
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2018

An Investigation into the Use of Artificial

Intelligence Techniques for the Analysis

and Control of Instrumental Timbre and

Timbral Combinations

Antoine, Aurelien

http://hdl.handle.net/10026.1/11959

http://dx.doi.org/10.24382/1189

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



AN INVESTIGATION INTO THE USE OF ARTIFICIAL
INTELLIGENCE TECHNIQUES FOR THE ANALYSIS AND
CONTROL OF INSTRUMENTAL TIMBRE AND TIMBRAL

COMBINATIONS

by
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This copy of the thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without the authors prior consent.

iii





This thesis is dedicated to my Dad, Philippe Antoine, who sadly passed away

during my time as a Ph.D. candidate...



Acknowledgements

First, I would like to express my gratitude to my Director of Study, Professor

Eduardo R. Miranda, for believing in me and for his continuous guidance and

advice during this research. I would also like to thank my supervisors Dr Alexis

Kirke and Dr Marcelo Gimenes for their support and encouragement.

Next, it is important to acknowledge and thank the AHRC-funded 3D3 Centre for

Doctoral Training for awarding me a PhD studentship. Without it, this research

would have not been possible. I would also like to thank all the 3D3 people I had

the chance to meet for the conversations and activities we shared.

A special thank to my awesome friends Ed, Jared, and Ben. Thank you for all the

laughs, chats, and activities, for your help and support any time I needed it, and

for the lunches at the table, the perfect break during the long working days. You

were my family on the other side of the Channel.

Many thanks to all my fellow colleagues at the ICCMR, Joel, Duncan, Rodrigo,

Federico, Pierre-Emmanuel, Nuria, Satvik, Michael, and Richard for the discus-

sions, ideas, laughs, and support during the many hours spent in the lab. Thank

you also for all the social activities outside the lab, including the runs under the

cold English rain!

Finally, I would like to say a huge thank you to my parents for their whole-hearted

support and encouragement during all my academic studies. Thank you also to my

family for their support and for trying to understand what I have been doing for

the last 3 years. The final thanks go to Jean-Claude, Anne, Michel, and Evelyne

for their encouragement and precious help for making the project of pursuing my

studies abroad possible.



Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of

the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not

formed part of any other degree either at the University of Plymouth or at another

establishment.

This study was financed with the aid of a studentship from the AHRC-funded 3D3

Centre for Doctoral Training (3D3 Research).

Word count of main body of thesis: 62191 words

Signed: ..........................................

Date: ............................................



Abstract

Researchers have investigated harnessing computers as a tool to aid in the com-

position of music for over 70 years. In major part, such research has focused

on creating algorithms to work with pitches and rhythm, which has resulted in a

selection of sophisticated systems. Although the musical possibilities of these sys-

tems are vast, they are not directly considering another important characteristic of

sound. Timbre can be defined as all the sound attributes, except pitch, loudness

and duration, which allow us to distinguish and recognize that two sounds are dis-

similar. This feature plays an essential role in combining instruments as it involves

mixing instrumental properties to create unique textures conveying specific sonic

qualities. Within this thesis, we explore harnessing techniques for the analysis and

control of instrumental timbre and timbral combinations.

This thesis begins with investigating the link between musical timbre, auditory

perception and psychoacoustics for sounds emerging from instrument mixtures. It

resulted in choosing to use verbal descriptors of timbral qualities to represent au-

ditory perception of instrument combination sounds. Therefore, this thesis reports

on the developments of methods and tools designed to automatically retrieve and

identify perceptual qualities of timbre within audio files, using specific musical

acoustic features and artificial intelligence algorithms. Different perceptual exper-

iments have been conducted to evaluate the correlation between selected acoustics

cues and humans’ perception. Results of these evaluations confirmed the poten-

tial and suitability of the presented approaches. Finally, these developments have

helped to design a perceptually-orientated generative system harnessing aspects of

artificial intelligence to combine sampled instrument notes.

The findings of this exploration demonstrate that an artificial intelligence approach

can help to harness the perceptual aspect of instrumental timbre and timbral com-

binations. This investigation suggests that established methods of measuring tim-

bral qualities, based on a diverse selection of sounds, also work for sounds created



by combining instrument notes. The development of tools designed to automati-

cally retrieve and identify perceptual qualities of timbre also helped in designing a

comparative scale that goes towards standardising metrics for comparing timbral

attributes. Finally, this research demonstrates that perceptual characteristics of

timbral qualities, using verbal descriptors as a representation, can be implemented

in an intelligent computing system designed to combine sampled instrument notes

conveying specific perceptual qualities.
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Introduction

1.1 Chapter Overview

This first chapter starts by introducing the different research areas along with the gaps and

challenges that have motivated the investigations presented in this thesis. Then, the chapter

details the research aims and questions addressed throughout the project, which defines the

scope of this study. Next, the text presents an overview of the structure of the thesis. Finally, the

last section lists the academic publications that have been produced as a result of the research

presented within this thesis.

The structure of this chapter is as follows:

. 1.2 - Introduction

. 1.3 - Aims and Research Questions

. 1.4 - Thesis Structure

. 1.5 - List of Publications
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1. INTRODUCTION

1.2 Introduction

Musical timbre is a complex and multidimensional attribute of sound, whose standard defi-

nition is “that attribute of auditory sensation in terms of which a listener can judge that two

sounds similarly presented and having the same loudness and pitch are dissimilar” [1]. This

element of sound, defined as what it is not (loudness, pitch, and duration) rather than what it

is, has been the subject of many discussions among the research community, see [2] and [3] for

examples. Nevertheless, this sonic attribute, interdependent of pitch, loudness, and duration in

the auditory sensation [4, 5, 6], is defined by acoustic and psychoacoustic properties [7, 8, 9].

A large amount of research on the subject has been produced since the first experiments con-

ducted by Von Helmholtz at the end of the 19th century [10]. However, this element of sound

still remains a notion that requires further investigation in order to completely define, under-

stand, and also harness this complex characteristic into systems designed for musical purposes.

Timbre has an important role in tasks that combine several instruments. This attribute is

of particular attention in orchestration, a compositional practice that involves writing for sev-

eral instruments playing simultaneously. However, this research does not intend to address all

the challenges of musical orchestration as it looks mainly at instrument combinations and it

will not address the instrument technique constraints. Furthermore, this study has focused on

processing audio recordings of instrument notes and orchestral pieces. Using these materials,

many parameters related to orchestration are overlooked, such as instrument sound (e.g. body

materials), performers (e.g. stylistic traits), and room acoustics for example. Nevertheless, the

results of investigations into analysing and controlling instrumental timbre and timbral combi-

nations would be part of the field of computer-aided orchestration, which looks at developing

techniques and tools for aiding in aspects of musical orchestration. This field has burgeoned

with the development of the technology and its increasing accessibility, where researchers and

composers started to be more interested in using tools to aid harnessing sonic characteristics

in orchestral compositions. The Spectral Music movement [11] initiated this compositional in-

terest in the early 1970s, with composers such as Gérard Grisey and Tristan Murail in France,

Johannes Fritsch and Clarence Barlow in Germany. The characteristic of this movement is the

use of electronic devices, as well as computers, to analyse and represent timbral qualities of

acoustic music.

Surprisingly, there are only a few computer-aided orchestration systems available. The ma-

jority of these have been developed in the last 15 years. This is perhaps due to the complexity of
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musical orchestration and the limitations of the available technology at the time. However, the

main breakthrough has been the result of research conducted at the Institut de Recherche et Co-

ordination Acoustique/Musique (IRCAM), especially with their latest computer-aided orches-

tration system Orchids1. This tool proposes to output combinations of instruments that would

match a target sound, using a pre-analysed and indexed database containing audio samples of

orchestral instruments, offering an interesting approach to address some of the challenges of

musical orchestration. Here, it aims to combine the data resulting from performing acoustical

and psychoacoustical analyses on a target with the sound produced by combining orchestral in-

struments. While the solutions proposed by Orchids spectrally match the content of the target

sound, the selection and combination of instrument notes can be sonically very different. When

the user has a particular sound colour or a perceptual quality in mind, this outcome usually in-

volves listening to several solutions, which can be a tedious and time-consuming task. One

approach to overcome this issue is to propose a filter to narrow the solution space. This could

be achieved by focusing on the sonic content of the generated instrument combinations, which

would provide information for representing a desired perceptual quality. Therefore, the use of

sonic characteristics representing perceptual properties could be an approach to allow for the

manipulation and exploration of the different sonic textures created by combining instrumental

timbres.

This study is looking at identifying techniques for the analysis and control of timbral prop-

erties resulting from combining orchestral instruments. The investigation will rely on process-

ing of audio files in order to computationally represent perceptual properties and manipulate

timbre characteristics. Such processes would certainly involve handling complex and varied

types of data. The field of Artificial Intelligence (AI) has produced numerous efficient methods

for solving a significant number of problems. Nowadays, AI is utilised to achieve various tasks

and has found applications in almost every domain, with functions such as facial recognition

[12], medical diagnosis [13], and speech-recognition systems with Apple’s Siri for example.

This small selection of applications illustrate the diverse and complex data that need to be pro-

cessed by such AI systems. Following this observation, it would be interesting to investigate

the potential use of different methods developed in the field of AI to harness some aspects of

sonic perception, represented by musical timbre properties. Machine learning techniques, a

subset of AI models, would provide an approach to analyse, identify, and predict the percep-

tual qualities of instrument timbre combinations from data resulting from the calculations of

1http://forumnet.ircam.fr/product/orchids-en
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specific timbre properties. Such models could then be utilised to narrow the solutions output by

some computer-aided orchestration systems. Furthermore, demonstrating the benefit of using

AI methods would contribute in establishing a framework for the analysis and manipulation

of the sonic qualities created by combining several instruments. Such methods related to the

analysis of instrument timbre combinations could then be incorporated into computing systems

designed to aid orchestral composition.
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1.3 Aims and Research Questions

Thanks to the development of technology and its increasing accessibility, composers can now

use sophisticated tools to aid in their metier. Such systems have produced excellent solutions

to work with pitches, rhythm, and velocity, but harnessing musical timbre still requires further

development. As briefly introduced in the previous section, timbre is a complex element of

sound that is of particular interest in music, especially when combining several instrument

sounds. Systems designed to address some challenges of orchestration propose to incorporate

some aspects of timbre in their creative algorithms. However, due to the large number of

potential combinations of instruments, such systems can output numerous solutions to a given

target, which are not always matching the user’s ideal type of sound.

The aim of this research is to investigate methods to harness aspects of music perception,

represented by musical timbre properties, for the understanding and analysis of the sonic qual-

ities produced by several instruments. Such methods could be used to address one aspect of

orchestral composition related to instrumental timbre by establishing techniques for analysing,

identifying, and controlling the timbre qualities resulting from sound produced by the combi-

nations of instruments. This study focuses on audio sources using combinations of traditional

Western instruments, however a similar approach could potentially be applied to any other

types of instruments, either analogue or digital. The different research questions investigated

within this study are introduced in the following section.

1.3.1 Research Questions

In order to achieve the aims of this study, there are different objectives that need to be filled.

Therefore, the following research questions are addressed within this thesis:

. RQ1: Which sonic element can be used to evaluate and represent the perceptual quality

of the sound emerging from a mixture of instruments by processing audio recordings of

instrument combinations?

One of the motives for composing orchestral pieces is the ability to create unique sounds

from instruments playing simultaneously. Thus, composers may seek a specific type of

sound or a texture, which is something being experienced from listening to instruments

being played together. In the research initial stage, it is important to understand which

5



1. INTRODUCTION

attribute to retrieve from an audio source to characterise the perception experienced from

the listening process. The first research question also looks at finding a way to represent

that perceptual quality in order to make it accessible to a broad audience. Research in

the later stages of the investigation will draw on this observation to build methods for

harnessing this aspect in computing systems designed to aid manipulating instrumen-

tal timbre combinations. This question will be addressed by evaluating and selecting

approaches to retrieve perceptual quality from audio samples of combined instruments

sounds and define a convenient representation for a wide audience.

. RQ2: How to compare timbral values resulting from the analysis of different acoustic

properties?

Several works have demonstrated the importance of acoustic and psychoacoustic prop-

erties in defining and retrieving timbre qualities. This involves performing various pro-

cesses on an audio source. Data resulted from the various acoustic features have different

meanings and different scales, which makes the values difficult to manipulate. Therefore,

in order to be able to automatically classify an orchestral sound file according to its tim-

bral quality, it is essential to design a comparative scale of the different timbral features

that will be implemented in order to harness specific perceptual qualities in techniques

developed for the analysis and control of instrumental timbres.

. RQ3: Which methods taken from the field of Artificial Intelligence (AI) could help in

computationally analysing and identifying the perceptual properties of instrument com-

bination sounds using values from musical timbre calculations?

Considering timbre could help in retrieving perceptual qualities from audio files, and,

added to a comparative scale, it would be possible to classify audio files of instrument

combinations by processing their calculated timbre values. With no defined model to

use such data, the use of AI frameworks to computationally represent timbre percep-

tion could allow for the design of an automatic classification method. This research

question will be addressed by evaluating and selecting successful AI approaches using

data collected from orchestral pieces in order to automatically classify audio samples of

instrument combinations from their correspondent timbre values.

. RQ4: How to incorporate timbre properties into algorithms designed to generate combi-

nations of sampled instrument notes?
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An algorithm designed to generate sequences of instrument combinations can output a

large quantity of solutions due to the combinatorial possibilities. To go beyond random

processes, it is essential to add parameters and constraints to guide the combinatorial

algorithms. After defining approaches to represent and automatically classify timbral

properties, this study looks at harnessing these methods into algorithms designed to com-

bine instruments. This last research question will be addressed by defining an approach

to integrate timbre properties into a search algorithm, and therefore refining the search

space by evaluating the sonic result of the instrument combinations. This approach will

be illustrated with a computing system designed to generate combinations of string and

brass notes using timbral descriptors.

1.3.2 Methods

This project uses an iterative approach to build an understanding on harnessing aspects of musi-

cal timbre into computing systems designed to analyse and control sonic qualities of instrument

combinations by processing audio recordings of orchestral pieces and instrument notes. Firstly,

various attributes were selected to build an initial system capable of computationally retrieving

timbral content of orchestral audio files, including audio samples generated by the computer-

aided orchestration system Orchids. Verbal descriptors of timbre qualities have been selected to

represent the acoustic features, thus, alleviating the need of acoustics and psychoacoustics ex-

pertise to interpret and utilise the methods of timbre calculations. These methods were based on

the literature that have defined the acoustic features that correlate with each attribute. This ini-

tial experimentation, combined with listener testing, informed the implementation of a method

to automatically classify sounds emerging from mixtures of instruments according to their per-

ceptual qualities, informed by their timbral content. Such findings have been integrated into a

computing system designed to generate combinations of string and brass instruments matching

specific timbral descriptors. The development of this system demonstrates the abilities of the

methods proposed in this study, but also illustrate a potential application of harnessing analysis

and control of instrumental timbre combinations for computer-aided orchestration systems.
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1.4 Thesis Structure

This thesis is organised into eight chapters, including the present chapter. The rest of the thesis

is structured as follows:

Chapter 2 introduces three important notions on which this research is built on. First, this

chapter describes the human auditory and perception system, which are two key aspects in

music listening. The second part introduces the concept of musical timbre by reviewing the

significant works and applications produced by studies on this notion. The text also discusses

the relation between audio perception and timbre. Finally, this chapter reviews the field of

computer-aided orchestration, which has informed the initial developments presented in Chap-

ter 4. It also highlights the different approaches that have been investigated in order to address

some of the challenges for harnessing aspects of orchestration. This chapter intends to provide

the acoustical and musical background knowledge and establish the current state of research in

computer-aided orchestration in order to help the reader understand the presented study.

Chapter 3 presents different concepts of Artificial Intelligence (AI) that have been used in

Music, and tries to suggest a definition in relation to the study presented in this thesis. This

chapter starts with discussing and defining the notion of intelligence, and how it is compu-

tationally represented in AI. It briefly introduces the goals and applications of AI. Then, the

chapter presents an overview of the use of AI in music, with some of the approaches having

been used in a number of implementations presented in Chapters 5 and 6 of this thesis. The

aim of this background chapter is to understand how AI could aid in answering the research

questions mentioned in Section 1.3.

Chapter 4 describes the implementation of a computing system capable of automatically rank-

ing orchestral audio files, representing instrument combinations, by performing specific signal

processes to retrieve their timbre content. This chapter details the different verbal descriptors

and acoustics features that have been used in the ranking system, along with technical details

about its implementation. Then, the text details a perceptual experiment conducted in order

to validate the chosen timbral approach. Results of the experiment are then analysed and dis-

cussed, along with the limitations of this system. Finally, this chapter discusses the potential

applications and benefits of this initial timbral implementation, which supported further devel-

opments towards using these timbral attributes, particularly for the research detailed in Chapter

5.

8



1.4 Thesis Structure

Chapter 5 presents the development of an automatic timbre classification system for orchestral

sounds representing instrumental timbre combinations. Built on the observations from the

ranking system, described in Chapter 4, this chapter starts with discussing the challenges of

developing a system able to automatically classify an audio file according to its perceptual

quality. With no agreed metrics for timbre values of perceptual properties, the text details the

creation of scales for the different timbral values, which was designed to overcome the issue of

comparing different types of values. Then, the chapter continues with explaining the rationale

for using different machine learning methods selected in the development of the automatic

classification. The last part of this chapter discusses the different machine learning algorithms

that have been implemented along with their performances for creating classification models.

Chapter 6 discusses the final implementation of this study, which is built on the observations

from the research developments described in Chapters 4 and 5. It resulted in implementing

a computing system capable of generating combinations of samples of recorded string and

brass instruments presenting specific perceptual qualities. This chapter starts by defining the

challenges to address for implementing a generative algorithm for instrument combinations.

The text continues with a description of the sound database containing the string and brass

instruments audio samples that are processed for timbre analysis and control of the creation of

combinations. Here, AI techniques utilised for timbre prediction are detailed and discussed,

which are then included in the search algorithm designed to generate combinations of instru-

ments matching specific timbral descriptors that can be defined by the users.

Chapter 7 presents different sets of examples designed to illustrate the abilities of the gen-

erative instrument combinations system discussed in Chapter 6, which has utilised techniques

identified from the research developments presented in Chapters 4 and 5. This chapter starts

by defining the scope of the type of examples utilised to demonstrate the capabilities of the

techniques developed throughout this study. Then, the text describes different examples of in-

strument combinations generated by the system, using different sets of instrument ensembles.

These examples are then discussed in order to illustrate the abilities of the system for combin-

ing samples of recorded instruments’ notes corresponding to desired perceptual qualities.

Chapter 8 concludes the thesis with a summary and discussions of the developments conducted

in order to address the research questions listed in Section 1.3. This chapter also discusses the

contribution to knowledge produced by the study presented in this thesis. Finally, the second

part of the conclusion chapter lists different areas for further investigation in order to extend

the advances provided by the research presented within this thesis.
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EDUARDO R. MIRANDA, AURÉLIEN ANTOINE, JEAN-MICHAEL CELERIER, AND MYRIAM

DESAINTE-CATHERINE. i-Berlioz: interactive computer-aided orchestration with tempo-

ral control. In Proceedings of the 5th International Conference of New Musical Concepts

10

http://dx.doi.org/10.1121/1.4988156
http://dx.doi.org/10.1121/1.4988156


1.5 List of Publications

(ICNMC), pages 45–60, Treviso, Italy, 2018 [Reports on work from Chapter 6, cited as [19]]
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2

Audio Perception, Timbre, and
Computer-Aided Orchestration

2.1 Chapter Overview

The purpose of this chapter is to provide background information on key concepts related to

the research presented in the thesis. It also aims to define the scope of this study and highlight

the link between the three main notions that are introduced in this chapter: auditory perception,

timbre, and computer-aided orchestration.

The first part of this chapter proposes a brief introduction to human audio listening and

starts by describing the human auditory system in order to understand the way an audio signal

reaches the brain and is subsequently interpreted. Then, an introduction to the general con-

cepts of audio perception is proposed in order to further understand the interpretation of audio

signals. This section ends with introducing the notion of musical perception, which is most

relevant to this research project.

The chapter continues with discussions on the notion of musical timbre. Section 2.4 pro-

poses an overview of the research on musical timbre, starting with its standard definition and

is followed by discussing its different aspects in order to define this complex attribute. This

section also focuses on the perceptual properties of timbre, which is the principal approach

selected for the developments of this research.

Section 2.5 reviews the different developments produced by research in the field of computer-

aided orchestration. The discussions of the different approaches that have been explored to ad-

dress some of the orchestration challenges help determine potential improvements, which have
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motivated some of the investigations presented within this thesis. The chapter then concludes

with discussions about the different concepts and their relation to the presented study before

finishing with a summary.

The structure of this chapter is as follows:

. 2.2 - Introduction

. 2.3 - Auditory System and Perception

. 2.4 - Timbre

. 2.5 - Computer-Aided Orchestration

. 2.6 - Chapter Discussions

. 2.7 - Chapter Summary
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2.2 Introduction

When interacting with sound and music, hearing is the most active of the five traditional senses

(namely sight, hearing, touch, smell, and taste) [21]. The ability to perceive sound from the

vibrations produced by an object is the result of a complex mechanism, which is essential to

experience various aspects of musical events. Our understanding of this sense has been the

result of a long series of research on the subject, with important advancements occurring since

the twentieth century. While this project does not attempt to model the human auditory system,

and some of the presented concepts may be beyond the scope of this study, it is worthwhile

to understand these hearing mechanisms when harnessing perceptual elements in a computing

system designed to aid musical composition. Wiggins argues: “the starting point for all music

information retrieval (MIR) research needs to be perception and cognition, and particularly

musical memory, for it is they that define Music” [22]. Moreover, reviewing hearing processes

highlights the relationship between music perception and the notion of timbre, which are im-

portant elements of this study.
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2.3 Auditory System and Perception

2.3.1 Human Auditory System

The perception of sonic events starts with capturing sound, generated by mechanical vibrations,

and is primarily achieved by the ears. This organ is the principal component of the human

auditory system and has been the subject of many investigations for several centuries, such as

research conducted by anatomist and physician of the sixteenth century Fallopio [23, 24], by

Cotugno [25, 26], and also by Corti, known for describing the organ of Corti (named after him)

[27, 28]. The significant amount of works has led to today’s understanding of the physiology

of the human auditory system.

There are three main components of the human ear: the outer ear, middle ear, and inner ear.

The outer ear consists of the pinna, the visible part of the ear, and the external auditory canal.

Their role is to collect and lead audio signals towards the middle ear. At the end of the auditory

canal, the vibrations produced by the sound reach the tympanic membrane, or eardrum, then

go through the malleus, incus, and stapes: three small bones located in the air-filled tympanic

cavity. These components form the middle ear and function as a transformer matching the

acoustical impedance between the air in the external auditory canal and the liquid in the inner

ear. The last component of the human ear consists of the cochlea [29], which is filled with

fluids and contains the organ of Corti [27]. It transduces the fluid movements into nerve signals

via hair cells that go into the auditory nerve to be further processed by the brain. In summary,

the ear performs an analysis of the audio signal before it is transduced and transmitted to the

brain [30]. Figure 2.1 proposes a representation of the anatomy of the human ear.

Once the mechanical energy coming from the sound has been transduced by hair cells (act-

ing as a mechanotransducer) into neural information, the message transits through the auditory

nerve to the cochlear nucleus, located in the posterior part of the brain (called the brainstem).

At this point, the information is in the central auditory nervous system. The signal then passes

through several nuclei, via some located in the thalamus, in order to arrive in the primary au-

ditory cortex (koniocortex) and the auditory association cortex (parakoniocortex), which are

located in the temporal lobe of the cerebrum (see Figure 2.2). It is at this point that audio

signal information is processed by the brain, which involves different cognitive processes. A

detailed analysis and description of the auditory pathways can be found in [32]. Further details

on the physiology of the global auditory system can be found in [33] and [30].
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Figure 2.1: Anatomy of the human ear. The outer ear consists of the pinna and the external
auditory canal. The middle ear is composed of the tympanic membrane (eardrum), malleus, incus,
and stapes, which are small bones. The cochlea forms the inner ear, which transduces the signal
into the auditory nerve to be conveyed to the brain for further processing. Adapted from [31]
and published under the terms of the Creative Commons Attribution License c©2005 Chittka and
Brockmann.

Figure 2.2: Representation of the four major lobes of the human brain. The auditory cortex is
located in the temporal lobe, shown here in green. Image adapted from [34, Figure 728], under the
terms of the Creative Commons CC0 licence.
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2.3.2 Auditory Perception

Auditory perception is the ability of processing and interpreting audio information captured by

the auditory system, and requires various cognitive processes and prior knowledge. First, it is

essential to define the types of sound patterns that can be experienced by the human ears.

The simplest type of sound patterns are when properties of single sounds retain in a steady

state. For example, in the case of sounds from musical notes produced by an instrument,

only one property differs between the different notes—here, it is mainly represented by the

fundamental frequency. Single sounds can also have changing states, meaning the acoustical

properties vary over time, which makes the sound more complex in terms of information. For

instance, using the sound produced by an instrument, in a crescendo or diminuendo, the in-

tensity changes within the duration of the sound. Nevertheless, most of the sound patterns we

experience are not solely composed of single sounds. Instead, they consist of a sequence of

single-sound events that can differ in one or more dimensions. Sound sequences can vary in

the number of elements and also in the order and timing of the elements [35]. For example, in

Morse Code, the alphabet consists of a sequence of singe-sound elements, in which one dimen-

sion varies—in this case, the duration of each event. In a musical melody, the element of the

sound sequence may vary in more than one dimension, such as frequency, intensity, and dura-

tion [36]. However, sound sequences, even with many variations among their elements, are not

the most complex sound pattern. We usually receive several sources of sound sequences simul-

taneously. These sound sequences can contain correlated sound events or non-related events.

For example, during a performance in a concert hall, we receive the sound of the instruments

coming from the stage, but also the reverberation of that sound on the walls and ceiling of

the venue. Per contra, conversing in a crowded room results in receiving sound sequences

from speech and others from the background noise, which are independent sound information.

Nonetheless, most of the time we are still able to separate the concurrent sound patterns and

process the sound information.

Auditory perception can retrieve four main characteristics of sound: pitch, loudness, dura-

tion, and timbre [36]. Pitch allows us to scale a sound from low to high, and vice versa. It is

related to the frequencies of the sound, obtained by measuring the oscillations of the waves,

and expressed in Hertz (Hz). A sound is considered high when it contains high frequencies,

and low when containing low frequencies [37]. Loudness is the intensity or volume, of a sound

[38]. It refers to its physical magnitude and can be measured in sone (loudness N) and phon
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(loudness level L) [39, 40]. Duration is the result of estimating the length of the sound event

(difference between onset and offset) and is an attribute that applies not solely to auditory, but

to all the human senses [41, 42]. Duration defines if the sound is short or long, and can be

expressed in units of time (e.g. second (s), millisecond (ms)). The final characteristic is timbre,

often referred to as the sound quality. This more complex characteristic (further explained in

Section 2.4), allows us to distinguish and recognise voices, instruments, or sounds. For exam-

ple, if the same pitch is played on a piano and a violin at the same velocity and duration, we

can differentiate and recognise each instrument. While the other three characteristics are mea-

surable, timbre is a multidimensional attribute and its estimation is more complex, as discussed

in Section 2.4.

All the sound characteristics described above are essential in the auditory perception pro-

cesses. First, the sound needs to be detected, which is possible if it has sufficient intensity (or

loudness) to reach the ears, and if it is in the audible range (usually between 20 Hz to 20 kHz

for humans [43, p. 163]). This first process allows the brain to detect the source of the sound

and also if the source is moving, thus giving spatial information. The auditory perception is

also able to discriminate the sound signals, which, for example, allows us to distinguish and

hear the sound of a speaker from the background noise. Timbre is essential in identifying and

recognising the source and type of a sound signal. For example, it allows us to identify if the

sound is coming from an instrument, and, most of the time, which one. This attribute also

contributes in determining if the sound is a voice and recognise if it is a known person. Finally,

auditory perception, combined with other cognitive processes such as memory, allows us to

understand the information of an audio signal. This process is important for communicating

with others as well as understanding the meaning of a sound (a fire alarm, for example). All

these auditory processes are also essential for experiencing music. Furthermore, it indicates

that timbre is an important characteristic of auditory perception, which highlights the motives

of harnessing this aspect into computing systems designed for musical creation.

2.3.3 Music Perception

In the previous section, different types of sound patterns that humans can experience have been

described, and four characteristics of sound have been identified (pitch, loudness, duration, and

timbre) as having an essential role in the different auditory perception processes (detection,

discrimination, identification, and comprehension). While the perception of general sound

events has been discussed previously, this section aims to highlight perceptual processes that
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are more specifically related to music. This study does not intend to model musical perception,

neither to detail and comprehend the different processes of understanding music. However, it

focuses on the perception of one specific attribute of sound for musical purposes. Thus, a brief

explanation of music perception may help the reader understand this study, and inform them of

some decisions taken in the developments that will be detailed in Chapters 4, 5, and 6.

Music perception is highly linked to the field of psychoacoustics and the perception of the

four attributes of sound detailed in the previous section. However, music perception encom-

passes a broad range of different fields to understand how we process musical information,

such as neuroscience, cognitive science, psychology, and computer science. The definition of

music is subject to many discussions, and there is no general agreement on what is music.

Here, we will simply define music as a succession of sound events that has an artistic and emo-

tional meaning. For instance, a fire alarm sound, which has a repetition of sound events, will

not be considered as music on its own—even if this sequence of sonic events could potentially

be incorporated into a musical composition. Also, this study focuses on music produced by

traditional Western musical instruments, and, therefore, will not discuss synthesised sounds.

The perception of basic elements of sound, such as pitch, loudness, duration, and timbre,

which are lower-level features, informs higher-level musical features such as melody, rhythm,

and harmony. This involves an organisation and grouping of the sonic events. For example, a

melody could be defined as the perception of a sequence of notes or pitches over a certain period

of time. In this case, music perception is the result of an organisation of individual attributes

over time. In orchestral pieces, several instruments can play simultaneously, however, these

combined sonic events may form a single sound, even if the tones are the result of different in-

struments potentially playing different notes. Here, there is a grouping of the different pitches

from various instruments, which results in forming a new and unique multi-instrumental note

that is resulting in harmonic—frequencies that are at integer multiples of the fundamental fre-

quency—or near-harmonic sound [44]. The closer the sound is to being harmonic, the stronger

it will be perceived as a single note [45]. Similarly, the closer the fundamental frequencies of

each sound are, the stronger they will be perceived as a single complex sound [46]. Time prop-

erties are also essential in the grouping of sonic events. Synchronous instrumental notes are

more likely to be perceived as one than if one or more elements are asynchronous [47]. Sound

and musical sequences can also be described using words and adjectives referring to ‘quality’,

such as sharp, dull, noisy, or consonant. The perception of these sonic qualities involves dif-

ferent elements of sound and timbre is the one that plays an important role in distinguishing
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these qualities [10, 48]. This notion, most relevant to the study presented in this thesis, will be

further explained in Section 2.4.

Perceiving and understanding musical events are the results of several complex actions and

information that are usually processed efficiently and quickly by the human brain. Further-

more, different parameters, such as the listener’s cultural background and musical experience,

to name but two, can have an influence in the perception and processing of music [49]. How-

ever, this research focuses mainly on the perception of sound qualities produced by notes from

traditional Western instruments. Further information about music perception and the psychol-

ogy of music can be found in [50], [51], and [52].
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2.4 Timbre

In this study, the concept of musical timbre, and more specifically its perceptual properties,

represents an important component of the research developments. This attribute is a complex

property that has been studied for over a century and has produced a significant amount of

work. However, some of its aspects are not relevant to the presented research. Therefore, this

section proposes a review of selected timbral paradigms only. First, the standard definitions of

this term are discussed. Then, different meanings of timbre are presented, with a review of the

studies about different timbral paradigms, which informed the selection of the relevant timbre

aspects that have been used in the developments presented in Chapters 4, 5, and 6.

2.4.1 Standard Definition

Different terms have been used to define the concept underlying musical timbre, such as tone

colour, often used in treatises on orchestration [53, 54], or sound colour [55], which are trans-

lations of the German words Tonfarbe and Klangfarbe, respectively. However, in this thesis the

word timbre will be utilised, which is the term generally accepted in the majority of literature

on this subject.

Similarly to the other elements of the auditory system and aspects of sound presented in

Section 2.3, timbre has been the subject of many studies since the nineteenth century. Von

Helmholtz, a German scientist who is considered as one of the pioneering researchers in hear-

ing science, mentions the concept of timbre in his influential book published in 1885 [10]. He

states that

“when we hear notes of the same force and same pitch sounded successively on

a piano-forte, a violin, clarinet, oboe, or trumpet, or by the human voice, the

character of the musical tone of each of these instruments, notwithstanding the

identify of force and pitch, is so different that by means of it we recognize with the

greatest of ease which of these instruments was used” [10, p. 19].

In a journal article published in 1934, Fletcher says that timbre is “that characteristic of sen-

sation which enables the listeners to recognize the kind of musical instrument producing the

tone, that is, whether it is a cornet, a flute or a violin” [56, p. 67], while Seashore defines

timbre as “that characteristic of a tone which depends upon its harmonic structure as modified

by absolute pitch and total intensity” [57, p. 97]. We can note that the definitions of timbre
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proposed in these works have some variations. However, the standard definition of timbre, of-

ten cited in works related to this term, is “that attribute of auditory sensation in terms of which

a listener can judge that two sounds similarly presented and having the same loudness and

pitch are dissimilar” [1]. Notwithstanding, this definition can lead to different interpretations

as it defines timbre by what it is not—not pitch, nor loudness—rather than what it is. Bregman

suggests to rephrase the standard definition as “we do not know how to define timbre, but it is

not loudness and it is not pitch” [58, p. 93]. In summary, timbre is a higher-order property

emerging from loudness, pitch, and duration, which let a listener distinguish and recognise the

sound from two different instruments. However, this definition suggests that unpitched sound,

such as percussive instruments, would have no timbre [59]. Therefore, the definition proposed

by Pratt and Doak as the sensation “whereby a listener can judge that two sounds are dissimilar

using other criteria than pitch, loudness, or duration” seems more pertinent [60]. These stan-

dard definitions could suggest that timbre is simply the subtraction of pitch and loudness from

the auditory sensation, and it assumes that timbre is entirely independent of pitch, loudness,

or duration. However, several works have challenged this approach and suggested that these

aspects of sound interfere in the auditory sensation [2, 4, 5, 6]. Thus, timbre is not just what is

left over from pitch and loudness.

These imprecise definitions illustrate the complexity of this aspect of sound. Whereas

loudness, pitch, and duration are clearly defined and can be scientifically quantified, measuring

timbre represents another challenge. Furthermore, the notion of timbre is used to represent

different properties, which makes its definition complicated. The following section tries to

identify and illustrate the different meanings of timbre.

2.4.2 Types of Timbre

The previous section has illustrated the difficulties in proposing a unique definition of musical

timbre. This is perhaps due to the different properties that are represented by the term timbre.

This section aims to introduce the different meanings of musical timbre that are most relevant

to the developments presented in this thesis.

Timbre as a musical element can be traced through the seventeenth and eighteenth cen-

turies, where the ‘colour’ of the instruments started to gain interest. However, the first mention

of timbre as a distinct musical element is perhaps in Berlioz’s Grand Traité d’Instrumentation

et d’Orchestration Modernes [53], a treatise on orchestration first published in 1844. Berlioz

refers to orchestral composition as “the use of [the] various sonorities and their application

23



2. AUDIO PERCEPTION, TIMBRE, AND COMPUTER-AIDED ORCHESTRATION

either to colour the melody, harmony or rhythm, or to create effects sui generis, with or with-

out an expressive purpose and independent of any help from the other three great musical

resources” [61, p. 6]. We can note that, here, timbre is defined as a musical colour. In an-

other treatise on orchestration, published nearly fifty years after Berlioz’s, Rimsky-Korsakov

also mentions the importance of timbre: “It is a great mistake to say: this composer scores

well, or, that composition is well orchestrated, for orchestration is part of the very soul of the

work. [...] One might as well say that a picture is well drawn in colours” [62, p. 2]. Here,

Rimsky-Korsakov suggests that orchestral compositions are not only notes on a musical score,

but also the sound produced by the mixture of instruments that make up the orchestra. There-

fore, timbre would refer to the texture of the sound and its perceptual characteristics. In a

more recent treatise on orchestration, Piston emphases timbre as a musical element, and lists

different techniques to fuse instrumental sounds together to create unique timbres [63, 64].

One meaning of timbre, related to the one usually mentioned in texts on orchestration, and

perhaps the most frequently used to explain this notion, is the aspect of the sound that allows the

listener to identify and recognise an instrument [60, 65]. For example, when different pitches

are played with variable intensities on a violin, the listener will still be able to recognise the

sound is from a violin. Here, there are variations in pitches, loudness, and duration but the

timbre remains consistent [66, p. 411]. Nonetheless, we can also distinguish a middle C

(C4) played on violin with a certain velocity and duration from a C4 played on piano in the

same way. Here, pitch, loudness, and duration remain the same, but the timbre is different

for each instrument. Timbre refers to the characteristic of the sound produced by a specific

instrument [65, p. 238]. Note that sometimes, different instruments can be mistaken for

others, due to high similarities in their sonic properties [10, p. 68]. The identification of a

specific instrumental sound also depends on a previous learning process, in which individuals

need training to classify and label instrumental sounds. Thus, a listener might not be able to

identify instruments that have not been heard before. However, the listener will still be able to

distinguish two or more different instrumental sounds.

Timbre can also refer to “the way it sounds” [67, p. 426]. Here, timbre is used to repre-

sent the perceptual characteristics, which can be related to the notion of sound’s ‘colour’, as

mentioned previously. Different words and adjectives, such as bright, dark, pure, or sharp, are

often used to describe the ‘quality’ of a sound. These descriptors, which can be metaphors

and analogies associated with the senses of vision and touch, are in fact terms that encompass

multiple sonic attributes, mainly consisting of acoustical properties. This notion of timbre is
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an important aspect of the research developments presented in this thesis. Studies about the

relation between verbal descriptors and quantifiable acoustical attributes, mainly the result of

psychoacoustical research, will be further explained in the next section.

The two timbral paradigms introduced in this section are of particular interests in har-

nessing timbre properties for instrument combinations. Firstly, timbre represents the distinct

characteristics of the instruments, referring to the concept of source timbre [68]. Here, each

instrument has its own timbral characteristics, referring to the typical sound it produces. Sec-

ondly, the possibility of combining several instruments offers the ability to create unique sound

textures. Here, timbre encompasses the different perceptual properties that allow the listener to

experience these textures emerging from the instrumental mixtures. The combinations of the

instrumental timbre characteristics allow for the creations of unique sounds that contribute in

experiencing specific perceptual effects.

2.4.3 Psychophysical Studies of Timbre

In Section 2.3, it was mentioned that pitch and loudness can be scientifically quantified, with

frequency and with the amplitude, respectively. In regards to timbre, the measure of its sen-

sation is more complex. As it has been mentioned previously, timbre encompasses multiple

sonic attributes. This section aims to review the considerable amount of research that has been

produced in order to understand what elements of the sound relates to the sensation of timbre.

It also presents the different approaches utilised to develop our understanding of this complex

and multidimensional component of sound.

A note added to the definition proposed by the American Standards Association attempts

to extend the explanations of timbre by specifying that “timbre depends primarily upon the

spectrum of the stimulus, but it also depends upon the waveform, the sound pressure, the fre-

quency location of the spectrum, and the temporal characteristics of the stimulus” [69]. In [7],

Schouten states that there are at least five important acoustic parameters to determine timbre:

1. The range between tonal and noiselike character

2. The spectral envelope

3. The time envelope in terms of rise, duration, and decay (ADSR - attack, decay, sustain, release)

4. The changes both of spectral envelope (formant-glide) and fundamental frequency (micro-

intonation)

5. The prefix, or onset of a sound, quite dissimilar to the ensuing lasting vibration
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We can see that with these two statements, timbre encompasses many different properties.

However, this information can be divided into two categories: resulting from the frequency

spectrum (spectral information) and from the temporal characteristic of the sound (temporal

information).

The relation between the timbre of instrumental tones and their frequency spectrum was

already suggested by Ohm in 1843 [29, 70]. However, this assumption, known as Ohm’s

acoustic law, has been further investigated and elaborated by von Helmholtz in 1885 [10].

Ohm’s acoustical law suggests that the sensation of timbre in musical sounds is the result of

the analyses of the individual tones that compose a complex sound. Thus, “for any complex

wave-form the ear ‘hears out’ the simple harmonic components, the same components that

Fourier’s analysis or resonance would give” [70, p. 326–327]. Both Ohm and von Helmholtz

stated that the sensation of timbre was solely dependant on the patterns of the harmonics and

fundamental frequency creating the individual tones, excluding the difference in phase. This

assumption has been questioned since and it has been demonstrated that changes in phase of

the component’s harmonics can be perceived by the listener [71, 72] with, however, relatively

minor effect.

