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Alison Margaret Smith: Forest ecology in a changing world: effective ground-based 

methods for monitoring temperate broadleaved forest ecosystems in relation to climate 

change. 

Abstract 

The impacts of climate change on temperate forests are predicted to accelerate, with 

widespread implications for forest biodiversity and function. Remote sensing has 

provided insights into regional patterns of vegetation dynamics, and experimental 

studies have demonstrated impacts of specific changes on individual species. However, 

forests are diverse and complex ecosystems. To understand how different species in 

different forests respond to interacting environmental pressures, widespread ground-

based monitoring is needed. The only practical way to achieve this is through the 

involvement of non-professional researchers, i.e., with citizen science. However, many 

techniques used to identify subtle changes in forests require expensive equipment and 

professional expertise. This thesis aimed to identify practical methods for citizen 

scientists to collect useful data on forest ecosystem dynamics in relation to climate 

change. Methods for monitoring tree phenology and canopy-understorey interactions 

were the main focus, as tree phenology exerts strong control on understorey light and 

forest biodiversity, and is already responding to climate change. 

The response of understorey vegetation to canopy closure in four woodlands from a 

single region of England (Devon) was examined in detail. These geographically close 

woodlands differed considerably in their composition and seasonal dynamics. The 

spring period was particularly important for herb-layer development, and small 

variations in canopy openness had important effects on herb-layer cover and 

composition. This work highlights the need to monitor a range of different woodlands at 

the regional scale, with sufficient resolution to pick up small but crucial differences 

through time. Citizen scientists could help to collect such data by monitoring herb-layer 

cover and changes in the abundance of key species, alongside monitoring the overstorey 

canopy.  

The spring leaf phenology of four canopy trees (ash, beech, oak and sycamore) were 

monitored intensively in one woodland using a range of methods: counts, percentage 

estimates and photography. First budburst and leaf expansion dates were compared 
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with estimates of leaf expansion timing and rate, derived from time-series data using 

logistic growth models. Frequently used first-event dates were potentially misleading 

due to high variation in leaf development rates within and between species. Percentage 

estimates and counts produced similar estimates of leaf expansion timing and rate. A 

photo-derived greenness index produced similar estimates of timing, but not rate, and 

was compromised by practical issues of photographing individual crowns in closed 

canopy woodland. Citizen science should collect time-series data instead of frequently-

used first event dates―visual observations offer the most practical way to do this, but 

further work is needed to test reliability with citizen scientists. Given high intra- and 

inter-species variation in tree phenology, whole forest canopies need to be monitored to 

infer canopy closure timing.   

Canopy openness was assessed using sophisticated hemispherical photography and a 

range of low-cost alternatives, across four Devon woodlands over a year. Visual 

estimates and ordinary photography were too coarse to identify fine-scale variation in 

canopies. Smartphone fisheye photography analysed with free software was identified 

as a reliable surrogate for estimating relative, though not absolute, canopy openness. 

The method has high potential as a citizen science tool, as different phone models and 

users gave similar canopy openness estimates.  

In a detailed follow-up study, smartphone fisheye photography, hemispherical 

photography and visual observations of leaf expansion were used every other day to 

characterise spring canopy development. Logistic growth models estimated canopy 

closure timing and rate. Visual observations identified much earlier canopy 

development than either photographic method. Smartphone fisheye photography 

performed comparably to hemispherical photography. There is good potential for 

practical application of smartphone fisheye photography, as similar canopy closure 

estimates were gained from photos taken once every two weeks.  

The research in this thesis identifies a range of methods suitable for widespread 

monitoring of forest ecosystem dynamics in relation to climate change. Developing a 

smartphone app for automatic analysis and submission of canopy images will be an 

important next step to enabling widespread use. A pilot project is underway to begin 
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testing methods with citizen scientists. Further research into data quality with citizen 

scientists is needed before the methods can be rolled out widely with confidence. 
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1  Introduction 

 

1.1 Ecosystem dynamics in temperate broadleaved forests 

Forest ecosystems are generally described in terms of their composition, structure and 

function (Franklin, 1988; Packham et al., 1992; Thomas and Packham, 2007). Composition 

refers to constituent organisms and their diversity (both at the species and genetic level). 

Forest composition is highly related to forest structure, which is the horizontal 

arrangement of trees and shrubs (degree of clumping, gap sizes etc.), and the vertical 

arrangement of foliage in the canopy, shrub and field layers. Together with environmental 

factors, composition and structure determine forest ecosystem functions, such as 

photosynthesis, growth, reproduction and nutrient cycling (McElhinny et al., 2005). Clearly, 

these functions are not static, but are dynamic processes that change through time.  Indeed, 

the structure and composition of forests also change through time, albeit over longer 

timescales. Therefore, it is useful to include ecosystem dynamics―the study of change in 

an ecosystem through time―in our understanding of forest ecosystems (Packham et al., 

1992). These ecosystem dynamics operate at many levels, from the scale of individual plant 

cells to whole forested landscapes, and from milliseconds to millennia (Chapin et al., 2002). 

Here I refer to ‘ecosystem dynamics’ in terms of the relationship between forest canopies 

and understories, both in terms of seasonal (intra-annual) changes, and year-to-year 

(inter-annual) changes. Key factors that determine forest ecosystem dynamics and their 

interrelatedness are summarised in Fig. 1.1.   

Temperate broadleaved forests are found in mid-latitude regions, specifically western and 

central Europe, North America, eastern Asia, Australasia and small areas of South America 

(Archibold, 1995).  Across their range they vary greatly in terms of composition, structure 

and function. In the UK alone, 18 distinct woodland communities have been described, with 

a further 73 sub-communities defined (Hall et al., 2004). As temperate forests are diverse 

and complex ecosystems, which vary greatly from place to place even over small spatial 

scales, there is a need for widespread monitoring to understand impacts of environmental 
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change (Chudomelova et al., 2017; Fraterrigo et al., 2006; Gazol and Ibanez, 2010; 

Verstraeten et al., 2013).  

 

Fig 1.1. Conceptual model showing key factors influencing forest ecosystem dynamics. 
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Light is one of the key factors influencing temperate forest ecosystem dynamics (Whigham, 

2004). Temperate forests are characterised by their seasonality, as growth is limited by the 

availability of photosynthetically active radiation (PAR) and low temperatures during 

winter. To conserve energy, forest canopies senesce and lose their leaves in autumn, 

adding a nutrient influx to the soil. In spring, the forest canopy grows leaves and begins its 

annual growth period, exerting strong control on the understorey light environment (Kato 

and Komiyama, 2002). The early spring period prior to canopy closure is therefore critical 

for the growth of tree saplings and many herbaceous plants (Rothstein and Zak, 2001). As 

well as light availability in spring, the size, position and frequency of canopy gaps 

influences growth and production in the understorey (Chazdon and Pearcy, 1991). Canopy 

gaps are often associated with tree regeneration and high levels of herb-layer and insect 

diversity (Muscolo et al., 2014; Ohwaki et al., 2017; Proctor et al., 2012; Sabatini et al., 

2014). In addition, shade is important for specialist flora, and the varying degrees of sun 

and shade, resulting from patterns of overstorey composition and structure, shape the 

understorey microclimate, providing a range of niches for flora adapted to different 

conditions (Valladares et al., 2016).  

Old-growth forests or Ancient Semi-Natural Woodlands (ASNW) are forests that have 

existed since 1600 AD, and they are the most important temperate forests from a 

conservation perspective (Peterken, 1993). While temperate broadleaved forests vary 

greatly in terms of composition, in general terms old growth forests are characterised by 

structural heterogeneity, with a mixed age structure giving rise to a diverse range of light 

environments and microclimates (Franklin and Van Pelt, 2004; Ishii et al., 2004; Sabatini et 

al., 2014). In addition, they typically have nutrient-poor soils as they have never been 

improved for agriculture (Rackham, 2006). These soils have developed over long time-

scales, and contain diverse communities of mycorrhizal fungi, important in aiding nutrient 

uptake (Siddiqui et al., 2008).  All species of woodland ground flora that have been studied 

have been found to form associations with mycorrhizae (Whigham, 2004), and these 

associations are thought to be important in increasing resilience to stress factors, including 

climate change (Pickles and Simard, 2017; Zhu et al., 2018). Together, these characteristics 

of old-growth forests contribute to their biodiversity and resilience.  
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However, temperate forest ecosystems have experienced widespread change over the past 

century, leading to structural and taxonomic homogenisation (Keith et al., 2009; Rooney et 

al., 2004). Due to losses of old-growth forests and a rise in tree-planting schemes, an 

increasing proportion of temperate forests are recently established (Hopkins and Kirby, 

2007). These newer forests tend to have more nutrient-rich soils as a result of past land 

use, and lack the diversity of mycorrhizal associations found in old-growth forests 

(Rackham, 2006). Furthermore, without active management, these forests tend to have 

more even-aged structures and uniformly closed canopies. Where canopy gaps are created, 

high levels of soil nutrients will often mean that generalist light-demanding species out-

compete specialist woodland ground flora (Read and Frater, 1999).  

Remaining old-growth forests have also experienced large-scale changes. Loss of 

traditional management practices, such as coppicing and thinning for wood products, has 

led to an increase in structurally homogenous ‘high forests’ with closed canopies. The 

proportion of high forest in the UK increased from 51% to 97% between 1947 to 2002, due 

to the loss of coppice, scrub and pasture woodland (Hopkins and Kirby, 2007). As a result, 

studies have revealed rapid shifts in woodland ground flora, with an increasing dominance 

of shade-tolerant species (Keith et al., 2009; Verstraeten et al., 2013). The loss of glades and 

open spaces in woodland has been cited as the primary cause for the sharp decline in many 

woodland butterfly species (Fartmann et al., 2013). In addition to shading, old-growth 

forests have also been exposed to nutrient enrichment. Atmospheric deposition of nitrogen 

is one contributing factor, but the increased prevalence of high forests with dense stands 

has also led to higher inputs of nutrients from leaf litter (Verheyen et al., 2012). Studies 

comparing present ground flora composition to that 70–80 years ago, have identified shifts 

towards more shade-tolerant and nitrophilic species, and a resulting loss of diversity at the 

landscape-scale (Keith et al., 2009; Rooney et al., 2004).  

New threats to temperate forest biodiversity have also emerged in recent decades. The 

increasing global movement of plants has led to a rise in invasive species (Medvecka et al., 

2018; Seebens et al., 2017), and more frequent outbreaks of introduced plant pests and 

pathogens (Boyd et al., 2013). Interacting environmental pressures leave forest ecosystems 

increasingly vulnerable to perturbations. It is not well understood how climate change will 

interact with these pressures, but it is likely that in many cases it will exacerbate them 
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(Dukes et al., 2009; Sturrock et al., 2011). Understanding how different forests will respond 

to climate change, will be of key importance for mitigating biodiversity loss. 

1.2 Impacts of climate change  

Climate change has been identified as one of the greatest threats to biodiversity, and is 

already affecting biological processes and ecosystems on a global-scale (Parmesan, 2006; 

Rosenzweig et al., 2007). Increasing global mean surface temperatures, changing rainfall 

patterns and elevated     concentrations will have wide-reaching impacts on ecosystem 

composition and function. While rising temperatures and     levels are often predicted to 

extend growing seasons and enhance net primary productivity (NPP) (Buitenwerf et al., 

2015), this could be offset by stress and mortality induced by drought and the increasing 

frequency of other extreme weather events (Boisvenue and Running, 2006). The ability of 

the phenology and physiology of individual plants and species to adapt will determine 

competition dynamics and trophic asynchronies, leading to compositional change and 

species extinctions (Thackeray et al., 2010). A meta-analysis including 131 published 

predictions recently estimated a global extinction rate of 1 in 6 species under a ‘business as 

usual’ emissions scenario (Urban, 2015). Changes in plant community composition may be 

so fundamental that the resilience of entire ecosystems or biomes are threatened (Bellard 

et al., 2012). Temperate broadleaf forests are an important resource in terms of 

biodiversity and ecosystem services provided on a local, regional, and even global scale 

(Richardson et al., 2013; Thom et al., 2017b). Therefore, understanding how climate change 

is likely to impact on temperate forest ecosystem dynamics is of critical importance to 

conservation.  A conceptual model of key impacts of climate change on temperate forests, 

and factors that will influence individual forest response, is presented in Fig. 1.2. 

Phenology is the study of the seasonal timing of recurring biological events, and is a critical 

aspect of global change research that has gained increasing attention in recent years 

(Donnelly and Yu, 2017; Richardson et al., 2013). Phenological changes in response to 

climate warming have been identified across biomes and taxa (Gordo and Sanz, 2010; 

Parmesan, 2007), with temperate regions identified as an area experiencing rapid change 

(Buitenwerf et al., 2015). The availability of historic data-sets, combined with new 

evidence―obtained from remote sensing and ground-based observations―has enabled 

analyses of phenological patterns through space and time (Cleland et al., 2007b; Polgar and 



6 

 

Primack, 2011; Sparks et al., 2009). Studies have demonstrated trends towards longer 

growing seasons caused by both earlier spring leaf-out and delayed autumn senescence. 

Menzel and Fabian (1999) reported an average growing season extension of eleven days 

for temperate broadleaf tree species in Europe since the 1960s. Inter-annual variability in 

tree leaf phenology is strongly explained by temperature (Dragoni et al., 2011; Keenan et 

al., 2014b; Vitasse et al., 2009b; Wang et al., 2016), with warmer temperatures both 

advancing and prolonging canopy leafing.  

Many studies have demonstrated the link between warmer temperatures, longer growth 

seasons and increased productivity in temperate forests (Crabbe et al., 2016; Dragoni et al., 

2011; Keenan et al., 2014b; Richardson et al., 2010). While higher rates of respiration 

associated with a longer growth season have been shown to reduce net gain in plant 

biomass in some conifer forests (Boisvenue and Running, 2006), the majority of studies in 

broadleaf forests have shown higher rates of carbon assimilation at the forest-scale 

(Richardson et al., 2010). Elevated levels of     under future climate change could further 

enhance productivity—in an experimental study where     concentration was increased 

to 700ppm, the Leaf Area Index (LAI) of oak increased by 81% (Broadmeadow and Jackson, 

2000). This has important consequences for vegetation feedbacks to the climate, as 

enhanced net primary productivity (NPP) increases carbon sequestration (Green et al., 

2017). In addition, earlier and longer canopy leafing enhances the earth’s albedo, with 

potentially mediating impacts on the pace of climate change (Garnaud and Sushama, 2015; 

Richardson et al., 2013).   

However, there are a number of interrelating factors that are likely to affect tree 

productivity in the future. Drought is likely to become more common, with earlier onset of 

the growth season placing a strain on soil moisture reserves in late summer (Rotzer et al., 

2013) This could cause a shift in canopy tree species composition; for example in southern 

England, beech is expected to contract its range (Broadmeadow et al., 2005), as is sycamore 

(Morecroft et al., 2008). Some authors have argued that higher     concentrations will 

stimulate physiological adaptations that will increase plant tolerance to drought, e.g., lower 

stomatal density and reduced stomatal conductance (Xu et al., 2016). However, this could 

well be offset by previously reported increases in leaf area (Broadmeadow and Jackson, 

2000). Studies that have reported observed increased productivity as a consequence of 
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warmer temperatures, have cautioned against using short-term studies at single sites or 

‘space-for-time’ studies, to predict future responses across the temperate forest ecosystem 

(Dragoni et al., 2011; Richardson et al., 2010). Many factors will determine the 

productivity, health and resilience of individual forests under future climate change (Fig. 

1.2.). 

Fig. 1.2. Conceptual model showing current and predicted impacts of climate change, and the complex 
factors that could determinine the response of different forest ecosystems. 
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Although there is a strong general trend towards temperature-driven advance in leafing 

phenology, phenological responses vary between species and populations. In a study of 

leaf-out timing in over 700 woody species in temperate forests in China, Zhang et al. (2015) 

identified divergent responses to early spring warming . The timing of bud-burst is 

controlled by a combination of external environmental factors (including winter chilling 

requirements, spring temperature and photoperiod) and internal genetic factors (Panchen 

et al., 2014; Polgar and Primack, 2011). The relative importance of these cues can vary 

between species and populations, and this plays an important role in niche partitioning. A 

recent study by Roberts et al. (2015) utilised two centuries of phenological records for 

British tree species to model thermal sensitivity; the study predicts a substantial advance 

in leaf-out timing for later leafing species such as ash and oak, while early-leafing species 

such as birch and hawthorn are likely to be delayed. Ash and oak leaf phenology is strongly 

driven by spring temperatures, whereas winter chilling is more important for triggering 

the leafing of birch and hawthorn. With warmer winters, the chilling requirements of some 

species may not be met (Laube et al., 2014; Roberts et al., 2015; Wu and Liu, 2013), causing 

substantial delay, and resulting in increasing synchrony of leafing time between species. 

Leaf phenology and growth rate of temperate trees are closely related and strongly 

influence fitness and survival (Vitasse et al., 2009a). Therefore, the ability of tree species to 

adapt their phenology will influence their resilience to the wide range of pressures 

associated with increasing climate change. 

The implications of the changes to forest canopies and overstorey trees discussed above 

will have important effects on understorey processes and biodiversity.  The tree canopy 

controls light reaching tree saplings, shrubs and ground flora, and also influences the 

availability of water and nutrients (Hicks and Taylor, 2015; Jolly et al., 2004; Kato and 

Komiyama, 2002). The trend towards earlier canopy closure, and increasing synchrony of 

overstorey phenology, will increase light limitation and resource pressure in the 

understorey. Shading experiments have demonstrated how earlier canopy closure affects 

growth and survival in tree saplings and ground flora. In a three-year shading experiment 

of Aesculus glabra and Acer saccharum saplings in Illinois, USA, mortality rates were 93% 

and 80% respectively for shaded individuals, compared to 0% and 27% for controls 

(Augspurger, 2008). Similar effects on herbaceous plant fitness have also been reported, as 
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well as reduced reproductive capacity associated with both lower carbon gain and 

pollinator asynchrony (Kim et al., 2015; Kudo et al., 2008; Kudo et al., 2004). Studies in 

temperate North America and Europe have demonstrated that many woodland specialist 

ground flora species are slow colonisers, so their ability to adapt to climate variation in situ 

could be crucial to their survival (Augspurger and Salk, 2017; De Frenne et al., 2011). 

Furthermore, invasive understorey plants have been shown to increase in abundance due 

to their greater adaptability to stress factors associated with climate change (Polgar et al., 

2014; Willis et al., 2010). Vigorous growth of invasive species will further selective forces 

acting on native seedlings and ground flora. The interplay of canopy closure, other stress 

factors, and individual forest characteristics will affect the resilience of understorey forest 

biodiversity as climate change progresses (Canham and Murphy, 2017).   

 

1.3 Current monitoring approaches 

Given the impacts of climate change outlined above, widespread integrated monitoring of 

tree phenology, canopy closure timing and understorey dynamics will be key to improving 

our understanding of effects on forest ecosystems. There are two main types of monitoring 

currently being used to assess climate change impacts on forests in Europe: routine 

monitoring of forest plots as part of statutory conservation assessments, and remote 

sensing. The contributions of these approaches are discussed here, along with the role of 

experimental studies and citizen science projects.  The temporal and spatial scales at which 

different approaches generate data are explored, along with their limitations. A summary is 

provided in Table 1.1. 

1.3.1 Routine monitoring of forest plots 

Growing international recognition of the rate and scale of biodiversity loss prompted a 

sharp rise in forest monitoring programmes during the 1980s and 1990s (Durrant, 2000; 

Legg and Nagy, 2006) and the inclusion of biodiversity assessments into National Forest 

Inventories (NFIs). This type of mandated monitoring generally involves making rapid 

visual assessments to quantify a range of forest characteristics (Chirici et al., 2012). In 

Europe, the largest-scale coordinated forest monitoring occurs as part of the ICP Forests 

(International Cooperative Programme on Monitoring of Air Pollution Effects on Forests). 

While the original aim of this programme was to monitor the effects of transboundary   
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Table 1.1. A summary of attributes currently assessed as part of European forest monitoring of forest canopies and understories. Ticks show attributes that 
are routinely monitored, ‘Occ’ shows attributes that are occasionally monitored. Blank cells show the attribute is not currently monitored. Shaded rows 
highlight attributes likely to be important in monitoring canopy-understorey dynamics in relation to climate change, which are not currently adequately 
assessed by existing projects. 

  Monitoring attribute 
National 
Forest 

Inventories  

Level II 
Monitoring 

Plots  

Satellite 
remote 
sensing 

Near-surface 
remote 
sensing 

Citizen 
Science 
projects 

References 

O
v
e

rs
to

re
y
 

Tree composition, age and 
size class 

 
   

Chirici et al. 2011; Bobbertin and 
Neumann 2010 

Tree health (crown 
defoliation) 

   


Chirici et al. 2011; Eichorn et al. 2016 

Individual tree phenology 
 

Occ
 

 
Beuker et al. 2016; Richardson et al. 
2007; Denny et al. 2014 

Plot-level tree phenology 
(visual assessment)   


   

Beuker et al. 2016 

Canopy greening 
  

 
 

Zhang et al. 2003; Brown et al. 2016 

Canopy closure timing 
     

  

Qualitative assessment of 
canopy gaps (in size classes) 

Occ
    

Chirici et al. 2011 

LAI—measured directly with 
litterfall traps  

Occ
   

Ukonmaanaho et al. 2016 

LAI—measured indirectly with 
photos/sensors  

  
 

Fleck et al. 2016; Verger et al. 2015; 
Wingate et al. 2015 

U
n

d
e

rs
to

re
y
 

 

Counts of sapling numbers  
   

Chirici et al. 2011 

% cover by life-form group 
    

Chirici et al. 2011 

% cover by species Occ 
   

Chirici et al. 2011; Canullo et al. 2016 

Phenology 
    

Occ Denny et al, 2014 
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atmospheric pollution, this programme is now being seen as the principal strategy for 

nations to assess impacts of climate change on forests (Bussotti and Pollastrini, 2017a).  

A key limitation of this type of monitoring is that frequent monitoring methods rely heavily 

on coarse visual assessments, while more detailed monitoring occurs too infrequently to 

monitor seasonal and inter-annual changes. At ICP Level II plots―which are the most 

intensively monitored―phenology monitoring is only compulsory at the plot-level, and 

involves a ‘cursory assessment’. No formal sampling design is provided, as observations are 

intended to act only as an ‘early warning system’, rather than forming part of a structured 

study (Beuker et al., 2016).  Assessments of individual tree phenology involve more 

detailed observations and are recommended to be carried out daily, but currently this is an 

optional monitoring attribute, and it is not clear how frequently individual tree phenology 

is actually assessed (Beuker et al., 2016). LAI is assessed, annually using litterfall traps 

(Ukonmaanaho et al., 2016), and every 5–10 years using hemispherical photography (Fleck 

et al., 2016), but no monitoring of canopy closure timing is included. Ground vegetation 

assessments are carried out, but it is only compulsory to do so once every five years, and 

the phenology of ground vegetation is not considered (Canullo et al., 2016).  

Although Level II plots and NFIs are cited by government agencies as mechanisms for 

monitoring climate change impacts on forests (Bussotti and Pollastrini, 2017a; Forest 

Research, No date), the methods employed are not suitable for assessing climate change 

impacts on ecosystem dynamics. Temporal resolution and clear sampling designs are 

lacking to link observed changes to causal factors. Furthermore, the spatial resolution is 

inadequate for understanding the range of effects of climate change across different forest 

and site types. For example, there are only 22 Level II monitoring plots, covering seven 

different forest types, across the whole of the UK (Forest Research, No date). Higher levels 

of spatial and temporal replication, and more a focussed research design, is required. 

1.3.2 Remote sensing 

Satellite remote sensing has enabled the characterisation of large-scale trends in forest 

phenology, and played an important role in linking observed changes to temperature 

(Hamunyela et al., 2013; Wang et al., 2016; White et al., 2009; Wu and Liu, 2013). Moderate 

Resolution Imaging Spectroradiometer (MODIS) products are now the most widely used in 

phenology studies. Normalised Difference Vegetation Index (NDVI) and Enhanced 
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Vegetation Index (EVI) from MODIS imagery provide measures of surface reflectance of 

visible and near-infra-red radiation, and are used to assess canopy greening (Cleland et al., 

2007b; Peng et al., 2017a). MODIS offers global coverage at a spatial resolution of around 1 

km, capturing near-daily land surface phenology data (Zhang et al., 2003). However, a 

considerable degree of temporal resolution is lost due to atmospheric interference and 

cloud cover. For example, four out of every five days were lost due to cloud cover in one 

study (Ahl et al., 2006). As cloudy conditions are common in temperate regions, this can 

limit the ability to detect canopy phenology accurately. Differences of 10–15 days between 

ground-based estimates and satellite estimates of phenological transition dates are typical, 

depending on atmospheric conditions and the degree of landscape heterogeneity (Peng et 

al., 2017b; White et al., 2014). This can reduce the ability of satellite data to detect annual 

and spatial variation in phenology (Peng et al., 2017a). As such, ground data remain 

essential for validating satellite data and providing more detailed observations for 

understanding phenological changes at the forest-level. 

Near-surface remote sensing techniques e.g., using digital repeat photography from canopy 

platforms or unmanned aerial vehicles (Klosterman et al., 2018; Richardson et al., 2009) 

are new developments that offer higher spatial and temporal resolution. Through image 

analysis, indices of canopy greening and LAI can be derived (Klosterman et al., 2018; 

Wingate et al., 2015). While these methods can provide good resolution and reliable data, 

considerable cost and/or infrastructure is required. Ground-based methods can extend the 

coverage of data collection to many forests where near-surface remote-sensing is not 

feasible.  

1.3.3 Experimental studies   

Experimental research has provided important insights into potential impacts of warming 

(De Frenne et al., 2011; Rollinson and Kaye, 2012; Sherry et al., 2007), elevated     

(Broadmeadow and Jackson, 2000; Xu et al., 2016) and canopy shading (Augspurger, 2008; 

Ida and Kudo, 2008) on forest biodiversity and processes. Experimental data provides a 

mechanistic understanding of how plants are affected by different scenarios brought about 

by climate change. However, experimental designs usually investigate single effects at a 

time, on specific species in specific locations (Baeten et al., 2010; Cleland et al., 2007b). In 

order to understand how interactive effects of climate change affect different species in 
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different forests, and how communities of organisms interact in response to climate 

change, ongoing monitoring covering a large range of forests, with high levels of 

replication, is essential. 

1.3.4. Citizen science 

Citizen science is the involvement of non-professional researchers in scientific research 

(Dickinson et al., 2010). In the last decade interest in citizen science has expanded, with an 

increase in peer-reviewed publications on research design and data quality preceding a 

rise in publications using citizen science data (Follett and Strezov, 2015). It is now 

recognised that citizen science can contribute valuable information and is an important 

tool for increasing coverage in data sets through space and time (Dickinson et al., 2012; 

Tregidgo et al., 2013; Worthington et al., 2012). In particular, the contributions of citizen 

science to biodiversity monitoring in temperate regions has been recognised (Chandler et 

al., 2017).  

Currently a number of citizen science projects involve participants in recording tree and 

herbaceous plant phenology. Much of this recording involves citizen scientists in 

submitting ad hoc records of first leafing, flowering and fruiting events (Nature's Calendar, 

2017; Project Budburst, 2017) though some schemes encourage citizen scientists to visit 

the same areas to report on the development of plants through different phenophases 

(Beaubien and Hamann, 2011; Denny et al., 2014). Studies have demonstrated high levels 

of public interest and good retention rates in citizen science projects that address large-

scale environmental issues and that involve considerable time commitment (Beaubien and 

Hamann, 2011; Frensley et al., 2017). Therefore, there is good potential to achieve more 

widespread ground-based monitoring of forest ecosystem dynamics through citizen 

science. There are many additional benefits to engaging citizen scientists in ecological 

research, including improved scientific literacy, and attitudinal and behavioural changes, 

which could play a role in influencing conservation policy (Dickinson et al., 2012; 

Stepemick and Green, 2015; Toomey and Domroese, 2013). Furthermore, due to funding 

restrictions and lack of researcher time, citizen science is the only realistic way to achieve 

monitoring over large geographic areas with high replication (Silvertown, 2009). 

Although there is considerable momentum for engaging citizen scientists, in order to be 

effective, suitable research and method design is essential (Cooper et al., 2014; McKinley et 
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al., 2017; Sunde and Jessen, 2013).  Methods must be low-cost and have low requirements 

for technology, unless they utilise technology that is readily available to many people. 

Analysis methods must also be cost-effective, and require minimal specialist expertise or 

software. The methods used must be rigorously tested to ensure they provide useful data, 

comparably to more sophisticated methods used in professional research. Therefore, 

before engaging large-scale involvement of citizen scientists, careful development and 

testing of methods is needed to ensure outcomes are useful. 

 

1.4 Aims of the thesis 

The research presented in this thesis develops methods for monitoring the impacts of 

climate change on temperate forests that could be widely applied through citizen science.  

Research focuses on identifying cost-effective and practical methods, capable of detecting 

seasonal and inter-annual changes, across a range of forest types. Given the impacts of 

climate change on canopy phenology, and the lack of suitable methods for widespread 

monitoring of canopy phenology and herb-layer interactions, these areas are the principal 

focus for method development. The research presented in this thesis has been conducted in 

UK forests, but it is intended that the methods trialled would have broader application 

across temperate forests.  

 

1.5 Outline of the thesis 

The thesis consists of six chapters, including this introductory chapter. Next I present four 

chapters of novel research, and a final chapter that develops a synthesis and discusses 

future prospects for monitoring forest ecosystem dynamics in relation to climate change, 

using a citizen science approach. In brief, the basic outline is as follows:  

 Chapter 2: Seasonal dynamics of the herb-layer in relation to canopy closure 

in four Devon woodlands and the implications for monitoring impacts of 

climate change 

This chapter explores the seasonal dynamics of forest understories in relation to 

canopy closure, based on a year of fieldwork in 2014 when four Devon woodlands 

were intensively monitored at monthly intervals. I explore the suitability of 
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different methods for monitoring overstorey canopy dynamics and understorey 

herb-layer dynamics in different forest types. This research highlights the 

importance of the spring period for herb-layer development and shows that forests 

within close proximity can vary considerably in their herb-layer composition and 

dynamics. The work demonstrates the importance of high levels of replication to 

monitor forest ecosystem dynamics in relation to climate change, and provides 

recommendations for monitoring approaches. 

 Chapter 3: A comparison of ground-based methods for obtaining large-scale, 

high resolution data on the spring leaf phenology of temperate tree species 

In this chapter, I compare the phenological patterns detected by first event dates vs. 

time series data on individual tree canopy development of four tree species in a 

Devon woodland during spring 2015. Three methods of obtaining time-series data 

are compared: percentage estimates of leaf expansion, counts of leaf expansion 

within crown sections, and ground-based digital photography. Logistic growth 

models are used to derive estimates of leaf expansion timing and rate from time-

series data, and to examine the effects of reduced temporal grain on phenological 

parameters. The work demonstrates the importance of methods that provide 

accurate information on the timing and rate of canopy development. Based on this, I 

provide recommendations for methods that could be widely applied through citizen 

science to provide more biologically meaningful data sets to investigate inter- and 

intra-species variation in spring leaf phenology.  

 Chapter 4: A comparison of ground-based methods for estimating canopy 

closure for use in phenology research 

This chapter compares a range of cost effective and rapid assessment 

techniques―including smartphone photography and visual estimates―with digital 

hemispherical photography, to identify methods that are suitable for estimating 

canopy closure at large scales across different forest types. Data were collected in 

winter, spring, summer and autumn, across four different Devon woodlands in 

2014. I compare professional image analysis software with free open-access 

software for analysing hemispherical and smartphone fisheye photographs. I also 

explore whether canopy closure estimates from smartphone photography are 

affected by smartphone model and camera user, and provide suggestions on how to 



16 

 

monitor canopy closure dynamics on a large scale. This chapter has been published 

in Agricultural and Forest Meteorology. 

 Chapter 5: Using smartphone photography with a fisheye lens to monitor 

canopy closure phenology 

Building on the research in chapter 4, I test whether smartphone fisheye 

photography can be used to track the progress of canopy closure from winter to 

summer, using canopy photographs taken every other day in a Cornwall woodland 

during 2017. Phenological parameters derived from logistic growth models of 

smartphone fisheye photography data are compared with those from hemispherical 

photography and visual observations of leaf expansion.  I also explore the effect of 

temporal grain, to assess whether less frequent data collection would still enable 

accurate predictions of canopy closure timing and rate. 

 Chapter 6: Monitoring impacts of climate change on forest ecosystem 

dynamics using citizen science 

This chapter completes the thesis with a synthesis of key findings, and discusses 

how these can be used to inform a citizen science monitoring approach to enable 

widespread monitoring of forest ecosystem dynamics in relation to climate change. I 

discuss my progress in taking this project forwards with a trial currently underway. 

Areas for further research are highlighted. 
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2  Seasonal dynamics of the herb-layer in 
relation to canopy closure in four Devon 

woodlands and the implications for 

monitoring impacts of climate change 

 

2.1 Introduction 

The herb-layer in temperate forests is a key component of overall forest biodiversity, 

playing an important role in trophic interactions for many species (Gilliam, 2007). Herb-

layer dynamics influence seedling recruitment and survival, and ultimately play a role in 

forest structure, composition and function (Gilliam, 2007; Thrippleton et al., 2016). 

However, the herb-layer has undergone substantial ecological change over the past 

century, leading to a loss of diversity and decline in woodland specialists (Augspurger and 

Buck, 2017; Keith et al., 2009; Mihok et al., 2009; Rooney et al., 2004). Light has been 

identified as the most important factor influencing growth and reproduction in the herb-

layer (Whigham, 2004), but widespread structural homogenisation has resulted from 

changing management practices, leading to dramatic shifts towards more closed canopy 

forests (Hopkins and Kirby, 2007) with higher stand densities (Gold et al., 2006). A number 

of studies have attributed long-term changes in forest understorey composition to nutrient 

enrichment and increased shading, documenting shifts towards more nitrophilic and 

shade-tolerant species (Keith et al., 2009; Verheyen et al., 2012; Verstraeten et al., 2013). 

Other factors such as over-grazing and the increase in invasive species (Rooney et al., 

2004) have also been cited as important contributing factors.   

Against this background of complex change, the impacts of climate change are set to 

accelerate (Thom et al., 2017b). Climate change is already affecting temperate broadleaved 

forests, most notably with changes to tree leaf phenology resulting in earlier and more 

prolonged canopy leafing (Menzel and Fabian, 1999; Thompson and Clark, 2008; Vitasse et 

al., 2011). The phenology of overstorey trees controls the onset of light limitation in the 

understorey (Kato and Komiyama, 2002), and has been shown to profoundly influence 

understorey structure, composition and function (Hicks and Taylor, 2015; Kudo et al., 

2008; Routhier and Lapointe, 2002). Givnish (1987) defined six guilds of herbaceous forest 

plants based on their vegetative phenology, the most significant groups being spring 
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ephemerals, early summer, late summer and evergreen species. Spring ephemerals operate 

in a brief window when conditions are favourable for growth and reproduction, once 

temperatures have begun to rise and before the overstorey canopy closes. Early canopy 

closure has been found to affect their growth rates and reproductive success (Augspurger 

and Salk, 2017; Ida and Kudo, 2008; Kim et al., 2015). Exposure to high light levels prior to 

overstorey canopy closure has also been shown to be important for the growth and 

survival of early summer species as well as late-summer and evergreen species (Routhier 

et al. 2002; Rothstein and Zak 2001). In fact, some species typically considered ‘shade-

tolerant’, may only be able to persist in deeply shaded understories because of the carbon 

gained prior to canopy closure (Lopez et al., 2008; Rothstein and Zak, 2001). As many 

forest herbs are slow colonisers with limited scope to adjust their ranges (Augspurger and 

Salk, 2017; De Frenne et al., 2011), their ability to adapt their phenology in line with 

overstorey trees is likely to affect survival.  

The mechanisms controlling plant phenology vary between species and populations. A 

number of studies have investigated effects of warming on the phenology, growth and 

survival of specific herbaceous species. In warming experiments, temperature has been 

found to advance the phenology of some forest herbs, though different responses have 

been identified between species, and within species from different populations (De Frenne 

et al., 2011; Jacques et al., 2015). A community-scale experimental study found that at the 

level of functional groups, trees and tall forbs tended to advance leafing in response to 

warming, while short forbs and small trees did not (Rollinson and Kaye, 2012). This may 

have been due to greater reliance on photoperiod cues for the suite of small forb species 

included in the study, or it could have been that early season warming prevented 

herbaceous species from meeting winter chilling requirements (Rollinson and Kaye, 2012). 

Winter chilling is an important adaptation in many herb-layer species to avoid premature 

spring development and susceptibility to unpredictable early season temperatures due to 

risk of frost damage (Laube et al., 2014). Such evolutionary mechanisms could limit the 

ability of some herbaceous species to adjust their phenology (Augspurger and Salk 2017). 

Aside from phenological shifts, climate change is driving changes in vegetation 

composition, with a trend towards cold-tolerant species being replaced by warmth-

preferring species, in a process known as thermophilization. While higher canopy openness 
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has been associated with higher levels of herb-layer diversity (Duguid et al., 2013), there is 

evidence that forests with open canopies could be more vulnerable to some effects of 

climate change. De Frenne et al. (2015) conducted a large-scale study of forest herb-layer 

communities across Europe and North America, and found that the thermophilization 

effect was offset in forests with more densely closed canopies. By contrast, under more 

open canopies, tall, competitive plants with preference for warmer temperatures had 

expanded their dominance (De Frenne et al., 2013). The thermophilzation effect could 

accelerate where canopies are opened up through climate change-induced drought or pest 

and pathogen outbreaks. This could have implications for seedling dynamics, as dense 

herb-layer vegetation can severely limit light, inhibiting tree regeneration altogether, or 

favouring more shade-tolerant tree seedlings, ultimately affecting overstorey composition 

(Thrippleton et al., 2016). However, at present our ability to predict longer term impacts of 

climate change on the herb-layer and regeneration is severely limited by the lack of spatial 

and temporal breadth in studies investigating understorey-overstorey interactions 

(Thrippleton et al., 2016) 

Given the importance of the herb-layer for forest function and biodiversity, obtaining a 

better understanding of the likely impacts of climate change is imperative for conservation. 

However, relatively few studies have investigated herb-layer dynamics in relation to 

climate change, compared to the number of studies on trees (Rollinson and Kaye, 2012). 

Studies that have been conducted have generally focussed on a small number of species or 

woodlands. However, marked differences in herb-layer response to environmental change 

have been observed between and within forests. Murphy and McCarthy (2014) found 

different magnitudes of phenological change on north and south-facing slopes within a 

single forest complex. In a long-term study of herb-layer dynamics, Verstraeten et al. 

(2013) found stronger declines in herb-layer diversity, associated with shading and 

nutrient enrichment, on neutral sites compared to acidic sites. The way in which the herb-

layer responds to early canopy closure and warming will relate to overstorey structure, 

composition and phenology (Dion et al., 2017; Routhier and Lapointe, 2002; Vanhellemont 

et al., 2014), competition dynamics in the understorey (Duguid et al., 2013), and a range of 

site factors including soil type (Dahlgren et al., 2007; Small and McCarthy, 2005), 

microclimate (Chen et al., 1999; von Arx et al., 2013), and interacting environmental 
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pressures (Baeten et al., 2010; Jackson et al., 2013). Therefore, there is a need to monitor 

the response of herb-layer species in relation to their ecological context, at a range of 

spatial scales. 

