254 0 

M. ventricosus 0 0 0 0 118 3 

Myoconcha sp. 0 0 0 0 1 0 

Dacryomya sp. 10 0 0 0 0 0 

Ryderia sp. 0 0 0 2 1 0 

P. elliptica 0 0 0 0 20 5 

C. regularis 9 0 9 16 93 23 

I. concentricum 4 2 0 0 0 0 

P. rhaetica 3 0 0 0 0 0 

P. philippiana 0 2 47 1 0 0 

P. crowcombeia 30 22 0 0 0 0 

P. tatei 0 0 30 9 2 0 

Astarte sp. 0 0 0 1 1 0 

Pleuromya sp. 0 0 3 7 0 1 

M. cardioides 0 0 0 0 0 3 

Cardinia sp. 0 0 0 0 0 21 

Total individuals 392 42 107 127 663 230 
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Appendix 6.5 Pairwise comparisons of the faunal composition of each stratigraphic unit. 

The values showed were estimated by Bray Curtis dissimilarity index. WF: Westbury 

Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: 

Planorbis Zone, LZ: Liasicus Zone. Overall average dissimilarity between stratigraphic units 

= 93.86%. 

Taxa WF CM LM PPZ PZ LZ 

% Dissimilarity 

89.2     

 94.07    

  84.09   

   81.81  

    88.04 
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Appendix 6.6 SIMPER analysis. AC: represents the average contribution of the taxon i 

to the average dissimilarity between habitats (overall average = 93.86%: See appendix 3.5). 

C%: Percentage contribution = average contribution/average dissimilarity between 

stratigraphic units. Mean abundance of each taxa by stratigraphic units. WF: Westbury 

Formation, CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: 

Planorbis Zone, LZ: Liasicus Zone. †: Taxa with global extinction, §: Taxa with regional 

extinction. **: Taxa with regional extinction, but were recorded in this data.  
N Taxon AC C % WF CM LM PPZ PZ LZ 

1 R. contorta†  13.57 14.47 40 0 0 0 0 0 

2 M. minimus  12.42 27.7 0 0 0 12.3 31.8 0 

3 C. regularis  7.432 35.62 1.13 0 1.8 4 11.6 3.83 

4 P. philippiana 5.877 41.88 0 0.4 9.4 0.25 0 0 

5 P. crowcombeia † 5.765 48.03 3.75 4.4 0 0 0 0 

6 M. ventricosus  4.81 53.15 0 0 0 0 14.8 0.5 

7 I. angulatus 4.167 57.59 0 0 0 1.5 0.875 7.33 

8 P. tatei  4.073 61.93 0 0 6 2.25 0.25 0 

9 P. giganteum 4.017 66.21 0 0 0 0 1.63 6.33 

10 D. tomesi 3.476 69.92 0 0 0 4.25 3.13 2.33 

11 Liostrea sp. 3.438 73.58 0 0 2.2 2.5 0.75 2.33 

12 Modiolus sp. 3.234 77.03 0.5 1.4 0 0.25 6.63 0.167 

13 P. navis   2.505 79.7 0 0 0 0 0.25 4 

14 P. elliptica  2.462 82.32 0 0 0 0 2.5 0.833 

15 Cardinia sp. 1.881 84.33 0 0 0 0 0 3.5 

16 P. dubius  1.428 85.85 0 0 0 0 0 3.5 

17 Pleuromya sp. 1.131 87.06 0 0 0.6 1.75 0 0.167 

18 P. punctatum  1.029 88.15 0.125 0 1.2 0 0 0 

19 P. undulata  0.9425 89.16 0 0 0 0 1.63 0 

20 P. plicatulum 0.9182 90.14 0 0 0 0 1.75 0 

21 R. bronni 0.8679 91.06 0 0 0 0 0 1.67 

22 P. alpina § 0.864 91.98 0 1.2 0 0 0 0 

23 Mytilus sp.** 0.7682 92.8 0 0 0 0 1.13 0 

24 C. johnstoni  0.7217 93.57 0 0 0 0 1 0 

25 C. valoniensis  0.7073 94.32 0.125 0 0 1 0.75 0.167 

26 Alsatites sp. 0.6046 94.97 0 0 0 0 0 0.833 

27 M. cloacinus  0.561 95.57 0.25 0.6 0 0 0 0 

28 I. concentricum § 0.5563 96.16 0.5 0.4 0 0 0 0 

29 P. planorbis 0.5093 96.7 0 0 0 0 1.63 0 

30 Dacryomya sp. 0.4831 97.22 1.25 0 0 0 0 0 

31 Oxytoma sp. ** 0.4419 97.69 0.125 0 0 0.75 0.125 0 

32 Ryderia sp. 0.2889 97.99 0 0 0 0.5 0.125 0 

33 P. rhaetica § 0.2782 98.29 0.375 0 0 0 0 0 

34 M. hillanus  0.2733 98.58 0.125 0 0 0 0.25 0 

35 M. cardioides  0.2652 98.86 0 0 0 0 0 0.5 

36 P. duplicata 0.2249 99.1 0 0 0 0 0 0.333 

37 C. hettangiensis  0.218 99.34 0.125 0 0.2 0 0.125 0 

38 Astarte sp. 0.1691 99.52 0 0 0 0.25 0.125 0 

39 Gervillella sp. 0.1685 99.7 0.125 0 0 0 0 0 

40 P. elongatus † 0.1591 99.87 0.5 0 0 0 0 0 

41 P. erugatum 0.07964 99.95 0 0 0 0.25 0 0 

42 Myoconcha sp. 0.046 100 0 0 0 0 0.125 0 

 

 

 



387 
 

Appendix 6.7 Modes of life used by marine fauna record in each stratigraphy units. 

Westbury Fomation 

 

Mode of life 

Species Tiering Motility  Feeding 

Rhaetavicula contorta Surficial Facultative Motile Attached Suspension 

Cosmetodon hettangiensis Surficial Facultative Motile Attached Suspension 

Chlamys valoniensis Surficial Facultative Motile Attached Suspension 

Mytilus cloacinus Surficial Facultative Motile Attached Suspension 

Permophorus elongatus Semi-faunal Facultative Motile Attached Suspension 

Modiolus hillanus Semi-faunal Facultative Motile Attached Suspension 

Gervillella sp. Semi-faunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

Dacryomya sp. Shallow-infaunal Slow Mining 

Cardinia regularis Shallow-infaunal Facultative Motile Unattached Suspension 

Isocyprina concentricum Shallow-infaunal Facultative Motile Unattached Suspension 

Protocardia rhaetica Shallow-infaunal Facultative Motile Unattached Suspension 

P. punctatum Surficial Facultative Motile Attached Suspension 

Oxytoma sp. Surficial Facultative Motile Attached Suspension 

Pteromya crowcombeia Shallow-infaunal Facultative Motile Unattached Suspension 

    Cotham Member 

 

Mode of life 

Species Tiering Motility  Feeding 

M. cloacinus  Surficial Facultative Motile Attached Suspension 

P. alpina Surficial Facultative Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

I. concentricum  Shallow-infaunal Facultative Motile Unattached Suspension 

P. philippiana  Shallow-infaunal Facultative Motile Unattached Suspension 

P. crowcombeia Shallow-infaunal Facultative Motile Unattached Suspension 

    Langport Member 

 

Mode of life 

Species Tiering Motility  Feeding 

P. punctatum Surficial Facultative Motile Attached Suspension 

C. hettangiensis  Surficial Facultative Motile Attached Suspension 

Liostrea sp. Surficial Non-Motile Attached Suspension 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

P. philippiana  Shallow-infaunal Facultative Motile Unattached Suspension 

P. tatei  Shallow-infaunal Facultative Motile Unattached Suspension 

Pleuromya sp. Shallow-infaunal Facultative Motile Unattached Suspension 
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Pre-Planorbis Zone 

 

Mode of life 

Species Tiering Motility  Feeding 

P. erugatum Pelagic  Fast Predatory 

I. angulatus Erect Non-Motile Attached Suspension 

D. tomesi Surficial Slow Grazing 

C. valoniensis Surficial Facultative Motile Attached Suspension 

Oxytoma sp. Surficial Facultative Motile Attached Suspension 

Liostrea sp. Surficial Non-Motile Attached Suspension 

Modiolus sp. Semi-faunal Facultative Motile Attached Suspension 

M. minimus  Semi-faunal Facultative Motile Attached Suspension 

Ryderia sp. Shallow-infaunal Slow Mining 

C. regularis Shallow-infaunal Facultative Motile Unattached Suspension 

P. philipinana  Shallow-infaunal Facultative Motile Unattached Suspension 

P .tatei  Shallow-infaunal Facultative Motile Unattached Suspension 

Astarte sp. Shallow-infaunal Facultative Motile Unattached Suspension 

Pleuromya sp. Shallow-infaunal Facultative Motile Unattached Suspension 

    Planorbis Zone 

  Mode of life 

Species Tiering Motility  Feeding 

P. planorbis  Pelagic  Fast Predatory 

C. johnstoni  Pelagic  Fast Predatory 

P. plicatulum Pelagic  Fast Predatory 

I. angulatus Erect Non-Motile Attached Suspension 

P. undulata  Surficial Slow Deposit 

D. tomesi Surficial Slow Grazing 

P. navis   Surficial Facultative Motile Unattached Suspension 

C. valoniensis  Surficial Facultative Motile Attached Suspension 

P. giganteum  Surficial Facultative Motile Attached Suspension 

Oxytoma sp. Surficial Facultative Motile Attached Suspension 

Cosmetodon sp. Surficial Facultative Motile Attached Suspension 

Mytilus sp. Surficial Facultative Motile Attached Suspension 

Liostrea sp. Surficial Non-Motile Attached Suspension 

M. hillanus  Semi-infaunal Facultative Motile Attached Suspension 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. minimus  Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus  Semi-infaunal Facultative Motile Attached Suspension 