Several works have demonstrated the connection between timbre and spectral information,

following the first experiments by Ohm and von Helmholtz. The boosting or attenuation of the

amplitudes of partials will result in changes in timbre [73, 74, 75]. For instance, Risset and

Wessel have shown that a change in the spectrum around 2000 Hz modifies the ‘presence’ of a

sound [76]. In fact, even the modification of a sine wave’s frequency will result in changes in

its timbre [77, 78]. The link between timbre and spectrum is also highlighted with formants.

Here, a formant refers to a peak in the amplitude of certain frequencies, which is often asso-

ciated with a sound’s resonance [76]. In music, a formant can be defined as a resonance of

a note’s harmonic [79]. A change of pitch from an instrument will result in a difference in

the fundamental frequency of the sound and produce a different spectral envelope. However,

the formant frequencies will remain similar, which suggests that it is the characteristic of an

instrument. This would allow the listener to identify the origin of the sound—recognise the

instrument [55, 73]. Furthermore, it has been demonstrated that invariances in the structure

of the formants lead to perceiving timbral similarities rather than invariances in the spectral

envelope [80, 81]. Timbre is therefore linked with the spectral energy distribution of the sound.

Although it has been established that perception of timbre is linked with properties of the

frequency spectrum, which results in the steady state of the sound as suggested by works fol-
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lowing von Helmholtz’s publication from 1885, the sensation of timbre also emanates from

temporal characteristics of the sound. Musical sounds mostly evolve in time and the spec-

trotemporal variations of the sound provides important information about timbre characteristics

[73, 74, 82]. For instance, the onset and offset of a sound provide important cues for identi-

fying its source. This has been demonstrated in an experiment by Stump, where removing the

attack of a note proved to significantly reduce the ability to identify the instrument [78]. The

relevance of onset and offset information in identifying instruments has been further investi-

gated in [83]. Furthermore, the amplitude envelope also contributes in identifying the source

of the sound. For instance, when a note is played backward, its amplitude envelope is reversed,

which causes difficulty in recognising the instrument, as demonstrated by George in [84].

The role of sound onset, offset, and amplitude envelope has been further investigated by

Berger [85] using recorded tones of wind and brass instruments. In this experiment, listeners

were presented different recorded versions of instrumental tones: unedited recordings, onsets

and offsets removed, reversed recordings, and low pass filtered recordings. This study sug-

gested that, unsurprisingly, unedited tones produced the best score, while the low pass filtered

stimuli appeared to be the most difficult recordings to identify. Also, this study suggested that

onsets and offset characteristics tend to have a more important role in identifying instruments

than the amplitude envelope. These results have been confirmed in a study conducted by Sal-

danha and Corso [83], which used string instruments in addition to wind and brass instruments.

With these studies, we can note that spectrotemporal variations of the sound also inform on the

sensation of timbre.

The perception of timbre, unlike the sensation of pitch and loudness, is multidimensional.

A vast amount of research has been focusing on establishing the number of timbre dimen-

sions and identifying the acoustical characteristics of the signal in correlation with the timbre

spaces. These perceptual researches mainly consisted of rating the similarity (or dissimilarity)

between sound pairs and in identifying instruments. Most of the studies about sound similarity

used stimuli of instrumental sounds, either natural [86, 87, 88, 89] or synthetic [90, 91, 92],

which were judged by human subjects. The ratings of perceptual timbre similarities were anal-

ysed using the technique of Multidimensional Scaling (MDS) [93, 94, 95] in order to produce

a geometrical representation of the timbre spaces, in which points are representing the differ-

ent stimuli, and the distances between the points refer to their dissimilarities [67, 96, 97, 98].

In [99], the authors have investigated the dissimilarities of 42 timbres and obtained a five-

dimensional MDS space. These studies on timbre spaces have demonstrated the link between
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some acoustic features and timbre qualities. The spectral centroid, which corresponds to the

mean of the spectral energy distribution in the spectrum, has usually been consensually corre-

lated to the perception of brightness [100, 101, 102]. Research has suggested other attributes,

which includes spectrotemporal variations [87, 90], attack and decay transients [75], spectral

shape [92], and also spectral irregularity [91]. We can see that acoustical features representing

timbre spaces vary among these works. Thus, it has been suggested that timbre spaces might

depend on the context and the choice of the stimuli [97].

In the previous section, we have seen that timbre can be used to represent the perceptual

characteristics of a sound or the ‘colour’ / ‘quality’ of a sound. Several studies have investi-

gated the use of verbal descriptors of timbre qualities (or timbre semantics), with the objectives

of finding their acoustic correlates. One of the first studies on using adjectives to describe

timbre was conducted by Lichte [103]. However, one of the most complete early studies has

been conducted by von Bismarck [48, 104], in which he suggested that four scales (dull-sharp,

compact-scattered, full-empty, and colorless-colorful) can be used to define the timbre of indi-

vidual instrument tones. Following von Bismarck’s experiments, timbre semantics have been

the focus of many studies [60, 105, 106, 107, 108, 109]. Such experiments have usually used

Verbal Attribute Magnitude Estimation (VAME) [110] or semantic differentials [111] ratings.

The VAME rating scale quantifies the applicability of the descriptor on the sound (e.g., warm

↔ not warm), whereas the semantic differentials refers to using a scale of opposite descriptors

(e.g., full ↔ empty). The use of semantic differentials scales has been questioned by some

researchers stating that the selected descriptors may not necessarily be opposite of each other

[107, 110]. Nevertheless, these two rating scales, used in perceptual experiments, have proved

to contribute in understanding timbre semantics [60]. The verbal descriptor of timbre qualities

that has been consensually agreed is brightness. Von Helmholtz had already suggested the

term ‘bright’ or ‘brilliant’, in his study published in 1885 [10]. Perceptual experiments, using

either VAME [107, 108, 112] or semantic differentials [113, 114], have demonstrated the ap-

plicability of using brightness. Different studies have shown that the acoustic correlate of the

descriptor brightness is the spectral centroid of the sound [87, 102, 108, 115, 116]. An exten-

sive list of verbal descriptors and their correspondent acoustic correlates can be found in [117,

Section 2.2]. Furthermore, the verbal descriptors that are directly related to the developments

presented in this thesis will be further detailed in Chapter 4.

The studies on timbre have also focused on identifying the perceptual characteristics for

musical instrument recognition, which is another meaning of timbre—the specific sonic char-
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acteristic of an instrument. Several studies have shown that the sensation of instrumental notes

is the result of different sound characteristics. As it has been mentioned previously, some of the

timbral information is derived from the frequency spectrum of the sound. Here, information

related with formants seems to have an important role in the perception of instrumental tones

[118, 119]. Characteristics related to time variations, such as attack and decay transients [75]

and spectral flux [92], are likewise important in the sensation of specific instrumental tones. In

his study [120], Kendall suggested that musical context had an important role in a human’s abil-

ity to recognise musical instruments. Here, Kendall compared the identification performances

between single instrumental notes and whole-phrase, the latter producing better identification

scores. This study identified the role of the information over time in the perceptual mecha-

nisms and not only the spectral information of individual note. This role was confirmed in a

study conducted by Sandell [121], in which the subjects were presented recordings of arpeg-

gios with variable number of notes. Unsurprisingly, the instrument identification results were

higher when more notes were presented.

The investigations on timbre characteristics of musical instruments have been the subject

of many works in relation to human sound discrimination abilities [122, 123]. Moreover, the

development of the computer has lead in developing systems for automatic instrument recog-

nition. Some of the early systems used spectral information [124] or temporal information

[125], however, a combination of both types has been the standard in most systems [126, 127].

These studies have suggested that Mel-Frequency Cepstral Coefficients (MFCC), first used in

speech recognition [128], tend to be the most important features [129]. Brown [124] demon-

strated his system, which used only MFCCs, on a set of oboe and saxophone sounds, and

obtained near-perfect recognition. The contribution of MFCCs in instrument recognition was

confirmed in a study conducted by Eronen, which used a set of sounds from 30 orchestral in-

struments [130]. More recently, it has been proposed that Modulation Power Spectra (MPS)

could have a prominent role in the perception and classification of musical instrument sounds

[99, 131, 132, 133]. Here, MPS corresponds to a two-dimensional (2D) Fourier transform of

the time-frequency representation of a sound signal (spectrogram) and represents the temporal

and spectral periodicities of the signal [99, 134]. Recent studies using the MPS approach sug-

gest that specific spectrotemporal modulations are characteristic of instrument timbres, which

would help automatic source recognition tasks [135, 136]. However, the work presented in this

thesis does not intend to identify musical instruments automatically, interested readers can find

a comprehensive overview in [137, Section 3.5].
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Musical timbre has been the subject of many studies since the first experiments conducted

by von Helmholtz in the second half of the nineteenth centuries. The research on this sonic at-

tribute has produced significant understandings of this complex concept and helped in defining

the meanings and properties of musical timbre. However, the majority of these studies have

used sounds from clean recordings of isolated individual notes, whom experimental conditions

may not reflect a realistic context. Indeed, in ‘real-world’ conditions, sounds are composed of

multiple sonic events that are perceived in parallel. Similarly, in music, listening to an indi-

vidual note in poly-instrumental pieces may be difficult and the characteristics identified for

monophonic timbre may not apply in this context. This aspect is also important in the presence

of instrument combinations, which is most relevant to this study.

2.4.4 Polyphonic Timbre

Many studies have identified acoustics cues for the perception of timbre. However, most of

these studies have used sound samples of isolated individual notes as stimuli. In realistic con-

texts, and especially in musical contexts, sounds are composed of different layers of sonic

events (in regards to this research multiple instruments), which has been named as polyphonic

timbres [138, 139]. Gjerdingen and Perrott suggest that polyphonic timbre is a collection of

variations of the spectral and temporal information from the audio signal [140]. This differ-

ent sonic information may influence the perception of timbral quality either for the task of

identifying instruments or in perceiving and describing the ‘colour’ of the sound.

While the perception of monophonic timbre has produced a considerable amount of works,

polyphonic timbre has been the focus of less research. One of the first study focusing on

the timbre perception of sounds from multiple instruments has been conducted by Kendall

and Carterette [89]. In this study, the authors have compared the results of the perception of

individual notes using dyads (two notes played simultaneously). The dyads were composed of

single tones or simple melodies played in harmony and synchronously. Their results suggest

that the perception of timbre combinations could be modelled as a linear summation of the

individual timbres, which would result from the individual sound attributes. However, many

timbre characteristics are the result of spectrotemporal variations, which are not the result of

linear functions. Thus, the usual acoustic features suggested by the studies on monophonic

timbre could not be applied to signals of polyphonic timbres, and therefore would require

source separation, which is not necessarily a simple process [141, 142]. This study also suggest
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that the perception of the timbre of dyads sounds varies according to the instrument pairs and

that the musical context also provides essential information for identification.

Sandell conducted different experiments related to the perception of combined instrumen-

tal sounds [143, 144]. Similarly to Kendall and Carterette’s experiment, Sandell investigated

instrumental dyads, played in unison at interval of a minor third, and the role of the spectral

centroid in perceiving the overall timbre as bright or dark, as demonstrated in monophonic tim-

bres studies. Results of these experiments suggest that spectral centroid of the global sound,

that is resulting from the overall spectral envelope, may not be enough to capture the timbral

quality (in this case the attribute bright/dark) of the sound creating the instrumental tone com-

binations. Tardieu and McAdams also investigated the perception of dyads, with a particular

focus on impulsive and sustained tones [145]. Their first experiment sought to identify the

characteristic that create the blendedness of dyads, while the second experiment focused on

identifying the factors in perceptual dissimilarity ratings between dyads. This study confirmed,

as mentioned previously, that time-varying properties have an important role in timbre percep-

tion [92, 144] and auditory sensation [47, 146]. Similarly, spectral information, such as spectral

centroid, spectral spread, and spectral envelope has a significant function in the perception in-

strumental tones combinations. Finally, this study has also demonstrated that dyads blending

is primarily influenced by impulsive instrumental sounds, whereas the sustained instrumental

tones influence the overall timbre.

Aucouturier has conducted different experiments in order to model polyphonic timbre

[139]. These studies have investigated the measurement of timbre similarity between poly-

phonic musical sounds, which suggested that timbral information retrieved from the overall

sound may not provide efficient data. Therefore, it would require a source separation pro-

cess in order to retrieve accurate timbre cues, as suggested in Kendall and Carterette’s study

[89]. Furthermore, these experiments have suggested that the perception of polyphonic tim-

bre is the result of high-level cognitive processes, which would also integrate notions from

prior knowledge, cultural expectations, and musical context, instead of an immediate sound

perception process as suggested in monophonic timbre studies. Such conclusions imply that

polyphonic timbre is exponentially more complex than monophonic timbre and timbral charac-

teristics identified in previous works may not apply in this situation. Thus, this study suggests

that research on polyphonic timbre will require investigating different fields, other than only

psychoacoustics, in order to represent this notion.
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In [147], Alluri and Toiviainen have explored the verbal and acoustic correlates of poly-

phonic timbre. This study consisted of two experiments. The first investigation attempted to

identify verbal descriptors that could be applied to polyphonic timbre, following similar seman-

tics used in work on monophonic timbres, as mentioned in the previous section. For the second

part of their study, they selected verbal descriptors of timbre spaces identified in the initial ex-

periment and investigated their potential acoustic correlates. The results of this study suggest

that the perceptual information identified in research on monophonic timbres may be applied to

compute perceptual characteristics of polyphonic timbres. However, in the case of perceiving

brightness, which has been consensually identified as correlated to the spectral centroid, the

results of the study showed that spectral centroid did not highly correlate with the sensation

of brightness. The reason for the different correlation could be related to the cognitive listen-

ing process, as suggested by Aucouturier [139]. Different musical information may influence

on the sensation of brightness, such as pitch content as suggested by Alluri and Toiviainen’s

conclusions [147]. This study also suggests that the length of the stimuli may influence the

sensation of polyphonic timbre, which could be related to the importance of musical context

in perception of the instrumental timbres [120]. Results of this investigation demonstrated that

MFCC, successfully used in instruments recognition [137, Section 3.5], may not have an im-

portant role in polyphonic timbre spaces. Finally, this study also suggests that spectrotemporal

variations may provide significant information in the perception of polyphonic timbres. An

extension of these studies on polyphonic timbre conducted by Alluri can be found in [148].

Unlike monophonic timbre, as highlighted in the previous section, polyphonic timbre has

received less attention in perceptual experiments. The results of the studies on polyphonic

timbre have suggested mixed conclusions, which do not provide a clear understanding and

framework. These mixed results could be explained by the use of different types of stimuli,

which, as mentioned in monophonic timbre studies [97], may influence the perception of dif-

ferent timbres. Another explanation could be that perception of global sounds would require

discrimination processes (or source separation) combined with high-level cognitive actions, as

suggested by Aucouturier [139]. Nevertheless, further investigations on polyphonic timbre are

required in order to confirm or reject the assumptions suggested by the few available studies.

Such advancements would benefit in methods related to the perception of instrumental sound

combinations in which the notion of polyphonic timbre is an important component. Each in-

strument has its own timbral characteristics. Therefore, combining instruments will result in
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creating polyphonic timbres, demonstrating the importance of this notion for the research de-

velopments presented in this thesis.
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2.5 Computer-Aided Orchestration

This study aims to establish techniques for the analysis and control of instrumental timbre

and timbral combinations. While this approach is not addressing many aspects of musical or-

chestration, such as instrument technique constraints, it is based on works from the field of

computer-aided orchestration and the results of this investigation would benefit this research

area. Therefore, this section presents a review of the different approaches that have been inves-

tigated for harnessing aspects of musical orchestration in computing systems.

The first computer-assisted orchestration systems can be associated with the Spectral Music

movement, a term coined by Dufourt in [11], initiated in the 1970s. Composers such as Gérard

Grisey and Tristant Murail, to name but two, initiated this movement in France in the early

1970s, with the ensemble L’Itinéraire, based at the Institut de Recherche et de Coordination

Acoustique/Musique (IRCAM) in Paris. During the same period, some composers such as

Johannes Fritsch and Clarence Barlow, from the Feedback Studio situated in Cologne, were

also part of this new musical movement. Composers in this movement were focusing on the

timbre quality of acoustic instruments and synthesised sounds and started to use electronic

devices and computers to assist them in different aspects. One of the first pieces associated with

spectral music is entitled Partiels, which was composed by Grisey in 1975 for 18 instruments.

Here, a spectral analysis was realised on the trombone using an electronic sonogram. Following

this experiment and the development of the technological and scientific knowledge and tools,

various composers started to use computers to help them compose music for ensembles.

In his piece L’Esprit des dunes (1994) realised at IRCAM, Murail started his composition

by analysing fragments from different sources such as diphonic Mongolian singing and Tibetan

singing. The material of this composition, for an ensemble of 11 instruments and electron-

ics, was generated by a spectral analysis of the aforementioned sources. He used an analysis

program developed for additive synthesis then constructed a database of these analyses to be

evaluated and modified with libraries he developed in the visual programming environment

PatchWork [149]. Some composers used speech analysis for their compositions. Clarence Bar-

low developed a technique called Synthrumentation, which consisted of doing spectral analysis

of speech and then mapping these analyses to acoustic instruments [150, 151]. Malherbe also

used voice analysis techniques for some of his compositions. In Locus (1997) [152], a piece for

four voices and electronics, Malherbe recorded singers using two microphones placed at two
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different distances in order to have two different characteristic recordings. After the segmenta-

tion, smoothing, and normalisation of the recordings, Malherbe applied a spectrum analysis to

obtain a representation of the material in the form of a sonogram. Then, a detection of partials

was applied and the most prominent ones were selected. These data were subsequently input

into PatchWork and transcribed into symbolic representations for ease of manipulation. For

the rhythmic representation and manipulation, Malherbe used Kant—a rhythm quantification

program developed at IRCAM by the Computer Assisted Composition research group1 [153].

For his musical piece entitled Metal Extensions (2001), Maresz used a set of techniques

combining handwriting and computational processes. In [154], he described his process as

follows:

“Selection of the region of sound to orchestrate from the electronic sound file,
placement by hand of markers on the region within the sound file that interested
me, for a chord-sequence analysis with AudioSculpt (peaks), inharmonic partial
analysis on the totality of the sound file in the same programme, transcription of
the given results into symbolic notation in OpenMusic and finally, realization of
the final score by hand.”

As a summary, several composers began to see the potential of the computer to help them or-

chestrate musical ideas or at least using computers in some of the different compositional pro-

cesses. As seen with the spectral movement, computers were used for frequency analysis and

representations of audio signals for examples. Composers used software, such as AudioSculpt,

PatchWork or Macaque [155] to name but three, to analyse sound and for the representation and

manipulation of the symbolic view of orchestration. With technological advances and exper-

imentations from several composers, the idea of developing computer systems for addressing

different aspects of orchestration started to arise in research groups.

Surprisingly, there are only a few computer-aided orchestration systems available. The

majority of these have been developed in the last decade. This could be due to the complexity of

orchestration and the limits of the available technology at the time. One of the first attempts was

a tool developed by Rose and Hetrik [156]. They proposed a system that analyses a given target

sound and it outputs an orchestration that tries to approach the target file. Their algorithm used

a Singular-Value Decomposition (SVD) method for the proposition of new orchestrations using

the spectrum of the target sound. The SVD approach, which involves performing factorisation

1http://www.ircam.fr/repmus.html
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of complex data matrix, is interesting in terms of low calculation costs, and the solution is the

nearest to the target sound. However, this approach does not take into account the position of

the orchestra and the problem of instruments combinations.

Psenicka proposes another approach, with his program called SPORCH (short for SPectral

ORCHestration) [157]. Like the system proposed by Rose and Hetrik, this program analyses

a target file and outputs the orchestration solutions in the form of a list of data. This data

comprises instrument names, pitches, and dynamic levels in order to create timbre and qual-

ity that fit the target file. Psenicka decided to perform the searching algorithm focussing on

instruments, instead of doing it on sounds. Hence, the system is divided into two parts: the in-

struments database and the orchestration function. The database first needs to be built in order

to run the program, which contains a list of instruments with pitch range, dynamic level range,

and the most significant partials associated with the instruments (see [157] for more details).

To find the orchestration solutions, Psenicka uses an iterative matching algorithm to establish

the combination of instruments that fit the original file. The algorithm extracts the peaks of the

target sound, and then compares them with each instrument in the database in order to select

those closest in frequency. This approach has a low computational cost, and the instrumental

composition of the orchestra is incorporated in the matching algorithm. However, this method

tends to output simple orchestrations and only the solution that best matches the target file.

Therefore, it discards all other solutions that could be more interesting in terms of musical

ideas.

Another attempt is the system developed by Hummel [158]. Like Psenicka’s method, he

used an iterative algorithm, but instead of analysing spectral peaks, the program works with

spectral envelopes—the frequency-amplitude derived from a Fast Fourier Transform (FFT)

analysis. As with the two previous systems, this system analyses a target sound, retrieving its

spectral envelope and then searches iteratively for the best approximation. Hummel says his

system works better with non-pitched sounds (e.g., whispered vowels). This is due to it using

spectral envelopes instead of spectral peaks. Hence, the perception of the pitches resulting

from the solutions can be different from the pitches of the target file.

IRCAM addressed the question of computer-assisted orchestration in 2003, initiated by a

research project proposed by Maresz [154], whose works have been mentioned earlier. Their

first computer-aided orchestration system, named Orchidée, was the result of two Ph.D. studies

conducted by Tardieu [159] and Carpentier [160]. They respectively addressed the problem of

instrumental sound and timbre content analysis, and the rapid increase of the possible solutions
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that can be produced by the matching algorithm. Their system extracts different audio infor-

mation from a target sound and from the audio samples contained in the instrumental notes

database. This information is used as data for the combinatorial algorithm developed to match

the target sounds [161, 162]. In this computer-aided orchestration system, the algorithm does

not output only the best solution but rather a selection of optimal solutions, which is an ad-

vantage as it can propose different orchestrations for one target sound. However, this version

did not consider the temporal problems of orchestration. The system proposes only static or-

chestration solutions and works best with static and harmonic target sounds. The composer

Jonathan Harvey, assisted by researchers and computer music designers from IRCAM, was

one of the first composers to benefit from this new computer-assisted orchestration system. He

used it for his composition Speakings (2008), which is for live electronics and a large orchestra

[163]. Here, Harvey recorded three vowels, as mantra sung: Oh/Ah/Hum. Then, his idea was to

input these recordings into Orchidée in order to try to imitate the sound produced by the sung

mantra and obtain an orchestration for an ensemble of 13 instruments.

IRCAM’s system Orchidée evolved into a new version, under the name Ato-ms (short for

Abstract Temporal Orchestration), which was the result of a third Ph.D. study on the subject

conducted by Esling [164]. One of the major improvements of this version was the management

of time. Here, the system was designed to generate orchestration solutions within a time space

as opposed to static. Another improvement was the use of a multi-objective and time-series

matching algorithm, which creates a dynamic time warping algorithm. Furthermore, in this

version, the user was able to design envelopes for the audio features, thereby able to create

abstract targets. However, according to Maresz [154], the solutions “suffer from a lack of

quality in their timbral accuracy”, and the two versions of their computer-aided orchestration

system only address the problem of timbre matching.

In November 2014, IRCAM released a completely new version of this system, named Or-

chids1. This standalone application implements the best features from its predecessors and

integrates new improvements. It proposes abstract and temporal orchestration and is also op-

timised for timbral mixture. Like the aforementioned systems, the user inputs a target sound,

but in Orchids, they also can design a complete abstract target by selecting and shaping various

psychoacoustic descriptors. Some of the acoustic and psychoacoustic descriptors are based on

works from the project CUIDADO [165], also conducted at IRCAM. Orchids also includes a

database of over 30 orchestral instruments whose audio samples are pre-analysed and indexed

1Orchids is available at http://www.forumnet.ircam.fr/product/orchids-en
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by the program. It is also possible to extend the sound database by simply adding a folder into

the program, which will then be analysed and indexed. The user also can define the instruments

they want to include in the orchestra. Moreover, as Orchids integrates the notion of spatialisa-

tion of the orchestral space, the user can position the instruments. The system first analyses the

defined psychoacoustic features from the target. Different matching algorithms are available

that are specific to the type of solutions the user wants or the most appropriate for the type of

audio target (see [166] for more details). Orchids usually proposes several orchestration solu-

tions in the form of a musical score, using the Bach library1. The user is also able to listen to

the solutions before exporting the ideal orchestrations. This is possible due to the audio sam-

ples contained in the database. Furthermore, the user has the ability to start constructing and

editing the composition directly inside the program using the score editing options. Then, once

the user finds an orchestration that corresponds to their ideas, it is possible to export the results

within different file formats, namely audio file, bach file, MIDI (short for Musical Instrument

Digital Interface) file, OpenMusic file, and PWGL file.

IRCAM’s latest program Orchids presents promising improvements for solving the chal-

lenges of computer-aided orchestration and it is set to be a powerful tool. However, one poten-

tial problem with Orchids, and in some other systems mentioned previously, is the numerous

solutions they produce to orchestrate a given sound, which can be beneficial for inspiration, but

at the same time it is tedious and time-consuming to go through all the solutions. An important

step in computer-aided orchestration could be to focus on how to personalise systems to a user’s

style in order to offer more accurate orchestration solutions. The ability to have all possible

solutions should be kept because chance or surprise is part of the compositional process, but

computer-aided orchestration systems could be more efficient in regards to achieving composer

specific musical ideas. Therefore, including an option to filter the numerous solutions output by

such systems would offer a way to overcome the large instrumental combination possibilities.

The use of words to describe musical characteristics is a common practice in many aspects,

whether for composition, music production tasks [167, 168] or simply by listeners. Many in-

vestigations on semantic and music (or more broadly audio) have been conducted, which led

in the development of the field of semantic audio. A comprehensive review of these studies is

beyond the scope of this thesis. However, further details about applications of semantic audio

can be found in [169]. Nevertheless, the use of audio descriptors has also recently emerged

1http://www.bachproject.net
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in some computer-aided orchestration approaches, such as [170, 171] for example, which fol-

lowed ideas suggested in [14]. This indicates that the use of verbal descriptors could be utilised

in guiding search algorithms designed to generate instrumental combinations towards audio

qualities that can not be covered by spectrum matching algorithms, and therefore offer a way

to filter the potentially large number of combinations by presenting only those having specific

perceptual qualities. This could also go toward harnessing the creation of sound textures, an

important aspect of timbral combinations.

The most recent attempt at developing a computer-aided orchestration system is perhaps

Live Orchestral Piano [172]. Here, the system is built upon an orchestral writing technique

proposed by Piston, which consists of first writing a harmonic and rhythmic structure for piano

and then adding the other voices for all the instruments that compose the ensemble [63]. This

technique is referred as projective orchestration [164]. The authors observed that this process

is not solely a distribution of the piano notes across the other instruments, but rather involves

a manipulation of timbres based on the existing harmonic and rhythmic structure from the pi-

ano score. Timbre as a structuring approach has been proposed by McAdams [173]. Their

generation of projective orchestrations algorithm is based on a probability distribution model.

Here, Crestel and Esling analysed a repertoire of different projective orchestrations, including

works by Liszt who reduced Beethoven symphonies to piano for example, in order to learn the

properties of the probability distribution using a Restricted Boltzmann Machine (RBM) model

[174, 175]. Note that RBM models are techniques taken from deep learning, which is a method

utilised in Artificial Intelligence applications (further detailed in Chapter 3). This learning

model allows the system to statistically predict projective orchestrations from an input piano

score. In Live Orchestral Piano, which aims to be a real-time orchestral music generation,

the user inputs the piano score via a MIDI keyboard. The program transcribes the MIDI input

into a musical score, which is then input into their pre-trained network (using the repertoire

of projective orchestration examples) in order to generate a projective orchestration based on

the user’s piano input. The generated orchestration is directly sonically rendered in the pro-

gram. Contrarily to the other systems detailed previously, Live Orchestral Piano does not try to

spectrally match an input file. Rather, it bases its orchestrations on previous knowledge, using

machine learning methods to train a probabilistic model that allows the prediction of orchestral

combinations from a MIDI input. Furthermore, the timbre mixture emerging from the instru-

mental combinations is not directly addressed but relies on the composers’ work when they
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wrote their orchestral pieces. This approach is similar to the content of books on instrumen-

tation, where examples of instruments combinations previously experimented are presented.

However, the use of machine learning methods is an interesting approach that differs from the

previous attempts for overcoming some of the musical orchestration’s complexities.

The field of computer-aided orchestration is still a relatively new area of research. This is

perhaps due to the complexity of harnessing every musical orchestration challenges. Neverthe-

less, the interests for developing computing systems to aid in different aspects of orchestration

are growing among the research community, mostly pushed forward by different initiatives that

have occurred in the last 15 years, as summarised in Table 2.1. Notwithstanding, the research

presented in this thesis does not intend to address musical orchestration nor it is aiming to

produce a new computer-aided orchestration system. However, the results of investigations

towards identifying techniques for the analysis and control of instrument timbre combinations

would have contributions in the field of computer-aided orchestration. For example, harnessing

the perceptual qualities of instrument timbre combinations by processing audio files could offer

a solution to narrow the large number of solutions that are often generated by such systems.
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Systems Criteria References
Spectral Music Move-
ment (Various systems,
researchers and com-
posers, initiated in the
1970s)

Use of computers and electronic devices to anal-
yse and manipulate spectral information of differ-
ent types of sound, used as material for multi-
instruments composition.

[11, 150,
154, 176]

SPORCH - Psenicka
(2003)

Target file matching approach. Instrument database
pre-analysed and indexed, use of an iterative match-
ing algorithm by comparing peaks of the target
sound and each instrument from the database (return
the closest instruments in terms of frequency).

[157]

Rose and Hetrik (2005) Spectrum analysis of a target sound, proposition of
orchestrations approaching the target file using a
Singular Value Decomposition (SVD) method.

[156]

Hummel (2005) Iterative matching algorithm based on spectral en-
velopes of a target sound and instruments.

[158]

Orchidée - Tardieu and
Carpentier (2008)

Target sound analysis, pre-analysed and indexed
instruments database. Combinatorial algorithm to
match instruments combinations with target sound.

[159, 160]

Ato-ms - Esling (2012) Generation of orchestrations matching a target
sound within a time space, using a multi-objectives
and time-series matching algorithm.

[164]

Orchids - Esling and
Bouchereau (2014)

Abstract and temporal orchestration of target
sounds, using of pre-analysed and indexed audio
database. Multi-objectives matching algorithm, in-
formed by acoustical and psychoacoustical informa-
tion from analysis of the target sound.

[166]

Live Orchestral Piano -
Crestel and Esling (2017)

Projective orchestration from MIDI input data. Use
of probability distribution models based on analysis
of pre-existing projective orchestrations for the sug-
gestions of instrument and notes combinations.

[172]

Table 2.1: Summary of the different approaches used in the development of computer-aided or-
chestration systems, with their names, criteria, and references for.
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2.6 Chapter Discussions

The human’s ability to hear sounds involves several mechanisms and processes that are usually

effortlessly and quickly performed. First, sounds, which are a succession of vibrations, need

to be captured, a process primarily done by the principal component of the human auditory

system: the ears. Today’s understanding of this organ is the result of a long standing series

of investigations, building on works such as research from Fallopio in the sixteenth century

[23, 24], Cotugno [25, 26], and Corti, known for describing the organ of Corti [27, 28]. It

has been identified that three components, each having different roles, form the human hear:

the outer ear, the middle ear, and the inner ear. The outer ear collects and leads the audio

signals toward the middle ear, where different mechanisms transform the air movements into

liquid movements, which are then transduced by the inner ear into the auditory nerve. This

information is then conveyed to the auditory cortex and the auditory association cortex, both

located in the temporal lobe of the cerebrum, as illustrated in Figure 2.2, where the sonic

information will be processed by the brain. Here, we can see that just the action of capturing

the whole information of a sound already involves many mechanisms and processes.

Auditory perception is the ability of processing and interpreting the sonic properties cap-

tured by the auditory system. In section 2.3.2, it was identified that four major characteristics

of sound can be retrieved: pitch, loudness, duration, and timbre. These sound characteristics

provide essential information in detecting the source of the sound and the potential movements

of it, contributing to the acquisition of spatial information. Human auditory perception is also

capable of discriminating the overall sonic events in order to focus and extract specific sounds.

For example, we are able to focus on, and usually understand, the singer in a musical song con-

taining instruments and vocals playing simultaneously. Auditory perception, combined with

other cognitive processes such as memory, allows us to understand the information of an audio

signal. This process is important for communicating with others and allows us to understand

the meaning of a sound. For example, we understand that noises emitted by fire alarms repre-

sent danger. Furthermore, we can identify and recognise the source and type of a sound. For

examples, we can identify the sound of an instrument or also if it is a voice of a known person.

Here, timbre is a key characteristic in the process of identifying and recognising sound sources.

This study does not intend to model musical perception, neither to completely detail and

comprehend the different processes of understanding music. However, it focuses on the percep-

tion of one specific attribute of sound for musical purposes. A brief introduction of concepts
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related to music perception has highlighted the importance of four major characteristics of

sound (i.e., pitch, loudness, duration, and timbre). It has been identified that these low-level

sonic attributes inform higher-level musical information, which defines how we perceive mu-

sic. Furthermore, it has been explained that pitch, loudness, and duration can be measured and

represented in music, whereas for timbre it is a more challenging task. Nevertheless, this sonic

attribute represents several important aspects in experiencing music, especially in regards to

perceptual characteristics.

The review of the studies on timbre illustrated that this component of sound has been the

subject of many investigations since the early experiments conducted by von Helmholtz in

the nineteenth century. These early works suggested that timbre, sometimes referred as tone

or sound colour, was all the sonic attributes but pitch, loudness, and duration that allow one

to distinguish that two sounds are dissimilar: a rather ambiguous definition that actually il-

lustrates the complexity of this attribute. One layer of complexity is perhaps the different

timbral meanings. In regards to the research developments presented in this thesis, there are

two paradigms that are most relevant. This study focuses on sounds produced by traditional

Western instruments. Thus, the first property is related to instrument timbre, which represents

the sonic characteristics that define specific instrument sounds. The second paradigm is related

to the use of timbre to represent perceptual properties of the sounds, and within this study, by

using verbal descriptors.

The investigations of instrumental timbre have suggested that different properties charac-

terise specific instrumental sounds, resulting from spectral information, such as spectral energy

distribution, and temporal information, such as onset and offset characteristics. We can note

that timbre is not unidimensional, unlike pitch, loudness, and duration. This was also suggested

by the studies investigating the use of verbal descriptors of timbre qualities and identifying their

acoustic correlates. Here, several experiments have demonstrated that retrieving specific acous-

tical properties could inform on perceptual properties of timbre and be represented by words

such as bright, dark, pure, and sharp for examples. The use of such words from the every-

day language to describe sonic qualities instead of using their acoustic correlates is common

practice among musicians and composers [177]. Thus, handling verbal descriptors could aid

in representing timbral qualities and also in making the tools accessible to a broad audience by

alleviating the need to have expertise in acoustics or psychoacoustics.

The review of works on semantic timbre has shown that establishing a list of verbal descrip-

tors and identifying corresponding methods to retrieve the timbre qualities from audio signals
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have been the focus of many investigations. In some cases, suggested descriptors may overlap,

such as brightness and brilliance for example, and similarly for their known acoustic correlates.

This indicates that it may be difficult to manipulate all verbal descriptors suggested in the liter-

ature. Thus, a selection would be required as well as a review of their correspondent acoustic

correlates before incorporating this approach into techniques for harnessing instrument timbre

and timbral combinations. Furthermore, most of the studies conducted to identify acoustic

cues that contribute to the perception of timbre have used sound samples of isolated individual

notes as stimuli, which may not accurately represent how we experience music. Indeed, usu-

ally music is composed of different instruments playing simultaneously, and sometimes with

vocals as well, and therefore this different sonic information may influence the perception of

timbral qualities, either for the task of identifying instruments or in perceiving and describing

the ‘colour’ of the sound. Here, the notion of polyphonic timbre appears to be most relevant in

sounds emerging from combinations of instruments.

The discussions about investigations on timbre have shown that these studies have mainly

focused on monophonic timbre, which was necessary to begin with in order to understand the

different concepts represented by timbre. Surprisingly, there have been far less studies on poly-

phonic timbre, perhaps due to the complex composition of the sound signals. These studies,

using different types of stimuli, have produced mixed conclusions, some of which suggest the

acoustic cues identified by the experiments on monophonic timbre could be directly applied

to polyphonic timbre. Others have suggested that source separation processes are required,

and timbre analysis should be performed on a individual source. The lack of agreed meth-

ods for polyphonic timbre analysis illustrates that in order to address RQ1 and harness timbre

properties of instrument combinations, an initial study defining and evaluating a timbre analy-

sis method is necessary. This would also provide data for instrument timbre combinations and

contribute to the understanding of polyphonic timbre using a different type of stimuli—multiple

instruments notes.

Although a significant amount of studies have focused on timbre, whether monophonic or

polyphonic, the review of these works has suggested that neither its number of dimensions

nor its analysis methods have been universally agreed. This is also the case for its metrics.

Unlike pitch and loudness, values retrieved for timbre properties produce various figures and

scales that make the interpretation and manipulation of this property difficult. This challenge

needs to be addressed in order to be able to answer RQ2 and to integrate timbre properties

in techniques for harnessing sonic qualities emerging from mixtures of instruments. The role
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of this attribute is important in instrumental timbre combinations, creating unique sounds and

textures. Here, works on polyphonic timbre would benefit the understanding of perceiving

multi-instruments timbre, but also the phenomenon of timbre blending, two important aspects

of instrument combinations.

The research presented within this thesis does not aim to address musical orchestration.

However, some results of the investigations towards developing techniques for the analysis and

the control of instrument timbre combinations would contribute in the field of computer-aided

orchestration. This areas of research, that looks at using technology and developing comput-

ing systems designed to help in various orchestration tasks, has started in the 1970s with the

Spectral Music movement. However, the main contributions for developing completely au-

tomated computer-aided orchestration systems have been initiated in the 2000s, as shown in

Table 2.1. One of the most advanced and complete computer-aided orchestration systems is

perhaps Orchids, developed by IRCAM. This software proposes to output orchestrations that

match the spectral and spectrotemporal content of a target file. Orchids generates interesting

solutions for very diverse types of targets, however, the number of instrument combinations

output for one file can be very large. While this multitude of solutions can be interesting in

some compositional processes, the instrument combinations can sometimes be musically very

different, which requires an additional listening task to find a solution that matches specific

sonic qualities. Therefore, a option to narrow the solutions output by computer-aided orches-

tration systems focusing on harnessing timbral qualities of instrument combinations could be a

solution to overcome a tedious and time-consuming listening task.

It has been discussed above that timbre encompasses various acoustical and psychoacous-

tical properties that are not necessary explicit for a broad audience. Therefore, using words to

describe sonic characteristics, which is a practice widely utilised in various musical tasks [169],

could alleviate the need for expertise in acoustics and psychoacoustics for representing timbral

properties. This would aid in representing and utilising this sonic attribute. Furthermore, an

approach using semantics to describe the desired final sound quality as the target of the instru-

ments combinations search could be an interesting method to overcome the large combinatorial

space challenge created by the number of instruments that would compose the musical ensem-

ble. Here, performing various signal processing on audio recordings of instrument notes could

enable the analysis and understanding of instrument timbre and timbral combinations. It would

help in developing techniques for harnessing such characteristics in methods for controlling the

perceptual qualities that would be produced by combining specific instruments.
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2.7 Chapter Summary

This chapter has presented background information on a number of different concepts related

to the research developments presented in this thesis. First, it described the human auditory

system, which allows us to capture, transduce, and convey the sonic events from the ears to

the brain, where information is further processed. Auditory perception, which is the ability

of processing and interpreting the sonic information captured by the auditory system, was

subsequently explained, along with a focus on the processes related to the perception of musical

information. The purpose of this section was to describe and understand the different sonic

components that are captured and processed by humans and also to identify the important

musical cues experienced by listeners.

The discussions about the human auditory perception suggested that the attribute of sound

timbre has an important role in the perception of music. Thus, the chapter moved on to define

this attribute, along with details on different characteristics that timbre can represent, identi-

fying the most relevant to this study. Then, it presented an overview of the large amount of

research on timbre, which was primarily focused on studying monophonic timbre, in order to

understand the properties of this multidimensional attribute. This section also listed the studies

on polyphonic timbre, which, surprisingly, received less focus from the research community.

An analysis of the works on timbre highlighted that polyphonic timbre is most relevant to this

study, which looks at harnessing timbral characteristics of sounds emerging from combining

instruments.

This chapter continued with a review of the field of computer-aided orchestration, which

looks at developing systems to aid diverse tasks in orchestral composition. The overview of

the different developments, which have mainly occurred in the last 15 years, have informed

some developments that will be presented in Chapters 4, 5, and 6. Furthermore, results of this

research could contribute in proposing approaches for narrowing the large number of solutions

that are often output by such systems.