As well as studying herb-layer dynamics at a range of spatial scales, there is a need to 

monitor dynamics at different temporal scales. Many studies have been published in recent 

years that look at long-term changes in the herb-layer, comparing historic data with 

contemporary surveys (Keith et al., 2009; Rooney et al., 2004; Vanhellemont et al., 2014; 

Verheyen et al., 2012; Verstraeten et al., 2013). However, these surveys tend to provide 

snapshots in time, often ignoring seasonal variation altogether. There is a surprising lack of 

monitoring to investigate how herb-layer dynamics vary seasonally across successive 

years. In fact, I could find only one study that considered the interaction of long-term, 

annual and seasonal changes on the herb-layer (Murphy and McCarthy, 2014). This study 

involved resurveying plots in spring, summer and autumn, over two consecutive years, 

thirteen years after initial surveys. The study identified a loss of phenological niche 

separation between species across the growing season, over the thirteen years. This loss of 

complementarity between species phenologies has also been observed in trees (Roberts et 

al., 2015), and is likely to result in increasing competition and reduction in biodiversity 

over time. However, the authors noted that more frequent inter- and intra-annual sampling 

would be needed to understand linkages between overstorey-understorey phenology, and 

annual variation in climate.  

While there is growing recognition of the need for more detailed and widespread 

monitoring of herb-layer dynamics, the time-consuming nature of such monitoring is likely 

the reason such studies are rare (Inghe and Tamm, 1985). In order to achieve widespread 

data collection, with high levels of spatial and temporal replication, effective monitoring 

approaches that are cost effective and efficient are needed, ideally using a citizen science 

approach. Citizen science is the involvement of non-professional scientists in scientific 

research (Dickinson et al., 2012), and this definition includes many people involved in day-

to-day forest management, such as forest rangers and wardens, as well as volunteers. Tree 

phenology data collection has been bolstered in recent years through the rise in citizen 

science (Elmore et al., 2016; Jeong et al., 2013; Mayer, 2010), enabling data collection at a 

much larger scale than would otherwise be achievable. A similar approach to studying the 
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seasonal and annual changes in forest plant dynamics could enable new insights that are 

not possible with current methods. Citizen science projects in Canada and the UK already 

involve the public in recording first flowering events in woodland flora (Beaubien and 

Hamann, 2011; Collinson and Sparks, 2008). The USA National Phenology Network 

involves people recording forb phenophase status and intensity through time, providing 

more detailed information on leaf emergence timing across a population (Denny et al., 

2014). A community-scale approach, where citizen scientists record the dynamics of the 

herb-layer community in relation to light levels and overstorey dynamics, with spatial 

replication within and between forests, would provide valuable information to help 

understand interactions at the forest-level, and across forested landscapes.  

Given the importance of light for understorey plant dynamics, and the relevance of canopy 

closure to forest microclimates, monitoring the understorey in relation to light levels and 

overstorey canopies is essential. Direct measurement of understorey light is practically 

difficult and resource intensive, requiring access to highly expensive specialist equipment 

(Keeling and Phillips, 2007). Furthermore, accurate characterisation requires long-term 

measurement, which negates the value of this method for measuring changes over short 

periods. As an alternative, hemispherical photography is commonly used to infer 

understorey light from the canopy structure (Frazer et al., 1997; Gonsamo et al., 2013; 

Whitmore et al., 1993). Photographs can be analysed to obtain solar radiation indices, such 

as global site factor (GSF), and more straightforward indices based purely on canopy 

geometry, such as canopy openness (Rich et al., 1999). GSF is the proportion of solar 

radiation penetrating the canopy, relative to that in the open (Anderson, 1964). Specialist 

analysis software is required to compute GSF, which calculates canopy gap position in 

relation to the solar path, using inputted information on site latitude, longitude and 

directional alignment of the photograph (Rich et al., 1999). By contrast, canopy openness 

represents the proportion of visible sky that is unobstructed by the canopy, when viewed 

from a single point on the ground. When analysed with specialist software, the position of 

canopy gaps in relation to zenith angle is computed to correct for lens distortion, but gap 

position in relation to the solar path is not considered (Rich et al., 1999). If canopy 

openness provides comparable estimates to GSF under a range of canopy conditions, it may 

provide options for more rapid assessment as part of widespread monitoring efforts.  
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In addition to light and canopy conditions above the herb-layer, light reaching the ground-

layer is also important for seedling dynamics (Gilliam, 2007). Where herb-layer cover is 

high and structurally dense, ground-level light can be severely limited, reducing the 

potential for seedling recruitment and survival (Aubin et al., 2000; Jefferson, 2008; Royo 

and Carson, 2006). Despite the importance of ground-level light, few studies consider 

ground-level light conditions separately to light reaching the herb-layer (Thrippleton et al., 

2016). The extent to which GSF/canopy openness below the herb-layer can be 

characterised as a function of GSF/canopy openness above the herb-layer, will be 

important to consider. 

In terms of monitoring the herb-layer, it is important to understand what attributes will 

provide meaningful data, given the need for relatively low-tech, rapid and cost effective 

methods. In experimental studies investigating impacts of early canopy closure and 

warming on plant performance, gas exchange, chlorophyll fluorescence and leaf 

biochemistry are frequently analysed to measure photosynthetic efficiency and stress (Ida 

and Kudo, 2008; Jacques et al., 2015; Rothstein and Zak, 2001), but are unsuitable for 

widespread monitoring programmes. Similarly, biomass and specific leaf area are often 

used to assess growth (De Frenne et al., 2011; Ida and Kudo, 2008; Kim et al., 2015; 

Routhier and Lapointe, 2002), but are unsuitable for widespread monitoring as they are 

labour intensive and require destructive sampling. Long-term monitoring of herb-layer 

dynamics usually relies on assessment of species composition and abundance, species 

richness and species diversity (Murphy and McCarthy, 2014; Scheller and Mladenoff, 2002; 

Vanhellemont et al., 2014; Verheyen et al., 2012; Verstraeten et al., 2013). It will be 

important to assess to what extent these attributes capture seasonal variation in the herb-

layer. Bare ground cover could be a useful attribute to assess, as it can show both seasonal 

and inter-annual variation (Hicks and Taylor, 2015; Murphy and McCarthy, 2014). In 

addition, information about the structure of herb-layer vegetation obtained from point 

frequency and height estimates could be useful for monitoring changes in herb-layer 

productivity and biomass (Axmanova et al., 2012; Brathen and Hagberg, 2004). It is 

important to assess the extent to which these different attributes characterise seasonal 

variation in herb-layer dynamics across different woodlands.  
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In this study I carried out detailed monitoring of canopy and understorey dynamics in four 

Devon woodlands, over the course of one growing season. This study did not seek to 

explain spatial patterns of understorey composition in terms of environmental variables, 

which are highly site specific (Burton et al., 2011; Chudomelova et al., 2017). Instead, I 

aimed to: a) identify seasonal patterns of canopy openness and understorey light (GSF), 

above and below the herb-layer, and interrogate how these patterns varied between and 

within woodlands; b) identify seasonal patterns of herb-layer dynamics and the extent to 

which these varied between and within woodlands; and c) identify which methods are 

most suitable for widespread monitoring of forest canopies and understories in relation to 

climate change.  

 

2.2 Methods  

2.2.1 Study woodlands and data collection 

The woodlands included in this study were all broadleaved ancient semi-natural 

woodlands (ASNW), but differed in terms of site history, compositional and topographical 

features (Table 2.1). Woodland communities were assigned using the National Vegetation 

Classification (NVC) (Hall et al. 2004), and classification was based on species composition 

across the whole woodland site (see Appendix 2.1: Table A2.1, for additional detail on 

woodland composition and how NVC communities were assigned). Although all woodlands 

were in relatively close proximity, they differed in their National Vegetation Classification 

(NVC) classes, and in their dominant species (Table 2.1). These differences capture some of 

the diversity found in UK woodlands, in order to identify monitoring approaches applicable 

across a range of forests types.  

In each woodland, a 0.3 ha area was randomly selected, and six 3 x 3 m plots were 

established to represent a range of canopy conditions. This was done by visual assessment 

in the summer of 2013. Two plots were chosen to represent ‘dense’, ‘intermediate’ and 

‘open’ canopies. These categories were chosen to be relative to conditions within a 

woodland, and did not necessarily correspond absolutely between woodlands. Fixed point 

5-m transects were also established through each plot. Plots were monitored on a monthly 

basis from February to December 2014. Hunshaw and Newton Mill were monitored a week 

prior to Hardwick and Whitleigh each month.  
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Table 2.1. Location, size, NVC class and soil type information for four Devon woodlands.  NVC class is for the whole woodland and based on Hall et al. 
(2004). Soil type obtained from Cranfield University (2018).  

 

Woodland 
Size 
(ha) 

Aspect 
Site history and 

management 

NVC class based on 
whole woodland 

composition 

Dominant tree 
species in 0.3 ha 
area where plots 

were selected 

Dominant herb-
layer species in 0.3 
ha area where plots 

selected 

Soil type 

Hardwick 
Wood  

(50°22’N, 
4°4’W) 

22 Flat 

Urban fringe ASNW, owned by 
Woodland Trust. Extensive 
wind-blow in 1990 storms: 

some replanting and extensive 
regeneration has occurred. 

W8e Fraxinus excelsior 
- Acer campestre - 

Mercurialis perennis 
(Geranium robertianum 

sub-community) 

Fraxinus excelsior, 
Acer 

pseudoplatanus 

Hyacinthoides non-
scripta, Urtica dioica, 
Mercurialis perennis, 

Galium aparine 

Free-
draining 

slightly acid 
but base-

rich 

Hunshaw 
Wood 

(50°55’N, 
4°7’W) 

18 S 

ASNW upland oak wood SSSI 
in favourable condition. Owned 

by Clinton Devon Estates. 
Small-scale management to 
reduce sycamore and plant 

oak saplings. 

W16b Quercus spp. - 
Betula spp. - 

Deschampsia flexuosa 
(Vaccinium myrtillus - 

Dryopteris dilatata sub-
community) 

Quercus robur, 
Fagus sylvatica, 

Sorbus aucuparia, 
Corylus avellana 

Vaccinium myrtillus, 
Dryopteris dilatata, 
Blechnum spicant 

Free-
draining 

acid loam 
over rock 

Newton 
Mill 

(50°52’N, 
4°15’W) 

25 NE 

Privately owned, former oak 
coppice. Coppicing being 

restored in parts of the site. 
Some deer browsing evident. 

W11a Quercus petraea - 
Betula pubescens - 
Oxalis acetosella 

(Dryopteris dilatata sub-
community) 

Quercus robur, 
Corylus avellana, 
Fagus sylvatica 

Hyacinthoides non-
scripta, Milium 

effusum, Dryopteris 
dilatata 

Free-
draining 

slightly acid 
loam 

Whitleigh 
Wood 

(50°25’N, 
4°8’W) 

20 N 

Urban ASNW, owned by 
Woodland Trust. Removal of 

Prunus laurocerasus and 
Rhododendron from 

understorey in the last 20 
years. 

W10a Quercus robur - 
Pteridium aquilinum - 

Rubus fruticosus (typical 
sub-community) 

Quercus robur, 
Betula pendula, 
Corylus avellana 

Dryopteris dilatata, 
Rubus fruticosus, 

Pteridium aquilinum, 
Lonicera 

periclymenum 

Free-
draining 

acid loam 
over rock 
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Overstorey dynamics and understorey light 

In order to monitor seasonal changes in the overstorey canopy and understorey light 

regime, hemispherical photographs were taken every month, using a Nikon Coolpix 990 

3.34 MP camera with Nikon Fisheye Converter FC-E8 lens (Nikon Corporation, Tokyo, 

Japan). One photograph was taken in the plot centre to assess light levels reaching the 

herb-layer, with the camera mounted and levelled on a tripod at 1.2 m above the ground, to 

eliminate any shading influence of the herb-layer vegetation. In addition, five photographs 

were taken at ground-level, at 1 m intervals along the plot transect, to assess how ground-

level light dynamics varied through the year. A circular bubble level was used to level the 

camera, and a small beanbag was placed underneath the camera to achieve a flat 

orientation. The camera timer function was used to enable the photographer to move out of 

view of the image before each photograph was taken. For all photographs, a small, bright 

coloured marker was placed just inside the camera’s field of view, to mark north. To reduce 

risk of over-exposure and to obtain even lighting across the image, photographs were taken 

under overcast skies where possible, or early/late in the day to avoid direct sunlight 

entering the lens (Rich, 1990). The automatic aperture and shutter settings were used, and 

the camera’s histogram function was reviewed after image capture to manually check for 

overexposure (Beckschafer et al., 2013). When required, the exposure settings were 

manually lowered to -2.0 EV, the minimum limit on this camera model.  

All images were analysed in HemiView Canopy Analysis Software v.2.1 (Delta-T Devices, 

Cambridge, UK) to derive global site factor (GSF) and canopy openness values for each plot, 

in each month of the year. For both GSF and canopy openness estimation, HemiView 

calculates the canopy gap fraction—defined as the proportion of unobstructed sky in a 

given region of the projected image plane (Frazer et al., 1997). In order to calculate gap 

fractions, HemiView separates black pixels (canopy) and white pixels (sky), according to 

given threshold values. Thresholds must be manually set using this software package. This 

was done individually for each photograph to achieve the best contrast. This was important 

as photos had to be taken under a range of sky conditions on days when monitoring was 

scheduled, and therefore applying a universal threshold would likely result in considerable 

error. In cases where tree trunks or herb-layer vegetation appeared brighter than 

background sky, photos were edited in ImageJ (Rueden, 2016) prior to analysis in 



26 

 

HemiView. This editing involved blacking out the trunks or herb-layer, so they could be 

correctly differentiated from the sky during image analysis.  

Canopy openness is a straightforward measure of canopy structure, representing the sum 

of all gap fraction values in the hemispherical image. In HemiView, gap fraction values are 

weighted according to zenith angle, to account for the distortion of the hemispherical lens 

(Frazer et al., 1997). To correct for lens distortion during image analysis, lens settings were 

set to the Coolpix 900 setting, which is pre-programmed in HemiView, and is appropriate 

for analysing images from the Coolpix 990 (Hale and Edwards, 2002). GSF—the proportion 

of solar radiation penetrating the canopy, relative to that in the open (Anderson, 1964)—is 

a more complex index of solar radiation, which requires knowledge of site latitude and 

longitude, and correct alignment of the photograph with compass bearings. This enables 

the estimation of direct and diffuse radiation based on the position of canopy gaps in 

relation to the solar path (Rich et al., 1999). In order for GSF to be calculated, site 

coordinates were inputted into HemiView, and photos were aligned to north using the 

north marker placed in the photos during image capture. Each image was then analysed to 

give GSF and canopy openness values, which were multiplied by 100 to convert them to 

percentages. 

Understorey plant dynamics 

Plant composition in each plot was recorded every month by estimating percent cover of 

vascular plant species. Percent bare ground cover was also recorded. In addition, 50 point 

frequency measurements were made along each transect (at 0.1 m intervals).  Vegetation 

height was measured at 1 m intervals along the transect, using a metre ruler and estimating 

by eye the height below which 80% of the vegetation was growing (Stewart et al., 2001). 

An average was then derived from the five estimates along the transect. At the same 

intervals, soil temperature readings were taken at a depth of 15 cm using a temperature 

probe (Fisherbrand, ISO 17025, A2LA, NIST, Fisherbrand Scientific UK), and averaged 

across the transect. 

2.2.2 Statistical analyses 

Comparison of GSF and canopy openness 

GSF and canopy openness, obtained from both above and below herb-layer photographs, 

were compared. Linear regression was used to assess relatedness of GSF and canopy 
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openness values across all woodlands, and at each individual woodland. Analysis of 

Covariance (ANCOVA) was used to find out whether the relationships between GSF and 

canopy openness were the same across the four woodlands. The same statistical methods 

were used to investigate relationships between above and below herb-layer 

measurements. I also assessed whether GSF and canopy openness were similarly 

consistent measurements. I did this by comparing the coefficients of variation derived for 

each plot over the June–August period when very little change in overstorey canopies is 

expected.  

Temporal and spatial variation in canopy openness 

To assess heterogeneity in the understorey light environment of each woodland, I 

computed standard deviations of canopy openness values for each month. These were 

plotted, to visualise absolute variation in canopy openness between months. Coefficients of 

variation were then calculated to assess relative variation in canopy openness in different 

months. In order to test whether plots within a woodland were similar in terms of their 

above herb-layer canopy openness, I carried out a two-factor analysis of variance without 

replication, followed by pairwise comparisons of plots. This was done using data from all 

months initially, and then using data from summer months only (MaySeptember). In each 

woodland, plots were then grouped based on statistical similarity between their summer 

canopy openness values, as these were deemed to be most important in terms of 

influencing light availability for herb-layer growth. These canopy openness groups were 

used throughout the rest of the analysis to compare trends through time in relation to 

relative within-woodland canopy openness levels. Two-way ANOVA without replication, 

followed by pairwise comparisons, were also used to compare plots at each woodland in 

terms of their canopy openness below the herb-layer, between MaySeptember.  

Understorey plant dynamics 

Mean Ellenberg values for light, nutrients, moisture and pH were derived for each 

woodland based on species presence using the corrected Ellenberg values for British flora 

(Hill et al., 2004). In addition, species composition was summarised by growth-form 

category, using the criteria from Hill et al. (2004).  

Plant composition data were analysed using PRIMER 6 v.1.13 and PERMANOVA+ (Clarke 

and Gorley, 2006). All data were transformed using the square-root transformation. I first 
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compared overall species composition across all woodlands, by deriving the Bray-Curtis 

Similarity and conducting a one-way repeated measures PERMANOVA with 999 

permutations, followed by pairwise comparisons of sites for each month of the year. Multi-

dimensional Scaling (MDS) was used to visualise relationships between woodlands. This 

method was repeated in order to compare woodlands in terms of growth-form 

composition. I then assessed the spatial and temporal variation in species composition at 

each woodland separately. Bray-Curtis Similarity was derived for each woodland, and MDS 

plots were used to visualise patterns of change over time and relationships between plots 

according to canopy openness categories. To compare seasonal changes in composition I 

conducted one-way repeated measures PERMANOVAs for each woodland, followed by 

pairwise comparisons of months. Due to lack of replication at the level of plot canopy 

openness categories, I could not test for differences between plots, within the repeated 

measures design. Therefore, a separate one-way PERMANOVA was carried out for each 

woodland to investigate differences between plots, followed by pairwise comparisons. To 

better understand species-level changes through time, in relation to plot canopy openness, 

I also plotted seasonal change in cover for the dominant species at each woodland, for each 

canopy openness category. 

Species richness and Shannon diversity were calculated for each plot, in each month of the 

year. To investigate changes through time in richness and diversity, I conducted one-way 

repeated measures ANOVAs, followed by pairwise comparisons. To investigate differences 

between plots, I carried out two-way ANOVAs without replication. This analysis was 

repeated for soil temperature and all vegetation structural parameters: point frequency, 

vegetation height and bare ground cover.  

All statistical analyses were carried out in R 3.4.3 (R Core Team, 2017), except where I have 

specified that PRIMER was used. Mauchly’s sphericity test was carried out for repeated-

measures ANOVAs, and where data did not meet assumptions for sphericity, the 

Greenhouse-Geisser corrected p-value was used. Where data residuals did not meet the 

assumptions for normality, I used the Aligned Rank Transform (ART) procedure in the R 

package ARTool (Kay and Wobbrock, 2016), followed by repeated-measures ANOVAs. The 

ART procedure is an appropriate way to analyse datasets with non-normal distributions, 

and is described in more detail by Wobbrock et al. (2011). I then performed post hoc 
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contrasts between months using estimated marginal means with the emmeans package 

(Lenth, 2017), which can be used with the ART procedure. For comparisons of plots where 

residuals were not normally distributed, I used a Kruskal-Wallis test, as a two-way ANOVA 

without replication cannot be conducted using the ART procedure.  

 

2.3 Results 

2.3.1 Canopy openness and understorey light 

Global site factor (GSF) and canopy openness were highly related (Table 2.2) for both 

above and below herb-layer comparisons at all woodlands (R2 > 0.96, p <0.001). The slope 

of this relationship varied between woodlands, with significant differences found between 

all woodlands except Newton Mill and Whitleigh (Fig. 2.1). Hunshaw, which had a south-

facing aspect, had the highest GSF values relative to canopy openness, and Newton Mill and 

Whitleigh (with a northeast and north-facing aspect respectively) had the lowest GSF 

values relative to canopy openness. Canopy openness was a more consistent measure than 

GSF, as it remained more constant from JuneAugust when very little change in the tree 

canopy would be expected. The average among-plot coefficient of variation for canopy 

openness across all woodlands in this period was 7.31 %. By contrast, GSF was much more 

variable, with an average among-plot coefficient of variation of 21.46 % across the 

woodlands. For this reason, I used canopy openness to characterise the understorey light 

environments of the sampled plots.  

 

Table 2.2. Proportion of variation explained (R2) and statistical significance (p) for relationships between 
global site factor (GSF) and canopy openness (CO), above and below the herb-layer, for all woodlands 
combined, and for individual woodlands. 

 

Comparison All sites Hardwick Hunshaw Newton Mill Whitleigh 

 

R
2
 p R

2
 p R

2
 p R

2
 p R

2
 p 

Above herb-layer: 

GSF v CO 
0.95 <0.001 0.98 <0.001 0.98 <0.001 0.96 <0.001 0.98 <0.001 

Below herb-layer: 

GSF v CO 
0.97 <0.001 0.99 <0.001 0.99 <0.001 0.98 <0.001 0.98 <0.001 

Above GSF v Below 

GSF 
0.95 <0.001 0.94 <0.001 0.96 <0.001 0.96 <0.001 0.98 <0.001 

Above CO v Below 
CO 

0.94 <0.001 0.95 <0.001 0.98 <0.001 0.97 <0.001 0.99 <0.001 
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Fig. 2.1. Relationship between global site factor (%) and canopy openness (%) across the four 

woodlands. Analysis of covariance showed similar slope relationships between Newton Mill and Whitleigh 
(F1,128 = 0.18, p = 0.67). Different slope relationships were found between other woodlands: Hardwick 
and Hunshaw (F1,128 = 23.04, p < 0.001), Hardwick and Newton Mill/Whitleigh (F2,192 = 7.15, p <0.001) 

and Hunshaw and Newton Mill/Whitleigh (F2,192 = 32.83, p <0.001). 

 

Canopy openness above the herb-layer showed similar broad seasonal trends across all 

woodlands and plots (Fig. 2.2). In absolute terms, heterogeneity in canopy openness within 

woodlands was highest during winter, and patterns of within woodland heterogeneity 

varied between woodlands in spring and late autumn. Hardwick Wood showed high 

variation in canopy openness in April, and Newton Mill showed high variation in canopy 

openness in May. By contrast, Hunshaw and Whitleigh showed relatively low-levels of 

between-plot variation in canopy openness in April and May. Hardwick also showed much 

higher variation in canopy openness in November than other woodlands. All woodlands 

showed low between-plot variation in canopy openness during summer and early autumn 

months (JuneOctober). However, relative variation in canopy openness between plots was 

highest between MaySeptember when average between-plot coefficient of variation 

ranged between 31.8135.52 % across the woodlands, compared to 5.2019.23% across 

the woodlands in other months of the year.  
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When canopy openness between plots in each woodland were compared across the whole 

year, I only identified significant differences in canopy openness values between plots at 

Hardwick Wood (ANOVA: F10,5 = 11.312, p <0.001). Plots that were the most open in 

summer, were not necessarily the most open at other times of the year (Fig 2.3). When 

plots were compared using summer values only (MaySeptember), significant differences 

were identified between plots within all woodlands (Fig. 2.3). These differences were more 

subtle than I had predicted from my a priori judgements based on visual assessment of the 

summer canopy. This meant that there were not always clear differences between plots 

originally classed as ‘dense’ and ‘intermediate’, or ‘intermediate’ and ‘open’. In most cases, 

rank order was still the same as initially predicted. I grouped plots according to whether 

they were statistically similar in their summer canopy openness (Fig. 2.3), and visualised 

this with colour coding. Due to the higher than expected similarities between some plots, I 

did not have replicates for all canopy openness levels, meaning that I could not statistically 

test for interaction effects between month of the year and plot-level canopy openness on 

herb-layer dynamics. 

There was a strong relationship between above and below herb-layer canopy openness at 

all woodlands (Table 1). However, I did detect that the herb-layer effect on ground-level 

light availability varied between woodlands. The slope of the relationship varied by a small 

but statistically significant amount, showing that herb-layer shading had a stronger effect 

at Hardwick and Whitleigh, than at Hunshaw and Newton Mill (Fig. 2.4). At Hardwick, the 

effect of herb-layer shading in more open canopy plots was particularly apparent, as open 

plots and dense plots had similar below herb-layer canopy openness in summer (Fig 2.3).  
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Fig. 2.2. Temporal dynamics of canopy openness heterogeneity above the herb-layer, across each 

woodland. Error bars represent standard deviation of canopy openness across the six plots in each 
woodland in each month.  
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Fig. 2.3. Change in canopy openness (%) through months of the year at each woodland. Statistical relationships between plots based on May-September 
canopy openness values are shown by the hexagonal diagrams: the numbers 1–6 represent the six plots in each woodland, and connecting lines show which 
plots were statistically similar. Colours correspond to above herb-layer canopy openness, with darker colours representing plots with lower canopy openness.  
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Fig. 2.4. Relationship between canopy openness (CO) above the herb-layer and CO below the herb-

layer, for the four woodlands. There were similar slope relationships between Newton Mill and Hunshaw 
(ANCOVA: F1,128 = 2.51, p = 0.12), and between Hardwick and Whitleigh (ANCOVA: F1,128 = 0.09, p = 

0.77). Different slope relationships were found between the other woodlands: Hardwick and 
Hunshaw/Newton Mill (ANCOVA:F2,192 = 3.89, p = 0.022) and Whitleigh and Hunshaw/Newton Mill 

(ANCOVA:F2,192 = 7.08, p = 0.001). 
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2.3.2 Understorey plant dynamics 

Average monthly temperatures for Devon in the year of study were below average for 

winter, spring and autumn (Fig. 2.5). Soil temperature patterns were fairly consistent 

between plots at each woodland (Fig. 2.6). No differences were found in soil temperature 

between plots at Hunshaw (ANOVA: F10,50 = 2.33, p =0.06) or Whitleigh (ANOVA: F10,50 = 

2.13, p =0.08). Significant differences were identified at Hardwick (ANOVA: F10,50 = 7.53, p < 

0.001), with plots 4 and 6 different to plots 1 and 2 (p < 0.005), but all other plots were 

similar (p > 0.05). Significant differences were also found between plots at Newton Mill 

(ANOVA: F10,50 = 4.68, p =0.001), with differences between plot 1 and 6 (p < 0.001) and plot 

5 and 6 (p = 0.03), but all other plots were similar (p > 0.05). However, these differences 

were fairly small in absolute terms; the maximum difference in soil temperature in any one 

month was less than 2° C, and on average the difference between plots was less than 0.8° C. 

Woodlands varied in terms of plot mean Ellenberg values for soil nutrients and pH, though 

showed little difference for light and moisture (Table 2.3). Plots at Hardwick showed a 

comparatively eutrophic and base-rich signal, while plots at Hunshaw showed a nutrient-

poor and acidic signal. All woodlands differed in terms of species composition (Fig. 2.7. 

Repeated-measures PERMANOVA: Pseudo-F33,220 = 11.06, p = 0.001; pairwise comparisons 

revealed all woodlands differed in all months: p < 0.05). There were also significant 

differences between woodlands based on growth-form composition (Table 2.4, repeated-

measures PERMANOVA: Pseudo-F33,220 = 6.72, p = 0.001, Appendix 2.1: Table A2.2), though 

Hunshaw and Whitleigh were similar (pairwise comparisons between Whitleigh and 

Hunshaw: p  > 0.05 for all months). All other woodlands were different in terms of growth-

form composition, across all months of the year, with the exception of Hunshaw and 

Newton Mill, which were similar in November only (p = 0.124). Hunshaw and Whitleigh, 

both lacked spring ephemerals, and Whitleigh also lacked early summer species, which 

contributed strongly to composition and seasonal variation at Hardwick and Newton Mill  

(Table 2.5). Hardwick and Newton Mill exhibited strong seasonal changes in composition 

(Fig. 2.8 and 2.9), with spring being the most dynamic season. By contrast, Hunshaw and 

Whitleigh showed much less seasonal distinction in terms of compositional change (Fig. 

2.10 and 2.11). Due to the differences between woodlands, their seasonal vegetation 

dynamics are considered separately.  
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Table 2.3. Structural and compositional features of four Devon woodlands. NVC class was based on an assessment of the composition of the whole 
woodland, using Hall et al. (2004). Stand density was estimated from the 0.3 ha area from which the six survey plots were selected. Mean Ellenberg values 
based on Hill et al. (2004), were calculated based on species composition in the six 3 x 3 m plots at each woodland. 

 

Woodland 
Size 
(ha) 

NVC class (based on whole 
woodland) 

Soil type 
Stand 

density 
(trees/ha) 

Aspect 

Mean 
growing 
season 
GSF (%) 

Mean Ellenberg values (averaged 
across the six surveyed plots) 

Light Nutrients Moisture pH 

Hardwick 
Wood  
(50°22’N, 
4°4’W) 

22 

W8e Fraxinus excelsior - Acer 
campestre - Mercurialis perennis 
(Geranium robertianum               
sub-community) 

Free-draining 
slightly acid 

but base-rich 
1360 Flat 5.6 4.6 6.5 5.6 6.6 

Hunshaw 
Wood 
(50°55’N, 
4°7’W) 

18 

W16b Quercus spp. - Betula spp. - 
Deschampsia flexuosa      
(Vaccinium myrtillus - Dryopteris 
dilatata sub-community) 

Free-draining 
acid loam 
over rock 

556 S 6.8 5.2 4.0 5.5 4.2 

Newton 
Mill 
(50°52’N, 
4°15’W) 

25 

W11a Quercus petraea - Betula 
pubescens - Oxalis acetosella 
(Dryopteris dilatata                       
sub-community) 

Free-draining 
slightly acid 

loam 
456 NE 10.5 4.8 5.2 5.5 5.3 

Whitleigh 
Wood 
(50°25’N, 
4°8’W) 

20 
W10a Quercus robur - Pteridium 
aquilinum - Rubus fruticosus (typical 
sub-community) 

Free-draining 
acid loam 
over rock 

1111 N 5.1 5.1 5.1 5.6 5.2 
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Table 2.4. Plot composition at each woodland by plant growth form. Numbers represent the percentage 
contribution of each growth form to the total composition, averaged across plots and the year. Ph = 
Phanerophyte, Pn = Nanophanerophyte, Ch = Chamaephyte, hc = Hemicryptophyte, Gn = Non-bulbous 
geophyte, Gb = Bulbous geophyte, Th = Therophyte. Classifications based on Hill et al. (2004). 
Additionally, hemicryptophytes and non-bulbous geophytes have been classified into sub-categories: 
pteridophytes (pt) and flowering herbs (hb). 

      

 

   Woodland Ph Pn Ch hc  
(pt) 

hc  
(hb) 

Gn 
(pt) 

Gn 
(hb) 

Gb Th 

Hardwick 35 11 1 8 13 0 2 17 13 

Newton Mill 2 7 7 28 18 1 3 34 0 

Hunshaw 8 43 0 34 0 11 0 0 3 

Whitleigh 13 38 0 37 0 12 0 0 0 

 

Table 2.5. Plot composition at each woodland by phenological guild. Numbers represent the percentage 
contribution of each guild to the total composition, averaged across plots and the year. Classifications 
based on Givinish (1987). Spring ephemerals are species that leaf in early spring and senesce prior 
to/during canopy closure; early summer species are those that leaf during spring and remain after 
canopy closure, but reach peak cover before midsummer; late summer species leaf in mid- or late-spring 
and reach peak cover after midsummer; evergreen species retain leaves year-round. 

     
Woodland Spring ephemerals Early summer Late summer Evergreen 

Hardwick 28 28 5 39 

Newton Mill 37 29 28 6 

Hunshaw 0 3 69 28 

Whitleigh 0 0 53 47 

 

At Hardwick Wood, there were marked seasonal changes in composition through spring 

and early summer, with compositional changes slowing from June/July (Fig. 2.8). 

Differences in composition were found between plots (PERMANOVA: Pseudo-F5,65 = 18.10, 

p = 0.001), with only the most closed canopy plots (1 and 2) being statistically similar (p = 

0.10) and all other plots being significantly different (p <0.05). It should be noted that 

while I was unable to test statistically whether plots showed similar patterns of seasonal 

change, due to lack of replication of plots with similar canopy openness, similar seasonal 

patterns between plots are apparent from the MDS (Fig. 2.8). A more detailed look at the 

seasonal patterns for dominant species supports this (Fig. 2.12). The majority of dominant 

species reached peak abundance in spring (March-May), prior to or just after canopy 
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closure, across all plots. Trends in vegetation structure also showed spring to be the most 

productive period, with low bare ground cover and a rapid increase in point frequency 

prior to canopy closure (Fig. 2.13). Significant differences in vegetation structure were 

found between plots (ANOVABARE GROUND: F5,50 = 6.24, p <0.001; ANOVAPOINT FREQUENCY: F5,50 = 

8.87, p <0.001; ANOVAVEG HEIGHT: F5,50 = 13.41, p <0.001; full pairwise comparisons in 

Appendix 2.2: Table A2.3).  The most open plot (plot 6) was different to all other plots in 

terms of bare ground cover and point frequency (p <0.05), except for plot 5 (p >0.10). The 

most open plot maintained high vegetation cover all-year, with very little dieback occurring 

among ferns or Rubus fruticosus. By contrast, the most densely shaded plots (plots 1 and 2) 

had low point frequency and vegetation height during the main growing season. This 

corresponds to patterns of cover for dominant species in these plots, with the exception of 

Hyacinthoides non-scripta, which disappears prior to canopy closure, and Hedera helix, 

which retains cover all year. 

Newton Mill also showed strong seasonal change in composition, with spring and early 

summer being the most dynamic period (Fig. 2.9). There were significant differences in 

composition between the plots (PERMANOVA Pseudo-F5,65 = 12.77, p = 0.001). Plots 4 and 5 

had similar composition (p = 0.06), but all other plots were significantly different (p < 

0.03). However, as with Hardwick, there were comparable seasonal trends across plots, 

with a clear spring development and late summer senescence, which was most evident 

from the dynamics of dominant species (Fig. 2.14). Again, the majority of species reached 

peak abundance in spring, and late season cover was largely maintained by Dryopteris 

dilatata in the more open canopy plots. Vegetation structure showed strong seasonal 

change, with a clear peak in productivity in spring (Fig. 2.13). There were also clear 

differences between the plots (ANOVABARE GROUND: F5,50 = 27.23, p <0.001; ANOVAPOINT 

FREQUENCY: F5,50 = 20.30, p <0.001; ANOVAVEG HEIGHT: F5,50 = 25.36, p <0.001; full pairwise 

comparisons in Appendix 2.2: Table A2.4). Although the two most closed canopy plots (1 

and 2) were not similar in composition (p <0.001), both were highly similar in terms of 

bare ground and point frequency (p = 1.00) and different from all other plots (p < 0.05). All 

other plots were similar in terms of bare ground and point frequency (p >0.20), with the 

exception of plot 5 and 6 being different in point frequency (p = 0.005). Height trends 

showed differences between plot 5 and all other plots (p <0.001), and between plot 2 and 
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all other plots (p <0.001), with the exception of plot 1 (p = 0.08). All other plots were 

similar in terms of vegetation height (p >0.10).  

No significant compositional changes were identified at Hunshaw over the year (Fig. 2.10) 

(repeated-measures PERMANOVA: Pseudo-F10,65 = 0.76 p = 0.81). All plots were 

significantly different in their composition (PERMANOVA: Pseudo-F5,65 = 53.55, p = 0.001; 

pairwise comparisons: p = 0.001). Although no overall seasonal change in composition was 

apparent across all plots, within plots it was apparent that changes do occur through the 

months, and these were most pronounced in spring, though the nature of these changes are 

plot-specific. For example, in plots 4, 5 and 6 there was considerable change between 

February and March (Fig. 2.10). If we look at changes in the woodland’s dominant species 

(Fig. 2.15), this change appears to have been the influence of Vaccinium myrtillus coming 

into leaf. Emergence of Pteridium aquilinum between April-June, and new frond growth on 

Dryopteris dilatata, also contributed change during spring. After May, very little 

compositional change was observed in the more open plots, until dieback occurred in 

autumn. Structural parameters showed that there were highly significant differences 

between the plots (ANOVABARE GROUND: F5,50 = 77.28, p <0.001; ANOVAPOINT FREQUENCY: F5,50 = 

50.83, p <0.001; Kruskal-WallisVEG HEIGHT: H5 = 42.59, p <0.001; full pairwise comparisons in 

Appendix 2.2: Table A2.5). The most closed canopy plots (1 and 2) and plot 4 were 

statistically similar in terms of their low bare ground cover and low vegetation height (all p 

>0.35), and as such seasonal trends were weak (Fig.2.13). Bare ground cover, point 

frequency and vegetation height in the most open plots (5 and 6), and plot 3, were 

significantly different to plots 1, 2 and 4 (p <0.001). These plots showed much higher levels 

of vegetation growth, particularly in spring, with height and point frequency increasing to 

peaks in May and June (Fig. 2.13).   

Similarly to Hunshaw, no significant temporal changes in composition were identified at 

Whitleigh (repeated-measures PERMANOVA: Pseudo-F10,65 = 0.25 p = 1.00), and all plots 

were significantly different (PERMANOVA: Pseudo-F5,65 = 176.32 p = 0.001). The MDS 

shows that there were subtle seasonal changes within the open and intermediate canopy 

plots (Fig. 2.11). Spring was identifiable as the most dynamic period, with summer 

composition being stable and detectable dieback occurring in autumn, though it is apparent 

from looking at seasonal trends for dominant species that some species did not exhibit 
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winter dieback (Fig. 2.16). Very little compositional change occurred in the most closed 

canopy plots (1 and 2). There were clear differences between plots in terms of vegetation 

structure (Fig. 2.13; ANOVABARE GROUND: F5,50 = 118.16, p <0.001; ANOVAPOINT FREQUENCY: F5,50 = 

49.28, p <0.001; ANOVAVEG HEIGHT: F5,50 = 49.28, p <0.001, full pairwise comparisons in 

Appendix 2.2: Table A2.6). The two most closed canopy plots (1 and 2) were similar (p = 

1.00) and different to all other plots (p < 0.01), for all structural parameters. Very few 

plants were growing in these plots, and therefore seasonal change was minimal. For other 

plots, the spring to early summer period was the most dynamic in terms of plant growth, 

with vegetation cover increasing from April-June (Fig. 2.13). 

For all woodlands, there were highly idiosyncratic responses of species richness and 

diversity to seasonal change across the plots (Fig. 2.17). Significant differences in species 

richness were identified at all woodlands between months of the year (repeated-measures 

ANOVAs: Hardwick, F1,10 = 29.57, p <0.001; Hunshaw, F1,10 = 8.98, p <0.001; Newton Mill, 

F1,10 = 6.36, p <0.001; Whitleigh, F1,10 = 5.84, p <0.001) and between plots (ANOVAs: 

Hardwick, F5,50 = 61.68, p <0.001; Hunshaw, F5,50 = 42.95, p <0.001; Newton Mill, F5,50 = 

44.20, p <0.001; Whitleigh, F5,50 = 31.62, p <0.001), but there were no clear patterns. 

