
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2018

Autonomous decentralised M2M

Application Service Provision

Steinheimer, Michael

http://hdl.handle.net/10026.1/11957

http://dx.doi.org/10.24382/1243

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone

who consults it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis and no

information derived from it may be published without the author's

prior consent.

Autonomous decentralised M2M Application

Service Provision

by

Michael Steinheimer

A thesis submitted to University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics

Darmstadt Node of the Centre for Security,
Communications and Network Research (CSCAN)

December 2017

 i

Acknowledgements

First and foremost, I would like to thank my supervisors Prof. Woldemar Fuhrmann and Dr.

Bogdan Ghita for their comprehensive support and guidance during this research work.

My special thanks go to my supervisor Prof. Ulrich Trick, who has always been an excellent

mentor for me. Thank you very much for your support during my entire time as a member of the

Research Group for Telecommunication Networks at the Frankfurt University of Applied

Sciences. The research on which this work is based was only possible through your guidance,

support, and motivation.

Many thanks go to current and especially former fellow researchers of the Research Group for

Telecommunication Networks. Thank you for your friendship, support, and great inspiration

during the past years.

Warm thanks to members of both the graduate school, especially Carole Watson for her kind and

comprehensive support in administrative things, as well as the CSCAN Network at University of

Plymouth. I would also like to thank the members of the CSCAN Darmstadt Node for their

support and helpful comments in academic aspects especially during the Ph.D. seminars.

I would like to thank my family and friends for their appreciation of the fact that my priorities in

recent years have been to do this research.

Above all, I would like to thank my loving wife Melanie and our wonderful son Paul for their

understanding, great support, and the sacrifices they made on my behalf. This Ph.D. thesis is

dedicated to you.

 iii

Author's declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award without prior agreement of the Doctoral

College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not formed

part of any other degree either at the University of Plymouth or at another establishment.

Relevant scientific seminars and conferences were regularly attended at which work was

often presented, and several papers prepared for publication.

Publications:

 Steinheimer, M.; Trick, U.; Ruhrig, P. (2012a), “New approaches for energy optimisation

in Smart Homes and Smart Grids by automated service generation and user integration“,

Proceedings of the Collaborative European Research Conference (CERC), pp. 111-119,

April 2012, Darmstadt, Germany

 Steinheimer, M.; Trick, U.; Ruhrig, P. (2012b), “Energy communities in Smart Markets

for optimisation of peer-to-peer interconnected Smart Homes“, Proceedings of the 2012

8th International Symposium on Communication Systems, Networks & Digital Signal

Processing (CSNDSP), pp. 1-6, July 2012, Poznan, Poland, IEEE

 Steinheimer, M.; Trick, U.; Ruhrig, P.; Wacht, P.; Tönjes, R.; Fischer, M.; Hölker, D.

(2013a), “SIP-basierte P2P-Vernetzung in einer Energie-Community“ (translated title:

“SIP-based P2P Networking inside an Energy-Community”), Proceedings of the

Eighteenth VDE/ITG Mobilfunktagung, pp. 64-70, Mai 2013, Osnabrück, Germany, VDE

 Steinheimer, M.; Trick, U.; Ruhrig, P.; Fuhrmann, W.; Ghita, B. (2013b), “Load

Reduction in Distribution Networks through P2P networked Energy-Community“,

Proceedings of the Fifth International Conference on Internet Technologies and

Applications (ITA 13), pp. 90-97, September 2013, Wrexham, UK

 Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P. (2013c), “Decentralised optimisation

solution for Smart Grids using Smart Market aspects and P2P internetworked Energy-

Community“, VDE/IEC World Smart Grid Forum 2013, September 2013, Berlin,

Germany, VDE

 Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P.; Fuhrmann, W.; Ghita, B. (2013d),

“Decentralised optimisation solution for provision of value added services and

optimisation possibilities in Smart Grids“, 2013 Collaborative European Research

Conference (CERC), October 2013, Cork, Ireland

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2013e), “P2P-based community

concept for M2M Applications“, Proceedings of the Second International Conference on

Future Generation Communication Technologies (FGCT 2013), pp. 114-119, November

2013, London, UK, IEEE

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015a), “P2P based service

provisioning in M2M networks“, Proceedings of the Sixth International Conference on