Discussions about the information presented in this chapter highlighted that the ability to

process sonic information, which is usually effortlessly and quickly performed by the human

brain, is actually the result of a complex auditory system and various cognitive processes. The

analysis of studies on timbre indicated that this component of sound represents several char-

acteristics, and, although a significant amount of studies have focused on this attribute, neither

its number of dimensions nor its analysis methods have been universally agreed. Furthermore,
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it was explained that the few studies that investigated polyphonic timbre had produced mixed

conclusions, which indicates a lack of agreed methods for polyphonic timbre analysis. It was

also highlighted that timbre is an essential component in the sonic mixture emerging from the

instrumental timbre combinations. Then, the discussions explained the rationale for harness-

ing verbal descriptors of timbre characteristics in techniques for the analysis and control of

instrument timbre and timbral combinations.

In summary, this background information chapter has delimited the scope of this study and

defined a number of notions underlying the research developments that will be presented in the

next chapters. Furthermore, this chapter has highlighted some key areas that require further

investigation:

• Selection of verbal descriptors of timbre qualities.

• Identification of the acoustic properties correlating with the verbal descriptors.

• Methods to analyse polyphonic timbres.

• Methods to refine the instrument combination space.
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3

Artificial Intelligence and Musical
Applications

3.1 Chapter Overview

Chapter 2 provided background information on audio perception, timbre, and computer-aided

orchestration. These concepts are essential in understanding the scope of this study. However,

some of the developments presented in this thesis also rely on approaches from the field of

Artificial Intelligence (AI). Thus, the purpose of this chapter is to introduce some important

concepts of this field and identify their uses for musical applications.

The first section proposes a brief introduction to Artificial Intelligence. The aim of this

introduction is not to discuss and review the whole field of AI. Rather, it will provide informa-

tion related to the approaches that are most relevant to the developments presented in Chapters

5 and 6. Thus, the section starts with discussing the notion of intelligence and identifying the

concept of machine intelligence. Then, different computational representations of intelligence

are detailed, with an emphasis on the methods that have been utilised in this research.

Following on, Section 3.4 lists some of the uses of AI in music. This section reviews

different works in relation to three musical applications that are most relevant to this study:

sound synthesis, music production, and composition. Other musical applications such as music

performance and consumption, in which AI approaches have also been used, are beyond the

scope of this research, and therefore, are not discussed here. This section aims to highlight the

relevance of harnessing AI methods for musical applications. The chapter then concludes with

discussions in regards to the concepts and ends with a summary.
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The structure of this chapter is as follows:

. 3.2 - Introduction

. 3.3 - Artificial Intelligence

. 3.4 - Artificial Intelligence Applications for Music

. 3.5 - Chapter Discussions

. 3.6 - Chapter Summary
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3.2 Introduction

Artificial Intelligence (AI) is a concept that has inspired many science-fiction authors [178].

However, most importantly, AI is a very active field of research that have produced revolution-

ary methods for many applications, which started with a workshop at Dartmouth College in

1956 [178, 179]. Research in this area began with the idea that “every aspect of learning or

any other feature of intelligence can in principle be so precisely described that a machine can

be made to simulate it” [180, p. 12]. This concept of general AI, or global AI, which consists

of computing systems that would have all of human intelligence characteristics, senses, and

can reason, is still not reached yet. Nevertheless, since the early experiments, the field of AI

research has produced numerous ‘intelligent’ methods designed to achieve specific tasks. With

advances in technology, such as the increase of computer power, storage, and data, combined

with a growing research interest and funding, AI has had an important impact in almost all

domains of our life. AI now has applications in healthcare [13], with medical diagnosis [181]

for example, in industry, such as autonomous cars [182], or also for security, with facial recog-

nition [12] for example. A review of all the applications of AI is beyond the scope of this

study, and it would produce an endless list. However, a discussion of its goals and approaches,

and most importantly a review of AI methods that could help in harnessing timbre perception

of instrument combinations would help in understanding some of the choices underlying the

developments presented in Chapters 5 and 6.

It is undeniable that advances in technology, in particular computing technology, have had

a big impact in music. Unsurprisingly, AI has also reached different aspects of the musical

domain. Several applications of AI into music are discussed in the second part of this chapter,

which is used to illustrate the general AI approaches introduced in Section 3.3. The review

of works that have used AI for sound synthesis, production, or composition, three musical

practices in which parts of this study contribute, will highlight methods that can also be imple-

mented for instrument timbre and timbral combinations.
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3.3 Artificial Intelligence

This section proposes to review the concept of Artificial Intelligence, its goals, approaches,

and methods. First, it is necessary to consider what (human) intelligence is before defining one

that is artificial. This discussion does not intend to be philosophical, nor to argue the concept

of intelligence, but rather to give an understanding of the motivations behind harnessing this

concept into computing systems. Following the establishment of the human intelligence and its

theories, the discussions move on to define the notion of machine intelligence. Then, the last

part of this section proposes a review of the different goals that motivate creating AI algorithms.

The different methods that have been developed to achieve these goals are listed, along with

some applications, and references are provided for further details.

3.3.1 Definitions

Nowadays, the term Artificial Intelligence (AI) is everywhere and sometimes used to group

many different applications. As stated previously, the concept of AI takes inspiration from

human intelligence. It aims to imitate and simulate different cognitive functions. Therefore,

before discussing key concepts of the field of AI research, it may be suitable to distinguish the

features of human intelligence, and to review different theories of this concept, which are the

foundations of AI. The discussion of these notions will help to define the concept of machine

intelligence, or in other words, defining the idea of artificial intelligence.

3.3.1.1 What is Human Intelligence?

Providing an answer to the question ‘what is intelligence?’ is a real challenge. This notion has

been debated since the ancient Greek period where philosophers such as Aristotle formulated

a set of defined principles that underlay the human rationality [179, p. 6]. Here, it is suggested

that rationality and reasoning may form human intelligence. Since these early formulations,

many works have investigated this concept. A historical review can be found in [179, Section

1.2, p. 5–16]. These works led to today’s understanding of this notion. However, it has pro-

duced many definitions. For instance, Legg and Hutter [183] list over 70 different definitions

of the notion of intelligence, which illustrates the difficulty of proposing a single definition, but

also the complexity of this concept. It also shows the difficulties of harnessing this aspect into

‘machines’, or in other words, into computing systems. Nevertheless, one definition that may

summarise this notion could be: “intelligence is a very general mental capability that, among
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other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend

complex ideas, learn quickly and learn from experience” [184]. With this definition, we can

note that intelligence might involve many mechanisms. Furthermore, the complexity to pro-

duce a single definition of intelligence is perhaps emphasised by the fact that there is not only

one intelligence, as it will be discussed in the following section.

3.3.1.2 Theories of Intelligence

Information about theories of intelligence can be found in [185] and [186], both focussing

mainly on contemporary theories. The discussion of some of these contemporary theories also

serves to highlight the different aspects that need to be harnessed in order to model human

intelligence.

Thurstone suggests that intelligence is the result of different mental abilities [187]. Many of

the contemporary theories of intelligence are based on this approach, notably the ones proposed

by Gardner [188], further detailed in the next paragraph, and Carroll [189]. Thurstone based

his approach on an analysis of 56 different tests of mental abilities, and proposed that seven

primary mental abilities form the human intelligence:

• Verbal comprehension: the ability to understand verbal information.

• Verbal fluency: the ability to create and use words to produce sentences in order to convey

information.

• Number: the ability to use numbers and perform arithmetic.

• Perceptual speed: the ability to rapidly recognise letters and numbers.

• Inductive reasoning: the ability to make a general conclusion from specific information.

• Associative memory: the ability to remember the link between unrelated items.

• Spatial visualization: the ability to visualise shapes, rotations of objects, identify shapes

that can fit together in puzzles.

Here, we can note that human intelligence involves diverse mental abilities. Therefore, to create

an artificial intelligence that follows this theory, a computing system would require harnessing

and combining all of them.
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Gardner, who was influenced by Thurstone’s theory, proposed that intelligence was not a

single component, but rather the existence of multiple intelligences. In his Theory of Multiple

Intelligences (MI Theory), Gardner identified eight different intelligences [188, 190], which

are as follows:

• Linguistic: the ability to read and write.

• Logical-mathematical: the ability to solve mathematical problems and to derive a logical

proof.

• Spatial: the ability to visualise, maneuver, and operate the spatial environment.

• Musical: the ability to sing or compose musical pieces.

• Bodily-kinesthetic: the ability to move and use the body, or part of it, to perform specific

task, such as dancing.

• Interpersonal: the ability to understand and interact with other people.

• Intrapersonal: the ability to the understand oneself.

• Naturalist: the ability to recognise and understand patterns in nature.

We can see that Gardner’s MI Theory proposes intelligences that are similar to some of the

primary mental abilities proposed by Thurstone. Based on Gardner’s theory, some abilities

might be more challenging to harness into computing systems (e.g., intrapersonal intelligence)

than others. It is also interesting to see that Gardner recognises a musical intelligence.

Another theory is the Successful Intelligence, or also named the triarchic theory of intelli-

gence, which was proposed by Sternberg [191, 192, 193]. He defines this notion as the “mental

activity directed toward purposive adaptation to, selection and shaping of, real-world envi-

ronments relevant to one’s life” [194, p. 45]. Sternberg suggests that the combination of

three important abilities contributes to a successful intelligence. The three components are as

follows:

• Analytical intelligence: the ability to analyse information, evaluate, and solve problems.

• Creative intelligence: the ability to generate ideas and options to solve a problem.

• Practical intelligence: the ability to carry out options to address a problem, using past

experiences and current skills.
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According to Sternberg, analytical, creative, and practical abilities form the human intelligence.

We can also note that intelligence is regarded as handling problems.

There are other significant theories of intelligence, however, the objective of this part is to

illustrate the complexity of this notion, not to propose a comprehensive review of all the theo-

ries. Here, we can observe that intelligence is not a single element, but rather involves diverse

components and abilities. These theories provide a framework towards modelling this concept.

They also provide measurement methods, which helps in understanding and identifying aspects

of intelligence. However, to computationally simulate human intelligence, harnessing all the

different mechanisms would be required.

3.3.1.3 Intelligent Machines

Following the idea of artificial intelligence put forward during the 1956 Dartmouth AI work-

shop (i.e. simulate every aspects of the notion), and the discussions of the different theories

of intelligence have shown that in order to create a machine that encompasses human intelli-

gence, several different mechanisms need to be harnessed. However, building on the idea of

multiple intelligences, shared by many contemporary theories, a machine could be considered

as intelligent if it succeeds to simulate one or more intellectual competences. Since the early

experiments in the 1950s and 1960s, the field of AI research has produced numerous methods

that have been successful in imitating aspects of human intelligence to achieve specific tasks,

aided by advances in technology. Some of these methods will be discussed in the next part of

this section.

3.3.2 Computational Representations of Intelligence

Similar to the notion of human intelligence, which regroups diverse abilities as discussed in the

previous part, the term Artificial Intelligence regroups different concepts. Since its creation in

the 1950s, this field of research has created numerous methods to harness different aspects of

intelligence and has produced solutions to address many problems. Nowadays, AI has applica-

tions in almost any aspect of our life. This section proposes a brief review of some AI goals,

applications, and methods. A comprehensive description of the different AI approaches, goals,

and methods can be found in [179].
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3.3.2.1 Approaches and Goals

Research in AI tries to achieve different goals, which are based on the different approaches rep-

resenting diverse cognitive abilities exhibited in human intelligence. Some of these AI goals

are discussed below:

Reasoning and Problem Solving: The search of developing algorithms that can reason and

solve problems is perhaps one of the first goals explored by AI works. The model is based on

the step-by-step reasoning method used by humans and thus, intelligent systems incorporate

algorithms that follow the ‘formulate, search, execute’ model. Here, the goal of the intelligent

system is to output a solution that solves a problem. Thus, the research aiming to achieve this

goal focuses generally on developing methods to optimise search algorithms.

Knowledge Representation: Many goals that AI aims to achieve require data that represent

knowledge. This is particularly true in problem-solving for example. Thus, knowledge repre-

sentation is an essential area of research in AI. The focus here is to find ways to translate the

knowledge, which can sometimes be very large and diverse, into data that can be manipulated

by AI algorithms. The creation of representations of knowledge is called ontological engineer-

ing.

Planning: Planning is a core part of AI concepts. The intelligent systems need to be able to

devise a plan of operations to achieve the defined goals. Therefore, systems have to predict the

consequence of their actions and identify those that would maximise the success of achieving

their goals. If the system has to interact with factors other than its own actions, such as air

transport where there are multiple planes flying, for example, the intelligent system needs to

assess and adapts its predictions and actions in regards to all factors.

Natural Language Processing: An attribute that is uniquely part of human intelligence is the

ability for language, which is an important component of the Turing Test [195]. Communica-

tion is based on speaking and writing. Naturally, research in AI also aims to harness human

languages. The two main reasons to incorporate this aspect into computing systems are, first,

the ability to interact with humans and, secondly, to be able to acquire knowledge, especially

from written language. This is of interest for information retrieval and automatic translation
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tasks for examples.

Motion and Manipulation: The ability to make specific movements and the manipulation of

objects have been suggested by some theories as part of the human intelligence. Harnessing

these two aspects are also part of the AI goals. Advances in this domain are important for the

field of robotics, for instance. Here, intelligent systems are required to allow robots to (success-

fully) perform different tasks, such as navigation and object manipulation. Computing systems

need to be able to assess and learn from their surrounding environments to inform and execute

the different tasks.

Perception: As some theories suggest, perception is also part of human intelligence. It is de-

fined as the ability to organise, identify, and interpret the information provided by our sensory

system in order to represent and understand our environment. For example, auditory percep-

tion, which is related to this study, has been discussed in Chapter 2 of this thesis. Further

details about human perceptual abilities can be found in [21, Part I - Perception]. Harnessing

perception into computing systems is also one of the AI goals. Here, the sensory system is

represented with sensors (such as cameras and microphones). Intelligent systems would, there-

fore, need to be able to use the information provided by such sensors. This aspect is important

in facial recognition and speech recognition processes, for example.

Creativity: As discussed in Section 3.3.1.2, there is a creative intelligence, notably put forward

by Sternberg in his Successful Intelligence theory. Some AI research groups aim to harness cre-

ativity into computing systems. Some research tries to develop systems capable of recreating

human creativity, other tries to enhance human creativity by developing systems to achieve cre-

ative tasks. Research in artificial creativity also aims at better understanding human creativity

[196]. Advances in this area find applications in artistic tasks. For instance, there is a research

community investigating artificial musical creativity [197].

Learning: The ability to learn is an essential part of intelligence. This process serves to ac-

quire knowledge, which leads to an improvement of performance. Unsurprisingly, learning is

also a core aspect of AI. Research in this area forms the very active field of machine learning.

Here, the aim is to improve algorithms automatically without the task of having to (re)program
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them each time they encounter new information. Thus, research in machine learning is look-

ing at developing models that can learn from data, but also make predictions based on data

previously seen. Learning algorithms are sometimes used to address tasks that are difficulty

programmable, such as image recognition. Intelligent systems are learning if their perfor-

mances improve with assessing new data. Machine learning finds applications in many areas,

such as facial recognition, prediction of financial markets, and email filtering (such as detection

of spam emails). Some machine learning methods have been used in research developments

presented in Chapters 5 and 6.

The overall goal shared by some AI research groups is to harness all the different abilities

exhibited by human intelligence into a single computing system, which is referred to as artifi-

cial general intelligence. Some believe that such a task will be eventually possible, arguing that

machines would be able to exceed human abilities at some point [198, 199]. However, such

machines would require combining and executing all of human abilities simultaneously, which

is still a challenge and debated among the research community and philosophers. Neverthe-

less, research in each AI goal has produced numerous solutions and methods to solve specific

problems. Some of the methods produced by the field of AI research will be discussed in the

following part.

3.3.2.2 Methods

The previous part delivered a discussion of different goals that the field of AI research aims

to achieve. Since its creation in the early 1950s, this field of research has produced numerous

methods to solve specific problems in an ‘intelligent’ manner. A comprehensive review of all

AI methods is beyond the scope of this study. Thus, only a selection of methods related to

some research developments presented in this thesis will be discussed in this section. Please

note that specific AI methods that have been used in some developments of this study will be

further explained in Chapters 5 and 6.

Search algorithms are used for many tasks, especially for problem solving. The simplest

way to solve a problem may be to test all the possible options. In the case of route planing, for

example, the algorithm will test all the possible routes and return the best option to solve the

problem. While this approach works for small search space problems, it can quickly become

computationally expensive to try all options. Therefore, some search algorithms use heuris-

tics to reduce the search space [200], others use mathematical optimisation to refine the search
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space. Another search method is evolutionary algorithms [201], which is inspired by biolog-

ical evolution. See [179, Part II - Problem-solving] for further details about different search

methods.

Research in AI has also produced several methods to classify data, which has an important

role in machine learning. Here, the objective of these methods is to automatically decide in

which category an object would fit, based on the learning ability. Different classifiers have

been developed, such as Support Vector Machines (SVM) [202] and Artificial Neural Networks

(ANNs) [203, 204], to name but two. The performance of classifiers vary upon the type of data,

the problem to solve, and the training methods. Nevertheless, these methods have been used

in many machine learning approaches to achieve different tasks, such as object recognition,

Internet search engines, and speech recognition, for examples. Different classifiers have been

used in the developments presented in Chapter 5.

Several other methods have been put forward by the field of AI research and are applied

in almost every aspects of our life. The next section will continue to discuss some AI meth-

ods, with a focus on their applications in the musical domain, to illustrate the potential of AI

techniques for musical purposes.
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3.4 Artificial Intelligence Applications in Music

The previous section has described the notion of intelligence and presented an overview of the

field of Artificial Intelligence with discussions about its goals, approaches, and methods. This

section aims to illustrate the implications of AI in the musical domain. Thus, some uses of

AI in different musical contexts are reviewed. The discussions focus mainly on three musical

practices: sound synthesis, music production, and composition. Other practices, such as music

performance, are not directly related to this study and its outcomes, therefore, a review of

works related to such practices will not provide information that supports the understanding of

the research presented in this thesis.

3.4.1 Artificial Intelligence and Sound Synthesis

The first review of the use of AI for musical practices focuses on applications in sound synthe-

sis. While this study does not aim to address the challenges of sound synthesis, neither does

it have direct outcomes for such practice, some of its developments rely on the use of audio

samples and their combination. Therefore, it may be interesting to review a selection of works

that have used AI for sound synthesis.

Concatenative sound synthesis (CSS) is perhaps one of the first synthesis techniques that

has used AI methods [205]. CSS produces new sounds from combining smaller audio files.

Here, AI techniques have been applied in the matching algorithms that try to find and combine

audio samples within a sound collection. For example, rule-based models and data-driven mod-

els, where the matching algorithms respectively follow rules based on human expert knowledge

or are based on the data itself, have been used in CSS systems [205, 206].

AI techniques have also been applied in programming sound synthesisers. For example,

Miranda used two machine learning techniques, namely inductive learning and supervised de-

ductive learning, in his system ARTIST (an acronym for Artificial Intelligence-aided Synthesis

Tool) [207]. These techniques have been utilised to learn programming synthesisers’ parame-

ters according to high-level properties, such as qualitative descriptions. For instance, the user

can ask to produce a sound similar to a bell and the system will find the parameters to pro-

duce a bell-like sound. Another example of programming synthesiser using AI is midimutant1,

an application that runs on a Raspberry PI2 and aims to program synthesisers using artificial

1https://fo.am/midimutant
2www.raspberrypi.org
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evolution, which means it starts by generating a random patch and evolves it to obtain sounds

that match the user’s ideas. This program has been recently developed by FoAM, a network

of transdisciplinary research labs, in collaboration with Aphex Twin, a British electronic mu-

sician, and is based on work by Horner [208], which used genetic algorithms for Frequency

Modulation (FM) synthesis.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL)1

have developed an algorithm that can synthesize sounds from a silent video [209]. Here, they

have trained a neural network algorithm with videos they recorded (containing ‘real’ sounds),

in order to learn the sonic content of the videos, and thus, be able to predict the sound features

of videos. From the prediction of sound features, the algorithm then generates a waveform,

using an example-based synthesis technique. Here, the researchers have used Artificial Neural

Networks (ANNs), a machine learning technique, to predict sound features, which inform the

concatenative sound synthesis technique.

ANNs have been extensively used in the field of machine learning for many applications.

While such techniques have been proven to be successful, the training of a system implement-

ing ANNs can be computationally intensive. Thus, some researchers have developed ANNs

that can train themselves, analysing large amounts of data to learn. This has resulted in the

field of deep learning, a sub-field of machine learning [210, 211]. Deep learning methods have

been applied in many fields and also in sound synthesis. In 2016, Google DeepMind research

group2 introduced WaveNet, a deep neural network capable of generating raw audio waveforms

[212]. Here, they have been able to synthesis human-like speech sounds, using different audio

recording databases to train their deep learning model. They also applied their model to musi-

cal data, using a database of piano recordings, and another one containing mixed music audio

recordings.

Another Google research group, Google Brain3, has recently implemented AI methods for

sound synthesis applications. Magenta4, which is a project from the Google Brain team, has

developed NSynth (Neural Synthesizer)5, a sound synthesiser that is based on WaveNet’s deep

neural networks approach [213]. Here, they created a large dataset containing audio samples

of around 300000 notes from nearly 1000 instruments, which serves as training data for their

1http://csail.mit.edu/
2https://deepmind.com
3https://research.google.com/teams/brain/
4https://magenta.tensorflow.org/
5https://magenta.tensorflow.org/nsynth
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deep learning algorithm. NSynth aims to use deep learning and data-driven methods to aid

users exploring a sound space that may not be achievable with synthesisers using oscillators

and wavetables. For example, its training enables the audio morphing of different instruments

sounds—note that the idea of combining sounds from two instruments (or parts of instruments)

in sound synthesis method is not new, see [214] for example.

AI methods have been applied to different aspects of sound synthesis. The discussions

above have shown that rule-based models, evolutionary computing models, and machine learn-

ing methods, among other approaches, have been used whether for the selection of audio sam-

ples, for programming sound synthesizers, or for generating audio waveforms. AI advances

also find many applications in speech synthesis, briefly mentioned in discussions about Google

DeepMind’s WaveNet. As detailed in Section 3.3.1.2, the ability to communicate, especially

with speaking, is part of human intelligence, hence it is expected to see the use of AI methods

for speech production, whether for coherency of data to output or for producing human-like

sounds. Advances in this domain have produced several general public applications, such as

Apple’s Siri and Amazon’s Alexa to name but two. Without doubt, intelligent methods devel-

oped by the AI research community will find an increasing interest from the sound synthesis

field for addressing some of its challenges.

3.4.2 Artificial Intelligence and Music Production

The study presented in this thesis investigates aspects of timbre perception of combinations of

instrumental notes. Some developments detailed in Chapters 4 and 5 may have applications

in the domain of musical production. The use of intelligent tools for music production tasks

has recently increased, and several research groups are investigating the potential use of AI

methods in aiding some music production tasks. This section reviews some research aiming to

harness an AI approach for music production purposes.

Since the early suggestions on automating music production tasks in the 1970s, such as

Dugan’s automatic microphone mixing approach [215], many methods, systems, and applica-

tions aiming to assist or completely perform such tasks have been developed. For example,

Cartwright and Pardo have proposed a system capable of automatically performing equalisa-

tions on audio signals based on descriptive attributes input by the user [216]. To achieve this

task, they developed SocialEQ1: a web-based application utilised to learn descriptive attributes

1http://socialeq.org/
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and their correspondent equalisation curves. Here, users can define their notion of the de-

scriptive term they entered in SocialEQ by listening and rating different equalisations of an

audio file. This action is actually training a machine learning algorithm developed to match

equalisation curves to the user’s appreciation. Then, SocialEQ can automatically perform an

equalisation that follows the user’s desired sound quality onto the audio file, which can be seen

as an automatic selection of equalisation presets. This method also provides a framework to

identify which equalisation curves can match a specific sound quality.

In [217] and [218], De Man and Reiss propose a system that can automatically perform

some audio mixing tasks. They have used a rule-based model, informed by the literature about

audio engineering practices, to perform balance, pan, compression, and equalisation tasks on

audio files. Here, the system analyses individual tracks and groups of tracks (e.g., drum, gui-

tars), and incrementally decides which task to perform on each input, following a rule list. De

Man and Reiss performed perceptual experiments to evaluate the performances of their au-

tonomous mixing system. Their results show that the mixes produced by their system have no

significant difference from human mixes, which suggests that expert systems, based on knowl-

edge and rules, might be capable of performing some audio mixing tasks at human level. How-

ever, such systems have not (yet?) replaced professional sound engineers in mixing complete

musical pieces.

The last decade has seen many works focusing on developing intelligent methods and sys-

tems for music production purposes. Such systems have been able to perform various mixing

tasks, such as equalisation, level-balancing, panning, and compression, and also applying ef-

fects on audio signals [219]. The majority of these systems have used knowledge and rule-

based models, following audio engineering practices and examples. However, knowledge and

rule-based models may not encompass enough information to perform every music production

task at human level. In [220], Wilson and Fazenda suggest adding an evolutionary computing

approach to expert systems, mentioning the lack of human perception criteria in such system,

which could explain that intelligent systems do not out-perform human-made mixes. Music

production tasks rely on scientific knowledge and methods. However, the result mainly de-

pends on the audio engineers and listeners ears. Perhaps, advances in AI research focusing

on harnessing human perception abilities could offer a way to incorporate audio engineers’

subjectivity and creativity into intelligent music production tools.
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3.4.3 Artificial Intelligence and Composition

The musical practice that may have had the most applications of AI methods is perhaps com-

position. Since the early developments in the 1950s, several AI techniques have been used,

especially in algorithmic composition [221]. There are two different approaches on how to use

AI for musical composition. The first point of view is to use AI techniques to aid composition,

which is part of the computer-aided musical composition field. The second approach is apply-

ing AI for automatic composition, where intelligent systems generate the whole musical piece

without human input. This section will review a selection of works that use AI methods, with a

focus on the most recent developments, in order to highlight the benefits of AI for this musical

practice. A comprehensive survey on AI and algorithmic composition can be found in [221].

3.4.3.1 Intelligent Companionships

This part reviews some works that aim to harness AI methods for aiding musical compositions.

Here, the goal of these methods is not to generate a complete musical piece, but rather to

propose raw materials for composers, or to assist in some part of the compositional process.

One of the first experiments investigating the use of AI methods for music has been con-

ducted by Hiller and Isaacson, in the 1950s, which resulted in the composition of the famous

piece entitled Illiac Suite [222]. Hiller and Isaacson have experimented with rule-based sys-

tems and Markov chains (a stochastic process [223]) applied to formal music composition.

In this case, the Illiac Suite piece has been completely generated by a Markov chains algo-

rithm. However, this basic machine learning approach, which has inspired many researchers

and composers since the early experiments, has been considered as a source for compositional

materials rather than an approach to generate complete compositions, due to its limitations for

music—low-n orders Markov chains produce random data, while high-n orders tend towards

producing data very close to the training corpus [224]. For example, Tipei applied Markov

chain process on melody information in his program MP1 [225], while Pachet utilised variable

orders Markov chains for his interactive improviser The Continuator [226]. Davismoon and

Eccles applied Markov processes for melody and rhythm [227].

Artificial Neural Networks (ANNs) [204] are algorithms inspired by a human neuron net-

work, which consists of interconnected sets of artificial neurons that can receive, process, and

send information within the network. ANNs have typically been implemented as a machine
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learning method, using set of examples to train the network to identify and recognise pat-

terns. One of the first implementations of ANNs for musical composition was conducted by

Todd, where he used three-layered recurrent ANNs to produce melodies based on monophonic

melody examples [228]. Since, ANNs have also been used for different musical purposes such

as harmonisation [229], jazz improvisation [230], and poly-rhythmic structures [231], for ex-

ample. ANN methods have been, for the most part, utilised for learning melodic and rhythmic

patterns from input examples in order to suggest new musical materials, which is a common

practice in algorithmic composition.

The recent developments of deep learning methods have also been applied to compositional

tasks. For example, a collaboration between Yotam Mann and the Google Magenta and Cre-

ative Lab teams have created A.I. Duet1, a system that interactively responds to a piano input

that can be played from a MIDI keyboard. The system contains six different task-specific pre-

viously trained recurrent neural networks that allow the generation of responses based on the

user input. Here, the system aims to interact with the users and to propose outputs that can

expend their creativity by suggesting new musical material.

In 2011, IBM announced their intelligent system named Watson [232], which was origi-

nally developed to compete in the American quiz show Jeopardy!. Recently, some IBM re-

search groups have been investigating the use of Watson’s technology for musical purposes,

which resulted in Watson Beats2. This system is designed to generate music from minimum

input material, as few as 15 seconds worth of data. In order to achieve this goal, Watson Beats

has been trained with knowledge specific to pitch, rhythmic structure, instrumentation, and also

musical genre, learnt from millions of musical examples. This training was performed using

Restricted Boltzmann Machine (RBM) algorithms, which are stochastic neural networks. The

goal of Watson Beats is to suggest expanded versions of users’ inputs, using deep learning

approaches to understand the musical patterns from a large set of examples. Research groups

behind Watson Beats aim to understand the musical composition’s mechanisms and expend

composers’ creativity with such intelligent systems.

A similar approach of using deep learning methods can be found in Orb Composer3, a

software developed by the French company Hexachords which is not yet publicly available.

Orb Composer aims to help composers’ creativity by suggesting instrument combinations,

1https://aiexperiments.withgoogle.com/ai-duet
2https://www.ibm.com/watson/music
3http://www.hexachords.com/orb-composer
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melodies, and musical structures based on high-level (such as desired emotions) and low-level

(such as instruments or tempo) parameters. Hexachords state on their website that their intelli-

gent system is “built up from a deep knowledge and analysis of music and a deep understanding

of composition process”1 based on properties of 1000 different instruments and playing styles,

but without specifying further technical details about their deep learning approach. Neverthe-

less, the goal of Orb Composer is to interact with composers by enabling them to modify and

adapt the material suggested by this intelligent system.

Since the early experiments, advances in the field of AI have been applied for composi-

tional purposes, especially in the field of algorithmic composition. Rule-based and machine

learning methods have been the dominant approaches implemented in compositional systems,

usually aiming to identify patterns, rules, and composers’ style from previous existing musical

pieces and composition techniques. The recent developments follow the trend of implementing

deep learning methods to harness the large knowledge and available musical data in order to

propose interactive tools for composers, with a back-and-forth information flow. Deep learn-

ing approaches for artificial musical creativity purposes may be the route to take to develop

intelligent musical companionships.

3.4.3.2 Intelligent Artificial Composer

Research on harnessing AI methods for composition has also focused on developing systems

capable of automatically composing entire pieces of music. The goal here is to create an

intelligent artificial composer, which can compose music with almost no human input. This

section reviews systems that try to encompass, imitate, and extend composers’ skills to generate

music autonomously.

The idea of creating a computing system capable of generating entire piece of music has

been the goal of many research groups. For instance, the experiments conducted by Hiller

and Isaacson, mentioned in the previous section, resulted in the generation of the piece Illiac

Suite in 1956 [222]. Here, they based their approach on a combination of rule-based models

and Markov chains, which were designed to analyse input data to statistically identify patterns,

which was then used to generate new data. This approach of using statistical models to identify

patterns from examples has been utilised in several works. However, as mentioned in the

previous section, they were mainly used as materials to work on for composers.

1http://www.hexachords.com/orb-composer/
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In the 1980s, Cope started working on developing computing systems capable of analysing

and learning mechanisms of composers’ style. His research resulted in the creation of the soft-

ware EMI (short for Experiments in Musical Intelligence), which can generate musical pieces

in the style of a specific composer based on an analysis of previous pieces [233]. Cope used

Augmented Transition Network (ATN)—a graph theoretic method that is usually utilised in

natural language processing to analyse the structure of sentences—for the analysis of musical

structures and short sequences. EMI used a combination of music analysis methods and recom-

position of short musical sequences to generate complete pieces, which produced impressive

results. Cope continued his research on musical intelligence and developed the Emily Howell

program, derived from EMI [234]. While EMI was trying to copy a composer’s style, the Emily

Howell system aims to generate musical pieces in its own original style. Its approach is based

on a trial and error rating model, where the user provides feedback on the material output by the

system, which is used to guide the generation of new musical materials. Cope’s Emily Howell

system has generated musical pieces for two commercialised albums: From Darkness, Light

(2009) and Breathless (2012).

A research group from the University of Malaga and Melomics1 [235] have developed two

systems capable of generating entire pieces of music without almost no human input. Their first

system, named Iamus2, is a computer cluster that runs evolutionary algorithms to autonomously

generate full pieces of contemporary classical music using only a list of instruments and a

preferred duration defined by the user [236]. Some musical pieces composed by this system

have been performed by the London Symphony Orchestra and recorded for the production of

an album entitled Iamus, released in 2012. Their second system, Melomics1093, based on the

same approach as Iamus but with larger computing capabilities, was developed to generate

musical pieces in a variety of different musical styles. Melomics109 has created a repository

of over 1 billion generated songs. While these two systems have produced impressive results,

the technical details of their generative models are not explicit, which makes their approach

difficult to evaluate.

Since its creation in 1997, the Sony Computer Science Laboratories (CSL) music team4,

led by Pachet, who developed The Continuator mentioned in the previous section, has been in-

vestigating interactivity and creativity in music, and their integration into computing systems.

1http://melomics.com
2http://melomics.com/iamus
3http://melomics.com/melomics109
4https://www.csl.sony.fr/music.php
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Their recent Flow Machines project1 has been focusing on developing an intelligent system ca-

pable of generating music autonomously [237, 238]. Their system integrates a combination of

machine learning methods for extraction of musical features and learning styles, combinatorial

optimisation methods to comply to styles’ constraints, and knowledge representation methods

to represent musical properties. Here, the user can just select the style and duration of the song,

and Flow Machines generates an original composition. For instance, Flow Machines has been

used to compose Daddy’s Car2, a pop song composed in the style of The Beatles, with some

human input for the final product (arrangements, production, and lyrics by French composer

Benoı̂t Carré). Flow Machines has also been utilised to recompose Beethoven’s Ode to Joy

in seven other styles, including bossa nova and jazz, to name but two [239]. It can also au-

tomatically generate chorales that follow Bach’s characteristics, using deep learning methods

[240]. The twenty years of research behind Flow Machines has produced a system capable of

automatically generating impressive musical pieces.

A Luxembourgian start-up, Aiva Technologies3, has been developing an intelligent sys-

tem for automatic classical and symphonic music composition. In 2016, they created a system

called AIVA (short for Artificial Intelligence Virtual Artist), designed to compose music for

movies, commercials, games, and trailers. There are not many technical details about their

system except that it uses a deep learning model using NVIDIA’s cuDNN4 and TensorFlow li-

braries5, trained using analysis of music partitions from composers such as Mozart, Beethoven,

and Bach. Nevertheless, AIVA is the first non-human composer recognised by a music soci-

ety—in this case by the SACEM (Société des Auteurs, Compositeurs et Éditeurs de Musique),

a French author’s rights organisation. For instance, AIVA has composed a 24 tracks album enti-

tled Genesis, released in November 2016. Similar to previous automatic composition systems,

AIVA is trained with a large set of musical pieces written by human composers, a process that

aims to identify the mechanisms of musical composition in order to generate new compositions.

The quest for developing an intelligent artificial composer has been the subject of many

research groups for several decades. With advances in AI research, technology capacities, and

data available, researchers have been training systems to learn composition mechanisms and

composers’ styles, from large sets of examples. The first intelligent systems were generating

1www.flow-machines.com
2https://soundcloud.com/user-547260463/daddys-car
3www.aiva.ai
4https://developer.nvidia.com/cudnn
5www.tensorflow.org
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new compositions based on a composer’s style, nowadays, the trend is to generate original

pieces that aim to match human standards. The use of AI for automatic musical composition is

perhaps the application that is the most controversial among the music community, but at the

same time, is the approach that intrigues and interests the general audience and draws attention

in the media 1.

1For example, www.flow-machines.com/tag/flow-machines-press groups the significant media atten-
tion about the Sony CSL’s Flow Machines project.
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3.5 Chapter Discussions

This chapter has highlighted that human intelligence is a complex notion that actually involves

different cognitive abilities. The idea of harnessing every aspect of intelligence into computing

systems, the fundamental of the field of Artificial Intelligence created in the 1950s, still remains

a challenge. However, this very active field of research has produced numerous methods to

address specific problems in almost any fields. Nowadays, AI has applications in many aspects

of our life, such as for healthcare, for autonomous cars, and also for security.

Unsurprisingly, AI has also been applied in the musical domain. The discussions about its

use in audio synthesis have shown that AI methods can be applied to different audio synthesis

questions, such as aiding to program synthesizers’ parameters, predicting and creating sounds

for videos, and also in developing interactive synthesizers. These applications of AI methods

present interesting pathways for addressing some of the audio synthesis challenges, however,

in regards to this study the most interesting approach is the development of search-based meth-

ods that have been successfully applied to audio sample selection in concatenative synthesis

frameworks. Such methods will require further investigations in order to define their poten-

tial applications in algorithms designed to search for combinations of instrumental notes using

audio samples.

This chapter also discussed the application of AI methods in some music production tasks.

Most of the research consist of automating different audio mixing tasks, such as equalisa-

tion and level-balancing. They usually used a combination of rule-based models and machine

learning methods to apply the scientific knowledge about music production, but also to cre-

ate templates that could be automatically applied to any signals. It has been shown that such

systems have been able to perform successfully specific tasks. However, these methods do

not completely harness audio engineers’ abilities as they can lack the perceptual analysis and

evaluation of the audio engineers when performing such tasks.

The musical practice that has seen the most applications of AI methods since the 1950s is

composition. The review of works investigating the use of AI methods for musical composi-

tion has suggested two different approaches. One of these two aims to create systems capable

of automatically generating complete pieces of music that can match human quality. Most of

the research in this area has used combinations of rule-based models, evolutionary computing

models, and machine learning methods to train systems using pieces written by human com-

posers and compositional rules also defined by a human. Here, AI methods are used to identify
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musical and compositional characteristics from a set of examples, aiming to copy and simulate

composers’ abilities. The recent advances in this area, such as Flow Machines and AIVA have

taken advantage of the developments of deep learning methods, with the use of large datasets,

and have produced impressive results. Such systems can generate thousands of songs with only

a few defined parameters. However, the generations mainly depend on the training examples

and may result in generating similar materials. A comprehensive survey about the use of deep

learning methods for generating musical content can be found in [241].

The second approach consists of developing methods and systems that can assist composers

in different tasks. Here, AI methods are used for the development of interactive tools, offering

a companionship to the users, with an aim to aid in their musical tasks. AI approaches have

been applied in algorithmic composition using AI methods to generate material for composers

to work on. The recent developments aim to be interactive, offering an interface between

composers and machines, with the hope of assisting composers’ creativity. This study aims

to aid composers in their metier by investigating and identifying methods for the analysis and

control of instrument timbre and timbral combinations. Thus, AI methods systems designed to

assist composers may provide useful information for processing and manipulating data related

to perceptual qualities produced by combining instrument notes in computing systems.

As it has been discussed in Section 3.3.2.1, the field of AI aims to achieve different goals.

Methods developed to achieve some of these goals would apply to this study. For instance,

problem solving with a focus on search algorithms could aid in finding the right instrument

combination from the infinite potential combinations. Methods from knowledge representation

would help to find a way to represent the perception of timbre from sonic sources into com-

puter’s data. Finally, the discussions about the use of AI in music have highlighted that machine

learning methods have been applied in many systems, whether to learn musical rules or com-

posers’ styles. Such methods would aid in linking search algorithms and knowledge-based

models in order to harness timbre properties of instrument note combinations.
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3.6 Chapter Summary

This chapter has presented background information on the concept of AI, which has informed

some of the research developments presented in this thesis. First, it proposed a brief introduc-

tion of the field of AI. It started with discussing the notion of human intelligence. Here, the

discussions about different theories of intelligence have highlighted that human intelligence is

a complex notion that involves several cognitive abilities, therefore, there is more than one in-

telligence. Then, the discussions continued with defining the notion of AI and reviewing some

of its approaches and goals. Similar to the different human intelligences or abilities, the field

of AI research aims to achieve different goals, which can sometimes overlap. Nevertheless,

research in AI has produced several methods to address many problems successfully, in almost

any field.

The second part of this chapter discussed the application of AI methods for musical pur-

poses, which is most relevant to this study. Here, the discussions focused on three musical

practices: sound synthesis, music production, and musical composition. Several works from

these three categories have been reviewed to highlight the different uses of AI methods. This

review has shown that learning methods and rule-based models have been the approaches most

applied to address some of the challenges that can be experienced in these practices.

In summary, this background information chapter has briefly introduced the vast field of AI

research and highlighted some approaches that have been utilised in music. It has shown that

machine learning methods and rule-based models have been successful in addressing different

musical problems, but also to identify musical characteristics. Furthermore, this chapter has

highlighted some key areas that require further investigations:

• Computational representation of musical timbre’s perception.

• AI methods for automatic timbre classification.

• AI methods for prediction of timbre values.

• AI methods for instrument combinations search algorithms.
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Timbral Ranking

4.1 Chapter Overview

This chapter presents the first research development towards establishing techniques for the

analysis and control of the perceptual qualities emerging from instrument timbre combinations.