Significant differences in species diversity were identified between months at Hardwick, 

Hunshaw and Whitleigh (repeated-measures ANOVAs: Hardwick, F1,10 = 5.90, p <0.001; 

Hunshaw, F1,10 = 5.26, p <0.001; Whitleigh, F1,10 = 6.15, p <0.001), but not Newton Mill (F1,10 

= 1.70, p = 0.106). Differences in diversity were also found between plots in all woodlands 

(ANOVAs: Hardwick, F5,50 = 28.12, p <0.001; Hunshaw, F5,50 = 27.90, p <0.001; Newton Mill, 

F5,50 = 12.27, p <0.001; Whitleigh, F5,50 = 54.78, p <0.001), but again there were no clear 

patterns. The interaction between time of year, and species richness and diversity, appears 

to have been plot and woodland-specific. 
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Fig. 2.5. Monthly average temperatures for 2014 in mid-Devon, set against monthly averages for the 

period 2004–2017. Data source: Haytor weather station (50.57° N, 3.94° W). 
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Fig. 2.6. Soil temperature patterns for all woodlands over 11 months. Colours reflect the canopy 

openness levels, with darker colours representing more closed canopy plots.  
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Fig. 2.7. MDS plot of vascular plant species composition across the year in four Devon woodlands. Points 

represent monthly observations made in each of six plots within each woodland. 2D stress: 0.18.  
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Fig. 2.8. MDS plot of vascular plant species composition at Hardwick, for six plots in each month of the 

year (February-December). Each symbol represents a different plot (see legend). Labels next to the 
symbols identify the month of the year (i.e., 2 = February, 3 = March etc.). Colours reflect the canopy 
openness levels, with darker colours representing more closed canopy plots. 2D stress: 0.19. Repeated-
measures PERMANOVA revealed significant changes in composition between months (Pseudo-F10,65 = 

18.10, p = 0.001). Pairwise comparisons of months are shown below the MDS. Months with similar 
composition are joined by a line (p > 0.10). Dashed lines represent borderline significant relationships (p 

= 0.05–0.10).  
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Fig. 2.9. MDS plot of vascular plant species composition at Newton Mill, for six plots in each month of 

the year (February-December). Each symbol represents a different plot (see legend). Labels next to the 
symbols identify the month of the year (i.e., 2 = February, 3 = March etc.). Colours reflect the canopy 
openness levels, with darker colours representing more closed canopy plots. 2D stress: 0.17. Repeated-

measures PERMANOVA revealed significant changes in composition between months in the year (Pseudo-
F10,65 = 4.86, p = 0.001). Pairwise comparisons of months are shown below the MDS. Months with similar 
composition are joined by a line (p > 0.10). Dashed lines represent borderline significant relationships (p 
= 0.05–0.10). Filled circles are used to denote significant relationships between non-contiguous months.  
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Fig. 2.10.  MDS plot of vascular plant species composition at Hunshaw, for six plots in each month of the 

year (February-December). Each symbol represents a different plot (see legend). Labels next to the 
symbols identify the month of the year (i.e., 2 = February, 3 = March etc.). Colours reflect the canopy 

openness levels, with darker colours representing more closed canopy plots.  2D stress: 0.09. Repeated-
measures PERMANOVA showed no significant change in composition through months (Pseudo-F10,65 = 

0.76, p =0.81). 
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Fig. 2.11. MDS plot of vascular plant species composition at Whitleigh, for six plots in each month of the 

year (February-December). Each symbol represents a different plot (see legend). Labels next to the 
symbols identify the month of the year (i.e., 2 = February, 3 = March etc.). Colours reflect the canopy 
openness levels, with darker colours representing more closed canopy plots. 2D stress: 0.09. Repeated-
measures PERMANOVA showed no significant change in composition through months (Pseudo-F10,65 = 

0.25, p =1.00). 
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Fig. 2.12. Seasonal variation in cover (%) for dominant species at Hardwick. Dominant species were 

those that were most abundant when cover was averaged across plots and months. Dotted lines indicate 
onset and completion of overstorey canopy closure. 
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Fig. 2.13. Vegetation structural dynamics over 11 months, for six plots in each woodland. Coloured lines reflect the canopy openness levels, with darker 
colours representing more closed canopy plots. For full statistical comparisons of months and plots, refer to Appendix 2.2: Tables A2.7, A2.8, A2.9 and A2.10. 
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Fig. 2.14. Seasonal variation in cover (%) for dominant species at Newton Mill. Dominant species were 
those that were most abundant when cover was averaged across plots and months. Dotted lines indicate 

onset and completion of overstorey canopy closure. 
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Fig. 2.15. Seasonal variation in cover (%) for dominant species at Hunshaw. Dominant species were 

those that were most abundant when cover was averaged across plots and months. Dotted lines indicate 
onset and completion of overstorey canopy closure. 
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Fig. 2.16. Seasonal variation in cover (%) for dominant species at Whitleigh. Dominant species were 

those that were most abundant when cover was averaged across plots and months. Dotted lines indicate 
onset and completion of overstorey canopy closure. 
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Fig. 2.17. Patterns of species richness and diversity over 11 months, for six plots in each woodland. Coloured lines reflect the canopy openness levels, with 
darker colours representing more closed canopy plots. 
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2.4 Discussion 

With more studies focussing on the impacts of climate change on phenology (Cleland et al., 

2007a; Kramer et al., 2000; Tang et al., 2016), and an increase in studies investigating long-

term trends in forest understories, it is interesting to note the dearth of research on intra- 

and inter-annual changes in herb-layer dynamics. The majority of coordinated climate 

change monitoring in forests focuses on tree health (Anderson-Teixeira et al., 2015; 

Bussotti and Pollastrini, 2017a; Bussotti and Pollastrini, 2017b) and tree phenology 

(Brown et al., 2016; Jeong et al., 2011; Zhang et al., 2003), without considering the effects 

on understorey dynamics (Routhier and Lapointe, 2002). Studies that have focussed on the 

understorey, have tended to look at a small number of species or woodlands, and have not 

integrated monitoring of the forest canopy with monitoring herb-layer response (Murphy 

and McCarthy, 2014). Despite improved understanding of the complex biotic and abiotic 

interactions influencing forest ecosystem dynamics, there remains an implicit assumption 

that it is reasonable to extrapolate from a small number of studies to predict how 

temperate forests will respond to climate change. In this study of four Devon woodlands, I 

demonstrate that even across a small geographic area, forests can vary considerably in 

terms of composition and seasonal dynamics in the herb-layer. This study emphasises that 

high levels of spatial replication are needed to predict how different forests will respond to 

climate change. These results are based on one year of data collection, when temperatures 

were below average for winter, spring and autumn. Long-term data collection is necessary 

to study seasonal dynamics in relation to annual variation in climate. Citizen science, with 

its potential to provide data simultaneously across large geographical areas, and year after 

year, is the only realistic way to achieve the levels of replication required (Silvertown, 

2009). The findings of this study provide insight into attributes that would be useful to 

monitor, and the methods that would be suitable for widespread use in different forests. 

As well as differences between woods, I found considerable variation in herb-layer 

dynamics within woodlands, demonstrating the need for spatial replication of monitoring 

within forests. Spatial replication should reflect the breadth of canopy openness conditions 

in the forest.  Although subtle in absolute terms, within each woodland there were 

differences in canopy openness between plots, and this coincided with substantial 

differences in the herb-layer. Summer canopy openness variation in each woodland was 
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similar, with coefficients of variation ranging between 31–36 %. This is comparable to the 

variation found in secondary forests in North America, where coefficients of variation 

averaged 32%, compared to old-growth forests with coefficients of variation averaging 

65% (Scheller and Mladenoff, 2002). Although all of the study woodlands were classed as 

Ancient Semi-Natural Woodland, this lower degree of canopy openness heterogeneity 

reflects the trend towards increasingly closed canopy and structurally homogenous forests 

(Hopkins and Kirby, 2007).  

Light levels were likely to be the main factor limiting herb-layer growth in the most dense 

canopy plots. Where canopy openness was less than 3% (in all of the most dense canopy 

plots), the only notable change in composition and structure occurred prior to canopy 

closure, when spring ephemerals were active. Cover of summer-green species was severely 

limited at these low light levels, as has been noted in other studies (Hicks and Taylor, 

2015). At the woodlands where spring species were absent, very little activity occurred in 

these plots all year. Earlier onset of canopy closure could lead to reduction in spring 

ephemerals and early-summer species (Rothstein and Zak, 2001), resulting in sparse herb-

layers where canopy closure is particularly high.  

Differences in herb-layer vegetation between more open and intermediate canopy plots 

were less clear, demonstrating that other factors are likely influencing the fine-scale spatial 

patterning of the herb-layer where light is less limiting. Burton et al. (2011) found that 

understorey light levels explained little of the fine-scale spatial variation in herb-layer 

composition in a study of 215 plots in a second-growth forest in North America. They 

proposed that this finding could have been related to the low degree of variation in the 

light environment in their study. Chudomelova et al. (2017) did identify canopy openness 

as having a significant effect on fine-scale spatial variation in herb-layer composition, 

though it was a weaker explanatory variable than soil pH, where canopy openness 

exceeded 5%. In the intermediate and open canopy plots, where light levels were less 

limiting, the spatial arrangement of species is likely a combination of abiotic factors, 

disturbance history and patterns of dispersal (Ehrlen and Eriksson, 2000; Fraterrigo et al., 

2006; Gazol and Ibanez, 2010). Soil temperature was fairly consistent between plots, so 

this was unlikely to be a factor influencing within-woodland variation in this study. At 

Hunshaw, where soil nutrients were likely a limiting factor, pockets of more nutrient rich 
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soils may well have influenced the richer herb-layer found in a more closed canopy plot 

towards the base of the surveyed slope. Hardwick Wood had an abundance of pits and 

mounds as a result of high levels of historic storm damage, and these micro-topographical 

features may have contributed to compositional variability among the intermediate and 

open canopy plots at that woodland (Beatty, 1984). These factors demonstrate problems 

associated with low-levels of replication in forests, where high levels of heterogeneity 

between plots can reduce statistical power to detect treatment effects (Royo and Carson, 

2008). This further emphasises the importance of a monitoring approach that facilitates 

high spatial replication through the use of citizen science.  

A focus on detailed monitoring of spring phenology will be important for understanding 

impacts of climate change on the herb-layer. Despite differences between the woodlands in 

this study, the spring season was clearly important in terms of herb-layer productivity at 

all woodlands. This was most evident at the two woodlands with spring ephemerals and 

early summer species. Considerable compositional change was evident at these woodlands 

as plants developed and then senesced prior to or shortly after canopy closure. By contrast, 

compositional change was much less apparent at Hunshaw and Whitleigh. These 

woodlands were dominated by summer-green and semi-evergreen species, particularly 

hemi-cryptophytic ferns and nanophanaerophytes, so there was no pronounced turnover 

in species composition during spring to early summer. Nevertheless, the spring period was 

still important, evident from structural changes―the increase in point frequency and 

vegetation height that occurred at this time―and the increases in cover of dominant 

species and decline in bare ground cover. 

Ida and Kudo (2008) highlighted the importance of the early spring period for summer-

green plants, as high carbon gain during this time is allocated to increasing leaf area, 

helping maximise photosynthetic activity after canopy closure. Furthermore, they found 

early canopy closure reduced available carbon for fruit production, affecting reproductive 

success. Currently, coordinated national schemes for monitoring forest herb-layer 

phenology focus on a small number of spring ephemerals e.g., Nature’s Calendar (2017).  I 

recommend that species included in monitoring should be chosen according to the 

composition at each monitored woodland, and should include species from different 

phenological guilds, in order to capture trends for dominant herb-layer species in different 
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forests. Phenology monitoring should be frequent enough to capture change in timing of 

herb-layer development in relation to the timing of canopy closure. In this study, the 

monthly frequency was clearly too coarse for this, but more frequent monitoring was not 

practical. This further demonstrates the necessity for a citizen science approach to enable 

widespread data collection at high temporal frequency. 

Given the importance of the spring period prior to canopy closure, monitoring changes in 

the timing of canopy closure alongside herb-layer dynamics is essential. Given the very 

strong relationship between GSF and canopy openness at all woodlands, it can be 

concluded that canopy openness provides a good estimate of GSF in different forests. The 

relationship between GSF and canopy openness did vary to a small degree depending on 

forest aspect. This is likely to be due to a link between woodland aspect and canopy gap 

position. Hunshaw Wood was on a fairly steep south-facing slope, so the canopy to the 

north was dense with few gaps. The opposite was true for Newton Mill and Whitleigh on 

north-facing slopes. For very detailed studies where absolute measures of understorey 

light are required, GSF or a direct measurement using quantum sensors may be required 

(Tobin and Reich, 2009). However, for widespread monitoring where the purpose is to 

assess relative change through time, canopy openness is an appropriate surrogate. It is also 

likely to be more reliable, as I obtained much more consistent measurements than for GSF. 

The high degree of variation in GSF values between June-August, when low within-plot 

variation would be expected, was related to minor differences in camera orientation of a 

few degrees. While the precision of camera orientation could be improved with changes to 

the data collection methodology, this would increase time spent in the field. Given the need 

for high replication, and efficient methods that can be easily and reliably repeated by 

multiple surveyors, canopy openness is a better option.  

A variety of more cost effective methods that provide estimates of canopy openness are 

also available (Jennings et al., 1999). The canopy scope has been widely used in forestry for 

coarse-scale assessments of openness (Brown et al., 2000; Hale and Brown, 2005), but may 

be suitable for monitoring seasonal change. In addition, the arrival of new technology such 

as smartphone cameras with fisheye lens attachments, present opportunities for cost 

effective alternatives to canopy openness assessment with hemispherical photography. 

There is a need to test these methods against hemispherical photography, and assess the 
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temporal frequency required to track changes in canopy closure timing. Another 

alternative is to use visual observation of budburst and leaf expansion timing as a proxy for 

canopy closure. In this study, while canopy openness data were collected too infrequently 

to identify differences in canopy closure timing between woodlands, I did detect higher 

spatial variation in spring canopy openness between plots at Hardwick and Newton Mill, 

than at Hunshaw and Whiteigh. The former two woodlands had more diverse overstories, 

containing both early-leafing species such as sycamore/birch respectively, as well as oak, 

and late-leafing ash. By contrast Hunshaw and Whitleigh were dominated by beech and 

oak. Observational recording of tree phenology has been widely used to assess the onset of 

the growing season in overstorey trees (Elmendorf et al., 2016; Schaber and Badeck, 2005; 

Sparks et al., 2009; Vitasse et al., 2009b), and the method has the advantage of being cost 

effective. A recent UK citizen science initiative sought to relate flowering phenology of 

spring ephemerals to timing of dominant tree leaf expansion (Track a Tree, 2017). 

However, the extent to which tree species vary in their phenology across a woodland, and 

the relationship between leaf expansion of individual trees and whole canopy closure, 

needs to be considered if effects on the herb-layer are to be inferred from the phenology of 

a subset of overstorey trees. 

The herb-layer can also affect light-levels reaching the ground, with dense cover excluding 

almost all light from the ground-layer, inhibiting seedling regeneration of trees and 

herbaceous species (Jefferson, 2008; Royo and Carson, 2006). Despite the highly significant 

relationship between above and below herb-layer canopy openness in this study, it is 

important to note the more extensive herb-layer shading at Hardwick and Whitleigh and 

possible explanations for this. The most open plots at Whitleigh had high cover of Rubus 

fruticosus all year, and the most open plot at Hardwick had the densest cover of 

understorey vegetation of all surveyed plots. It is likely that overstorey disturbance from 

past storm damage combined with nutrient-rich soils has led to the establishment of the 

dense understorey cover here.  The development of recalcitrant understories, with the 

formation of dense cover of native woodland species such as Rubus fruiticosus, has been 

observed in response to overstorey disturbance elsewhere (Royo and Carson, 2006) and 

has been shown to severely impede seedling development. Climate change is likely to bring 

about increasing overstorey disturbance, with defoliation/mortality events in trees as a 
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result of drought, severe storms, pests and diseases (Thom et al., 2017a). Combined with 

the effect of warming, such events could lead to more widespread dominance of vigorous 

species, especially in more eutrophic woodlands. Another interesting point to note is that 

high vegetation cover in open plots at Hardwick and Whitleigh was maintained all year. 

These woodlands were more oceanic and lower in altitude than Hunshaw and Newton Mill, 

so it is possible that warmer winters reduced vegetation dieback. Milder winters as a result 

of climate change could affect seedling germination where herb-layer cover is maintained 

through winter.  

In addition to detailed monitoring of herb-layer development in spring in relation to 

canopy closure, I recommend monitoring changes in vegetation cover at repeated intervals 

in summer, autumn and winter, each year. As the results of this study demonstrated lower 

levels of within-season change during these periods, monitoring the herb-layer once in 

each season should be adequate to capture annual variation. Monitoring at these intervals 

will be important for understanding later season effects of canopy closure timing on 

summer-green and evergreen species. In addition, it will enable the combined effects of 

temperature and gap dynamics to be assessed. While I detected little seasonal variation in 

cover of Dryopteris dilatata, this species was an important component in three of the study 

woodlands, and is predicted to disappear from southern Britain by 2050 (Bakkenes et al., 

2002). Therefore there could be dramatic changes in cover between survey years, as has 

been documented for different species elsewhere (Murphy and McCarthy, 2014). As with 

spring monitoring, species selected should include woodland dominants, as well as those 

species with potential to develop dense cover in response to disturbance, such as Rubus 

fruticosus and Pteridium aquilinum. Non-native invasive species should also be included 

where present. Although not present in the survey plots in this study, non-native invasive 

species are becoming increasingly prevalent, and are likely to gain competitive advantage 

due to more plastic responses to shade and temperature extremes (Willis et al., 2008). 

Since species richness and diversity showed no clear seasonal patterns, and as species 

inventories can be problematic in widespread monitoring using citizen science (Crall et al., 

2011; McDonough MacKenzie et al.), I recommend that focussing on key species is a better 

approach to full species inventories. Additionally monitoring bare ground cover would 

capture wider changes in the herb-layer community, and help identify the deterioration of 



60 

 

understorey cover or its proliferation, in response to contrasting pressures brought about 

by climate change. 

2.5 Conclusions 

Even over small geographic ranges forests vary considerably in their composition and 

seasonal dynamics. Therefore, to predict impacts of climate change, widespread 

monitoring that gathers data on seasonal and inter-annual changes across a wide range of 

forests is critical. The spring period is particularly important for herb-layer development, 

and small variation in canopy openness can have considerable effects on herb-layer cover 

and composition.  Citizen scientists could help to collect data by monitoring herb-layer 

cover and changes in the abundance of key species, alongside monitoring of the overstorey 

canopy. Research is needed to identify methods that could be used to monitor tree canopy 

development and canopy openness on a large-scale.  
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3  A comparison of ground-based methods for 
obtaining large-scale, high resolution data on 

the spring leaf phenology of temperate tree 

species 

 

3.1 Introduction 

Changes in the leaf phenology of temperate trees are one of the best studied and most 

recognisable impacts of climate change, with a large body of research demonstrating 

trends towards earlier leafing with warmer spring temperatures (Menzel and Fabian, 

1999; Menzel et al., 2006; Polgar and Primack, 2011). The majority of data is now obtained 

from remote-sensing, which captures phenological trends at regional and global scales, but 

at coarse temporal and spatial resolutions (Buitenwerf et al., 2015; Crabbe et al., 2016; 

Hamunyela et al., 2013; Wang et al., 2016; White et al., 2014; Wu and Liu, 2013). By 

contrast, ground-based observations gather species and site-specific information, but tend 

to lack geographic coverage and vary considerably in their approaches to characterising 

phenology (Denny et al., 2014). While many studies have focussed on identifying large-

scale phenological patterns, comparatively few have investigated how changes in 

phenology affect local-level forest ecosystem dynamics (Cole and Sheldon, 2017).  Leaf 

phenology is fundamental to tree growth, fitness and survival (Chuine, 2010; Vitasse et al., 

2009a), and the timing of canopy development has widespread implications for 

competition dynamics and trophic interactions (Cole and Sheldon, 2017; Roberts et al., 

2015; Thackeray et al., 2010). Therefore, understanding subtle changes in the timing and 

order of leaf expansion in a forest ecosystem is important. As forests are highly 

heterogeneous, there is a need for widespread monitoring of forests at a high resolution. 

Phenology at the local level will vary according to species composition, genetic and 

epigenetic diversity (Basler, 2016; Cleland et al., 2007b; Polgar and Primack, 2011). In 

addition, environmental factors such as topography (Fisher et al., 2006) and soils (Arend et 

al., 2016; Lapenis et al., 2017) can vary markedly over small spatial gradients, and 

influence phenology at scales missed by remote-sensing. Therefore, harmonised methods 

that enable large-scale data collection on the phenology of individual trees are needed to 

understand impacts on ecosystem dynamics and biodiversity.  
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Temperate tree leafing is controlled by a combination of winter chilling requirements, 

spring forcing temperatures and photoperiod controls (Polgar and Primack, 2011). The 

relative importance of the environmental cues varies between species, and represents a 

compromise between maximising photosynthetic potential and minimising risk of frost and 

herbivory damage (Augspurger, 2009; Chuine, 2010). Evolutionary history, physiology and 

ecology all influence the phenological expression of a species (Cole and Sheldon, 2017; 

Panchen et al., 2014). Some early-leafing species lack photoperiod control altogether, 

enabling them to take advantage of high light periods prior to neighbouring dominant or 

co-dominant trees coming into leaf and limiting direct radiation (Richardson and O'Keefe, 

2009). Similarly, low or no requirements for winter chilling can enable a more plastic 

response to warm spring temperatures, as observed in non-native invasive species (Polgar 

et al., 2014; Willis et al., 2010). At present, the winter chilling requirements of different 

species are not well known, but this could strongly influence ecosystem dynamics. As 

winters become warmer, species with chilling requirements may have significantly delayed 

leafing, while others continue to advance their leafing with warmer springs (Laube et al., 

2014; Polgar et al., 2014; Roberts et al., 2015; Vitasse et al., 2011). A recent study by 

Roberts et al. (2015) predicts increasing synchrony of leaf-out times in temperate forests, 

as oak and ash continue to advance their leaf expansion, and birch and hawthorn are 

delayed. This shift away from phenological complementarity will increase competition for 

light and soil moisture, and drive changes in forest composition over time. Monitoring 

methods that detect subtle changes in the order of leaf expansion among different tree 

species will be important to predict future changes in forest composition. 

As well as detecting variation in leaf-out phenology between species, methods also need to 

detect within-species variability. It is well-established that variation within species occurs 

between populations as a result of genetic adaptation to environmental conditions, 

particularly in relation to latitude, longitude and altitude (Chmura and Rozkowski, 2002; 

Vitasse et al., 2009a). A recent study showed high levels of variation within populations. 

Delpierre et al. (2017) found within-population variability in budburst dates for oak and 

beech were comparable to the variability between populations spanning an altitudinal 

gradient of over 500 m. In that study, genetic and phenotypic variation were found to be 

responsible for the observed within-species variation, over and above the influence of local 
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environmental factors, though this is likely to vary according to the heterogeneity of the 

forest site. The fact that individuals within a species can vary so starkly, even within close 

proximity, demonstrates the need for high levels of replication within and between sites. 

The extent of genetic and/or phenotypic variation within a population could determine its 

competitive position and ability to persist in a given forest ecosystem. This variation could 

also determine the survival of insect species with synchronised life-cycles, and in turn the 

species that depend on them for food (Cole and Sheldon, 2017). To understand such 

impacts, information on when tree populations reach peak foliar development would be 

required, across forested landscapes, at a range of spatial scales. The recent rise in citizen 

science has led to the establishment of continental-scale phenology networks, and opened 

up the potential for much greater coverage of monitoring (Gerst et al., 2017; Jeong et al., 

2013), but there is a need to ensure harmonised and efficient methods to maximise 

potential. 

At present the approaches used to characterise leaf phenology vary considerably between 

observational studies. Key historical phenological records are based on first event dates 

(Primack and Miller-Rushing, 2012; Sparks and Carey, 1995) and many subsequent studies 

have characterised tree leaf phenology based on first budburst or first leaf expansion 

(Collinson and Sparks, 2008; Fu et al., 2015; Menzel and Fabian, 1999; Polgar et al., 2014; 

Roberts et al., 2015; Schaber and Badeck, 2005). Both international and national phenology 

monitoring programmes use first event metrics (Chmielewski, No date; Nature's Calendar, 

2017; NatureWatch Canada, 2017; Project Budburst, 2017) due to their advantages in 

terms of lower survey effort and ease of identification (Miller-Rushing et al., 2008). 

However, studies looking at the reliability of metrics in avian and flowering phenology 

have found that first event dates produce biased estimates, identifying extreme responses 

at one end of the phenological period (Miller-Rushing et al., 2008; Moussus et al., 2010). 

There appears to be surprisingly little information on time taken from first budburst to 

canopy development, in individual trees, and how this varies between and within species. 

Richardson and O'Keefe (2009) reported that in a study of sixteen canopy species, there 

was a maximum difference of eighteen days in the time taken to progress from 50% 

budburst to 50% leaf expansion. They also noted that some species changed rank order 

between phenophases, i.e., species with earliest budburst were not necessarily earliest to 
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achieve leaf expansion. This suggests that relying on budburst dates alone could lead to 

inaccuracies in predicting leaf development. 

As an alternative to simply recording first budburst or first leaf expansion dates, some 

studies have recorded multiple dates to identify transitions between phenophase growth 

stages, using standardised scales such as the BBCH system (Finn et al., 2007) or bespoke 

indices (Capdevielle-Vargas et al., 2015; Cole and Sheldon, 2017; Richardson et al., 2006; 

Vitasse et al., 2009b). Recently the USA National Phenology Network (USA-NPN) 

introduced status and intensity monitoring into their citizen science programme (Denny et 

al., 2014; Elmendorf et al., 2016). Observers are encouraged to record both the phenophase 

growth stage and the intensity, for example by estimating the percentage budburst or leaf 

expansion, in order to track the entire progress of canopy development for individual trees. 

The major advantage of collecting time-series for individual trees is it enables the rate of 

canopy development to be established, and peak leaf development timing to be identified. 

However, as observations increase in complexity, data quality challenges arise. Lower 

levels of accuracy have been reported when citizen scientists have to identify emerging 

leaves, as opposed to expanding leaves, as the former is a finer detail that is harder to 

identify, particularly when the canopy is very high (Fuccillo et al., 2015). Subjectivity 

associated with visual estimates can also be a problem leading to between-observer bias 

(Morrison, 2016), particularly where a large and variable tree canopy is being considered. 

Studies comparing estimates of vegetation cover have demonstrated lowest accuracy for 

estimates over large areas (> 4 m2) because it is difficult to consider the whole area at once 

(Vittoz and Guisan, 2007). Improved accuracy is found for cover estimates with smaller 

focal areas, and highest accuracy is found where objective counts are used (Vittoz et al., 

2010). Therefore, a method involving counts of leaf expansion, focussing on different 

sections of a tree crown, may offer a more repeatable measure for quantifying leaf 

expansion. The extent to which counts of leaf expansion within crown sections are 

representative of the phenology of the whole crown needs to be tested. 

In order to detect subtle variation in tree phenology between and within tree species, it is 

important that observations are made frequently enough to capture the timing of leaf 

expansion. In reviewing the literature I found observational studies that monitored trees 

every other day (Wesolowski and Rowinski, 2006), 2–3 times per week (Capdevielle-
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Vargas et al., 2015; Cole and Sheldon, 2017), once a week (Delpierre et al., 2017; 

Richardson et al., 2006) and every 10 days (Vitasse et al., 2009b). In order to maximise 

volunteer time and increase take-up among citizen scientists, it would be useful to 

understand minimum frequencies required to detect inter- and intra-species variation in 

leaf phenology. Remote-sensing tends to obtain data sets with an 8–16 day resolution due 

to loss of images from cloud cover and atmospheric interference (Ahl et al., 2006; 

Hamunyela et al., 2013). Logistic growth models have now been widely used with remote-

sensing data to characterise the phenological pattern using known data points to predict 

missing observations (Cleland et al., 2007b). A similar approach can be applied to 

observational data sets (Cole and Sheldon, 2017; Richardson et al., 2006). It would be 

useful to compare estimates of leaf expansion timing and rate derived from logistic growth 

models using observations conducted at different temporal grains, i.e., every two days, four 

days etc., to identify how often observations are needed to accurately characterise the leaf 

expansion of individual trees. 

Recently, near-surface remote sensing techniques have emerged that offer good potential 

for gaining data on tree leaf phenology, with both high spatial and temporal resolution 

(Jeong et al, 2013; Keenan et al. 2014). Digital cameras or Normalised Difference 

Vegetation Index (NDVI) sensors that track canopy greening can be positioned just above 

the canopy, and capture data at multiple intervals per day. These methods can detect green 

signals that indicate leaf emergence and development with high-levels of accuracy (Inoue 

et al., 2014; Soudani et al., 2012). Such methods are not affected by cloud conditions like 

satellite imagery (Polgar and Primack, 2011), but may be affected by the influence of 

understorey greening (Inoue et al., 2014). Sideways-facing cameras, as employed through 

the Phenocams network in the United States (Richardson et al., 2007) and as part of the 

Phenological Eyes Network in Japan (Inoue et al., 2014), are less influenced by the 

understorey, though image quality can be affected by light conditions (Mizunuma et al. 

2012). With both types of canopy imagery it is possible to isolate trees so that time-series 

of individual tree canopy development can be derived (Inoue et al., 2014; Polgar and 

Primack, 2011), though in dense forest stands it may be hard to separate leafing of an 

individual tree from leafing of other trees in the image background. Despite the lower cost 

associated with these techniques, in comparison to manually operated ground-based 
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techniques such as hemispherical photography (Richardson et al., 2007; Soudani et al., 

2012), the cost and logistics of installing equipment will still limit this approach to a 

relatively small number of sites. Given the rise in interest in citizen science and 

phenological monitoring, there may be potential to engage citizen scientists in 

photographing tree crowns and branches, reducing the need to use visual estimates that 

can be time-consuming and open to between-observer bias. However, the practicalities of 

photographing individual tree crowns and branches from the ground within a forest 

requires testing, as does the ability to fit the derived data to logistic models to obtain 

phenological metrics.  

In this study I aim to assess the effectiveness of a range of methods for characterising 

spring leaf phenology of individual trees in a forest, to identify the best approach for 

obtaining large-scale data that can improve understanding of forest ecosystem dynamics 

under climate change. Ten individual trees across four tree species were monitored every 

other day, from the period prior to budburst, until all trees had fully expanded their leaves. 

For each tree, first budburst and first leaf expansion dates were recorded, and the progress 

of leaf expansion was monitored using two visual observations: an objective method 

involving counts of buds on three sections of the tree crown, and a percentage estimate 

considering the whole tree crown. In addition, photographs were taken to assess whether 

handheld digital photography from ground-level could be used to monitor the progress of 

leaf expansion using greenness signals. I then assessed whether time-series from counts, 

percentage estimates and photographs could be fitted to logistic growth models to 

characterise the rate and timing of leaf development. I compare the consistency of 

phenological patterns derived from first event dates versus time-series data, and from the 

three data collection methods: counts, percentage estimates and photographs. Finally, I test 

whether lower frequency observations provide comparable estimates of leaf expansion 

timing, and I consider the practicalities of the trialled methods for obtaining temporally 

rich and spatially extensive data on leaf expansion using a citizen science approach.  
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3.2 Methods  

3.2.1 Study site and data collection 

The study took place in Widey Woods, an 8 ha broadleaved woodland in Plymouth, England 

(50°24 N, 7°7 W), during spring 2015. The four tree species included were European ash 

(Fraxinus excelsior), European beech (Fagus sylvatica), pedunculate oak (Quercus robur) 

and sycamore (Acer pseudoplatanus). These species were selected as they were dominant 

in the canopy of the study site, and are widespread species across European temperate 

forests. Ten mature trees from each species were randomly selected for inclusion in the 

study, fitted with a removable plastic tag for identification, and GPS marked for ease of 

relocation. Trees were selected within the diameter at breast height (DBH) size class of 20–

60 cm. Average tree DBH was 35 cm (±10 cm) and average height was 18 m (±4 cm).  

Trees were visited weekly from the middle of February 2015 to assess for signs of 

imminent budburst, indicated by bud-swelling. This was three weeks prior to earliest 

reported budburst for target species (Elmendorf et al., 2016), based on budburst records 

from the previous year for south-west England (Nature's Calendar, 2017). Bud-swelling 

was evident from the last week in March, so trees were visited every other day from then 

onwards, until all trees had attained full leaf expansion (2 June). During the period January-

June 2015 regional temperatures were close to the 20-year average, with the exception of 

April which was 2°C warmer (Data source: Haytor weather station, 50.57° N, 3.94° W).  

First budburst was recorded as the Julian calendar day of year (DOY) when green leaves 

were first visible emerging between bud scales at any location on the tree. First leaf 

expansion was recorded as the DOY when the first leaf with characteristic shape for its 

species was visible on the tree. From the date of first leaf expansion, two different methods 

of visual estimation were used to monitor canopy development. First, the extent of leaf 

expansion across the whole tree crown was estimated as a percentage. Estimates were 

made in increments of 5% between 5–100%, but allowed for smaller increments from 1–

5% so that early activity could be captured. Secondly, counts were made of leaf expansion 

in three sections of the tree crown. These sections were established prior to first budburst, 

and reference photographs were taken to ensure the same areas were assessed on each 

visit. In each section, a count was made of the number of buds out of 50 that had at least 

one fully expanded leaf present, giving a total count out of 150 buds. Binoculars with x10 
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magnification were used to aid observations, and a clicker counter used to reduce risk of 

counting errors.  

For each tree, data were converted along a proportional scale from 0 to 1, with 0 

representing the crown prior to leaf expansion, and 1 representing the crown with full leaf 

expansion. For count data, this was achieved using equation (1):  

 

a =                                   

            (1) 

Here,   represents the leaf expansion proportion for a given DOY,   is the number of leaves 

out of 150 buds that were expanded on that DOY,          represents the number of 

leaves expanded at the start of the time series (i.e., 0), and          represents the 

number of buds with at least one fully expanded leaf at the end of the time series. As the 

estimate data were in percent increments, these were simply divided by 100 to convert 

them to proportions. As well as considering the time-series for each individual tree, tree 

observations were also combined to generate a single time-series for each species. For the 

time-series based on count data, counts across the ten trees in each species category were 

combined, to derive proportions based on the number of leaves expanded out of 1500 

buds. For the estimate data, percent leaf expansion estimates were averaged from each day, 

across the ten trees in each species category.  

In addition to visual observations, digital photographs were taken to estimate leaf 

development on a subset of ten of the surveyed trees (four ash, two beech, two oak and two 

sycamore). The same crown sections that were used for counts were photographed, with 

the photographer standing at a fixed distance from the tree. Photographs were taken using 

a Panasonic Lumix DMC-TZ35 16.1 MP camera. The camera was handheld during image 

capture, and automatic exposure settings were used. It is important to note that while 

photos were taken of the same tree sections that counts were conducted on, they captured 

a larger area of the branch than the 50 buds assessed using the count method. 

Furthermore, the size of branch area captured in a photo was not standardised across the 

photographs, as the method was supposed to be rapid and easily used by citizen scientists 

conducting a walk around a site. Photographing stopped once the count data indicated all 

buds had expanded leaves. 
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Images were stored as JPEGs (4608 x 3456) and analysed using the open access software 

ImageJ (Rueden, 2016). The Region of Interest (ROI) manager was used to ensure the area 

contained in the image for each tree section was consistent for each date, and to remove 

any influence of neighbouring trees in the image periphery. To estimate crown greening, 

red, green and blue colour channels were separated and analysed independently. The 

analysis was done using the multi-measure tool in the ROI manager to derive mean digital 

numbers (DN) representing intensity for each colour channel. The Greenness Index for 

each image was calculated using equation (2), after Richardson et al. (2007). 

 

                     
        

                        
   

(2) 

Greenness Index values were then standardised on a proportional scale using equation (1), 

to provide a time-series of crown greening from 0 (no leaves) to 1 (maximum green signal). 

In this case,   in equation (1) is the Greenness Index proportion on a given DOY,   is the 

absolute Greenness Index value on that DOY,          is the minimum Greenness Index 

value (i.e., from the first photo in the series where the crown section had no budburst), and 

         represents the highest Greenness Index value in the photo series. As well as 

obtaining time-series for each crown section, proportions were averaged across the three 

crown sections to obtain a single time series of crown greening for each photographed tree.  

 

3.2.2 Deriving phenological metrics from time-series data 

A range of phenological metrics were derived from the time-series data―for crown 

sections, whole tree crowns and species―using data from observational and photographic 

methods. In addition to first budburst DOY and first leaf expansion DOY obtained from 

visual observation of the whole crown, leaf expansion completion was determined as the 

DOY when it was first observed that leaf expansion exceeded 95% (hereafter referred to as 

completion DOY). I then fitted each time series using a logistic growth model, to identify 

when leaf expansion reached the half maximum (hereafter referred to as 50% DOY) and to 

characterise the rate of the leaf expansion process. Time to leaf expansion was then 

calculated as the number of days from first budburst to 50% DOY. 
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Logistic growth uses non-linear regression to fit a sigmoidal curve, equation (3): 

 

   
  

                 
 

(3) 

where   is the response variable (proportion of leaf expansion),   is the predictor variable 

(DOY), and   ,    and    are the model fitting parameters (Fox and Weisberg, 2011).    is 

the upper asymptote. As the data were based on proportions,    was fixed at 1, as this was 

the maximum possible value. Two biologically meaningful parameters are derived from the 

model: the rate parameter (  ) and the half-maximum (ψ).  The rate parameter is based on 

the steepness of the curve at its mid-point and represents the proportional increase per 

day. The half-maximum is a measure of timing, and represents the DOY when leaf 

expansion (or greenness) reaches 50%, calculated as ψ =      , and hereafter referred to 

as 50% DOY. Standard error and statistical significance of model parameter estimates were 

assessed to provide a measure of confidence in the model fits for each data set. All logistic 

models were fitted using the car package and nls function in R (Fox and Weisberg, 2011).   

Finally, I generated time-series to explore the effect of interval time between sampling days 

(temporal grain) on 50% DOY and rate values from count and percentage estimate data. 

The original data was collected every other day (two-day temporal grain), so temporal 

grains of four-days and six-days were simulated by removing data for different DOYs. 

Regardless of when leaf expansion began for each tree, the start date for different temporal 

grains was held constant at DOY 107 for all time-series (which was the DOY when leaf 

expansion was first observed across the monitored trees), as in practise individual trees 

would be monitored on the same days. Where the DOY for          was removed as a 

result of altering the temporal grain, I inserted the maximum value on the next DOY when 

data collection would have been carried out. I then re-ran the logistic growth model for 

each tree.  

3.2.3 Statistical analyses 

Linear regression was used to explore relatedness between first budburst DOY, first leaf 

expansion DOY, 50% DOY and completion DOY, based on observational methods (count 

and percentage estimates). To explore whether these different metrics (and methods) 
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identified similar phenological patterns between species, separate one-way analysis of 

variance (ANOVA) tests were carried out for each metric and method, followed by pairwise 

comparisons of species using Tukey Honestly Significant Difference (HSD) tests. One-way 

ANOVA and Tukey HSD tests were also used to identify whether the time to leaf expansion 

(i.e., from first budburst to 50% DOY) was consistent between species. 