Internet Technologies and Applications (ITA 15), pp. 132-137, September 2015,

Wrexham, UK, IEEE

iv

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015b), “P2P based service

provisioning in M2M networks“, Second Spanish-Geman Symposium on Applied

Computer Science (SGSOACS), Invited Talk, December 2015, Frankfurt, Germany

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2016), “P2P-based M2M

Community Applications“, Proceedings of the Eleventh International Network

Conference (INC 2016), pp. 115-120, July 2016, Frankfurt, Germany

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B.; Frick, G. (2017a), “M2M

Application Service Provision: An autonomous and decentralised Approach“, Journal of

Communications, Vol. 12, no. 9, pp. 489-498, 2017

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017b), “Decentralised System

Architecture for autonomous and cooperative M2M Application Service Provision“,

Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities

(ICSGSC 2017), pp. 312-317, July 2017, Singapore, IEEE

 Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017c), “Autonomous

decentralised M2M Application Service Provision“, Proceedings of the Seventh

International Conference on Internet Technologies and Applications (ITA 17), pp. 18-23,

September 2017, Wrexham, UK, IEEE

Presentations and Conferences attended:

 Collaborative European Research Conference (CERC), Darmstadt, Germany, April 2012

 8th International Symposium on Communication Systems, Networks & Digital Signal

Processing (CSNDSP), Poznan, Poland, July 2012

 18th VDE/ITG Mobilfunktagung, Osnabrück, Germany, Mai 2013

 5th International Conference on Internet Technologies and Applications (ITA 13),

Wrexham, UK, September 2013

 VDE/IEC World Smart Grid Forum 2013, Berlin, Germany, September 2013

 Collaborative European Research Conference (CERC), Cork, Ireland, October 2013

 2nd International Conference on Future Generation Communication Technologies (FGCT

2013), London, UK, November 2013

 6th International Conference on Internet Technologies and Applications (ITA 15),

Wrexham, UK, September 2015

 2nd Spanish-Geman Symposium on Applied Computer Science (SGSOACS), Frankfurt,

Germany, December 2015

 11th International Network Conference (INC 2016), Frankfurt, Germany, July 2016

 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC 2017),

Singapore, July 2017

 7th International Conference on Internet Technologies and Applications (ITA 17),

Wrexham, UK, September 2017

Word count of main body of thesis: 79.804

Signed …...……………………………

Date …...……………………………

v

Autonomous decentralised M2M Application Service Provision

Michael Steinheimer

Abstract

Machine-to-Machine Communication (M2M) service platforms integrate M2M devices and

enable realisation of applications using the M2M devices to support processes, mostly in the

business domain. Many application-specific vertical implementations of M2M service

platforms exist as well as efforts to define horizontal M2M service platforms. Both

approaches usually have central components or stakeholders of which the entire M2M system

or the user depends. With regards to the end-user, more and more M2M devices provide

resources, such as environmental information (e.g. energy consumption data) or control

options (e.g. switching energy consumer). These resources offer great potential for supporting

smart environments and it would be advantageous if these resources could be used by end-

users to create individual smart environments or be accessible for other users to integrate

these resources into their processes. Furthermore, it would be advantageous to avoid

centralised or domain-specific solutions in order to realise flexible and independent M2M

service platforms.

This thesis proposes a novel framework for autonomous and decentralised M2M application

service provision based on native end-user integration and a distributed M2M system

architecture. In order to actively involve end-users in M2M application development, an

intuitive methodology for graphical application design through state machine-based

application modelling is proposed. To achieve independence from the execution

environments, a formal language for modelling M2M applications is introduced enabling a

graphically designed M2M application to be represented by a formally described application

model, which can be processed automatically and platform-independently. The design of a

generalised interface definition enables local M2M applications to be provided as a service

to other users. Based on this, an approach is introduced allowing end-users to combine the

resources available in their personal environments in order to realise cooperative M2M

applications and act as service providers.

The M2M service platform architecture presented does not contain any central components

or stakeholders. The distributive nature of central entities and stakeholders is realised by a

decentralised system architecture being implemented in the end-user domain. The various

M2M service providers and consumers link via a Peer-to-Peer (P2P) network on both the

communication level (using communication protocols Constrained Application Protocol,

CoAP or Session Initiation Protocol, SIP) and on the data storage level (using structured or

unstructured P2P overlay networks). An M2M Community concept complements the P2P

network to enable a social network between different M2M service providers and consumers.