Firstly, the text details the need of defining methods to retrieve different timbre properties

from audio files of instrument combinations. Then, it specifies the motivations for developing

a computing system capable of ranking audio samples according to their timbre content. It

also states the rationale for using verbal descriptors of timbre quality. The chapter continues

by listing the different verbal attributes that are implemented in the timbre ranking system.

Details of their respective acoustic features, with their subsequent methods of calculation, are

also detailed.

The second half of the chapter presents the technical explanations of the implementation of

the timbre ranking system. Here, information about the programming environment, calculation

methods of timbre qualities, comparison method, and the results’ ranking are provided in order

to define the design and functioning of such a system. Next, the text details the methods of

a perceptual experiment, designed to compare and evaluate the rankings of the system with

human ratings. Results and discussions of the perceptual experiment are also provided. The

chapter then concludes with discussions and reflections on the timbre ranking system and the

perceptual experiment, which have informed the developments presented in the next chapter.

Below is an overview of this chapter’s structure:

. 4.2 - Introduction
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. 4.3 - Motivations

. 4.4 - Verbal Attributes

. 4.5 - Acoustic Features

. 4.6 - Algorithm

. 4.7 - Perceptual Experiment

. 4.8 - Chapter Conclusions

. 4.9 - Chapter Summary
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4.2 Introduction

The initial step towards harnessing perceptual aspects of instrument combinations into methods

for manipulating instrument timbre and timbral combinations is to determine which element of

sound to utilise. This study focuses on musical timbre, which can display perceptual properties

from sonic events. Therefore, it is essential to start by defining methods to retrieve, represent,

and manipulate this sonic attribute.

The discussions about the notion of timbre (Section 2.4) have shown that this sonic attribute

conveys important perceptual information. The review of works on musical timbre has high-

lighted the lack of agreed methods to represent and evaluate timbre characteristics. There are

even more mixed conclusions for polyphonic timbre, which is inherent in instrument timbre

combinations. Thus, this initial development investigates approaches that could be applied to

evaluate polyphonic timbre from sounds of combined instruments.

The investigation has been done throughout the development of a computing system ca-

pable of ranking audio files according to specific timbre properties. This chapter details the

motivations for developing such a system, the selected methods of calculation, the technical

details of the timbre ranking system, and reports on a perceptual experiment designed to eval-

uate the approaches that have been chosen and to compare the system’s results with human

ratings.
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4.3 Motivations

The starting point of the study presented in this thesis was the review of the few attempts

at developing computing systems designed to aid orchestral compositions to understand the

different approaches that have been applied to address some of the diverse orchestration chal-

lenges. It has also served to identify aspects that could benefit from incorporating elements of

timbre perception of sounds from combined instruments, which motivated the implementation

of the timbre ranking system presented in this chapter.

The review of works from the computer-aided orchestration field (Section 2.5) has illus-

trated the different approaches that have been explored since the 1970s. It was also suggested

that Orchids1, a system developed by IRCAM, was the most advanced computer-aided or-

chestration system. This program was released in November 2014 and is the result of different

developments from a research project initiated in 2003. Orchids proposes abstract and temporal

orchestrations and is also optimised for timbral mixture. In this system, the user inputs a target

sound or designs an abstract target and the system tries to generate orchestrations that match

that target. Different criteria help to guide the search algorithms designed to select the instru-

ment combinations. First, Orchids includes a database of over 30 orchestral instruments, whose

audio samples are pre-analysed and indexed by the program. This audio analysis phase pro-

vides various information, especially spectral information for each audio sample. The second

set of criteria is the number and selection of the instruments that will compose the ensemble,

with possible specification of pitch ranges, playing styles, and dynamics. It is also possible to

spatially position the instruments, which will influence the orchestration. These different pa-

rameters guide the algorithm designed to generate instrument combinations that would match

the target file. Here, the matching is based on the spectral composition of the target and of the

instrument combinations. Once the search algorithm is performed, the user can listen to the

solutions output by the system directly in the program, thanks to the audio samples from the

database. It is also possible to render the solutions graphically into a musical score, which can

be edited if required. The system also proposes to export the solutions in different file formats,

such as a WAVE (Waveform Audio File Format) files and a MIDI (short for Musical Instrument

Digital Interface) file, for example.

After a period of experimenting with Orchids, using various target sounds, shapes of ab-

stract target, and different groups of instruments in order to observe the suggested orchestra-

1http://www.forumnet.ircam.fr/product/orchids-en/
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tions, an issue started to emerge. While Orchids generates interesting solutions for a broad

ranges of target sounds, it also proposes numerous solutions. These different orchestrations

could be beneficial for inspiration if the aim is to explore various types of instrument combina-

tions, or an unexpected instrument combination suggested by the system could be of interest.

However, if the user has a specific idea in mind, it can be tedious and time-consuming to go

through all the generated solutions before finding the combination that may convey the user’s

idea. The large number of solutions that are generated for a given target may be due to the

approach selected for the search algorithm. Here, the criteria of spectrally matching the target,

which is interesting and proved to perform successful results, also has a disadvantage. Sev-

eral instrument and note combinations can produce similar spectral properties while they may

sound very different. Thus, many solutions can fit the target file properties and be suggested

by the system.

The ability to have all possible solutions should be kept because chance and surprise are

part of the compositional process. However, including an option to filter the numerous solutions

output by such a system would offer a way to overcome the time-consuming task of listening

to a large number of solutions, which some composers may prefer to circumvent. Methods

and tools developed by the Music Information Retrieval (MIR) field could provide different

information to filter the solutions such as their sizes and durations for examples. However, a

composer might have an idea of a sonic palette without knowing which instrument pitches to

use or what duration is needed. This idea of instrument combination can be used to represent a

type of sound, tone colour, or a specific perceptual quality. As discussed in Chapter 2, timbre

conveys such information. Furthermore, the review of the research on timbre (Section 2.4) has

shown that this sonic element is not necessarily represented by information such as duration or

genre. Rather, timbre is a multidimensional element represented by combinations of different

spectral and temporal information. Therefore, it could be possible to perform the known timbre

calculations on the solutions output by computer-aided orchestration systems. However, com-

posers may not necessarily be acoustician or psychoacoustician. Therefore, providing spectral

and temporal information might not be an explicit filtering option. For instance, research on

timbre has suggested that spectral centroid provides information about the timbre properties of

a sound [100, 108], but performing its calculation and providing its resulting value may not be

interpretable by many composers. Hence, it might not be very intuitive for composers to use

such parameters to filter the solutions according to their sonic ideas.
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From these observations, it was necessary to select an approach that alleviates the need to

have expertise in acoustics or psychoacoustics to have a filter option accessible to a broad audi-

ence. In Section 2.4, it was suggested that semantics can be used to describe timbre properties.

Thus, using words from the everyday language, such as brightness and roughness, could be an

alternative of representing timbre properties other than with only acoustic calculations. Fur-

thermore, these verbal descriptors also depict perceptual qualities, which could represent the

sonic ideas of a composer. Instrumental mixtures can be used to convey specific textures and

timbres that can display a perceptual trait. Therefore, a method that utilises perceptual qualities,

represented by timbre characteristics, as criteria to filter the solutions output by computer-aided

orchestration systems could be a way to overcome the time-consuming task of listening to the

numerous solutions.

The following sections discuss in detail the implementation of a computing system de-

signed to propose an approach to overcome the tedious task of listening to the numerous so-

lutions generated by computer-aided orchestration systems. This approach utilises verbal de-

scriptors to represent timbre properties of instrumental mixtures, instead of only using acoustic

properties, and aims to alleviate the need of acoustic expertise. The different verbal descriptors

that have been selected are discussed, along with descriptions of their corresponding acoustic

correlate and methods of calculation. These verbal attributes are processed as parameters to

filter audio files of instrument combinations. Then, technical details about the implementation

of this filtering method into a computing system are provided. Finally, methods and results of

a perceptual experiment conducted to evaluate the performances of the timbre ranking system

are discussed.
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4.4 Verbal Attributes

This section introduces the different verbal attributes, representing perceptual qualities, that

have been implemented into the timbre ranking system. In Section 2.4, it was mentioned that

an important amount of research has been investigating the use of semantic to represent timbre

properties, which can also convey perceptual qualities [104, 107]. Research in that area has

suggested several verbal descriptors, which may sometimes overlap. An extensive list of verbal

descriptors, along with their correspondent acoustic correlates, can be found in [117].

With the number of verbal descriptors suggested by researchers and the potential overlap, it

was necessary to make a selection. Moreover, different acoustic features have been suggested

for one attribute; therefore, a preliminary implementation incorporating a few verbal attributes

allows the investigation of the feasibility of this approach, before building on the advances and

expanding the developments by adding further attributes. The first verbal descriptor is bright-

ness, selected due to the general agreement upon its definition and methods to represent this

attribute. In regards to its use in audio, brightness can represent the presence of high frequen-

cies in the sound and synonyms such as brilliance and clear are sometimes also used to describe

this perceptual quality. The second attribute is dullness, selected because it can represent qual-

ities that are opposite to those conveyed by the term brightness, sometimes referring to a lack

of brightness or quietness in the sense of not many events. Thus, this attribute is used here to

contrast and compare with the attribute brightness. The third verbal descriptor is roughness, a

perceptual quality that has received a lot of interest in acoustics and psychoacoustics research,

which suggested definitions and methods of calculation. This attribute, sometimes referring

to the notion of dissonance [105, 242], can be an effect that is sought by some composers in

different parts or their musical pieces. The fourth attribute is warmth, a perceptual quality

that is often used to describe the quality of a sound, notably appreciated by composers and

musicians in some musical genres: e.g. asking sound engineers to make their music ‘sound

warm’. Warmth can also be a sonic texture that composers may want to include into their mu-

sical pieces. Finally, the last verbal descriptor is breathiness. This attribute may relate more

to sound qualities produced by voice and mouth (in singing for example). However, it also

applies to some instruments, such as some brass instruments, and refers to sounds that can be

produced from some of their specific playing techniques.

In total, there are five verbal attributes that have been selected: breathiness, brightness,

dullness, roughness, and warmth. These five attributes convey varied perceptual qualities and
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offer a panel of parameters to manipulate. The next section will detail the different methods

of calculation for each attribute, with discussions about the approach of estimating the timbral

values from audio sources.
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4.5 Acoustic Features

The previous section has introduced the different verbal attributes that have been selected and

the rationale for implementing them into the timbral ranking system detailed in this chapter.

This section presents their correspondent acoustic features, with explanations on their methods

of calculation. The text also discusses the preferred approach for estimating the timbral values

from hlaudio files.

The corresponding acoustic features and methods of calculation for each of the five timbral

attributes are detailed below:

Breathiness: Research on the attribute breathiness suggests that the spectral shape of the sound

and the combination of harmonics-to-noise ratio (HNR), calculating the amount of additive

noise in a voice signal, and signal-to-noise ratio (SNR), calculating the level of background

noise, provide information on the perception of this quality [243]. Here, a high amount of

noise in the high frequencies, and a high amplitude between the first and second harmonic (H1

- H2) indicate a breathy sound.

Brightness: Many investigations have suggested that the spectral centroid of a sound con-

tribute in identifying its brightness [100, 108]. The spectral centroid calculates the amount

of high frequencies present in the sound. For a power spectrum with components Pi( fi), the

spectral centroid Fc is defined as

Fc =
∑ fiPi

∑Pi
(4.1)

where Pi is the weighted frequency value of bin i, fi is the center frequency of bin i, and Fc is a

frequency. A high amount of high frequencies, informed by the result of the spectral centroid

calculation, indicates a bright sound.

Dullness: Similar to brightness, the calculation of the spectral centroid of a signal provides

information on estimating the dullness of a sound. However, in regards to this attribute, a low

spectral centroid value will suggest that a sound is dull [244]. This descriptor is the inverse of

the attribute brightness.

Roughness: The investigations on identifying the acoustic features that correspond to the per-

ception of roughness suggest that the distance between adjacent partials in critical bandwidths
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(the frequency bandwidth of the cochlea acting as a filter in the ear [38, 245]), which also refer

to fluctuations in the signal, and sensory dissonance provide information on the roughness of a

sound [9, 105, 246]. Here, short distances indicate the presence of a rough sound.

Warmth: Research on identifying acoustic features of the perception of warmth suggest the

calculation of the spectral centroid of the signal and the estimation of the energy in the first

three harmonics [60, 247]. Here, a low spectral centroid value, which signifies a small amount

of high frequencies, and high energy in the first three harmonics indicates that a sound presents

warm characteristics.

The different acoustic features for each verbal attribute have been suggested by literature

investigating verbal descriptors of timbre properties and their acoustic correlates. However, as

mentioned in Section 2.4, these investigations have used a broad range of sounds with diverse

types of subjects, which may explain the disparity in the results and the lack of agreement

in defining acoustic correlates that contribute to the perception of specific qualities. Further-

more, most of the studies that have suggested these acoustic features have investigated mostly

monophonic timbre, using sets of stimuli composed of individual notes and sounds. This study

aims to identify techniques to analyse and control sonic qualities of instrument combinations

from processing audio files. Here, the concept of polyphonic timbre is important as multiple

instruments can play simultaneously, thus creating sounds emerging from several instrument

notes. However, the discussions about polyphonic timbre research (Section 2.4) have shown

that there has been only a few investigations, which have suggested mixed conclusions and

no consensus on the methods to estimate timbre properties from sonic events composed of a

group of notes or sounds. Some investigations have suggested that methods of estimation pro-

posed by research on monophonic timbre could be directly applied to polyphonic timbre, while

others suggest performing source separation processes before applying the calculations on the

individual sources. Again, these investigations have used diverse types of stimuli, which could

explain the mixed conclusions. Furthermore, none of the investigations have directly inves-

tigated instrument timbre combinations, which signifies that there is no defined methods for

estimating timbre characteristics for this type of sound. Thus, it was necessary to determine

an approach to calculate the different acoustic properties from audio files of sounds created by

combining different instruments.
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For the timbral ranking system presented in this chapter, the preferred approach has been to

apply the methods for calculating the acoustic features directly on the overall audio files, with-

out performing a source separation process. First, source separation processes do not always

perform accurately for every types of sound and every instruments. Furthermore, it is common

to have groups of the same instrument that can play the same note, but also different notes. This

combination of same instruments adds complexity to the source separation processes, which

again may not be able to separate the signals. Thus, source separation is technically not a

viable approach. Moreover, when listening to musical sounds, our brain may not perform a

source separation to identify all individual instrumental sounds, all in a very brief amount of

time. The brain may perceive and process it as a global sonic event. It can also be an artistic

choice not to be able to perceive the sound as a sum of individual notes, but rather as an overall

texture. Here, the notion of timbre blending is prominent, hence, estimating and summing the

individual timbres may not harness the overall timbral qualities and could omit the composer’s

artistic choice. Finally, it is also useful to investigate if the methods suggested by monophonic

timbre research could be applied directly to polyphonic timbres resulting from sounds created

by instrument mixtures.

Considering the lack of standard methods, and the reasons stated in the previous para-

graph, it was decided to perform the calculations of the different acoustic features on the global

sounds, thus estimating the timbre properties without performing source separation. The im-

plementation of the different acoustic features’ calculations and the technical details of the

timbral ranking system will be described in the following section.
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4.6 Algorithm

This section proposes a technical overview of the different aspects of the timbral ranking sys-

tem. First, details about the programming environment and the use of an external library are

provided. Then, the text describes the different methods for estimating the timbre qualities

from audio files of orchestral sounds and combinations of instrument notes. It is followed by

a description of the selected approach to manipulate and compare the values resulting from

the acoustic feature calculations. Finally, this section details the selected method for the repre-

sentation of the results output by the system. Fig. 4.1 shows a diagram representing the flow

of information of the overall algorithm designed to rank audio files according to the selected

verbal attributes.

Figure 4.1: Flowchart of the system’s algorithm, representing the different steps of the timbral
ranking system.
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4.6.1 Programming Environment

The timbral ranking system is implemented within the Matlab1 environment on a Macintosh

operating system (Mac OS). This software, which has its own programming language, has

proven to be effective for numerical calculations and is widely used in diverse fields, such as

engineering, for example. One of the other advantages of using this environment is the ability

to add toolboxes, which can contain already made functions for specific tasks. This system

uses some functions taken from the MIRtoolbox 1.6.12 [248], which consists of Matlab

functions designed specifically for the extraction and retrieval of various musical features from

audio files. The specific functions and their uses are listed in the next section. The system

consists of a single script file that is executable directly in the Matlab environment. The

following sections describe the different steps and functions of the system.

4.6.2 Timbre Index

This section describes the different steps of the algorithm that has been designed to retrieve

the timbre qualities from audio files. Here, it has been decided to work with audio files that

contain sounds created by combining instruments: audio recordings of orchestral pieces or files

generated by computer-aided orchestration systems. The system processes only audio files

encoded as Waveform Audio File Format (WAVE). The reason for using the WAVE format

is because it is uncompressed audio, which keeps all the spectral information instead of a

compressed audio format that would omit parts of the audio spectrum. For the accuracy of the

acoustic feature calculations, it is essential to work with uncompressed audio, as most of the

calculations are based on spectral information. The WAVE format is also an exporting option

in the Orchids program, which motivated the development of the timbral ranking system.

The first step of the algorithm is to define the folder that contains the audio files. Here,

users can select their folder via a pop-up window, which allows them to navigate through their

files. Once this step is done, the system lists all the WAVE files that are present in the folder

selected by the user, storing their path and name. It also creates a folder for each of the five

verbal attributes. Then, for each file, the system performs the acoustic feature calculations.

The calculation processes start with using the miraudio function from the MIRtoolbox,

which loads the audio file and stores its waveform as a variable for subsequent operations. The

1http://www.mathworks.com/products/matlab/
2MIRtoolbox is available at https://goo.gl/d61EO0
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reason for storing the audio file into a variable is to avoid the need to process a read and load

function of the audio file for each operation. Then, the system performs the calculations of

each verbal attribute incrementally. It starts with the attribute breathiness, where it uses the

mirspectrum function to obtain the audio file’s spectrum, representing the distribution of the en-

ergy along the frequencies. Here, the mirspectrum function performs a Fast Fourier Transform

(FFT). This information is then utilised to retrieve the first and second harmonic (H1 and H2)

and then to calculate the amplitude between H1 and H2, and the Open Quotient (OQ) [249].

The value resulting from this calculation is then stored in a matrix variable along with the cor-

responding file’s name. Next, the system performs the calculation for the attribute brightness.

Here, the system executes the mirbrightness function to obtain the amount of energy above a

defined frequency, following suggestions by [250] and [251]. Again, the value resulting from

this calculation is stored in a matrix variable along with the corresponding file’s name. The

same method to retrieve the amount of energy below a defined frequency is applied for the

calculation of the attribute dullness. For the attribute roughness, the system first executes

the mirspectrum function in order to obtain the spectrum of the audio file. Then, it performs

the mirroughness function, which computes the average of the dissonance of all possible pairs

of the spectrum’s peaks [114]. Finally, the system performs the operations for the attribute

warmth. It starts with executing the mirspectrum function to obtain the audio file’s spectrum.

Then, it performs the mircentroid function onto the spectrum variable to obtain the distribution

of the energy of the audio frequencies. Then, it retrieves the energy in the first three harmonics,

which is subsequently combined with the value resulting from the spectral centroid calculation.

Once the system has performed the verbal attributes calculations onto all the audio files con-

tained in the selected folder, the five matrices corresponding to the five attributes are composed

of all the audio files’ name with their corresponding timbral value.

4.6.3 Comparison

In order to rank the audio files, the values resulting from the acoustic feature calculations need

to be compared. Thus, for the matrix variable that contains the values for the attribute breath-

iness, the matrix is indexed in descending order with highest value at the top. This value cor-

responds to high amount of noise in the high frequencies and high amplitude between the first

and second harmonic (H1 - H2). The brightness matrix is also indexed in descending order,

corresponding to the large presence of high frequencies. In regards to the attribute dullness, its

matrix is indexed in ascending order, which corresponds to the lack of high frequencies in the
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audio file and indicates a potential dull sound. The roughness matrix is indexed in descending

order, which corresponds to high fluctuations in the signal and sensory dissonance, character-

istic of a rough sound. Lastly, the matrix corresponding to the attribute warmth is indexed in

ascending order, corresponding to low values representing the presence of low frequencies and

energy in the first three harmonics.

4.6.4 Ranking Results Output

Once the acoustic feature calculations and the indexing process have been performed, the sys-

tem outputs the results of the ranking operations in two different manners.

First, for each verbal attribute, the system displays the name of the audio file that obtained

the highest value. This allows the user to identify the best audio file within the several files

contained in the folder. The other approach outputs the audio files with their corresponding

rank number at the beginning of the name. Each attribute has its own folder. For example,

in the brightness folder, all the audio files would be sorted from the brightest sound to the

least bright sound, while the warmth folder will have the warmest sound at the top, and the

least at the bottom. Thus, in the case of instrument combinations generated by computer-aided

orchestration programs, such as Orchids, the user can directly listen to the solutions that most

match the verbal attribute criteria, while still having the option to keep and listen to all the

solutions.
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4.7 Perceptual Experiment

In order to evaluate the selected methods for estimating timbre qualities, and the accuracy of

the timbral ranking system, a perceptual experiment with human participants has been con-

ducted. The purpose of this experiment was to determine the correlation between the humans’

responses and the system’s rankings. This section reviews this perceptual experiment, starting

with details about the utilised audio stimuli. Then, the text specifies the methods that have been

adopted to conduct the experiment. This section continues with presenting the results of the

humans’ responses. Finally, the text finishes with discussions about the experiment’s results

and its outcomes.

4.7.1 Training Files

It was mentioned in Section 4.3 that the development of the timbral ranking system has been

motivated by experimentations with computer-aided orchestration systems, in particular with

the Orchids program. This resulted in the generation of many audio files, some of which have

been utilised for testing purposes during the implementation of the system.

For the perceptual experiment, a set of 90 audio files generated by Orchids has been utilised.

These audio files consisted of renderings of combinations of instrument notes proposed by

Orchids, using different targets and groups of instruments. The generated audio files were

between 2 and 4 seconds long and were composed of several different instruments, such as

violins, flutes, and trumpets.

The timbral ranking system has been performed on the set of 90 audio files, which resulted

in having the files indexed according to their calculated timbral value for each of the five verbal

attributes. Following the ranking proposed by the system, some audio files were selected as

stimuli for the perceptual experiment. The choice of the audio files and the methods of the

experiment will be described in the next section.

4.7.2 Methods

For each verbal attribute, three audio files were selected, following the ranking suggested by the

system. Here, the file ranked number 1, number 45, and number 90 were chosen, respectively

representing the highest, medium, and lowest score in each verbal attribute ranking.
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The experiment were conducted with 20 individuals and performed in the same room us-

ing the same playback equipment (circumaural Beyerdynamic DT770 PRO 250 Ohm1 head-

phones, selected for their neutral frequency responses2, which does not colour and alter the

sound). Each participant was asked to listen to 3 audio stimuli (≈ 2 to 4 seconds long, with

several instruments playing simultaneously) for each verbal attribute implemented in the sys-

tem, which makes a total of 15 audio stimuli. For each attribute, the participants were asked to

rate their respective 3 audio stimuli, using a five-point Likert scale. Fig. 4.2 shows a screen-

shot of the experiment’s interface as viewed by participants, displaying the page for the attribute

brightness. Each attribute’s page was displayed similarly. The audio stimuli were presented in

a random order for each participant, thus, avoiding a potential influence of the listening order

on the participants’ ratings. The results of this perceptual experiment will be presented in the

next section.

4.7.3 Results

Fig. 4.3 displays the mean of the participants’ ratings, using the five-point scale, for each of the

three stimuli presented for the verbal attribute breathiness. Here, the mean rating for the stimuli

least is 2.2, for the stimuli medium 2.5, and for the stimuli most is 3.7. Table 4.1 shows the

mean and median of the participants’ ratings and the standard deviation for each audio stimuli

for the attribute breathiness.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Breathiness (least) 2.2 2 0.894

Breathiness (medium) 2.5 2 1.100

Breathiness (most) 3.7 4 0.979

Table 4.1: Mean, median, and standard deviation values of the participants’ ratings for each of the
three stimuli presented for the verbal attribute breathiness.

Fig. 4.4 displays the mean of the participants’ ratings, using the five-point scale, for each

of the three stimuli presented for the verbal attribute brightness. Here, the mean rating for the

stimuli least is 2.4, for the stimuli medium 3.35, and for the stimuli most is 4.1. Table 4.2

1http://europe.beyerdynamic.com/shop/dt-770-pro.html
2http://reference-audio-analyzer.pro/en/report/hp/beyerdynamic-dt-770-pro-250.php
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Figure 4.2: Screenshot of the experiment’s interface, as viewed by participants. Here, the page for
the attribute brightness is displayed. Pages for each attribute were displayed similarly.

shows the mean and median of the participants’ ratings, and the standard deviation for each

audio stimuli for the attribute brightness.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Brightness (least) 2.4 2 0.882

Brightness (medium) 3.35 3 0.745

Brightness (most) 4.1 4 0.641

Table 4.2: Mean, median, and standard deviation values of the participants’ ratings for each of the
three stimuli presented for the verbal attribute brightness.
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Figure 4.3: Bar graph showing the mean participants’ ratings for the attribute breathiness. On the x
axis are the audio stimuli as ranked by the system, and on the y axis is the mean of the participants’
ratings, with corresponding error bars. There is a correlation between participants’ ratings and the
systems rankings.

Fig. 4.5 displays the mean of the participants’ ratings, using the five-point scale, for each

of the three stimuli presented for the verbal attribute dullness. Here, the mean rating for the

stimuli least is 1.85, for the stimuli medium 3.2, and for the stimuli most is 4. Table 4.3 shows

the mean and median of the participants’ ratings, and the standard deviation for each audio

stimuli for the attribute dullness.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Dullness (least) 1.85 2 1.090

Dullhtness (medium) 3.2 3 0.951

Dulltness (most) 4 4 0.645

Table 4.3: Mean, median, and standard deviation values of the participants’ ratings for each of the
three stimuli presented for the verbal attribute dullness.
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Figure 4.4: Bar graph showing the mean participants’ ratings for the attribute brightness. On the x
axis are the audio stimuli as ranked by the system, and on the y axis is the mean of the participants’
ratings, with corresponding error bars. There is a strong correlation between participants’ ratings
and the systems rankings.

Fig. 4.6 displays the initial mean of the participants’ ratings, using the five-point scale, for

each of the three stimuli presented for the verbal attribute roughness. Here, the mean rating for

the stimuli least is 2.25, for the stimuli medium is 3.7, and for the stimuli most is 3.5. Table

4.4 shows the mean and median of the participants’ ratings, and the standard deviation for each

audio stimuli for the attribute roughness. Following these results, the methods for estimating

the attribute roughness have been investigated, and an error in the system’s ranking has been

found, which will be further detailed in the next section, along with the global discussions of

the results of this perceptual experiment. Therefore, Fig. 4.7 displayed the adjusted mean of

the participants’ ratings. Here, the mean rating for the stimuli least, is still 2.25, however, for

the stimuli medium it is now 3.5, and for the stimuli most, it is 3.7. Table 4.5 shows the adjusted

values for the mean and median of the participants’ ratings, and the standard deviation for each

audio stimuli for the attribute roughness.
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Figure 4.5: Bar graph showing the mean participants’ ratings for the attribute dullness. On the x
axis are the audio stimuli as ranked by the system, and on the y axis is the mean of the participants’
ratings, with corresponding error bars. There is a strong correlation between participants’ ratings
and the systems rankings.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Roughness (least) 2.25 2 0.851

Roughness (medium) 3.7 4 0.946

Roughness (most) 3.5 3 1.031

Table 4.4: Initial mean, median, and standard deviation values of the participants’ ratings for each
of the three stimuli presented for the verbal attribute roughness.
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Figure 4.6: Bar graph showing the initial mean participants’ ratings for the attribute roughness.
On the x axis are the audio stimuli as ranked by the system, and on the y axis is the mean of the
participants’ ratings, with corresponding error bars. There is a difference between participants’
ratings and the systems rankings for the audio stimuli medium, and most.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Roughness (least) 2.25 2 0.851

Roughness (medium) 3.5 3 1.031

Roughness (most) 3.7 4 0.946

Table 4.5: Revised mean, median, and standard deviation values of the participants’ ratings for
each of the three stimuli presented for the verbal attribute roughness.

Finally, Fig. 4.8 displays the mean of the participants’ ratings, using the five-point scale,

for each of the three stimuli presented for the verbal attribute warmth. Here, the mean rating

for the stimuli least is 1.8, for the stimuli medium 1.8, and for the stimuli most is 2.75. Table

4.6 shows the mean and median of the participants’ ratings, and the standard deviation for each
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Figure 4.7: Bar graph showing the revised mean participants’ ratings for the attribute roughness.
On the x axis are the audio stimuli as ranked by the system, and on the y axis is the mean of
the participants’ ratings, with corresponding error bars. After adjusting the system’s estimation
methods, there is a correlation between participants’ ratings and the systems rankings.

Perceived attribute
Analysed attribute Mean Median Standard deviation

Warmth (least) 1.8 1 1.005

Warmth (medium) 1.8 2 0.895

Warmth (most) 2.75 2 1.165

Table 4.6: Mean, median, and standard deviation values of the participants’ ratings for each of the
three stimuli presented for the verbal attribute warmth.

audio stimuli for the attribute warmth.

4.7.4 Discussions

For the verbal attribute breathiness, the mean and median values for the audio stimuli labelled

most, as shown in Fig. 4.3 and Table 4.1, indicate a correlation between the system’s ranking
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Figure 4.8: Bar graph showing the mean participants’ ratings for the attribute warmth. On the x
axis are the audio stimuli as ranked by the system, and on the y axis is the mean of the participants’
ratings, with corresponding error bars. There is a difference between participants’ ratings and
the systems rankings for the audio stimuli least, and medium, both scored the same mean values.
There is a low correlation between participants’ ratings and the systems rankings for the audio
stimuli most.

and participants’ responses. Here, the file ranked as the most breathy sound by the system was

also rated as breathy by the participants, with a median value of 4 out of the five-point scale. In

regards to the other two audio stimuli, their corresponding median values were similar (2 out

of the five-point scale), with a mean value slightly higher for the audio stimuli medium. The

difference is too small to suggest a significant correlation between participants’ responses and

the system ranking. However, the similar ratings for these two stimuli could merely be due to

their sonic content, which may have had a lack of breathy quality. Nevertheless, the values for

the stimuli most suggest a correlation between participants’ responses and system’s rankings

for the attribute breathiness.

Fig. 4.4 and Table 4.2 display the results for the verbal attribute brightness. Here, the mean

values, scoring 2.4, 3.35, and 4.1 out of 5 for the stimuli least, medium, and most respectively,
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follow the rankings proposed by the system. It is supported by the median values, where

participants’ responses were 2, 3, and 4 for the stimuli respectively ranked as least, medium,

and most by the system. These results suggest a strong correlation between the participants’

responses and the system’s rankings for the attribute brightness.

The results for the verbal attribute dullness were similar to those for the attribute bright-

ness. Here, the mean and median values, as depicted in Fig. 4.5 and Table 4.3, suggest a strong

correlation between the participants’ responses and the system’s rankings for the attribute dull-

ness.

For the verbal attribute roughness, the initial participants’ ratings were suggesting that the

system’s rankings were different to the humans’ responses. Fig. 4.6 and Table 4.4 display the

initial values for the mean and median of the participants’ ratings. Here, the mean and median

values for the stimuli least suggested a correlation between the system’ ranking and partici-

pants’ responses. However, for the stimuli medium and most, there was a difference between

participants’ ratings and system’s rankings. Here, the mean and median values for the stim-

uli medium were suggesting that actually this sound was ‘rougher’ than the one ranked as the

most rough sound. Following these results, the methods for estimating the attribute roughness

have been reviewed. As described in Section 4.6, the system uses the mirroughness function

from the MIRtoolbox for the calculation of this attribute. It was found that the function was

not returning the variable corresponding to the calculation of the average of the dissonance all

possible pairs of spectrum’s peaks, which was caused by specifying a wrong export parameter.

Following this adjustment in the methods for estimating the attribute roughness, a new ranking

analysis was performed on the audio stimuli, and the results of the perceptual experiment were

revised. Fig. 4.7 and Table 4.5 display the mean and median values of the participants’ ratings

with the revised system’s ranking. Here, the mean values for the stimuli least, medium, and

most correlate with the rankings suggested by the system. This correlation is supported by the

median values, where stimuli least, medium, and most obtained 2, 3, and 4 respectively. These

revised results suggest a correlation between humans’ responses and the system’s rankings for

the attribute roughness.

Finally, Fig. 4.8 and Table 4.6 display the results for the verbal attribute warmth. Here,

the file labelled as most was also rated as warm by the participants, with a mean value of 2.75,

and a median value of 2. In regards to the other two audio stimuli, their corresponding mean

values were similar (1.8 out of the five-point scale), with a median value slightly higher for the

audio stimuli medium. Here, the difference in the participants’ ratings is too small to suggest
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a significant correlation between participants’ responses and the system ranking. However, the

similar ratings could merely be due to the sonic content of the audio stimuli, which may have

had a lack of warm properties. This is supported by the low scores for the stimuli labelled most.

Nevertheless, considering the small differences, these values, especially for the audio stimuli

most, suggest a small correlation between participants’ responses and the system’s rankings for

the attribute warmth.

Overall, the results of the perceptual experiment suggest that the rankings proposed by the

system, based on estimations of timbre characteristics, correlate with the human perception.

The values of the participants’ ratings for the verbal attributes brightness and dullness suggest

a significant correlation between the participants’ responses and the system’s rankings. For the

attributes breathiness, roughness, and warmth a correlation is also present, but with a lower

significance following the different mean and median values. These results also indicate that

the implemented methods for estimating timbre characteristics perform adequately with the

participants’ responses, suggesting that such methods could be applied to audio files generated

by a computer-aided orchestration system, composed of different instruments, and notes played

simultaneously.
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4.8 Chapter Conclusions

The previous sections have presented the different steps of the implementation of a timbral

ranking system, which serves as foundations for this study. The initial motivation for devel-

oping such a system was to overcome the task of having to go through all the numerous and

diverse solutions generated by computer-aided orchestration systems, in this case with the Or-

chids program, before finding the instrument combination that corresponds to the desired type

or quality of sound. The solution to address this issue was to propose a filtering option using

perceptual qualities as parameters. Discussions in Section 2.4 have suggested that the sonic

attribute timbre conveys perceptual information. However, it has been explained that timbre

characteristics are the results of spectro-temporal properties, which are not necessarily acces-

sible to a broad audience. Thus, in order to alleviate the need of expertise in acoustics and

psychoacoustics, it was decided to use verbal descriptors of perceptual qualities, informed by

timbre properties, as filtering parameters.

This study focuses on combinations of instrument notes, which consist of several instru-

ments playing simultaneously, and due to the lack of agreed methods for calculating polyphonic

timbre, it was necessary to select a few verbal attributes and test the feasibility of this approach.

Thus, the methods of calculations have been selected from the literature on monophonic timbre,

in order to investigate if these methods could also be applied to sounds produced by combining

different instrument notes. The system integrates a few already made functions, taken from the

MIRtoolbox, for the calculation of some attributes, as described in Section 4.6. The aim of

this initial study was not to propose new methods to calculate timbre properties, but rather to

see if it is possible, and how, to apply them to audio recordings of orchestral pieces and audio

files of instrument note combinations.

The perceptual experiment, conducted with 20 participants, was designed to evaluate the

system’s rankings and the methods of timbral calculations. Its results have suggested that

there is a correlation between participants’ responses and the system’s rankings, which indi-

cates the methods implemented in the system can retrieve timbral properties from audio files

of instrument combinations. The ratings for the verbal attributes brightness and dullness have

suggested significant correlation between the participants’ responses and the system’s rank-

ings. The estimating methods of these two attributes merely rely on the calculation of the

spectral centroid, which has been suggested by many investigations as an acoustic correlate

of these two attributes (Section 2.4). The correlation for the other attributes presented slightly
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lesser significance, which may be merely due to the content of the audio stimuli. Nevertheless,

the development of the timbral ranking system has provided insights for addressing RQ1 and

RQ2 by suggesting an approach for harnessing perceptual qualities of instrument note combi-

nations using timbre and by developing methods to compare values resulting from calculations

of timbre characteristics.

One of the limitations of this timbral ranking system is the comparison of the calculated

values. Here, the system only compared the timbral values resulting from the analysis of the

audio files present in the folder. Thus, it can only return if a timbral value is lower or higher

than another value. This approach does not provide information for estimating the dominant

perceptual quality, and thus, it is not possible to classify an audio file into one category—one

of the five verbal attributes. The methods presented in this chapter can retrieve timbral values.

However, further investigations are required to completely harness the perception of timbre

emerging from instrument combinations into techniques for the analysis and control of instru-

ment timbre combinations.
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4.9 Chapter Summary

This chapter has presented the development of a timbral ranking system, designed to investi-

gate the possible extraction and manipulation of timbre properties from sounds emerging from

instrument mixtures, which serves as the basis of the research developments presented in this

thesis.

First, this chapter explained the motivations for developing such a system. The review

of previous works in computer-aided orchestration and the experimentations with the Orchids

program have shown that computer-aided orchestration systems can generate numerous so-

lutions for a single target. The broad range of note and instrument combinations could be

beneficial as a source of inspiration. However, some users may want to circumvent the tedious

and time-consuming task of having to listen to all the generated solutions before finding the

combination that may convey their initial idea. To overcome this issue, it has been suggested to

propose a filtering option using perceptual quality criteria, which can be represented by timbre

properties, as discussed in Section 2.4. In order to alleviate the need to have expertise in acous-

tics or psychoacoustics to utilise timbre properties, and have a filtering option accessible to a

broad audience, it was decided to use verbal attributes, such as brightness, to represent timbre

characteristics.

Due to the low amount of research investigating polyphonic timbre and the lack of agreed

methods, it was necessary to confirm the methods of calculation for a selection of verbal at-

tributes, before expanding the number of proposed parameters. Here, five verbal attributes have

been chosen: breathiness, brightness, dullness, roughness, and warmth, detailed in Section

4.4. Their selected methods of estimations have been described in Section 4.5 and the techni-

cal details in regards to the implementation of the timbral ranking system have been stated in

Section 4.6.

A perceptual experiment has been conducted in order to evaluate the methods of timbre

estimations, and if the rankings proposed by the system were correlated with human percep-

tion. The participants’ responses, presented in Section 4.7, suggest that the selected methods

for estimating timbre characteristics represented by verbal attributes can be applied to audio

recordings of orchestral pieces and audio files of instrument note combinations. Furthermore,

the experiment’s results also suggest that the rankings proposed by the system follow human

perception, which would validate the selected approach for filtering instrument combinations

generated by computer-aided orchestration systems.
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In summary, this chapter has described the development of a computing system designed

to overcome the tedious and time-consuming task of having to listen to the numerous solutions

generated by computer-aided orchestration systems. Here, verbal descriptors of perceptual

qualities, represented by timbre characteristics, have been selected as filtering parameters. The

results of a perceptual experiment conducted to evaluate the accuracy of the timbre estimation

methods and the timbral rankings proposed by the system, have suggested that the selected ap-

proach may be suitable to address the numerous instrument note combinations listening tasks.

Furthermore, the developments presented in this chapter have highlighted some key outcomes

that have informed the investigations presented in Chapters 5 and 6:

• Selection of five verbal attributes to represent timbre in order to manipulate perceptual

qualities.

• Methods for estimating verbal attributes, represented by timbre characteristics, from

sounds produced by combining instrument notes (polyphonic timbre and timbre blend-

ing).

• Methods to address the time-consuming listening task of large sets of audio files.
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Timbral Classification

5.1 Chapter Overview

This chapter presents an approach to automatically classify the perceptual quality of excerpts

from audio recordings of orchestral pieces and audio files of instrument note combinations,

represented by their timbre characteristics. Such investigation is built on the findings presented

in Chapter 4 and aims to offer a solution to overcome the limitations of the initial system.

The text starts with stating the limitations that have been identified from the development

of the timbral ranking system detailed in the previous chapter and defines the approach selected

for developing a timbre classification. Then, the chapter presents the methods for estimating

timbre characteristics from audio files, based on the findings suggested in Chapter 4. The

text continues with a description of the initial methods for classifying sounds produced by

combining instruments according to specific perceptual qualities, which raised some issues for

data handling and did not produce successful results.

The second part of this chapter details the developments for addressing the limitations of the

initial classification approach. Following discussions presented in Chapter 3, it has emerged

that methods taken from the field of Artificial Intelligence (AI) research could be utilised to

overcome the issues raised by the initial classification technique. Here, approaches designed to

learn classification models from data have been selected. Thus, the text describes the different

machine learning algorithms that have been implemented, along with discussions about their

results and performances for classifying specific perceptual qualities of sounds emerging from

instrument mixtures. The chapter then concludes with discussions on findings and outcomes

of the development of an automatic timbre classification system, which informed the research
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developments presented in the next chapter. The structure of this chapter is as follows:

. 5.2 - Introduction

. 5.3 - Timbre Estimations

. 5.4 - Initial Timbre Classification Approach

. 5.5 - Machine Learning Algorithms

. 5.6 - Chapter Conclusions

. 5.7 - Chapter Summary
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5.2 Introduction

The developments presented in the previous chapter have provided methods for calculating

acoustic features from audio files of instrument note combinations. The use of verbal descrip-

tors of perceptual qualities, instead of only their acoustic features, has offered a solution to

alleviate the need for acoustics and psychoacoustics expertise. Furthermore, the development

of the timbral ranking system has demonstrated that the data resulting from the acoustic fea-

ture calculation could be manipulated and compared, which produced methods for establishing

a ranking of numerous audio files according to their timbre content.