Linear regression was then used to explore relatedness between 50% DOY and rate metrics 

from counts, percentage estimates and photograph data. Where relationships were 

identified, paired t-tests were conducted to assess whether the methods produced 

statistically similar values of 50% DOY and rate for individual trees. Finally, Linear 

regression and paired t-tests were used to compare 50% DOY and rate metrics derived 

from the 2-day temporal grain, with those derived from reduced temporal grains. All 

statistical analyses were carried out in R 3.3 (R Core Team, 2016) .  

 

3.3 Results 

3.3.1 Comparison of phenological patterns from first event dates vs. time-

series data 

Species were different in terms of first budburst dates (Table 3.1, Fig. 3.1 A), with pairwise 

comparisons showing that ash budburst was significantly later than oak (p = 0.003) and 

sycamore (p = 0.045), but all other species were similar (p >0.05). However, considerably 

different results were obtained from leaf expansion data. There were significant differences 

between species in terms of first leaf expansion and 50% DOY (Table 3.1, Fig. 3.1 BD), but 

ash was similar to all other species (p > 0.05). According to first leaf expansion dates, beech 

and oak were significantly different (p = 0.027) as were sycamore and oak (p = 0.015), with 

oak leaf expansion beginning later than the other two species. However, using the 50% 

DOY only oak and sycamore were different, with oak leafing later than sycamore (p = 0.036 

based on visual estimate of percentage leaf expansion across the whole crown, and p = 

0.037 based on counts of leaf expansion on three crown sections). Using the completion 

DOY metric, differences between species were only significant based on visual estimates of 

percentage leaf expansion across the whole crown (Table 3.1, Fig. 3.1 IJ), with oak being 

significantly later than sycamore (p = 0.046) but all other species were similar (p > 0.05). 
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As well as identifying differences between species, it is clear that there is considerable 

variation within species (Fig. 3.1). Ash is the most variable species in terms of first 

budburst dates, with a 30 day difference in budburst timing from the earliest to the latest 

individual (Fig. 3.1 A). Other species showed lower intra-species variation in budburst 

timing (16–19 days). Both oak and ash were highly variable in terms of first leaf expansion 

(varying by 22–28 days respectively, Fig. 3.1 B). However, oaks were much more consistent 

in terms of leaf expansion 50% DOY and completion DOY (Fig. 3.1 CD and IJ). Ash 

remained highly variable throughout the whole process of leaf development, with ash 

individuals being both the earliest and latest trees among all species to achieve full leaf 

expansion (Fig. 3.1 IJ). Beech individuals were fairly consistent in their first budburst and 

leaf expansion dates, though variability increased as leaf expansion progressed. Sycamore 

individuals were consistent in first budburst and completion of leaf expansion, but varied 

considerably at the start of leaf expansion and in their 50% DOY. 

There was a significant difference between oak and all three other species, in the time 

taken from first budburst to 50% DOY (Table 3.1, Fig. 3.1 EF), with oak taking significantly 

longer to achieve leaf expansion than the other three species. However, no significant 

differences were found between species in the time taken from first leaf expansion to 50% 

DOY, indicated by the similar rates of leaf expansion (Table 3.1, Fig. 3.1 GH). While the 

relationship between all metrics of leaf expansion timing, including first leaf expansion 

dates, were strongly related (all R2 > 0.80, p < 0.001), the relationship between first 

budburst dates and leaf expansion appears curved, and was poorly explained by a linear 

model (Fig. 3.2; R2 = 0.40, p < 0.001 based on counts, R2 = 0.42, p < 0.001 based on 

percentage estimates). This result indicates that trees with later budburst tended to 

expand leaves more rapidly than trees with earlier budburst. 

3.3.2 Comparison of methods for obtaining time-series data 

All time series data from count and percentage estimate methods could be fit to the logistic 

model, obtaining model parameters with low standard error and high significance, 

indicating good model fits (Appendix 3.1: Tables A3.1 and A3.2). Count and percentage 

estimate methods were highly related in terms of the 50% DOY values calculated from 

their respective logistic model fits (R2 = 0.97, p< 0.001) and produced statistically similar 

values for individual trees (Table 3.2). The overall model fits produced by the two methods 
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for each species were almost identical (Fig. 3.3). Both methods identified very similar 

phenological patterns across species based on 50% DOY and completion DOY (Table 3.1, 

Fig. 3.1). They also identified similar rates of leaf expansion between species, though the 

count method showed higher variability of leaf expansion rate for beech and sycamore (Fig. 

3.1, G–H). However, estimates of leaf expansion rate from the two methods were found to 

be statistically similar (Table 3.2). 

Of the ten trees included in the photograph trial, data from two trees were excluded 

because they were affected by foliage expansion of neighbouring trees, such that it was 

impossible to separate leaves of the target tree from other tree(s) in the image frame. This 

left eight time series of whole individual tree crowns, with greening based on the average 

of three crown sections, and 24 time-series of individual crown sections. I was able to fit 

logistic models to all but one crown section time-series. Parameter estimates for three 

models based on crown section Greenness Index were not significant (p > 0.05), indicating 

poor model fits. Parameter estimates for the remaining 20 time-series of crown sections 

indicated good model fits (p < 0.05). Logistic models based on eight time-series of 

Greenness Index values for whole crowns produced good fits with significant parameter 

estimates and low standard error (Appendix 3.1: Tables A3.3 and A3.4). Statistical 

comparisons between counts and photographs of crown sections showed that 50% DOY 

values were related (Fig. 3.4, R2 = 0.76, p <0.001), and actual 50% DOY values were 

statistically similar (paired t-test: t19 = 0.10, p = 0.923). However, there was no relationship 

between the rate parameters from the two methods (R2 = 0.01, p = 0.696).  

After removing every other observation from the time-series to simulate a four-day 

temporal grain, logistic models could be fitted to all forty time-series based on percentage 

estimate data, and to thirty-seven time-series based on count data (Appendix 3.1: Tables 

A3.5 and A3.6). The three time-series that could not be fitted with the logistic model (one 

from beech and two from oak) had only three data points remaining after removal of every 

other observation, since leaf expansion occurred very rapidly in those individuals. Using 

the 4-day temporal grain, 50% DOY and rate values were highly similar to values obtained 

from the 2-day temporal grain, for both percentage estimate and count data (Table 3.2). A 

six-day temporal grain was tested, but ten logistic models based on count data failed to run 

due to there being only three data points remaining (Appendix 3.1: Table A3.7). Using 
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estimate data, the six-day temporal grain still produced model fits for all but one time-

series, but two further time-series had non-significant parameter estimates (Appendix 3.1: 

Table A3.8).  
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Table 3.1. Differences between tree species, according to different phenological metrics and methods of estimation, based on one-way ANOVA and Tukey 
HSD pairwise comparisons.  BB refers to budburst and LE is leaf expansion. Time to 50% DOY is the time taken from first budburst to reach the 50% DOY 

(i.e., 50% leaf expansion). Significant differences are in bold text. 

 

 
*Kruskal-Wallis test used instead of ANOVA due to non-normal distribution of residuals 

 

 

 

Metric Method of estimation df F p 
Ash-

Beech 
Ash-
Oak 

Ash-
Sycamore 

Beech-
Oak 

Beech-
Sycamore 

Oak-
Sycamore 

First BB Whole crown % estimate 3 5.41 0.004 0.098 0.003 0.019 0.515 0.893 0.905 

First LE Whole crown % estimate 3 4.74 0.007 0.228 0.749 0.148 0.027 0.995 0.015 

50% DOY Count of 3 crown sections 3 2.91 0.048 0.814 0.737 0.292 0.244 0.798 0.037 

50% DOY Whole crown % estimate 3 3.04 0.042 0.735 0.789 0.243 0.223 0.815 0.036 

Completion DOY Count of 3 crown sections 3 2.78 0.055 0.819 0.631 0.433 0.182 0.913 0.046 

Completion DOY Whole crown % estimate 3 2.96 0.045 0.867 0.623 0.362 0.212 0.814 0.033 

Rate of LE Count of 3 crown sections 3 0.33 0.814       

Rate of LE Whole crown % estimate * 3 
 

0.400       

Time to 50% DOY Count of 3 crown sections 3 45.03 <0.001 0.985 <0.001 0.168 <0.001 0.310 <0.001 

Time to 50% DOY Whole crown % estimate 3 22.79 <0.001 0.177 <0.001 0.440 <0.001 0.940 <0.001 
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Table 3.2. Comparison of methods for deriving time-series data on tree leaf development. The relationship between methods is explored with regressions, 
and the proportion of variation explained (R2) and statistical significance (p) is shown. Where relationships existed, paired t-tests were carried out to assess 

differences between absolute values. Methods with statistically similar values according to the paired t-test are highlighted in bold.   

 

            Regression  Paired t-test 

Method comparison Metric R2 p  df t p 

Counts vs  
Whole crown percentage estimates 

50% LE 0.97 <0.001  39 0.083 0.935 

Completion of LE 0.96 <0.001  39 2.811 0.008 

Rate of LE 0.55 <0.001  39 0.609 0.546 

Counts vs Photos  
(Greenness Index) 

50% LE 0.76 <0.001  19 0.098 0.923 

Rate of LE* 0.01 0.696     

2-day  v 4-day temporal grain  
(Counts) 

50% LE 0.99 <0.001  36 1.320 0.195 

Rate of LE 0.88 <0.001  36 -0.921 0.363 

2-day v 4-day observation frequency 
(Whole crown percentage estimates) 

50% LE 0.99 <0.001  39 0.073 0.942 

Rate of LE 0.89 <0.001  39 -1.787 0.082 

  

   

 *Wilcoxon signed rank test used as variances not equal 
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Fig 3.1. Comparison of phenological patterns for four tree species, derived from different metrics and 
methods: A = First budburst dates; B = First leaf expansion dates; C = 50% DOY (from percentage 

estimates); D = 50% DOY (from counts); E = Time from first budburst to 50% DOY (from percentage 
estimates); F = Time from first budburst to 50% DOY (from counts); G = Leaf expansion rate (from 

percentage estimates);  H = Leaf expansion rate (from counts); I = Completion DOY (from percentage 
estimates); J = Completion DOY (from counts). On the box and whisker plots, the horizontal line shows 

the median, the box represents values within the 25–75% quartiles, and the error bars show the 
minimum and maximum values. Species with statistically similar patterns share a lower case letter. 

Statistics are provided in Table 3.1.  
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Fig. 3.2. Relationship between first budburst dates and 50% DOY for the four tree species. A = 50% 

DOY from percentage estimate data; B = 50% DOY from count data. 

 

First Budburst DOY 
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Figure 3.3. Logistic growth models showing overall model fits for each species based on count and 

percentage estimate data. Dashed lines show the 50% DOY. The model parameter values along with 
their standard error and significance are reported in the table below to give an indication of goodness 

of fit. For the 50% DOY parameter the model only gives the standard error. 

 

 

Species Method ѳ2 SE p ѳ3 SE p 50% DOY SE 

Ash 
% estimate -18.72 0.88 <0.001 0.14 0.007 <0.001 130.2 0.36 

Count -19.11 0.89 <0.001 0.15 0.007 <0.001 129.8 0.35 

Beech 
% estimate -23.43 0.76 <0.001 0.19 0.006 <0.001 125.9 0.19 

Count -24.05 1.38 <0.001 0.19 0.011 <0.001 126.8 0.33 

Oak 
% estimate -33.53 1.24 <0.001 0.25 0.009 <0.001 133.6 0.17 

Count -33.68 1.12 <0.001 0.25 0.008 <0.001 133.6 0.15 

Sycamore 
% estimate -22.46 1.38 <0.001 0.18 0.011 <0.001 123.1 0.37 

Count -21.18 1.36 <0.001 0.17 0.011 <0.001 123.2 0.41 
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Fig 3.4. Comparison of 50% DOY values from visual counts of leaf expansion on tree sections and 

50% DOY values from photo-derived greenness index on tree sections. Data is from counts and 
photos of 20 crown sections across eight different trees. The left-hand plot shows the relationship 

between 50% DOY values (R2 = 0.76, p < 0.001). The right-hand plot shows the range of 50% DOY 
values from each method: the horizontal line shows the median, the box represents values within the 

25–75% quartiles, and the error bars show the minimum and maximum values. 
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3.4 Discussion  

This study suggests that first budburst dates could give unreliable information on the 

timing of canopy development, with important implications for studies of forest 

ecosystem dynamics. The order in which species reached first budburst did not reflect 

the order in which they reached 50% or full leaf expansion. Oak was a particularly 

notable case in this study, taking on average twice as long to reach 50% leaf expansion 

after first budburst, compared to all three other species. Interestingly this was not 

reflected in a difference in the rate of leaf expansion, which was based on time from first 

leaf expansion to 50% expansion, suggesting the delay was instead between first 

budburst and first leafing. As well as differences between species, there was also intra-

species variation in the time taken from first budburst to 50% DOY. The curved 

relationship between first budburst dates and 50% DOY was noticeable for all species, 

particularly ash, demonstrating a tendency for individuals with later budburst to leaf 

more rapidly than conspecific individuals with earlier budburst, as has been observed 

elsewhere (Cole and Sheldon, 2017). Given that first budburst dates were a poor 

predictor of leaf expansion timing, I suggest that caution should be exercised when 

interpreting first budburst dates, as they do not fully characterise the trajectory of 

canopy development, or necessarily signal the order in which tree canopies mature. 

While first leaf expansion dates show more similar patterns to 50% DOY, they still 

identify a different ordering of phenology between species, and show different patterns 

of intra-species variation. In order to predict impacts of changing phenology on 

ecosystem processes and function, data sets that encapsulate the entire process of 

canopy development are critical. There will also be benefits to other areas of climate 

science. Later stages of leaf expansion correspond more closely to remote sensing 

indices, so can help to validate satellite data (Elmore et al., 2016; White et al., 2014). In 

addition, finer-scale detection of variation in leaf development timing between and 

within species will help to identify environmental cues for leafing phenology and 

improve predictive models for biosphere-climate modelling (Richardson et al., 2012).  

Given the variability within species and the small sample size in this study, it is not 

possible to say whether the pattern observed for oak exists more broadly. It is 

interesting to note that Morecroft et al. (2003) found that a studied population of 

Quercus robur took two months from budburst to reach peak photosynthetic activity, 
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suggesting that peak photosynthesis does not occur until well into summer. Satellite 

and near-surface remote-sensing data have also indicated that onset of peak 

photosynthetic activity lags canopy greening (Richardson et al., 2007), though usually to 

a lesser extent than reported by Morecroft et al. (2003). It would be interesting to 

identify whether other populations of oak show similar patterns to those observed in 

this study, and to what extent the delay in photosynthetic activity is a function of slow 

leaf expansion versus changes in leaf physiology after full canopy development. More 

studies incorporating monitoring of photosynthetic development for different species 

and populations will also be important, to improve understanding of the relationship 

between leaf expansion and photosynthesis, and how this varies between species.  

In this study, there were no differences identified between species in terms of leaf 

expansion rate, but there was substantial intra-species variation. The majority of 

phenology studies focus on timing metrics, and the rate of a process is often ignored 

(Brown et al., 2017). However, these results indicate that by not considering leaf 

expansion rate, important information on within-species variability could be missed. 

The degree of variation in leaf expansion rate within a species could have important 

implications for fitness and resilience in a population. For example, two trees sharing 

similar 50% DOYs could have very different leaf emergence timing, making one 

individual more vulnerable to spring frosts and herbivory damage. This supports the 

argument that methods that collect time-series data are preferable to event monitoring.  

Considerable intra-species variation was also observed in leaf expansion timing, in 

agreement with other studies that have monitored multiple individuals of a species at a 

single site (Capdevielle-Vargas et al., 2015; Cole and Sheldon, 2017; Delpierre et al., 

2017). The level of intra-species variation itself varied between phenophases, further 

highlighting that snapshot assessments of tree phenology can be misleading. Ash was 

particularly variable in terms of both budburst and leaf expansion timing. Interestingly, 

in this study there was no significant difference in leaf expansion timing between ash 

and sycamore, though ash is typically a late-leafing species while sycamore is typically 

an early-leafing species (Morecroft et al., 2008; Roberts et al., 2015; Sparks and Carey, 

1995). This variability in ash, if widespread, could increase its resilience to climate 

change, notwithstanding other threats. However, it is likely that intra-species variation 
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masked differences between these species that might be identified with a larger sample 

size. This has been a finding of other studies (Cole and Sheldon, 2017), and backs up the 

need for methods that enable high levels of within-site and within-species replication. 

While ten individuals is the recommended minimum sample size by the USA-NPN 

(Denny et al., 2014), I recommend that larger sample sizes be used where possible 

(Elmendorf et al., 2016) and that data from these studies be used to identify ideal 

minimum samples sizes for target species.  

Logistic growth models have been widely used to characterise the phenology of 

landscapes and forest stands from remote sensing data (Calders et al., 2015; Richardson 

et al., 2007; Zhang et al., 2003), and can also be fitted to the shorter time-series obtained 

from individual trees. Even when the data set was reduced by removing every other 

observation, the model still provided very similar estimates of 50% DOY and rate. The 

instances when the model failed to fit the data was where leaf expansion occurred very 

rapidly, leaving only three data points. In one of the time-series only four data points 

remained after removal of observations, but the model still produced a fit, though 

parameter estimates had higher standard errors. With five data points, the model 

performed well. This indicates that for individual trees, where the time series is 

relatively short, observations carried out every four days are sufficient to detect 

phenological patterns with good accuracy, but less frequent observations could reduce 

accuracy and limit the potential to model the phenological process using this approach. 

Having highlighted the benefits and potential for collecting time-series data for 

individual trees, reliable methods for obtaining this data are needed. In comparing 

observational methods, I found that observing three relatively small sections of a tree 

gives comparable results to assessments of a whole tree crown. This is promising, as 

three sections can be assessed relatively quickly, and though more time consuming than 

a single estimate of a tree crown, observer bias may be reduced by the increase in 

objectivity (Galloway et al., 2006; Vittoz et al., 2010). However, the trees included in this 

study were relatively small mature trees. It follows that the comparability between 

counts of three crown sections and whole crown estimates could decrease as crown size 

increases, as a smaller proportion of the total crown is assessed. That said, large trees 

pose problems for phenology monitoring generally, both in terms of viewing buds in 
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order to make counts, and in terms of making accurate estimates (Fuccillo et al., 2015; 

Vittoz and Guisan, 2007). Trials of count and estimate methods are needed with citizen 

scientists, to determine levels of error associated with both approaches, and the extent 

to which this varies with crown size, height and species. 

Based on this study, ground-based photography offers potential to supplement data 

collection on individual tree phenology, though a number of issues need to be 

considered. Firstly, in a forest situation, the position from which photographs are taken 

must be carefully chosen. Two time-series had to be excluded because of the influence 

of background foliage, despite efforts taken prior to onset of leaf expansion to choose 

branch sections that would be unimpeded by surrounding vegetation. Given the 

potential difficulty in selecting appropriate regions to photograph, the use of fixed 

camera mounts (University of New Hampshire, 2017) might be necessary if this method 

was to be used with citizen scientists. This would also ensure photos were taken of the 

same branch sections, and would increase feasibility of obtaining complete time-series, 

as different surveyors could be involved in image capture.   

The greenness index data was comparable to visual observations in terms of 50% DOY 

but not rate. Previous studies using fixed cameras on canopy towers, found greenness to 

be closely related to leaf expansion, though in one study greenness identified earlier 

50% DOY than visual observations (Mizunuma et al., 2011). Greenness is a function of 

both leaf expansion and pigment changes, so while related, leaf expansion and 

greenness are different (Keenan et al., 2014a). This must be borne in mind when 

interpreting data from different methods. Greenness index data is an additional 

measure of leaf development, and should be seen as complementary to leaf expansion 

data, rather than a substitute for it.  Furthermore, it is important to note that there was 

considerable variability within some of the time-series, resulting in poor model fits for 

three of the crown sections. This is likely due to day-to-day fluctuation in solar 

radiation, affecting image lighting (Mizunuma et al., 2011; Richardson et al., 2007), and 

also limitations in the quality of the consumer-grade digital camera used (Richardson et 

al., 2007). The selection of appropriate camera angles can help minimise the influence of 

light conditions (Inoue et al., 2014). This further emphasises that fixed camera mounts 

are likely to be necessary to ensure data quality with this method. 
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3.5 Conclusions  

Citizen science phenology monitoring has the potential to provide large-scale data at 

fine resolutions, to help understand how tree leaf phenology varies according to a range 

of environmental and genetic factors. However, to do so effectively requires the 

collection of time-series data to track the development of individual tree crowns. 

Reliance on first event dates can lead to misinterpretation over the ordering of leaf 

development among species, and provides no indication of leaf development rate. Fixed 

mount photography from the ground could be used to supplement data on canopy 

greening currently collected through projects such as the Phenocams network. With 

technological development, consumer-grade digital cameras and smartphone cameras 

are becoming increasingly advanced in their capabilities, which could enhance future 

prospects for obtaining reliable data on canopy greening. However, further work is 

needed in this area, to ensure good data quality from handheld photography of 

individual tree crowns. Therefore visual observations remain the most viable option for 

widespread data collection on individual tree phenology at present.  Further research is 

needed to assess volunteer accuracy using counts and percentage estimates to quantify 

leaf expansion.  
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4  A comparison of ground-based methods for 
estimating canopy closure for use in 

phenology research  
Smith and Ramsay (2018), Agricultural and Forest 
Meteorology, 2018, Vol 252: 18–26. 

 

4.1 Introduction 

Climate change is affecting forest ecosystems around the globe, with changes in tree 

phenology widely documented for temperate forests (Richardson et al., 2013; Roberts 

et al., 2015; Vitasse et al., 2011). Growing season extensions have been observed for 

many European tree species, most notably due to canopies coming into leaf earlier 

(Menzel and Fabian, 1999; Menzel et al., 2006; Thompson and Clark, 2008). The 

phenology of dominant canopy trees exerts strong influence on the understorey 

environment, as canopy openness is highly related to available photosynthetically active 

radiation (PAR) (Brusa and Bunker, 2014; Gonsamo et al., 2013; Promis et al., 2012), 

influencing microclimate, soil respiration (Giasson et al., 2013; Yuste et al., 2004) and 

understorey plant dynamics (Van Couwenberghe et al., 2011). Therefore, earlier canopy 

closure and later senescence is likely to have wide-ranging impacts on the phenology 

and life processes of understorey plants and wider forest biodiversity. Studies have 

indicated threats to spring ephemeral herbs that utilise the period before canopy 

closure for completing their life cycle (Kim et al., 2015). Many tree saplings depend on 

spring sunlight prior to canopy closure for their growth and survival (Augspurger, 

2008). Understorey species that are shade tolerant or those with greater phenological 

plasticity are likely to gain competitive advantage (De Frenne et al., 2011), and invasive 

species could become more prevalent (Engelhardt and Anderson, 2011; Willis et al., 

2010). As canopy openness is a key determinant of ecological processes in the 

understorey, effective methods for monitoring intra and inter-annual changes in the 

timing of canopy closure/openness would be very useful, especially if they allowed data 

to be collected across a variety of spatial scales, and with plenty of replication.  

Canopy phenology has been extensively studied in recent years. Satellite remote sensing 

has enabled data collection of forest leaf phenology at large spatial scales (Boyd et al., 
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2011; Wang et al., 2016; White et al., 2009; Wu and Liu, 2013; Zhang et al., 2005). These 

methods focus on deriving estimates of canopy green-up dates from Normalised 

Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI) data, for the 

purpose of tracking photosynthetic activity to assess forest productivity, gas exchange 

and phenological feedbacks to the climate system (Richardson et al., 2013). While 

remote sensing data is useful for identifying large-scale phenological trends, the coarse 

resolution means that local variations between forest stands are often masked (Fisher 

et al., 2006; White et al., 2014). Furthermore, loss of temporal resolution due to 

atmospheric conditions (Cleland et al., 2007b; White et al., 2014), and difficulties 

separating greening of the understorey from canopy greening (Hamunyela et al., 2013), 

can compromise the use of this data for identifying shifts in canopy closure timing.  

A range of ground-based methods have been used to assess canopy structure and 

understorey light environments at the forest-level. Direct measures of understorey light 

are highly affected by sky conditions and accurate determination requires continuous 

measurement over several days (Engelbrecht and Herz, 2001; Gendron et al., 1998). 

This makes direct measurements inappropriate for phenology studies where the 

objective is to assess variation through time. As an alternative, hemispherical 

photography and Plant Canopy Analysers (PCAs) such as the LAI-2200, are commonly 

used to assess structural attributes of forest canopies (Frazer et al., 1997; Gonsamo et 

al., 2013; Hale and Edwards, 2002; Rich, 1990). Both instruments incorporate an 

extreme wide angle view to measure gap fraction – defined as the proportion of 

unobstructed sky in a given region of the projected image plane (Frazer et al., 1997) –  

at multiple zenith angles. For estimating understorey light levels, particularly during 

spring, wide viewing angles are an advantage as sunlight largely penetrates the canopy 

below the zenith. Using gap fraction measurements, Leaf Area Index (LAI) and canopy 

openness can be determined. 

LAI is the most widely used metric of canopy structure (Jonckheere et al., 2005; Weiss et 

al., 2004), though it is also one of the most difficult to characterise accurately (Bréda, 

2003). LAI is defined as one half the total green leaf area per unit ground surface area 

(Chen and Black, 1992). Hemispherical photography and PCAs assess the whole canopy 

as viewed from a single point, using gap fraction inversion principles and radiative 
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transfer theory respectively (Chen et al., 1997; Macfarlane et al., 2007; Woodgate et al., 

2015). As such, LAI derived from optical methods actually characterises ‘Plant Area 

Index’ (as trunks and branches are included as well as leaves), and is highly related to 

understorey light levels (Bréda, 2003; Jonckheere et al., 2004). However, both methods 

are costly, particularly PCAs, which in addition to high instrument costs, require 

simultaneous reference light readings outside the canopy. This is problematic in forests, 

as a wireless set up or remote data loggers are needed, adding additional resource 

implications and making the method impractical for large-scale use (Bréda, 2003). 

Furthermore, both methods for estimating LAI assume that canopy elements are 

randomly distributed. In reality, a degree of ‘clumping’ occurs both within and between 

plant canopies (Bréda, 2003; Chen et al., 1997; Ryu et al., 2010; Weiss et al., 2004). The 

degree of clumping varies depending on forest type and structure, and also shows 

strong seasonal variation according to the phenological stage (Ryu et al., 2010). 

Therefore accurate LAI estimation requires determination of a clumping index for a 

given canopy at a given time of year, and specialist equipment and/or software is 

required (Chianucci et al., 2015; Ryu et al., 2010).  

Digital Cover Photography (DCP) using ordinary digital cameras can also be used to 

estimate LAI following the method proposed by Macfarlane et al. (2007). This method 

has a number of advantages as specialist equipment and software are not required, 

though a number of steps are involved in analysis to calculate effects of foliage clumping 

(Chianucci et al., 2014; Macfarlane et al., 2007). DCP has been successfully used to track 

canopy development in phenological studies concerned with photosynthesis and gas 

exchange (Ryu et al., 2012). However, the restricted viewing angle of DCP is less 

appropriate for tracking the progress of canopy closure, where the objective is to assess 

change in the relative timing of shading in the understorey. Although LAI is highly 

related to understorey light (particularly where it is based on gap fraction at multiple 

zenith angles) it is primarily used to quantify ecosphysiological attributes of forest 

canopies (photosynthetic and transpiration rates) to study climate-biosphere 

interactions (Bréda, 2003; Chen et al., 1997; Jonckheere et al., 2004; Macfarlane et al., 

2007; Woodgate et al., 2015). Where the aim is to track changes in relative canopy 
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closure to determine temporal variability in understorey light, canopy openness is a 

more appropriate and straightforward metric to use (Brusa and Bunker, 2014). 

Canopy openness is the proportion of the entire sky hemisphere that is unobstructed by 

vegetation when viewed from a single point (Jennings et al., 1999), and is highly 

correlated with understorey light (Brusa and Bunker, 2014; Gonsamo et al., 2013; 

Pellikka, 2001; Promis et al., 2012; Roxburgh and Kelly, 1995; Whitmore et al., 1993). 

Hemispherical photography has been widely used to assess canopy openness, 

representing the sum of all gap fraction values, weighted according to zenith angle, and 

multiplied by 100 to give a percent visible sky value (Frazer et al., 1997). The advent of 

digital cameras and their increasing availability has made hemispherical photography 

more widely available for forest science (Brusa and Bunker, 2014; Frazer et al., 2001; 

Hale and Edwards, 2002; Inoue et al., 2004). However, cost and resource implications 

still preclude many forest managers from using it as a monitoring tool. While 

hemispherical photography does not require reference light readings to be made, 

images must be taken under specific weather conditions―on dry, still days, without 

direct sunlight, normally early or late in the day, or on a day with uniform overcast skies 

(Rich, 1990). This places considerable constraint on when data can be collected. Once 

images have been obtained, analysis can be time-consuming and expensive. Though free 

specialist software programmes now exist that provide comparable results to 

professional software (Promis et al., 2011), expertise is still required. Overall, the 

technique is prohibitively expensive, in terms of cost and time, for phenology studies 

that require high levels of replication.  

A variety of cost-effective, rapid assessment alternatives to hemispherical photography 

have been used to assess canopy openness, including photography without a fisheye 

lens (Pellikka, 2001), the canopy scope (Brown et al., 2000), and simple visual 

estimations (Jennings et al., 1999). These methods differ in their view zenith angle; 

therefore canopy openness in this context is defined as the proportion of unobstructed 

sky within the total area viewed. While these methods are used to characterise coarse-

level variation in canopy openness, their ability to detect fine-scale changes in canopies 

through time needs to be assessed. Another option has emerged in the last few years 

with the rise of smartphones that have high resolution cameras. Inexpensive fisheye 
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lens attachments for smartphones have recently become available for less than US$10. 

Smartphone photography, if reliable, could provide an efficient means of collecting large 

quantities of data on the timing of canopy closure using citizen science.  

The use of citizen science has proven highly successful in other areas of phenological 

research, including observational studies of plant bud-burst and leaf-out timing 

(Collinson and Sparks, 2008; Jeong et al., 2013; Mayer, 2010). The widespread and 

increasing ownership of smartphones means that many people now carry sophisticated 

cameras, making them ideal citizen science tools. However, a considerable range of 

makes and models exist. These vary in their camera specifications (e.g., resolution, 

focussing capability and angle of view), which could affect canopy openness estimations 

(Frazer et al., 2001; Inoue et al., 2004; Jennings et al., 1999). Therefore, for this method 

to be practical for large-scale use, different makes and models of smartphone need to 

give comparable estimations.  

In this study, we compared canopy openness values (% visible sky) from hemispherical 

photography, with estimates derived from visual estimation techniques and from 

smartphone photography, with and without the use of a fisheye lens attachment. Data 

were collected in winter, spring, summer and autumn, at fixed points across four 

broadleaved woodlands in south-west England, to assess the extent that surrogate 

methods can estimate variation in canopy openness. We then tested a basic means of 

analysing hemispherical photos and smartphone fisheye photos to derive canopy 

openness using non-specialist image analysis software. We did this by comparing 

simple canopy openness values (% visible sky) derived from the free image-analysis 

software, with weighted canopy openness values (% visible sky weighted as a function 

of gap fraction zenith angle) from professional specialist software. Recognising that 

different makes of smartphone camera might perform differently, we also compared 

three popular smartphone cameras in a separate trial. The different phone cameras 

were tested in broadleaved woodland under three levels of canopy density, and with 

multiple camera operators, to test reproducibility under different canopy conditions 

and with different users.  

Our overall objectives were: a) to identify whether any of the proposed surrogate 

methods provide reliable estimates of variation in canopy openness; b) to identify 
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whether non-specialist image analysis software can produce comparable estimates to 

specialist software; c) to test whether different smartphone camera models and 

different camera users yield similar canopy openness estimations. It is important to 

note that this study was not concerned with identifying methods to closely represent 

absolute values, since it has already been established that methods incorporating 

different view angles tend to give different absolute estimates of canopy openness 

(Bunnell and Vales, 1990; Cook et al., 1995). Our focus was to identify whether any of 

the alternative methods could reliably identify relative differences in canopy openness 

to monitor canopy closure timings, and promote data collection through large-scale 

citizen science.  

4.2 Methods 

4.2.1 Comparison of methods against hemispherical photography 

Trials took place in 2014 at four woodlands in Devon, England. The suite of sites was 

purposely chosen to represent a range of canopy/understorey light conditions, with 

varying aspect, composition and structure (Table 4.1). Six fixed sample points or 

‘stations’ were randomly selected in each of the four woodlands. At each station, canopy 

openness was estimated by a variety of methods in each season (related to leaf 

phenology): winter (no canopy), spring (around 50% leaf-out), summer (full canopy) 

and autumn (around 50% leaf-drop). All estimates were made concurrently for a 

woodland within each season, and the four woodlands all estimated within a week of 

each other. 

Hemispherical photography 

Hemispherical photographs were taken in colour using a Nikon Coolpix 990 3.34 MP 

camera with Nikon Fisheye Converter FC-E8 lens (Nikon Corporation, Tokyo, Japan). 

The circular fisheye lens provides a 180° field of view in all directions. Images were 

taken using the basic quality setting and stored in VGA-size, as canopy openness 

estimates are not affected by resolution or size settings with this camera model (Inoue 

et al., 2004). 

Photos were taken without rain or direct sunlight entering the lens (Rich, 1989). The 

camera was mounted on a tripod at 1.2 m above ground, and levelled using a circular 

bubble level. Pictures were taken using the camera timer function to reduce movement 
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during image capture (Rich, 1989). Aperture and shutter settings were set to automatic, 

and to minimise error from over-exposure (Brusa and Bunker, 2014; Hale and Edwards, 

2002), exposure was checked using the histogram function in the camera playback 

facility, following the method outlined by Beckschafer et al. (2013). Where over-

exposure was apparent, exposure settings were manually lowered to -2.0 EV, the 

minimum limit on this camera.  

Images were analysed in HemiView Canopy Analysis Software v.2.1 (Delta-T Devices, 

Cambridge, UK). The Coolpix 900 lens settings in HemiView were selected to correct for 

lens distortion (Hale and Edwards, 2002). Various options exist for classifying a 

photograph into “sky” and “not sky” (binarization), using image analysis software 

(Glatthorn and Beckschafer, 2014; Zhao and He, 2016). In HemiView, it is only possible 

to use manual thresholding of black and white pixels, so we followed this method, which 

has been widely used in other studies (Bertin et al., 2011; Capdevielle-Vargas et al., 

2015; Hale and Edwards, 2002; Machado and Reich, 1999; Zhang et al., 2005). Each 

photograph was individually processed to obtain the best contrast between vegetation 

and the background sky, by visual comparison with the original photograph (Rich, 

1990). A decision was made, based on visual assessment during threshold setting, 

whether each photo should be included in the analysis. If it was not possible to gain a 

good contrast between sky and vegetation across the whole image, that photo was 

excluded. Canopy openness—in HemiView, “% visible sky”— was then derived for each 

image by the software. In HemiView this value represents a weighted canopy openness 

score based on gap fraction zenith angles (Rich et al., 1999). 

Following analysis in HemiView, photos were also analysed using ImageJ (Rueden, 

2016). Photos were converted to 8-bit binary black (“not sky”) and white (“sky”) images 

in ImageJ. Following the same procedure as we used for photos in HemiView, the 

manual thresholding function in ImageJ was used to individually process each image 

and obtain the best contrast between vegetation and background sky. This was done 

with reference to the original photograph (Rich, 1990). Hemispherical photos consist of 

a circular image inside a rectangular frame. As ImageJ is not designed specifically for 

such images, it cannot automatically exclude the framing pixels as is possible in 

HemiView. Therefore to calculate canopy openness (the proportion of pixels classified 
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as sky) excluding the frame, we first calculated the number of pixels in a reference 

image containing only open sky. We then used the ‘batch measure function’ to calculate 

white (sky) pixels for all images, and calculated the canopy openness as a proportion of 

the circular hemispherical image, excluding the framing pixels. 

Smartphone photography with fisheye lens 

Photos were taken using a Sony Xperia L smartphone camera (Android Version 5.0) 

with magnetic fisheye lens attachment (Skimn FE-12 180° fisheye lens). Images were 

taken at 5 MP using a 16:9 aspect ratio – the camera’s default settings. Using these 

settings, the fisheye lens gave a 125° x 75° field of view. The smartphone was held level, 

with the wider view orientated east-to-west when taking photos of the canopy, to 

ensure comparable images were obtained for each season. Photographs were taken in 

manual mode, with exposure lowered to -2.0 EV, the minimum limit on the camera. 

Images were stored as high quality JPEGs, between 2–3MB in size. 

Smartphone fisheye photos were analysed in HemiView and ImageJ and visible sky 

values were calculated, following the same procedures outlined for hemispherical photo 

analysis. Lens equation coefficients relating zenith angles and radial distance were 

calculated from a calibration curve constructed from measurements taken from 

reference photographs. The resulting lens correction function (y = 1.2213x–

1.396x2+1.0855x3–0.2761x4) was used by HemiView to adjust the calculations to correct 

for lens distortion. 

Smartphone photography without a fisheye lens 

Smartphone photos were also taken of the canopy without the fisheye lens attachment, 

giving a 70° x 40° field of view. Photos were taken of the canopy directly overhead (with 

the wider view orientated east-west), and of the canopy facing in three different 

bearings from the station—at 60°, 180° and 300° (with the camera positioned in a 

landscape orientation at a 45° angle from the horizontal). All photos were taken using 

the same settings as the photos with fisheye lens attachment, and exposure settings 

were manually adjusted as previously described. Photographs were then analysed using 

ImageJ, following the same procedure for binarization, to derive a canopy openness 

estimation based on % visible sky. Two sets of canopy openness estimates were derived 
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from these photos: one based solely on the overhead canopy photo, and one calculated 

as an average from all four photographs to incorporate a wider area of view. 

Non-photographic methods 

Canopy openness was estimated visually on a simple percentage scale. Two sets of 

canopy openness estimates were derived, one based solely on an overhead estimation, 

and another based on an average of four estimations: one directly overhead, and at 

three different bearings from the station (60°, 180° and 300°) at a 45° angle from the 

horizontal.  

Brown et al. (2000) proposed a canopy scope to aid in the visual estimation of canopy 

openness. The scope consists of a simple Perspex sheet with a grid of twenty-five dots, 

spaced 3 cm apart in a 5 x 5 array. A 20 cm length of string is attached to the corner, and 

ensures the scope is held at a constant distance from the eyes when making estimations. 

Canopy openness was estimated by focussing the scope on the largest canopy gap 

visible from the station, and counting the number of dots coinciding with sky. This 

number was then multiplied by four to obtain a percentage estimate. Brown et al. 

(2000) found a close correlation between largest gap canopy openness and total canopy 

openness, but acknowledged that for woodlands with several similar sized canopy gaps, 

the largest gap estimate may not give an accurate representation. Two alternative 

estimates were made: one by pointing the canopy scope at the canopy directly 

overhead; and another by taking the mean of four canopy scope estimates (using the 

overhead estimate and estimates made from viewing the canopy at bearings of 60°, 

180° and 300° from north, at an approximately 45° angle from the horizontal). 