Myoconcha sp. Semi-infaunal Facultative Motile Attached Suspension 

Ryderia sp. Shallow-infaunal Slow Mining 

P. elliptica  Shallow-infaunal Slow Mining 

C. regularis  Shallow-infaunal Facultative Motile Unattached Suspension 

P. tatei  Shallow-infaunal Facultative Motile Unattached Suspension 

Astarte sp. Shallow-infaunal Facultative Motile Unattached Suspension 
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Liasicus Zone 

  Mode of life     

Species Tiering Motility  Feeding 

Alsatites sp. Pelagic  Fast Predatory 

I. angulatus Erect Non-Motile Attached Suspension 

D. tomesi Surficial Slow Grazing 

P. navis  Surficial Facultative Motile Unattached Suspension 

C. valoniensis  Surficial Facultative Motile Attached Suspension 

P. giganteum  Surficial Facultative Motile Attached Suspension 

P. dubius  Surficial Facultative Motile Attached Suspension 

Liostrea sp. Surficial Non-Motile Attached Suspension 

P. duplicata  Surficial Non-Motile Attached Suspension 

R. bronni  Semi-infaunal Slow Mining 

Modiolus sp. Semi-infaunal Facultative Motile Attached Suspension 

M. ventricosus  Semi-infaunal Facultative Motile Attached Suspension 

P. elliptica  Shallow-infaunal Slow Mining 

C. regularis  Shallow-infaunal Facultative Motile Unattached Suspension 

Pleuromya sp. Shallow-infaunal Facultative Motile Unattached Suspension 

M. cardioides  Shallow-infaunal Facultative Motile Unattached Suspension 

Cardinia sp. Shallow-infaunal Facultative Motile Unattached Suspension 
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Appendix 6.8 Proportion of mode of life. WF: Westbury Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus 

Zone. 
 

      Stratigraphy     

Ecological categories WF CM LM PPZ PZ LZ 

Pelagic 0 0 0 0.07 0.1 0.1 

Erect 0 0 0 0.07 0 0.1 

Surficial 0.4 0.3 0.4 0.29 0.4 0.4 

Semi-infaunal 0.27 0.2 0 0.14 0.2 0.2 

Shallow-infaunal 0.33 0.5 0.6 0.43 0.2 0.3 

Deep-infaunal 0 0 0 0 0 0 

       Fast 0 0 0 0.07 0.1 0.1 

Slow 0.07 0 0 0.14 0.2 0.2 

Facultative_unattached 0.27 0.5 0.6 0.36 0.2 0.3 

Facultative-attached 0.67 0.5 0.3 0.29 0.4 0.3 

No motile Unttached 0 0 0 0 0 0 

No motile Attached 0 0 0.1 0.14 0.1 0.2 

       Suspension 0.93 1 1 0.79 0.7 0.8 

Surface deposit 0 0 0 0 0 0 

Mining 0.07 0 0 0.07 0.1 0.1 

Grazing 0 0 0 0.07 0 0.1 

Predatory 0 0 0 0.07 0.1 0.1 

Other 0 0 0 0 0 0 
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Appendix 6.9 Geometric mean of the species recorded along the study interval at Larne section.  WF: Westbury Formation, CM: Cotham 

Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone; PP: Pre Planorbis; PZ: Planorbis Zone; LZ: 

Liasicus Zone and AZ: Angulata Zone. Sp.: species. IC: I. concentricum; PG: P. giganteum; CV; C. valoniensis; MH: M. hillanus; G; Gervillella 

sp.; M; Modiolus sp.; MM: M. minimus; CR: C. regularis; PH: Pholadomya sp.; PT: P. langportiensis; LH: Liostrea; MY; Myoconcha sp.; MC: 

M. cardioides; PD: P. duplicata; GRE: G. obliquata; C: C. calcarea; CA: Camponectes sp.; RB: R. bronni. 
 
Sp WF1 Sp WF2 Sp WF3 Sp WF4 Sp WF5 Sp WF6 Sp WF7 Sp C1 Sp C2 Sp C3 Sp C4 Sp C5 Sp LM1 Sp LM2 Sp LM3 Sp LM4 Sp LM5 

CR 6.50 CR 10.23 PG 21.72 RC 5.67 M 6.83 RC 17.10 PC 6.41 PC 9.04 IC 5.20 PC 8.75 PC 16.88 PL 24.96 LH 24.57 CR 10.40 PL 19.16 PL 18.60 LH 23.05 

CR 6.13 D 5.96 PC 6.27 RC 10.55 RC 7.03 RC 6.68 PC 4.95 PC 9.99 M 3.24 PA 6.46 IC 8.98 PC 27.96 PR 15.41 PR 13.65 PL 28.45 PL 12.62 PG 17.73 

CR 5.79 D 15.25 MH 11.14 RC 16.37 RC 6.78 RC 11.56 PC 7.15 RC 8.54 M 2.83 PA 6.41 PC 10.34 PL 13.46 PR 11.92 PR 19.07 A 8.83 PL 29.24 PG 20.41 

RC 4.16 D 6.54 MH 7.65 RC 9.02 M 4.56 RC 9.78 PC 4.38 RC 10.15 M 2.43 PA 4.68 CR 19.68 PC 13.81 PR 25.31 PC 12.53 PR 11.25 PR 18.70 PG 11.81 

 
0.00 D 6.51 PC 10.71 RC 8.99 PC 4.90 PC 5.14 PC 4.49 RC 7.29 M 2.56 PC 12.50 PR 12.49 PC 6.33 PR 14.61 PR 15.66 PL 7.86 P 29.66 PG 19.74 