The initial development has provided useful insights for estimating timbre properties from

audio files that consist of combination of instruments. However, it has also raised some issues

that needed to be addressed. Here, the ranking was performed by comparing the timbral values

from a set of audio files. While this process performed relatively well, as suggested by the

results of the perceptual experiment, some limitations were evident. Due to the comparison

being performed between the audio files present in a folder, if none of the files contains char-

acteristics of a perceptual quality, the system would still output a ‘top’ result. For example,

the system would suggest that one audio file is the brightest out of all the analysed audio files

despite that the audio file may not be a bright sound. From this observation, it was essential

to develop a method for identifying the dominant perceptual quality of a sound created by

combining instruments, and thus be able to classify the sound into a category, according to its

timbre characteristics.

The next sections present an investigation into establishing a timbre classification method

for sounds emerging from instrument mixtures. The text starts with a description of the meth-

ods for estimating timbre characteristics, which were built on the outcomes of the research

developments presented in Chapter 4, before continuing with details and discussions about the

different timbre classification approaches that have been explored.
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5.3 Timbre Estimations

This section describes the different processes designed for estimating timbre characteristics

from audio files. The timbre estimations procedure is built upon the outcomes of the research

developments presented in Chapter 4, and its methods are adapted from the implementation of

the timbral ranking system. The text starts with details about the selected verbal attributes and

their acoustic features, which have been taken from the initial research development. Then,

this section provides technical details about the methods for estimating specific timbre charac-

teristics, and thus, obtaining the timbral values.

5.3.1 Verbal Attributes

In the investigations for defining an approach to classify the perceptual quality of combined

instruments sounds automatically, it has been decided to use the same verbal descriptors as

those selected for the development of the timbral ranking system, detailed in Chapter 4. The

rationale for this selection is that methods presented in the previous chapter have been proven

to perform successfully. Furthermore, it was necessary to test the feasibility of this approach

before expanding the developments by adding further attributes. Thus, the five verbal attributes

that have been selected are breathiness, brightness, dullness, roughness, and warmth. The

next section details the methods for the acoustic feature calculations of each verbal attribute.

5.3.2 Acoustic Features

As mentioned in the previous section, there are five timbral attributes that have been selected

for this investigation: breathiness, brightness, dullness, roughness, and warmth. The corre-

sponding acoustic features and methods of calculation for each attribute are based on those

described in Section 4.5. A brief recap is detailed below:

Breathiness: The spectral shape of the sound and the combination of harmonics-to-noise ratio

(HNR) and signal-to-noise ratio (SNR) provide information on the perception of the attribute

breathiness [243]. Here, a high amount of noise in the high frequencies and a high amplitude

between the first and second harmonic (H1 - H2) indicate a breathy sound.

Brightness: The spectral centroid, which calculates the amount of high frequencies present

in the sound, provides information about brightness [100, 108]. Here, a high amount of high
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frequencies indicates a bright sound.

Dullness: Similar to brightness, the calculation of the spectral centroid of a signal provides

information on estimating the attribute dullness. However, here, a low spectral centroid value

will suggest that a sound is dull [244].

Roughness: The distance between adjacent partials in critical bandwidths, which also refer to

fluctuations in the signal, and sensory dissonance correspond to the perception of roughness

[9, 105, 246]. Here, short distances indicate the presence of a rough sound.

Warmth: The calculation of the spectral centroid and the energy in the first three harmonics

provide data for the perception of the attribute warmth [60, 247]. Here, a low spectral centroid

value, which signifies few high frequencies, and high energy in the first three harmonics indi-

cates that a sound presents characteristics of the attribute warmth.

Following the outcomes of the developments presented in the previous chapter, the calcula-

tions of the different acoustic features are also performed on the global sounds, thus, estimating

the timbre properties without performing source separation.

5.3.3 Algorithm

This section proposes a technical overview of the different aspects of the timbre estimation

processes. First, the text details the programming environment. Then, the different steps de-

signed for estimating timbre characteristics from instrument note combinations, performed to

calculate the values corresponding to the five verbal attributes, are explained. Fig. 5.1 shows a

diagram representing the flow of information of the algorithm designed to calculate the timbral

values from audio files of instrument combinations.

5.3.3.1 Programming Environment

The timbre estimations are implemented within two programming environments, developed

on a Macintosh operating system (Mac OS). The functions to calculate the acoustic features

of each of the five verbal attributes are coded in the Matlab1 environment, using functions

1http://www.mathworks.com/products/matlab/
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Figure 5.1: Flowchart representing the different steps to calculate timbral values from audio files.

taken from the MIRtoolbox 1.6.11, following the methods used in the timbral ranking sys-

tem presented in Chapter 4. The rest of the timbre estimations functions and the whole timbral

classification system are developed within the Python 3.5 programming language. Further-

more, the Matlab script for the acoustic calculations is directly, and automatically, executed

within the Python environment.

5.3.3.2 Timbral Values Estimations

This section describes the different steps of the algorithm that has been designed to estimate the

timbre values, corresponding to the five verbal attributes, from sounds created by combining

instrument notes. Similarly to the system presented in the previous chapter, it was decided to

work with audio files that contain instrument combination sounds, whether audio recordings of

orchestral pieces or files generated by computing systems. The system accepts only audio files

encoded as an uncompressed WAVE audio file.

The initial step is to select the files to analyse . This step can be achieved via a pop-window,

which allows the user to navigate through their files in order to select a folder containing audio

files or specific audio files directly. Corresponding paths of each audio file are then stored,

which are then utilised by the Matlab script for the acoustic feature calculations. Here, the

Matlab processes are similar to those implemented for the timbral ranking system. The details

of the specific Matlab process for each timbral attribute can be found in Section 4.6.2. Once the

acoustic feature calculations have been performed, the Matlab script creates a file containing

each audio file’s name and the calculated timbral values for each of the five attributes. This file

1MIRtoolbox is available at https://goo.gl/d61EO0
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can then be further processed by functions implemented in Python 3.5 for automatic timbre

classification purposes.
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5.4 Initial Timbre Classification Approach

This section presents the initial approach for automatically classifying audio files according to

specific perceptual qualities that are informed by timbre characteristics. Here, the classifica-

tion utilises the timbral values, calculated as described in the previous section, as input data.

The following sections detail the rationale for developing such an approach, along with the

description of the different methods and their results.

5.4.1 Motivations

The development of the timbral ranking system (Chapter 4) has provided methods of estimating

specific timbre characteristics from audio files. It has also proposed a method for the compar-

ison of the timbral values, which has performed successfully as suggested by the results of a

perceptual experiment. However, if the audio files do not contain many characteristics of a

specific perceptual quality, the system was still outputting a ‘best’ result. Therefore, a method

for automatically classifying sounds emerging from instrument mixtures according to their per-

ceptual qualities could be a solution to overcome this limitation.

Discussions in Chapter 2 have suggested that some acoustic features correlate with specific

perceptual quality, which was confirmed by the research developments presented in the pre-

vious chapter. Thus, the timbral values obtained with the methods described in Section 5.3.2

could be used as input data for a classification method. However, with a lack of agreed metrics,

which adds to the mixed conclusions about methods for estimating timbre properties as men-

tioned earlier, there is no known threshold to define in which category a sound could fit, based

only on its calculated timbral value. Therefore, it is essential to design a method to identify the

most prominent perceptual quality by analysing the timbral values of the five verbal attributes.

The following sections present the type of data that needs to be processed and the subse-

quent challenges. The text continues with describing the selected approach, with a review and

discussions of its results.

5.4.2 Dataset

Section 5.3.2 has described the different acoustic features that correlate with the five verbal

attribute selected for this investigation. These methods process and retrieve different type of

information, which result in various types of data. For example, Table 5.1 presents calculated

timbral values for 5 randomly selected audio files. Here, the timbral values for each verbal
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Timbral Values
Audio File Breathiness Brightness Dullness Roughness Warmth
AudioFile 1 0.101731 0.501593 0.501593 163.126015 0.009575

AudioFile 2 0.057935 0.372489 0.372489 676.719612 0.088799

AudioFile 3 0.50713 0.457623 0.457623 2641.558271 0.089005

AudioFile 4 0.086946 0.371547 0.371547 610.97954 0.123053

AudioFile 5 0.171251 0.995854 0.995854 0.002275 0.000152

Table 5.1: Examples of calculated timbral values. Note the diverse scales and figures.

attribute have diverse scales and figures, which illustrate the difficulty of establishing a classi-

fication method using only calculated timbral values.

An initial step towards establishing a scale is to identify the minimum and maximum values

for each verbal attribute. Again, due to the lack of agreed metrics, these values are not defined.

Therefore, it has been decided to perform an analysis of different audio files in order to gather

some data and retrieve the minimum and maximum values from that dataset. Furthermore, a

function has been designed to update these values each time a new audio file is analysed. This

function also ensures that these metrics are more accurate with increasing data input.

Once the minimum and maximum values for each verbal attribute are defined, it is possible

to rescale all the values in the range 0.0–1.0 to have similar data for each attribute. This is

processed as follows:
x−min

max−min
(5.1)

where x is the calculated timbral value, min the known minimum value for the verbal attribute,

and max the known maximum value for the verbal attribute. This rescaling process provides

a method to manage the varied types of data, and thus, could be used to develop a method

to classify the audio file. The next section describes the initial classification approach where

distance calculations have been used to identify the dominant perceptual quality.

5.4.3 Distance Calculations

One method to identify the dominant perceptual quality is to measure each attribute’s distance

from the calculated timbral value with the known maximum value of the attribute, which would

determine how close the timbral value is with the highest known value. Thus, the attribute

with the shortest distance would be classified as the dominant quality as it is the closest to
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the ‘ideal value’. The following sections detail the different distance functions that have been

implemented. The results of their testing are also presented.

5.4.3.1 Euclidean Distance

The first distance function that has been implemented is the Euclidean distance, which returns

the straight-line distance between two points in a plane space. Here, the distance between the

timbral value and the known maximum value is calculated as follows:

d =
√

∑(xi− yi)2 (5.2)

where xi is the known maximum value for the verbal attribute and yi is the calculated timbral

value. The distance function is applied to each timbral value of each verbal attribute. Then,

the function returns the verbal attribute that has the shortest distance to their known maximum

timbral value, and thus, classify the audio files according to their dominant perceptual quality.

In order to test the distance calculations as a method of classification, 50 audio recordings

of diverse orchestral pieces have been selected in order to represent instrument timbre and

timbral combinations. Here, the audio recordings have been split into 1, 2, 3, 4, and 5 second

audio files, adding a 50 ms fade in and fade out for each file. The rationale for splitting the

recordings is due to the acoustic features properties. The analysis of long audio sources would

not provide accurate values as some acoustic features are time-related. Therefore, it is essential

to split them into shorter audio samples. Furthermore, the different lengths have been chosen

to match the duration of outputs generated by computer-aided orchestration systems, but also

to determine if the difference in time duration would have an impact on the results. These

audio splitting can also be used to examine the variations of perceptual qualities throughout the

compositions.

Table 5.2 lists the results of the classification process performed on 4-second split audio

files. Here, using the method described in Section 5.4.2, the distance calculations have been

applied on rescaled timbral values. For each orchestral piece, the table shows the number of

audio files that have been classified in each verbal attribute category. The highest number (in

red) corresponds to the most dominant perceptual quality throughout the piece.

Similar testing of distance calculations, using the same set of audio files, have been applied

on unscaled data in order to determine if the rescaling process was altering the data. Table

5.3 lists the results of the classification process performed on 4-second split audio files, using
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Composition Breathiness Brightness Dullness Roughness Warmth

Orff: Carmina Burana - O Fortruna 0 5 36 0 0
Debussy: Suite Bergamasque - Clair De Lune 0 1 78 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 0 1 74 0 0
Holst: The Planets - Jupiter 0 11 106 0 0
Dvorak: Symphony #9, “From The New World” - 2. Largo 1 4 188 0 0
Bach: Orchestral Suite #3 - Air 0 1 63 0 0
Grieg: Peer Gynt - Morning Mood 0 1 55 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 1 111 0 0
Chopin: Nocturne #2 0 3 71 0 0
Pachelbel: Canon 0 3 50 0 0
Barber: Adagio For Strings 1 24 101 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, “The Four Sea-
sons (Spring)” - 1. Allegro

1 12 35 0 0

Wagner: Ride Of The Valkyries 0 26 52 0 0
Bach: Brandenburg Concerto #3 - Allegro 0 0 86 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 45 0 0
Satie: Gymnopedie #1 0 0 55 0 0
Beethoven: Symphony #9 In D, “Choral” - Finale: Ode To Joy 0 13 25 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 109 0 0
Brahms: Hungarian Dance #5 0 2 38 0 0
Massenet: Thais - Meditation 2 13 61 0 0
Elgar: Pomp & Circumstance March #1 0 31 56 0 0
Mozart: Requiem Mass - Lacrimosa 0 1 42 0 0
Strauss Jr. (J): The Beautiful Blue Danube 0 9 79 0 0
Beethoven: Fur Elise 0 1 48 0 0
Bizet: Carmen Suite - Habanera 0 6 27 0 0
Rossini: The Barber of Seville: Overture 1 15 89 0 0
Myers: Cavantina 0 0 60 0 0
Dvorak: Slavoni Dance No. 2 0 0 84 0 0
Verdi: Medda de Requiem 0 3 53 3 0
Mahler: Symphony No. 5 0 11 152 0 0
Gounod: Ave Maria 0 0 39 0 0
Grieg: In the Hall of the Mountain King 3 7 31 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 0 0 84 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 0 4 84 0 0
Giazotto: Adagio in G Minor, 2 8 118 0 0
Sibelius: Finlandia 0 11 110 0 0
Boccherini: String Quartet: Minuet 0 1 56 0 0
Mozart: Symphony No. 40 0 1 105 0 0
Smetana: Ma Vlast - Vltava 0 13 159 0 0
Rachmaninov: Vocalise 0 8 80 0 0
Beethoven: Egmont Overture 0 4 116 0 0
Handel: Messiah - Hallelujah Chorus 0 1 52 0 0
Faure: Pavane 0 1 76 0 0
Bach: Concerto For 2 Violins - Vivace 0 2 53 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 0 3 51 0 0
Mozart: The Magic Flute - Overture 0 1 95 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 1 51 0 0
Bizet: L’Arlesienne Suite#1 - Prelude 1 2 101 0 0
Corelli: Christmas Concerto - Allegro 0 6 31 0 0
Strauss Sr. (J): Radetzky March 0 23 24 0 0

Table 5.2: The results of the Euclidean distance-based classification process performed on 4-
second split audio files. It displays the numbers of audio samples classified in each attribute. The
most dominant attribute for each piece is highlighted in red.
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unscaled timbral values. Results are presented in a similar layout as the results for the rescaled

timbral values shown in Table 5.2.

From the results displayed in Table 5.2 and 5.3, it is apparent that such distance calculations

did not perform successfully as all the orchestral pieces were dominantly dull. Therefore, a

different distance function needed to be implemented in order to determine if the euclidean

method is not adapted to the type of data represented by the timbral values.

5.4.3.2 Sum of Squared Difference (SSD)

The previous method of classification has utilised Euclidean distance calculations, which did

not perform successfully. To determine if the issue is the Euclidean method, which in this

case considers timbral values as points in plane space, a different measure derived from the

Euclidean distance method has been implemented: Sum of Squared Difference (SSD). Here,

squaring the values emphasises larger differences, which is not accomplished by the Euclidean

distance. The SSD is calculated as follows:

d = ∑(xi− yi)
2 (5.3)

where xi is the known maximum value for the verbal attribute and yi is the calculated timbral

value. The measure is performed on each timbral value of the five verbal attributes, and the

function returns the verbal attribute with the lowest SSD value, which represents the dominant

perceptual quality.

Similarly to the euclidean distance, testing of the SSD measure was carried out using an

identical method with the same 50 audio recordings and splitting options. Table 5.4 displays the

results of the classification process performed on 4 second split audio files for rescaled timbral

values, and Table 5.5 shows the results for unscaled timbral values. Similar to the Euclidean

distance method, the testing results suggest that SDD is not a valid approach for classification

based on timbral values, and measures based on euclidean distance are not adapted for timbral

values data.

5.4.3.3 Sum of Absolute Difference (SAD)

Following the results of the previous classification methods using the Euclidean distance cal-

culation and the SSD method, a different distance function has been implemented: Sum of

Absolute Difference (SAD). This measure is usually utilised in digital image processing in
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Composition Breathiness Brightness Dullness Roughness Warmth

Orff: Carmina Burana - O Fortruna 0 5 36 0 0
Debussy: Suite Bergamasque - Clair De Lune 0 1 78 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 0 1 74 0 0
Holst: The Planets - Jupiter 0 14 103 0 0
Dvorak: Symphony #9, ”From The New World” - 2. Largo 1 5 187 0 0
Bach: Orchestral Suite #3 - Air 0 2 62 0 0
Grieg: Peer Gynt - Morning Mood 0 1 55 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 1 111 0 0
Chopin: Nocturne #2 0 3 71 0 0
Pachelbel: Canon 0 3 50 0 0
Barber: Adagio For Strings 1 25 100 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, ”The Four Sea-
sons (Spring)” - 1. Allegro

1 14 33 0 0

Wagner: Ride Of The Valkyries 0 29 49 0 0
Bach: Brandenburg Concerto #3 - Allegro 0 0 86 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 45 0 0
Satie: Gymnopedie #1 0 0 55 0 0
Beethoven: Symphony #9 In D, ”Choral” - Finale: Ode To Joy 0 16 22 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 109 0 0
Brahms: Hungarian Dance #5 0 2 38 0 0
Massenet: Thais - Meditation 2 13 61 0 0
Elgar: Pomp & Circumstance March #1 0 35 52 0 0
Mozart: Requiem Mass - Lacrimosa 0 1 42 0 0
Strauss Jr. (J): The Beautiful Blue Danube 0 9 79 0 0
Beethoven: Fur Elise 0 1 48 0 0
Bizet: Carmen Suite - Habanera 0 6 27 0 0
Rossini: The Barber of Seville: Overture 1 16 88 0 0
Myers: Cavantina 0 0 60 0 0
Dvorak: Slavoni Dance No. 2 0 0 84 0 0
Verdi: Medda de Requiem 0 3 52 4 0
Mahler: Symphony No. 5 0 14 149 0 0
Gounod: Ave Maria 0 0 39 0 0
Grieg: In the Hall of the Mountain King 3 9 29 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 0 0 84 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 0 6 82 0 0
Giazotto: Adagio in G Minor, 2 12 114 0 0
Sibelius: Finlandia 0 12 109 0 0
Boccherini: String Quartet: Minuet 0 1 56 0 0
Mozart: Symphony No. 40 0 1 105 0 0
Smetana: Ma Vlast - Vltava 0 14 158 0 0
Rachmaninov: Vocalise 0 8 80 0 0
Beethoven: Egmont Overture 0 6 114 0 0
Handel: Messiah - Hallelujah Chorus 0 1 52 0 0
Faure: Pavane 0 2 75 0 0
Bach: Concerto For 2 Violins - Vivace 0 3 52 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 0 3 51 0 0
Mozart: The Magic Flute - Overture 0 1 95 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 1 51 0 0
Bizet: L’Arlesienne Suite#1 - Prelude 1 3 100 0 0
Corelli: Christmas Concerto - Allegro 0 8 29 0 0
Strauss Sr. (J): Radetzky March 0 23 24 0 0

Table 5.3: The results of the Euclidean distance-based classification process performed on 4-
second split audio files, using unscaled data. It displays the numbers of audio samples classified in
each attribute. The most dominant attribute for each piece is highlighted in red.

115



5. TIMBRAL CLASSIFICATION

Composition Breathiness Brightness Dullness Roughness Warmth

Bach: Brandenburg Concerto #3 - Allegro 1 0 85 0 0
Orff: Carmina Burana - O Fortruna 0 4 34 3 0
Rossini: The Barber of Seville: Overture 1 15 89 0 0
Smetana: Má Vlast - Vltava 0 13 159 0 0
Bach: Orchestral Suite #3 - Air 0 1 63 0 0
Fauré: Pavane 1 1 75 0 0
Gounod: Ave Maria 1 0 38 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 109 0 0
Bach: Concerto For 2 Violins - Vivace 0 2 53 0 0
Brahms: Hungarian Dance #5 0 2 38 0 0
Grieg: In the Hall of the Mountain King 3 7 31 0 0
Grieg: Peer Gynt - Morning Mood 1 0 55 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 3 0 81 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 1 111 0 0
Massenet: Thais - Meditation 3 14 59 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 0 3 51 0 0
Chopin: Nocturne #2 1 3 70 0 0
Elgar: Pomp & Circumstance March #1 1 31 55 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 0 4 84 0 0
Mozart: The Magic Flute - Overture 0 1 95 0 0
Giazotto: Adagio in G Minor 8 8 112 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 1 51 0 0
Mozart: Requiem Mass - Lacrimosa 0 1 42 0 0
Pachelbel: Canon 1 3 49 0 0
Barber: Adagio For Strings 4 24 98 0 0
Bizet: L’Arlésienne Suite #1 - Prelude 1 2 101 0 0
Sibelius: Finlandia 0 11 110 0 0
Strauss Jr. (J): The Beautiful Blue Danube 0 9 79 0 0
Beethoven: Fur Elise 0 1 48 0 0
Boccherini: String Quartet: Minuet 0 1 56 0 0
Corelli: Christmas Concerto - Allegro 0 6 31 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, ”The Four Sea-
sons (Spring)” - 1. Allegro

1 12 35 0 0

Bizet: Carmen Suite - Habanera 0 6 27 0 0
Mozart: Symphony No. 40 0 1 105 0 0
Strauss Sr. (J): Radetzky March 0 23 24 0 0
Wagner: Ride Of The Valkyries 0 26 52 0 0
Debussy: Suite Bergamasque - Clair De Lune 1 1 77 0 0
Myers: Cavantina 0 0 60 0 0
Rachmaninov: Vocalise 1 8 79 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 45 0 0
Beethoven: Egmont Overture 3 4 113 0 0
Dvořák: Slavoni Dance No. 2 0 0 84 0 0
Satie: Gymnopedie #1 0 0 55 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 0 1 74 0 0
Beethoven: Symphony #9 In D, ”Choral” - Finale: Ode To Joy 0 13 25 0 0
Handel: Messiah - Hallelujah Chorus 0 1 52 0 0
Holst: The Planets - Jupiter 0 11 106 0 0
Verdi: Medda de Requiem 0 3 42 14 0
Dvořák: Symphony #9, ”From The New World” - 2. Largo 8 4 180 1 0
Mahler: Symphony No. 5 8 11 144 0 0

Table 5.4: The results of the Sum of Squared Difference distance-based classification process
performed on 4-second split audio files, using scaled data.
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Composition Breathiness Brightness Dullness Roughness Warmth

Bach: Brandenburg Concerto #3 - Allegro 1 0 85 0 0
Orff: Carmina Burana - O Fortruna 0 4 34 3 0
Rossini: The Barber of Seville: Overture 1 15 89 0 0
Smetana: Má Vlast - Vltava 0 13 159 0 0
Bach: Orchestral Suite #3 - Air 0 1 63 0 0
Fauré: Pavane 1 1 75 0 0
Gounod: Ave Maria 1 0 38 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 109 0 0
Bach: Concerto For 2 Violins - Vivace 0 2 53 0 0
Brahms: Hungarian Dance #5 0 2 38 0 0
Grieg: In the Hall of the Mountain King 3 7 31 0 0
Grieg: Peer Gynt - Morning Mood 1 0 55 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 3 0 81 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 1 111 0 0
Massenet: Thais - Meditation 3 14 59 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 0 3 51 0 0
Chopin: Nocturne #2 1 3 70 0 0
Elgar: Pomp & Circumstance March #1 1 31 55 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 0 4 84 0 0
Mozart: The Magic Flute - Overture 0 1 95 0 0
Giazotto: Adagio in G Minor 8 8 112 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 1 51 0 0
Mozart: Requiem Mass - Lacrimosa 0 1 42 0 0
Pachelbel: Canon 1 3 49 0 0
Barber: Adagio For Strings 4 24 98 0 0
Bizet: L’Arlésienne Suite #1 - Prelude 1 2 101 0 0
Sibelius: Finlandia 0 11 110 0 0
Strauss Jr. (J): The Beautiful Blue Danube 0 9 79 0 0
Beethoven: Fur Elise 0 1 48 0 0
Boccherini: String Quartet: Minuet 0 1 56 0 0
Corelli: Christmas Concerto - Allegro 0 6 31 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, ”The Four Sea-
sons (Spring)” - 1. Allegro

1 12 35 0 0

Bizet: Carmen Suite - Habanera 0 6 27 0 0
Mozart: Symphony No. 40 0 1 105 0 0
Strauss Sr. (J): Radetzky March 0 23 24 0 0
Wagner: Ride Of The Valkyries 0 26 52 0 0
Debussy: Suite Bergamasque - Clair De Lune 1 1 77 0 0
Myers: Cavantina 0 0 60 0 0
Rachmaninov: Vocalise 1 8 79 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 45 0 0
Beethoven: Egmont Overture 3 4 113 0 0
Dvořák: Slavoni Dance No. 2 0 0 84 0 0
Satie: Gymnopedie #1 0 0 55 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 0 1 74 0 0
Beethoven: Symphony #9 In D, ”Choral” - Finale: Ode To Joy 0 13 25 0 0
Handel: Messiah - Hallelujah Chorus 0 1 52 0 0
Holst: The Planets - Jupiter 0 11 106 0 0
Verdi: Medda de Requiem 0 3 42 14 0
Dvořák: Symphony #9, ”From The New World” - 2. Largo 8 4 180 1 0
Mahler: Symphony No. 5 8 11 144 0 0

Table 5.5: The results of the Sum of Squared Difference distance-based based classification pro-
cess performed on 4-second split audio files, using unscaled data.
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order to identify the similarity between blocks. For example, this measure is used for object

recognition. Thus, timbral values would be considered as a block of data, not points in a plane

space. The SAD is calculated as follows:

d = ∑ |xi− yi| (5.4)

where xi is the known maximum value for the verbal attribute and yi is the calculated timbral

value. The measure function is applied to each timbral value of each verbal attribute. Then, the

function returns the attribute with the lowest SAD value as the dominant perceptual quality.

Similarly to the previous two methods, some testing has been performed for the SAD mea-

sure using the same 50 audio recordings and splitting options. Table 5.6 displays the results

of the classification process performed on the 4 second split audio files for rescaled timbral

values, and Table 5.7 shows the results for unscaled timbral values. Similar to the Euclidean

distance and SSD, the testing results presented in Tables 5.6 and 5.7 suggest that the dominant

perceptual quality throughout all the orchestral pieces is dullness, which indicates that SAD is

not a valid approach for classification based on timbral values.

5.4.4 Discussions

The initial timbre classification approach utilised distance metrics as a function to identify the

dominant perceptual quality from sounds emerging from instrument combinations. With the

known maximum value for each of the five verbal attributes and a method to rescale all the

calculated values, it is possible to measure the distance that separate the calculated timbral

value with its known maximum value. These distance metrics would indicate how close the

audio file is to the ‘best result’ represented by the known maximum timbral value. Therefore,

by comparing the distance metrics, the attribute with the shortest distance would be classified

as the dominant perceptual quality.

The first distance calculation that has been implemented was the Euclidean distance. The

results of its testing, performed on a set of 50 audio recordings of diverse orchestral pieces

using different durations for the splitting option, have suggested that the dominant perceptual

quality throughout all the musical pieces was dullness. From this observation, it is evident

that Euclidean distance is not adapted for classification using rescaled timbral values. In order

to determine if the rescaling method was altering the data, similar testing has been performed

using unscaled timbral values. Again, the suggested dominant perceptual quality of all the

musical pieces was dullness. Following these results, two other distance functions have been
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Composition Breathiness Brightness Dullness Roughness Warmth

Bach: Brandenburg Concerto #3 - Allegro 1 0 85 0 0
Orff: Carmina Burana - O Fortruna 0 4 34 3 0
Rossini: The Barber of Seville: Overture 1 15 89 0 0
Smetana: Má Vlast - Vltava 0 13 159 0 0
Bach: Orchestral Suite #3 - Air 0 1 63 0 0
Fauré: Pavane 1 1 75 0 0
Gounod: Ave Maria 1 0 38 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 109 0 0
Bach: Concerto For 2 Violins - Vivace 0 2 53 0 0
Brahms: Hungarian Dance #5 0 2 38 0 0
Grieg: In the Hall of the Mountain King 3 7 31 0 0
Grieg: Peer Gynt - Morning Mood 1 0 55 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 3 0 81 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 1 111 0 0
Massenet: Thais - Meditation 3 14 59 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 1 3 50 0 0
Chopin: Nocturne #2 1 3 70 0 0
Elgar: Pomp & Circumstance March #1 1 31 55 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 0 4 84 0 0
Mozart: The Magic Flute - Overture 0 1 95 0 0
Giazotto: Adagio in G Minor 8 8 112 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 1 51 0 0
Mozart: Requiem Mass - Lacrimosa 0 1 42 0 0
Pachelbel: Canon 1 3 49 0 0
Barber: Adagio For Strings 4 24 98 0 0
Bizet: L’Arlésienne Suite #1 - Prelude 1 2 101 0 0
Sibelius: Finlandia 0 11 110 0 0
Strauss Jr. (J): The Beautiful Blue Danube 0 9 79 0 0
Beethoven: Fur Elise 0 1 48 0 0
Boccherini: String Quartet: Minuet 0 1 56 0 0
Corelli: Christmas Concerto - Allegro 0 6 31 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, ”The Four Sea-
sons (Spring)” - 1. Allegro

1 12 35 0 0

Bizet: Carmen Suite - Habanera 0 6 27 0 0
Mozart: Symphony No. 40 0 1 105 0 0
Strauss Sr. (J): Radetzky March 0 23 24 0 0
Wagner: Ride Of The Valkyries 0 26 52 0 0
Debussy: Suite Bergamasque - Clair De Lune 1 1 77 0 0
Myers: Cavantina 0 0 60 0 0
Rachmaninov: Vocalise 1 8 79 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 45 0 0
Beethoven: Egmont Overture 3 4 113 0 0
Dvořák: Slavoni Dance No. 2 0 0 84 0 0
Satie: Gymnopedie #1 0 0 55 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 0 1 74 0 0
Beethoven: Symphony #9 In D, ”Choral” - Finale: Ode To Joy 0 13 25 0 0
Handel: Messiah - Hallelujah Chorus 0 1 52 0 0
Holst: The Planets - Jupiter 0 11 106 0 0
Verdi: Medda de Requiem 0 3 42 14 0
Dvořák: Symphony #9, ”From The New World” - 2. Largo 9 4 179 1 0
Mahler: Symphony No. 5 8 11 144 0 0

Table 5.6: The results of the Sum of Absolute Difference distance-based classification process
performed on 4-second split audio files, using rescaled data.
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Composition Breathiness Brightness Dullness Roughness Warmth

Bach: Brandenburg Concerto #3 - Allegro 1 1 67 0 0
Orff: Carmina Burana - O Fortruna 0 1 29 3 0
Rossini: The Barber of Seville: Overture 1 12 71 0 0
Smetana: Má Vlast - Vltava 2 10 126 0 0
Bach: Orchestral Suite #3 - Air 0 0 51 0 0
Fauré: Pavane 1 1 60 0 0
Gounod: Ave Maria 0 0 31 0 0
Mozart: Piano Concerto #21 - 2. Andante 0 1 87 0 0
Bach: Concerto For 2 Violins - Vivace 0 1 43 0 0
Brahms: Hungarian Dance #5 0 1 31 0 0
Grieg: In the Hall of the Mountain King 2 5 26 0 0
Grieg: Peer Gynt - Morning Mood 1 0 44 0 0
Beethoven: Moonlight Sonata: Adagio Sostenuto 6 1 61 0 0
Beethoven: Symphony #5 - Allegro Con Brio 0 0 90 0 0
Massenet: Thais - Meditation 0 9 52 0 0
Offenbach: The Tales Of Hoffman - Barcarolle 2 2 39 0 0
Chopin: Nocturne #2 0 3 56 0 0
Elgar: Pomp & Circumstance March #1 0 30 39 0 0
Mozart: Eine Kleine Nachtmusik: Allegro 1 1 69 0 0
Mozart: The Magic Flute - Overture 0 1 76 0 0
Giazotto: Adagio in G Minor 10 3 90 0 0
Mozart: Piano Sonata #11 - 3. Rondo Alla Turca 0 0 41 0 0
Mozart: Requiem Mass - Lacrimosa 1 0 33 0 0
Pachelbel: Canon 0 0 42 0 0
Barber: Adagio For Strings 4 19 78 0 0
Bizet: L’Arlésienne Suite #1 - Prelude 1 2 80 0 0
Sibelius: Finlandia 0 7 90 0 0
Strauss Jr. (J): The Beautiful Blue Danube 1 10 60 0 0
Beethoven: Fur Elise 2 1 37 0 0
Boccherini: String Quartet: Minuet 0 1 45 0 0
Corelli: Christmas Concerto - Allegro 0 3 27 0 0
Vivaldi: Violin Concerto In E, Op. 8:1, RV 269, ”The Four Sea-
sons (Spring)” - 1. Allegro

1 9 29 0 0

Bizet: Carmen Suite - Habanera 0 6 21 0 0
Mozart: Symphony No. 40 0 1 84 0 0
Strauss Sr. (J): Radetzky March 0 17 20 0 0
Wagner: Ride Of The Valkyries 0 21 42 0 0
Debussy: Suite Bergamasque - Clair De Lune 1 1 61 0 0
Myers: Cavantina 3 0 45 0 0
Rachmaninov: Vocalise 0 5 65 0 0
Tchaikovsky: Swan Lake Suite - Scene 0 1 36 0 0
Beethoven: Egmont Overture 1 3 92 0 0
Dvořák: Slavoni Dance No. 2 0 0 67 0 0
Satie: Gymnopedie #1 3 0 41 0 0
Verdi: Nabucco - Chorus Of The Hebrew Slaves 1 1 58 0 0
Beethoven: Symphony #9 In D, ”Choral” - Finale: Ode To Joy 0 12 19 0 0
Handel: Messiah - Hallelujah Chorus 0 0 43 0 0
Holst: The Planets - Jupiter 0 7 86 0 0
Verdi: Medda de Requiem 0 3 33 11 0
Dvořák: Symphony #9, ”From The New World” - 2. Largo 7 2 145 0 0
Mahler: Symphony No. 5 9 9 112 0 0

Table 5.7: The results of the Sum of Absolute Difference distance-based classification process
performed on 4-second split audio files, using unscaled data.
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implemented: SSD and SAD. Results of their testing, using similar methods as for the Eu-

clidean distance have suggested similar conclusions to those of the Euclidean distance method.

From these observations, it is evident that distance metrics may not be adapted to timbral values

data, and therefore could not be used as a classification method.

Chapter 3 has introduced the field of AI research, which aims to achieve several goals im-

itating some human intelligence processes. In Section 3.3.2.2, different methods put forward

by AI research have been discussed. One of these methods, named machine learning, is ded-

icated to solving classification issues by learning and creating classification models directly

from data. Therefore, due to the different types of data retrieved from timbre characteristics,

machine learning algorithms could be a solution to overcome this issue, which has been em-

phasised by the distance metrics results. The next section details the different machine learning

approaches that have been applied to timbral values data estimated from audio files, in order to

determine a timbre classification method.
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5.5 Machine Learning Algorithms

This section presents the implementation of different machine learning algorithms developed

to create classification models to automatically assign audio files into one of the five verbal

attributes categories, based on calculated timbral values. Here, methods from the three main

types of machine learning approach (i.e., unsupervised, supervised, and reinforcement learn-

ing) have been investigated in order to determine the best technique to handle timbral values

data. The text starts with discussing the rationale for choosing machine learning algorithms for

timbre classification. The development of each method is then detailed, along with reviews of

their testing and performances, which served to determine the best approach for addressing the

timbre classification challenge.

5.5.1 Motivations

Section 5.4 has presented the initial method for automatically classifying audio files of instru-

ment combinations into one of the selected five verbal attributes, using estimations of specific

timbre characteristics. Here, distance metrics have been utilised to determine the dominant per-

ceptual quality by measuring the closeness of each calculated timbral value of an audio file with

the corresponding known maximum timbral value. By comparing these values, the objective

was to return the shortest distance as the dominant perceptual quality, due to it being the closest

to an ideal value represented by the maximum value identified. However, from the observations

of the results of different methods that have been implemented and presented in Section 5.4.3,

it is evident that distance metrics do not harness the characteristics of timbral values data and

thus, this method would not be appropriate for this specific classification purpose. Therefore,

it was necessary to adopt a different classification approach.

Chapter 3 has introduced the field of AI research, presenting some of its objectives and

approaches for addressing various challenges by harnessing human cognitive functions coupled

to computers’ processing abilities. In the discussions about the methods put forward by AI

research (Section 3.3.2.2) it was suggested that machine learning algorithms were methods that

can learn specific characteristics from data. Such methods are also often used for classification

purposes, where classifier models are created from sets of training data. One of the benefits of

using machine learning is that classification specifics do not need to be explicitly programmed,

and therefore, it can be applied to complex types of data, which is the issue encountered with

handling the data from timbre characteristics. Machine learning methods have been employed
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in a broad range of applications and have proven to be effective techniques for classifying

diverse types of data, as it has been discussed in Chapter 3.

The review of the use of AI methods in the musical domain, presented in Section 3.4,

has highlighted that machine learning has also been applied in some musical applications for

achieving various tasks and using different musical information. Furthermore, machine learn-

ing has also been used in research aiming to address some of the challenges faced in computer-

aided orchestration, as mentioned in Section 2.5. For example, the Live Orchestral Piano

system [172] utilised a machine learning approach for projective orchestration. Here, their ma-

chine learning algorithm has been trained to learn the properties of the probability distribution

from a repertoire of different already made projective orchestrations, including works by Liszt

who reduced Beethoven symphonies to piano for example. Then, the learning model allows

their Live Orchestral Piano system to statistically predict, from an input piano score, projective

orchestrations based on the learning material.

Following these observations, it arose that machine learning methods could be an appro-

priate approach for the present classification task using the data from specific timbre properties

estimations. Therefore, different machine learning approaches have been implemented in or-

der to determine the learning methods that could identify a classifier model from the timbral

values. The next sections present the development of the different approaches, along with their

testing and performances.

5.5.2 Unsupervised Learning

Machine learning regroups different approaches for identifying classification models from data.

One of these methods is unsupervised learning, where machine learning algorithms aim to

create a classifier model from ‘raw’ data, which means that datasets are unlabelled and the

grouping of examples is unknown. This section details the motivations for investigating an un-

supervised learning approach to create a classification model for timbral values from analysing

audio files of instrument combinations. The text describes the dataset that has been created and

utilised for the machine learning algorithm. Here, a k-means algorithm [252] has been selected,

which will be detailed later in the section, along with results of its testing and performances.
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5.5.2.1 Motivations

The advantage of using unsupervised learning methods is that an explicit function for classifi-

cation, or categorisation of the data, is not required. Since there is no agreed metrics for timbre

classification and the initial classification method presented in Section 5.4 did not perform suc-

cessfully, unsupervised learning methods would, therefore, be a suitable solution to generate a

function capable of grouping audio samples by analysing their calculated timbral values.

Machine learning algorithms require a training dataset to learn classification models, with

sizes and types of datasets having an impact on the performances of the algorithms. In regards

to unsupervised learning methods, training datasets need to be significant for the algorithms to

be able to successfully identify classifier models, especially in the presence of complex data.

It is evident that the learning algorithms accuracy increases proportionally with the quantity

of examples. Therefore, the initial step is to establish a training dataset, which will then be

processed by the machine learning algorithms. The next section details the development of the

training dataset that has been input into an unsupervised learning method in order to create a

classification function.