Statistical analysis 

We used linear regression to compare canopy openness derived from hemispherical 

photographs in HemiView, against each surrogate method. We first compared data from 

all seasons and sites together to assess which methods were able to estimate broad 

changes in canopy openness. We then compared methods on a season-by-season basis 

across the four sites, to understand whether methods were capable of estimating finer-

scale variation in canopy openness. We also conducted method comparisons on a site-

by-site basis using data from all four seasons, to assess whether methods performed 

well across the different woodlands.  
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For methods that performed consistently well across the comparisons, Analysis of 

Covariance (ANCOVA) was used to test whether the methods estimated canopy 

openness in similar ways under different conditions, with seasons and sites as 

covariates. A Tukey-Kramer test was used to explore differences that were found 

between seasons or sites. All statistical analyses were carried out in R 3.3 (R Core Team, 

2016). 

4.2.2 Comparison of smartphone models and operators 

Field imagery 

A second trial comparing smartphone models and phone users took place in mixed 

deciduous woodland at Mount Edgcumbe Estate, England (approximately 50°35’N and 

4°16’W), during summer 2016 when trees were in full leaf. Three sampling locations or 

‘stations’ were selected at the site, using visual assessment, to represent a ‘closed’, 

‘intermediate’ and ‘open’ overhead canopy. We tested two popular Smartphone cameras 

– the iPhone 5 and Samsung Galaxy S4 – against the Sony Xperia used in the previous 

trials, to assess the comparability of canopy openness estimates. Photos taken with the 

iPhone 5 had a resolution of 8 MP and an aspect ratio of 16:9, providing a 61° x 48° field 

of view. Photos taken with the Samsung Galaxy S4 had a resolution of 9.6 MP and aspect 

ratio of 16:9, providing a 57° x 34° field of view. Photos were stored as high quality 

JPEGS, between 2–3 MB in size.  

Twenty-two volunteers consecutively took an overhead photograph of the canopy with 

each camera, at each of the three stations. All photos were taken within a half-hour 

period. Volunteers were instructed to hold the phone at an estimated level position and 

take a photo of the canopy above, but were not told to orientate the phone in a 

particular direction, as we were interested to see the extent that individual user 

operation affected consistency in the results. Photos were analysed in ImageJ following 

the procedure outlined above. 

Statistical analysis 

The Aligned Rank Transform (ART) procedure in the R package ARTool (Kay and 

Wobbrock, 2016), followed by separate ANOVA using R 3.3 (R Core Team, 2016), was 

used to assess the effects of phone user, phone model and canopy treatment on canopy 

openness values. The ART procedure is an appropriate way to analyse datasets which 
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are not normally distributed, and is described in more detail by Wobbrock et al. (2011). 

We performed post hoc contrasts using estimated marginal means with the emmeans 

package (Lenth, 2017). 

 

4.3 Results  

4.3.1 Hemispherical photography with HemiView v other methods 

All hemispherical photos taken were suitably exposed in relation to sky conditions, for 

inclusion in the analysis, while four smartphone fisheye photos and six smartphone 

photos without the fisheye lens attachment were eliminated due to overexposure, out of 

96 photos in each case. 

Analysis of hemispherical photography with ImageJ produced reliable estimates of 

canopy openness values derived from analysis with HemiView (Table 4.2, Figs 4.1 A and 

D). With photos from spring, summer and autumn combined into a single ANCOVA 

analysis, the slope of the relationship was no different for all three seasons (Fig. 4.1 D, 

ANCOVA F2,66 = 2.55, p = 0.09). However, the intercepts of the relationships were 

significantly different (Fig. 4.1 D, ANCOVA F2,68 = 8.09, p < 0.001), with summer values 

estimated relatively lower than those of spring and autumn (Tukey-Kramer Test, 

summer v spring p = 0.004, summer v autumn p < 0.001, spring v autumn p = 0.864).  

None of the other methods closely estimated absolute canopy openness values derived 

from hemispherical photography, but all smartphone photographic methods reliably 

estimated relative differences in canopy openness across all seasons for all sites (Table 

4.2, Figs 4.1 B and C). The slopes of these relationships, which were all >1, indicate that 

smartphone fisheye photography results in higher estimates of canopy openness than 

hemispherical photography, and that the estimates differ more at higher values of 

canopy openness. During winter, when there were very high levels of canopy openness 

(mean = 37%, sd = 5%), smartphone fisheye photos did not correspond reliably to 

hemispherical photography (Table 4.2). This was also true for all other methods tested, 

and since winter is not a season where canopy change is expected and therefore not 

relevant to our aims, winter data were excluded from the rest of the analyses. Non-
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photographic methods (canopy scope and simple visual estimations) were much poorer 

estimators of change in canopy openness across all seasons and sites (Table 4.2). 

Smartphone with fisheye lens estimates taken in different seasons had similar slope 

relationships (Fig. 4.1 E, ANCOVA: F2,66 = 0.31, p = 0.73; Fig. 4.1 F, ANCOVA: F2,66 = 0.64, 

p = 0.53), but they varied in intercept (Fig. 4.1 E, ANCOVA: F2,64 = 33.56, p < 0.001; Fig. 

4.1 F, ANCOVA: F2,64 = 48.73, p < 0.001). For smartphone photographs analysed with 

HemiView canopy analysis software, spring and autumn intercepts were not 

significantly different (Tukey-Kramer p = 0.796), but both were significantly different 

from summer (p < 0.001 in each case). The same photographs analysed with ImageJ had 

different intercepts for each of the three seasons (spring v autumn p = 0.020, spring v 

summer p < 0.001, summer v autumn p < 0.001). 

Since smartphone fisheye photography and ImageJ analysis reliably estimated variation 

in canopy openness, we tested whether the methods performed consistently between 

different sites (Fig. 4.2). Hemispherical imagery analysed with ImageJ showed similar 

slope relationships across all sites (Fig. 4.2 A; ANCOVA: F3,64 = 1.17, p = 0.33), but 

significant differences in intercept (ANCOVA: F3,67 = 4.75, p = 0.005). The intercept of 

Hardwick was different from Hunshaw and Whitleigh (Tukey-Kramer Test, p = 0.018 

and p = 0.007), though all other intercepts were not different (p = 0.288 to 1.000).  

Smartphone with fisheye photography, whether analysed with HemiView or ImageJ, 

resulted in different slope relationships for Hardwick compared to the other sites (Fig. 

5.2 B, ANCOVA: F3,60 = 4.10, p = 0.010; Fig. 4.2 C, ANCOVA: F3,60 = 7.07, p < 0.001). As 

canopy openness increased, the estimates for Hardwick differed less from the 

hemispherical standard than the other sites. The intercepts of the other sites did not 

differ (Fig. 4.2 B, ANCOVA: F2,46 = 0.91, p = 0.41; Fig. 4.2 C, ANCOVA: F2,46 = 0.54, p = 

0.59). 

4.3.2 Comparison of smartphone models and operators 

The three canopy treatments (closed, intermediate and open) were clearly different 

from each other in terms of canopy openness, but it did not matter which phone model 

or user took the photos (Fig. 4.3, Aligned Rank Transform + ANOVA, p canopy < 0.0001, 

puser = 1.00 and pmodel = 0.50). However, variability in estimation of canopy openness 
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increased markedly as canopy openness increased. For the closed canopy, standard 

deviations of the estimates ranged from 0.79–1.46% canopy openness, but were much 

greater for the open canopy (7.42–12.43%). 
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Table 4.1. Site descriptions of woodlands used to compare methods for estimating canopy openness. All sites were located in Devon, England. 

 

Site Size 

(ha) 

Stand 

density 

(trees/ha) 

Average 

tree 

height 

(m) 

Aspect Dominant canopy 

species 

Dominant shrub layer 

species 

Hardwick Wood 

(50°22’N, 4°4’W) 
22 1360 16 Flat 

Acer pseudoplatanus, 

Fraxinus excelsior 

Acer pseudeoplatanus, Ulmus 

sp. 

Hunshaw Wood 

(50°55’N, 4°7’W) 
18 556 30 S 

Quercus robur with Fagus 

sylvatica sub-canopy 

Corylus avellana, Sorbus 

aucuparia 

Newton Mill 

(50°52’N, 4°15’W) 
25 456 35 NE Quercus robur 

Corylus avellana, Fagus 

sylvatica 

Whitleigh Wood 

(50°25’N, 4°8’W) 
20 1111 27 N 

Quercus robur and Betula 

pendula 

Corylus avellana, Fagus 

sylvatica, Acer pseudoplatanus 
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Table 4.2. Proportion of variation explained (R2) and statistical significance (p) for relationships between hemispherical photography analysed with HemiView 
and alternative methods. Relationships were considered separately for each season, as well as across all seasons together. 

Method All seasons Spring Summer Autumn Winter 

 

R2 p R2 p R2 p R2 p R2 p 

Hemispherical photo (ImageJ) 0.96 <0.001 0.85 <0.001 0.77 <0.001 0.94 <0.001 0.69 <0.001 

Smartphone fisheye photo (HemiView) 0.89 <0.001 0.83 <0.001 0.67 <0.001 0.79 <0.001 0.05 0.300 

Smartphone fisheye photo (ImageJ) 0.84 <0.001 0.74 <0.001 0.76 <0.001 0.66 <0.001 0.08 0.170 

Smartphone photo (overhead) 0.85 <0.001 0.57 0.002 0.43 <0.001 0.69 <0.001 0.04 0.380 

Smartphone photo (average of 4) 0.81 <0.001 0.15 0.410 0.60 <0.001 0.72 <0.001 0.02 0.490 

Canopy scope (overhead) 0.51 <0.001 0.24 0.240 0.01 0.170 0.41 <0.001 0.00 0.820 

Canopy scope (largest gap) 0.52 <0.001 0.2 0.029 0.20 0.030 0.33 0.003 0.00 0.850 

Canopy scope (average of 4) 0.55 <0.001 0.31 0.005 0.18 0.040 0.55 <0.001 0.00 0.910 

Visual estimation (overhead) 0.39 <0.001 0.01 0.740 0.05 0.280 0.31 0.005 0.06 0.260 

Visual estimation (average of 4) 0.52 <0.001 0.03 0.460 0.20 0.029 0.51 <0.001 0.04 0.350 
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Table 4.3. Proportion of variation explained (R2) and statistical significance (p) for relationships at each woodland, between estimates of canopy openness 
from hemispherical photography analysed with HemiView versus estimates from other methods. Photographs were included from spring, summer and 

autumn, but not winter. 

 

Method Hardwick Hunshaw Newton Mill Whitleigh 

 

R2 p R2 p R2 p R2 p 

Hemispherical photo (ImageJ) 0.97 <0.001 0.85 <0.001 0.98 <0.001 0.81 <0.001 

Smartphone photo fisheye (HemiView) 0.95 <0.001 0.86 <0.001 0.86 <0.001 0.86 <0.001 

Smartphone photo fisheye (ImageJ) 0.84 <0.001 0.80 <0.001 0.81 <0.001 0.86 <0.001 

Smartphone photo (overhead) 0.88 <0.001 0.78 <0.001 0.68 <0.001 0.85 <0.001 

Smartphone photo (average of 4) 0.92 <0.001 0.93 <0.001 0.70 <0.001 0.85 <0.001 

Canopy scope (overhead) 0.47 0.002 0.08 0.260 0.68 <0.001 0.19 0.072 

Canopy scope (largest gap) 0.42 0.004 0.22 0.049 0.73 <0.001 0.12 0.160 

Canopy scope (average of 4) 0.39 0.005 0.25 0.034 0.75 <0.001 0.16 0.100 

Visual estimation (overhead) 0.42 0.004 0.1 0.200 0.60 <0.001 0.01 0.630 

Visual estimation (average 4) 0.47 0.002 0.2 0.063 0.67 <0.001 0.01 0.740 
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Fig. 4.1. Canopy openness estimates from hemispherical photography with HemiView (HP+HV) compared with estimates from hemispherical photography 
with ImageJ (HP+IJ), smartphone fisheye photography with HemiView (SP+HV), and smartphone fisheye photography with ImageJ (SP+IJ). Figs A–C. 

Overall relationships across all seasons. R2 and statistical significance of these relationships is presented in Table 4.2.  Figs D–F. Separate relationships for 
each growing season (light green = spring, dark green = summer, dark red = autumn). 
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Fig. 4.2. Canopy openness by woodland, across spring, summer and autumn, from hemispherical photography with HemiView (HP+HV) 

compared with estimates from (A) hemispherical photography with ImageJ (HP+IJ), (B) smartphone fisheye photography with 

HemiView (SP+HV), and (C) smartphone fisheye photography with ImageJ (SP+IJ). R2 and statistical significance of these relationships is 

presented in Table 4.3.  Relationships are shown for each woodland (red = Hardwick, green = Hunshaw, blue = Newton Mill, grey = 

Whitleigh).  
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Fig. 4.3. Comparison of estimates of canopy openness using three different models of smartphone in 

three canopy densities. Every canopy density x phone combination was based on 22 photographs, 
each taken by a different user. The median is shown as a horizontal line, the box represents values 
within the 25–75% quartiles, and the error bars show the minimum and maximum values. Means 
sharing a letter were not significantly different according to post hoc contrasts using estimated 

marginal means. 
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4.4 Discussion 

Our results showed that smartphone photographic methods estimated variation in 

canopy closure effectively, but rapid visual estimation methods did not. Basic visual 

estimations of canopies are known to lack consistency, varying considerably due to 

weather conditions (Jennings et al., 1999) and observer biases (Vales and Bunnell, 

1988). The canopy scope is more a quantitative visual estimation method, allowing for 

greater consistency and has been shown to have low between-observer bias (Brown et 

al., 2000), so is potentially more suitable for citizen science. However, while the canopy 

scope can distinguish quite different degrees of canopy openness (Brown et al., 2000), it 

lacked the fine resolution needed to distinguish between similar canopies, and therefore 

is less suitable for monitoring changes through time. Smartphone photographic 

methods have now become a cost effective and practical alternative to visual estimation. 

Simple photographs using a smartphone camera without a lens attachment were 

sufficient for assessing the degree of variation in canopies across a whole season, but 

did not pick up fine-scale variations (i.e., between similar canopies within a season) 

compared with hemispherical photography. This is unsurprising, as their narrow angle 

of view means they are essentially providing an estimate of canopy cover directly 

overhead, as opposed to canopy closure across a range of zenith angles (Chianucci et al., 

2014; Jennings et al., 1999). With the addition of an inexpensive fisheye lens 

attachment, smartphone photographs were able to pick up finer variations in canopy 

openness in spring, summer and autumn, which would be important for monitoring 

seasonal dynamics.  

As anticipated, smartphone fisheye photography gave higher canopy openness 

estimations than hemispherical photography, due to its narrower field of view. With 

hemispherical photography, an image taken within a forest will typically include a ring 

of tree trunks and shrubs around the periphery, with low gap fractions in the outer 

portions of the image (at larger zenith angles) (Chen et al., 1997). Although 

incorporating a greater field of view than non-fisheye photos, smartphone fisheye 

photos still omit the largest zenith angles containing most of the lower trunks and shrub 

layer. In its field of view, the gaps in a canopy contribute more to the overall image. 

Similarly, twigs and foliage have higher prominence in images. As smartphone fisheye 
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photography misses gaps at larger zenith angles, it would not be a suitable method for 

detailed studies of canopy structure or plant growth. However, the method is suitable 

for monitoring timing of canopy closure, and its narrower field of view could actually 

make it a superior method for identifying leafing activity early in spring.  

We found canopy structure affected the relationship between hemispherical 

photography and smartphone photography, meaning that canopy openness values must 

be converted to proportions of total canopy closure to be correctly interpreted. Where 

the overhead canopy was uniformly closed, the difference between canopy openness 

estimations from smartphone fisheye photos and hemispherical photos was 

lower―both sets of images show a closed canopy with few gaps. In more open 

situations, the difference between the two sets of estimations was greater. Similarly 

where stand density was higher and the height of the tree canopy was lower (e.g., at 

Hardwick Wood, Table 5.1), the difference between canopy openness values from the 

two methods was smaller. Canopy height is known to effect openness estimations when 

the field of view is reduced (Jennings et al., 1999; Pellikka, 2001). 

Due to the influence of canopy structure on canopy openness values, we propose the 

smartphone with fisheye photography method is appropriate for monitoring relative 

change in canopies through time. In order to compare the timing and rate of canopy 

closure across different forest locations we can standardize along a proportional scale 

of canopy closure, where 0% represents the winter canopy value prior to budburst, and 

100% represents the summer canopy value once the canopy is fully in leaf. We note that 

canopies are dynamic, and small-scale fluctuations occur through summer. Therefore 

the summer canopy value would be determined from the point where the canopy 

reaches ‘adjustment stability’ (Margalef, 1969), after which only small changes of less 

than 2% canopy closure are observed. The progress of canopy closure can then be 

plotted through time from 0–100%, and a logistic growth model can be fitted to 

characterise the phenological pattern (Richardson et al., 2006; Zhang et al., 2003). An 

example using smartphone fish-eye photography is provided in Appendix 4.1. 

In terms of photo analysis, we found that ImageJ is a reasonable alternative to 

professional specialist software such as HemiView, for deriving relative canopy 

openness values. It is clear that ImageJ overestimates values from HemiView to some 
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degree, so again, this method would not be suitable for studies where absolute values 

were needed. The distortion of a hemispherical or fisheye lens causes the central part of 

the image, towards the zenith, to appear larger than peripheral elements towards the 

horizon (Herbert, 1987). Canopy openness derived from HemiView is based on a 

weighted gap fraction that takes into account the zenith angle of canopy gaps, and 

corrects for a given lens distortion (Promis et al., 2011). In contrast, canopy openness 

derived from ImageJ is simply the percentage visible sky across the image. However, 

values from ImageJ still consistently and reliably estimated relative differences in 

canopy openness in our study. 

ImageJ has the benefits of being free, open access and relatively straightforward to use. 

It is not necessary to provide specifications of the fisheye lens to use it. Image 

binarization is still required, which can be time consuming. The manual thresholding 

technique used in this study would not be suitable for analysing large quantities of 

citizen science data. Many citizen science projects have successfully utilised internet 

crowd-sourcing applications (Kosmala et al., 2016) to involve the public in processing 

and classifying large numbers of images, so a similar approach could be used to binarize 

canopy photos, with multiple people classifying pixels for the same image to reduce 

error (Inoue et al., 2011). However, new methods for automatic thresholding of photos 

would improve efficiency (Brusa and Bunker, 2014; Glatthorn and Beckschafer, 2014; 

Inoue et al., 2004), and auto-thresholding plug-ins for ImageJ (Glatthorn and 

Beckschafer, 2014) could provide a viable option.  

In terms of practicalities, smartphone fisheye photography is suitable for widespread 

use as part of citizen science projects, and if managed properly is a game-changer in 

terms of data quantity. The good agreement between smartphone models and users 

suggests the method can be reliably applied by citizen scientists. The three phone 

models tested varied in resolution and field of view, but still produced comparable 

results. While some variation was evident between photos taken with the same phone, 

under the same canopy conditions, there was no overall effect of phone user on canopy 

openness values. Variation between photos taken with the same smartphone was 

greatest at higher levels of canopy openness. This is not surprising, as under the dense 

canopy, gaps were small and uniformly distributed, whereas the open canopy 
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comprised a very large central gap bordered by canopy. Small variation in camera 

positioning could therefore result in compositional differences between photographs. 

This could lead to significant differences in estimates, as has been observed with other 

methods for estimating canopy openness (Jennings et al. 1999). Therefore, we 

recommend that for best results camera position is standardised by installation of fixed 

camera mounts (University of New Hampshire, 2017) for citizen scientists to place their 

smartphones on in order to take repeat photographs of particular parts of the canopy.  

The quality of photos obtained from smartphone fisheye photography is sufficient to 

obtain reliable data. The high resolution available with smartphone cameras is a clear 

advantage. Resolution is known to be an important factor influencing the quality of 

canopy openness measures from hemispherical photography (Brusa and Bunker, 2014; 

Woodgate et al., 2015), and in this study the smartphone camera resolution was 

superior to that of the hemispherical camera (with nearly 2,000,000 more pixels). It has 

also been noted that higher resolution images are less vulnerable to thresholding errors 

during image processing and analysis (Macfarlane et al., 2007). Some blurring was 

evident towards the perimeter of the smartphone fisheye photos, but this is also 

apparent with hemispherical photos (Frazer et al., 2001). Blurring from motion caused 

by holding the camera to capture images could also influence image quality (Woodgate 

et al., 2015). The use of fixed mounts for phone cameras would help alleviate this 

problem, as well as utilising the camera’s timer function or earphone controls to 

remotely operate the camera shutter.  

As with hemispherical photography, there are several logistical issues associated with 

the use of smartphone photography, relating to sky conditions and image exposure. The 

effects of over-exposure and the importance of taking photos under uniform sky 

conditions has been emphasised in many studies (Beckschafer et al., 2013; Brusa and 

Bunker, 2014; Rich, 1990; Woodgate et al., 2015; Zhang et al., 2005). In this study, a 

small proportion of smartphone photos had to be excluded due to over-exposure. While 

smartphone photographs were taken at -2.0 EV, the lowest exposure setting available, 

Beckschafer et al. (2013) showed that over-exposure can still occur at -2.0 EV under 

bright skies. This can also be a problem with hemispherical photography, as the Nikon 

Coolpix 990 had the same limits for exposure compensation. The histogram function 



 

110 

 

allows a definitive check as to whether photos are over-exposed, and more advanced 

cameras allow for lowering below -2.0 EV (Beckschafer et al., 2013). We emphasise 

again that the smartphone fish-eye photography method would not be suitable for 

detailed studies of canopy structure or growth where small differences between sites 

must be detected, and therefore consistent exposure is paramount (Leblanc, 2005). 

However, to track the progress of canopy closure through time and compare trends in 

the timing of this phenological event over large spatial scales, a small degree of noise in 

the data is acceptable. The example in Appendix 4.1 demonstrates that the phenological 

process of canopy closure can be clearly modelled using this method. While the limits of 

exposure settings on smartphone cameras may mean some photos have to be discarded, 

the greater number of images obtained by utilising a citizen science approach should 

increase the number of suitable images that can be included in a study. Where possible 

citizen scientists should be encouraged to take photos early or late in the day, which is 

when sky conditions are generally most appropriate, and coincides with times when 

people are likely to be available to collect imagery. 

4.5 Conclusions  

Smartphone fisheye photography, with relatively simple image analysis, offers a 

practical method for comparing changes in the timing of canopy closure across different 

forests year on year, and may even be more suited to this task than hemispherical 

photography. Using this approach, trends in proportional changes in canopy closure 

could be identified across different spatial and temporal scales using citizen science. 

Further research is required to assess the temporal resolution of image capture needed 

to represent canopy changes adequately. 
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5  Using smartphone photography with a 
fisheye lens to monitor canopy closure 

phenology 

 

5.1 Introduction 

In temperate broad-leaved forests, the spring period is of key importance to 

understorey plants, as temperatures rise and the availability of photosynthetically 

active radiation is at its peak prior to canopy closure. The leaf phenology of overstorey 

trees determines spatial and temporal patterns of light availability as spring develops, 

influencing the structure and composition of the understorey (Kato and Komiyama, 

2002). It is now well established that climate change is affecting the leaf phenology of 

temperate trees (Menzel and Fabian, 1999; Menzel et al., 2006; Parmesan, 2007; Sparks 

and Carey, 1995; Thompson and Clark, 2008; Wang et al., 2016; Wu and Liu, 2013). 

Warmer temperatures are causing leaf expansion to advance, bringing about the earlier 

closure of forest canopies and onset of light limitation in the understorey. As spatio-

temporal patterns of light and shade are key determinants of forest plant dynamics 

(Valladares et al., 2016), changes in the timing of canopy closure would affect growth, 

reproduction and survival of understorey biodiversity.  

Many tree saplings employ a strategy of ‘phenological escape’, leafing before the canopy 

closes to maximise photosynthesis (Gill et al., 1998). This high light period has been 

shown to be very important for the growth and survival of saplings in closed canopy 

forests. Many species are only able to survive in the shaded understorey because they 

obtain the majority of their light and carbon for the growing season prior to canopy 

closure (Augspurger, 2008; Lopez et al., 2008). Shading experiments have identified 

reduced growth and increased mortality when saplings were subjected to earlier 

canopy closure (Augspurger, 2008). Though some saplings leaf several weeks earlier 

than conspecific canopy trees, for many species the phenological escape is brief; in a 

study of 13 tree species, saplings were found to leaf on average six days earlier than 

conspecific canopy trees (Augspurger and Bartlett, 2003). The ability of saplings to 

adapt their leaf phenology in line with dominant canopy species could be important for 

their survival. While most research has focussed on sapling phenology in relation to 
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canopy trees of the same species (Richardson and O'Keefe, 2009), temperate forests 

vary greatly in their species composition and most forests have mixed species canopies. 

Therefore monitoring canopy closure of mixed species stands will be important for 

understanding spatial patterns of light availability that could determine sapling growth 

and survival.  

The herb-layer is also highly dependent on sunlight prior to canopy closure. Earlier 

canopy closure affects the growth and reproductive success of spring ephemerals, that 

rely on the brief period when temperature and light conditions are favourable 

(Augspurger and Salk, 2017; Kudo et al., 2004). In addition, summer-green and 

evergreen temperate forest herbs have also been shown to rely heavily on the spring 

period to gain a positive carbon balance for growth and reproduction after light has 

become limiting (Rothstein and Zak, 2001; Routhier and Lapointe, 2002). Earlier canopy 

closure will alter competitive dynamics in the understorey, and is likely to favour 

invasive species. Those species that can begin growth earlier in the year, tolerate deeper 

shade, or exhibit more plastic responses in their phenology will displace other 

woodland ground flora, with increases in non-native species already being attributed 

climate change (Engelhardt and Anderson, 2011; Willis et al., 2010). A better 

understanding of spatial patterns of spring canopy closure at the level of individual 

forests is important in order to predict herb-layer dynamics at local levels and across 

forested landscapes. 

Given the influence of canopy phenology on understorey biodiversity, monitoring 

changes in the timing of canopy closure is critical for implementing effective forest 

conservation. In recent years the study of canopy phenology has gained increasing 

attention, though largely in relation to understanding climate-biosphere interactions at 

regional and global scales using satellite remote-sensing (Tang et al., 2016). A variety of 

indices can be derived from satellite data, with Enhanced Vegetation Index (EVI) and 

Leaf Area Index (LAI) being the most widely used (Wang et al., 2017), particularly in 

studies of primary productivity and biometeorology (Green et al., 2017; Keenan et al., 

2014b; Richardson et al., 2013). However, loss of imagery due to atmospheric 

interference, and difficulty separating canopy greening from the influence of 

understorey vegetation, limits prediction accuracy to around seven days at best (Ahl et 
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al., 2006; Doktor et al., 2009; White et al., 2014). Given that differences in canopy 

closure timing of several days could have considerable influence on understorey plant 

fitness, monitoring methods that provide a higher degree of temporal accuracy are 

needed.  

Canopy phenology shows high levels of variation over small spatial scales, due to 

multiple interacting factors including species composition, genetic variability, 

topography and soils (Arend et al., 2016; Cole and Sheldon, 2017; Lapenis et al., 2017; 

White et al., 2014). Satellite data provides information that is averaged across coarse 

spatial scales, so variation within the landscape is missed (Doktor et al. 2009). 

Commonly used satellite products such as those derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) offer spatial resolution of around 1 km, though 

Landsat imagery offers higher resolution of 30 m. Even so, resolution is still too coarse 

to detect fine-scale differences within forests. Within single forest stands large 

differences in leaf-out timing are common. Differences of two weeks have been 

observed across a single stand with even structure and composition, due to micro-

climatic variation (Fisher et al., 2006), and differences of more than one month have 

been reported for the same tree species at a single site due to phylogenetic factors (Cole 

and Sheldon, 2017). While satellite data are invaluable for characterising large-scale 

trends, the usefulness of coarse resolution data in studies of local ecosystem dynamics 

is limited. Methods that enable high temporal and fine spatial resolution data collection 

within forest stands are required to understand local-level changes in ecosystems. Many 

authors have also recognised the need for more extensive ground-based data to help 

validate satellite metrics and provide more realistic predictions for regional and global 

biosphere modelling (Doktor et al., 2009; Jeong et al., 2013; Richardson et al., 2012; 

Tang et al., 2016; White et al., 2009; Wu et al., 2017).   

The longest standing approach to monitoring canopy phenology are visual observations 

of budburst and leaf expansion, which provide fine-resolution information at the level of 

individual trees. Such observations have been important in understanding drivers of 

leafing phenology between different species, and in helping to understand genetic and 

phenotypic variation within species (Cleland et al., 2007b; Polgar and Primack, 2011). 

Furthermore, visual observation networks have the potential to generate large data-sets 
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through the involvement of citizen scientists (Beaubien and Hamann, 2011; Collinson 

and Sparks, 2008; Crimmins et al., 2017). However, the extent to which leaf expansion 

of individual trees can be related to forest canopy closure and light limitation in the 

understorey is unknown. Later stages of leaf development after leaf expansion, such as 

leaf enlargement and flattening, can be difficult to detect with visual observations 

(Keenan et al., 2014a), but contribute to canopy closure after leaves have expanded 

from the bud. Therefore, it is likely that leaf expansion dates predicted from visual 

assessment would be earlier than canopy closure dates. In addition, tree leaf expansion 

timing and rate varies between and within species (Chapter 3), so it is likely that a large 

number of observations would be needed in order to attempt to characterise canopy 

closure from individual tree phenology assessments. 

In response to the need for fine-scale monitoring of canopy phenology, there is 

increasing interest in near-surface remote sensing techniques. Digital cameras 

positioned on towers above canopies, such as those used in the Phenocams network 

(Inoue et al., 2014; Richardson et al., 2007; Wingate et al., 2015), capture daily surface 

images. The recent development of unmanned aerial vehicles (UAVs) fitted with 

cameras offer even higher resolution and coverage (Klosterman et al., 2018). Both 

camera methods use colour channel analysis to derive indices of canopy greening that 

signal canopy development through spring, and the initial rise in greenness has been 

shown to correlate well with budburst dates from visual observations (Keenan et al., 

2014a). Another promising high resolution technique is the use of Terrestrial LiDAR 

instruments to track Leaf Area Index (LAI) and quantify development of separate forest 

strata (Calders et al., 2015). However, these techniques are limited in terms of the 

spatial coverage that can be achieved, as they require considerable financial investment 

and/or suitable existing infrastructure for camera installation. There is also a 

requirement for technical expertise in processing data. This limits application to a 

relatively small, albeit increasing, number of research forests. There remains a need for 

methods that can be applied across a broader range of forests and regions.  

Hemispherical photography has been widely used in studies of forest canopies and 

understorey light environments, to characterise canopy openness, or its inverse, canopy 

closure (Brusa and Bunker, 2014; Gonsamo et al., 2013). Recently, smartphone cameras 



 

115 

 

with inexpensive fisheye lens attachments have been shown to provide comparable 

estimates of canopy closure (Bianchi et al., 2017; Smith and Ramsay, 2018), providing a 

cost-effective alternative. Free, non-specialist image analysis software can be used to 

extract data with similar results to professional software. Different smartphone models 

provide repeatable canopy closure estimates (Smith and Ramsay, 2018), and the 

widespread ownership of smartphones and inexpensive nature of fisheye lens 

attachments means they could be used widely through citizen science. Projects such as 

the USA National Phenology Network (Jeong et al., 2013) demonstrate the potential for 

gaining large data-sets from citizen science phenology studies.  

While smartphone fisheye photography has been shown to provide comparable 

estimates of canopy closure compared to hemispherical photography, its effectiveness 

at tracking the progress of canopy closure from winter to summer has not been tested.  

In order to be useful, the method must be able to detect fine-scale changes as the canopy 

develops through spring, and it must be possible to derive meaningful phenological 

parameters from the time-series. Logistic growth models are commonly used in canopy 

phenology studies, to describe the timing and rate of canopy development (Ahl et al., 

2006; Calders et al., 2015; Fisher et al., 2006; Richardson et al., 2006; Richardson et al., 

2007; White et al., 2014; Zhang et al., 2003). If smartphone fisheye photography data on 

canopy closure can be used to derive similar phenological parameters to hemispherical 

photography, it could enable canopy phenology data to be collected at much larger 

scales than is currently achievable through existing methods. To facilitate widespread 

and efficient data collection, it would also be useful to understand how often data must 

be collected (i.e., the temporal grain required) to obtain accurate estimates of canopy 

closure, capable of detecting annual and spatial variation.  

It is important to note here that the various indices so far described—NDVI/EVI, 

camera-derived greenness indices, LAI and canopy openness—are all correlated to a 

greater or lesser extent, but also represent independent phenological measures. Canopy 

closure is strongly related to photosynthetically active radiation in the understorey 

(PAR) (Brusa and Bunker, 2014; Gonsamo et al., 2013; Pellikka, 2001), and represents 

the proportion of the sky hemisphere obscured by canopy elements when viewed from 

a single point (Gonsamo et al., 2013; Jennings et al., 1999). Greenness is related to 
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canopy closure, and increases as green leaves fill gaps in the canopy (Brown et al., 2017; 

Keenan et al., 2014a; Wingate et al., 2015). However, greenness is not only a function of 

the size and spatial arrangement of leaves, but also relates to changes in colour 

pigmentation. The green signal has been shown to peak before full canopy closure and 

maximum LAI are reached, when leaves are only half their maximum size, due to 

production of carotenoids as leaves mature (Keenan et al., 2014a; Wingate et al., 2015). 

Further, canopy closure is reached before peak LAI, because canopy closure is based on 

viewing the canopy at multiple zenith angles from a fixed position in the understorey 

(or above the canopy), and therefore does not account for leaf layering. These 

differences mean that the metrics should not be seen as interchangeable, but represent 

complementary techniques that lend themselves to different applications: LAI relates 

most closely to changes in canopy physiology, while greenness can accurately detect the 

onset of leaf expansion and the end of growth season (Keenan et al., 2014a). For studies 

of understorey light dynamics, canopy closure is the most appropriate and 

straightforward metric to assess, and could be monitored widely with smartphone 

fisheye photography.  

In this study, I trial the use of smartphone fish-eye photography to monitor the process 

of canopy closure at multiple locations in a mixed broadleaved forest, from a winter to 

summer canopy. Smartphone fisheye photos were taken every other day alongside 

traditional hemispherical photos and visual observations of leaf expansion. Time-series 

data were fitted using a logistic growth model to characterise the timing and rate of 

canopy closure for each forest plot. I compare canopy closure timing and rate 

parameters from the logistic growth model fit of smartphone canopy closure estimates, 

with those from hemispherical photography and visual estimates. These three methods 

are compared in relation to varying canopy composition and structure, to assess their 

relationships under different canopy types. Finally, I assess the effect of reduced 

temporal grain on canopy closure estimates to understand how often data should be 

collected to obtain reliable estimates, and I discuss how this novel method could be 

widely applied to provide new insights in forest phenology studies.   



 

117 

 

5.2 Methods  

5.2.1 Study site and data collection 

The study was conducted during spring 2017, in Elwell Woods, a small 0.9 ha mixed 

broadleaved woodland on the River Tamar, England (50°24 N, 4°12 W). The woodland 

was dominated by Acer pseudoplatanus with some Fraxinus excelsior, and a patchy 

understorey of Crataegus monogyna. Ten fixed points or ‘stations’ were established in 

early March prior to budburst. Stations were deliberately selected to represent a range 

of conditions in the woodland, with different species compositions and canopy 

openness levels. The site was monitored every other day from mid-March, to check for 

signs of imminent leaf expansion. Data collection began when budburst was first 

observed at the site, on April 1, Day of Year (DOY) 91. Data collection finished when all 

stations had full canopies, on May 25, DOY 145.  

Hemispherical photos were taken using a Nikon Coolpix 990 3.34 MP camera with 

Nikon Fisheye Converter FC-E8 lens (Nikon Corporation, Tokyo, Japan), and 

corresponding photos were also taken with a Sony Xperia M4 Aqua smartphone camera 

(Android Version 5.0) with magnetic fish-eye lens attachment (Skimn FE-12 180° fish-

eye lens). The former is a genuine hemispherical lens with 180° field of view in all 

directions. The smartphone camera with fisheye lens attachment has a narrower field of 

view. In this study, the smartphone camera was set to a 4:3 aspect ratio, providing 

13MP and a 125° x 110° field of view with the fisheye lens attached. Both cameras were 

mounted on a tripod at 1.2 m above ground, to eliminate the influence of the field layer, 

and levelled using a circular bubble level. In both cases, photographs were taken in 

manual mode, and appropriate exposure settings were determined for the sky 

conditions. This was done using the histogram function on the Nikon Coolpix following 

the method outlined by Beckschafer et al. (2013), and by visual inspection of captured 

images with the smartphone camera. Exposure was lowered as required, ranging from 0 

to -2.0 EV, the minimum limit on both cameras. To achieve even exposure across the 

photograph and avoid areas of bright sky or direct sunlight, images were taken at dusk, 

or in cases where weather conditions were prohibitive (i.e., heavy rain or strong winds), 

just before dawn the following morning. To avoid blurring caused by pressing the 
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camera shoot buttons, the timer function was used on the hemispherical camera, and 

earphone controls were used to remotely operate the smartphone camera. 

Photographs were analysed using ImageJ, since ImageJ has been found to reliably 

estimate canopy closure values from hemispherical and smartphone fisheye 

photographs, and is widely available for use in citizen science projects (Smith and 

Ramsay 2018). Following the method in Smith and Ramsay (2018), manual 

thresholding of photographs was applied to binarise images into white (‘sky’) and black 

(‘not sky’) pixels, with reference to the original photograph. A canopy openness value 

was derived for each image, excluding the redundant framing pixels generated 

automatically by the two cameras. As this study is concerned with the process of canopy 

closure, canopy openness values were subtracted from 100 to give the absolute canopy 

closure percentage. To enable comparisons between different canopies, the canopy 

closure time-series for each station was standardised along a relative scale from 0 to 

100, where 0 represents the winter canopy value without leaves, and 100 represents 

the summer canopy value with full leaf expansion, using the following equation:  

 

                                                                  

(1) 

 

Here   is the absolute canopy closure value for any given DOY,           represents 

the lowest absolute canopy closure value for a given station, and           represents 

the highest absolute canopy closure value for a given station. 

In addition to the two sets of photographs, a canopy leaf expansion score was derived 

from visual observations of individual trees in the canopy above each station. Trees 

were included in the visual assessment if they were visible in the smartphone fisheye 

camera field of view. On each DOY, each tree was assigned a leaf expansion score based 

on the following categories: 0%, 10%, 25%, 50%, 75%. Trees were assigned the score 

that most closely matched their leaf expansion status. These broad categories were 

chosen to enable rapid assessment, which was important given the number of trees that 

had to be assessed in order to characterise the whole canopy. Similar percentage 

categories are used in citizen science phenology monitoring projects where participants 
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are expected to record the leaf phenology of multiple individual trees (Denny et al., 

2014; Elmendorf et al., 2016). Broad percentage categories can also improve between-

observer precision (Morrison, 2016) so are often considered appropriate for citizen 

science. To obtain a leaf expansion score for the canopy above each station on a given 

DOY, leaf expansion scores for each tree were summed and divided by the total number 

of trees included in the visual assessment. This provided an estimate of canopy leaf 

expansion on a proportional scale from 0 to 100, for each station and DOY. 