The thesis also presents a prototypical proof-of-concept implementation used to verify the

proposed framework components.

vii

Contents

Contents ... vii

List of Figures ... xi

List of Tables .. xxi

1 Introduction .. 1
1.1 Aims and Objectives ... 4
1.2 Thesis Structure .. 6

2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases 9
2.1 Application Execution Environments ... 10

2.2 Peer-to-Peer Systems .. 12
2.2.1 Classification of Peer-to-Peer Systems .. 12

2.2.2 Classification of P2P System Architectures ... 15

2.3 Machine-to-Machine Communication Systems .. 19

2.3.1 Classification of Machine-to-Machine Communication 20

2.3.2 M2M System Architecture ... 25

2.3.3 Roles and Stakeholder in M2M Ecosystems .. 31

2.3.4 End-User M2M Application Services .. 33

2.4 Use Cases .. 35

2.5 Conclusion .. 41

3 Challenges, Requirements, and Use Cases of M2M Application Service

Provision .. 43
3.1 Related Work on M2M Service Platforms ... 44

3.1.1 OneM2M Specification for M2M Systems .. 44

3.1.2 INOX Managed Service Platform .. 63

3.1.3 M2M Platform Project based on SOA (M2M on SOA) 69

3.1.4 BOSP Business Operation Support Platform ... 73

3.1.5 IMS enabled M2M Service Platform (IMS M2M SP I) 77

3.1.6 M2M horizontal Services Platform Implementation over IP

Multimedia Subsystem (IMS M2M SP II) ... 81

3.1.7 e-DSON .. 86

3.1.8 M2SP Concept .. 92

3.1.9 ENERsip Project ... 99

viii

3.1.10 Compose Framework ... 103

3.1.11 Distributed Cooperative M2M System for Flood Monitoring

(DistribFloodMon) ... 111

3.2 Requirements for a new Framework for Autonomous decentralised M2M

Application Service Provision .. 114
3.3 Conclusion .. 129

4 Proposed Framework for autonomous decentralised Application Provision

in M2M Systems ... 131
4.1 General Concept ... 131

4.2 Framework Architecture and Components ... 141
4.3 Conclusion .. 155

5 Autonomous M2M Application Provision ... 159
5.1 Multimedia Services Components .. 160
5.2 Application Behaviour Modelling .. 170
5.3 Graphical Application Behaviour Design ... 177

5.4 M2M Device Management and Communication ... 183
5.5 Formal M2M Application Notation .. 199

5.5.1 Selection of State Machine-based Modelling Language 199

5.5.2 Principles of Statechart Modelling ... 212

5.5.3 M2M Application Modelling using Statecharts 219

5.6 Service Runtime Environment .. 229

5.7 Conclusion .. 232

6 Cooperative M2M Application Service Provision ... 237
6.1 Provision and Integration of M2M Application Services 238

6.1.1 M2M Application Service Interface Description 239

6.1.2 Performing remote M2M Application Service Requests 243

6.1.3 Integration of remote M2M Application Services 246

6.2 Networking of Nodes .. 248

6.2.1 P2P Information Exchange ... 248

6.2.2 Information Exchange Pattern .. 256

6.2.3 Selection of appropriate P2P Communication Protocols 259

6.3 Service Registry and Distributed Data Storage .. 282

6.3.1 M2M Service Registration and Storage of M2M Service IFD 282

6.3.2 Principles of distributed Data Storage .. 284

6.3.3 Analysis of structured and unstructured Overlay Architectures 291

6.4 Cooperative M2M Application Service Provision ... 302
6.4.1 Principles of cooperative M2M Application Service Provision 303

6.4.2 Cooperative M2M Application Configuration and Execution Phase 313

6.4.3 Cooperative M2M Application Validation Algorithm 319

ix

6.5 M2M Community ... 331
6.6 Conclusion .. 336

7 Research Prototype and Framework Evaluation .. 343
7.1 Evaluation of Framework Requirements .. 343
7.2 Research Prototype Architecture and Implementation 349
7.3 Proof of Framework Concepts .. 363