5.5.2.2 Dataset

As mentioned in the previous section, training datasets are an essential part of machine learn-

ing algorithms. In the case of unsupervised learning, large datasets are necessary due to the

algorithm performing exploratory data analysis to identify classification models. Therefore, the

first task is to create a training dataset, which will be used as input data for the machine learning

algorithm. Here, timbral values of orchestrations generated by the Orchids program, used in

the developments presented in Chapter 4, have been compiled and associated to the sets of 50

audio recordings of orchestral pieces utilised in Section 5.4.3. In order to have a larger training

dataset, an analysis of an extra 205 audio recordings of varied orchestral pieces has been per-

formed, using the same splitting methods as mentioned in Section 5.4.3 (i.e., audio recordings

split into 1, 2, 3, 4, and 5 seconds audio files). This data gathering resulted in performing tim-

bre estimations on 236,632 audio files, thus, compiling a training dataset composed of 236,632

values for each verbal attribute. Table 5.8 presents the statistics of the training dataset, which

also highlights the disparity of the data for each timbral attribute.
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Verbal Attribute
Number of

samples
Minimum Maximum Range Percentile Median Mean Standard deviation Variance

Breathiness 236632 0.0012 0.988 0.9868 0.4167 0.1836 0.2171 0.1467 0.0212

Brightness 236632 0.0237 0.9961 0.9724 0.6157 0.4155 0.421 0.1513 0.0229

Dullness 236632 0.0039 0.9773 0.9734 0.7706 0.5845 0.5791 0.1512 0.0229

Roughness 236632 0.0001 3017.2858 3017.2857 208.4811 17.339 72.0687 145.3299 21120.77

Warmth 236632 0.0001 0.1428 0.1427 0.025 0.0061 0.0102 0.0113 0.0001

Table 5.8: Statistics of the unscaled training dataset created from the analysis of 236,632 audio
files.

5.5.2.3 k-Means Algorithm

A common unsupervised learning method is cluster analysis, where algorithms perform ex-

ploratory data analysis to identify hidden patterns or grouping in sets of data. Due to the un-

known classification methods of timbral values, this approach offers the possibility of automat-

ically learn a grouping from the data. Clustering models usually utilise similarity’s measures

based on Euclidean distance or probabilistic distance, which follows the approach described

in Section 5.4. However, k-means algorithms utilise the mean of the data samples as its dis-

tance reference, while in the initial classification approach the distances were calculated from

the maximum values. Here, using the mean, also named the centroid of the data, allows for

identifying similarity from the centre of the data, instead of the extremes. The objective of

the k-means algorithm is to divide a set of N samples X into K disjoint clusters, with µ j as

the centroid of the samples in the cluster. The k-means algorithm aims to select centroids that

minimise the within-cluster sum of squared criterion, also called inertia, and is calculated as

follows:

n

∑
i=0

min
µ j∈K

(∥∥x j−µi
∥∥2
)

(5.5)

where x j is a data point and µi is the cluster centre (centroid).

The k-means algorithm has been implemented in Python 3.5 using the cluster.KMeans

function, taken from the Scikit-Learn [253] v0.18 package1, with the n clusters pa-

rameter defined as 5, which informs the cluster.KMeans function to identify 5 clusters (rep-

resenting the five verbal attributes) from the dataset. The function is also initialised with

the k-means++ methods, which speeds up convergence, meaning that the centroids µi are

1http://scikit-learn.org/0.18/
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initialised distant from each other instead of applying a random centroid initialisation, pro-

viding better results [254]. Each entry of the dataset is input as a singular vector into the

cluster.KMeans function, as follows:

xi = [tBreathinessi, tBrightnessi, tDullnessi, tRoughnessi, tWarmthi] (5.6)

where tBreathinessi is an audio file’s calculated timbral value for the attribute Breathiness,

tBrightnessi for the attribute Brightness, tDullnessi for the attribute Dullness, tRoughnessi

for the attribute Roughness, and tWarmthi for the attribute Warmth. The k-means clustering

methods have been applied on the dataset using different rescaling methods, which are detailed

in the following section.

5.5.2.4 Testing and Performance

This section presents the results and performances of the k-means algorithm implemented to

identify a method to separate the set of samples into 5 clusters. The first step is to rescale

the dataset in order to have values in the same ranges. Different rescaling methods have been

applied to determine if it could have an impact on the performances of the clustering method.

The first rescaling method adopts the technique used in the initial classification approach,

and described in Section 5.4.2. Here, timbral values are rescaled in the range 0.0–1.0 using the

minimum and maximum values of each verbal attribute. The cluster.KMeans function has

been applied to the 236,632 rescaled samples, with instructions to group the data samples into

5 categories. Due to the input data represented as a vector of 5 values, a Principal Component

Analysis (PCA) algorithm has been applied on the clustering results. This method uses a

Singular Value Decomposition (SVD) of the data in order to reduce its dimensional space. In

this case, it enables the representation of the clustering results into a 2D space. Here, the Scikit-

Learn’s decomposition.PCA function has been utilised, and Figure 5.2 displays the k-means

clustering results of the rescaled dataset.

The second rescaling method uses the Scikit-Learn’s MinMaxScaler function, which scales

samples of each verbal attribute in a given range (here 0.0–1.0). The rescaling method of this

function is performed as follows:

xscaled =
xi− xmin

xmax− xmin
× (max−min)+min (5.7)

where xmin is the minimum values in the set of samples, xmax the maximum values in the set of

samples, and min and max the desired range’s values. Here, the cluster.KMeans function has
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Figure 5.2: Graph showing the results for the k-means clustering performed on the 236 632
rescaled samples dataset.
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Figure 5.3: Graph showing the results for the k-means clustering performed on the 236,632 sam-
ples dataset, rescaled using the MinMaxScaler function.

also been applied to the 236,632 rescaled samples in order to create 5 clusters from the data.

Again, the Scikit-Learn’s decomposition.PCA function has been used to represent the results

of the k-means clustering performed on the rescaled training dataset. Figure 5.3 displays the

results for the dataset rescaled using the Scikit-Learn’s MinMaxScaler function.

Finally, the third rescaling method is performed by the Scikit-Learn’s MaxAbsScaler func-

tion. Here, the timbral values for each verbal attribute are scaled using the corresponding

maximum absolute value, and the dataset is rescaled in the range -1.0–1.0. This method does

not center the data, which aims to keep any sparsity in the data. Again, the Scikit-Learn’s

decomposition.PCA function has been used to represent the results of the k-means clustering

performed on this rescaled training dataset into a 2D space. Figure 5.3 displays the results for
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Figure 5.4: Graph showing the results for the k-means clustering performed on the 236,632 sam-
ples dataset, rescaled using the MaxAbsScaler function.

the dataset rescaled using the Scikit-Learn’s MaxAbsScaler function.

5.5.2.5 Discussions

The previous section has detailed the different techniques that have been employed to rescale

the training dataset, on which a k-means algorithm has been applied. Here, the clustering

method was designed to divide the dataset into 5 categories, representing the five verbal at-

tributes. The results of the clustering applied on each of the three rescaled training datasets,

displayed respectively in Figures 5.2, 5.3, and 5.4, indicate similar shapes for the 5 clusters

identified from the data. However, due to the data being unlabelled, these results do not pro-

vide any information about which cluster corresponds to which verbal attribute.
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To test the output of the classification model proposed by the k-means algorithm, a set of

testing samples have been created by manually labelling randomly selected samples taken from

the training dataset. Figure 5.5 shows the normalised confusion matrix for the testing of the

k-means classification model created from the rescaled training dataset. Here, each cluster has

been assigned randomly to a verbal attribute, because of the unknown repartition of the clusters.

26 manually labelled testing samples for each verbal attribute have been input into the classifier

model, which then predicted the category of each sample from analysing its timbral values.

The confusion matrix plots the predicted labels, on the horizontal axis, against the true labels

of the testing samples on the vertical axis. Results of the confusion matrix suggest that the

classification model proposed by the k-means clustering method is able to predict the category

of a sample by only analysing its five timbral values. This is supported by the high values of the

confusion matrix scores. However, these results also indicate that the clusters were not assigned

the correct verbal attributes. For example, in Figure 5.5, the testing samples labelled roughness

were predicted as samples from the category breathiness by the classification model. Figure 5.6

shows the normalised confusion matrix for the k-means classification model created from the

training dataset rescaled with the Scikit-Learn’s MinMaxScaler function, and Figure 5.7 from

the training dataset rescaled with the MaxAbsScaler function. The results represented in these

two confusion matrices suggest similar classification successes, with also some mislabelling

for the clusters.

The results of the testing of the k-means clustering method support the approach of group-

ing data into 5 categories, which represent the five verbal attributes. They also suggest that the

different rescaling techniques do not have a significant impact on the classification models as

indicated by the values of the confusion matrices displayed in Figures 5.5, 5.6, and 5.7. Nev-

ertheless, the k-means clustering method involves an extra step, which consists of evaluating

the suggested clusters in order to assign the verbal attributes categories to their correspondent

clusters. This task requires the listening of audio files and manually evaluating and labelling

the samples, which are then input into the classification model. Following the requirement of a

labelling samples task, it was decided to investigate methods from the supervised learning cate-

gory, which operate with labelled training dataset, in order to evaluate the classification models

suggested by such methods. The next section presents the supervised learning algorithms that

have been implemented, along with the results of their testing and performances.
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Figure 5.5: Normalised confusion matrix for the testing of the k-means clustering model identified
from the 236,632 rescaled samples dataset. 26 testing samples for each of the verbal attributes have
been used, and clusters assigned randomly to a verbal attribute.
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Figure 5.6: Normalised confusion matrix for the testing of the k-means clustering model identified
from the 236,632 samples dataset, rescaled using the MinMaxScaler function. 26 testing samples
for each of the verbal attributes have been used, and clusters assigned randomly to a verbal attribute.
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Figure 5.7: Normalised confusion matrix for the testing of the k-means clustering model identified
from the 236,632 samples dataset, rescaled using the MaxAbsScaler function. 26 testing samples
for each of the verbal attributes have been used, and clusters assigned randomly to a verbal attribute.
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5.5.3 Supervised Learning

This section presents the investigations of using supervised learning methods for the classi-

fication of audio files based on their timbral values. Machine learning algorithms from this

category aim to generate classifier models from datasets containing training examples. Here,

training datasets need to be labelled, which means that each training sample consists of the

input values and the label of the expected category in which it should be classified. The text

details the motivations for investigating supervised learning methods and the creation of a

training dataset. Then, the implementation of two supervised learning algorithms is described,

along with the results of their classification performances.

5.5.3.1 Motivations

The results of the classification models created by the k-means clustering method (Section

5.5.2) have suggested that an unsupervised learning algorithm could be used to learn classi-

fier functions from sets of timbral values. The k-means algorithm has been able to create five

clusters, which represent the five verbal attributes. However, due to the unlabelled training

data, it was not possible to identify the classification categories without evaluating the clus-

ters by inputting manually labelled samples into the classification models. This extra task

involves creating a labelled testing dataset, which could also be used as labelled training data

for supervised learning techniques. Therefore, it would be interesting to investigate also the

performances of machine learning algorithms designed to create classification models based

on a set of examples, instead of learning the classification from large sets of data.

Two different supervised learning algorithms have been evaluated: Support Vector Machine

(SVM) and Artificial Neural Networks (ANNs). These two methods can be trained with exam-

ples from which they are able to identify a classification model and then predict the categories

of new inputs. Specifics of these two methods are detailed in Sections 5.5.3.3 and 5.5.3.6 re-

spectively. However, before implementing and evaluating these two algorithms, it is necessary

to create a labelled training dataset, which is detailed in the next section.

5.5.3.2 Training Corpus

As mentioned above, supervised learning algorithms are dependent on a labelled training

dataset. Therefore, the initial step is to create a set of examples that will then be used to

train the machine learning algorithms. In this case, examples consist of audio files’ calculated
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timbral values as input data and their dominant perceptual quality, represented by the verbal

attributes, as the desired output values. The training samples have been selected from the large

training dataset created for the unsupervised learning method, described in Section 5.5.2.2.

Here, the 250 audio files that have scored the highest values for each verbal attribute have been

selected and labelled with their corresponding attribute. For example, the 250 samples with

highest values for the attribute brightness have been chosen and labelled ‘brightness’. In total,

the corpus training contains 1250 labelled samples, which can be utilised for evaluating the two

supervised learning algorithms detailed in the following sections.

5.5.3.3 Algorithm 1 - Support Vector Machines (SVM)

The first supervised learning algorithm that has been implemented is Support Vector Machines

(SVM) [202], a method often utilised for data classification, which is the required task here,

and also for regression analysis. This machine learning method has been successfully applied

in various applications, such as face detection [255] and speaker recognition [256] to name but

two. SVM models try to find the separation, also called the hyperplane, between the different

categories with a gap that is as wide as possible to create a delimited space for each category.

Then, when a new value is presented, SVM models estimate the space in which the value sits,

thus predicting the category it belongs to. Considering the randomly generated points shown in

Figure 5.8a, where points fit in two categories (i.e. blue or red), the SVM algorithm will seek

to divide the space into two distinct areas representing the two categories. One possible classi-

fication model is shown in Figure 5.8b, where the categories are delineated by a straight line.

Here, the decision function, also called kernel, uses a linear model. Other decision functions

can be used to optimise the separation, such as the classification models shown in Figures 5.8c

and 5.8d, respectively, using a polynomial kernel and a radial basis function kernel. Here, we

can note that using these kernels there is no classification error, while using the linear model

shown in Figure 5.8b, one blue point was in the red space.

The SVM algorithm has been implemented in Python 3.5 using the svm.SVC function,

which is a SVM method for classification task, taken from the Scikit-Learn v0.18 package.

Here, for the initial implementation, the svm.SVC function’s default parameters have been

used, which are kernel type = rb f (for Radial Basis Function), rb f kernel coefficient γ =

1/number o f samples, and penalty parameter C = 1.0. The kernel type defines the decision
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Figure 5.8: a) is a graph representing random points that belong into two categories (i.e. blue and
red). b) shows a classification model for the data point shown in a), created by a SVM algorithm
with a linear kernel. c) is classification model using a polynomial kernel, and d) used a radial basis
function kernel.

function to be used for the delimitation of the categories. The radial basis function is non-

linear, meaning that categories are not delimited by a straight line but in this case by radial axes

(Figure 5.8d). This decision function for a RBF kernel is mathematically defined as:

exp
(
−γ
∥∥x− x′

∥∥2
)

(5.8)

where γ is specified and greater than 0, and x is a set of points. The default parameter γ for

the svm.SVC function is set as 1/number o f samples. The penalty parameter C determines

the tolerable misclassification errors for the SVM function optimisation. In other words, the

number of points that can be fitted outside of their category in the search for the delimitations.

Further details about specific Scikit-Learn’s svm.SVC parameters can be found in [257].

The SVM model is then trained using the training corpus described in Section 5.5.3.2. Here,

one training example consists of a vector for the timbral values as input data and the identified

timbral descriptor as the category’s label. Testing and performance of the classification model

suggested by the SVM method is detailed in the next section.
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5.5.3.4 Testing and Performance

To test the performances of the classification model learned by the SVM method, the training

corpus has been divided into a set of training samples and a set of testing samples. Similarly

to the testing of the k-means clustering algorithm, different rescaling techniques have been

applied onto the timbral values dataset before inputting it into the SMV algorithm. Figure 5.9

shows the normalised confusion matrix of the SVM classification model using samples rescaled

following the initial technique described in Section 5.4.2. Here, the training samples consisted

of 90% of the training corpus (1125 samples), and 10% of the training corpus (125 samples)

were selected as testing samples. Using this training dataset, the svm.SVC function scored a

success rate of 0.976, which means that the classification model predicted the correct verbal

attribute 97.6% of the time. Similar testing methods, using the default svm.SVC function, have

been applied to the corpus training rescaled using Scikit-Learn’s MinMaxScaler function,

and Scikit-Learn’s MaxAbsScaler function. The classification model also scored a success

rate of 0.976 and produced similar confusion matrices using the training corpus rescaled with

both techniques, which suggests that the different rescaling methods do not impact the learning

process.

The performances of the SVM classification model have also been tested using the un-

scaled training corpus. Figure 5.10 displays the normalised confusion matrix, also using the

90% training samples–10% testing samples division. Using this training dataset, the svm.SVC

function scored a success rate of 0.872, which is lower than the score of the classification model

created from the rescaled training dataset. This indicates that the supervised learning process

performs better with the rescaled timbral values.

5.5.3.5 Parameter Tuning

The success rate of the classification model created by the svm.SVC function suggested that

SVM could be utilised for the classification of audio files using their timbral values. The

high success rate has been obtained using only the default parameters of the svm.SVC func-

tion. Therefore, in order to optimise the classification success rate, a parameter tuning process

has been performed to obtain the best parameter combination. Here, the Scikit-Learn’s

model selection.GridSearchCV function has been utilised to test and compare the perfor-

mances of different combinations of parameters. This process has determined the best SVM pa-

rameters as kernel type = rb f , penalty parameter C = 10, and rb f kernel coefficient γ = 0.001,

137



5. TIMBRAL CLASSIFICATION

Bre
at

hi
ne

ss

Brig
th

ne
ss

Dul
ln

es
s

Rou
gh

ne
ss

W
ar

m
th

Predicted label

Breathiness

Brigthness

Dullness

Roughness

Warmth

T
ru

e
 l
a
b
e
l

1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.957 0.043

0.0 0.0 0.0 0.077 0.923

Normalised confusion matrix 
 kernel= rbf, C= 1. 0, γ= 0. 2, testsize= 10%

0

3

6

9

12

15

18

21

24

Figure 5.9: Normalised confusion matrix of the SVM classification model created from rescaled
training dataset, with test size = 10% (1125 training samples, 125 testing samples).
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Figure 5.10: Normalised confusion matrix of the SVM classification model created from unscaled
training dataset, with test size = 10% (1125 training samples, 125 testing samples).
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which scored a success rate of 0.978, a slightly better score than with the default parameters.

Nevertheless, this result indicates that an RBF kernel is the most appropriate type for this clas-

sification task. Different details about the parameter tuning of the svm.SVC function can be

found in Appendix A.

5.5.3.6 Algorithm 2 - Artificial Neural Networks (ANNs)

The second supervised learning algorithm that has been implemented is Artificial Neural Net-

works (ANNs), which are non-linear statistical data modelling algorithms that have been used

in many applications, such as speech recognition [258], object recognition [259] and also for

musical tasks (Section 3.4).This method is inspired by the structure of biological neural net-

works, such as the human brain. Here, neurons are interconnected and information passing

through can change their states based on the input and output [203, 204]. A model of an artifi-

cial neuron, called a perceptron, is shown in Figure 5.11. Here, we have a single layered neural

network where the neuron sums all the input information, which can have weighting values, and

its result is passed through the activation function, which will decide the output. For example,

if the input’s summation is greater than a defined threshold, the neuron will output 1. ANNs

typically consists of many neurons with multiple layers and aim to learn a function f : X → Y

using the backpropagation method by analysing training examples. In other words, we input

data points xi with their corresponding labels yi and the ANNs algorithm will update its neu-

rons from this information to learn the function f that associates xi to yi. In this investigation,

the xi were vectors of timbral values and yi were their corresponding timbral descriptors.

The ANNs algorithm has been implemented in Python 3.5 using the neural network.

MLPClassifier function, which is a multi-layer perceptron classifier method, taken from the

Scikit-Learn v0.18 package. Similar to the SVM implementation, the default values of the

neural network.MLPClassifier function have been used. These values are 100 neurons in

hidden layers, activation = relu (rectified linear unit function) and solver = adam. Here, the

ANNs consisted of hidden layers composed of 100 neurons, with the activation function based

on rectified linear unit (ReLU), defined as:

f (x) = max(0,x) (5.9)

where x is the input to a neuron. The solver function adam (short for Adaptive Moment Esti-

mation) is a stochastic gradient-based optimiser for the input weighting values wi and is based
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Figure 5.11: Model of an artificial neuron called a perceptron.

on [260].

The training corpus detailed in Section 5.5.3.2 have been utilised as input values to train

the ANNs classifier algorithm. Similar to the SVM implementation, each training example

consisted of a vector of timbral values and the corresponding timbral descriptor as the desired

output. The next section details the testing method and performance of the classification model

suggested by the ANNs method.

5.5.3.7 Testing and Performance

Similar testing methods used for the SVM algorithm, and described in Section 5.5.3.4, have

been followed in order to test the classification model created by the ANNs algorithm. Here,

the training corpus has also been divided into batches of training samples and testing samples.

Figure 5.12 shows the normalised confusion matrix of the ANNs classification model using

samples rescaled following the initial technique described in Section 5.4.2. In these results,

the dataset consisted of 90% of the training corpus (1125 labelled samples), and 10% of the

training corpus (125 samples) were selected as testing samples. Using this training dataset,

the neural network.MLPClassifier function scored a success rate of 0.976, which is sim-

ilar to the score the SVM classification model presented previously. Again, testing using the

dataset rescaled with Scikit-Learn’s MinMaxScaler and MaxAbsScaler functions have been

performed, which both scored the same success rate of 0.976. Classification model using un-
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Figure 5.12: Normalised confusion matrix of the ANNs classification model created from rescaled
training dataset, with test size = 10% (1125 training samples, 125 testing samples).

scaled training corpus has also been tested. Figure 5.13 shows the normalised confusion matrix

of the ANNs classification model created from the unscaled training dataset, which produced a

success rate of 0.88, significantly lower than with rescaled data. This indicates that the ANNs

supervised learning process also performs better with the rescaled timbral values.

5.5.3.8 Parameter Tuning

Similarly to the SVM implementation, a parameter tuning process has been performed to ob-

tain the best ANNs parameter combination. Again, the Scikit-Learn’s model selection.
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Figure 5.13: Normalised confusion matrix of the ANNs classification model created from unscaled
training dataset, with test size = 10% (1125 training samples, 125 testing samples).
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GridSearchCV function has been utilised to test and compare the performances of different

combinations of neural network.MLPClassifier function parameters. The best classifica-

tion success rate has been obtained with the parameters activation = identity, and solver =

adam. Here, the activation function is defined as f (x) = x. Using these parameters, the ANNs

classification model scored a success rate of 0.984. Different details about the parameters

tuning of the neural network.MLPClassifier function can be found in Appendix A.

5.5.3.9 Discussions

This section has presented the implementation of two supervised learning algorithms. Clas-

sification models suggested by these two approaches have been tested by dividing the corpus

training into batches of training samples and testing samples. A parameters tuning process has

been applied to both functions to obtain the parameter combination producing the best clas-

sification score. Here, the SVM classification model scored a success rate of 0.978, with the

ANNs classification model achieving a slightly better success rate of 0.984, using one batch

of 1125 training samples and one consisting of 125 testing samples. These high success rates

suggest that classification models generated by these two supervised learning algorithms are

able to identify the perceptual qualities from audio files.

Although these two supervised learning algorithms present high success rates, they are

heavily dependent on a corpus training labelled beforehand. This task involves the process

of listening to audio samples and manually labelling their perceptual qualities. While this

required action can be seen as a negative extra task, it could be used to allow the users to create

their own training dataset, which would, therefore, represent their own perceptual preferences.

This could also offer a solution to overcome the challenge of the variation in perception levels

between individuals. The next section presents a method to include this user’s personalisation

into a supervised learning algorithm.

5.5.4 Reinforced Supervised Learning

The previous sections have detailed the successful classification models generated by the su-

pervised learning algorithms. As indicated, such methods are dependant on the creation of a

labelled training dataset, which is an additional task that some would prefer to avoid. However,

in this case, the manual labelling task could be used to calibrate the classification model. The

selected approach is inspired by the reinforcement learning methods [261], where classification
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models are generated from evaluations of outputs. Within this approach, suggested classifica-

tions are evaluated using a system of reward–penalty, which information is then processed by

the machine learning algorithm to calibrate the model. However, in the present investigation,

the selected approach uses a supervised learning algorithm instead of a bespoke reinforcement

learning algorithm. The following sections detail the rationale for selecting this reinforced su-

pervised learning approach, along with descriptions of the training dataset and technical details

about the implemented algorithm.

5.5.4.1 Motivations

The developments about the two supervised learning algorithms have suggested that this ap-

proach could be a viable method to identify the perceptual quality of an audio file by analysing

its timbral values, which is supported by the high success rates of 0.978 for the SVM classi-

fication model and 0.984 for the ANNs. As mentioned previously, these methods rely on a

training dataset that has been previously labelled, as classification models are learned from sets

of examples. It is evident that this listening and labelling process represents an extra task in

the creation of a classification model. However, this process could be used to address the chal-

lenging variation of perception between individuals. Here, by evaluating different audio files,

users could calibrate the classification models to their own musical perception. The supervised

learning methods are utilised to generate standard perception classification models, while a re-

inforced supervised learning method could offer user-specific perception classification models.

The development of such an approach is detailed in the following sections.

5.5.4.2 Training Dataset

Similarly to the supervised learning methods, a training dataset needs to be created in order to

generate a standard classification model. Following the high classification scores suggested by

the supervised learning algorithms, the same training dataset, described in Section 5.5.3.2, has

been selected. Here, each verbal attribute contains 250 training samples. For the reinforcing

approach, a weighting method has been selected, which will be used for the reward–penalty

mechanism. Thus, a weight value has been added to each training sample, with 50 considered

as the standard value. Furthermore, a function is designed to select a certain number of audio

files from the training dataset, with the number of files being defined by the user, and it presents

the audio files to the user in order to be evaluated. Here, the users can listen to the audio
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files, and then label the verbal attribute that corresponds to their own perception of the sound.

These newly labelled samples are then added to the training dataset, with their correspond

weight values set at 100. This listening and labelling process can be repeated multiple times

if required, which further calibrates the classification model to a user-specific perception. The

next section describes the technical details of the reinforced supervised learning method.

5.5.4.3 Algorithm - SVM with Weighted Samples

The reinforced supervised learning approach uses a SVM algorithm. Here, this method has

also been implemented in Python 3.5, using the Scikit-Learn v0.18’s svm.SVC func-

tion, with penalty parameter C = 10, kernel type = rb f , and rb f kernel coefficient γ = 0.01 as

suggested by the parameters tuning process presented in Section 5.5.3.5. Whereas in both su-

pervised learning algorithm presented previously the input data consisted of the timbral values

and the verbal attribute for each sample, here the weight value of each sample is input as well.

These weight values are processed by the svm.SVC function in order to emphasise the training

samples with highest values for the generation of the classification model.

5.5.4.4 Discussions

This section has presented the implementation of a reinforced supervised learning algorithm.

This approach is built on the successful classification models generated by the supervised learn-

ing methods presented in Section 5.5.3. It is also inspired by the reinforcement learning meth-

ods, where models are calibrated by evaluating their outputs, using a reward–penalty technique.

However, here, a weighting samples approach has been chosen, where the evaluations change

the value of the samples’ weight, thus calibrating the classification model.

The reinforced supervised learning algorithm is built on the SVM algorithm described in

Section 5.5.3.3, which has scored a classification success rate of 0.978 using the methods de-

tailed in Section 5.5.3.4. For the reinforcement part, a weight value has been added to each

sample of the training dataset detailed in Section 5.5.3.2, which is then used to inform the

classification model on which samples to emphasise. Here, the weight values can be altered

directly in the labelled training dataset, or by performing a listening and evaluation process.

The first technique offers the ability to create a personal weighted training dataset, while the

second calibrates the standard training dataset to a user-specific perception model.

Following the successful classification models generated by the supervised learning meth-

ods, the approach presented in this section has proposed a solution to overcome the challenge
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of the variation in perception levels between individuals by offering the ability to calibrate the

classification models. This approach, inspired by the reinforcement learning methods, allows

the users to input their own perception levels into the learning process, thus improving the

accuracy of the suggested classifications.
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5.6 Chapter Conclusions

The investigation presented in this chapter has been built on the findings suggested in Chapter

4, which has identified methods for calculating specific timbre properties, represented by verbal

attributes, from sounds being created by combining diverse instruments. One of the limitations

of the timbral ranking system presented in the previous chapter was that it outputs ‘top’ result,

even if none of the audio files had the characteristics of a perceptual quality, which was due

to the comparison being performed between the audio files present in a folder. In order to

overcome this limitation, methods for classifying audio files according to specific perceptual

qualities have been studied.

Similar verbal attributes and methods of calculation put forward by the timbral ranking

system presented in Chapter 4 have been selected for this investigation, which are described

in Section 5.3. Performing these estimations resulted in obtaining a timbral value for each

attribute, which could then be utilised in a classification method. Thus, an initial classification

approach has been studied, which was based on distance measures. Due to a lack of agreed

metrics, a timbral analysis has been performed on several orchestral pieces in order to establish

a scale for each verbal attribute. Using the maximum value for each attribute, informed by

the data gathering process, different distance calculations have been implemented to estimate

how close an audio file is to the ‘best result’, represented by the known maximum timbral value.

Therefore, by comparing the distance for each attribute value, the one with the shortest distance

would be classified as the dominant perceptual quality. However, the results of the different

distance measures’ testing, detailed in Section 5.4.3, have shown that this approach was not

capable of identifying the dominant perceptual quality from a sound composed of different

instruments using the calculated timbral values.

Following the unsuccessful results of the initial classification approach, different methods

taken from the field of AI research have been investigated in order to develop classification

models. Here, machine learning algorithms have been implemented using calculated timbral

values as data input. The first method was derived from the unsupervised learning category,

which aim to identify classifier functions by performing exploratory data analysis to identify

hidden patterns or grouping in sets of data. Here, a k-means algorithm has been performed

on a large dataset of timbral values in order to identify five clusters, corresponding to the five

verbal attributes, described in Section 5.5.2. While this method has been capable of grouping

similar timbral values into five clusters, this method did not provide direct information on

148



5.6 Chapter Conclusions

the perceptual qualities due to it using unlabelled data. Thus, a clusters evaluation process is

required to identify the grouping, which involves listening and labelling audio files. Testing of

the k-means method, presented in Section 5.5.2.5, suggested that the proposed clusters’ space

were representing the five timbral attributes when clusters were relabelled correctly.

The second machine learning approach that has been investigated was supervised learn-

ing techniques, where algorithms learn classification models from sets of examples. Thus, the

initial task was to create a labelled training dataset to be used to train algorithms. Then, this

training corpus, which consisted of 1250 labelled samples as described in Section 5.5.3.2, has

been used with two supervised learning algorithms. The first method was a SVM algorithm,

described in Section 5.5.3.3, which after a parameter tuning process scored a success classifi-

cation rate of 0.978. The second method was using ANNs, as detailed in Section 5.5.3.6. The

classification model generated by the ANNs algorithm scored a success rate of 0.984, slightly

better than the SVM’s classification model. From these results, it is evident that supervised

learning algorithms are appropriate methods for automatically classifying instrument combi-

nations sounds based on their perceptual qualities informed by specific timbre characteristics.

However, these methods involve a prior listening and labelling process in order to train the

models. While this process can be seen as an extra task, it can also benefit the training pro-

cesses.

A method to take advantage of the listening and labelling process has been developed,

which was presented in Section 5.5.4. Here, this process is used to reinforce the classification

models by putting a weighted value on each training sample. Following the successful clas-

sification of the supervised learning approach, a SVM algorithm has been selected, using the

weighted values to guide the learning method and put emphasis on the training samples with

the highest values. This method also allows users to personalise the training datasets, whether

by creating their own training corpus, or by evaluating the ‘standard’ dataset presented in Sec-

tion 5.5.3.2, and thus altering the corresponding weight values. This technique offers a solution

to overcome the challenges of harnessing perception variations between individuals, which is

difficult to manage in computing models.

The research developments presented within this chapter have offered solutions to over-

come the limitations of the timbral ranking system by proposing methods to estimate the dom-

inant perceptual quality of instrument mixtures. These methods have been built on the findings

presented in Chapter 4, integrating the timbre estimation techniques to calculate timbral values

corresponding to the five verbal attributes. From the observations of the results detailed in this
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chapter, it is evident that machine learning methods have been able to generate classification

models from sets of timbral values, and thus automatically classify sounds by their perceptual

qualities, which proposes an answer to RQ3. Such methods offer an approach to overcome the

need of listening to audio files to manually identify their perceptual qualities, which can also

be integrated into generative audio system by enabling an automatic perceptual evaluation of

the generated sounds.
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5.7 Chapter Summary

This chapter has presented the investigations that have been carried out to develop a method

capable of automatically identifying the perceptual quality of a sound created by combining

different instruments, using values from the estimations of specific timbre characteristics.

First, the selected verbal attributes and their corresponding calculation methods have been

detailed in Section 5.3, which were built on the findings from the timbral ranking system pre-

sented in Chapter 4. Then, a classification approach, performing distance measurement onto

calculated timbral values, has been explained. However, results of its testing, described in

Section 5.4.3, indicated that distance calculations were not appropriate methods for classifying

timbral value data.

The second part of this chapter has presented the investigations into using machine learn-

ing methods to harness classification models using timbral value data as input. Here, it has

been suggested that supervised learning algorithms, where classification models are learned

from examples, may be appropriate methods for automatically classifying timbre properties

from audio files. This was also supported by their successful classification results. Moreover,

a method to take advantage of the listening and labelling process required by supervised al-

gorithms has been developed. Here, the labelling process has been utilised to reinforce the

classification models, and also to allow users to personalise the training datasets. Thus, this

method proposed a solution to overcome the challenge of perception variations between indi-

viduals.

The developments presented in this chapter has highlighted some key outcomes, which are

summarised below:

• Definition of a scale for each verbal attribute.

• Distance calculations are not appropriate methods for timbral values classification.

• Supervised learning algorithms present successful classification models.

• Personalisation perception classification models with reinforced supervised learning meth-

ods.

• Methods to estimate perceptual quality of a sound resulting from combining different

instruments, using its calculated timbral values.
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Timbral Driven Instrument
Combination

6.1 Chapter Overview

This chapter presents investigations into harnessing the findings from developments presented

in Chapters 4 and 5 into a computing system designed to generate combinations of audio sam-

ples of recorded instrument notes matching specific timbral qualities.

First, the text discusses some of the outcomes of developing a timbral ranking method and

a timbral classification system, focusing on their benefits for integrating them into techniques

for combining instrumental timbres. The chapter continues with detailing the technical envi-

ronment of the computing system, which uses two groups of instruments (string and brass)

and timbral descriptors as the main criteria for the output decision function. This is followed

by discussions about the instrument combination search space and the selected approach to

address the different challenges.

The second part of this chapter details the developments for addressing the search space

challenges, starting with discussions about the reasons and benefits of incorporating Artifi-

cial Intelligence (AI) methods. Then, the text describes and analyses the AI techniques that

have been investigated in order to optimise the instrument combination search algorithms. The

chapter continues with descriptions of the system’s method for input and output information.

Finally, the chapter concludes with discussions about the findings and outcomes of developing

a system for combining string and brass instrument notes to create specific timbral textures.

Such developments have provided insights for expanding identified techniques for controlling
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instrument timbre and timbral combination in a computing system processing a larger musical

ensemble.

Below is an overview of this chapter’s structure:

. 6.2 - Introduction

. 6.3 - Combining String and Brass Sampled Instruments

. 6.4 - Search Space

. 6.5 - Search Algorithm Optimisation

. 6.6 - Sequencing

. 6.7 - Rendering of the Results

. 6.8 - Chapter Conclusions

. 6.9 - Chapter Summary
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6.2 Introduction

The developments presented in Chapter 4 have identified methods to calculate timbre charac-

teristics correlating to specific perceptual qualities. Building on these findings, Chapter 5 has

suggested techniques to automatically evaluate and classify the perceptual qualities of com-

bined instruments audio files, informed by their calculated timbral values. Such outcomes

represent significant methods for harnessing analysis and control of instrumental timbre and

timbral combinations.

Following the findings from the previous research developments, it has been decided to

investigate the potential of the techniques listed above for controlling the sonic qualities of

sounds created by combining audio samples of instrument notes. This resulted in the imple-

mentation of a computing system for combining audio samples of instrumental notes. Here,

techniques for retrieving timbre characteristics from instrument combination audio files and for

automatic timbre classification have been integrated in different aspects of the generative pro-

cesses. In order to evaluate the feasibility of applying these techniques, the presented system is

designed to operate with groups of string and brass instruments. The reason for this choice is to

experiment with a smaller instrument combination space and establish techniques for systems

that would operate with a larger selection of instruments. Moreover, a string ensemble offers

a varied range of sonic possibilities and has been used by several classical and contemporary

composers. The group of brass instruments also provides a different palette of sounds from the

other group. The structure of the string and brass instruments database is detailed in Section

6.3.2.

The main challenges of generative processes are the search space and the output decision

function. In the present system, the generative algorithm has to search across the different string

and brass instruments’ notes, where space increases exponentially, in order to output a solution

that matches different criteria. Section 6.4 details the challenges of the instrument combination

search space along with the different available search criteria. The selected approach to address

the instrument combination search space, which has utilised AI techniques, is described in

Section 6.5.

Sections onwards detail the investigation into developing the generative system for string

and brass instrument note combinations. By examining the implementation for a reduced group

of instruments, the objective is to establish methods to harness aspects of timbre perception,
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using the techniques from the two previously presented systems, for future computing systems

designed to operate with a larger selection of instruments.
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6.3 Combining String and Brass Sampled Instruments

This section presents the technical environment of the system designed to generate combination

of audio samples of string and brass instruments notes that match specific timbral qualities.

The text also provides a description of the programming environment and the structure of the

instrument database.

6.3.1 Programming Environment

Similarly to the timbre classification system detailed in Chapter 5, the system presented within

this chapter is developed on a Macintosh operating system (Mac OS), using the Python 3.5

programming language. Again, the timbre estimations are processed within the Matlab1 envi-

ronment, using some functions taken from the MIRtoolbox 1.6.12. Following the methods

of the timbre classification system, the Matlab script is also directly and automatically exe-

cuted within the Python environment.

6.3.2 Instrument Database Organisation

The present system is designed to generate combinations of sampled instrument notes. Thus, it

relies on a database of audio files for its search algorithm. Furthermore, the timbre calculations,

utilised to evaluate the perceptual qualities of the sound created by the combining instruments,

are also performed on audio files, similarly to the other two systems described in the previous

chapter. The sound database comprises string and brass instruments’ audio samples extracted

from the SOL 0.9 HQ sound library provided with the Orchids program3. This sound database,

based on the large IRCAM Solo Instruments4, consists of sounds from 16 instruments, with nu-

merous playing techniques for each. Specific details about the structure of the sound database

utilised in the present generative systems are listed in the following sections.

6.3.2.1 Instruments

As stated previously, the generative system has been designed to operate with string and brass

instruments. Thus, the sound database comprises four string instruments: bass, cello, viola,

1http://www.mathworks.com/products/matlab/
2MIRtoolbox is available at https://goo.gl/d61EO0
3http://forumnet.ircam.fr/product/orchids-en/
4http://forumnet.ircam.fr/product/ircam-solo-instruments-en/
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and violin. In regards to the brass instruments, there are also four different instruments: French

horn, tenor trombone, C trumpet, and bass tuba. For each instrument, three playing techniques

have been selected. All the string instruments have similar playing techniques: note-lasting

(dynamic mezzo-forte mf ), pizzicato-secco (dynamic mf ), and staccato(dynamic mf ). As its

name suggests, the note-lasting technique consists of an audio sample of a bowed note’s full

duration. The pizzicato-secco technique consists of audio samples of damped plucked notes,

and the staccato technique is audio samples of shortened bowed notes.

In regards to the brass instruments, the French horn has the playing techniques note-lasting

(dynamic mf ), staccato (dynamic mf ), and brassy (dynamic fortissimo ff ). The tenor trom-

bone has staccato (dynamic mf ), decrescendo (dynamic mf to pianissimo pp), and sforzando

(dynamic forte f ). The C trumpet note-lasting (dynamic mf ), staccato (dynamic mf ), and

sforzando (dynamic f ). Finally, the bass tuba has staccato (dynamic mf ), decrescendo (dy-

namic ff to pp), and sforzando (dynamic fortepiano fp). The note-lasting technique consists

of a blown note’s full duration, the staccato technique is a short note, brassy consists of an

increased lip tension and a strong attack note, decrescendo is a note played gradually more

softly, and the sforzando technique consists of notes with a strong initial attack.

6.3.2.2 Audio Files Specifications

All the audio samples of the sound database are the results of high-quality recordings of indi-

vidual notes, played with the same intensity. All audio files are uncompressed (encoded in the

WAVE audio format). The specifics of the audio files are as follows:

. File type: WAV

. Sample rate: 44.1 kHz

. Bits per sample: 16

. Audio channel: 1 (mono)

6.3.2.3 Sound Database Structure

The structure of the sound database is important for the search exploration algorithm, opti-

mising the search query. Here, each instrument has a folder, which contains a sub-folder for

each of the three playing techniques. Then, each playing technique comprises a folder for each
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pitch. The audio files represent the different notes for all octaves available for each pitch. Fig-

ure 6.1 represents the folders’ tree structure of the sound database. This figure focuses on the

bass instrument’s organisation, which follows the structure instrument→ playing technique→
pitch→ audio f iles. The number of notes and available octaves for each instrument’s playing

technique may vary according to the playing range of the instrument. For example, the bass

does not have a note above the fourth octave and has 3 to 4 notes for each pitch. Table 6.1 dis-

plays the number of different notes for each string instrument’s playing technique, and Table

6.2 shows the number of notes for the different brass instruments. It shows that with only two

group of four instruments and three playing techniques for each instrument, the sound database

consists of numerous notes, representing a significant search space.

Sound Database

String

Bass

Note-lasting

A

A1.wav

A2.wav

A3.wav

A#

B

...