 
0.00 D 7.40 RC 9.76 RC 9.77 PC 6.45 PC 6.82 D 7.81 RC 7.91 

 
0.00 MC 10.60 CR 15.78 PC 5.15 PR 5.03 CR 23.55 CR 21.00 CR 7.29 PG 17.47 

 
0.00 D 5.26 PC 4.64 RC 6.80 PC 5.69 PC 7.74 OX 5.18 RC 8.46 

 
0.00 MC 2.96 PR 14.20 PC 23.91 PR 7.11 CR 33.48 PL 24.05 CR 15.31 LH 12.89 

 
0.00 D 7.73 PC 4.37 RC 20.78 PC 5.35 PC 6.84 OX 3.43 RC 8.00 

 
0.00 MC 3.43 

 
0.00 PC 17.00 PR 11.10 PR 13.53 PR 12.05 CR 24.80 PR 17.77 

 
0.00 D 4.65 PC 7.30 RC 4.59 PC 9.39 PC 6.38 PC 3.13 RC 6.13 

 
0.00 PC 10.37 

 
0.00 PC 14.50 PR 11.48 CR 19.07 PR 12.01 L 24.41 PR 7.12 

 
0.00 G 12.15 PC 5.92 RC 8.45 RC 6.40 PC 6.61 PC 5.18 RC 14.61 

 
0.00 MC 1.93 

 
0.00 PC 16.47 PR 8.97 PR 15.41 CR 9.15 L 15.18 PR 15.04 

 
0.00 IC 8.90 PC 6.50 RC 12.00 RC 15.14 PC 6.11 PC 5.18 RC 10.44 

 
0.00 PA 9.37 

 
0.00 PC 26.61 PR 9.14 PR 4.95 CR 13.17 PL 18.20 P 17.52 

 
0.00 IC 7.30 PC 4.94 RC 6.89 RC 5.93 PC 5.46 PC 2.79 RC 10.22 

 
0.00 PA 9.30 

 
0.00 PC 15.30 PR 14.24 PR 6.79 

 
0.00 L 15.33 PR 15.14 

 
0.00 IC 5.77 PC 6.12 RC 6.77 RC 6.34 RC 9.50 RC 6.44 RC 15.79 

 
0.00 

 
0.00 

 
0.00 PC 12.45 PR 13.21 

 
0.00 

 
0.00 PR 13.32 PG 14.43 

 
0.00 IC 4.94 PC 6.61 RC 8.38 PC 6.33 RC 12.24 RC 8.46 RC 7.94 

 
0.00 

 
0.00 

 
0.00 PC 14.55 L 14.80 

 
0.00 

 
0.00 CR 14.72 PR 15.21 

 
0.00 IC 6.25 

 
0.00 RC 8.69 PC 6.36 RC 11.24 PC 5.32 RC 7.21 

 
0.00 

 
0.00 

 
0.00 PC 8.40 PR 17.59 

 
0.00 

 
0.00 P 38.74 PR 16.51 

 
0.00 IC 6.07 

 
0.00 RC 7.18 PC 5.45 RC 11.56 CR 6.34 RC 9.09 

 
0.00 

 
0.00 

 
0.00 PC 16.48 PR 10.14 

 
0.00 

 
0.00 PR 19.49 PR 16.55 

 
0.00 PE 10.65 

 
0.00 RC 6.81 M 7.27 RC 7.76 IC 4.63 RC 9.23 

 
0.00 

 
0.00 

 
0.00 PC 3.81 PR 16.53 

 
0.00 

 
0.00 PL 16.61 

 
0.00 

 
0.00 PE 12.02 

 
0.00 RC 8.33 PC 5.40 RC 5.56 RC 6.31 RC 7.66 

 
0.00 

 
0.00 

 
0.00 PC 11.36 PR 13.11 

 
0.00 

 
0.00 PR 13.05 

 
0.00 

 
0.00 PE 6.07 

 
0.00 RC 8.98 PC 4.50 RC 4.31 PC 5.21 RC 7.86 

 
0.00 

 
0.00 

 
0.00 PC 10.21 PR 16.83 

 
0.00 

 
0.00 PL 18.69 

 
0.00 

 
0.00 PR 10.86 

 
0.00 RC 5.82 CR 6.96 RC 5.86 PC 5.14 RC 7.60 

 
0.00 

 
0.00 

 
0.00 PC 18.43 PR 11.33 

 
0.00 

 
0.00 PL 13.30 

 
0.00 

 
0.00 PR 11.92 

 
0.00 RC 6.40 RC 10.00 RC 8.64 RC 6.35 RC 6.49 

 
0.00 

 
0.00 

 
0.00 PC 18.80 PR 15.21 

 
0.00 

 
0.00 PL 18.82 

 
0.00 

 
0.00 RC 3.36 

 
0.00 RC 8.47 RC 8.49 RC 10.15 PC 4.98 RC 9.40 

 
0.00 

 
0.00 

 
0.00 PC 12.02 PR 12.23 

 
0.00 

 
0.00 PL 20.59 

 
0.00 

 
0.00 RC 11.10 

 
0.00 RC 9.27 RC 9.26 RC 10.15 RC 11.13 RC 13.86 

 
0.00 

 
0.00 

 
0.00 PC 3.97 PR 12.26 

 
0.00 

 
0.00 PL 14.09 

 
0.00 

 
0.00 RC 8.56 

 
0.00 RC 8.68 RC 7.80 RC 14.27 

 
0.00 RC 5.95 

 
0.00 

 
0.00 

 
0.00 PC 2.54 PR 14.53 

 
0.00 

 
0.00 PL 23.41 

 
0.00 

 
0.00 RC 6.62 

 
0.00 RC 6.85 CR 8.75 RC 12.77 

 
0.00 RC 8.88 

 
0.00 

 
0.00 

 
0.00 PC 3.13 PR 11.86 

 
0.00 

 
0.00 L 25.46 

 
0.00 

 
0.00 RC 11.32 

 
0.00 RC 8.56 MC 10.05 RC 12.29 

 
0.00 RC 9.19 

 
0.00 

 
0.00 

 
0.00 PC 4.05 PR 10.01 

 
0.00 

 
0.00 L 21.51 

 
0.00 
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0.00 RC 12.42 

 
0.00 RC 3.52 CR 6.11 RC 14.72 

 
0.00 RC 8.64 

 
0.00 

 
0.00 

 
0.00 PC 3.99 PR 13.43 

 
0.00 

 
0.00 PR 8.72 

 
0.00 

 
0.00 RC 9.74 

 
0.00 RC 11.97 CR 4.67 RC 9.21 

 
0.00 RC 9.15 

 
0.00 

 
0.00 

 
0.00 PC 3.56 

 
0.00 

 
0.00 

 
0.00 L 19.51 

 
0.00 

 
0.00 RC 14.14 

 
0.00 RC 8.55 CR 9.43 RC 12.61 

 
0.00 RC 6.74 

 
0.00 

 
0.00 

 
0.00 PC 3.40 

 
0.00 

 
0.00 

 
0.00 PR 15.11 

 
0.00 

 
0.00 RC 11.78 

 
0.00 RC 8.98 

 
0.00 RC 6.22 

 
0.00 RC 3.37 

 
0.00 

 
0.00 

 
0.00 PC 3.82 

 
0.00 

 
0.00 

 
0.00 PR 16.82 

 
0.00 

 
0.00 RC 12.68 

 
0.00 RC 4.83 

 
0.00 RC 5.19 

 
0.00 RC 5.60 

 
0.00 

 
0.00 

 
0.00 PC 2.79 

 
0.00 

 
0.00 

 
0.00 PR 11.45 

 
0.00 

 
0.00 RC 10.55 

 
0.00 CV 28.43 

 
0.00 RC 5.39 

 
0.00 RC 12.98 

 
0.00 

 
0.00 

 
0.00 PC 2.13 

 
0.00 

 
0.00 

 
0.00 PL 19.40 

 
0.00 

 
0.00 RC 7.81 

 
0.00 MC 11.47 

 
0.00 RC 6.76 

 
0.00 RC 15.43 

 
0.00 

 
0.00 

 
0.00 PC 3.09 

 
0.00 

 
0.00 

 
0.00 PL 16.08 

 
0.00 

 
0.00 RC 8.62 

 
0.00 RC 6.21 

 
0.00 RC 4.52 

 
0.00 RC 14.17 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 22.76 

 
0.00 

 
0.00 RC 9.87 

 
0.00 RC 7.64 

 
0.00 D 4.86 

 
0.00 RC 7.87 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 19.74 

 
0.00 

 
0.00 RC 12.45 

 
0.00 RC 8.43 

 
0.00 PR 5.38 

 
0.00 RC 11.43 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 19.01 

 
0.00 

 
0.00 RC 4.58 

 
0.00 RC 8.24 

 
0.00 IC 8.08 

 
0.00 RC 7.76 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 17.00 

 
0.00 

 
0.00 RC 10.88 

 
0.00 RC 5.77 

 
0.00 PR 5.32 

 
0.00 RC 9.51 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 13.41 

 
0.00 

 
0.00 RC 7.90 

 
0.00 RC 6.50 

 
0.00 

 
0.00 

 
0.00 RC 11.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 15.64 

 
0.00 

 
0.00 RC 8.16 

 
0.00 RC 7.60 

 
0.00 

 
0.00 

 
0.00 RC 7.19 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 12.52 

 
0.00 

 
0.00 RC 7.67 

 
0.00 RC 8.46 

 
0.00 

 
0.00 

 
0.00 RC 9.65 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 17.68 

 
0.00 

 
0.00 RC 5.68 

 
0.00 RC 6.33 

 
0.00 

 
0.00 

 
0.00 RC 6.62 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 11.81 

 
0.00 

 
0.00 RC 5.69 

 
0.00 RC 7.59 

 
0.00 

 
0.00 

 
0.00 RC 12.09 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 12.88 

 
0.00 

 
0.00 RC 6.57 

 
0.00 RC 7.18 

 
0.00 

 
0.00 

 
0.00 RC 5.40 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PL 11.64 

 
0.00 

 
0.00 RC 8.25 

 
0.00 RC 6.51 

 
0.00 

 
0.00 

 
0.00 PC 10.22 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.34 

 
0.00 RC 6.49 

 
0.00 

 
0.00 

 
0.00 RC 18.55 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 10.14 

 
0.00 RC 10.35 

 
0.00 

 
0.00 

 
0.00 RC 14.25 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.05 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.47 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 6.72 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 9.48 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.20 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.59 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.02 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 15.84 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 9.19 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.19 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.41 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 11.80 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 17.45 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 9.76 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.40 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.44 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 11.52 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.13 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 6.98 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 10.50 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 16.47 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.02 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.30 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 5.95 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 12.80 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 
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0.00 RC 12.44 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.21 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 11.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 15.16 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.87 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.83 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 16.57 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 6.08 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.52 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.57 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 6.49 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 4.85 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 11.71 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.52 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 12.53 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 11.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.20 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.41 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.55 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 9.20 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.39 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 12.29 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 8.53 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 12.69 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 9.95 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 10.27 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 5.16 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 7.89 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 RC 13.63 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 
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Appendix 6.9 (Continuation) Geometric mean of the species recorded along the study interval at Larne section.  WF: Westbury Formation, 

CM: Cotham Member, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, LZ: Liasicus Zone; PP: Pre Planorbis; PZ: 

Planorbis Zone; LZ: Liasicus Zone and AZ: Angulata Zone. Sp.: species. IC: I. concentricum; PG: P. giganteum; CV; C. valoniensis; MH: M. 

hillanus; G; Gervillella sp.; M; Modiolus sp.; MM: M. minimus; CR: C. regularis; PH: Pholadomya sp.; PT: P. langportiensis; LH: Liostrea; 

MY; Myoconcha sp.; MC: M. cardioides; PD: P. duplicata; GRE: G. obliquata; C: C. calcarea; CA: Camponectes sp.; RB: R. bronni. 
Sp PP1 Sp PP2 Sp PP3 Sp PP4 Sp PP5 Sp PZ2 Sp PZ3 Sp PZ4 Sp PZ5 Sp PZ6 Sp PZ7 Sp PZ8 Sp LZ1 Sp LZ2 Sp LZ3 Sp LZ4 Sp LZ5 Sp LZ6 

MM 8.50 PC 16.06 MM 4.33 PP 9.01 MV 4.43 MM 3.77 PG 18.23 CI 32.45 CR 2.92 CR 6.69 PE 5.58 CR 26.73 PG 59.61 PG 96.32 PN 7.14 LH 8.03 Mc 53.68 CR 10.49 

PC 13.47 P 24.16 OX 5.00 MM 2.87 MV 6.33 MM 3.70 MV 6.60 CI 18.88 CR 14.77 CI 17.30 CI 59.46 CR 23.33 MV 3.57 LH 8.58 MC 20.36 PG 2.69 PG 7.36 CR 17.38 

PL 12.14 CR 9.89 M 3.95 PP 19.73 MV 7.08 MM 7.39 MV 7.72 OX 2.19 CR 6.13 CR 3.78 CI 33.15 CR 11.51 PN 4.05 PG 19.24 PG 50.69 LH 3.97 AL 17.11 CR 4.56 

PC 34.78 PC 19.08 MM 3.26 PL 5.42 MV 2.51 MV 8.43 MV 7.73 CI 22.82 PG 20.72 PE 3.41 CR 6.91 CR 13.28 CR 4.13 PN 3.82 CO 29.14 PG 5.88 PN 5.62 CR 6.50 