7.3.1 Local M2M Application Execution with remote M2M Service

Integration .. 365

7.3.2 Cooperative M2M Application Service Provision 371

7.3.3 Communication Scenarios for M2M Service Requests.......................... 380

7.4 Performance Evaluation .. 385
7.5 Conclusion .. 393

8 Conclusion and Future Work .. 395
8.1 Achievements of the Research .. 395

8.2 Limitations of the research ... 402
8.3 Suggestions and Future Work ... 404

References .. 407

Appendix A – Abbreviations .. 423

Appendix B – Own Publications .. 431

Appendix C – Low Level Descriptions .. 507

xi

List of Figures

Figure 1.1: End-user’s Personal Environment .. 2

Figure 2.1: Classification of Execution Environments for Services and Applications acc.

(Steinheimer et al., 2016) .. 10

Figure 2.2: Classification of P2P Systems based on Degree of (de)centralisation acc. (De

Boever, 2007) .. 16

Figure 2.3: Correlation among WSNs, M2M, CPS, IoT acc. (Wan et al., 2013; Mehmood

et al., 2015) .. 22

Figure 2.4: General Perspective of M2M System Architecture acc. (Wan et al., 2013;

Mehmood et al., 2015; Bahga and Madisetti, 2014; Boswarthick et al., 2012; Holler et al.,

2014) ... 25

Figure 2.5: Functional Architecture of M2M System acc. (ETSI TS 102 690 V2.1.1, 2013;

Boswarthick et al., 2012) .. 27

Figure 2.6: Integration of MSP in M2M system architecture acc. (oneM2M TR-0001-

V2.4.1, 2016; Elloumi, 2014).. 31

Figure 2.7: Functional Roles in the M2M Ecosystem acc. (oneM2M TS-0002-V1.0.1,

2015) ... 32

Figure 2.8: Service Orchestration acc. (Terpak et al., 2016) .. 34

Figure 2.9: Service Choreography acc. (Terpak et al., 2016) ... 34

Figure 2.10: Use Case local Window Monitoring .. 36

Figure 2.11: Use Case Neighbourhood Weather Station .. 37

Figure 2.12: Use Case Building Surveillance ... 38

Figure 2.13: Use Case Cooperative Energy Optimisation (Load Reduction) 40

Figure 3.1: M2M Common Service Layer acc. (Damour, 2014) 45

Figure 3.2: Vertical Pipes of M2M Business Applications acc. (Arndt and Koss, 2014)

 ... 46

Figure 3.3: oneM2M Horizontal Platform Principle acc. (Arndt and Koss, 2014) 46

xii

Figure 3.4: oneM2M Layered Model and Functional Architecture acc. (oneM2M TS-

0001-V1.13.1, 2016) ... 48

Figure 3.5: Configurations supported by oneM2M Architecture acc. (oneM2M TS-0001-

V1.13.1, 2016) .. 50

Figure 3.6: oneM2M functional Architecture of M2M Application acc. (oneM2M TR-

0025-V1.0.0, 2016) ... 52

Figure 3.7: Possibilities for Node Interconnections acc. (oneM2M TS-0001-V2.10.0,

2016) ... 55

Figure 3.8: Scope of addressable M2M Common Services by registered CSEs 56

Figure 3.9: Valid MN-Node Registrations .. 56

Figure 3.10: Invalid MN-Node Registrations ... 57

Figure 3.11: Principle of Information Exchange between Entities acc. (oneM2M TS-

0001-V2.10.0, 2016) ... 59

Figure 3.12: Primitive Overview acc. (oneM2M TS-0004-V2.7.1, 2016) 61

Figure 3.13: INOX Managed Service Platform acc. (Clayman and Galis, 2011) 64

Figure 3.14: M2M Network Topologies (traditional and proposed) acc. (Zhang et al.,