In order to consider canopy structure and composition in the analysis, heights of the 

overhead canopy at each station were estimated using a clinometer. Summer canopy 

openness for each station was estimated in ImageJ using the method outlined above to 

calculate the proportion of visible sky based on           images. This was done for 

hemispherical photographs and smartphone fisheye photographs separately. The 

percentage of non-deciduous canopy (i.e., tree trunks, branches, twigs and ivy) for each 

station was calculated by subtracting the canopy openness value for           from 

100. Deciduous foliage for the summer canopy was then calculated using equation (2): 

 

                                                                  

    (2) 

Two estimates of canopy composition were then made at each station, based on 

          hemispherical photographs and smartphone fisheye photographs 

respectively. Proportions of ash, sycamore and hawthorn in each           image 

were calculated in ImageJ, using the freehand selection tool to fill the area containing 

each canopy species (ash, sycamore and hawthorn), and then analysing the area fraction 

of the filled pixels. The proportion of the deciduous foliage comprising each species was 

then calculated by dividing the area fraction for each species by the deciduous foliage 

total (equation 2), and multiplying by 100. Stations were then categorised according 

dominant species composition based on the smartphone fisheye photographs, with 

stations classed as either sycamore-dominant or hawthorn-dominant. 
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5.2.2 Deriving phenological metrics from the time-series data: 

Data from each station and method (hemispherical photography, smartphone fisheye 

photography and visual estimations) were fitted using a logistic growth model in order 

to characterise the rate and timing of canopy closure. In addition, individual time series 

of leaf expansion for each tree were fitted with a logistic growth model, so that the 

timing of leaf expansion across each species could be characterised. Logistic growth 

uses non-linear regression to fit a sigmoidal curve, using the equation: 

 

   
  

                 
 

(3)  

where   is response variable (proportion of canopy closure),   is the predictor variable 

(DOY), and   ,    and    are the model fitting parameters.    is the upper asymptote, 

which was fixed at 100 as the data were based on percentages so this value was known 

to be the true maximum. Using a fixed upper asymptote has been shown to improve 

model fit (Austin et al. 2011) and produce more realistic parameter estimates, whereas 

a free upper asymptote often produces biased estimates (Tjorve and Tjorve 2010).  The 

logistic growth model provides two biologically meaningful parameters to describe the 

data: the rate parameter (  ) and the half-maximum (ψ).  The rate parameter is based 

on the steepness of the curve at its mid-point and represents the proportional increase 

in canopy closure per day. The half-maximum is a measure of canopy closure timing, 

and represents the DOY when canopy closure reaches 50%, calculated as ψ =      , and 

hereafter referred to as 50% DOY. Standard error and statistical significance of model 

parameter estimates were assessed to provide a measure of confidence in the model fits 

for each data set. Logistic models were fitted using the car package and nls function in R 

(Fox and Weisberg, 2011). 

5.2.3 Statistical analyses 

In order to assess the effect of dominant canopy composition on canopy closure timing 

and rate, I conducted one-way analysis of variance (ANOVA) tests to compare 50% DOY 

and rate values between sycamore-dominated canopies and hawthorn-dominated 

canopies. This was done for each method―hemispherical photographs, smartphone 
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fisheye photographs and visual estimations. In cases where data were not from a 

normally distributed population, according to a Shapiro-Wilks test, I used the Aligned 

Rank Transform (ART) procedure in the R package ARTool (Kay and Wobbrock, 2016), 

followed by one-way ANOVAs.  

Linear regression was used to assess relationships between the 50% DOY and rate 

values obtained for individual stations from hemispherical photography, smartphone 

fisheye photography and visual estimation methods. One-way ANOVA, followed by post-

hoc contrasts using estimated marginal means, was then used to test for significant 

differences between methods in terms of the range of 50% DOY values and rate values 

predicted across the stations. Additionally, I calculated a combined 50% DOY value and 

a combined rate value for each method. This was done by averaging the canopy closure 

proportions from all stations for each DOY, to derive a single-time series that was then 

fitted using a logistic growth model. This approach required only one logistic model to 

be run for each method. Using the combined 50% DOY and rate values, I compared how 

the three methods characterised the overall stand canopy closure, and how 50% DOY 

and rate values derived from the combined model compared with average 50% and rate 

values from the ten station models. 

Finally, I investigated the effect of interval time between sampling days (temporal 

grain) on 50% DOY and rate values. The original data was collected every other day (2-

day temporal grain). By removing data for different DOYs, I simulated 4, 6, 8, 10, 12 and 

14-day temporal grains. Proportion canopy closure was then re-calculated based on the 

reduced time-series, and proportions for each DOY were averaged across the ten 

stations to obtain a time-series for the whole stand, for each temporal grain. I took the 

first day of data collection (Day 91) as the first day for all temporal grains. Where the 

DOY for           was removed as a result of altering the temporal grain, I inserted 

the maximum value on the next DOY when data collection would have been carried out 

(e.g., using a 10 day temporal grain, data collection would have taken place on Day 91, 

101, 110, 120, 130, 140, and 150; data collection ended on Day 145, so the highest 

canopy closure value from the original data set was inserted at day 150). I then re-ran 

the logistic growth model for each data set. In addition, with smartphone photograph 

data only, I used a 14-day temporal grain with varying start date, to assess how this 
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impacted on 50% DOY and rate values. Logistic models were run using a 14-day 

temporal grain with start dates on Day 79, 81, 83, 85, 87 and 89. All statistical analyses 

were carried out in R 3.3 (R Core Team, 2016). 

 

5.3 Results 

Canopy composition varied considerably between stations (Table 5.1). Stations fell into 

two broad categories, sycamore-dominated with a minor ash component (stations 1–5) 

and hawthorn-dominated with some sycamore (stations 6–10). All but two of the 

sycamore-dominated canopies (stations 1 and 2) contained some hawthorn. Stations 

were ranked in numerical order ranging from the most sycamore-dominated/least 

hawthorn-dominated (station 1) to the least sycamore-dominated/most hawthorn-

dominated (station 10). The proportion of each species in the field of view of the two 

cameras varied, so I based the 1–10 ranking on the smartphone fisheye photo 

compositions. In some cases the difference in composition between the two cameras 

was small, varying by only a few percent (station 2 and 4) or not at all (station 1). 

However, in other cases they varied by more than 20% (stations 6, 7 and 10). The 

summer canopy openness values between the two sets of images were similar, but it is 

clear that hemispherical photographs contained a higher proportion of non-deciduous 

canopy elements in their field of view.  

All time-series from smartphone fisheye photographs and hemispherical photographs 

could be fitted using a logistic growth model to obtain parameter estimates with low 

standard error and high significance (Fig. 5.1 A–B, Appendix 5.2: Table A5.1). All time-

series from visual estimates could also be fitted to logistic growth models, though the 

model fit for four of the hawthorn dominant stations were poorer, indicated by the 

higher standard errors of parameter estimates (Fig. 5.1 C, Appendix 5.2: Table A5.1). 

However, all parameter estimates were statistically significant. Time series from logistic 

model fits of individual tree leaf expansion could be fitted for all trees except for one 

hawthorn, where leaf expansion occurred very rapidly. Models from an additional three 

hawthorn trees produced poor model fits with non-significant parameter estimates (p > 

0.05) so these individuals were not included in the analysis of individual tree leaf 

expansion timing (Appendix 5.2: Table A5.2). 
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All tree species were significantly different in their leaf expansion timing according to 

50% DOYs from logistic model fits (Fig. 5.2, ANOVA: F2,49: 48.15, p <0.001; pairwise 

comparisons: hawthorn v sycamore p <0.001, hawthorn v ash p <0.001 and sycamore v 

ash p = 0.010 ). Across the stand, hawthorn was the earliest tree to leaf, with the 

majority of individuals reaching 50% leaf expansion before any sycamore individuals. 

Ash was the latest species to leaf. Hawthorn was consistent in its leafing timing, while 

sycamore showed a large degree of intra-species variation. 

There was a significant difference in 50% DOY between the two canopy types, with later 

canopy closure apparent for sycamore-dominated canopies (Fig. 5.1 D–F) compared to 

hawthorn-dominated canopies. This was detected by hemispherical photographs 

(ANOVA: F1,8 = 6.22, p = 0.037), smartphone fisheye photographs (ANOVA: F1,8 = 4.88, p 

= 0.058) and visual estimations (ANOVA: F1,8 = 16.60, p = 0.004). However, both 

photographic methods showed the canopy of station 1 closing earlier than three of the 

hawthorn-dominated canopies (Fig. 5.1 D and E). In terms of canopy closure rate, faster 

rates were apparent for sycamore-dominated canopies compared to hawthorn-

dominated canopies, according to both hemispherical photographs (Fig. 5.1 G, ANOVA: 

F1,8 = 13.20, p = 0.007) and smartphone photographs (Fig. 5.1 H, ANOVA: F1,8 = 64.37, p < 

0.001) . No significant difference in rate was observed between canopies using the 

visual estimates (Fig. 5.1 I, ANOVA: F1,8 = 3.00, p = 0.122).  

50% DOY and rate values estimated by hemispherical photography and smartphone 

fisheye photography for the different stations were related, but a linear model only 

explained 53–57% of the variation (Fig. 5.3 A and B). However, despite variability 

between 50% DOY values from the two methods, the average difference between the 

pairs of photos was only 2.15 days (s.d = 1.1). The largest difference in 50% DOY 

between the two methods was at station 4, where the smartphone fisheye photo 

method showed 50% DOY occurring 4.8 days earlier than the hemispherical photo 

method. The average difference in canopy closure rate between pairs of photos was 

relatively small (mean = 0.011, s.d = 0.008), representing only ~1% difference in 

canopy closure extent per day.  

Comparison of smartphone fisheye photography and visual estimations showed a 

relationship between the 50% DOY values (Fig. 5.3 C). However, visual estimates 
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predicted earlier 50% DOYs than smartphone fisheye photographs, particularly for the 

most hawthorn-dominated canopies (Fig. 5.1 F). No relationship was found between 

50% DOY values from hemispherical photography and visual estimations (R2 = 0.20, p = 

0.20), nor between the rate of canopy closure from visual estimates and either 

smartphone photography (R2 = 0.11, p = 0.35) or hemispherical photography (R2 = 0.05, 

P = 0.54). 

Overall, 50% DOY values across the stations were similar between the two 

photographic methods, but not visual estimations, which predicted earlier canopy 

closure (Fig. 5.4 A, ANOVA: F2,27 = 10.00, p < 0.001; pairwise comparisons: 

hemispherical v smartphone photography p = 0.95, hemispherical photography v visual 

estimations p = 0.001, smartphone photography v visual esitmations p = 0.003). Canopy 

closure rates across the stations were similar for all three methods (Fig. 5.4 B, ANOVA: 

F2,27 = 0.40, p = 0.67) but values were much more variable from visual estimates.  

When data from all stations were combined into one logistic model, the two 

photographic methods showed almost identical logistic model fits (Fig. 5.5 A). From the 

combined model, photographic methods predicted the 50% DOY for the whole stand to 

within one day of each other, whereas the visual estimation method predicted 50% DOY 

10–11 days earlier (Fig. 5.5 B). The predicted canopy closure rate for the stand was also 

similar from the photographic methods, but visual estimates predicted a slower rate of 

canopy development (Fig. 5.5 C). For all methods, the 50% DOY estimates derived from 

the combined logistic model fit for the whole stand were very similar to the average 

50% DOYs derived from running separate logistic models for each station. Rate 

estimates from the combined model were very similar to average rate estimates from 

individual station models for the two photographic methods, but not for visual 

estimates. 

When the time-series start date was held constant, the 50% DOY value from 

smartphone photography remained within one day of that predicted by the original 

model, even when temporal grain was reduced to fourteen days (Fig. 5.6 B). The 50% 

DOY values from hemispherical photographs and visual estimates were more variable 

as temporal grain was reduced, but still remained within two days of the original 

models (Fig. 5.6 A and C). The rate parameter was somewhat more variable, but this 
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variability only represented a difference of around 0.02, which is a 2% difference in the 

extent of canopy closure per day (Fig. 5.6 D–F). Even with a variable start date for the 

time series, and a 14-day temporal grain, 50% DOY values from smartphone fisheye 

photography remained within two days of the original model (Fig. 5.7 A). The rate 

parameter did vary with different start dates but at worst resulted in a 3% difference in 

the extent of canopy closure per day (Fig. 5.7 B). 



126 

 

 

Table 5.1. Structural and composition features of the forest canopy at ten stations in Elwell Woods, England.  
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1 Sycamore 19 10 24 66 10 41 49 3 0 97 3 0 97 

2 Sycamore 21 16 23 61 17 43 40 11 0 89 8 0 92 

3 Sycamore 26 15 25 60 16 43 41 11 6 83 5 18 76 

4 Sycamore 19 15 23 62 14 41 46 6 12 82 10 13 77 

5 Sycamore 20 13 24 64 13 41 47 3 30 67 4 14 82 

6 Hawthorn 21 12 35 54 13 47 40 0 48 52 0 74 26 

7 Hawthorn 17 8 57 35 10 64 26 0 51 49 0 80 20 

8 Hawthorn 11 11 32 57 14 51 35 0 71 29 0 57 43 

9 Hawthorn 11 10 46 44 10 62 28 0 73 27 0 81 19 

10 Hawthorn 13 10 35 56 11 49 40 0 92 8 0 70 30 
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Fig. 5.1. Canopy closure phenology derived from hemispherical photography (HP), smartphone fisheye 

photography (SP) and visual estimates (VE) for ten canopies. Sycamore-dominated canopies are shown in 
blue and hawthorn-dominated canopies in orange. A–C. Logistic growth model fits for all canopies. All 

model parameters were significant (p <0.001). D–F. 50% DOY from logistic growth models. G–I. 
Canopy closure rate from logistic growth models. Error bars represent standard error of the model 

estimates and indicate goodness of fit. Statistically significant differences between the two canopy types 
are indicated by shaded circles (p <0.05). Circles with a coloured diagonal line represent a borderline 

significant difference (p = 0.058). Circles with no fill indicate no significant difference (p = 0.120). 
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Fig 5.2. Comparison of leaf expansion timing for three tree species, based on 50% DOY derived from the 

logistic model fit of the time-series for each individual tree. Different colours denote significant 
differences between species. 

 

 
 

 

Fig. 5.3. Comparisons of individual station canopy closure timing and rate obtained from different 
methods. A. 50% DOY from hemispherical photography (HP) vs smartphone fisheye photography (SP), 

R2 = 0.53, P = 0.018. B. Canopy closure rate from HP vs SP, R2 = 0.57, P = 0.011. C. 50% DOY from SP 
vs visual estimation (VE), R2 = 0.54, P = 0.015. 
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Fig. 5.4. Comparisons of canopy closure timing and rate across all ten stations, obtained from 

hemispherical photography (HP), smartphone fisheye photography (SP) and visual estimates (VE).   A. 
50% DOY values across the ten stations (mean values were HP = 119.02, SP = 118.21, VE = 108.14). B. 
Canopy closure rates from across the ten stations (mean values were HP = 0.11, SP = 0.12, VE = 0.13). 
The horizontal line shows the median, the box represents values within the 25–75% quartiles, and the 

error bars show the minimum and maximum values. Methods sharing a lower case letter were not 
significantly different according to post hoc contrasts using estimated marginal means. 

 

 

 

Fig 5.5. Canopy closure phenology based on logistic model fits for the overall stand (ten stations 
combined), from hemispherical photography (HP), smartphone fisheye photography (SP) and visual 

estimates (VE). A. Logistic models for overall stand. All parameter estimates were statistically significant 
(p < 0.001). B. 50% DOY values for the overall stand (HP = 119.12, SP = 118.34, VE = 109.01) C. 

Canopy closure rates for the overall stand (HP = 0.11, SP = 0.12, VE = 0.10). Error bars show standard 
error of the model estimates and are a measure of goodness of fit. Model parameter values, standard 

errors and significance are included in Appendix 5.2: Table A5.1. 
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Fig 5.6. The effect of different temporal grains on 50% DOY and rate parameters based on combined 
forest canopy models for hemispherical photography (HP), smartphone fisheye photography (SP) and 

visual estimates (VE). Error bars represent standard error of the model parameter estimates. All 
parameter estimates were significant (p < 0.007). Model parameter values, standard errors and 

significance are included in Appendix 5.2: Table A5.3. 

 

 
 
 
 

Fig 5.7. The effect of different start dates on 50% DOY and rate parameters based on combined forest 
canopy models, using smartphone photography data with a 14-day temporal grain. Day 91 was the 

original start DOY. Error bars represent standard error of the model parameter estimates. All parameter 
estimates were significant (p < 0.002). Model parameter values, standard errors and significance are 

included in Appendix 5.2: Table A5.4. 
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5.4 Discussion 

Smartphone fisheye photography gives fine resolution measurements, capable of detecting 

small-scale variation in forest canopies (Bianchi et al., 2017; Smith and Ramsay, 2018). This 

trial demonstrates that when applied to monitoring canopy closure phenology, the method 

gives comparable results to hemispherical photography. Using logistic growth models with 

a fixed upper asymptote, the two methods have comparable model fits and parameter 

estimates. Other sigmoid models may also work well, but as logistic growth has been 

widely used in phenology studies (Ahl et al., 2006; Calders et al., 2015; Fisher et al., 2006; 

Richardson et al., 2006; Richardson et al., 2007; White et al., 2014; Zhang et al., 2003), it is a 

suitable choice for initial trials with a novel data collection method. The coarser resolution 

of the visual estimate method meant it was less able to detect small-scale changes in 

canopies. This gave rise to pulses and plateaus in leaf expansion activity, resulting in 

poorer model fits where canopies contained trees with contrasting leafing times. 

It is not surprising that the visual estimation method produced earlier canopy closure dates 

and more variable canopy closure rates compared to photographic methods. The coarse 

resolution from assigning leaf expansion scores in percentage bands meant that a tree 

could gain a score of 100% leaf expansion, when just over 75% was in leaf. Perhaps a more 

important reason for the observed difference in visual estimation and photographic 

methods is that while leaf expansion and canopy closure are related, they assess different 

attributes and should be considered as independent descriptors of canopy phenology. 

Canopy closure, as assessed by the two photographic methods, is the proportion of sky 

obscured by leaves as viewed from a single point (where the photograph is taken), and is 

closely related to understorey light (Brusa and Bunker, 2014; Gonsamo et al., 2013). By 

contrast, estimates of leaf expansion do not consider how the leaves occupy space in the 

canopy. In this study, leaf expansion was defined as the point when the recognisable shape 

of the leaf was visible, which does not account for leaf flattening or enlargement. In other 

studies, measures of leaf emergence have been shown to peak prior to optical measures of 

canopy structural development (Capdevielle-Vargas et al., 2015; White et al., 2014). Similar 

to large-scale observational studies of leaf phenology, the visual method used here did not 

weight leaf expansion scores according to basal area or crown size, so scores for small 

crowns were weighted equally to those of large crowns. For this reason the visual method 
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showed particularly early canopy closure for hawthorn-dominated canopies, as early-

leafing hawthorn had a strong effect on leaf expansion scores but weaker effect on canopy 

closure. These issues demonstrate the importance of studying canopy closure directly, in 

order to understand understorey light dynamics, rather than inferring canopy closure 

timing from observations of leaf phenology.  

The timing and rate of canopy closure characterised by the two photographic methods at 

the different stations can be explained in terms of leaf phenology and canopy composition. 

Hawthorn is a light-demanding, early leafing sub-canopy species, which takes advantage of 

high light periods prior to overstorey canopy closure (Roberts et al., 2015). The earlier 

leafing of hawthorn observed in this study corresponded with the earlier closure of 

hawthorn-dominated canopies. With the exception of station 1, there was a general pattern 

of earlier canopy closure where there was a greater proportion of hawthorn in the canopy. 

Furthermore, canopies containing the highest proportions of the later leafing ash were the 

latest canopies to close. As well as variation in the timing of leaf expansion between 

species, considerable intra-species variation is common even over small spatial scales 

(Delpierre et al., 2017). In this study, sycamore had the highest intra-species variation.  

This variation explains the earlier closure of station 1 compared to three of the hawthorn-

dominated canopies (stations 6, 7 and 8). Sycamore came into leaf on average 13 days 

earlier at station 1 compared to sycamore at stations 6, 7 and 8.  

Smartphone fisheye photography differs from hemispherical photography in its narrower 

field of view, which results in the former method producing images with a higher 

proportion of foliage elements and overhead canopy, as tree trunks and foliage at wider 

zenith angles are missed (Smith and Ramsay, 2018). However, there is no evidence that 

this difference affected canopy closure timing or rate estimates, as neither method 

consistently showed earlier or faster closure than the other. The differences observed 

between canopy closure estimates from smartphone and hemispherical photographs can 

be explained by the different proportions of the three canopy species captured in each 

camera’s field of view. Where the overhead canopy was dominated by hawthorn, 

smartphone fisheye photos contained a higher ratio of hawthorn to sycamore, and 

therefore detected earlier canopy closure (stations 5, 8, and 10). By contrast, where 

hawthorn was present in the image periphery, hemispherical photos captured a greater 
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proportion of hawthorn in their field of view than smartphone photos, and subsequently 

detected earlier canopy closure (stations 6 and 7). The difference in canopy closure timing 

between the two methods was greater where the compositional difference was highest.  

Overall, the results show that smartphone fisheye photographs yield very similar 50% DOY 

and rate values to hemispherical photography, when values are averaged across the stand, 

or when proportions of canopy closure across the stand are combined into one logistic 

model. The narrower field of view of the smartphone camera with fisheye lens means 

fewer individual tree crowns are included compared to a full hemispherical image 

(Pellikka, 2001). Given the variability in leaf expansion timing between species and 

individuals, it could be expected that an image containing fewer trees would a) yield more 

variable estimates of canopy closure timing across the stations, and b) yield faster 

estimates of canopy closure rate for individual stations. However, there was no overall 

difference in rate of canopy closure between the two photographic methods, and variability 

in rate and timing estimates were very similar. These results suggest that the smartphone 

fisheye camera field of view is large enough to capture variability in a canopy comparably 

to hemispherical photography.  

The woodland sampled in this study was small, with similar canopy openness, aspect and 

topography, so ten stations enabled the smartphone fisheye photography method to 

characterise stand canopy closure comparably to hemispherical photography.  Both 

methods also identified very similar levels of absolute canopy openness for           in 

contrast to Smith and Ramsay (2018). This may reflect the fairly uniform nature of canopy 

gaps in the woodland in this study, as well as the wider angle of view of the smartphone 

camera set up used here. In forests with more uneven structure, more stations may be 

required for smartphone fisheye photography to characterise canopy closure timing 

accurately. In addition, given the effects of microclimate and topography on leaf expansion 

timing (Fisher et al., 2006) it is recommended that in larger and more heterogeneous 

forests, ten stations are randomly assigned per 1 ha plot, and multiple plots are chosen to 

represent different stand conditions e.g., elevational gradients, species compositions and 

stand structures. Where the aim is to investigate local-level variation in forest canopy 

closure, for detailed studies of canopy-understorey dynamics, individual models should be 

run for each station, in order to understand the degree of variability across each stand. 
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Where the aim is to assess differences between forests across large geographic areas, a 

time-saving approach of combining data from ten stations into one logistic model could be 

used, as this resulted in similar canopy closure timing and rate metrics for the stand. 

There was a surprising degree of consistency in the logistic model estimates of canopy 

closure timing and rate between data sets obtained from a 2-day temporal grain and data 

sets from a 14-day temporal grain. A 14-day temporal grain is considerably less frequent 

than required for studies of leaf expansion on individual trees, where the rate of canopy 

development is much faster (Chapter 3). In this study the time from budburst to full canopy 

closure was 54 days, which is longer than reported in some other studies of both mixed 

species (Richardson et al., 2007) and single species stands (Capdevielle-Vargas et al., 

2015). The longer duration of canopy closure in this study is likely a result of the species 

composition in the stand, which included early leafing hawthorn and late-leafing ash. In 

addition, while in this study it did not seem to matter when observations began around a 

14-day window of first leaf expansion, this may have been due to the fact that most early 

leafing in this study was a result of hawthorn, which had a relatively low impact on overall 

canopy closure. In forests where early leafing trees have higher leaf area, early leafing 

activity could influence canopy closure more strongly, which would make capturing that 

activity more important for accurate prediction of canopy closure timing and rate.  Further 

studies investigating the effect of temporal grain on canopies with different species 

compositions would be important to determine standard guidance on appropriate 

minimum sampling effort to obtain accurate canopy closure estimates.  

5.5 Conclusions  

The present study has highlighted the potential of smartphone fisheye photography to 

provide meaningful data on the timing of canopy closure in forest ecology studies. While 

this trial is based on a small sample size in a single mixed species stand, the results clearly 

demonstrate that the method can detect small variations in canopy closure timing and rate, 

with potential to assess variation in canopy closure dynamics both between and within 

forests, and between different years. Further work is now needed test how the method 

performs in forests with different structures and compositions, so that standard guidance 

can be given to citizen scientists on how often photos should be taken. In addition, while 

the logistic model provided good fits and estimates of canopy closure timing and rate, the 
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half-maximum parameter can be difficult to define in a biologically meaningful sense 

(Hufkens et al., 2012). Investigating alternative model fits that yield parameters of time 

when canopy closure rate peaks, and time when canopy closure reaches 75% and 95%, 

would be useful next steps (Yin et al., 2003). 

There is a gap in current forest phenology monitoring, as few methods assess canopy 

closure directly (though see Korhonen et al. 2011 and Moeser et al. 2014) . The advantage 

of this method is its potential for widespread application, which is much needed to inform 

both landscape-scale and local-level conservation management, given the wide-range of 

factors that influence canopy phenology. With widespread and increasing ownership of 

smartphones, and the inexpensive nature of fisheye attachments, this method could be 

widely applied to enable comparisons of canopy closure timing between forests across 

large spatial scales. There could also be potential for data from smartphone fisheye 

photography to add valuable ground-based information to assist in the validation of 

satellite indices, though further research would be needed to characterise the relationship 

between different indices and canopy closure across a range of forest types.  



 

136 

 

 

  



 

137 

 

6  Monitoring impacts of climate change on 
forest ecosystem dynamics using citizen 

science 

 

6.1 Introduction 

It is well-established that climate change is affecting temperate broadleaved forests, with 

changes to tree phenology causing earlier and more prolonged closure of forest canopies 

(Menzel and Fabian, 1999; Roberts et al., 2015; Vitasse et al., 2009b). Broad-scale 

monitoring is conducted through remote sensing to characterise trends at regional and 

landscape scales (Ahl et al., 2006; Boyd et al., 2011; Hamunyela et al., 2013; Zhang et al., 

2003). Meanwhile, impacts of future climate change have been investigated in 

experimental studies on specific species in particular sites and conditions (De Frenne et al., 

2011; Fu et al., 2012; Jacques et al., 2015; Kim et al., 2015; Rollinson and Kaye, 2012; 

Vitasse et al., 2009a). However, there remain large gaps in our understanding of how 

climate change will affect forest ecosystem dynamics at local scales, inhibiting effective 

conservation management to mitigate impacts on biodiversity.  

The present research has underlined the fact that forests vary greatly, even over small 

spatial scales, and therefore high levels of replication are necessary to predict impacts on 

different forests, in order to implement effective biodiversity conservation at local and 

landscape-scales. A large range of factors including soil type, topography, structure and 

composition interact to affect the way different forests respond to environmental change 

(Vanhellemont et al., 2014; Verstraeten et al., 2013). Seasonal vegetation dynamics vary 

between forests, and this has implications for monitoring methods. For example, existing 

phenology monitoring of forest understorey plants focuses heavily on spring ephemerals 

(e.g., Nature’s Calendar, 2017), but some forests may be dominated by summer-green or 

evergreen flora (Chapter 2). In developing widespread monitoring of forest understorey 

dynamics, it is important to maintain a flexible approach that enables the selection of 

species that are most relevant to individual study sites (Chapter 2). Furthermore, at the 

site-level, considerable intra-species variation can be found in the phenology of canopy 

trees over short distances (Chapter 3 and 5), and small differences in canopy openness can 
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have large effects on herb-layer vegetation (Chapter 2). Therefore high replication is 

needed within forests as well as between them. 

Models have been designed in attempts to predict impacts of climate change on forests, but 

there is a lack of information on how community dynamics and site factors interact to 

determine the response of different species and ecosystems (Aaheim et al., 2011; McMahon 

et al., 2011). Numerous researchers have called for more widespread ground data to 

validate satellite remote sensing and improve parameterization for predictive models 

(Morgan et al., 2001; Peng et al., 2017a; Richardson et al., 2012; Wu et al., 2017). 

Furthermore, many ecologists interested in local forest conservation have also called for 

more integrated studies that consider forest ecosystem dynamics at a range of temporal 

and spatial scales (Baeten et al., 2010; Cole and Sheldon, 2017; Groffman et al., 2012; 

Murphy and McCarthy, 2014). It would be prohibitively expensive for this to be done by 

professional researchers, so the only realistic way to achieve this is through the 

involvement of non-professional scientists in data collection. 

This thesis aimed to identify methods that could be used more widely in monitoring of 

forest ecosystem dynamics in relation to climate change. A key outcome of the thesis is the 

development of an effective method for monitoring canopy closure timing, which has the 

potential to be widely used through citizen science. Light is the main mechanism 

controlling understorey growth, with the spring period being the most dynamic in terms of 

understorey development (Chapter 2). Therefore, monitoring changes in the timing of 

when understorey light becomes limiting is key. As the period of phenological escape is 

brief for many species (Augspurger and Bartlett, 2003; Richardson and O'Keefe, 2009), 

monitoring methods must be sensitive enough to detect small-scale variation in canopy 

closure through space and time. Canopy closure is a reliable surrogate attribute to estimate 

the understorey light environment across different forests, in place of more complex 

attributes such as Global Site Factor (Chapter 2). Visual estimates of canopy openness and 

leaf expansion are too coarse to detect small variation in canopy closure (Chapter 4 and 5), 

and ordinary smartphone photography is too restricted in its angle of view (Chapter 4). 

However, smartphone photography with a fisheye lens is able to detect small variations in 

canopy closure, and can characterise canopy closure phenology comparably to 

sophisticated hemispherical photography (Chapter 5). My research has also demonstrated 
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that this method is suitable for widespread use. Free image analysis software can be used 

to derive canopy closure estimates comparable to professional software, and different 

phone models and users can give reproducible results (Chapter 4).  

As well as monitoring canopy closure timing, monitoring individual tree phenology is 

important for predicting changes in forest composition and biodiversity. Another 

important finding of my research is that first event dates frequently used to monitor tree 

phenology can be misleading. Due to differences in the rate of leaf development between 

and within species, it is important that phenology monitoring involves collection of time-

series data that enable more accurate determination of leaf expansion timing and rate. This 

is particularly important in studies of ecosystem dynamics, as the rate of leaf expansion 

affects how quickly a tree begins photosynthesis, and can also affect vulnerability to 

herbivory and frost damage (Augspurger, 2009). Furthermore, the timing and rate of tree 

leaf expansion across a population has important implications for trophic interactions 

(Cole and Sheldon, 2017). In my research, I found that both visual estimation methods of 

leaf expansion―counts of tree sections and percentage estimates of whole 

crowns―yielded similar estimates of timing and rate using logistic growth models 

(Chapter 3).  However, before being used, these methods would need to be trialled with 

citizen scientists to assess reliability with multiple surveyors, and with different crown 

sizes and heights. Ensuring reproducible estimates of leaf expansion timing and rate will be 

important for predicting local and landscape-level impacts of phenological changes on tree 

health and biodiversity. 

Based on the research in this thesis, I present a summary of key recommendations for 

widespread monitoring of forest ecosystem dynamics in relation to climate change (Fig. 

6.1). I then provide details of a citizen science pilot study that I have developed, as a first 

step to implementing this. Finally, I discuss recommendations for further research, and 

highlight opportunities for development. 
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Fig. 6.1. Monitoring recommendations based on key findings 
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6.2 Putting findings into practice: citizen science pilot study 

As a first step to implementing more widespread monitoring of forest ecosystem dynamics 

in relation to climate change, I have established a pilot citizen science project to monitor 

spring canopy closure and understorey dynamics in a local woodland. The pilot study is 

taking place in Budshead Local Nature Reserve, Plymouth, England (50°25 N, 4°10 W). The 

site is an estuarine Plantation on an Ancient Woodland Site (PAWS) comprising a mature 

canopy of beech and hornbeam, with an understorey of beech, sycamore and ash. The pilot 

study has been coordinated in partnership with Active Neighbourhoods, a community 

project run by Devon Wildlife Trust and Plymouth City Council. Ten members of the public 

have been recruited to participate in data collection during spring 2018. 

The study design brings together several key elements of my research findings, and 

involves: smartphone fisheye photography to monitor canopy closure, counts of leaf 

expansion (on tree saplings), and percentage cover estimates of key herbaceous plants. In 

addition, volunteers will record flowering abundance of herbs. Small saplings (< 1.5 m tall) 

from three species (ash, beech and sycamore) that were common in the forest understorey 

were selected for monitoring, and fitted with removable identification tags. The saplings 

act as the ‘stations’ where canopy photographs and herb-layer assessments are conducted. 

In total 21 saplings have been tagged (seven of each species). As the woodland in this study 

has a canopy of mature beech and hornbeam, the summer conditions in the understorey 

are very shaded and the herb-flora is dominated by spring ephemerals, hence their 

selection as the species being monitored in this pilot study. 

Data quality considerations are important in all research, particularly so when multiple 

surveyors are used, and especially when those surveyors are inexperienced (Crall et al., 

2011; MacKenzie et al., 2017). Data quality in citizen science has gained increasing 

attention, as citizen science has become more important for gathering data at scales 

needed to answer questions on complex and rapidly changing conservation issues. Training 

has been shown to improve data quality, as has the provision of clear instructions 

(Dickinson et al., 2010; Fuccillo et al., 2015). A half-day training session was delivered for 

volunteers to provide instruction on how to take canopy photographs, carry out leaf 

expansion counts and estimate herb-layer cover. Detailed written and pictorial instructions 

were also provided (Appendix 6.1). In addition, each station will be assessed by two 
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different volunteers, and a graduate Conservation Biology student has been trained to 

oversee the project. She will be repeating observations and photographs at all stations, and 

this will provide a comparison between data collected by volunteers and data from an 

experienced surveyor.  

Volunteer motivation is another important factor in determining data quality in citizen 

science (Beaubien and Hamann, 2011; Worthington et al., 2012). If participants are not 

motivated, projects can be hampered by incomplete or inaccurate data sets (Frensley et al., 

2017). Having a dedicated person to oversee volunteers and provide regular 

communication should help maintain volunteer motivation and retention (Beaubien and 

Hamann, 2011). In addition, it is important to consider reasonable expectations on people’s 

time. I found that canopy closure timing estimates were reliable if photos were taken as 

infrequently as once every two weeks (Chapter 5). However, leaf expansion counts on 

individual trees needed to be conducted once every four days to yield accurate predictions 

of phenology timing and development rate (Chapter 3). Therefore it was decided that 

volunteers should be asked to carry out monitoring twice a week at regular intervals ( i.e., 

every three to four days). While saplings might leaf more rapidly than mature trees, it was 

decided that asking volunteers to visit more frequently than twice a week could reduce 

involvement. A three- to four-day temporal grain, should still enable good prediction 

accuracy using logistic growth models.  

Having volunteers take canopy photos at a higher temporal grain than necessary could be 

beneficial for two reasons. Firstly, while volunteers have been instructed on measures to 

maximise photo data quality, it is possible that some photographs may be unusable due to 

weather conditions and depending on individual user-expertise. Furthermore, the forest 

being studied has a different species composition and age structure to that studied in 

Chapter 5, so it is possible that canopy closure rate will be more rapid.  

In this pilot it was decided that volunteers would take photographs without the use of a 

mount or tripod. The marked sapling is used to mark where photos should be taken. 

Volunteers have been instructed to stand next to their sapling to take the photo, and to face 

the same direction each time, so the smartphone camera is orientated consistently. The 

canopy at each station will be monitored by three people―twice by volunteers and once by 

the project coordinator. This will enable a comparison of canopy closure timing and rate 
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from the three sets of photographs. If all three sets provide comparable estimates, it would 

indicate that tripods and mounts may not be necessary to ensure consistent images. This 

would be useful, as requiring fixed mounts would reduce the potential for this method to 

be widely applied. 

The cost-effective nature of the methods employed in this research have facilitated this 

pilot, and makes such studies feasible longer term. As different smartphone cameras 

perform comparably (Chapter 4), volunteers are using their own smartphones to take 

photographs. The inexpensive nature of the smartphone fisheye lens attachments has 

meant that the project was able to purchase one for each volunteer. In addition, two 

volunteers have expressed interest in being involved in analysing images. Since ImageJ 

software is open access and simple to use, it will be possible for volunteers to install the 

software on their own computers. This could enable a follow-up trial to assess volunteer 

accuracy in analysing canopy images. This would speed up the process of analysis, and 

could provide insights as to whether canopy images would be appropriate for analysis 

through online crowdsourcing (Kosmala et al., 2016). 

 

6.3 Future research and areas for development  

To take the proposals in this thesis forward there are several key areas for future work. 

These include: further research to refine methods; data quality research with citizen 

scientists using the methods; development of smartphone apps to enable efficient data 

submission and analysis; and the engagement of partners to support the roll-out of a 

national project. 

Research to refine the methods and to assess the quality of data collected by citizen 

scientists could be achieved at the same time, with an extended roll-out of the current pilot 

project. It would be useful to test the smartphone fisheye photography method in a wider 

range of forest types, to provide more specific guidance on how frequently photos must be 

taken. With regards tree phenology assessments, trials with citizen scientists are needed to 

assess accuracy of counts versus percentage estimates of leaf expansion using different 

trees species, and with canopies of different heights. Two of the main data quality 

challenges in citizen science arise when participants are required to identify species and 
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make subjective visual assessments of abundance (Crall et al., 2011; Delaney et al., 2008; 

Fuccillo et al., 2015; Galloway et al., 2006). As recommended herb-layer monitoring will 

focus on key species for each study site, citizen scientists should have a manageable 

number of species to become familiar with, but some form of data validation and training 

will be required. In addition, it will be important to assess citizen scientist accuracy in 

percentage cover estimates. Data quality testing should be carried out routinely as part of 

citizen science monitoring schemes, so mechanisms for ongoing data quality checks should 

be built into any monitoring programme that is developed.  

A time-consuming element of the present study was the processing of canopy imagery to 

derive canopy closure percentage estimates. If this method is to be used on a large scale, it 

is important to speed up the process of image analysis to reduce project management costs. 

There are two possible options for this. One option is to utilise a crowd-sourcing approach, 

where images are added to an online repository (e.g., Zooniverse.org) to enable multiple 

citizen scientists from around the world to classify the canopy and sky pixels, and then 

analyse images to calculate the percentage canopy closure. This sort of approach has 

already been used to validate plant phenology data from webcam images (Kosmala et al., 

2016) and to classify images of crown health in tropical rainforests (Zooniverse, No date). 

Each image is analysed by tens of users, to derive a consensus value, with confidence 

weightings applied according to level of between-user agreement. Zooniverse currently has 

1.1 million users, and is a growing community, so this offers considerable potential 

(Kosmala et al., 2016). 