P 22.37 CR 26.01 MM 5.65 MM 5.18 MV 8.50 LH 24.28 MV 6.64 PE 3.19 T 3.34 CR 26.50 MV 9.28 CR 15.45 
 

0.00 
 

0.00 RB 6.66 Cr 11.93 PN 3.84 CR 12.86 

CR 11.23 CR 28.26 MM 4.04 MM 5.05 MV 7.33 PS 22.60 MV 7.59 CN 1.90 PG 8.98 CV 7.00 MV 6.27 CR 17.80 
 

0.00 
 

0.00 CO 12.98 LH 5.17 PN 3.21 CR 5.01 

MN 56.62 L 16.23 MM 3.12 MM 4.23 MM 2.49 PS 18.48 MV 4.25 CR 9.91 PG 30.50 CR 8.31 MV 6.18 CR 20.61 
 

0.00 
 

0.00 MC 9.26 LH 8.61 
 

0.00 PG 4.52 

P 21.32 RY 19.51 MM 2.19 PP 18.91 MM 2.00 MV 3.48 MV 6.51 MM 3.09 CR 17.44 PE 4.38 RY 11.29 CR 12.92 
 

0.00 
 

0.00 P 32.03 
 

0.00 
 

0.00 
 

0.00 

P 12.69 PR 10.54 MM 2.19 PP 24.63 MM 3.15 MV 7.03 MV 3.74 T 4.85 PG 23.24 MM 7.85 MM 7.23 CR 28.52 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PC 10.67 L 23.14 MM 3.07 MM 4.80 MM 4.95 MM 5.46 MV 7.16 PE 3.13 CR 23.81 CR 6.46 MV 5.38 CR 16.49 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

P 17.70 MM 3.81 MM 4.93 CV 4.99 MM 4.90 MV 2.80 MV 5.55 PE 4.82 PL 4.47 MM 7.39 PE 5.90 CR 22.59 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

CR 22.29 CR 16.37 CA 14.14 RY 12.32 MM 3.43 MM 5.57 MV 3.31 CI 10.29 PL 2.06 CR 4.72 RY 5.03 CR 15.70 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

CR 16.25 L 16.13 MM 3.46 PD 19.23 MM 3.39 MM 3.30 MV 5.18 MM 5.84 PE 5.71 
 

0.00 CR 5.60 CR 13.83 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

L 37.79 PC 10.75 MM 2.94 MM 3.91 MM 5.26 M 5.58 MV 6.52 PE 3.36 M 3.64 
 

0.00 CR 19.10 MM 7.19 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

P 10.21 M 3.74 MM 2.67 MM 4.88 MM 2.17 MM 3.65 CI 24.11 CR 3.66 M 4.62 
 

0.00 CR 8.87 LH 11.57 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

CR 11.05 
 

0.00 MM 3.67 OX 2.65 MM 2.00 MM 4.17 MV 7.70 CR 8.83 CJ 13.22 
 

0.00 PE 5.40 MH 7.01 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PL 11.40 
 

0.00 MM 4.73 CR 9.28 MV 3.49 MM 3.68 MV 6.91 CI 21.74 PG 30.13 
 

0.00 PE 5.56 MH 6.50 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

CR 20.96 
 

0.00 MM 2.57 CR 15.08 MM 2.42 MM 3.20 MV 5.02 MY 2.52 
 

0.00 
 

0.00 CR 16.68 PG 12.61 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

MM 7.36 
 

0.00 CR 7.09 PP 20.42 MM 3.08 LH 7.71 MV 6.97 PE 3.43 
 

0.00 
 

0.00 CR 7.97 MH 2.81 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

CR 9.84 
 

0.00 MM 2.13 MM 2.94 MM 3.97 MV 9.54 MV 6.51 
 

0.00 
 

0.00 
 

0.00 CR 8.57 PG 16.69 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PL 16.50 
 

0.00 MM 3.55 OX 2.70 MV 2.45 MV 6.22 MV 4.82 
 

0.00 
 

0.00 
 

0.00 CR 17.89 T 3.14 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PC 14.72 
 

0.00 MM 2.79 CV 4.35 PS 15.20 MV 5.26 MV 4.71 
 

0.00 
 

0.00 
 

0.00 CR 6.91 PG 21.77 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PL 15.36 
 

0.00 MM 6.25 MM 2.94 PS 5.34 MV 4.34 MV 4.50 
 

0.00 
 

0.00 
 

0.00 CR 6.58 PG 17.19 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

LH 25.92 
 

0.00 M 8.30 CR 10.34 MV 3.72 MV 3.47 MV 4.67 
 

0.00 
 

0.00 
 

0.00 CR 9.12 CR 7.20 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

PL 35.31 
 

0.00 MM 5.87 CR 15.31 PS 23.54 MV 6.65 MV 3.69 
 

0.00 
 

0.00 
 

0.00 CR 8.50 CR 12.44 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

MM 10.17 
 

0.00 MM 5.22 MM 6.32 MM 2.02 PG 22.55 MV 6.62 
 

0.00 
 

0.00 
 

0.00 MY 12.99 CR 18.11 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

 
0.00 

 
0.00 MM 2.47 PP 37.94 MV 4.06 MV 5.68 MV 3.77 

 
0.00 

 
0.00 

 
0.00 CR 5.58 CR 16.38 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.76 LH 14.31 MV 3.91 MV 6.12 MV 3.01 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 12.11 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.77 CV 5.74 MM 4.21 MM 4.10 MV 5.31 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MH 7.57 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.62 MM 7.29 MM 3.64 MM 3.31 MV 4.65 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 10.64 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.10 CV 7.02 MM 3.50 MM 2.99 MV 3.17 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 7.99 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 
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0.00 

 
0.00 MM 2.02 MM 7.32 MM 4.47 MM 4.25 MV 4.76 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PT 12.53 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.94 PP 35.25 MM 2.77 MM 3.95 MV 3.97 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 21.15 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 OX 2.54 

 
0.00 MV 2.84 MM 6.91 MV 3.52 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.10 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.64 

 
0.00 MM 2.51 MM 5.74 MV 3.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MH 8.93 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.67 

 
0.00 MM 2.38 MV 6.99 MV 3.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 14.48 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.25 

 
0.00 MM 2.10 PS 14.37 MM 7.24 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.78 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.54 

 
0.00 MM 4.53 MV 5.26 MM 7.58 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 18.98 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.01 

 
0.00 PS 34.52 MV 3.51 MM 5.27 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 11.68 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.65 

 
0.00 MM 7.45 LH 17.69 MM 6.65 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 7.31 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 3.67 MV 6.58 MV 6.14 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 6.09 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 3.50 MV 3.67 MV 8.66 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 14.90 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.37 MY 14.78 MV 5.49 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 17.85 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.25 MM 4.15 MV 4.72 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 14.84 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.45 PS 12.91 MV 6.70 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 20.68 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.48 PS 18.54 MV 7.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CV 6.81 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 4.03 MY 8.12 MV 5.89 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 11.69 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 7.24 MM 6.34 MV 6.58 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CV 6.03 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 3.09 

 
0.00 MV 3.23 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 6.78 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.33 

 
0.00 MM 7.40 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 14.39 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 2.43 

 
0.00 MV 7.98 

 
0.00 

 
0.00 

 
0.00 

 
0.00 LH 14.53 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 4.47 

 
0.00 CS 7.67 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 7.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 7.52 

 
0.00 MM 2.67 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 9.84 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 6.19 

 
0.00 CR 8.65 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 3.68 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 5.92 

 
0.00 MV 6.16 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 9.37 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 L 14.68 

 
0.00 MM 3.70 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 9.17 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 L 10.53 

 
0.00 MM 6.54 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 7.39 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.23 

 
0.00 MM 4.83 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 3.32 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PS 7.00 

 
0.00 MV 6.96 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 14.27 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 6.02 

 
0.00 MV 5.90 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CV 6.19 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.17 

 
0.00 MV 7.05 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 11.31 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 4.19 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 2.77 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.42 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 M 4.46 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MM 3.91 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 12.82 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 3.08 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 PG 18.96 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MV 3.13 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 17.16 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 MH 5.87 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 LH 11.15 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 15.36 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 
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0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 10.01 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 10.51 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 15.93 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 13.07 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 41.23 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 LH 14.98 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 CR 6.44 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 
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Appendix 6.10 Data used build the frequency distribution and Jablonski plot target. WF: 

Westbury Formation, LM: Langport Member, PPZ: Pre-Planorbis Zone, PZ: Planorbis Zone, 

LZ: Liasicus Zone. 
Cardinia 

 
Modiolus 

 
Plagiostoma 

 
Liostrea 

WF LM PPZ PZ LZ 
 

W PP PZ 
 

W L PZ LZ 
 

LM PPZ PZ LZ 

5.79 7.29 7.09 2.77 4.13 
 

2.43 2.01 2.00 
 

21.72 14.43 8.98 2.69 
 

23.05 14.31 11.57 8.58 

6.13 8.83 9.28 2.92 11.93 
 

2.56 2.02 2.00 
  

17.47 12.61 5.88 
 

12.89 12.91 14.53 8.03 

6.50 9.15 9.84 3.32 10.49 
 

2.83 2.10 2.02 
  

17.73 14.20 7.36 
 

24.41 23.14 11.15 5.17 

10.23 10.40 9.89 3.66 17.38 
 

3.24 2.13 2.10 
  

19.74 16.69 4.52 
 

15.18 10.94 24.16 8.61 

4.67 13.17 10.21 4.72 4.56 
 

3.37 2.19 2.17 
  

20.41 18.96 96.32 
 

25.46 16.25 21.70 
 

6.11 14.72 10.34 4.77 6.50 
 

3.74 2.19 2.25 
  

11.81 20.72 59.61 
 

21.51 25.92 23.38 
 

6.96 15.31 11.40 4.90 12.86 
 

3.81 2.47 2.38 
   

21.77 
  

19.51 16.25 24.28 
 

8.75 19.07 14.14 5.00 5.01 
 

4.56 2.54 2.42 
   

22.28 
    

7.71 
 

9.43 21.00 15.08 5.58 
  

5.40 2.57 2.43 
   

22.55 
    

17.69 
 

6.34 23.55 15.31 5.60 
  

5.60 2.62 2.43 
   

23.24 
    

14.68 
 

15.78 24.80 17.14 6.13 
  

5.95 2.64 2.45 
   

30.13 
    

10.53 
 

19.68 33.48 17.70 6.44 
  

6.13 2.65 2.49 
   

30.50 
      

  
19.47 6.46 

  
6.49 2.67 2.51 

 
21.72 16.93 20.22 29.40 

 
20.29 17.10 16.49 7.60 

  
19.47 6.58 

  
6.49 2.79 2.51 

          