G#

Pizzicato-secco

Staccato

Cello

Viola

Violin

Brass

Horn

Trombone

Trumpet

Tuba

Figure 6.1: Tree structure representation of the sound database, with a focus on the organisation
of the bass instrument’s audio samples. Each instrument follows a similar structure.
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String Instruments
Playing Techniques Bass Cello Viola Violin
Note-lasting 36 38 42 38

Pizzicato-secco 37 39 34 32

Staccato 40 38 46 42

Table 6.1: Number of notes for each string instrument’s playing technique in the sound database.

Brass Instruments
Playing Techniques Horn Trombone Trumpet Tuba
Note-lasting 45 – 29 –

Staccato 41 39 29 33

Brassy 43 – – –

Decrescendo – 28 – 33

Sforzando – 33 29 33

Table 6.2: Number of notes for each brass instrument’s playing technique in the sound database.
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6.4 Search Space

This section discusses different aspects of the process for generating combinations of audio

samples of instrument notes. Here, the objective is to define the search space of the algorithm

designed to output combinations of string or brass instruments’ notes matching specific param-

eters. By defining the search space, this section also outlines the operations of the generative

process and describes the type of outputs that can be expected from the present system. This

section starts with details about the compositional framework that has been selected for the

combination of notes, due to it not being based on a random process. Then, the text details the

different criteria that can be defined by the users. These parameters are then utilised to guide

the search algorithm for the selection of its outputs.

6.4.1 Instruments Combinations

An important aspect of generative processes is the definition of the decision rules for the out-

puts. The most basic rule is to output random values. This technique can provide interesting

results and has been used for musical purposes by many composers for several decades. How-

ever, within this system, the generation of instrument combinations follow a chords framework,

which is a compositional technique that consists of playing two or more notes simultaneously.

Thus, the timbral combination approach is represented by the generation of chords, where notes

can be played simultaneously by one type of instrument, or spread across the different string

or brass instruments.

The chord generation rules follow the traditional Western music pitches combination frame-

work. Here, three types of chords have been defined: dyad, triad, and seventh, representing

respectively 2, 3, and 4 notes played simultaneously. Two types of dyad have been imple-

mented: major and minor. In regards to the triad and seventh chords, four different types have

been selected: major, minor, augmented, and diminished. Tables 6.3, 6.4, and 6.5 show the

note combinations for the dyad, triad, and seventh chords respectively. Here, the intervals are

calculated from the root note which is defined by the selected key.

In the present investigation, the note combination technique is used to represent the com-

binations of instruments playing simultaneously. Here, the use of chord combinatorial rules

applied on a limited set of instruments is a smaller representation of the instrument combi-

nation challenge, which is utilised here to evaluate the feasibility of the approach presented
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Intervals from root
Chords Third
Major dyad Major

Minor dyad Minor

Table 6.3: Note intervals for the two different dyad chords rules.

Intervals from root
Chords Third Fifth
Major triad Major Perfect

Minor triad Minor Perfect

Augmented triad Major Augmented

Diminished triad Minor Diminished

Table 6.4: Note intervals for the four different triad chords rules.

Intervals from root
Chords Third Fifth Seventh
Major seventh Major Perfect Major

Minor seventh Minor Perfect Minor

Augmented seventh Major Augmented Major

Diminished seventh Minor Diminished Diminished

Table 6.5: Note intervals for the four different seventh chords rules.

162



6.4 Search Space

within this study, and thus establishing methods that could be expended to larger musical en-

sembles. Furthermore, this combinatorial rule is based on harmonic sets. Thus, with only a few

basic rules the generated combinations will sound more musical than only outputting random

notes played simultaneously. It is also possible to extend the specifications of the instrument

combination algorithm by adding other compositional frameworks, and also by defining new

combinatorial rules. However, another constraint is to not generate chords outside of the in-

struments’ ranges. Here, a function has been designed to retrieve the different notes that are

available in the sound database for each instrument and playing technique. With this function,

it is possible to expand the database by adding new instruments and playing techniques, while

keeping the chord generations in the available instruments’ ranges.

6.4.2 Search Criteria

As explained above, the generative system uses a chord framework for the generation of combi-

nations of instrument notes. Other than the selection of the type of chord, different parameters

can also be controlled by the user in order to define their musical ideas. These criteria are also

used to specify the type of desired outputs, thus, refining the search query in order not to have

a completely random generation. The following sections describe the different criteria that can

be defined by the users in order to guide the search algorithm to match their musical ideas.

6.4.2.1 List of Instruments

The first criterion for defining the desired types of output is the arrangement of the musical

ensemble. As mentioned in Section 6.3.2.1, the generative system operates with audio sam-

ples from four string instruments (bass, cello, viola, and violin) and four brass instruments

(horn, trombone, trumpet, and tuba). Thus, the user can define which instruments make up the

ensemble. It is also possible to specify the number of instruments for each type.

6.4.2.2 Playing Techniques

Another parameter that is proposed to the user is the selection of the playing techniques. As

stated in Section 6.3.2.1, there are three playing techniques for each instrument in the sys-

tem’s database: note-lasting, pizzicato-secco, and staccato for the string instruments, and three

techniques from note-lasting, brassy, staccato, decrescendo, and sforzando for the brass in-

struments. Thus, the user can define a technique for all the string instruments of the musical
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ensemble, for example. It is also possible to assign playing techniques to instruments individ-

ually.

6.4.2.3 Perceptual Qualities

The last parameter that can be defined by the user, which is also the most relevant to the study

presented in this thesis, is the desired perceptual quality of the instrument note combinations.

This parameter is also important in the decision rules for outputting an instrument’s combi-

nation due to it being the main characteristic of this generative process. Here, same verbal

descriptors as those investigated in Chapters 4 and 5 have been selected. In total, five verbal at-

tributes are available: breathiness, brightness, dullness, roughness, and warmth. The methods

for estimating the timbral values corresponding to each of the five verbal attributes are based

on the techniques described in Section 5.3.

6.4.3 Discussions

This section aimed to define the search space of the generative process in order to illustrate the

challenges of outputting instrument combinations driven by timbre characteristics. As men-

tioned in Section 6.3.2.1, the present generative system operates only with a group of string or

brass instrument audio samples, extracted from the SOL 0.9 HQ sound library provided with

the Orchids program. The use of a smaller group of instruments allows for operating with a

smaller search space, while keeping the instrument combination challenges. With this set of

groups of four instruments and three different techniques for each, detailed in Tables 6.1 and

6.2, the total of notes combinations possibilities is already significant, highlighting the large

search space with only a small set of instruments. Also, string and brass instrument ensembles

propose a broad range of musical possibilities, offering a varied sonic palette to the users with

a small number of instruments.

While a random process for combining instruments’ notes could have produced interesting

results, it has been decided to base the note combination function on a chord framework—a

compositional technique often used in Western music. Here, sequences of 2, 3, and 4 notes

to be played simultaneously have been chosen. These three different sequences are suitable

for a group of four types of string or brass instrument, because notes can be spread across the

four different types of instruments. The different rules for the chord combinations that have

been implemented in the generative system have been detailed in Section 6.4.1. Moreover, by
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constructing the notes combinations on harmonic sets, the solutions generated by this system

would sound musical according to the Western music standards, while this may not be the case

with randomly combined notes. Furthermore, it is possible to modify the notes combination

process by altering the chord rules, or by programming different compositional frameworks.

With the function designed to retrieve the available notes in the database, the generated chords

will not be outside of the instruments’ ranges, an issue that can sometimes happen in computer-

aided composition systems.

The generation of chords using only string or brass instruments’ notes without any other

information would result in outputting random combinations, which would not reflect a user’s

view. Therefore, different parameters can be controlled, which allow the users to define their

musical ideas. For instance, it is possible to set the arrangement of instruments, which is

an important compositional information, by specifying the type and number of instruments.

Section 6.4.2 lists the different criteria that have been implemented in the system. Furthermore,

if a parameter is not defined, a parameter’s value will be randomly selected from the available

range. For example, if no playing technique is specified by the user, the system will randomly

select one technique from note-lasting, pizzicato-secco, and staccato for the string instruments,

and one of the three available techniques for each brass instrument from note-lasting, brassy,

staccato, decrescendo, and sforzando. This flexibility allows for chance, a creative process

appreciated by many composers. These criteria are also important for refining the search space,

thus generating sounds that fit the users’ musical view.

Once all the parameters are all set, the system can generate chords following the defined

criteria. In this initial search algorithm, the list of instruments, playing techniques, and the key

are the first parameters to be processed to create a chord according to the rules described in

Section 6.4.1. In order to estimate the perceptual quality of the instrument combination, the

chord is generated as an audio file, rendered using the audio samples contained in the database.

Then, the timbre estimation function is applied in order to calculate the timbral values, which

are then input into the timbre classification system detailed in the previous chapter. Once these

processes have been performed, the value for the perceptual quality of the chord is obtained,

which is then compared with the value selected by the user. If it does not match, a new chord

is generated until this criterion is fulfilled. However, it is evident that this technique for evalu-

ating the perceptual quality of the generated chords is lengthy and computationally expensive.

Therefore, a method to overcome this long search process is required, the investigation of

which is detailed in the following section.
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6.5 Search Algorithm Optimisation

This section discusses the different approaches that have been investigated to implement a

search algorithm designed to output instrument combinations fulfilling the different criteria,

which are set by the users and detailed in Section 6.4. Here, different methods have been tested

in order to identify the most relevant technique for evaluating if the note combinations match

the desired perceptual quality, which is the main factor in the decision rules. An overview

of the note combination search problem, explaining the need for establishing more efficient

methods for estimating the perceptual quality of the generated chords, is proposed in the next

section.

6.5.1 Problem Overview

Section 6.4 explained that the present computing system is designed to generate note combi-

nations using audio samples from string and brass instruments. Here, a chord combination

framework has been selected that combines notes that will be played simultaneously according

to the rules detailed in Section 6.4.1. Different parameters can be specified by the users in order

to define their musical ideas, which are then processed to refine the search space. From these

criteria, discussed in Section 6.4.2, the perceptual quality parameter has an important role in

the decision rules, due to it being the main attribute for the generative process of the present

system.

As explained in Section 6.4.3, the perceptual quality of a chord is estimated from generating

an audio file and performing the timbre estimation function to obtain its timbral values. This

information is then input into the timbre classification system, presented in Chapter 5, in order

to estimate the chord’s perceptual quality. Once this information is retrieved, the generated

chord is output only if it matches the user criterion. If it does not, the whole process is reiterated

until the generated chord fits the desired perceptual quality. It is evident that processing the

perceptual quality evaluations function in this manner is not an efficient technique, because it

can take a long period before outputting a chord with the required quality. Therefore, a method

needs to be developed in order to bypass the audio generation process and the acoustic analysis

to obtain the timbral values of each generated chords.

The developments presented in the previous chapter have shown that some machine learn-

ing methods could be applied to create classification models based on calculated timbral values.

Following the success of such methods, it has been decided to investigate the potential use of

166



6.5 Search Algorithm Optimisation

machine learning algorithms to address the tedious audio generation and timbre estimations

processes. While the task of the machine learning algorithms (Chapter 5) was to identify the

category (verbal attribute) from calculated timbral values, here, such methods need to create

models capable of predicting the timbral values of a set of combined notes. The following

sections detail the implementation and testing of different machine learning methods in order

to establish a technique to predict automatically the timbral values of generated chords.

6.5.2 Data Acquisition

Similarly to the machine learning approaches that have been investigated for the development

of the automatic timbre classification system presented in Chapter 5, the initial task is to create

a dataset, which will be utilised to train the machine learning methods. Here, the objective

of using machine learning algorithms is to be able to predict the timbral values of a generated

chord without having to create an audio file in order to perform the timbre estimations function.

Therefore, the dataset needs to contain examples of note combinations with their calculated

timbral values, which will serve as training samples.

In order to create the training dataset for establishing predictive models, numerous chord

combinations have been generated using groups of string instruments and brass instruments,

following the rules detailed in Section 6.4.1. Here, 10,000 chords for each type of note com-

bination have been created, with the selection of instruments and playing techniques being

performed randomly. Then, each chord has been rendered as an audio file, which resulted in

creating 30,000 audio files for groups of string instruments and 30,000 audio files for groups

of brass instruments. The timbral values for each audio file have been calculated using the

timbre estimations function presented in Section 5.3. Thus, the training dataset consisted of

30,000 samples of note combinations with their corresponding timbral values for each instru-

ment group. Entries of the dataset are constructed as follows: [Instruments], [Playing tech-

niques], [Pitches] = [tBreathiness, tBrightness, tDullness, tRoughness, tWarmth]. Once this

training dataset is created, it is possible to apply different machine learning methods to identify

predictive models, which are described in the next sections.

6.5.3 Regression Models

The developments presented in Chapter 5 have shown that machine learning methods can be

applied to classifying audio files according to their timbre characteristics. Such methods have
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been able to successfully learn classification models from the analysis of training datasets.

However, here, the required task for such functions is to predict data based on the input in-

formation. Thus, instead of using machine learning to create classification models, designed

to identify the category that input values belong to, here such algorithms are utilised to create

regression models, which aim to predict the values from a set of variables. The objective of us-

ing regression methods is to be able to predict the timbral values directly from the information

about the instruments, playing techniques, and pitches. Therefore, it would be possible to omit

the audio generation and timbre estimation processes, mentioned in Section 6.4.3, in order to

retrieve the generated chords’ timbral values utilised to evaluate their perceptual quality. Such

methods would speed up the process of comparing the chord’s quality with the user’s selec-

tion. The following sections detail the different machine learning algorithms for regression

models that have been investigated in order to predict timbral values from sets of instrument

information.

6.5.3.1 Support Vector Machines (SVM) for Regression

Following the successful results of using a Support Vector Machines (SVM) algorithm for the

classification task (Section 5.5.3) the first method for learning regression models is based on

this algorithm. Here, instead of trying to find a delimited space for each category, with a gap

that is as wide as possible between the different categories, the SVM learns the regression

function from analysing the samples of the dataset, which is then used for predicting values.

Figure 6.2 presents a theoretical example to illustrate the regression problem formulation. Here,

three continuous-valued functions have been generated using three different kernels with the

objective to approximate the data points with minimum error margins.

The SVM algorithm has been implemented in Python 3.5 using the svm.SVR function,

which is a SVM method for regression task, called Support Vector Regression (SVR), taken

from the Scikit-Learn v0.18 package. Here, the training dataset, detailed in Section 6.5.2,

has been divided by samples from each type of chord (dyad, triad, and seventh) and each type of

instrument (string and brass). The input data consisted of vectors of the information about the

note combinations encoded as numbers and vectors of their corresponding calculated timbral

values as output data. Then, the svm.SVR function has been applied to each type of chord and

instrument. This process resulted in creating six regression models, one for each of the three

chord combinations and of the two groups of instruments.
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Figure 6.2: Theoretical example of one-dimensional regression models using linear, polynomial,
and RBF kernels based on randomly generated values.

Similarly to the implementation of supervised learning methods detailed in Section 5.5.3, a

parameter tuning process has been performed to obtain the best parameter combination for

the svm.SVR function for each of the three types of chords. Here, the Scikit-Learn’s

model selection.GridSearchCV function has been utilised to test and compare the per-

formances of different combinations of parameters. Table 6.6 lists the svm.SVR function’s

parameters for each of the six regression models with their corresponding calculated coeffi-

cient of determination R2, providing information about how a predictive model fits the data,

produced with 10 000 samples (90% training–10% testing). The coefficient of determination

R2 is calculated as follows:

R2 = 1−
SSreg

SStot
(6.1)

where SSreg is the sum-of-squares from the model and SStot is the sum-of-squares from the
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Regression Model
Kernel
Type

Kernel
Coefficient γ

Penalty
Parameter C

R2 Score

String Dyad RBF 0.1 100 0.345

String Triad RBF 0.1 100 0.336

String Seventh RBF 0.1 100 0.351

Brass Dyad RBF 0.1 100 0.715

Brass Triad RBF 0.1 100 0.566

Brass Seventh RBF 0.1 10 0.453

Table 6.6: Best svm.SVR function’s parameters for each regression model with corresponding
coefficient of determination R2 produced with 10 000 samples (90% training–10% testing).

horizontal line. The best possible R2 score is 1.0. It can also be negative if the model does

not follow the trend of the data and fits worse than a horizontal line. From the results shown

in Table 6.6, we can note that a SVM with a RBF kernel has produced the best models for all

types of chords. Furthermore, the best prediction scores have been obtained using the same

RBF kernel coefficient γ and penalty parameter C for all, except for the Brass Seventh model

where penalty parameter C differs from the others.

6.5.3.2 Artificial Neural Networks (ANNs) for Regression

The second machine learning algorithm for regression analysis that has been implemented is

using Artificial Neural Networks (ANNs). Building on the successful classification models

suggested by this technique, as detailed in Section 5.5.3, an ANNs algorithm has been tested

to learn regression models from the dataset discussed in Section 6.5.2. Here, the aim of this

machine learning technique is to establish the continued-values function f : X→Y , where X is

all the input data points xi representing the instrument combinations’ information and Y is all

the output values yi representing the calculated timbral values.

The ANNs algorithm uses the neural network.MLPRegressor function, which is a multi-

layer perceptron regressor method, also taken from the Scikit-Learn v0.18. Similar to the

SVM implementation presented in the previous section, the neural network.MLPRegressor

function has been applied onto each type of chord from the training dataset using each group

of instruments, thus creating two regression models for dyad, triad, and seventh chords. An

identical data input procedure to the one utilised in the previous method (Section 6.5.3.1)

has been followed. A parameter tuning process has also been performed for each regression
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Regression Model Activation Solver R2 Score
String Dyad Relu LBFGS 0.481

String Triad Relu LBFGS 0.389

String Seventh Relu LBFGS 0.316

Brass Dyad Relu LBFGS 0.764

Brass Triad Relu Adam 0.617

Brass Seventh Relu Adam 0.527

Table 6.7: Best neural network.MLPRegressor function’s parameters for each regression
model with corresponding coefficient of determination R2 produced with 10 000 samples (90%
training–10% testing).

model of the three types of chords to obtain the best ANNs parameter combination. Again,

the Scikit-Learn’s model selection.GridSearchCV function has been utilised to test

and compare the performances of different combinations of neural network.MLPRegressor

function parameters. Table 6.7 lists the neural network.MLPRegressor function’s parame-

ters for each of the six regression models with their corresponding coefficient of determination

R2, produced with 10 000 samples (90% training–10% testing). Here, the best regressions

models have been obtained with the rectified linear unit (ReLU) activation function, similarly

to the ANNs classification models (Section 5.5.3.6). For the solver parameters, two differ-

ent optimisation algorithms have performed best. For the Brass Triad and Brass Seventh,

the stochastic gradient-based optimiser adam (short for Adaptive Moment Estimation) pro-

duced the best regression models. For the other models, the solver L-BFGS (short for Limited-

memory Broyden-Fletcher-Goldfarb-Shanno) has proposed better continued-values functions.

Here, the aim of this optimiser is to minimise the function f (x), where x is a vector and f is a

differentiable scalar function [262].

6.5.4 Discussions

This section has presented the implementation of two machine learning algorithms designed

to predict timbral values from a set of instrument information to overcome the audio genera-

tion and timbre estimation processes. The training dataset, detailed in Section 6.5.2, has been

created by randomly generating 10,000 chord combinations for each of the three types and

the two groups of instruments. Each chord has been generated as an audio file, using audio

171



6. TIMBRAL DRIVEN INSTRUMENT COMBINATION

samples from the sound database, on which timbre estimations have been performed to calcu-

late its timbral values. This process resulted in the creation of a training dataset composed of

30,000 samples of string note combinations and 30,000 samples of brass, associated with their

calculated timbral values, and grouped by types of chord.

The two machine learning algorithms have been applied onto the training dataset to identify

a regression model for each type of chord, and thus be able to predict timbral values from the

information about the instruments, playing techniques, and pitches that compose the chords.

Following the success of the supervised learning techniques utilised for the classification task,

and discussed in Section 5.5.3, similar techniques have been adopted and implemented, but for

a regression task. The coefficient of determination R2 of each regression model using SVM

and ANNs algorithms can be found in Tables 6.6 and 6.7, respectively. These scores suggest

that the ANNs algorithm identified more accurate regression models for all the brass and string

chords, except for string’s seventh chords, where the SVM algorithm produced a slightly higher

score. These prediction scores are not as high as the classification scores from Chapter 5.

Nevertheless, a perfect prediction of the timbral values is not fundamental here, especially with

values using a 4 number float, but rather a close estimation, which will be used for identifying

the correspondent perceptual quality. Moreover, the audio generation and timbre estimation

processes can still be performed in order to calculate the true timbral values from the audio

file. An increase of training samples could result in an improvement of the regression model’s

performance, which is suggested by the learning curves of the SVM models shown in Figures

6.3 and 6.4, and in Figures 6.5 and 6.6 for the ANNs regression models. Nevertheless, these

performances suggest that the ANNs and SVM algorithms are capable of producing regression

models for predicting timbral values of chords generated by the system, without having to

generate an audio file and perform the timbre estimations process.
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Figure 6.3: Learning curves of the string instruments’ regression models produced by the SVM
algorithms.

Figure 6.4: Learning curves of the brass instruments’ regression models produced by the SVM
algorithms.
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Figure 6.5: Learning curves of the string instruments’ regression models produced by the ANNs
algorithms.

Figure 6.6: Learning curves of the brass instruments’ regression models produced by the ANNs
algorithms.
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6.6 Sequencing

This section reviews the different techniques that have been implemented to define the desired

perceptual quality, and also the number of generations of instrument combinations. This pro-

cess enables the users to construct a set of different combinations that will then be generated

sequentially by the system. The two different input methods are described in the following

sections.

6.6.1 Text Input

The first method to control the output of the generative system is by using a text input. Here,

the user is able to directly specify the desired perceptual quality for each generation, by manu-

ally entering breathiness, brightness, dullness, roughness, or warmth. Then, the list of verbal

attributes is used as parameter for the generation of instrument combinations, following the or-

der of the written verbal attributes. The number of verbal attributes contained in the list is also

utilised to define the number of combinations that will be generated. For example, if the list

of verbal attributes is [dullness, brightness, brightness, roughness], the system will generate

four chords, each matching their corresponding perceptual quality in the list.

6.6.2 Audio File Input

The second method for defining the sequence of generations is based on the input of an audio

file. This method enables the users to input an audio file, which will be used as a model for

the creation of the sequences of combinations. However, here, the system does not try to

match the instrument and note content of the musical pieces, which has been the objective of

other computer-aided composition systems (Section 2.5). Rather, the generation of sequences

is based on the evolution of the perceptual qualities throughout the musical piece. The details

of this method for defining and sequencing the output of the generative system are discussed in

the following sections.

6.6.2.1 Audio Split

The first step is to split the musical pieces containing traditional Western instruments into

shorter audio files, as it would not be possible to estimate timbre properties from the complete

audio file. It would also miss the perceptual qualities’ evolution, and thus, not create a sequence

of attributes.
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This method accepts only pieces as an uncompressed WAVE audio file. Once the audio file

is selected, the function slices the input at every n seconds interval, number being defined by

the user. By default, the piece is split into 4 seconds audio files, following the methods utilised

in Chapters 4 and 5. Longer audio file duration is possible, however, the timbre estimation

method may not perform accurately. Moreover, the short audio files are generated with a 20 ms

fade in and fade out, in order to avoid clipping, which could alter the spectral information of

the sound, and thus would return inaccurate timbre estimations. After the splitting process is

complete, and all the new audio files have been generated, the timbre estimation function can

be performed on the short audio files, in order to evaluate their perceptual qualities.

6.6.2.2 Timbre Analysis

Once the splitting process is complete, the newly generated audio files can be analysed to

evaluate their perceptual quality. Here, different timbre properties, corresponding to the five

verbal attributes utilised throughout this study, are calculated following the methods presented

in Section 5.3. The calculated timbre values are then processed into the timbre classification

system, detailed in Chapter 5, in order to retrieve their correspondent verbal attribute. The

audio files being analysed following the timeline of the original audio file, the retrieved verbal

attributes from the short audio files are listed in the same order. The structure represents the

evolution of the perceptual qualities of the musical piece. The sequence of verbal attributes can

be further manipulated if desired.

6.6.2.3 Creation of New Sequences

The users are able to use the sequence of verbal attributes retrieved from an audio file to specify

the type and number of instrument combinations to be generated by the system. They are

also able to manipulate that sequence, enabling them to alter the original evolution of the

perceptual qualities. Here, a Markov chain algorithm has been implemented, with its orders

needing to be defined by the user. This stochastic process [223], which have been applied

in several musical applications as mentioned in Section 3.4.3.1, bases its data generation on

its input data, which can be controlled by its orders. Thus, by selecting low-n orders, the

Markov chain algorithm will generate sequences of verbal attributes more or less distant to the

original sequence, while high-n orders will produce sequences reminiscent to the original set

of attributes. Moreover, higher orders need more data to train. This process enables the users to
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control the similarity of the generation of sequences of verbal attributes based on the evolution

of the original piece, which will then be used as input information for the generative processes.

Methods for manipulating the sequences of verbal attributes can be expanded by implementing

different algorithms and rules.
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6.7 Rendering of the Results

The instrument combinations matching specific perceptual qualities suggested by the system

are output as an audio file. This is possible with the use of the audio samples from the sound

database, described in Section 6.3.2. Here, a function has been designed to retrieve the audio

samples of the instrument notes corresponding to the chords generated by the system. This

is facilitated by the consistent formatting of the chord information, which follows the order

instrument → playing technique→ pitch. This formatting pattern has been adopted from the

structure of the sound database, described in Section 6.3.2.3. Thus, the function starts by

looking at the instrument’s name, then the playing technique, and finally the pitch to select the

audio sample. The different notes that compose the chords are then combined together, and

rendered as uncompressed audio files, encoded in the WAVE audio format, in order to keep

all the sonic information. The audio files are generated following the specifics of the sound

database files, which are detailed below:

. File type: WAV

. Sample rate: 44.1 kHz

. Bits per sample: 16

. Audio channel: 1 (mono)

Furthermore, the chord audio files are labelled following the order of the input sequence. This

enables the users to listen to the audio files chronologically, representing the evolution of the

perceptual quality as defined by the input information. Finally, details of each generated combi-

nation (instruments, playing techniques, and notes) are displayed, which information can then

be further processed by the users.
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6.8 Chapter Conclusions

The research developments presented in Chapters 4 and 5 have proposed a method for calcu-

lating timbre characteristics, representing perceptual qualities, from audio files of instrument

combinations, and a technique for automatic classification of sounds created by combining

instrument timbres according to their perceptual qualities. This chapter has reviewed the inves-

tigations that have been developed to harness these research outcomes into a computing system

designed to combine audio samples of instrument notes matching specific perceptual qualities.

The study for harnessing some of the methods put forward by the research discussed in the

previous chapters has been conducted throughout the development of a generative system for

string and brass instruments. The rationale for using only groups of string and brass instruments

was to reduce the instrument combination space, while still keeping the problem of combining

several instruments. Using two groups of different types of instruments also allows the system

to operate with different types of sound and outputs. Furthermore, string instrument ensembles

offer a broad range of musical possibilities with only a small number of instruments, which

have been used by many classical and contemporary composers. The objective of this system

was to generate combinations of notes that will be played simultaneously, which could be

an approach that encompasses the phenomenon of timbre blending. Here, the idea was to

distribute the notes across the different instruments, which could also be done similarly for

a larger musical ensemble. Thus, the techniques developed within this generative system for

a small group of string or brass instruments could then be applied to systems operating with

larger instrument ensembles.

The generative system presented in this chapter operates with audio files for its generative

process. Following the techniques utilised in the two timbral systems presented in the previous

chapters, the evaluation of the perceptual qualities is performed on the generated audio files.

Therefore, a sound database has been created, which consists of high-quality audio recordings

of notes from four string instruments (bass, cello, viola, and violin) and four brass instruments

(French horn, tenor trombone, C trumpet, and bass tuba). Each instrument also has three differ-

ent playing techniques: note-lasting, pizzicato-secco, and staccato for each string instrument,

and three techniques among note-lasting, brassy, staccato, decrescendo, and sforzando for each

brass instrument. In total, the sound database is composed of 462 different string instruments’

notes, as detailed in Table 6.1, and 415 for the brass instruments, as detailed in Table 6.2. A full

description of the content and structure of the sound database can be found in Section 6.3.2.
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The number of different notes comprised in the sound database mentioned above is already

a significant search space. Applying a random generative process on this search space would

result in notes being arbitrarily combined, and not necessary musically interesting. Therefore,

the rules for combining instrument notes have been based on the chord framework, a com-

positional technique often utilised in Western music. Here, three types of chords have been

implemented: dyad, triad, and seventh. Different variants of these chords have been selected,

as described in Section 6.4.1. Furthermore, these combinatorial rules are based on harmonic

sets, thus, with only a few basic rules, the generated combinations would sound more musical

than a combination of notes randomly generated. It is also possible to extend the instrument

combination techniques by modifying the rules of the chords, or by adding different composi-

tional frameworks. Moreover, different criteria have been integrated, which can be controlled

by the users in order to define their musical ideas. Here, the users are able to specify the differ-

ent instruments, playing techniques, and the desired perceptual quality for each chord, which

will be processed by the system to refine the search space in order to output chord combinations

that match the user’s musical ideas. The generative process being driven by timbre properties,

the selection of the desired perceptual quality is the main variable in the decision rules for

outputting a chord generated by the system. This involves calculating the timbral values of

each generated chord by creating an audio file, performing the timbre estimations function,

and then inputting the timbral values into the timbre classification system, in order to evaluate

its perceptual qualities and being able to compare it with the attribute defined by the users. It

is evident that this method was tedious and computationally expensive.

Following the success of the machine learning methods for classification tasks presented

in Chapter 5, two machine learning algorithms have been investigated in order to address the

audio generation and timbre estimation processes. These techniques have been used to create

regression models for predicting timbral values directly from a set of information about the

instruments, playing techniques, and notes that compose the generated chord. In order to train

the machine learning algorithms, a training dataset has been created by randomly generating

10,000 chord combinations for each of the three types of chords and the two groups of instru-

ments. These combinations have been generated as audio files in order to perform the timbre

estimation function to calculate their timbral values. Thus, the training dataset consisted of

30,000 samples of string instrument note combinations, and 30,000 samples using brass in-

struments, associated with their calculated timbral values, which have been grouped by types

of chords, as detailed in Section 6.5.2. SVM and ANNs algorithms have been applied to the
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training dataset to create two regression models for each of the three types of chords. Here,

the ANNs algorithm has proposed the best regression models, as suggested by the results pre-

sented in Section 6.5, and thus, offering a method for predicting timbral values directly from

the instruments’ information of the generated chords. These regression models allow a quicker

process for retrieving the chords’ timbral values, which accelerates the comparisons between

the chords’ perceptual qualities and the attributes selected by the users.

The last part of this chapter has discussed the functions designed for handling the input and

output information of the generative instrument combination system. As mentioned previously,

different criteria can be controlled by the users, with the perceptual quality parameter being the

fundamental variable in the decision rules for outputting the chords generated by the system.

Two methods for sequencing the desired perceptual qualities have been implemented. The first

method involves writing the sequence of verbal attributes directly, while the second uses an

audio file to create a sequence. For the second method, the audio file is processed in order

to retrieve the evolution of perceptual qualities throughout the musical piece, following the

techniques detailed in Section 6.6, and thus creating a sequence of attributes based on the

piece. A Markov chain algorithm has also been implemented, enabling the users to manipulate

the sequences of verbal attributes obtained from the analysis of the audio files, creating new

sequences with different levels of reminiscence. In regards to the outputs of the system, the

generated chords can be rendered as an audio file, enabling the users to evaluate sonically the

instrument note combinations simulated by the system. Information about instruments, playing

techniques, and notes are also displayed.

The research developments presented within this chapter have proposed methods for incor-

porating different timbre properties into a computing system designed to generate combinations

of instruments’ notes, using techniques suggested by the systems discussed in Chapters 4 and

5. This generative instrument combination system for string and brass has offered an answer

to RQ4 by using timbre properties. Such information is utilised to represent perceptual quali-

ties and is the fundamental criterion for a generative process designed to output combinations

of notes to be played simultaneously by several instruments. Such methods harnessing tim-

bre properties could be applied into other computing systems that process musical instrument

combination. Here, the processes for combining instruments are based on selecting adjectives

representing perceptual qualities the instrumental mixtures would produce, and thus, matching

combinations of notes with types of sound, or textures, instead of trying to match the content

of a target sound, as used in other systems (Section 2.5). The use of AI methods has enabled
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the processing and manipulation of timbre properties, underlying perceptual qualities of sound,

and the prediction of timbral values from instrument information, thus, bypassing the need to

perform acoustic properties calculation on audio sources in order to retrieve timbral informa-

tion. The methods developed for the present generative system put timbre and its perception as

the central element for addressing the challenge of combining instruments and notes.
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6.9 Chapter Summary

This chapter has presented the investigations that have been carried out to harness timbre char-

acteristics into computing systems, which has been done throughout the development of a

generative system for sampled notes of string and brass instruments.

First, the text has provided information about the programming environment and the struc-

ture of the instrument database that has been utilised. Here, audio samples from four types

of string instruments and four types of brass instruments, with three playing techniques for

each, have been selected. The chapter continued with discussions about the search space for

combining instruments’ notes and the different parameters that can be defined by the users,

details of which can be found in Section 6.4. Here, the note combinations are based on a chord

framework, which can be expanded by adding other chord rules or compositional frameworks.

Nevertheless, the initial method for estimating the perceptual quality of the generated chords,

which involves an audio generation and timbre estimation process, happened to be tedious and

computationally expensive.

The second part of this chapter has presented the investigations into using machine learning

algorithms to bypass the need for the audio generation and acoustic analysis of each generated

chord. Following the success of the supervised learning methods for timbre classification, dis-

cussed in Section 5.5.3, similar techniques have been implemented for identifying a regression

model for each of the three types of chords. The SVM and ANNs algorithms have been ap-

plied to a training dataset composed of 30,000 randomly generated string chords and 30,000

randomly generated brass chords with their corresponding calculated timbral values. Here, the

regression models generated by the ANNs algorithms has performed the best prediction scores,

suggesting that this technique is able to predict the timbral values of a chord directly from the

information about its note combination. Thus, this method has been a solution to address the

need of the computationally expensive audio generation and timbre estimations processes.

The chapter continued with discussions about the two methods that have been designed for

the sequencing of the instrument combinations. Here, the users can define the desired percep-

tual qualities by writing the verbal attributes. They can also import an audio file containing

traditional Western instrument, which is processed by the system in order to retrieve its percep-

tual qualities throughout the musical piece. This creates a sequence of verbal attributes which

can be used as input information for the generative process. A Markov chain algorithm has

been implementing, which enables the users to create new sequences of verbal attributes based
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on the evolution of perceptual qualities of the audio file. Finally, the text has discussed the

function for rendering the combinations of instrument notes generated by the present system

as an audio file. Information about utilised instruments, playing techniques, and notes are also

displayed, which can be used by the users for further processing.

The investigations for harnessing the findings from the research developments discussed in

Chapters 4 and 5 into a generative instrument combination system has highlighted some key

outcomes, which are summarised below:

• Application of timbre estimation and automatic timbre classification techniques into a

computing system for combining sampled instrument notes.

• Use of timbre properties to drive generative instrument combinations process.

• Methods for predicting timbral values from instrument information of generated chords.
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Generated Instrument Combination
Examples

7.1 Chapter Overview

This chapter presents a selection of examples to demonstrate the functioning and abilities of

the timbral driven generative instrument combination system discussed in Chapter 6. These

examples illustrate the types of outputs that can be expected by such a system designed to

generate combinations of sampled instrument notes, using two different types of inputs (text

and audio).

After defining the scope of this chapter and the examples selected to illustrate the capa-

bilities of the techniques developed throughout this study, the text starts by presenting combi-

nations of instrument generated following text input information. Here, one example, either

using groups of string or brass instruments, are described and discussed for each of the five im-

plemented timbral descriptors. The second part of the chapter details sequences of instrument

combinations generated using different input information, in order to illustrate the sequencing

possibilities. The chapter then concludes with discussions and reflections on the various sets

of examples presented throughout the text.

The structure of this chapter is as follows:

. 7.2 - Introduction

. 7.3 - Examples of Instrument Combinations

. 7.4 - Sequencing Combinations of Instrumental Timbres
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. 7.5 - Chapter Conclusions

. 7.6 - Chapter Summary
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7.2 Introduction

The research findings presented in Chapters 4, 5, and 6 have led to the development of a

computing system capable of generating combinations of sampled instrument notes matching

specific perceptual characteristics. A selection of examples are presented within this chapter,

in order to illustrate the abilities of the generative system.

This chapter intends to highlight the types of instrument combinations that can be generated

using the timbral driven system detailed in the previous chapter. The selected approach for

developing the system is not to generate complete musical sequences. Rather, the objective is

to establish techniques and framework for systems to generate musical materials to be further

processed by the users. It also aims to provide techniques for the analysis and control of timbral

qualities emerging from combining instrument timbres.Thus, the objective of this chapter is to

demonstrate the abilities of the techniques and systems that have been established for analysing

and controlling instrumental timbre combinations.

It is important to mention that all the examples described in this chapter do not aim to

present any musical characteristics except the note combination techniques being based on

Western music chords framework. These short examples are only shown to illustrate the types

of outputs generated by the system and demonstrate the functioning of the computing system.

The examples have been selected from an engineering point-of-view to highlight the compli-

ance of the outputs to the input parameters and not from a musically trained person approach.

Sections onwards detail various combinations of audio samples of instrument notes created

by the generative system, using different types of input information and ensembles. Sampled

instrument notes have been taken from the audio files database detailed in Section 6.3.2. Here,

the audio samples are all labelled using the same format: instrument → playing technique→
note. This labelling is utilised to retrieve the musical information of the sample from its file-

name. It is also essential in the process for selecting the audio files to combine. Each example

presented in this chapter has been rendered as an audio file, where instrument combinations

output by the system have been concatenated without any further audio processing. All ex-

amples are available online at the following address: http://www.aurelien-antoine.fr/

thesis_audio/.
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7.3 Examples of Instrument Combinations

This section presents a selection of instrument combination examples generated by the timbral

driven generative system detailed in Chapter 6. One example for each of the five implemented

timbral descriptors (Breathiness, Brightness, Dullness, Roughness, and Warmth) using groups

of string or brass instruments are considered.

Example 1 - Breathiness The first example has been generated using the timbral descriptor

Breathiness as a target for combining 2 brass instruments from the ensemble horn, trombone,

trumpet, and tuba. The combination of instrument notes presenting qualities of the attribute

Breathiness has been generated by the system with the following information (corresponding

to the audio file labelling format and displayed here as instrument, playing technique, note):

Trumpet, sforzando, C]4

Tuba, decrescendo, F3

Figure 7.1 shows a spectrogram of the audio file generated by combining the sampled instru-

ment notes detailed above. Here, we can note noise in the high frequencies (the yellow parts

above 6 kHz), a characteristic related to the attribute Breathiness (Section 4.5).
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Figure 7.1: Spectrogram of the audio file generated for the instrument combination of Example 1
- Breathiness.

188



7.3 Examples of Instrument Combinations

0.0 0.4 0.7 1.1 1.4
Time (s)

0

2500

5000

7500

10000

12000

14500

17000

19500

22000

Fr
eq

ue
nc

y 
(H

z)

140

120

100

80

60

40

20

In
te

ns
ity

 (d
BF

S)

Figure 7.2: Spectrogram of the audio file generated for the instrument combination of Example 2
- Brightness.

Example 2 - Brightness The second example presents an instrument combination for the

timbral descriptor Brightness. Here, 3 string instruments have been combined by the system,

with the following details for each sample:

Violin, note-lasting, F6

Viola, pizzicato-secco, D3

Bass, note-lasting, A]3

A spectrogram of this instrument combination is presented in Figure 7.2. It shows that this

audio file contains a large amount of energy in the high frequencies, a feature of the Brightness

quality, and demonstrated by the orange and red parts at the top.

Example 3 - Dullness For the timbral descriptor Dullness, the combination has been gener-

ated with 2 string instruments, selected from the ensemble bass, cello, viola, and violin. The

suggested notes were as follows:

Cello, pizzicato-secco, D]3

Bass, pizzicato-secco, G2

Figure 7.3shows a spectrogram of this combination, where we can denote a low amount of high

frequencies represented by the presence of green and blue colours above 2.5 kHz.
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Figure 7.3: Spectrogram of the audio file generated for the instrument combination of Example 3
- Dullness.

Example 4 - Roughness The instrument combination for the attribute Roughness has been

generated with 5 brass instruments. The following sampled notes were combined:

Trumpet, sforzando, G]5

Trumpet, note-lasting, F]4

Tuba, sforzando, C]3

Trombone, sforzando, F2

Horn, note-lasting, A]2

A spectrogram of the audio file generated for this instrument combination is shown in Figure

7.4. Here, we can note the presence of high energy in different frequency bandwidths, rep-

resented by the orange and red horizontal lines in the figure. Furthermore, distances between

bandwidths are relatively short, a characteristic of the sensation of roughness.