Another option is to utilise the rapidly developing technology in smartphone apps. Tichy 

(2016) developed an app for calculating canopy cover (i.e., the vertical projection of the 

tree canopy onto the ground surface) from canopy photos taken with a smartphone or 

tablet. The app can be used to analyse images taken with or without a fisheye lens, with the 

user inputting the camera angle of view and threshold settings for image classification. The 

aim of the study by Tichy (2016) was to identify methods for estimating canopy cover, 

which relates to the dominance of tree cover at a site and is often used to calculate stand 

volume, rather than understorey light, which can be inferred from canopy closure 

(Gonsamo et al., 2013; Jennings et al., 1999; Tichy, 2016). Although the app does provide a 

‘canopy closure’ calculation, this was not tested against canopy openness/closure values 
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derived from professional software. Having established the potential for smartphone 

fisheye photography to obtain canopy openness estimates in my research, it would be 

useful to assess the reliability of this app as an analysis tool.  Ideally an app would be 

developed that can enable reliable automatic calculation of canopy openness. Newly 

developed image analysis algorithms are able to detect and eliminate poor quality images 

(e.g., those with lens flare), and select appropriate thresholds for separating canopy and 

sky pixels (Glatthorn and Beckschafer, 2014). This would remove subjectivity in analysis 

and increase efficiency.   

The potential use of smartphones and apps in ecological research is only just starting to be 

recognised (Teacher et al., 2013). A major advantage of using apps for data collection is the 

ability to integrate rapid data submission. The UK-wide citizen science project, Open Air 

Laboratories (OPAL), required participants to enter data online or send data by post, and 

found that only about 10% of completed surveys were returned (Lakeman-Fraser et al., 

2016). Increasing the ease by which people submit data is likely to improve submission 

rates. An app that enables citizen scientists to enter data, capture images, analyse them and 

then submit their automatically geo-referenced data-sets would improve data quality, save 

time and make the project more cost effective. To be practical, the app would need to have 

offline functionality to input and store data when the user does not have internet signal, 

which is becoming increasingly possible as technology develops (Teacher et al., 2013).  

Smartphone app technology continues to advance apace, and exciting new opportunities 

are arising for obtaining additional data that could be used in studies of forest ecosystem 

dynamics. Recently, an app for estimating chlorophyll content of individual leaves has been 

tested, and shown to be a reasonable cost-effective alternative to professional chlorophyll 

meters (Vesali et al., 2015). This technology is based on analysing colour channels, similar 

to analysis used to derive greenness indices (Chapter 3). This could be extended to assess 

greenness indices for plant canopies or forest understories, using automatic algorithms to 

correct for lighting variation (Brown et al., 2016) This could provide opportunities for 

citizen scientists to use photography of forest understories alongside smartphone fisheye 

photos of the canopy, to track the green-up of the herb and shrub layers in spring, in 

relation to canopy closure.  
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A smartphone app has also been developed to provide estimates of canopy Leaf Area Index 

in grasslands and crop fields (Confalonieri et al., 2013; Francone et al., 2014). This app has 

been shown to provide a reasonable rapid assessment alternative to LAI from sophisticated 

plant canopy analysis in broadleaved forests (Orlando et al., 2015). The app requires 

testing in forests with different composition and structure, but could be used to collect 

widespread data on forest phenology in relation to forest productivity. If citizen scientists 

are taking photographs of canopy closure using smartphone fisheye photography, it could 

take them less than a minute to open this app and take an additional photo to characterise 

LAI. The efficiency with which data can be collected and analysed using smartphone apps is 

a huge advantage.  

In summary, developing an app to enable analysis and submission of canopy photographs 

will be an important next step.  In addition, following the pilot study in spring 2018, I 

intend to extend the project more widely, working with my current employer, Plantlife. 

Exmoor National Park and the National Trust in the South West are interested in engaging 

citizen scientists in a forest monitoring programme. Further, as over 40% of forests in the 

UK are owned privately by individuals for ‘personal use’ (Smith and Gilbert, 2003), 

engaging with the private woodland owner sector will be important. I have begun 

discussions with the Sylva Foundation―a UK charity supporting private woodland owners 

with conservation objectives―on potential to incorporate phenology monitoring into their 

existing MyForest App, which provides a facility for landowners to enter data about their 

woodlands (Snaddon et al., 2013). Through Plantlife I am also involved in national 

discussions with the Woodland Trust, who lead the UK’s current phenology monitoring 

project, Nature’s Calendar. Building this new monitoring project into existing networks will 

be important, to learn from existing experience and maximise the project reach.  

The work presented in this thesis has made a useful contribution to understanding how 

citizen science could contribute valuable data for monitoring impacts of climate change on 

temperate forest ecosystem dynamics. The work has emphasised the need for high 

replication of phenology monitoring in forests―few studies have compared seasonal 

dynamics across woodlands, but this research highlighted that considerable differences can 

be found even over small spatial scales. Furthermore, little work has been done previously 

to quantify the reliability of first event dates in tree phenology research, but the research 
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presented here suggests these are unreliable, and monitoring projects should focus on 

collecting time-series data from visual observations or photographic methods.  The 

research presented here emphasises the need for widespread and integrated monitoring of 

forests in relation to climate change, and crucially, offers a way forward. Smartphone 

fisheye photography has been identified as a novel method suitable for monitoring canopy 

closure timing, with potential for widespread use. It is already clear that citizen science can 

make significant contributions to fields such as phenology and ecology, and that there is 

considerable interest in this area. However, with citizen science trials just beginning, and 

technological advances continuing, work is now needed to develop the methods proposed 

into a cohesive monitoring package ready for widespread roll-out.  
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8  Appendices 

Appendix numbering relates to chapter numbering, e.g., Appendix 2.1 is the first appendix 

relating to Chapter 2. Tables within Appendices relate to chapter numbers, e.g. A2.1 is the 

first table relating to chapter 2, A2.2 is the second table relating to chapter 2 etc. 

Appendix 2.1 

Woodland and plot-level species composition for four Devon woodlands. 
 

Table A2.1. Overall woodland species composition justifying NVC classifications for four Devon 
woodlands. NVC community descriptions based on Hall et al. 2004. 
 

 Hardwick Hunshaw Newton Mill Whitleigh 

NVC 
community 

W8e Fraxinus 
excelsior – Acer 
campestre – 
Mercurialis perennis 
(Geranium 
robertianum sub-
community) 

W16b Quercus spp. 
– Betula spp. – 
Deschampsia 
flexuosa 
(Vaccinium 
myrtillus – 
Dryopteris dilatata 
sub-community) 

W11a Quercus 
petraea – Betula 
pubescens – Oxalis 
acetosella 
(Dryopteris dilatata 
sub-community) 

Quercus robur – 
Pteridium aquilinum 
– Rubus fruticosus 
(typical sub-
community) 

Description 
of species 
compositio
n relating to 
NVC 
community 

Abundant Hedera 
helix, Galium 
aparine, Urtica dioica 
and Phyllitis 
scolopendrium are 
characteristic of this 
sub-community, and 
were key 
understorey species 
across the woodland. 
Geranium 
robertianum was also 
scattered throughout, 
though not present in 
survey plots. 

Kindbergia praelonga 
is an abundant 
bryophyte in this 
community, and was 
the most common 
bryophyte species in 
the woodland. 

Pteridium aquilinum 
and ericoid shrubs 
are characteristic, 
as well as 
Vaccinium myrtillus 
and Dryopteris 
dilatata, all present 
at the site. Calluna 
vulgaris was 
common along 
woodland rides, 
though not in the 
surveyed plots.  

Typical bryophytes 
for this community 
were common at 
the site: 
Leucobryum 
glaucum, Dicranum 
scoparium and 
Hypnum 
cupressiforme. 

Dominant oak with 
frequent downy 
birch and some ash 
is characteristic, 
and both species 
were common at 
the site. Corylus 
avellana is a locally 
common species in 
this community, 
present here. 

Hyacinthoides non-
scripta, Dryopteris 
spp. and Rubus 
fruticosus are 
abundant. Oxalis 
acetosella and 
Anemone 
nemorosa are also 
characteristic herbs 
that were present. 

Oak is dominant, but 
sweet chestnut is 
frequently found in 
this community, and 
was an important 
component at the 
site, outside of the 
surveyed area.  

The field layer 
typically has 
Hyacinthoides non-
scripta, which was 
present in specific 
areas of the site. 
Other dominant field 
layer species for this 
community were 
common throughout: 
Rubus fruticosus, 
Pteridium aquilinum 
and Lonicera 
periclymenum. 
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Table A2.2. Species composition by growth form in the six studied plots at each of the four Devon 
Woodlands 
 

Plant growth 
form category 

Hardwick Hunshaw Newton Mill Whitleigh 

Gb  

Bulbous 
geophytes 

Hyacinthoides non-
scripta 

N/A 
Hyacinthoides non-
scripta 

N/A 

Gn  

Non-bulbous 
geophytes 

Arum maculatum, 
Circaea lutetiana, 
Ficaria verna 

Pteridium aquilinum 
Anemone 
nemorosa,  
Pteridium aquilinum 

Pteridium 
aquilinum 

hc  

Herbaceous 
hemicryptophytes 

Geum urbanum, 
Mercurialis 
perennis, 
Silene dioica, 
Urtica dioica, 
Rumex sanguineus, 
Poa trivialis 

N/A 

Milium effusum,  
Oxalis acetosella, 
Geranium 
robertianum 

N/A 

hc (Pt)  

Fern 
hemicryptophytes 

Phyllitis 
scolopendrium,  
Dryopteris filix-mas,  
Polytichum 
setiferum 

Dryopteris dilatata, 
Dryopteris affinis, 
Blechnum spicant,  
Athyrium filix-
femina 

Dryopteris dilatata, 
Dryopteris affinis 

Dryopteris 
dilatata,  
Blechnum spicant 

Th 

Therophytes 
Galium aparine 

Melampyrum 
pratense 

N/A N/A 

Pn  

Nano-
phanaerophytes 

Rubus fruticosus 
agg. 

Rubus fruticosus 
agg.,  
Vaccinium myrtillus 

Rubus fruticosus 
agg. 

Rubus fruticosus 
agg. 

Ph  

Phanaerophytes 
(excluding shrubs 
and young trees) 

Hedera helix 
Hedera helix,  
Lonicera 
periclymenum 

Hedera helix, 
 Lonicera 
periclymenum 

Hedera helix, 
Lonicera 
periclymenum 

Ch  

Chamaephytes 
N/A N/A Stellaria holostea N/A 
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Appendix 2.2 

Statistical comparisons showing differences in vegetation structure between 

plots and months for four Devon woodlands. 

 

Table A2.3. Hardwick Wood pairwise comparisons of plots for bare ground cover, point frequency and 
vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Mains-test results are reported in Chapter 2. 

 

Bare Ground Cover (%) 

Plots 2 3 4 5 6 

1 1.00 1.00 1.00 1.00 0.006 

2   1.00 1.00 1.00 0.007 

3     1.00 0.72 <0.001 

4       1.00 <0.001 

5         0.12 

Point Frequency 

Plots 2 3 4 5 6 

1 1.00 1.00 0.57 0.07 <0.001 

2   1.00 0.78 0.10 <0.001 

3     1.00 1.00 <0.001 

4       1.00 0.01 

5         0.15 

Vegetation Height 

Plots 2 3 4 5 6 

1 1.00 1.00 0.56 <0.001 <0.001 

2   0.71 0.045 <0.001 <0.001 

3     1.00 <0.001 0.007 

4       0.02 0.17 

5         1.00 
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Table A2.4. Newton Mill pairwise comparisons of plots for bare ground cover, point frequency and 

vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Mains-test results are reported in Chapter 2. 

 

Bare Ground Cover (%) 

  2 3 4 5 6 

1 1.00 <0.001 <0.001 <0.001 <0.001 

2   <0.001 <0.001 <0.001 <0.001 

3     0.56 1.00 1.00 

4       0.27 1.00 

5         1.00 

Point Frequency 

  2 3 4 5 6 

1 1.00 <0.001 <0.001 0.04 <0.001 

2   <0.001 <0.001 <0.001 <0.001 

3     1.00 0.40 1.00 

4       0.24 1.00 

5         0.005 

Vegetation Height 

  2 3 4 5 6 

1 0.08 0.38 0.13 <0.001 1.00 

2   <0.001 <0.001 <0.001 <0.001 

3     1.00 <0.001 1.00 

4       <0.001 1.00 

5         <0.001 
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Table A2.5. Hunshaw Wood pairwise comparisons of plots for bare ground cover, point frequency and 
vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Mains-test results are reported in Chapter 2. 

 

Bare Ground Cover (%) 

  2 3 4 5 6 

1 1.00 <0.001 0.490 <0.001 <0.001 

2   <0.001 0.84 <0.001 <0.001 

3     <0.001 0.006 0.054 

4       <0.001 <0.001 

5         <0.001 

Point Frequency 

  2 3 4 5 6 

1 1.00 <0.001 0.03 <0.001 <0.001 

2   <0.001 1.00 <0.001 <0.001 

3     <0.001 0.02 0.005 

4       <0.001 <0.001 

5         1.00 

Vegetation Height 

  2 3 4 5 6 

1 1.00 <0.001 0.35 <0.001 <0.001 

2   <0.001 0.47 <0.001 <0.001 

3     <0.001 1.000 1.00 

4       <0.001 <0.001 

5         <0.001 
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Table A2.6. Whitleigh Wood pairwise comparisons of plots for bare ground cover, point frequency and 

vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Mains-test results are reported in Chapter 2. 
 
  Bare Ground Cover (%) 

  2 3 4 5 6 

1 1.00 <0.001 <0.001 <0.001 <0.001 

2   <0.001 <0.001 <0.001 <0.001 

3     <0.001 0.03 1.00 

4       <0.001 <0.001 

5         0.007 

Point Frequency 

  2 3 4 5 6 

1 1.00 <0.001 <0.001 <0.001 <0.001 

2   <0.001 0.008 <0.001 <0.001 

3     0.03 <0.001 0.72 

4       <0.001 <0.001 

5         0.16 

Vegetation Height 

  2 3 4 5 6 

1 1.00 <0.001 <0.001 <0.001 <0.001 

2   0.004 0.03 <0.001 <0.001 

3     1.00 <0.001 0.004 

4       <0.001 <0.001 

5         <0.001 
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Months 3 4 5 6 7 8 9 10 11 12

2 1.00 0.04 <0.001 <0.001 0.006 0.005 0.09 0.79 1.00 1.00

3 1.00 0.007 0.01 0.58 0.53 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.39

5 1.00 1.00 1.00 1.00 0.14 0.01 <0.001

6 1.00 1.00 1.00 0.28 0.03 0.001

7 1.00 1.00 1.00 0.10 0.07

8 1.00 1.00 0.96 0.07

9 1.00 1.00 0.82

10 1.00 1.00

11 1.00

Vegetation Height

Table A2.7. Hardwick Wood pairwise comparisons of months for bare ground cover, point frequency and 

vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Repeated measures ANOVAs revealed significant differences between months for 
all parameters: bare ground cover, F1,10 = 5.32, p <0.001; point frequency, F1,10 = 20.95, p <0.001; 
vegetation height, F1,5 = 9.83, p (G-G) = 0.025. G-G is the Greenhouse-Geisser corrected p-value for 

cases when sphericity was violated according to Mauchly’s sphericity test. 

 

  

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04 0.02

4 1.00 1.00 1.00 1.00 0.91 0.41 <0.001 <0.001

5 1.00 1.00 1.00 1.00 1.00 0.01 0.006

6 1.00 1.00 1.00 1.00 0.02 0.01

7 1.00 1.00 1.00 0.10 0.06

8 1.00 1.00 0.60 0.35

9 1.00 1.00 1.00

10 0.97 0.78

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 0.28 <0.001 <0.001 <0.001 0.01 1.00 1.00 1.00 1.00 1.00

3 0.01 0.003 0.16 1.00 1.00 1.00 0.10 0.01 0.006

4 1.00 1.00 0.18 <0.001 <0.001 <0.001 <0.001 <0.001

5 1.00 0.06 <0.001 <0.001 <0.001 <0.001 <0.001

6 1.00 0.002 <0.001 <0.001 <0.001 <0.001

7 1.00 0.10 0.005 <0.001 <0.001

8 1.00 1.00 0.89 0.44

9 1.00 1.00 1.00

10 1.00 1.00

11 1.00

Bare Ground Cover (%)

Point Frequency
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Table A2.8. Newton Mill pairwise comparisons of months for bare ground cover, point frequency and 

vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Repeated measures ANOVAs revealed significant differences between months for 
all parameters: bare ground cover, F1,10 = 23.00, p <0.001; point frequency, F1,5 = 11.19, p (G-G) = 
0.017; vegetation height, F1,5 = 7.85, p (G-G) = 0.037. G-G is the Greenhouse-Geisser corrected p-value 

for cases when sphericity was violated according to Mauchly’s sphericity test. 

 

   

Months 3 4 5 6 7 8 9 10 11 12

2 0.002 <0.001 <0.001 <0.001 <0.001 0.31 1.00 1.00 1.00 1.00

3 0.01 <0.001 0.47 1.000 1.00 1.00 1.00 0.04 0.002

4 1.00 1.00 0.11 <0.001 <0.001 <0.001 <0.001 <0.001

5 1.00 0.01 <0.001 <0.001 <0.001 <0.001 <0.001

6 1.00 0.003 <0.001 <0.001 <0.001 <0.001

7 0.64 0.13 0.09 0.002 <0.001

8 1.00 1.00 1.00 0.31

9 1.00 1.00 1.00

10 1.00 1.00

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 <0.001 <0.001 <0.001 <0.001 1.000 1.00 1.00 1.00 1.00

3 <0.001 <0.001 <0.001 0.010 1.00 1.00 1.00 1.00 1.00

4 <0.001 1.00 1.00 <0.001 <0.001 <0.001 <0.001 <0.001

5 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

6 1.00 <0.001 <0.001 <0.001 <0.001 <0.001

7 0.06 0.003 <0.001 <0.001 <0.001

8 1.00 1.00 1.00 1.00

9 1.00 1.00 1.00

10 1.00 1.00

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 0.05 <0.001 <0.001 <0.001 0.02 0.02 0.03 0.53 1.00

3 0.365 <0.001 <0.001 0.009 0.16 0.15 0.24 1.00 1.00

4 0.44 0.99 1.00 1.00 1.00 1.00 1.00 0.57

5 1.00 1.00 0.94 0.99 0.66 0.04 <0.001

6 1.00 1.00 1.00 1.00 0.10 <0.001

7 1.00 1.00 1.00 1.00 0.02

8 1.00 1.00 1.00 0.26

9 1.00 1.00 0.24

10 1.00 0.37

11 1.00

Bare Ground Cover (%)

Point Frequency

Vegetation Height
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Table A2.9. Hunshaw Wood pairwise comparisons of months for bare ground cover, point frequency and 

vegetation height. The matrix shows p values for each comparison, and un-shaded cells highlight 
significant differences. Repeated measures ANOVAs revealed significant differences between months for 
all parameters: bare ground cover, F1,5 = 51.07, p (G-G) <0.001; point frequency, F1,10 = 11.02, p = 
0.021; vegetation height, F1,5 = 10.06, p (G-G) = 0.025. G-G is the Greenhouse-Geisser corrected p-value 

for cases when sphericity was violated according to Mauchly’s sphericity test. 

 

 

  

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 1.00 0.06 0.004 0.001 <0.001 <0.001 <0.001 <0.001 0.01

3 1.00 0.15 0.01 0.004 <0.001 <0.001 <0.001 <0.001 0.03

4 1.00 1.00 0.91 0.10 0.10 0.06 0.25 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00

7 1.00 1.00 1.00 0.10 0.06

8 1.00 1.00 0.60 0.35

9 1.00 1.00 1.00

10 0.97 0.78

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 1.00 0.005 <0.001 <0.001 0.002 0.02 0.19 1.00 1.00

3 1.00 0.029 <0.001 0.006 0.01 0.12 0.83 1.00 1.000

4 0.89 0.007 0.22 0.48 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 0.10

6 1.00 1.00 1.00 0.39 0.03 <0.001

7 1.00 0.10 0.005 <0.001 <0.001

8 1.00 1.00 1.00 0.05

9 1.00 1.00 0.37

10 1.00 1.00

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

3 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

4 0.03 0.32 0.79 0.39 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 0.79

7 1.00 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00

9 1.00 1.00 1.00

10 1.00 1.00

11 1.00

Bare Ground Cover (%)

Point Frequency

Vegetation Height
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Table A2.10. Whitleigh Wood pairwise comparisons of months for bare ground cover and point frequency 

at Whitleigh. The matrix shows p values for each comparison, and un-shaded cells highlight significant 
differences. Repeated measures ANOVAs revealed significant differences between months for bare 
ground cover, F1,10 = 16.36, p = 0.010 and point frequency, F1,5 = 11.11, p (G-G) = 0.020. No significant 
differences were found between months for vegetation height, F1,5 = 6.28, p (G-G) = 0.053. G-G is the 

Greenhouse-Geisser corrected p-value for cases when sphericity was violated according to Mauchly’s 
sphericity test. 

 

 

 

 

 

 

 

  

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 1.00 0.03 0.002 <0.001 0.002 0.005 0.03 0.05 1.00

3 1.00 0.02 <0.001 <0.001 <0.001 0.003 0.02 0.03 1.00

4 1.00 0.67 0.30 0.67 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 0.99

7 1.00 1.00 1.00 1.000 0.45

8 1.00 1.00 1.00 0.99

9 1.00 1.00 1.00

10 1.00 1.00

11 1.00

Months 3 4 5 6 7 8 9 10 11 12

2 1.00 1.00 0.17 <0.001 0.14 0.020 0.15 1.00 1.00 1.00

3 1.00 0.08 <0.001 0.006 0.008 0.06 1.00 1.00 1.00

4 0.06 <0.001 0.01 0.01 0.05 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 0.16

6 1.00 1.00 1.00 0.06 0.007 <0.001

7 1.00 1.00 1.00 0.29 0.01

8 1.00 1.00 0.39 0.02

9 1.00 1.00 0.13

10 1.00 1.00

11 1.00

Bare Ground Cover (%)

Point Frequency
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Appendix 3.1 

Logistic growth model statistics from tree phenology data  

Table A3.1. Statistics from logistic growth models of leaf expansion data for individual trees and species 
from count method. 

 

 

Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 -45.45 3.57 -12.75 <0.001 0.37 0.029 12.75 <0.001 123.8 0.24

2 -41.48 4.90 -8.47 <0.001 0.32 0.038 8.47 <0.001 128.1 0.40

3 -67.72 5.09 -13.31 <0.001 0.50 0.038 13.31 <0.001 134.5 0.17

4 -67.20 6.60 -10.18 <0.001 0.49 0.048 10.19 <0.001 136.9 0.23

5 -87.29 10.64 -8.21 <0.001 0.65 0.079 8.21 <0.001 134.4 0.21

6 -59.10 8.42 -7.02 <0.001 0.47 0.068 7.02 <0.001 124.7 0.33

7 -90.18 3.27 -27.55 <0.001 0.64 0.023 27.55 <0.001 141.3 0.06

8 -96.76 8.27 -11.71 <0.001 0.67 0.058 11.71 <0.001 143.5 0.14

9 -47.20 4.27 -11.04 <0.001 0.40 0.036 11.04 <0.001 117.5 0.25

10 -113.77 18.97 -6.00 <0.001 1.02 0.171 6.00 0.004 111.3 0.18

Combined -19.11 0.89 -21.43 <0.001 0.15 0.007 21.47 <0.001 129.8 0.35

1 -129.81 12.69 -10.23 <0.001 0.99 0.097 10.23 <0.001 130.7 0.11

2 -115.96 17.11 -6.78 0.006 0.88 0.130 6.78 0.007 131.9 0.19

3 -37.52 5.13 -7.32 <0.001 0.32 0.044 7.33 <0.001 116.3 0.45

4 -19.11 3.08 -6.21 <0.001 0.16 0.251 6.23 <0.001 122.0 0.94

5 -39.20 3.59 -10.93 <0.001 0.33 0.030 10.94 <0.001 119.7 0.31

6 -75.38 8.18 -9.22 <0.001 0.60 0.065 9.22 <0.001 125.5 0.20

7 -98.03 9.48 -10.34 <0.001 0.71 0.069 10.34 <0.001 138.2 0.15

8 -73.14 7.60 -9.62 <0.001 0.57 0.060 9.62 <0.001 127.5 0.20

9 -105.38 11.83 -8.91 <0.001 0.78 0.088 8.91 <0.001 135.3 0.16

10 -33.03 3.91 -8.45 <0.001 0.28 0.034 8.46 <0.001 116.3 0.43

Combined -24.05 1.38 -17.49 <0.001 0.19 0.011 17.5 <0.001 126.8 0.33

1 -48.46 8.29 -5.85 <0.001 0.40 0.068 5.85 <0.001 121.5 0.47

2 -51.21 4.59 -11.15 <0.001 0.39 0.035 11.16 <0.001 130.3 0.25

3 -107.53 14.10 -7.63 0.005 0.79 0.103 7.63 0.005 136.4 0.19

4 -32.82 5.90 -5.56 <0.001 0.25 0.045 5.55 <0.001 130.0 0.71

5 -129.10 9.46 -13.64 <0.001 0.95 0.069 13.64 <0.001 136.3 0.09

6 -60.00 4.06 -14.78 <0.001 0.42 0.028 14.79 <0.001 142.4 0.18

7 -38.73 3.27 -11.86 <0.001 0.28 0.024 11.86 <0.001 137.4 0.32

8 -66.29 5.77 -11.48 <0.001 0.51 0.045 11.48 <0.001 129.4 0.19

9 -93.73 16.45 -5.70 0.002 0.72 0.126 5.70 0.002 130.7 0.27

10 -106.98 18.38 -5.82 0.010 0.77 0.133 5.82 0.010 138.6 0.25

Combined -33.68 1.12 -30.05 <0.001 0.25 0.008 30.07 <0.001 133.6 0.15

1 -36.66 5.18 -7.07 <0.001 0.30 0.042 7.08 <0.001 123.6 0.53

2 -35.71 2.49 -14.36 <0.001 0.28 0.020 14.36 <0.001 127.0 0.27

3 -77.13 6.04 -12.77 <0.001 0.59 0.046 12.77 <0.001 131.7 0.15

4 -81.53 7.84 -10.40 <0.001 0.62 0.060 10.40 <0.001 131.6 0.18

5 -24.45 1.67 -14.68 <0.001 0.20 0.014 14.72 <0.001 121.6 0.35

6 -61.69 8.18 -7.54 <0.001 0.51 0.068 7.54 <0.001 120.6 0.29

7 -68.45 9.10 -7.52 0.002 0.62 0.082 7.52 0.002 110.6 0.24

8 -78.60 8.15 -9.64 <0.001 0.71 0.074 9.64 <0.001 110.0 0.17

9 -83.48 13.91 -6.00 <0.001 0.63 0.106 6.00 <0.001 131.9 0.30

10 -31.24 1.86 -16.77 <0.001 0.26 0.015 16.77 <0.001 121.3 0.25

Combined -21.18 1.36 -15.54 <0.001 0.17 0.011 15.56 <0.001 123.2 0.41

Beech 

Oak

Sycamore

Ash
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Table A3.2. Statistics from logistic growth models of leaf expansion data for individual trees and species 

from percentage estimate method. 

 

 

  

Species Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 -53.16 3.13 -16.99 <0.001 0.42 0.025 17.00 <0.001 125.6 0.16

2 -40.55 3.81 -10.65 <0.001 0.32 0.299 10.65 <0.001 127.3 0.33

3 -65.04 3.43 -18.94 <0.001 0.48 0.025 18.94 <0.001 135.2 0.12

4 -57.88 6.38 -9.08 <0.001 0.42 0.046 9.08 <0.001 138.1 0.30

5 -108.70 9.59 -11.34 <0.001 0.80 0.071 11.34 <0.001 135.1 0.12

6 -60.08 3.48 -17.27 <0.001 0.48 0.028 17.28 <0.001 124.5 0.13

7 -101.33 3.50 -28.92 <0.001 0.72 0.025 28.92 <0.001 141.3 0.05

8 -91.09 5.07 -17.96 <0.001 0.63 0.035 17.97 <0.001 144.2 0.10

9 -50.47 3.93 -12.84 <0.001 0.43 0.034 12.84 <0.001 116.3 0.20

10 -112.85 23.12 -4.88 0.005 1.02 0.208 4.88 0.005 111.1 0.22

Combined -18.72 0.88 -21.19 <0.001 0.14 0.007 21.22 <0.001 130.2 0.36

1 -70.04 6.49 -10.79 <0.001 0.53 0.050 10.79 <0.001 131.1 0.19

2 -75.03 7.28 -10.31 <0.001 0.57 0.055 10.31 <0.001 131.3 0.19

3 -31.30 3.22 -8.80 <0.001 0.26 0.030 8.81 <0.001 118.3 0.45

4 -36.05 3.53 -10.20 <0.001 0.31 0.300 10.23 <0.001 117.4 0.34

5 -39.66 3.08 -12.87 <0.001 0.32 0.252 12.87 <0.001 122.2 0.26

6 -50.69 5.67 -8.94 <0.001 0.41 0.046 8.94 <0.001 124.2 0.30

7 -73.08 7.41 -9.86 <0.001 0.52 0.053 9.86 <0.001 139.4 0.22

8 -35.70 3.50 -10.19 <0.001 0.29 0.028 10.19 <0.001 123.8 0.37

9 -96.21 10.80 -8.91 <0.001 0.71 0.080 8.91 <0.001 135.1 0.18

10 -31.85 3.57 -8.91 <0.001 0.27 0.030 8.92 <0.001 118.3 0.43

Combined -23.43 0.76 -30.82 <0.001 0.19 0.006 30.87 <0.001 125.9 0.19

1 -48.09 5.38 -8.94 <0.001 0.40 0.044 8.94 <0.001 121.3 0.32

2 -44.21 1.98 -22.31 <0.001 0.34 0.015 22.31 <0.001 131.7 0.15

3 -114.33 9.88 -11.57 <0.001 0.84 0.072 11.57 <0.001 136.5 0.12

4 -36.29 3.01 -12.06 <0.001 0.28 0.023 12.06 <0.001 129.6 0.33

5 -118.13 3.54 -33.34 <0.001 0.86 0.026 33.34 <0.001 137.0 0.04

6 -55.13 2.80 -19.66 <0.001 0.39 0.020 19.67 <0.001 141.8 0.15

7 -41.58 1.91 -21.81 <0.001 0.31 0.014 21.82 <0.001 135.7 0.17

8 -62.46 4.02 -15.53 <0.001 0.48 0.031 15.53 <0.001 129.2 0.15

9 -91.17 9.86 -9.99 <0.001 0.69 0.070 9.99 <0.001 131.3 0.16

10 -93.45 4.59 -20.38 <0.001 0.67 0.033 20.38 <0.001 138.7 0.08

Combined -33.53 1.24 -26.99 <0.001 0.25 0.009 27.01 <0.001 133.6 0.17

1 -46.70 2.99 -15.63 <0.001 0.38 0.024 15.63 <0.001 123.5 0.19

2 -35.15 1.72 -20.42 <0.001 0.28 0.014 20.43 <0.001 127.3 0.20

3 -75.45 4.45 -16.94 <0.001 0.57 0.034 16.94 <0.001 131.7 0.12

4 -134.99 6.35 -21.25 <0.001 1.04 0.049 21.25 <0.001 130.1 0.05

5 -54.43 2.96 -18.39 <0.001 0.45 0.024 18.39 <0.001 121.3 0.14

6 -50.66 8.12 -6.24 <0.001 0.41 0.066 6.24 <0.001 123.7 0.44

7 -116.03 27.55 -4.21 0.008 1.04 0.247 4.21 0.008 111.5 0.26

8 -69.49 5.43 -12.79 <0.001 0.62 0.049 12.79 <0.001 111.2 0.14

9 -67.38 5.11 -13.19 <0.001 0.51 0.039 13.19 <0.001 131.8 0.17

10 -24.95 2.12 -11.76 <0.001 0.21 0.018 11.79 <0.001 116.7 0.41

Combined -22.46 1.38 -16.30 <0.001 0.18 0.011 16.32 <0.001 123.1 0.37

Ash

Beech 

Oak

Sycamore
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Table A3.3. Statistics from logistic growth models of Greenness Index data for crown sections and whole 

crowns  

 

 

  

Species Tree section ѳ2 SE t p ѳ3 SE t p DOY SE

4a -65.36 18.44 -3.55 0.009 0.47 0.13 3.56 0.009 140.57 0.71

4b -64.64 9.79 -6.60 <0.001 0.46 0.07 6.60 <0.001 141.04 0.35

4c -101.26 17.40 -5.82 0.001 0.72 0.12 5.79 0.001 141.49 0.27

Whole crown -77.56 12.03 -6.45 <0.001 0.55 0.09 6.44 <0.001 141.13 0.31

5a -124.75 16.18 -2.38 0.005 0.92 0.12 2.37 <0.001 134.98 0.43

5b -85.71 18.76 -2.21 0.010 0.64 0.14 2.21 0.010 133.73 0.26

5c

Whole crown -102.04 20.75 -3.42 0.010 0.76 0.16 3.41 0.010 133.99 0.27

7a -133.46 60.68 -2.20 0.079 0.95 0.43 2.20 0.079 141.09 0.53

7b -64.64 9.79 -6.60 <0.001 0.46 0.07 6.70 <0.001 141.04 0.35

7c -57.46 12.64 -4.54 0.006 0.41 0.09 4.54 0.006 140.37 0.56

Whole crown -90.77 17.31 -5.24 0.003 0.64 0.12 5.24 0.003 140.90 0.33

8a -74.74 25.52 -2.93 0.033 0.51 0.17 2.93 0.033 146.31 0.68

8b -130.80 54.80 -2.39 0.063 0.89 0.37 2.39 0.063 146.48 0.52

8c -59.02 17.65 -3.35 0.020 0.41 0.12 3.34 0.122 144.94 0.75

Whole crown -69.56 20.41 -3.41 0.020 0.48 0.14 3.41 0.020 145.86 0.63

1a -47.27 13.46 -3.51 0.017 0.37 0.10 3.54 0.017 130.88 0.08

1b -58.16 11.97 -4.86 0.008 0.45 0.09 4.87 0.008 131.06 0.17

1c -83.07 25.60 -3.25 0.032 0.63 0.19 3.24 0.032 130.27 0.13

Whole crown -56.70 0.80 -7.06 0.001 0.43 0.06 7.07 0.001 130.68 0.33

9a -305.81 244.86 -1.25 0.267 2.29 1.84 1.25 <0.001 133.39 0.35

9b -96.15 30.31 -3.17 0.019 0.72 0.23 3.17 <0.001 132.90 0.49

9c -193.07 69.11 -2.79 0.038 1.45 0.52 2.79 0.443 133.59 0.31

Whole crown -94.31 20.08 -4.70 0.003 0.70 0.15 4.70 0.003 133.79 0.34

5a -44.88 9.82 -4.57 0.001 0.34 0.07 4.57 0.001 133.29 0.69

5b -15.44 3.36 -4.59 0.001 0.12 0.03 4.70 0.001 128.94 1.52

5c -33.16 11.85 -2.80 0.021 0.25 0.10 2.80 0.021 135.19 1.40

Whole crown -31.20 6.37 -4.90 0.001 0.24 0.05 4.92 0.001 132.13 0.80

3a -60.01 5.70 -10.54 <0.001 0.46 0.04 10.55 <0.001 131.50 0.22

3b -40.54 12.99 -3.12 0.021 0.31 0.10 3.13 0.020 131.81 1.00

3c -54.63 4.18 -13.07 0.000 0.41 0.03 13.08 <0.001 131.71 0.19

Whole crown -60.44 10.69 -5.65 <0.001 0.46 0.08 5.66 0.001 131.13 0.41

Beech

Beech

Oak

Sycamore

Model unable to find a fit in 50 iterations

Ash

Ash

Ash

Ash
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Table A3.4. Statistics from logistic growth models of leaf expansion (based on count data) for same 

crown sections that were included in photograph trial, for comparison with Table A4.3. 

 

 

  

Species Tree section ѳ2 SE t p ѳ3 SE t p DOY SE

4a -56.52 6.99 -8.09 <0.001 0.42 0.05 8.09 <0.001 135.39 0.33

4b -76.57 15.18 -5.04 0.002 0.56 0.11 5.05 0.002 137.22 0.40

4c -130.20 24.12 -5.40 0.002 0.94 0.17 5.94 0.002 137.93 0.23

Whole crown -67.20 6.60 -10.18 <0.001 0.49 0.05 10.19 <0.001 136.86 0.23

5a -124.75 16.18 -7.71 0.005 0.92 0.12 7.71 0.005 135.87 0.16

5b -85.71 18.76 -4.57 0.010 0.64 0.14 4.57 0.010 133.44 0.38

5c -79.23 10.36 -7.65 0.001 0.59 0.08 7.65 0.001 133.52 0.25

Whole crown -87.29 10.64 -8.21 <0.001 0.65 0.08 8.21 <0.001 134.37 0.21

7a -88.68 7.60 -11.67 <0.001 0.63 0.05 11.67 <0.001 141.70 0.15

7b -93.80 7.20 -13.02 <0.001 0.66 0.05 13.02 <0.001 141.41 0.13

7c -90.73 4.66 -19.46 <0.001 0.64 0.03 19.46 <0.001 140.76 0.09

Whole crown -90.18 3.27 -27.55 <0.001 0.64 0.02 27.55 <0.001 141.28 0.06

8a -94.70 12.10 -7.83 <0.001 0.66 0.84 7.83 <0.001 143.75 0.22

8b -88.73 7.21 -12.31 <0.001 0.62 0.05 12.31 <0.001 143.02 0.15

8c -107.14 13.13 -8.16 <0.001 0.75 0.09 8.16 <0.001 143.57 0.19

Whole crown -96.76 8.27 -11.71 <0.001 0.67 0.06 11.71 <0.001 143.45 0.14

1a -124.41 8.88 -14.00 <0.001 0.95 0.07 14.01 0.001 130.88 0.08

1b -101.81 12.32 -8.27 <0.001 0.78 0.09 8.27 <0.001 131.06 0.17

1c -217.58 31.19 -6.98 0.006 1.67 0.24 6.99 0.006 130.27 0.13

Whole crown -129.81 12.69 -10.23 <0.001 0.99 0.10 10.23 <0.001 130.69 0.11

9a -128.24 9.48 -13.53 0.000 0.95 0.07 13.53 0.000 135.64 0.09

9b -97.56 13.26 -7.36 0.002 0.72 0.10 7.36 0.002 134.99 0.21

9c -95.79 16.05 -5.97 0.002 0.71 0.12 5.97 0.002 135.04 0.27

Whole crown -105.38 11.83 -8.91 0.000 0.78 0.09 8.91 0.000 135.25 0.16

5a -115.78 14.97 -7.73 0.005 0.85 0.11 7.73 0.005 136.38 0.17

5b -140.32 27.80 -5.05 0.037 1.04 0.21 5.05 0.037 135.55 0.22

5c -161.04 30.14 -5.34 0.006 1.18 0.22 5.35 0.006 136.84 0.16

Whole crown -129.10 9.46 -13.64 <0.001 0.95 0.07 13.64 <0.001 136.29 0.09

3a -85.97 7.47 -11.51 <0.001 0.65 0.06 11.51 <0.001 131.27 0.15

3b -72.17 6.62 -10.90 <0.001 0.55 0.05 10.91 <0.001 131.80 0.19

3c -73.30 7.65 -9.58 <0.001 0.55 0.06 9.59 <0.001 132.08 0.21

Whole crown -77.13 6.04 -12.77 <0.001 0.59 0.05 12.77 <0.001 131.70 0.15

Sycamore

Ash

Ash

Beech

Beech

Oak

Ash

Ash
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Table A3.5. Statistics from logistic growth models of leaf expansion (based on count data), with a four-

day temporal grain. 