  
22.37 6.69 

  
6.62 2.87 2.67 

          

  
26.01 6.91 

  
6.74 2.94 2.77 

          

  
28.26 6.91 

  
6.83 2.94 2.80 

          

   
7.20 

  
6.98 2.94 2.81 

          

   
7.20 

  
7.19 3.07 2.84 

          

   
7.24 

  
7.19 3.12 2.99 

          

   
7.31 

  
7.21 3.25 3.01 

          

   
7.54 

  
7.27 3.26 3.08 

          

   
7.97 

  
7.29 3.46 3.08 

          

   
7.99 

  
7.36 3.55 3.09 

          

   
18.11 

  
11.23 

 
3.77 

          

   
18.98 

  
11.43 

 
3.78 

          

   
19.10 

  
11.46 

 
3.91 

          

   
20.61 

  
11.52 

 
3.91 

          

   
20.68 

  
11.71 

 
3.95 

          

   
21.15 

  
11.80 

 
3.97 

          

   
22.59 

  
12.09 

 
3.97 

          

   
23.33 

  
12.29 

 
4.03 

          

   
23.81 

  
12.53 

 
4.06 

          

   
26.73 

  
12.69 

 
4.10 

          

   
28.52 

  
12.80 

 
4.15 

          

   
33.05 

  
12.98 

 
4.17 

          

   
68.35 

  
13.21 

 
4.17 

          

8.86 16.73 15.47 13.25 
  

13.30 
 

4.19 
          

      
13.47 

 
4.23 

          

      
9.56 3.92 5.05 
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Appendix 6.11 Data used to generate null model, H: Height (m); S: Samples, M: Mean; N: Number of specimens. 

H (m) -14.2 -13 -12.1 -6.4 -5 -3.6 -2.2 -0.8 0.6 1 2 2.9 3.2 4 4.8 5.4 6.2 7.1 9.1 11.95 12.9 14.2 15.6 17.8 20 22 24 26.2 28.1 30.1 32.6 35 38 40.9 45 

S WF1 WF2 WF3 WF4 WF5 WF6 WF7 WF8 CM1 CM2 CM3 CM4 LM1 LM2 LM3 LM4 LM5 PPZ1 PPZ2 PPZ3 PPZ4 PZ1 PZ2 PZ3 PZ4 PZ5 PZ6 PZ7 PZ8 LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 

1 6.50 10.23 21.72 5.67 6.83 17.10 6.41 9.04 5.20 8.75 16.88 24.96 24.57 10.40 19.16 18.60 23.05 8.50 16.06 4.33 9.01 4.43 3.77 18.23 32.45 2.92 6.69 5.58 26.73 59.61 96.32 7.14 8.03 53.68 10.49 

2 6.13 5.96 6.27 10.55 7.03 6.68 4.95 9.99 3.24 6.46 8.98 27.96 15.41 13.65 28.45 12.62 17.73 13.47 24.16 5.00 2.87 6.33 3.70 6.60 18.88 14.77 17.30 59.46 23.33 3.57 8.58 20.36 2.69 7.36 17.38 

3 5.79 15.25 11.14 16.37 6.78 11.56 7.15 8.54 2.83 6.41 10.34 13.46 11.92 19.07 8.83 29.24 20.41 12.14 9.89 3.95 19.73 7.08 7.39 7.72 2.19 6.13 3.78 8.05 11.51 4.05 19.24 50.69 3.97 17.11 4.56 

4 4.16 6.54 7.65 9.02 4.56 9.78 4.38 10.15 2.43 4.68 19.68 13.81 25.31 12.53 11.25 18.70 11.81 34.78 19.08 3.26 5.42 2.51 8.43 7.73 22.82 20.72 3.41 33.15 13.28 4.13 3.82 29.14 5.88 5.62 6.50 

5 0.00 6.51 10.71 8.99 4.90 5.14 4.49 7.29 2.56 12.50 12.49 6.33 14.61 15.66 7.86 29.66 19.74 22.37 26.01 5.65 5.18 8.50 24.28 6.64 21.70 3.34 26.50 6.91 15.45 0.00 0.00 6.66 11.93 3.84 12.86 

6 0.00 7.40 9.76 9.77 6.45 6.82 7.81 7.91 0.00 10.60 15.78 5.15 5.03 23.55 21.00 7.29 17.47 11.23 28.26 4.04 5.05 7.33 22.60 7.59 3.19 8.98 7.00 2.81 17.80 0.00 0.00 12.98 5.17 3.21 5.01 

7 0.00 5.26 4.64 6.80 5.69 7.74 5.18 8.46 0.00 2.96 14.20 23.91 7.11 33.48 24.05 15.31 12.89 56.62 16.23 3.12 4.23 2.49 18.48 4.25 3.15 30.50 8.31 3.26 20.61 0.00 0.00 9.26 8.61 0.00 4.52 

8 0.00 7.73 4.37 20.78 5.35 6.84 3.43 8.00 0.00 3.43 0.00 17.00 11.10 13.53 12.05 24.80 17.77 21.32 19.51 2.19 18.91 2.00 3.48 6.51 1.90 17.44 4.38 9.28 12.92 0.00 0.00 32.03 0.00 0.00 0.00 

9 0.00 4.65 7.30 4.59 9.39 6.38 3.13 6.13 0.00 10.37 0.00 14.50 11.48 19.07 12.01 24.41 7.12 12.69 10.54 2.19 24.63 3.15 7.03 3.74 9.91 23.24 7.85 6.27 28.52 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 12.15 5.92 8.45 6.40 6.61 5.18 14.61 0.00 1.93 0.00 16.47 8.97 15.41 9.15 15.18 15.04 10.67 23.14 3.07 4.80 4.95 5.46 7.16 3.09 23.81 6.46 6.18 16.49 0.00 0.00 0.00 0.00 0.00 0.00 

11 0.00 8.90 6.50 12.00 15.14 6.11 5.18 10.44 0.00 9.37 0.00 26.61 9.14 4.95 13.17 18.20 17.52 17.70 3.81 4.93 4.99 4.90 2.80 5.55 23.38 4.47 7.39 11.29 22.59 0.00 0.00 0.00 0.00 0.00 0.00 

12 0.00 7.30 4.94 6.89 5.93 5.46 2.79 10.22 0.00 9.30 0.00 15.30 14.24 6.79 0.00 15.33 15.14 22.29 16.37 14.14 12.32 3.43 5.57 3.31 4.85 2.06 4.72 7.23 15.70 0.00 0.00 0.00 0.00 0.00 0.00 

13 0.00 5.77 6.12 6.77 6.34 9.50 6.44 15.79 0.00 0.00 0.00 12.45 13.21 0.00 0.00 13.32 14.43 16.25 16.13 3.46 19.23 3.39 3.30 5.18 3.13 5.71 68.35 5.38 13.83 0.00 0.00 0.00 0.00 0.00 0.00 

14 0.00 4.94 6.61 8.38 6.33 12.24 8.46 7.94 0.00 0.00 0.00 14.55 14.80 0.00 0.00 14.72 15.21 37.79 10.75 2.94 3.91 5.26 5.58 6.52 4.82 3.64 24.16 5.90 7.19 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 6.25 0.00 8.69 6.36 11.24 5.32 7.21 0.00 0.00 0.00 8.40 17.59 0.00 0.00 38.74 16.51 10.21 3.74 2.67 4.88 2.17 3.65 24.11 10.29 4.62 0.00 5.03 11.57 0.00 0.00 0.00 0.00 0.00 0.00 

16 0.00 6.07 0.00 7.18 5.45 11.56 6.34 9.09 0.00 0.00 0.00 16.48 10.14 0.00 0.00 19.49 16.55 11.05 0.00 3.67 2.65 2.00 4.17 7.70 5.84 13.22 0.00 5.60 7.01 0.00 0.00 0.00 0.00 0.00 0.00 

17 0.00 10.65 0.00 6.81 7.27 7.76 4.63 9.23 0.00 0.00 0.00 3.81 16.53 0.00 0.00 16.61 0.00 11.40 0.00 4.73 9.28 3.49 3.68 6.91 3.36 30.13 0.00 19.10 6.50 0.00 0.00 0.00 0.00 0.00 0.00 

18 0.00 12.02 0.00 8.33 5.40 5.56 6.31 7.66 0.00 0.00 0.00 11.36 13.11 0.00 0.00 13.05 0.00 20.96 0.00 2.57 15.08 2.42 3.20 5.02 3.66 0.00 0.00 8.87 12.61 0.00 0.00 0.00 0.00 0.00 0.00 

19 0.00 6.07 0.00 8.98 4.50 4.31 5.21 7.86 0.00 0.00 0.00 10.21 16.83 0.00 0.00 18.69 0.00 7.36 0.00 7.09 20.42 3.08 7.71 6.97 8.83 0.00 0.00 5.40 2.81 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.00 10.86 0.00 5.82 6.96 5.86 5.14 7.60 0.00 0.00 0.00 18.43 11.33 0.00 0.00 13.30 0.00 9.84 0.00 2.13 2.94 3.97 9.54 6.51 21.74 0.00 0.00 5.56 16.69 0.00 0.00 0.00 0.00 0.00 0.00 