2010) ... 69

Figure 3.15: M2M Platform Architecture acc. (Zhang et al., 2010) 70

Figure 3.16: M2M System Architecture acc. (Xiaocong and Jidong, 2010) 74

Figure 3.17: IMS-enabled M2M System Architecture acc. (Foschini et al., 2011) 78

Figure 3.18: M2M horizontal Service Platform acc. (Padilla et al., 2013) 81

Figure 3.19: M2M Device Registration Process (Padilla et al., 2013) 83

Figure 3.20: DSON Service Scenario: Home Multimedia Streaming Service acc. (Kim et

al., 2011) ... 87

Figure 3.21: e-DSON Platform Model acc. (Kim et al., 2012) 88

Figure 3.22: e-DSON Platform Architecture acc. (Kim et al., 2012) 90

Figure 3.23: M2SP Model acc. (Kim et al., 2014) .. 93

Figure 3.24: M2SP Architecture acc. (Kim et al., 2014) .. 94

Figure 3.25: M2SP Use Case Scenario acc. (Kim et al., 2014) 96

xiii

Figure 3.26: ENERsip Architecture acc. (Lopez et al., 2011a; Lopez et al., 2013) 99

Figure 3.27: Logical Architecture of COMPOSE Framework acc. (Mandler et al., 2013)

 ... 104

Figure 3.28: Components of COMPOSE framework acc. (Doukas and Antonelli, 2014)

 ... 105

Figure 3.29: Distributed M2M System acc. (Kitagami et al., 2014) 112

Figure 4.1: Traditional Approach for M2M Application Service Provision 132

Figure 4.2: M2M Application Service Creation and Provision Process with End-User

Integration ... 132

Figure 4.3: ADSP Model: Decentralised M2M Application Design and Execution 134

Figure 4.4: HSPU Model: Horizontal M2M Resource Provision and Utilisation 136

Figure 4.5: DCASP Model: Decentralised cooperative M2M Application Service

Provision ... 138

Figure 4.6: BSPU Model: Bottom-Up M2M Service Provision and Utilisation 140

Figure 4.7: M2M Application Service Provision Framework Architecture 142

Figure 4.8: Framework Architecture: Service Design Unit (SDU)............................... 144

Figure 4.9: Framework Architecture: Service Creation Unit (SCU) 145

Figure 4.10: Framework Architecture: Communication Unit (CU).............................. 146

Figure 4.11: Framework Architecture: Service Runtime Environment (SRE) 149

Figure 4.12: Layer Model of Decentralised Networking Aspect 151

Figure 4.13: P2P connected M2M Environments within the M2M Community 154

Figure 5.1: MSP Multimedia Interfaces .. 162

Figure 5.2: Architecture of SR/DTMF MMSC ... 162

Figure 5.3: SR/DTMF MMSC Parameter Set ... 164

Figure 5.4: Architecture of AV/TTS MMSC .. 165

Figure 5.5: AV/TTS MMSC Parameter Set .. 166

Figure 5.6: Architecture of IM MMSC ... 168

Figure 5.7: IM MMSC Parameter Set ... 169

xiv

Figure 5.8: Use Case Switch Lighting .. 171

Figure 5.9: Use Case Email Service.. 172

Figure 5.10: General Structure of M2M Device and MMSC 173

Figure 5.11: General Representation of M2M Device and MMSC Connections 173

Figure 5.12: FSM derived from (Wagenknecht and Hielscher, 2015).......................... 174

Figure 5.13: M2M Application Use Case 1 represented as FSM 175

Figure 5.14: Structure of Service Design GUI acc. (Steinheimer et al., 2013c; Steinheimer

et al., 2015b).. 179

Figure 5.15: M2M Application Design Process.. 181

Figure 5.16: Principles of oneM2M Device Abstraction acc. (oneM2M TR-0007-V1.0.0,

2014; oneM2M TR-0007-V2.11.1, 2016) ... 184

Figure 5.17: Structure of Request Primitive ... 187

Figure 5.18: Structure of Response Primitive ... 188

Figure 5.19: M2M Communication Unit (CU) with Abstraction Layer (AL) 188

Figure 5.20: Structure of M2M DCM ... 190

Figure 5.21: M2M CU/AL Register Process .. 192

Figure 5.22: M2M Application/CU/AL Message Exchange .. 193

Figure 5.23: Mapping M2M DCM to Request Primitive Parameters 195

Figure 5.24: Installation of M2M Device Capability Models 197

Figure 5.25: Statecharts Basic State and Default Transitions, derived from (Harel and