 

 

Species Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 -44.53 3.14 -14.17 <0.001 0.36 0.03 14.18 <0.001 123.47 0.22

2 -41.59 6.05 -6.87 0.001 0.32 0.05 6.87 <0.001 128.06 0.50

3 -79.72 4.83 -16.50 <0.001 0.59 0.04 16.48 <0.001 134.31 0.12

4 -65.02 10.60 -6.13 0.004 0.47 0.08 6.13 0.004 137.15 0.38

5 -99.29 2.69 -36.86 <0.001 0.74 0.02 36.75 <0.001 134.43 0.05

6 -58.22 10.82 -5.38 0.006 0.47 0.09 5.38 0.006 124.99 0.42

7 -91.77 5.34 -17.17 <0.001 0.65 0.04 17.16 <0.001 141.27 0.08

8 -108.81 9.67 -11.26 0.002 0.76 0.07 11.28 0.001 143.28 0.18

9 -46.53 4.95 -9.40 0.001 0.40 0.04 9.38 <0.001 117.35 0.32

10 -144.88 20.89 -6.94 0.006 1.30 0.19 6.93 0.006 111.35 0.10

1 -122.24 5.41 -22.59 <0.001 0.93 0.04 22.61 <0.001 131.06 0.09

2

3 -40.91 6.91 -5.92 0.002 0.35 0.06 5.91 0.002 116.13 0.56

4 -21.51 4.67 -4.60 0.004 0.18 0.04 4.60 0.004 122.39 1.31

5 -40.32 4.98 -8.10 0.000 0.34 0.04 8.10 <0.001 119.45 0.43

6 -78.31 12.35 -6.34 0.003 0.63 0.10 6.34 0.003 125.20 0.24

7 -89.19 8.93 -9.99 0.010 0.65 0.06 9.97 0.010 138.11 0.18

8 -66.95 10.96 -6.11 0.026 0.52 0.09 6.11 0.026 127.59 0.37

9 -102.04 3.47 -29.42 0.001 0.76 0.03 29.40 0.001 134.85 0.07

10 -34.79 3.09 -11.26 <0.001 0.30 0.03 11.22 <0.001 116.17 0.34

1 -46.20 9.79 -4.72 0.009 0.38 0.08 4.72 0.009 120.82 0.62

2 -48.68 2.65 -18.39 <0.001 0.37 0.02 18.39 <0.001 130.25 0.16

3

4 -34.82 7.97 -4.37 0.012 0.27 0.06 4.37 0.012 129.59 0.91

5

6 -57.26 5.94 -9.64 <0.001 0.40 0.04 9.65 <0.001 142.28 0.30

7 -38.32 5.03 -7.62 <0.001 0.28 0.04 7.62 <0.001 137.26 0.53

8 -61.85 8.05 -7.69 0.005 0.48 0.06 7.68 0.005 129.62 0.30

9 -88.25 6.18 -14.28 <0.001 0.67 0.05 14.29 <0.001 131.05 0.15

10 -104.68 5.46 -19.16 0.003 0.76 0.04 19.09 0.003 138.23 0.09

1 -35.37 7.36 -4.81 0.005 0.29 0.06 4.81 0.005 123.44 0.81

2 -37.55 3.03 -12.38 <0.001 0.29 0.02 12.38 <0.001 127.54 0.31

3 -71.85 5.48 -13.11 <0.001 0.55 0.04 13.12 0.001 131.27 0.17

4 -76.28 6.95 -10.98 0.002 0.58 0.05 10.99 0.002 131.36 0.20

5 -24.94 2.91 -8.56 <0.001 0.21 0.02 8.56 <0.001 121.55 0.63

6 -55.78 12.18 -4.58 0.020 0.46 0.10 4.58 0.020 120.71 0.52

7 -74.96 5.12 -14.64 <0.001 0.68 0.05 14.70 <0.001 110.92 0.09

8 -71.75 6.20 -11.57 0.001 0.65 0.06 11.64 0.001 109.64 0.18

9 -68.27 11.89 -5.74 0.011 0.52 0.09 5.75 0.011 131.67 0.39

10 -33.08 2.09 -15.84 <0.001 0.27 0.02 15.83 <0.001 121.36 0.27

Sycamore

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Ash

Beech 

Oak
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Table A3.6. Statistics from logistic growth models of leaf expansion (based on estimate data), with a 

four-day temporal grain. 

 

 

Species Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 -54.40 2.77 -19.65 <0.001 0.43 0.02 19.65 <0.001 125.27 0.13

2 -41.84 6.23 -6.72 0.001 0.33 0.05 6.72 0.001 127.12 0.51

3 -63.35 4.29 -14.75 <0.001 0.47 0.03 14.75 <0.001 134.96 0.17

4 -56.14 9.84 -5.71 0.005 0.41 0.07 5.71 0.005 138.43 0.49

5 -116.78 3.31 -35.27 <0.001 0.87 0.02 35.27 <0.001 135.00 0.06

6 -63.20 3.05 -20.71 <0.001 0.51 0.02 20.74 <0.001 124.28 0.10

7 -105.50 4.05 -26.03 <0.001 0.75 0.03 26.00 <0.001 141.25 0.04

8 -89.99 10.04 -8.97 0.001 0.62 0.07 8.99 0.001 144.15 0.20

9 -55.72 3.08 -18.09 <0.001 0.48 0.03 18.07 <0.001 116.15 0.14

10 -185.93 6.27 -29.64 <0.001 1.67 0.06 29.60 <0.001 111.24 0.01

1 -71.79 8.46 -8.48 <0.001 0.55 0.06 8.49 <0.001 131.38 0.26

2 -82.62 12.47 -6.63 0.003 0.63 0.09 6.64 0.003 131.62 0.30

3 -32.72 4.53 -7.22 0.001 0.28 0.04 7.21 0.001 118.40 0.58

4 -41.96 5.75 -7.30 <0.001 0.36 0.05 7.29 <0.001 117.34 0.45

5 -40.14 3.30 -12.16 <0.001 0.33 0.03 12.16 <0.001 122.04 0.29

6 -51.62 9.55 -5.41 0.003 0.42 0.08 5.41 0.003 124.19 0.50

7 -64.42 7.78 -8.28 <0.001 0.46 0.06 8.28 <0.001 139.23 0.30

8 -35.40 5.11 -6.92 0.001 0.29 0.04 6.92 0.001 123.93 0.57

9 -103.37 5.81 -17.80 <0.001 0.77 0.04 17.77 <0.001 134.76 0.11

10 -29.73 4.01 -7.41 0.001 0.25 0.03 7.40 0.001 118.21 0.61

1 -49.89 9.20 -5.42 0.003 0.41 0.08 5.42 0.003 121.12 0.51

2 -43.69 2.47 -17.66 <0.001 0.33 0.02 17.66 <0.001 131.63 0.19

3 -120.42 1.96 -61.50 <0.001 0.88 0.01 61.74 <0.001 136.30 0.02

4 -36.69 4.27 -8.60 <0.001 0.28 0.03 8.60 <0.001 129.36 0.46

5 -113.48 8.61 -13.18 0.001 0.83 0.06 13.19 0.001 136.98 0.06

6 -51.42 2.29 -22.49 <0.001 0.36 0.02 22.50 <0.001 141.67 0.14

7 -39.79 2.34 -17.03 <0.001 0.29 0.02 17.04 <0.001 135.62 0.23

8 -61.80 4.51 -13.71 <0.001 0.48 0.03 13.71 <0.001 129.41 0.17

9 -103.85 10.81 -9.61 0.001 0.79 0.08 9.65 0.001 131.65 0.18

10 -89.32 6.15 -14.53 0.005 0.64 0.04 14.52 0.005 138.77 0.14

1 -46.88 3.95 -11.87 <0.001 0.38 0.03 11.87 <0.001 123.43 0.25

2 -34.79 1.39 -24.98 <0.001 0.27 0.01 25.00 <0.001 127.45 0.17

3 -158.54 14.99 -10.57 <0.001 1.22 0.12 10.51 <0.001 129.90 0.09

4 -71.26 2.35 -30.26 <0.001 0.54 0.02 30.29 <0.001 131.47 0.07

5 -50.84 1.88 -27.07 <0.001 0.42 0.02 27.08 <0.001 121.01 0.10

6 -48.87 11.36 -4.30 0.013 0.39 0.09 4.30 0.013 124.10 0.67

7 -169.32 11.21 -15.10 0.001 1.52 0.10 15.07 0.001 111.56 0.05

8 -65.10 8.85 -7.36 0.005 0.59 0.08 7.38 0.005 111.23 0.21

9 -62.60 4.54 -13.77 <0.001 0.47 0.03 13.78 <0.001 131.97 0.17

10 -26.44 3.30 -8.02 <0.001 0.23 0.03 8.01 <0.001 116.73 0.60

Sycamore

Ash

Beech 

Oak
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Table A3.7. Statistics from logistic growth models of leaf expansion (based on count data), with a six-day 

temporal grain. 

 

  

Species Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 47.08 4.51 -10.43 <0.001 0.38 0.04 10.42 <0.001 123.55 0.31

2 -48.60 11.51 -4.22 0.013 0.38 0.09 4.22 0.014 128.62 0.72

3 -61.76 2.18 -28.26 <0.001 0.46 0.02 28.15 <0.001 134.82 0.10

4 -62.74 1.72 -36.42 <0.001 0.46 0.01 36.46 <0.001 136.14 0.09

5

6 -57.01 4.73 -12.05 0.001 0.46 0.04 12.05 0.001 123.92 0.26

7 -95.64 0.82 -117.20 <0.001 0.68 0.01 116.10 <0.001 141.11 0.02

8 -93.48 5.39 -17.34 <0.001 0.65 0.04 17.49 <0.001 142.97 0.14

9 -48.74 4.04 -12.06 0.007 0.42 0.03 12.03 0.007 117.40 0.26

10

1 -118.20 0.45 -260.60 <0.001 0.90 0.00 264.10 <0.001 130.99 0.01

2

3 -36.40 9.76 -3.73 0.065 0.31 0.08 3.73 0.065 116.60 0.96

4 -21.12 5.56 -3.80 0.019 0.17 0.05 3.81 0.019 121.28 1.62

5 -40.21 5.37 -7.49 0.005 0.34 0.04 7.50 0.005 119.54 0.45

6 -57.63 5.60 -10.30 0.009 0.46 0.04 10.35 0.009 125.59 0.23

7

8

9 -106.87 1.08 -99.15 <0.001 0.79 0.01 98.03 <0.001 134.75 0.02

10 -38.71 11.65 -3.32 0.080 0.33 0.10 3.32 0.080 115.86 0.97

1 -65.66 8.35 -7.86 0.016 0.54 0.07 7.84 0.016 121.59 0.18

2 -48.67 5.55 -8.77 0.013 0.37 0.04 8.77 0.013 130.14 0.38

3

4 -32.65 5.53 -5.90 0.010 0.25 0.04 5.90 0.010 129.17 0.75

5

6 -64.10 2.57 -24.99 <0.001 0.45 0.02 25.07 <0.001 142.68 0.12

7 -37.32 6.48 -5.76 0.010 0.27 0.05 5.77 0.010 136.85 0.72

8 -65.24 2.43 -26.88 0.001 0.50 0.02 26.78 0.001 129.46 0.11

9

10

1 -40.92 3.03 -13.49 <0.001 0.33 0.02 13.48 <0.001 123.58 0.27

2 -34.80 4.21 -8.26 0.004 0.28 0.03 8.27 0.004 126.43 0.49

3 -99.08   2.85294  - 34.73 0.001 0.75 0.02 35.02 0.001 131.83 0.04

4 -84.78 1.52 -55.76 <0.001 0.65 0.01 56.27 <0.001 131.44 0.03

5 -25.71 2.96 -8.68 0.001 0.21 0.02 8.69 0.001 121.19 0.60

6 -66.13 17.74 -3.73 0.065 0.55 0.15 3.72 0.065 121.16 0.32

7

8 -79.76 2.10 -38.06 <0.001 0.72 0.02 37.66 0.001 110.31 0.04

9 -60.39 5.86 -10.30 0.009 0.46 0.04 10.35 0.009 131.59 0.23

10 -30.77 2.82 -10.93 <0.001 0.25 0.02 10.93 <0.001 121.55 0.40

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Model could not run: only three data points remained

Ash

Beech 

Oak

Sycamore
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Table A3.8. Statistics from logistic growth models of leaf expansion (based on estimate data), with a six-

day temporal grain. 

 

  

Species Tree no. ѳ2 SE t p ѳ3 SE t p DOY SE

1 -48.73 3.83 -12.73 <0.001 0.39 0.03 12.77 <0.001 125.77 0.22

2 -43.45 10.11 -4.30 0.013 0.34 0.08 4.30 0.013 127.34 0.73

3 -59.25 1.86 -31.91 <0.001 0.44 0.01 31.80 <0.001 134.97 0.09

4 -48.48 5.98 -8.11 0.004 0.35 0.04 8.12 0.004 137.50 0.40

5 -105.50 0.60 -174.60 <0.001 0.78 0.00 172.70 <0.001 135.22 0.01

6 -58.47 4.77 -12.27 0.001 0.47 0.04 12.31 0.001 124.64 0.24

7 -109.97 2.53 -43.46 <0.001 0.78 0.02 43.01 <0.001 141.23 0.06

8 -86.97 1.79 -48.55 <0.001 0.60 0.01 48.84 <0.001 143.97 0.03

9 -55.05 6.80 -8.10 0.015 0.47 0.06 8.06 0.015 115.95 0.25

10 -97.35 0.84 -115.30 <0.001 0.88 0.01 113.80 <0.001 110.57 0.01

1 -57.94 3.41 -16.97 <0.001 0.44 0.03 17.04 <0.001 131.01 0.17

2 -67.52 3.69 -18.29 <0.001 0.51 0.03 18.41 <0.001 131.32 0.13

3 -30.08 7.35 -4.10 0.026 0.25 0.06 4.10 0.026 118.14 1.07

4 -40.22 5.16 -7.80 0.001 0.34 0.04 7.79 0.001 116.60 0.42

5 -38.54 4.58 -8.41 0.004 0.32 0.04 8.41 0.004 121.90 0.42

6 -46.36 3.02 -15.35 0.001 0.37 0.02 15.35 0.001 123.94 0.22

7 -122.84 33.99 -3.62 0.036 0.88 0.24 3.60 0.037 139.46 0.14

8 -37.17 4.49 -8.27 0.004 0.30 0.04 8.27 0.004 123.79 0.46

9 -114.88 22.32 -5.15 0.004 0.85 0.17 5.09 0.004 134.62 0.34

10 -35.67 9.19 -3.88 0.060 0.30 0.08 3.88 0.060 118.78 0.97

1 -55.98 9.26 -6.05 0.009 0.46 0.08 6.03 0.009 121.71 0.33

2 -42.52 2.82 -15.07 <0.001 0.32 0.02 15.10 <0.001 131.49 0.23

3 -106.70 0.62 -170.80 <0.001 0.78 0.00 172.70 <0.001 136.78 0.01

4 -37.63 4.13 -9.12 <0.001 0.29 0.03 9.12 <0.001 129.32 0.43

5 -106.70 0.62 -170.80 <0.001 0.78 0.00 172.70 <0.001 136.78 0.01

6 -58.98 3.14 -18.79 <0.001 0.41 0.02 18.83 <0.001 142.29 0.17

7 -41.65 2.06 -20.21 <0.001 0.31 0.02 20.21 <0.001 135.25 0.19

8 -59.97 3.53 -16.98 <0.001 0.46 0.03 16.93 <0.001 129.31 0.17

9 -88.90 1.99 -44.75 <0.001 0.68 0.01 45.18 <0.001 131.37 0.04

10 Cannot run  singular gradient only 3 data points

1 -45.87 0.72 -64.01 <0.001 0.37 0.01 63.93 <0.001 123.26 0.05

2 -34.99 3.59 -9.76 <0.001 0.28 0.03 9.76 0.001 126.77 0.41

3 -168.60 0.01 -126.9 <0.001 1.30 0.00 126.92 <0.001 130.00 0.00

4 -66.51 0.61 -108.80 <0.001 0.51 0.00 109.40 <0.001 131.33 0.02

5 -47.79 2.12 -22.51 <0.001 0.39 0.02 22.51 <0.001 121.09 0.11

6 -65.97 5.12 -12.89 0.001 0.54 0.04 12.81 0.001 123.00 0.20

7 -80.17 0.95 -84.65 <0.001 0.72 0.01 83.56 <0.001 110.92 0.03

8 -80.17 0.95 -84.65 <0.001 0.72 0.01 83.56 <0.001 110.92 0.03

9 -62.38 6.29 -9.92 0.002 0.47 0.05 9.96 0.002 132.05 0.20

10 -24.30 2.29 -10.60 <0.001 0.21 0.02 10.62 <0.001 116.33 0.50

Sycamore

Ash

Beech 

Oak
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Appendix 4.1 

Suggested protocol for analysing canopy closure phenology using image 

analysis of canopy photographs 

Canopy closure estimates can be calculated from smartphone fisheye photos. Canopy 

closure is the inverse of the canopy openness estimates typically derived from fish-eye 

photographs, and is more meaningful in phenology studies during the spring and early 

summer, when we are concerned with bud burst and leaf expansion.  

Fig. A4.1 A. shows canopy closure estimates plotted through time for three example 

canopies. Data were collected using smartphone fisheye photography and ImageJ analysis, 

following the methods outlined in Chapter 5. Photos were taken every other day during 

spring 2017, in a small woodland in Cornwall, UK, from before budburst until after the 

canopy was fully in leaf. In order to make meaningful comparisons between these different 

canopies, canopy closure was standardised along a proportional scale between minimum 

and maximum values, where the minimum equals zero, and represents the canopy without 

leaves, and the maximum equals 100, representing the canopy in full leaf. This enables 

visual comparisons of spring canopy closure between different canopies (Fig. A4.1 B.). It 

would also allow comparisons across different years in cases where the canopy develops 

through time, or where the canopy has opened up through management or other factors. 

I have used a logistic growth function as described by Fox and Weisberg (2011) to plot the 

estimated development of each canopy (Fig. A4.1 C), and to estimate the rate of canopy 

development (Fig. A4.2 A) and the day of year when canopy development reaches the half-

maximum (Fig. A4.2 B). The model uses the following equation: 

   
  

                 
 

where   represents the response variable (proportion of canopy development),   

represents the predictor variable (day of year),    is the upper asymptote (in this case 

      ), and    and    are fitting parameters.    controls the steepness of the curve so 

represents the rate of the process (Fox and Weisberg, 2011)
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Fig. A4.1. Standardization of canopy closure estimates from three forest canopies, and fitting of the logistic growth model. Canopy X = red, Canopy Y = 
blue, Canopy Z = green. A. Raw (absolute) estimated canopy closure values from image analysis. B. Standardization of each data set between the minimum 

and maximum values.  C. Fitted models using the logistic growth equation 
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Fig. A4.2. Distribution of canopy closure rate and day of year when canopies reached 50% closure, 

for three forest canopies, with standard errors of estimates from the logistic growth model.  
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Appendix 5.1 

Example hemispherical and smartphone fisheye photographs, 

demonstrating difference in field of view 

Both photographs were taken from the same position on 5th May 2017, as part of the 

field trial conducted at Elwell woods. Photograph A is taken with the hemispherical 

camera, and Photograph B is taken with the smartphone camera with fisheye lens 

attached, using a 4:3 aspect ratio. 

 

 

A 

B 
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Appendix 5.2 

Logistic model statistics from canopy phenology data 

Table A5.1. Statistics from logistic growth models of canopy closure phenology data from 
hemispherical photography, smartphone fisheye photography and visual estimates 

 

 

  

Method Station ѳ2 SE t p ѳ3 SE t p DOY SE

1 -15.11 0.69 -21.88 <0.001 0.13 0.006 21.91 <0.001 117.23 0.39

2 -16.65 0.84 -19.74 <0.001 0.14 0.007 19.72 <0.001 122.80 0.40

3 -14.14 0.71 -19.84 <0.001 0.12 0.006 19.81 <0.001 122.05 0.46

4 -12.71 0.76 -16.65 <0.001 0.11 0.006 16.66 <0.001 119.07 0.59

5 -13.23 0.81 -16.28 <0.001 0.11 0.007 16.27 <0.001 120.53 0.59

6 -13.38 0.68 -19.60 <0.001 0.11 0.006 19.60 <0.001 119.30 0.48

7 -11.42 0.73 -15.64 <0.001 0.10 0.006 15.65 <0.001 118.67 0.67

8 -11.39 0.93 -12.27 <0.001 0.10 0.008 12.33 <0.001 115.15 0.84

9 -11.88 0.91 -13.02 <0.001 0.10 0.008 13.09 <0.001 114.13 0.76

10 -15.46 0.85 -18.27 <0.001 0.13 0.007 18.25 <0.001 121.52 0.46

Combined -13.12 0.67 -19.63 <0.001 0.11 0.006 19.63 <0.001 119.15 0.49

1 -15.66 0.54 -28.95 <0.001 0.14 0.005 29.03 <0.001 115.59 0.28

2 -16.69 0.76 -21.92 <0.001 0.14 0.006 21.96 <0.001 121.01 0.37

3 -16.09 0.69 -23.31 <0.001 0.13 0.006 23.36 <0.001 119.63 0.35

4 -10.92 0.54 -20.16 <0.001 0.10 0.005 20.32 <0.001 114.24 0.53

5 -17.05 0.83 -20.64 <0.001 0.14 0.007 20.67 <0.001 122.00 0.38

6 -13.68 0.68 -20.15 <0.001 0.12 0.006 20.22 <0.001 117.42 0.46

7 -13.14 0.81 -16.20 <0.001 0.11 0.007 16.24 <0.001 119.96 0.60

8 -11.92 0.64 -18.70 <0.001 0.11 0.006 18.84 <0.001 113.45 0.53

9 -11.31 0.73 -15.48 <0.001 0.10 0.006 15.56 <0.001 116.79 0.69

10 -16.83 0.86 -19.68 <0.001 0.14 0.007 19.71 <0.001 122.30 0.41

Combined -13.79 0.53 -26.14 <0.001 0.12 0.004 26.21 <0.001 118.42 0.36

1 -16.31 0.73 -22.22 <0.001 0.14 0.006 22.28 <0.001 114.15 0.35

2 -17.07 0.79 -21.71 <0.001 0.15 0.007 21.74 <0.001 116.88 0.35

3 -13.51 1.03 -13.06 <0.001 0.12 0.009 13.06 <0.001 111.61 0.63

4 -9.24 1.92 -4.82 <0.001 0.10 0.019 5.23 <0.001 91.77 1.94

5 -16.63 1.55 -10.73 <0.001 0.14 0.013 10.67 <0.001 117.68 0.63

6 -5.03 0.68 -7.39 <0.001 0.05 0.006 7.70 <0.001 106.45 1.61

7 -9.15 1.09 -8.37 <0.001 0.09 0.010 8.72 <0.001 101.17 1.16

8 -24.88 3.61 -6.88 <0.001 0.26 0.037 6.93 <0.001 96.64 0.56

9 -9.55 0.90 -10.62 <0.001 0.09 0.008 10.65 <0.001 110.26 0.90

10 -20.67 1.08 -19.08 <0.001 0.18 0.009 19.09 <0.001 117.63 0.32

Combined -10.62 0.50 -21.29 <0.001 0.10 0.005 21.59 <0.001 109.17 0.47
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Table A5.2. Statistics from logistic growth models of individual leaf expansion estimates for ash, 

sycamore and hawthorn 

 

  

Species Tree Station ѳ2 SE t p ѳ3 SE t p DOY SE

1 1 -30.50 7.08 -4.31 0.004 0.28 0.066 4.29 0.004 108.20 0.80

2 1 -51.16 13.18 -3.88 0.012 0.47 0.121 3.88 0.012 109.47 0.57

3 1 -48.13 11.38 -4.23 0.004 0.44 0.104 4.22 0.004 109.42 0.56

4 1 -10.60 3.80 -2.78 0.018 0.08 0.033 2.43 0.033 131.04 7.35

5 1 -23.69 4.25 -5.58 <0.001 0.20 0.036 5.53 <0.001 120.45 0.90

6 1 -46.25 15.99 -2.89 0.034 0.46 0.160 2.89 0.034 100.05 0.76

7 2 -40.32 10.37 -3.89 0.008 0.33 0.085 3.88 0.008 122.48 0.78

8 2 -26.52 5.44 -4.87 <0.001 0.23 0.047 4.84 <0.001 115.45 0.87

9 2 -58.28 14.17 -4.11 0.006 0.45 0.110 4.11 0.006 129.44 0.56

10 2 -29.16 6.29 -4.63 0.001 0.24 0.051 4.61 0.001 123.47 0.89

11 2 -35.71 9.18 -3.89 0.008 0.33 0.085 3.88 0.008 108.48 0.78

12 2 -25.92 6.66 -3.89 0.006 0.23 0.059 3.87 0.006 113.31 1.03

13 3 -28.29 5.45 -5.19 <0.001 0.22 0.043 5.15 <0.001 127.91 0.84

14 3 -92.04 24.71 -3.73 0.034 0.85 0.228 3.73 0.034 108.57 0.35

15 3 -21.94 4.19 -5.23 <0.001 0.17 0.034 5.18 <0.001 126.29 1.03

16 3 -26.08 5.93 -4.40 0.002 0.22 0.051 4.37 0.002 117.26 0.96

17 3 -33.27 15.84 -2.10 0.126 0.31 0.146 2.11 0.126 108.37 1.18

18 4 -35.68 8.46 -4.21 0.003 0.30 0.071 4.19 0.003 118.93 0.78

19 4 -31.56 6.80 -4.64 0.002 0.27 0.060 4.62 0.002 116.17 0.78

20 4 -29.59 6.86 -4.31 0.003 0.24 0.057 4.29 0.003 121.50 0.92

21 4 -28.56 7.34 -3.87 0.006 0.25 0.065 3.87 0.006 113.54 0.97

22 4 -22.65 8.21 -2.76 0.033 0.20 0.073 2.75 0.033 112.70 1.43

23 5 -27.32 8.14 -3.36 0.015 0.26 0.077 3.35 0.016 105.60 1.06

24 5 -32.69 6.71 -4.88 <0.001 0.26 0.054 4.84 <0.001 124.14 0.76

25 5 -37.16 9.32 -3.99 0.005 0.31 0.079 3.97 0.005 118.95 0.79

26 5 -19.14 5.66 -3.38 0.010 0.17 0.049 3.36 0.010 115.77 1.45

27 6 -38.84 10.12 -3.84 0.009 0.29 0.077 3.83 0.009 132.25 0.85

28 6 -31.79 8.28 -3.84 0.009 0.29 0.076 3.83 0.009 108.25 0.85

29 7 -22.98 5.19 -4.42 0.002 0.18 0.041 4.39 0.002 126.35 1.12

30 8 -32.87 6.54 -5.03 <0.001 0.26 0.051 5.00 <0.001 128.13 0.76

31 9 -22.91 5.28 -4.34 0.002 0.20 0.046 4.31 0.002 116.59 1.09

32 10 -17.60 3.97 -4.43 0.001 0.15 0.034 4.39 0.001 115.46 1.28

1 1 -29.06 6.06 -4.80 <0.001 0.23 0.049 4.76 0.001 123.94 0.86

2 1 -36.74 10.11 -3.64 0.008 0.28 0.075 3.62 0.009 134.80 0.96

3 2 -24.99 4.88 -5.12 <0.001 0.21 0.041 5.08 <0.001 119.20 0.90

4 3 -19.54 3.48 -5.61 <0.001 0.16 0.028 5.55 <0.001 124.07 1.05

5 4 -29.19 8.48 -4.76 <0.001 0.24 0.056 4.76 <0.001 125.60 0.84

6 5 -33.59 11.21 -4.00 0.005 0.28 0.052 3.98 0.005 132.90 0.70
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Table A5.3. Statistics from logistic growth models of canopy closure phenology data from 
hemispherical photography, smartphone fisheye photography and visual estimates using different 

temporal grains 

 

 

  

Species Tree Station ѳ2 SE t p ѳ3 SE t p DOY SE

1 3 -34.56 12.85 -2.69 0.045 0.36 0.133 2.69 0.046 96.62 0.98

2 4 -34.56 12.85 -2.69 0.045 0.36 0.133 2.69 0.046 96.62 0.98

3 5 -34.56 12.85 -2.69 0.045 0.36 0.133 2.69 0.046 96.62 0.98

4 6 -26.25 7.40 -3.50 0.012 0.26 0.074 3.53 0.012 100.07 0.99

5 6 -63.31 34.79 -1.82 0.210 0.67 0.370 1.82 0.210 94.00 0.85

6 6 -39.84 20.49 -1.94 0.147 0.42 0.216 1.94 0.147 95.00 1.14

7 7 -12.85 3.83 -3.36 0.008 0.13 0.038 3.34 0.009 102.58 1.70

8 7 -16.24 7.38 -2.20 0.040 0.17 0.075 2.20 0.040 98.00 1.90

9 8 -34.52 10.70 -3.23 0.023 0.35 0.108 3.22 0.024 99.07 0.87

10 8 -50.63 18.75 -2.70 0.074 0.53 0.196 2.69 0.074 95.61 0.72

11 9 Model reached maximum 50 iterations

12 9 -20.83 9.75 -2.14 0.050 0.22 0.100 2.14 0.050 97.00 1.64

13 9 -38.43 9.53 -4.04 0.007 0.38 0.094 4.02 0.007 101.19 0.66

14 9 -44.39 14.22 -3.12 0.021 0.44 0.140 3.11 0.021 102.00 0.74

15 9 -34.53 10.70 -3.23 0.023 0.35 0.108 3.22 0.024 99.07 0.87

16 10 -50.63 18.75 -2.70 0.074 0.53 0.196 2.70 0.074 95.61 0.72

17 10 -214.76 307.33 -0.70 0.535 2.20 3.167 0.70 0.537 97.47 0.76

18 10 -55.73 16.36 -3.41 0.019 0.56 0.164 3.40 0.019 99.79 0.56

H
aw

th
o

rn

Method
Temporal 

Grain
ѳ2 SE t p ѳ3 SE t p DOY SE

2 -13.12 0.67 -19.63 <0.001 0.11 0.006 19.63 <0.001 119.15 0.49

4 -13.92 1.01 -13.79 <0.001 0.12 0.008 13.82 <0.001 118.96 0.67

6 -14.95 1.24 -12.04 <0.001 0.13 0.010 12.07 <0.001 119.45 0.74

8 -14.29 0.78 -18.41 <0.001 0.12 0.006 18.46 <0.001 119.84 0.51

10 -12.95 1.55 -8.36 <0.001 0.11 0.013 8.40 <0.001 119.53 1.23

12 -13.88 0.95 -14.65 <0.001 0.11 0.008 14.69 <0.001 121.35 0.67

14 -15.33 1.07 -14.37 0.001 0.13 0.009 14.42 <0.001 117.80 0.59

2 -13.79 0.53 -26.14 <0.001 0.12 0.004 26.21 <0.001 118.42 0.36

4 -14.17 0.69 -20.41 <0.001 0.12 0.006 20.46 <0.001 118.32 0.45

6 -15.09 1.02 -14.72 <0.001 0.13 0.009 14.76 <0.001 118.57 0.59

8 -14.16 0.75 -18.85 <0.001 0.12 0.006 19.01 <0.001 118.78 0.49

10 -13.77 1.38 -10.52 <0.001 0.12 0.011 10.56 <0.001 118.78 0.92

12 -14.06 0.93 -15.09 <0.001 0.12 0.008 15.14 <0.001 119.13 0.63

14 -15.33 1.40 -10.96 0.002 0.13 0.012 11.00 <0.001 117.55 0.77

2 -10.62 0.50 -21.29 <0.001 0.10 0.005 21.59 <0.001 109.17 0.47

4 -11.04 0.72 -15.30 <0.001 0.10 0.007 15.48 <0.001 109.30 0.64

6 -11.02 1.13 -9.75 <0.001 0.10 0.010 9.85 <0.001 109.48 1.03

8 -11.54 1.21 -9.57 <0.001 0.11 0.011 9.65 <0.001 109.27 1.03

10 -11.54 1.21 -9.57 <0.001 0.11 0.011 9.65 <0.001 109.27 1.03

12 -12.00 1.60 -7.52 0.005 0.11 0.014 7.76 <0.001 109.72 1.31

14 -12.31 1.83 -6.74 0.007 0.11 0.017 6.77 0.01 110.18 1.47
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Table A5.4. Statistics from logistic growth models of canopy closure phenology data from smartphone 

fisheye photography with a 14-day temporal gain and varying start dates 

 

 

  

Start DOY ѳ2 SE t p ѳ3 SE t p DOY SE

79 -15.39 1.92 -8.02 0.001 0.13 0.016 8.05 0.001 119.00 1.07

81 -14.79 1.09 -13.61 <0.001 0.12 0.009 13.67 <0.001 118.72 0.67

83 -12.83 1.24 -10.37 <0.001 0.11 0.010 10.41 <0.001 119.52 1.02

85 -13.07 1.18 -11.10 <0.001 0.11 0.010 11.14 <0.001 117.82 0.92

87 -13.90 1.35 -10.29 <0.001 0.12 0.011 10.31 <0.001 118.39 0.93

89 -14.19 0.70 -20.26 <0.001 0.12 0.006 20.32 <0.001 118.23 0.46

91 -15.33 1.40 -10.96 0.002 0.13 0.012 11.00 0.002 117.55 0.77
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Appendix 6.1 

Pilot citizen science project to monitor canopy closure phenology in 

relation to understorey phenology 

Example instruction sheet page 1 

 

Image of sycamore budburst 

removed due to Copyright 

restrictions. 

Image of beech and ash 

budburst removed due to 

Copyright restrictions. 
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Example instruction sheet page 2 
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Example data sheet 

        Surveyor name:    Sapling number:  

 

 

Date 

Photo 

taken 

() 

Leaf 

expansion 

out of/__ 

Lesser celandine Bluebells Wild garlic Wood anemone Bare ground 

% 
Cover 

✿ % 
Cover 

✿ % 
Cover 

✿ % 
Cover 

✿ % Cover 

12/3  3 15 10 50 0 5 0 0 0 10 
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Copy of the guidance notes written by the Active Neighbourhoods project 

 

Plymouth Phenology Study – Budshead Wood 

Thank you for taking the time to be part of this citizen science survey at Budshead Wood. Your observations will 

be important in determining how we can monitor climate change in British woodlands.  
Time you’ll need 

Trees can be checked twice a week, starting from now (March 2018) as flowers are starting to appear, and finishing 

in a couple of months’ time when the tree canopy has fully closed. It only takes a few minutes to check each tree 

sapling - the time you spend in the woodland each time will depend on how many trees you would like to monitor. 

The tree saplings for this project are marked with a green number tag, as shown in the photo above. 

Equipment 

Clipboard, smart phone (with camera), fish-eye lens (contact us if you would like one), pen/ pencil, recording sheet 

for each tree, locations of trees and instructions sheet. 

Photographs 

For every sapling you monitor, a photo should be taken of the canopy above from now (March 2018) until it is fully 

in leaf. Photos can be taken using the fish-eye lens clipped onto your smart phone. The best time to take photos is 

during earlier morning or later afternoon, to reduce the likelihood of lens flare. Name each photo with the date and 

tree tag number of the sapling you’re stood by. 

Observations 

For each tree sapling, record the number of buds in leaf - the method for doing this will vary depending on whether 

you are monitoring beech, ash or sycamore. The numbers of flowers surrounding each sapling should also be 

recorded on the sheets provided.  

Health and Safety 

When working in the woodland, be aware of other users such as dog walkers and take care when walking on uneven 

ground with exposed tree roots, especially after wet weather. If monitoring trees on your own, ensure somebody 

knows what you’re doing and how long you intend to be out for.  

Where to send your observations and photographs 

Keep all of your recording sheets for each tree, as well as your photographs. These can be scanned/ saved to a USB 

stick and transferred to Alison Smith in person at the end of the project, or you can email these to 

alison.smith@plymouth.ac.uk each week or at the end of the project. 

Any queries? To find out more, contact: 

Alison Smith at alison.smith@plymouth.ac.uk  

or Hayley and Tim at Active Neighbourhoods: 

Hayley Partridge hayley.partridge@plymouth.gov.uk 

Tim Russell tim.russell@plymouth.gov.uk 
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Appendix 7.1 

List of abbreviations used in the thesis 
 

ANCOVA Analysis of covariance 

ANOVA Analysis of variance 

ART Aligned Rank Transform (method for transforming non-normal data-

sets to allow use of parametric statistical analyses) 

ASNW Ancient semi-natural woodland 

BB Budburst 

CO Canopy openness (percentage of the sky hemisphere not obstructed by 

canopy elements, within a given field of view—if calculated from 

hemispherical photography in HemiView, CO is weighted according to 

the gap fraction zenith angle) 

DBH Diameter at breast-height 

DCP Digital Cover Photography (method used to calculate LAI from non-

hemispherical photographs) 

DOY Day of year (referring to the day of the year in the Julian calendar) 

DN Digital number (represents the intensity of green, red and blue colour 

channels in a photograph) 

EVI Enhanced Vegetation Index (in satellite remote sensing, a measure of 

surface reflectance of near infra-red, red and blue waveband radiation 

used to detect canopy greening— EVI is a newer and more sensitive 

measure than NDVI) 

EV Exposure value (usually ranging from -2 to +2 in a camera’s exposure 

compensation settings) 

GPS Global Positioning Satellite 
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GSF Global site factor (a measure of the proportion of solar radiation 

penetrating below the forest canopy relative to solar radiation at a 

nearby position in the open—calculated from hemispherical 

photographs based on the size and position of canopy gaps, and 

knowledge of site latitude and longitude)  

HP Hemispherical photography 

HV HemiView (software for analyzing hemispherical photographs) 

ICP International Cooperative Programme (European programme for 

monitoring air pollution effects on forests) 

IJ ImageJ (open-access image analysis software) 

LAI Leaf area index (a widely-used measure of canopy structure, 

representing one half the total green leaf area per unit ground surface 

area) 

LE Leaf expansion 

LiDAR Light Detection and Ranging (method using sensors to detect reflection 

of laser pulses, used in satellite and near-surface remote sensing to 

estimate canopy structural attributes) 

MDS Multi-dimensional scaling 

MODIS Moderate Resolution Imaging Spectroradiometer (product providing 

daily surface coverage of satellite imagery) 

MP Mega-pixels 

NDVI Normalised Difference Vegetation Index (in satellite remote sensing, 

measures surface reflectance of near infra-red, red and blue waveband 

radiation to used to detect canopy greening) 

NFIs National Forest Inventories 

NPP Net primary productivity 

NVC National Vegetation Classification 

PAR Photosynthetically active radiation 
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PAWS Plantation on an ancient woodland site 

PCA Plant canopy analyser 

PERMANOVA Permutational multivariate analysis of variance 

ROI Region of Interest (in relation to selecting an area if a photograph to 

analyse in ImageJ image analysis software) 

SP Smartphone fisheye photography 

UAV Unmanned aerial vehicle 

USA-NPN United States of America National Phenology Network 

VE Visual estimation (of canopy leaf expansion) 

  

  

 

 