21 0.00 11.92 0.00 6.40 10.00 8.64 6.35 6.49 0.00 0.00 0.00 18.80 15.21 0.00 0.00 18.82 0.00 16.50 0.00 3.55 2.70 2.45 6.22 4.82 2.52 0.00 0.00 16.68 3.14 0.00 0.00 0.00 0.00 0.00 0.00 

22 0.00 3.36 0.00 8.47 8.49 10.15 4.98 9.40 0.00 0.00 0.00 12.02 12.23 0.00 0.00 20.59 0.00 14.72 0.00 2.79 4.35 15.20 5.26 4.71 3.43 0.00 0.00 7.97 21.77 0.00 0.00 0.00 0.00 0.00 0.00 

23 0.00 11.10 0.00 9.27 9.26 10.15 11.13 13.86 0.00 0.00 0.00 3.97 12.26 0.00 0.00 14.09 0.00 15.36 0.00 6.25 2.94 5.34 4.34 4.50 0.00 0.00 0.00 8.57 17.19 0.00 0.00 0.00 0.00 0.00 0.00 

24 0.00 8.56 0.00 8.68 7.80 14.27 0.00 5.95 0.00 0.00 0.00 2.54 14.53 0.00 0.00 23.41 0.00 25.92 0.00 8.30 10.34 3.72 3.47 4.67 0.00 0.00 0.00 17.89 7.20 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.00 6.62 0.00 6.85 8.75 12.77 0.00 8.88 0.00 0.00 0.00 3.13 11.86 0.00 0.00 25.46 0.00 35.31 0.00 5.87 15.31 23.54 6.65 3.69 0.00 0.00 0.00 6.91 12.44 0.00 0.00 0.00 0.00 0.00 0.00 

26 0.00 11.32 0.00 8.56 10.05 12.29 0.00 9.19 0.00 0.00 0.00 4.05 10.01 0.00 0.00 21.51 0.00 10.17 0.00 5.22 6.32 2.02 22.55 6.62 0.00 0.00 0.00 6.58 18.11 0.00 0.00 0.00 0.00 0.00 0.00 

27 0.00 12.42 0.00 3.52 6.11 14.72 0.00 8.64 0.00 0.00 0.00 3.99 13.43 0.00 0.00 8.72 0.00 0.00 0.00 2.47 37.94 4.06 5.68 3.77 0.00 0.00 0.00 9.12 16.38 0.00 0.00 0.00 0.00 0.00 0.00 

28 0.00 9.74 0.00 11.97 4.67 9.21 0.00 9.15 0.00 0.00 0.00 3.56 0.00 0.00 0.00 19.51 0.00 0.00 0.00 4.76 14.31 3.91 6.12 3.01 0.00 0.00 0.00 8.50 12.11 0.00 0.00 0.00 0.00 0.00 0.00 

29 0.00 14.14 0.00 8.55 9.43 12.61 0.00 6.74 0.00 0.00 0.00 3.40 0.00 0.00 0.00 15.11 0.00 0.00 0.00 3.77 5.74 4.21 4.10 5.31 0.00 0.00 0.00 12.99 7.57 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 11.78 0.00 8.98 0.00 6.22 0.00 3.37 0.00 0.00 0.00 3.82 0.00 0.00 0.00 16.82 0.00 0.00 0.00 2.62 7.29 3.64 3.31 4.65 0.00 0.00 0.00 5.58 10.64 0.00 0.00 0.00 0.00 0.00 0.00 

31 0.00 12.68 0.00 4.83 0.00 5.19 0.00 5.60 0.00 0.00 0.00 2.79 0.00 0.00 0.00 11.45 0.00 0.00 0.00 2.10 7.02 3.50 2.99 3.17 0.00 0.00 0.00 0.00 7.99 0.00 0.00 0.00 0.00 0.00 0.00 

32 0.00 10.55 0.00 28.43 0.00 5.39 0.00 12.98 0.00 0.00 0.00 2.13 0.00 0.00 0.00 19.40 0.00 0.00 0.00 2.02 7.32 4.47 4.25 4.76 0.00 0.00 0.00 0.00 12.53 0.00 0.00 0.00 0.00 0.00 0.00 

33 0.00 7.81 0.00 11.47 0.00 6.76 0.00 15.43 0.00 0.00 0.00 3.09 0.00 0.00 0.00 16.08 0.00 0.00 0.00 4.94 35.25 2.77 3.95 3.97 0.00 0.00 0.00 0.00 21.15 0.00 0.00 0.00 0.00 0.00 0.00 

34 0.00 8.62 0.00 6.21 0.00 4.52 0.00 14.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.76 0.00 0.00 0.00 2.54 0.00 2.84 6.91 3.52 0.00 0.00 0.00 0.00 3.10 0.00 0.00 0.00 0.00 0.00 0.00 

35 0.00 9.87 0.00 7.64 0.00 4.86 0.00 7.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.74 0.00 0.00 0.00 2.64 0.00 2.51 5.74 3.46 0.00 0.00 0.00 0.00 8.93 0.00 0.00 0.00 0.00 0.00 0.00 

36 0.00 12.45 0.00 8.43 0.00 5.38 0.00 11.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.01 0.00 0.00 0.00 3.67 0.00 2.38 6.99 3.46 0.00 0.00 0.00 0.00 14.48 0.00 0.00 0.00 0.00 0.00 0.00 

37 0.00 4.58 0.00 8.24 0.00 8.08 0.00 7.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.00 0.00 0.00 0.00 3.25 0.00 2.10 14.37 7.24 0.00 0.00 0.00 0.00 3.78 0.00 0.00 0.00 0.00 0.00 0.00 

38 0.00 10.88 0.00 5.77 0.00 5.32 0.00 9.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.41 0.00 0.00 0.00 2.54 0.00 4.53 5.26 7.58 0.00 0.00 0.00 0.00 18.98 0.00 0.00 0.00 0.00 0.00 0.00 

39 0.00 7.90 0.00 6.50 0.00 0.00 0.00 11.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.64 0.00 0.00 0.00 2.01 0.00 34.52 3.51 5.27 0.00 0.00 0.00 0.00 11.68 0.00 0.00 0.00 0.00 0.00 0.00 

40 0.00 8.16 0.00 7.60 0.00 0.00 0.00 7.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.52 0.00 0.00 0.00 2.65 0.00 7.45 17.69 6.65 0.00 0.00 0.00 0.00 7.31 0.00 0.00 0.00 0.00 0.00 0.00 

41 0.00 7.67 0.00 8.46 0.00 0.00 0.00 9.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.68 0.00 0.00 0.00 0.00 0.00 3.67 6.58 6.14 0.00 0.00 0.00 0.00 6.09 0.00 0.00 0.00 0.00 0.00 0.00 

42 0.00 5.68 0.00 6.33 0.00 0.00 0.00 6.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.81 0.00 0.00 0.00 0.00 0.00 3.50 3.67 8.66 0.00 0.00 0.00 0.00 14.90 0.00 0.00 0.00 0.00 0.00 0.00 

43 0.00 5.69 0.00 7.59 0.00 0.00 0.00 12.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.88 0.00 0.00 0.00 0.00 0.00 4.37 14.78 5.49 0.00 0.00 0.00 0.00 17.85 0.00 0.00 0.00 0.00 0.00 0.00 

44 0.00 6.57 0.00 7.18 0.00 0.00 0.00 5.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.64 0.00 0.00 0.00 0.00 0.00 2.25 4.15 4.72 0.00 0.00 0.00 0.00 14.84 0.00 0.00 0.00 0.00 0.00 0.00 

45 0.00 8.25 0.00 6.51 0.00 0.00 0.00 10.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.45 12.91 6.70 0.00 0.00 0.00 0.00 20.68 0.00 0.00 0.00 0.00 0.00 0.00 

46 0.00 7.34 0.00 6.49 0.00 0.00 0.00 18.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.48 18.54 7.54 0.00 0.00 0.00 0.00 6.81 0.00 0.00 0.00 0.00 0.00 0.00 

47 0.00 10.14 0.00 10.35 0.00 0.00 0.00 14.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.03 8.12 5.89 0.00 0.00 0.00 0.00 11.69 0.00 0.00 0.00 0.00 0.00 0.00 
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48 0.00 8.05 0.00 0.00 0.00 0.00 0.00 13.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.24 6.34 6.58 0.00 0.00 0.00 0.00 6.03 0.00 0.00 0.00 0.00 0.00 0.00 

49 0.00 6.72 0.00 0.00 0.00 0.00 0.00 9.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.09 0.00 3.23 0.00 0.00 0.00 0.00 6.78 0.00 0.00 0.00 0.00 0.00 0.00 

50 0.00 8.20 0.00 0.00 0.00 0.00 0.00 13.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 7.40 0.00 0.00 0.00 0.00 14.39 0.00 0.00 0.00 0.00 0.00 0.00 

51 0.00 7.02 0.00 0.00 0.00 0.00 0.00 15.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.43 0.00 7.98 0.00 0.00 0.00 0.00 14.53 0.00 0.00 0.00 0.00 0.00 0.00 

52 0.00 9.19 0.00 0.00 0.00 0.00 0.00 7.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.47 0.00 7.67 0.00 0.00 0.00 0.00 7.54 0.00 0.00 0.00 0.00 0.00 0.00 

53 0.00 7.41 0.00 0.00 0.00 0.00 0.00 11.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.52 0.00 2.67 0.00 0.00 0.00 0.00 9.84 0.00 0.00 0.00 0.00 0.00 0.00 