Politi, 1998) ... 213

Figure 5.26: Statecharts AND-State, derived from (Harel and Politi, 1998) 214

Figure 5.27: Statecharts OR-State, derived from (Harel and Politi, 1998) 215

Figure 5.28: SCXML Representation of Basic State and Default Transitions 216

Figure 5.29: SCXML Representation of AND-State .. 218

Figure 5.30: Statechart Representation of Use Case 1 .. 220

Figure 5.31: Principles of State Parameter Definition and Assign in Statecharts 222

xv

Figure 5.32: Graphical Representation OR-/AND M2M Device Combination 223

Figure 5.33: General M2M Application Model .. 224

Figure 5.34: General State Model ... 226

Figure 5.35: Formal M2M Application Description Generation Process 228

Figure 5.36: Assignment graphical Notation Elements to M2M Application Model ... 229

Figure 5.37: Service Runtime Environment (SRE)... 230

Figure 5.38: M2M Application Execution Process ... 231

Figure 6.1: M2M Application Service Principles ... 239

Figure 6.2: Principles of remoteRainSensor Application Service 242

Figure 6.3: IFD for remoteRainSensor M2M Application Service............................... 242

Figure 6.4: Service Interface Unit (SIU) ... 243

Figure 6.5: SIU: M2M Application Service Request Processing 244

Figure 6.6: Remote M2M Service Integration .. 246

Figure 6.7: Extract Formal Application Description Use Case 2.................................. 247

Figure 6.8: RELOAD Architecture acc. (Samaniego et al., 2013; IETF RFC 6940, 2014)

 ... 249

Figure 6.9: RELOAD Message Exchange for Service Request acc. (IETF RFC 7904,

2016) ... 252

Figure 6.10: Comparison RELOAD and proposed Networking Topology 255

Figure 6.11: IxPs acc. (Höller, 2014) adopted from (Carrez et al., 2013) 256

Figure 6.12: General Service Subscription/Notification/Termination Process 262

Figure 6.13: CoAP Reliable Message Transmission acc. (IETF RFC 7252, 2014) 265

Figure 6.14: CoAP Unreliable Message Transmission acc. (IETF RFC 7252, 2014) .. 265

Figure 6.15: CoAP Message Format acc. (IETF RFC 7252, 2014) 266

Figure 6.16: CoAP Messaging for Service/Information Subscription 270

Figure 6.17: CoAP Messaging for Service/Information Notification 271

Figure 6.18: CoAP Messaging for Service/Information Unsubscription 271

xvi

Figure 6.19: SIP Request Message Format acc. (IETF RFC 3261, 2002) 273

Figure 6.20: SIP Response Message Format acc. (IETF RFC 3261, 2002) 273

Figure 6.21: SIP Messaging for Service/Information Subscription 277

Figure 6.22: SIP Messaging for Service/Information Notification 278

Figure 6.23: SIP Messaging for Service/Information Unsubscription 278

Figure 6.24: M2M Services Registration and Request ... 283

Figure 6.25: Store IFD in structured P2P Overlay .. 286

Figure 6.26: Request IFD from structured P2P Overlay ... 288

Figure 6.27: Store IFD in unstructured P2P Overlay .. 289

Figure 6.28: Request IFD from unstructured P2P Overlay ... 290

Figure 6.29: Comparison Lookup Costs structured P2P Overlays 295

Figure 6.30: Comparison Lookup Costs structured P2P Overlays (excl. CAN)........... 296

Figure 6.31: Comparison Lookup Costs unstructured P2P Overlays 296

Figure 6.32: Comparison Churn Costs structured P2P Overlays 297

Figure 6.33: Comparison Churn Costs unstructured P2P Overlays 298

Figure 6.34: Comparison Lookup Costs structured and unstructured P2P Overlays.... 299

Figure 6.35: Comparison Churn Costs structured and unstructured P2P Overlays 300

Figure 6.36: Architecture of remote M2M Service Integration 304

Figure 6.37: Architecture of remote M2M Service Combinations 304

Figure 6.38: Variants of cooperative M2M Service Combinations 305

Figure 6.39: M2M Service Composition Message Exchange 306

Figure 6.40: M2M Service Aggregation Message Exchange 306

Figure 6.41: Representation of Use Case 3 (Building Surveillance) 307

Figure 6.42: Statechart Representation AD of cooperative M2M Application Service for

Use Case 3 ... 310

Figure 6.43: Representation of Use Case 4 (Energy Optimisation) 311

xvii

Figure 6.44: Statechart Representation AD of cooperative M2M Application Service for