Example 5 - Warmth Finally, the combination for the timbral descriptor Warmth as the tar-

get has been generated with 3 string instruments selected from the ensemble bass, cello, viola,

and violin. The information about each sample was as follows:

Violin, pizzicato-secco, F]4

Cello, pizzicato-secco, B2
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Bass, staccato, D]2

Figure 7.5 presents a spectrogram of this instrument combination. It shows that the energy is

mainly in the low frequencies, characterised by the orange and red colours below 2500 Hz.

This section has presented an example of instrument combinations for each of the five

implemented timbral descriptors. Here, the information about the sets of instruments to com-

bine and the target descriptors was manually input in the generative system. Such examples

have illustrated the methods for generating individual instrument combinations matching de-

fined timbral qualities. Furthermore, the use of different instrument types and ensembles have

demonstrated the abilities of the system to generate combinations involving a wide range of

sonic possibilities. These examples also depict the types of outputs that can be expected using

this sampled instrument note combination system.
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Figure 7.4: Spectrogram of the audio file generated for the instrument combination of Example 4
- Roughness.
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Figure 7.5: Spectrogram of the audio file generated for the instrument combination of Example 5
- Warmth.
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7.4 Sequencing Combinations of Instrumental Timbres

The second part of this example chapter presents a selection of sequences of instrument combi-

nations. Three examples using different sequencing criteria are discussed in order to highlight

the potential of the system’s combination abilities.

Example 1 - From audio file analysis The first example has been generated from processing

an audio file. The objective of using this method is to produce sequences that follow the timbral

structure of the file. Here, the timbre estimations have been performed on an arbitrarily selected

8 seconds excerpt of Beethoven’s Symphony #5 - Allegro Con Brio. This process produced a

sequence of four timbral descriptors: Dullness, Brightness, Roughness, and Brightness. This

set has been input in the system, which has generated a combination of brass instruments for

each of the four timbral descriptors. The information about the instruments, playing techniques,

and notes for each combination is detailed in Table 7.1.

The sequence of instrument combinations has been rendered as an audio file. Figure 7.6

shows a spectrogram of this output. Here, we can note a small amount of energy in the high

frequencies for the first combination, whereas in the second and the fourth, there is a large

presence of high frequencies. For the third instrument combination, the spectrogram displays

high energy in several frequency bandwidths (represented by the red colours in horizontal lines)

with short distances between them, a characteristic of the attribute Roughness.

Example 2 - From high brightness to low brightness For the second example, the sequence

of timbral descriptors has been manually defined. Here, the system was asked to generate four

string combinations for the attribute Brightness. Then, these combinations were organised

from high brightness to low brightness. Table 7.2 details the instrument information for each

combination and Figure 7.7 presents a spectrogram of the rendered output. We can see that the

energy in the high frequencies decreases throughout the combinations of the sequence.

Example 3 - From dullness to roughness The third example presents a sequence of four

combinations generated with brass instruments. The list of timbral descriptors consisted of two

combinations for Dullness and two for Roughness. Then, the sequence was organised from a

combination with a high dullness value to one with a lower value for the first half, then from

a low roughness value combination to a higher roughness value combination for the second
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Combination 1

Dullness

Combination 2

Brightness

Combination 3

Roughness

Combination 4

Brightness

Figure 7.6: Spectrogram of the audio file generated for the sequence of instrument combination
for Example 1 - From audio file analysis.

Combination 1

Brightness

Combination 2

Brightness

Combination 3

Brightness

Combination 4

Brightness

Figure 7.7: Spectrogram of the audio file generated for the sequence of instrument combinations
for Example 2 - From high brightness to low brightness.
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Instrument Playing technique Note

Combination 1 - Dullness
Tuba Decrescendo G2

Trombone Staccato B1

Combination 2 - Brightness
Trumpet Sforzando C5

Horn Staccato E2

Combination 3 - Roughness
Trombone Sforzando E4

Horn Brassy C3

Combination 4 - Brightness

Horn Brassy C]5
Trumpet Sforzando G]4

Trombone Staccato F3
Tuba Staccato C2

Table 7.1: Details of the instrument combinations for the sequence of Example 1 - From audio file
analysis.

Instrument Playing technique Note

Combination 1 - Brightness
Violin Staccato A6
Cello Note-lasting C]5

Combination 2 - Brightness

Violin Staccato F6
Viola Note-lasting C5
Cello Staccato G]3
Bass Note-lasting C]3

Combination 3 - Brightness
Violin Staccato G]4
Viola Note-lasting C4
Bass Pizzicato-secco D]3

Combination 4 - Brightness
Violin Staccato A4
Bass Staccato C]4

Table 7.2: Details of the instrument combinations for the sequence of Example 2 - From high
brightness to low brightness.

part. The instrument information for each combination is detailed in Table 7.3. Similarly to

the previous examples, the sequence have been rendered and a spectrogram of this audio file is

shown in Figure 7.8. Here, we can note that the first combination have a low amount of high

frequencies, represented by the lack of warm colours above 2500 Hz. The second combination

presents further energy in the high frequencies than its predecessor, demonstrating a lesser dull

sound. The other two combinations have a lot of energy in different frequency bandwidths,
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Instrument Playing technique Note

Combination 1 - Dullness
Tuba Decrescendo G2

Trombone Staccato B1

Combination 2 - Dullness
Trumpet Staccato G]4

Tuba Sforzando E3

Combination 3 - Roughness
Trumpet Sforzando D]4

Horn Brassy G]3
Tuba Sforzando C3

Combination 4 - Roughness

Trumpet Staccato D]5
Horn Brassy E4
Tuba Sforzando G]3

Trombone Sforzando B3

Table 7.3: Details of the instrument combinations for the sequence of Example 3 - From dullness
to roughness.

with even higher energy in the bandwidths for the last combination. Furthermore, the distances

between the bandwidths are short, corresponding to sounds having roughness qualities. This

example illustrates the potential for creating sequences of instrument combinations going from

one timbral attribute to another one.

The different examples presented in this section have demonstrated different approaches

for generating sequences of instrument combinations. These sequencing methods can be the

result of processing an audio file in order to estimate its timbral structure and then use this in-

formation as sets of verbal descriptor to generate. The other method utilises the same approach

as discussed in the examples in Section 7.3, where descriptors are manually defined. Here,

different types of ordering techniques can be set. For example, it is possible to generate combi-

nations matching only one timbral quality and then order them in an ascending or descending

order. Another approach is to use ordering methods to create transitions from one attribute to

an other. The different modes utilised for the aforementioned examples introduce the basis for

constructing sequences of instrument combinations.
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Combination 1

Dullness

Combination 2

Dullness

Combination 3

Roughness

Combination 4

Roughness

Figure 7.8: Spectrogram of the audio file generated for the sequence of instrument combinations
for Example 3 - From dullness to roughness.
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7.5 Chapter Conclusions

Several examples have been described in this chapter to illustrate the functioning and abili-

ties of the trimbral driven generative instrument combinations system discussed in Chapter 6,

which has incorporated the techniques identified from the research developments presented in

Chapters 4 and 5. Such examples have also provided material to exemplify the methods for

inputting combination’s criteria into the generative system.

The first set of examples have discussed one generated combination for each of the five

timbral descriptors. Here, different groups of string and brass instruments have been used for

these combinations. Furthermore, the criteria about the number of instruments and descriptors

were manually defined. The purpose of these examples was to illustrate the data handling and

output techniques of the system. Moreover, the spectrograms of the rendered audio files depict

the spectral contents of the different instrument combinations, highlighting their correlation

with the implemented timbre estimation methods (Section 4.5).

After demonstrating the abilities for generating one instrument combination matching a

specific timbral attribute, the second set of examples have discussed different methods for

sequencing single events. One approach is to apply timbre estimations on audio files containing

combinations of traditional Western instruments. This process is performed to retrieve the

timbral structure and create a sequence of the estimated timbral descriptors, which will be

subsequently utilised by the generative system. Another possible method is to generate several

instrument combinations for one timbral descriptor and then sequence the outputs in ascending

or descending order. This would offer a timbral evolution of the sonic qualities created by the

instrument mixture. The last presented mode also utilises the ordering approach. However, the

system is asked to generate combinations for two different timbral attributes. The first half of

the sequence consists of combinations matching the first attribute in descending order. For the

second half, the instrument combinations correspond to the second timbral descriptor and are

sequenced in descending order. This approach proposes to create transitions from one attribute

to an other.

This selection of examples has depicted a wide range of outputs highlighting their relation-

ship to the input parameters. It has illustrated the type of instrument combinations that can

be expected from the timbral driven generative system. As mentioned previously, the aim of

this research is not to develop techniques to generate complete musical pieces. Instead, it is to

provide methods and systems to aid composers by creating material to build on. It also aims to

198



7.5 Chapter Conclusions

establish techniques for the analysis and control of timbral qualities emerging from instrument

combinations. The spectrograms have shown the correlation between the suggested acoustic

calculations for each timbral descriptor (Section 4.5) and the spectral content of the instrument

combinations output by the system. It highlights that the different methods for manipulating

timbre properties from processing audio files have successfully been harnessed in the timbral

driven generative system. However, with the nature of the sound created by combining in-

strument notes and the variations in an individual’s audio perception, techniques merely based

on signal processing are not enough to encompass all the properties related to the issue of in-

strumental timbre and timbral combinations. Suggested instrument combinations can present

characteristics of a timbral attribute in its spectral content, but the correlation with its percep-

tion is not always compelling. Further investigations are required to address this issue and

expand the identified techniques based on processing audio files towards standard methods for

analysing and controlling perceptual properties of instrumental timbre combinations.
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7.6 Chapter Summary

This chapter has presented different sets of instrument combinations generated using the system

described in Section 6.3. These examples have been utilised to demonstrate and illustrate the

abilities of the techniques and systems developed throughout the research project.

First, the text has detailed one example of instrument combination for each implemented

timbral attribute. Here, the information about descriptors and instrument numbers and types

were manually input. Spectrograms of the audio examples have been depicted in order to

demonstrate the link between the spectal content of the instrument combinations and the im-

plemented methods for timbre estimation. The second set of examples have focused on de-

scribing approaches for sequencing single events. Here, a mode involving timbral estimations

of audio files to create sequences of descriptors has been described. The other modes propose

to sequence instrument combinations matching one timbral quality in ascending or descending

order and to create transitions between two attributes.

The examples detailed in this chapter have illustrated the research findings presented in

Chapters 4, 5, and 6. They have also provided material to exemplify the methods for input in-

formation and the types of instrument combination outputs that can be produced by the timbral

driven generative system.
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8

Conclusions and Future Work

8.1 Chapter Overview

This chapter provides a summary of the different findings produced by the research develop-

ments presented within this thesis. Discussions on the different contributions are also provided,

which give answers to the research questions listed in Section 1.3.1. The second part of this fi-

nal chapter suggests avenues for future research. Such ideas could be further explored in order

to expand the findings and applications of the present study. This section also suggests poten-

tial solutions to overcome some of the limitations that have been identified from the research

developments discussed throughout this document.

The structure of this chapter is as follows:

. 8.2 - Research Conclusions

. 8.3 - Future Work

201



8. CONCLUSIONS AND FUTURE WORK

8.2 Research Conclusions

With the increase of accessibility and performances of the technology, composers, and more

generally music enthusiasts, can experiment with a broad range of sophisticated tools to aid

their compositional process. Such tools have successfully processed and manipulated many

musical information, such as pitch, rhythm, and velocity. However, information related to

timbre, especially in the context of combining instrument sounds, are yet to be completely har-

nessed in computing systems designed to aid compositional tasks. Some attempts at developing

systems for composition practices involving several instruments have been carried out during

the last decade, as discussed in Section 2.5. While some systems have proposed interesting

approaches and methods, many challenges related to instrument combinations still require fur-

ther investigations. Therefore, the aim of this research has been to establish techniques for the

analysis and control of instrumental timbre and timbral combinations. This study has been con-

ducted through the development of three different systems: a timbral ranking system, a timbral

classification system, and a timbral driven generative instrument combinations system.

This investigation of harnessing timbre properties for use in computer-aided orchestration

systems was underpinned by four research questions, which guided the evolution of the dif-

ferent implementations. The following sections provide a summary and conclusion for each

of these, followed by a list of the different contributions to knowledge that were not directly

related to the research questions.

8.2.1 RQ1: Which sonic element can be used to evaluate and represent the per-
ceptual quality of the sound emerging from a mixture of instruments by
processing audio recordings of instrument combinations?

Information to answer RQ1 has been suggested by the discussions about human perception

and timbre presented in Chapter 2. Here, it was identified that one attribute of sound is con-

veying perceptual information: timbre. This complex and multidimensional aspect of sound

has been the subject of numerous studies for over a century, and continues to be an impor-

tant area of research. Notwithstanding, Section 2.4 has highlighted that timbre can represent

different properties. For this study, two main timbral paradigms have been examined. The

first paradigm is related to instrument timbre, which are the properties that characterise an in-

strument’s sound. This aspect is important in this study, due to processing audio samples that

consist of recordings of instrument sounds. The second paradigm uses timbre to represent the
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quality of a sound, which can be related to the notion of the ‘colour’ of a sound. Combining

several instruments offers the possibilities to create unique textures. Here, timbre encompasses

the different perceptual properties that allow the listener to experience these textures emerging

from the instrumental mixtures, whether from polyphonic timbre, or from the phenomenon of

timbre blending.

Discussions from Section 2.4 have highlighted that timbre characteristics can be retrieved

by performing different acoustic calculations to measure various spectral and temporal infor-

mation. Furthermore, due to timbre sometimes representing qualities of sounds, different words

and adjectives, such as bright, dark, pure, or sharp, are often used to describe timbre charac-

teristics. Such descriptors can be metaphors and analogies associated with the senses of vision

and touch for example, representing perceptual qualities. Therefore, in order to alleviate the

need for acoustic and psychoacoustic expertise, the use of verbal attributes to represent tim-

bre properties were selected and not only their acoustic correlates. The objective was to make

the presented approach accessible to a broad audience. However, even with the significant

amount of studies on timbre, there are mixed conclusions in the definition of the acoustic cues

correlating with the verbal attributes. In regards to polyphonic timbre, which is inherent to

sounds created by combining instruments, the suggested methods are even more disparate, with

some suggesting source separation prior to applying timbre estimations, while others stated that

acoustic calculations could be applied to the combined sounds.

Due to the lack of agreed techniques for estimating timbre characteristics, the initial step of

this research was to evaluate methods for calculating timbre properties from sources containing

instrument combination sounds. Such audio sources involves performing acoustic calculations

on polyphonic timbres. This investigation has been realised through the development of a

timbral ranking system, designed to overcome the tedious task of going through the numerous

solutions suggested by computer-aided orchestration systems (Section 2.5), which is one of

their limitations. The objective of this initial system was to propose a ranking of the suggested

solutions according to specific sound qualities, as defined in Section 4.3. Here, five verbal

attributes, representing different sonic qualities, have been selected and used throughout this

research: breathiness, brightness, dullness, roughness, and warmth. The rationale for selecting

these verbal attributes has been discussed in Section 4.4. The methods to estimate the selected

timbral attributes have been described in Section 4.5. Here, the calculations of the acoustic cues

correlating with verbal attributes have been performed without applying a source separation

process, but directly onto the instruments combinations as a single sound.
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The system discussed in Chapter 4 has been designed to perform the acoustic analysis

of each of the five selected verbal attributes directly onto audio files of recorded instrument

sounds, in order to calculate timbral values. This process provided methods to compare the

timbral values in order to define ranking of all the analysed audio files, as described in Sec-

tion 4.6. A perceptual experiment, detailed in Section 4.7, has been conducted to evaluate the

accuracy of the methods implemented for calculating the perceptual qualities of audio record-

ings of instrument combinations. The results of this perceptual experiment have suggested that

the timbral values calculated from the estimations of specific acoustic cues were in correlation

with the participants’ ratings, thus following the human perception mechanism. Therefore, the

development of this timbtral ranking system has contributed in establishing methods to evalu-

ate specific perceptual qualities from sounds emerging from instrument mixtures by retrieving

specific timbre characteristics. The results of the perceptual experiment have shown that the

acoustic calculations, detailed in Section 4.5, could be applied directly onto global instrument

combination sounds, without the need to perform a source separation process. This research de-

velopment has also suggested that using verbal attributes to describe perceptual qualities could

be used to represented timbre characteristics, which has been supported by the developments

presented in Chapters 5 and 6.

8.2.1.1 RQ1 Final Remarks

A partial answer to RQ1 had been suggested by the discussions about human perception and

musical timbre, detailed in Chapter 2. However, RQ1 has been addressed more specifically

with the implementation of the timbral ranking system presented in Chapter 4. This system has

proposed a solution to overcome the tedious task of having to listen to the numerous instru-

ment combination solutions suggested by computer-aided orchestration systems, which was

identified by experimenting with the Orchids program [14]. Furthermore, the use of timbre to

estimate perceptual qualities from audio recordings of instrument sounds could be applied in

the process of searching through audio file libraries. Estimating timbre characteristics could

also be used in the decision rules of generative audio processes, as it has been harnessed in the

developments discussed in Chapter 6.
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8.2.2 RQ2: How to compare timbral values resulting from the analysis of differ-
ent acoustic properties?

RQ2 is a follow up of the answer to RQ1, which has determined that timbre characteristics

could be used to evaluate perceptual qualities from audio recordings of instrument sounds.

Performing the different calculations of the acoustic properties resulted in obtaining timbral

values for each verbal attribute. While it is possible to compare timbral values from the same

verbal attribute, which was the approach selected in the timbral ranking system discussed in

Chapter 4, it was not possible to compare the timbral values across the five verbal attributes,

due to the different natures of acoustic properties. This limitation has been identified from

the use of the timbral ranking system and the results of the perceptual experiment, reviewed

in Section 4.7. Here, the system was still outputting a ‘top’ result, even if the audio files

did not have the perceptual quality of an attribute, due to the algorithm comparing timbral

values from a single verbal attribute, as mentioned in Section 5.2. Similarly to the definition of

acoustic cues correlating with timbre characteristics, mixed conclusions have been suggested

from the different studies trying to propose metrics for the calculated values, which means that

no thresholds have been defined to determine the signification of the calculated timbral values.

Due to the lack of agreed metrics, it was necessary to establish a scale for each verbal

attribute, in order to understand the characteristics of the calculated timbral values. The defi-

nition of the scales has been realised with the analysis of numerous audio files, consisting of

recordings of orchestral pieces and combinations of instruments created by computing systems.

The initial data gathering process consisted of an analysis of 50 orchestral pieces. Here, the

audio files have been split into 1, 2, 3, 4, and 5 second audio samples, as described in Sec-

tion 5.4.2. The rationale for splitting the long audio files is due to timbre properties involving

temporal information, thus, analysing longer audio files would not provide meaningful values.

This initial dataset has been further extended with the analysis of 205 extra orchestral pieces.

This resulted with gathering over 236 000 values for each of the five verbal attributes, as de-

tailed in Section 5.5.2.2. This large set of timbral values has contributed to establish a scale for

each of the verbal attributes by performing statistical processes, which have also allowed for

the rescaling of all the values, and therefore, have a comparative scale across the timbral values

resulting from different acoustic calculations.

Section 5.4.4 has detailed the initial approach designed to define methods to classify instru-

ment combinations sounds automatically according to their perceptual qualities. These meth-
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ods were based on distance calculations and did not produce positive results. Here, distances

measuring were not able to harness the timbral value characteristics for each attribute, and thus,

such methods could not be used to compare calculated values in order to identify the dominant

verbal attribute of an audio file. The results of this development suggested that individually

comparing timbral values for each attribute was not providing complete information about the

perceptual qualities’ content of audio files, which may be due to the multidimensionality of

timbre.

8.2.2.1 RQ2 Final Remarks

An answer to RQ2 has been accomplished by performing a data gathering process in order

to obtain significant data to understand the characteristics of the timbral values of each verbal

attribute. Thanks to different statistical functions, it has been possible to determine a scale

for each of the five selected attributes. With the establishment of scales, rescaling processes

could be applied on the timbral values, which allowed the comparison of the data from different

acoustic calculations, although the distance measuring methods utilised in Section 5.4 have not

been able to harness the timbre characteristics from the calculated timbral values. The lack of

agreed metrics makes the implementation and use of timbre properties in computing systems

a challenging task, which is supported by the results of the distance calculation methods, for

instance. Studies investigating this issue could benefit in establishing standards about the num-

bers calculated from estimating the different acoustic cues correlating with timbre properties.

8.2.3 RQ3: Which methods taken from the field of Artificial Intelligence (AI)
could help in computationally analysing and identifying the perceptual
properties of instrument combination sounds using values from musical
timbre calculations?

RQ3 has been addressed with the developments presented in Chapter 5. Following the lim-

itations of the timbral ranking system discussed in Chapter 4, which was suggesting a ‘top’

result despite a lack of the specific perceptual quality in the sound emerging from combining

instrument notes, it was necessary to establish a method to identify the dominant quality of an

audio file. The initial classification approach, mentioned in the answer to RQ2, and detailed

in Section 5.4, has been based on distance calculations. However, the results of the different

distance measures’ testing, detailed in Section 5.4.3, have shown that this approach was not
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capable of identifying the dominant perceptual quality from an instrument combination audio

file using the calculated timbral values.

Following the negative performances of the initial classification approach, it was decided

to investigate different machine learning algorithms in order to develop classification models

based on timbral values. First, an unsupervised learning method was studied, designed to learn

classification models by performing exploratory data analysis. The aim of this approach was to

identify patterns or groupings in sets of unlabelled data. Therefore, a k-means algorithm was

implemented, detailed in Section 5.5.2, and performed on the set of timbral values created to

define the comparative scale proposing an answer to RQ2, and described in Section 5.5.2.2,

which consisted of over 236 000 data samples. This machine learning method has been able to

group similar timbral values into five clusters, representing the five verbal attributes. However,

this method did not provide direct information on the names of the clusters, representing the

different perceptual qualities, due to the use of unlabelled samples. Here, an evaluation of the

clusters was required, which involved listening and labelling audio files in order to label the

clusters. While the k-means algorithm has been able to suggest five clusters from set of timbral

values, as discussed in Section 5.5.2.5, the extra cluster evaluation task and the lack of control

in the learning process may be detrimental to the use of this method for classifying perceptual

qualities of instrument combination sounds from timbral values.

From this observation, two supervised learning algorithms, where classification models are

created from analysing sets of examples, have been investigated. Due to the algorithms requir-

ing examples, the initial task was to create a training dataset. Here, 1250 samples were labelled,

representing 250 examples for each of the five verbal attribute, as detailed in Section 5.5.3.2.

The first supervised learning algorithm used a Support Vector Machines (SVM) method, de-

scribed in Section 5.5.3.3, while the second was based on Artificial Neural Networks (ANNs),

as detailed in Section 5.5.3.6. Both methods have scored successful classification rates (0.978

for SVM and 0.984 for ANNs), which has suggested that supervised learning algorithms were

appropriate methods for automatically classifying sounds according to their perceptual qual-

ities, using the timbral values calculated from specific acoustic properties. However, due to

the learning mechanism of the supervised learning algorithm, a prior listening and labelling

process is still required in order to create the training corpus.

The listening and labelling process required for the creation of the training dataset for the

supervised learning algorithms was utilised to propose a solution to the challenges of harness-

ing aspects of human perception in computing systems. Here, this process has been integrated
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in the development of a reinforced supervised learning algorithm, which has been detailed in

Section 5.5.4. By putting a weight value on each training sample, the learning mechanisms

emphasise on the training samples with the highest weight values, and therefore influence the

learning process. This reinforced supervised learning method has been implemented with a

SVM algorithm, which processes the weight values in its input data. A function has been

designed to allow users to alter the weight values by creating their own training corpus and

defining their own values, or by evaluating, and thus altering, the standard training dataset de-

tailed in Section 5.5.3.2, which has been utilised for the supervised learning algorithms. This

function provides a method to personalise the training models to the users’ preferences, and

therefore, create classification models harnessing individuals’ audio perception.

The research developments presented in Chapter 5 have addressed RQ3, by suggesting that

supervised learning algorithms based on SVM and ANNs methods have been able to generate

classification models capable of identifying the perceptual quality of an instrument combina-

tion from its calculated timbral values. These developments contributed in defining an appro-

priate method for harnessing the values of specific timbre properties, offering a solution to the

issue of comparing different types of values mentioned in the answer to RQ2. Furthermore,

the development of a reinforced supervised learning method has proposed a solution to address

the challenges of variations in human perception, by enabling the user to control aspects of

the learning mechanisms. Such methods have offered an approach to overcome the need of

listening to audio files in order to manually identify their perceptual qualities.

8.2.3.1 RQ3 Final Remarks

The development of the timbre classification system presented in Chapter 5 has provided in-

formation to address RQ3. This system was designed to overcome the limitation of the timbral

ranking system discussed in Chapter 4, which was only individually comparing the timbral

values from a defined set of audio files. The development of a method capable of automatically

estimating the perceptual quality of instrument combination sounds could benefit different pro-

cesses. For example, this method could offer a solution to overcome the time-consuming task

of listening to a large audio sample database, by offering information about perceptual quali-

ties and timbre content, which may not be provided by MIR tools, and thus, basing the search

query on sonic qualities. Such developments could also be integrated into generative audio

systems, enabling an automatic perceptual evaluation of the generated sounds, and therefore,
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going towards adding a sonic perception aspect into AI methods designed for the generation of

audio contents.

8.2.4 RQ4: How to incorporate timbre properties into algorithms designed to
generate combinations of sampled instrument notes?

The implementation of the generative instrument combinations system presented in Chapter

6 has proposed an answer to RQ4. Building on the outcomes of the systems discussed in

Chapters 4 and 5, developed to provide material to answer RQ1, RQ2, and RQ3, a computing

system designed to suggest instrument combinations presenting specific timbral qualities has

been implemented. This investigation has determined approaches to harness the method for

calculating timbre characteristics from audio files and the techniques for automatic classifica-

tion of instrument combination sounds according to their perceptual qualities.

The investigations into harnessing timbre properties have been conducted throughout the

development of a generative system for combining string and brass instruments. The use of a

smaller group of instruments has reduced the instrument combination space, but still involves

the challenge of combining instrument timbres. The objective of this system was to generate

combinations of notes that will be played simultaneously, which is an approach that encom-

passes the phenomenon of timbre blending and polyphonic timbre. The approach of this gener-

ative system was to distribute the notes across the different string and brass instruments, using

verbal attributes describing perceptual qualities as the principal parameter for the generation of

the note combination process.

The generative system used high-quality audio recordings of notes from four string instru-

ments (bass, cello, viola, and violin) and four brass instruments (tuba, horn, trombone, and

trumpet). Each instrument also had three different playing techniques: note-lasting, pizzicato-

secco, and staccato for the string instruments, three techniques among note-lasting, brassy,

staccato, decrescendo, and sforzando for each brass instrument. Within this sound database,

detailed further in Section 6.3.2, the number of note combinations were already significant,

suggesting a large search space. The use of a random generative process on this search space

would result in notes combined arbitrarily, which may not necessarily be musically interesting,

and involve large combinatorial possibilities. Therefore, in order to refine the search space,

and propose combinations of notes following traditional Western musical elements, the rules

for combining instrument notes were based on a chord framework, which involves combining

notes to be played simultaneously. Here, three types of chords have been implemented: dyad,
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triad, and seventh, including different variations for each of the three types, following the com-

binatorial rules detailed in Section 6.4.1. Generated chords were then rendered as audio files,

in order to perform the timbre estimations, suggested in Chapter 4, to calculate the timbral

values, which were then input into the timbre classification system, discussed in Chapter 5, and

thus, being able to retrieve their perceptual qualities and to compare with the selected verbal

attribute. While this method of audio generation and timbre estimations was able to evalu-

ate the perceptual quality of each generated note combinations, the process was tedious and

computationally expensive.

In order to address the audio generation and timbre estimation processes, two machine

learning algorithms have been investigated to create regression models for predicting the tim-

bral values directly from a set of information about the instruments, playing techniques, and

notes that compose the generated chord. Here, a training dataset has been created by ran-

domly generating numerous chord combinations for each of the three types, which have been

generated as audio files in order to perform the timbre estimations function to calculate their

timbral values. The performances of these machine learning methods, presented in Section 6.5,

have suggested that the ANNs algorithm produced the best regression models. This technique

provided a method for predicting timbral values directly from the instrument’s information of

the generated chords, allowing a quicker process for retrieving the chords’ timbral values, and

therefore accelerating the comparisons between the chords’ perceptual qualities and the verbal

attributes selected by the users.

The development of the generative system for string and brass instruments has contributed

to harnessing the timbre estimations and timbre classification techniques suggested by the de-

velopments presented in Chapters 4 and 5 respectively. These techniques have been used to

evaluate the perceptual qualities of chords generated by the system automatically. Here, the

timbre properties, representing perceptual qualities, have been integrated in the decision rules

of a search algorithm designed to generate combinations of sampled instrument notes, which

are output only if they present specific timbral qualities. Moreover, the ANNs algorithm has

contributed in creating regression models capable of predicting timbre characteristics directly

from a set of instrument information, which addresses the large number of combinatorial possi-

bilities. The implementation of this method for regression model has contributed in identifying

the best parameters for the data mining note combination task.
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8.2.4.1 RQ4 Final Remarks

The development of a computing system that generates combinations of instrument has offered

an answer to RQ4, by using timbre properties as the fundamental criterion for a generative

process designed to create combinations of notes to be played simultaneously by several instru-

ments. This approach was based on processing audio samples and has successfully harnessed

timbre properties by suggesting instrument combinations presenting acoustic characteristics

of specific timbral attributes. However, further investigations are still required to enrich the

signal processing techniques in order to completely encompass the perceptual properties of

instrumental timbre combinations. Nevertheless, such methods could still be applied to other

computer-aided composition systems, offering a control on some timbre phenomena that are

inherent to the challenges of combining instrument sounds. Furthermore, the techniques de-

veloped for groups of string and brass instruments could then be applied in systems operating

with larger ensembles, expanding the techniques for harnessing instrument timbre properties.

8.2.5 Other Contributions to Knowledge

The research presented within this thesis has been conducted to provide answers to the four

research questions discussed previously. Nevertheless, this project has also produced contribu-

tions to knowledge in addition to the research questions listed in Section 1.3.1.

Research on timbre and its perception has been the subject of numerous perceptual ex-

periments using various audio stimuli and methods (Section 2.4). However, the perceptual

experiments conducted in this research project have utilised audio stimuli consisting of instru-

ment combination sounds. Here, audio recordings of orchestral pieces and files generated by a

computer-aided orchestration system have been used to represent instrument timbre combina-

tions. Conducting perceptual experiments using this type of audio stimuli generated data about

polyphonic timbre and timbre blending, which extends the understanding and processing of

these two sonic phenomena.

Chapter 5 has discussed the research about developing timbre classification methods. Here,

a data gathering process was implemented, which consisted of performing timbre analysis on

255 recordings of orchestral pieces. This resulted in calculating the timbral values of over

236,000 audio samples, and thus, establishing a database of timbral values from recordings

of orchestral pieces. Another data gathering process has been performed for the creation of

regression models, detailed in Chapter 6. Here, 60,000 chords were randomly generated, on

211



8. CONCLUSIONS AND FUTURE WORK

which the timbre calculations have been performed to retrieve the timbral values for each of the

five timbral descriptors. Such datasets containing timbre values for polyphonic timbre and from

instrument combination sounds could be utilised to further process and manipulate information

about perceptual qualities represented by timbre properties.

Finally, while there is a significant amount of research using AI methods, as discussed

in Chapter 3, the use of machine learning methods to process polyphonic timbre values has

not been the focus of many works. The testing and parameter tuning process for creating

classification models (Section 5.5) have provided information about the classification scores

of different k-means, SVM, and ANNs functions. These processes have suggested parameters

that have produced the best results for each of the three methods. Similar testing and parameter

tuning techniques have been performed for the creation of models able to predict the timbral

values of a chord directly from instrument information (Section 6.5). These processes provided

data about the SVM and ANNs performances for generating regression models using datasets

of instrument information and timbral values.
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8.3 Future Work

This section discusses some areas for further investigation, which could extend the findings

suggested by the different research developments presented within this thesis. Three main

categories regroup different aspects to be investigated: notions related to timbre properties,

investigations about instrument groups and approaches for their combinations, and interaction

with other computing systems. The different avenues for future research are detailed in the

following sections.

8.3.1 Timbre Properties

The study presented within this thesis has used timbre properties to represent perceptual qual-

ities. Five verbal attributes (breathiness, brightness, dullness, roughness, and warmth) have

been selected in the development of the different timbral systems discussed in Chapters 4, 5,

and 6. These descriptors represent diverse sonic qualities, which can denote the type of sound

desired by the users. However, these five verbal descriptors propose a limited range of sonic

qualities. Therefore, one area of research could be to implement other attributes in the timbral

systems presented in this thesis. This would offer the manipulation of a larger palette of per-

ceptual qualities. Studies about semantic and timbre have proposed several verbal descriptors

utilised to denote various qualities. A comprehensive list can be found in [117] for example,

along with the corresponding acoustic cues for each attribute. The generative system discussed

in Chapter 6 has harnessed the use of verbal attributes for guiding the generation of instruments

notes to be played simultaneously, using combinatorial rules based on a chords framework.

This type of note combination has been selected to represent the phenomena of timbre blend-

ing and polyphonic timbre. Research looking at harnessing timbre properties could benefit the

types of solutions suggested by generative systems.

Another important area of research involves investigating timbre blending and polyphonic

timbre resulting from the combination of several instruments. As mentioned in Chapters 2

and 4, studies investigating timbre have suggested mixed conclusions about the acoustic cues

correlating with specific timbre characteristics, and their calculation techniques, which may be

due to the variability in experiment methods and selected sound stimuli. This disparity is even

larger when discussing polyphonic timbre, where some studies have suggested performing a

source separation process and then apply the timbre estimations on each source, while other

studies suggested that timbre calculation techniques could be applied directly to the global
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sound. The perceptual experiment, reviewed in Section 4.7, has shown that the selected tim-

bre estimation techniques used in Chapter 4, have been able to retrieve timbre characteristics

by calculating the acoustic cues directly onto the instrument combination sounds. This lack of

agreed techniques to estimate polyphonic timbre characteristics and their corresponding acous-

tic properties is a challenge for harnessing timbre properties in computing systems designed to

aid compositional tasks involving several instruments. Furthermore, there is no agreed metrics

for the values resulting from calculations of acoustic properties, as highlighted in Chapter 5.

This lack of agreed metrics hinders the manipulation of values retrieved from timbre calcula-

tions. Therefore, research towards establishing standards for polyphonic timbre calculations

and metrics, using standard experiment methods and similar sets of sound stimuli, would ben-

efit the incorporation of timbre properties for addressing instrument combination challenges

into computing systems.

8.3.2 Instruments Extension

The generative system discussed in Chapter 6 has utilised only groups of string and brass

instruments to represent the challenge of composing for several instruments. However, the

techniques developed to process these two types of instruments could be applied in systems

operating with larger ensembles. In the presented generative system, this could be achieved

by expanding the sound database with new audio recordings of instruments’ notes, and by

training the machine learning algorithms to create regression models based on the new set of

instruments.

The second element that could be further developed is the note combination rules. Within

the generative system, the rules have been based on a chord framework. These combinato-

rial rules, which are based on harmonic sets, have proposed combinations of notes that would

sound more musical than applying a random process. However, a system generating only com-

binations of chords will propose a limited range of compositional material, which could be

detrimental to the user’s creativity. One area to investigate is to harness techniques to fuse

instrumental sounds to create unique timbres that have been listed in treatises on orchestra-

tion, such as Piston’s treatise [63] for example, where ‘recipes’ for combining instruments

have been proposed. By incorporating these combinations, it would be possible to harness the

available knowledge of instrumentation techniques, which could be used as foundations for

generating combinations of notes. Furthermore, introducing rules about instrument constraints

would provide controls for the horizontal generations. Here, the sequencing methods would
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need to incorporate these rules to evaluate the playability between two generated instrument

combinations. Therefore, expending the instrument combination methods, by adding different

compositional frameworks and rules about instrumental technique constraints, would benefit

greatly the musical possibilities of a computing system designed to aid compositional tasks.

8.3.3 Interaction with External Systems and Applications

Section 6.6 of this thesis has detailed the methods to define the sequences of instrument combi-

nations to be created by the timbral driven generative system. Here, sets of timbral descriptors

and number of instruments to combine can be input manually. They can also be the results of

performing a timbre analysis of audio files in order to evaluate their timbral structure, which

can then be utilised to sequence the generation’s parameters.

A potential avenue for future work could be to focus on developing other methods to inter-

act with the generative system. For instance, using OSSIA Score1, an open-source intermedia

sequencer [263], it is possible to construct scenarios on a time-line, which can represent the

evolution of the instrument combination sequences. Figure 8.1 shows an example of a sce-

nario, where the set of timbral descriptors is defined by the curves object at the top and the

numbers of instruments to combine are defined by the curve at the bottom. Using their Python

library 2, it is then possible to communicate with OSSIA Score and the timbral driven generative

system to retrieve the information from the scenario. This option would allow the users to con-

struct their sequences of combinations using a graphic interface. Furthermore, OSSIA Score

integrates a conditional branching approach [264], which could be utilised to create interac-

tive scenarios and use external MIDI hardware to control the generation’s information input

for example. Such developments would provide different approaches to create sequences of

instrument combinations and offer a wider interaction between the system and the users.

1https://ossia.io/
2https://github.com/OSSIA/libossia
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Figure 8.1: Screengrab of a scenario test in OSSIA Score.
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Appendix A

Appendix A - Machine Learning
Parameters Tuning Process for
Classification Models

Appendix A displays the results of different classification functions’ parameters tuning process

mentioned in Section 5.5.3

A.1 Support Vector Machines (SVM) Parameters Tuning

Precision Recall F1-score Support

Breathiness 1.00 1.00 1.00 26

Brightness 1.00 1.00 1.00 24

Dullness 1.00 1.00 1.00 26

Roughness 0.95 0.92 0.94 24

Warmth 0.91 0.94 0.93 25

Avg / Total 0.97 0.97 0.97 125

Table A.1: Scores for the best svm.SVC function’s parameters, with penalty parameter C = 10,
kernel type = rb f , and rb f kernel coefficient γ = 0.001.
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Figure A.1: Validation curve for the svm.SVC parameter C.
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Figure A.2: Validation curve for the svm.SVC parameter γ .
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A.1 Support Vector Machines (SVM) Parameters Tuning

Figure A.3: Learning curves of the svm.SVC with parameters kernel = rb f , and γ = 0.001.

219



A. APPENDIX A - MACHINE LEARNING PARAMETERS TUNING PROCESS FOR
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A.2 Artificial Neural Networks (ANNs) Parameters Tuning

Precision Recall F1-score Support

Breathiness 1.00 1.00 1.00 26

Brightness 1.00 1.00 1.00 24

Dullness 1.00 1.00 1.00 26

Roughness 0.96 0.92 0.94 24

Warmth 0.92 0.96 0.94 25

Avg / Total 0.98 0.98 0.98 125

Table A.2: Scores for the best neural network.MLPClassifier function’s parameters, with
parameters activation = identity, solver = adam, and learning rate = constant

Figure A.4: Validation curve for the neural network.MLPClassifier parameter Al pha.
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A.2 Artificial Neural Networks (ANNs) Parameters Tuning

Figure A.5: Learning curves of the neural network.MLPClassifier with parameters
activation = identity, solver = adam, and learning rate = constant.
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[16] AURÉLIEN ANTOINE AND EDUARDO R. MIRANDA. Musical acoustics, timbre, and

computer–aided orchestration challenges. In Proceedings of the 2017 International

Symposium on Musical Acoustics (ISMA), pages 151–154, Montreal, Canada, 2017.

[Cited on page 10.]
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[169] GYÖRGY FAZEKAS. Semantic Audio Analysis Utilities and Applications. PhD thesis,

Queen Mary University of London, London, UK, 2012. [Cited on pages 38 and 45.]
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[235] CARLOS SÁNCHEZ QUINTANA, FRANCISCO MORENO ARCAS, DAVID ALBAR-
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[253] FABIAN PEDREGOSA, GAËL VAROQUAUX, ALEXANDRE GRAMFORT, VINCENT

MICHEL, BERTRAND THIRION, OLIVIER GRISEL, MATHIEU BLONDEL, PETER

PRETTENHOFER, RON WEISS, VINCENT DUBOURG, ET AL. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[Cited on page 125.]

[254] DAVID ARTHUR AND SERGEI VASSILVITSKII. k-means++: The advantages of care-

ful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,

2007. [Cited on page 126.]

[255] EDGAR OSUNA, ROBERT FREUND, AND FEDERICO GIROSIT. Training support vec-

tor machines: an application to face detection. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 130–136. IEEE, 1997. [Cited on

page 135.]

248



REFERENCE LIST

[256] VINCENT WAN AND WILLIAM M CAMPBELL. Support vector machines for speaker

verification and identification. In Proceedings of IEEE Workshop on Neural Networks

for Signal Processing X, 2, pages 775–784. IEEE, 2000. [Cited on page 135.]

[257] SCIKIT-LEARN. API Reference. http://scikit-learn.org/0.18/modules/classes.html [Ac-

cessed: 09/12/2017]. [Cited on page 136.]
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