54 0.00 8.54 0.00 0.00 0.00 0.00 0.00 17.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.19 0.00 8.65 0.00 0.00 0.00 0.00 3.68 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.00 9.76 0.00 0.00 0.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.92 0.00 6.16 0.00 0.00 0.00 0.00 9.37 0.00 0.00 0.00 0.00 0.00 0.00 

56 0.00 7.44 0.00 0.00 0.00 0.00 0.00 11.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.68 0.00 3.70 0.00 0.00 0.00 0.00 9.17 0.00 0.00 0.00 0.00 0.00 0.00 

57 0.00 8.13 0.00 0.00 0.00 0.00 0.00 6.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.53 0.00 6.54 0.00 0.00 0.00 0.00 7.39 0.00 0.00 0.00 0.00 0.00 0.00 

58 0.00 10.50 0.00 0.00 0.00 0.00 0.00 16.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.23 0.00 4.83 0.00 0.00 0.00 0.00 3.32 0.00 0.00 0.00 0.00 0.00 0.00 

59 0.00 7.02 0.00 0.00 0.00 0.00 0.00 13.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 6.96 0.00 0.00 0.00 0.00 14.27 0.00 0.00 0.00 0.00 0.00 0.00 

60 0.00 5.95 0.00 0.00 0.00 0.00 0.00 12.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.02 0.00 5.90 0.00 0.00 0.00 0.00 6.19 0.00 0.00 0.00 0.00 0.00 0.00 

61 0.00 12.44 0.00 0.00 0.00 0.00 0.00 13.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17 0.00 7.05 0.00 0.00 0.00 0.00 11.31 0.00 0.00 0.00 0.00 0.00 0.00 

62 0.00 11.46 0.00 0.00 0.00 0.00 0.00 8.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.19 0.00 0.00 0.00 0.00 0.00 0.00 2.77 0.00 0.00 0.00 0.00 0.00 0.00 

63 0.00 15.16 0.00 0.00 0.00 0.00 0.00 7.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.42 0.00 0.00 0.00 0.00 0.00 0.00 4.46 0.00 0.00 0.00 0.00 0.00 0.00 

64 0.00 13.83 0.00 0.00 0.00 0.00 0.00 16.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.91 0.00 0.00 0.00 0.00 0.00 0.00 12.82 0.00 0.00 0.00 0.00 0.00 0.00 

65 0.00 6.08 0.00 0.00 0.00 0.00 0.00 13.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.08 0.00 0.00 0.00 0.00 0.00 0.00 18.96 0.00 0.00 0.00 0.00 0.00 0.00 

66 0.00 7.57 0.00 0.00 0.00 0.00 0.00 6.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.13 0.00 0.00 0.00 0.00 0.00 0.00 17.16 0.00 0.00 0.00 0.00 0.00 0.00 

67 0.00 4.85 0.00 0.00 0.00 0.00 0.00 11.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.87 0.00 0.00 0.00 0.00 0.00 0.00 

68 0.00 8.52 0.00 0.00 0.00 0.00 0.00 12.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.15 0.00 0.00 0.00 0.00 0.00 0.00 

69 0.00 11.46 0.00 0.00 0.00 0.00 0.00 13.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.36 0.00 0.00 0.00 0.00 0.00 0.00 

70 0.00 8.20 0.00 0.00 0.00 0.00 0.00 8.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.01 0.00 0.00 0.00 0.00 0.00 0.00 

71 0.00 7.55 0.00 0.00 0.00 0.00 0.00 9.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.51 0.00 0.00 0.00 0.00 0.00 0.00 

72 0.00 8.39 0.00 0.00 0.00 0.00 0.00 12.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.93 0.00 0.00 0.00 0.00 0.00 0.00 

73 0.00 8.53 0.00 0.00 0.00 0.00 0.00 12.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.07 0.00 0.00 0.00 0.00 0.00 0.00 

74 0.00 9.95 0.00 0.00 0.00 0.00 0.00 10.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 410.23 0.00 0.00 0.00 0.00 0.00 0.00 

75 0.00 5.16 0.00 0.00 0.00 0.00 0.00 7.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.98 0.00 0.00 0.00 0.00 0.00 0.00 

76 0.00 13.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.44 0.00 0.00 0.00 0.00 0.00 0.00 

M 1.675 5 4.73 9.94 4.3 4.26 4.35 7.4 2.859 5.46 12.7 16.6 14 18.1 11.4 13.5 15.8 15.37 18.54 9.085 12.58 10.1 14.2 10.8 8.86 12.7 15.4 12.5 21.52 20.3 32.1 21.3 13.4 24.9 16.8 

N 4 76 14 47 29 38 23 75 5 12 7 33 27 12 11 44 16 27 15 40 25 61 44 59 16 15 13 27 75 4 4 8 7 6 7 
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Appendix 6.12 Specimens found through in Larne section. 
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Appendix 6.13 Specimens found through in Larne section. 
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Appendix 6.12: 1. Montivaltia sp., 2. Isocrinus psilonoti (Quenstedt), 3. Cardinia sp., 4. 

Rhaetavicula contorta (Portlock), 5. Diademopsis tomesi (Wright), 6. Chlamys valoniensis 

(Defrance), 7. Modiolus ventricosus (Roener), 8. Pseudokatosira undulata (Benz), 9. 

Placunopsis alpina (Winkler), 10. Alsatites sp., 11. Pseudokatosira undulata (Benz), 12. 

Mytilus cloacinus (Tutcher), 13. Protocardia rhaetica (Merian), 14. Permophorus elongatus 

(Moore), 15. Modiolus sp., 16. Diademopsis tomesi (Wright).  

 
Appendix 6.13 1. Mactromya cardioides (Phillips), 2. Chlamys valoniensis (Defrance), 3. 

Liostrea sp., 4. Modiolus sp., 5. Psiloceras planorbis (J. Sowerby ), 6. Plagiostoma 

giganteum (J. Sowerby), 7. Ryderia sp., 8. Psiloceras erugatum (Phillips), 9. Cardinia 

regularis (Terquem), 10. Mytilus cloacinus (Tutcher), 11. Cardinia regularis (Terquem), 12. 

Caloceras johnstoni (Sowerby), 13. Pteromya langportensis (Richardson and Tutcher). 
  

 



403 
 

Appendix 7.1 List of taxa, modes of life and abundance of each species recorded at each sample along the Portezuelo Providencia 

section in Chile. 

 Height (m) 0.2 4.3 18.2 26.25 30.2 32 33.4 35 36.4 38.1

Samples 1 2 3 4 6 7 8 9 10 11

Samples cod TR-01 TR-02 TR-03 TR-04 J2-CL J3-CL J4-CL J5-CL J6-CL J7-CL

Class Order Family Genera and Species TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10

Cephalopoda Ceratitida Choristoceratidae Choristoceras  sp. 1 1 1 0 0 0 0 0 0 0

Cephalopoda Ammonoidea Psiloceratidae Psiloceras primocostatum (Hillebrandt) 0 0 0 0 0 0 0 0 0 0

Cephalopoda Ammonoidea Psiloceratidae Storthoceras  sp. 0 0 0 0 0 0 0 0 0 0

Bivalvia Oxytomidae Oxytoma sp. 0 0 0 0 0 0 1 0 0 0

Bivalvia Pectinidae Pectinidae 0 0 0 0 0 0 1 0 0 0

Bivalvia Pectinoida Pectinidae Chlamys  sp. 0 1 0 0 0 0 0 0 0 0

Bivalvia Pectinoida Pectinidae Chlamys  sp 2 0 0 0 0 0 0 0 0 0 0

Bivalvia Entoliidae Entolium  sp 0 0 0 0 0 0 0 0 0 0

Bivalvia Pectinoida Pectinidae Eopecten  sp. 0 0 0 0 0 0 0 0 0 0

Bivalvia Limoida Limidae Plagiostoma  sp. 0 0 0 0 0 0 0 0 0 0

Bivalvia Limoida Limidae Pseudolimea  sp. 0 1 1 1 0 1 1 0 1 1

Bivalvia Pterioida Pteriidae Otapiria  sp. 1 1 1 0 1 0 1 0 0 0

Bivalvia Arcoida Parallelodontidae Parellelodon  sp. 0 0 0 0 0 0 1 0 0 0

Bivalvia Veneroida Fimbriidae Schafhaeutlia americana  (Cox) 0 1 0 0 0 0 6 0 0 0

Bivalvia ?? ?? Heterodonta 0 0 0 0 0 0 0 1 0 0

Height (m) 39.2 40.2 64.8 70 76.7 78.5 81.9 85.8 104.9

Samples 12 13 22 23 27 28 29 30 33

Samples cod J8-CL J16-CLJ18-CLJ19-CLJ23-CLJ24-CLJ25-CLJ26-CLJ29-CL

Class Order Family Genera and Species TR11 JU1 JU2 JU3 JU4 JU5 JU6 JU7 JU8

Cephalopoda Ceratitida Choristoceratidae Choristoceras  sp. 0 0 0 0 0 0 0 0 0

Cephalopoda Ammonoidea Psiloceratidae Psiloceras primocostatum (Hillebrandt) 0 0 1 0 0 0 0 0 0

Cephalopoda Ammonoidea Psiloceratidae Storthoceras  sp. 0 0 0 0 1 0 1 1 0

Bivalvia Oxytomidae Oxytoma sp. 0 0 0 0 0 0 0 0 0

Bivalvia Pectinidae Pectinidae 0 0 0 0 0 0 0 0 0

Bivalvia Pectinoida Pectinidae Chlamys  sp. 0 0 0 1 0 0 0 1 0

Bivalvia Pectinoida Pectinidae Chlamys  sp 2 0 0 0 1 0 1 0 0 0

Bivalvia Entoliidae Entolium  sp 0 0 0 0 1 0 1 0 1

Bivalvia Pectinoida Pectinidae Eopecten  sp. 0 0 0 0 0 0 0 0 1

Bivalvia Limoida Limidae Plagiostoma  sp. 0 0 0 1 0 0 0 0 0

Bivalvia Limoida Limidae Pseudolimea  sp. 0 0 0 0 0 0 1 0 0

Bivalvia Pterioida Pteriidae Otapiria  sp. 1 1 0 1 0 0 0 0 0

Bivalvia Arcoida Parallelodontidae Parellelodon  sp. 0 0 0 0 0 0 0 0 0

Bivalvia Veneroida Fimbriidae Schafhaeutlia americana  (Cox) 0 0 0 0 0 0 0 0 0

Bivalvia ?? ?? Heterodonta 0 0 0 0 0 0 0 0 0
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Appendix 7.2 Summary of palaeoecological parameters estimated in this study. S: sample number, SC= Sample cog, Period = TR: Triassic, JU: 

Jurassic, H = Height (mm), R = Richness, RR: Rarefied richness, K = Kurtosis. LOESS = Loess regression values, 2.5% P = 2.5% Percentile, 97.5% P 

= 97.5% Percentile and St. Dev.= Standard deviations of the rarefied richness.   

S SC Period H R LOESS 2.5% P 97.5% P RR St. Dev. K LOESS 2.5% P 97.5% P 

1 TR-01 TR 0.20 2 6.18 5.88 11.37 0.51 0.09 14.54 11.70 -28.58 40.95 

2 TR-02 TR 4.30 5 5.43 4.99 9.73 1.84 0.32 8.26 12.22 -21.66 34.94 

3 TR-03 TR 18.20 3 2.93 0.71 5.55 0.53 0.11 13.98 13.99 1.92 18.54 

4 TR-04 TR 26.25 1 1.64 -0.08 2.86 0.16 0.00 15.00 15.01 2.90 19.48 

6 J2-CL TR 30.20 1 1.00 -1.04 1.80 0.03 0.00 15.00 14.99 11.58 17.83 

7 J3-CL TR 32.00 1 1.00 -1.12 1.70 0.12 0.00 15.00 14.81 12.88 17.14 

8 J4-CL TR 33.40 6 1.00 -1.17 1.73 2.86 0.53 13.94 14.71 12.56 16.66 

9 J5-CL TR 35.00 1 1.00 -0.72 1.62 0.01 0.00 15.00 14.75 12.01 16.73 

10 J6-CL TR 36.40 1 1.00 -0.43 1.74 0.10 0.00 15.00 15.00 12.77 17.09 

11 J7-CL TR 38.10 1 1.00 -0.48 2.04 0.04 0.00 15.00 15.00 12.35 16.77 

12 J8-CL TR 39.20 1 1.00 -0.60 2.45 0.01 0.00 15.00 15.00 10.24 17.31 

13 J16-CL JU 40.20 1 1.00 -0.82 2.78 0.07 0.00 15.00 15.00 6.29 18.46 

22 J18-CL JU 64.80 1 1.74 -1.80 5.74 0.07 0.00 15.00 2.19 -12.85 3.21 

23 J19-CL JU 70.00 4 1.91 -0.50 4.69 0.24 0.03 7.07 7.18 -2.59 8.25 

27 J23-CL JU 76.70 2 2.00 0.46 3.40 0.14 0.03 13.56 13.70 11.61 17.57 

28 J24-CL JU 78.50 1 2.00 0.48 3.23 0.03 0.00 15.00 14.31 12.42 17.04 

29 J25-CL JU 81.90 3 2.00 0.55 3.07 2.01 0.55 14.98 14.71 9.86 17.38 

30 J26-CL JU 85.80 2 2.00 0.31 3.23 0.41 0.10 14.87 15.07 8.94 19.52 

33 J29-CL JU 104.90 2 2.00 -2.35 5.55 0.04 0.00 4.35 4.38 -7.77 8.95 
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Appendix 7.3 Absolute and relative abundance by taxa (%). TR: Triassic, J: 

Jurassic.

Period TR J TR (%) J (%) 

Choristoceras sp. 5 0 3.33 0 

Pseudolimea sp. 87 1 58 0.90 

Otapiria sp. 46 6 30.66 5.40 

Parellelodon sp. 1 0 0.66 0 

Pectinidae 1 0 0.66 0 

Oxytoma sp. 1 0 0.66 0 

Shafhaetlia americana  7 0 4.66 0 

Heterodonta 1 0 0.66 0 

Psiloceras primocostatum 0 5 0 4.50 

Chlamys sp. 1 2 0.66 1.80 

Storthoceras sp. 0 87 0 78.37 

Chlamys sp. 2 0 3 0 2.70 

Entolium sp 0 3 0 2.70 

Eopecten sp. 0 1 0 0.90 

Plagiostoma sp. 0 3 0 2.70 

Abundance 150 111 

  Taxa 9 9 

  



406 
 

Appendix 7.4 SIMPER analysis. AC: represents the average contribution of the 

taxon i to the average dissimilarity between habitats (overall average = 96.41%). C%: 

Percentage contribution = average contribution/average dissimilarity between 

stratigraphic units. Mean abundance of each taxa by period. TR: Triassic and J: Jurassic. 

Taxon AC C % TR J 

Pseudolimea sp. 29.2 30.29 7.91 0.125 

Storthoceras sp. 23.06 54.21 0 10.9 

Otapiria sp. 20.42 75.4 4.18 0.75 

Psiloceras primocostatum 5.434 81.03 0 0.625 

Chlamys sp2 4.505 85.71 0 0.375 

Plagiostoma sp. 2.921 88.74 0 0.375 

Entolium sp 2.899 91.74 0 0.375 

Eopecten sp. 1.766 93.57 0 0.125 

Chlamys sp. 1.546 95.18 0.0909 0.25 

Heterodonta 1.538 96.77 0.0909 0 

Choristoceras sp. 1.457 98.28 0.455 0 

Shafhaetlia americana  1.174 99.5 0.636 0 

Oxytoma sp. 0.1604 99.67 0.0909 0 

Pectinidae 0.1604 99.83 0.0909 0 

Parellelodon sp. 0.1604 100 0.0909 0 
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Appendix 7.5 Modes of life used by marine fauna recorded in each Period. 

 
Triassic 

 

Mode of life 

Taxa Tiering Motility Feeding mechanism 

Choristoceras sp. Pelagic  Fast Predatory 

Oxytoma sp. Surficial Facultative Motile Attached Suspension 

Pectinidae Surficial Facultative Motile Attached Suspension 

Chlamys sp. Surficial Facultative Motile Attached Suspension 

Pseudolimea sp. Surficial No motile Attached Suspension 

Otapiria sp. Surficial Non-Motile Attached Suspension 

Parellelodon sp. Semi-infaunal Facultative No-Motile Attached Suspension 

S. americana Semi-Infaunal Facultative Motile Attached chemosymbiotic 

Heterodonta ?? ?? ?? 

    Jurassic 

 

Mode of life 

Taxa Tiering Taxa Tiering 

P. primocostatum Pelagic  Fast Predatory 

Storthoceras sp. Pelagic  Fast Predatory 

Chlamys sp. Surficial Facultative Motile Attached Suspension 

Chlamys sp 2 Surficial Facultative Motile Attached Suspension 

Entolium sp Surficial Facultative Motile Attached Suspension 

Eopecten sp. Surficial Facultative Motile Attached Suspension 

Plagiostoma sp. Surficial Facultative Motile Attached Suspension 

Pseudolimea sp. Surficial No motile Attached Suspension 

Otapiria sp. Surficial Non-Motile Attached Suspension 
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Appendix 7.6 Proportion of mode of life by period. TR: Triassic, J: Jurassic. 

 

Ecological categories TR J 

Pelagic 0.125 0.2222 

Erect 0 0 

Surficial 0.625 0.777 

Semi-infaunal 0.25 0 

Shallow-infaunal 0 0 

Deep-infaunal 0 0 

   
Fast 0.125 0.2222 

Slow 0 0 

Facultative-unattached 0.375 0.5556 

Facultative-attached 0.25 0 

No motile Unttached 0 0 

No motile Attached 0.25 0.222 

   
Suspension 0.75 0.7777 

Surface deposit 0 0 

Mining 0 0 

Grazing 0 0.2222 

Predatory 0.125 0 

Other 0.125 0 
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Appendix 7.7 List of the specimens records in Portezuelo Providencia section. 
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Appendix 7.7 (Continuation) List of specimens: 1: Pseudolimea sp., 2: Chlamys 

sp.1., 3: Pseudolimea sp., 4-5: Schafhaeutlia Americana (cox, 1949), 6: Otapiria sp. , 7: 

Oxytoma sp., 8: Psiloceras primocostatum (Hillebrandt, 1988), 9-10: Storthoceras sp., 

11: Chlamys sp.2., 12: Eopecten sp., 13: Storthoceras sp., 14: Otapiria sp., 15: 

Heterodonta, 16: P. primocostatum, 17: Entolium sp, 18: Choristoceras sp., 19: 

Plagiostoma sp. 
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Appendix 7.8 Psiloceras sp. recorded at 40.20 m above the base of the section. 
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Appendix 8.1 Compositional change of the Tr/J boundary marine 

palaeocommunities recorded in UK. The red line represents the trajectory of the 

community through the Tr/J boundary. This pattern indicates that changes in species 

composition could be due to changes in sea level. WF: The Westbury Formation; CM: 

The Cotham Member; LM: The Langport Member; PPZ: The Pre-Planorbis Zone; PZ: 

The Planorbis Zone; LZ: Liasicus Zone. Stars: Centroid of each stratigraphic unit.  

 

  