Use Case 4 ... 312

Figure 6.45: M2M Application Configuration Process .. 317

Figure 6.46: M2M Application Execution Process ... 318

Figure 6.47: M2M Service Connections to demonstrate redundant Application

Configurations ... 319

Figure 6.48: Distributed M2M Application with redundant Service Instances 320

Figure 6.49: M2M Application Configuration and Execution Phase incl. multiple Service

Instances .. 321

Figure 6.50: M2M Application Configuration with partly redundant Service Instance

Connections ... 322

Figure 6.51: Algorithm for Documentation of Connection Establishments 325

Figure 6.52: Transitive Closure of Peer 1 and Peer 4 based on Figure 6.50 327

Figure 6.53: Algorithm for Determination of invalid Application Service Configuration

 ... 329

Figure 6.54: IFD Element AccessControlPolicy for Definition of (Sub-) Community

Assignment .. 333

Figure 6.55: M2M application service IFD for Social Service 335

Figure 7.1: Research Prototype Application Architecture .. 350

Figure 7.2: Research Prototype Emulation System Architecture.................................. 352

Figure 7.3: Research Prototype Emulation System Architecture.................................. 353

Figure 7.4: Research Prototype Architecture Components (illustrated as Packages) ... 354

Figure 7.5: Screenshot of Service Design Unit GUI Web Application 355

Figure 7.6: Screenshot of SDU GUI showing M2M Device/Service Configuration Section

 ... 356

Figure 7.7: Screenshot of SDU GUI showing IFD Specification Form 357

Figure 7.8: Screenshot of Instant Message Client ... 362

Figure 7.9: Screenshot of SDU GUI Web Application with SM Model Use Case 2 ... 365

Figure 7.10: Use Case 2 M2M Application Description .. 367

xviii

Figure 7.11: Screenshot of Terminal Output ADP Use Case 2 368

Figure 7.12: SM generated by ADI Use Case 2 .. 368

Figure 7.13: Screenshot of Terminal Output ADI Use Case 2 369

Figure 7.14: SM generated by ADI Use Case 2 .. 370

Figure 7.15: Screenshot of IM Client Use Case 2... 371

Figure 7.16: Screenshot of SDU GUI Web Application with SM Model Use Case 3 . 372

Figure 7.17: Use Case 3 M2M Application Description .. 374

Figure 7.18: Use Case 3 corporateBuildingMonitoringApp IFD 375

Figure 7.19: Screenshot of Terminal Output ADP Use Case 3 376

Figure 7.20: Screenshot of Terminal Output ADI Use Case 3 remoteSS1 377

Figure 7.21: Screenshot of Terminal Output ADI Use Case 3 remoteBMS 377

Figure 7.22: Screenshot of Terminal Output ADI Use Case 3 remoteAS 377

Figure 7.23: Distributed SM Use Case 3 .. 378

Figure 7.24: M2M Application Configuration Phase Use Case 3 378

Figure 7.25: Service Request Process Supporter at remoteBMS Use Case 3 379

Figure 7.26: M2M Application Execution Process Use Case 3 379

Figure 7.27: Screenshot of Terminal Output Supporter receiving Alarm Message Use

Case 3 .. 380

Figure 7.28: Screenshot of Wireshark Trace Request Message via CoAP one-time

Subscription .. 381

Figure 7.29: Screenshot of Terminal Output received Request Primitive via CoAP ... 382

Figure 7.30: Screenshot of Wireshark Trace Response Message via CoAP 382

Figure 7.31: Screenshot of Terminal Output received Response Primitive via CoAP . 383

Figure 7.32: Screenshot of Wireshark Trace Request Message via SIP continuous

Subscription .. 383

Figure 7.33: Screenshot of Wireshark Trace Terminate Request Message via SIP 384

Figure 7.34: Screenshot of Wireshark Trace Request/Response Messages via SIP one-

time Subscription .. 386

xix

Figure 7.35: Signalling Effort using centralised M2M Service Platform (MSP) 387

Figure 7.36: Signalling Effort using proposed Framework .. 389

Figure 7.37: Comparison Signalling Effort (# Messages) .. 391

Figure 7.38: Comparison Signalling Effort (Data Volume).. 392

xxi

List of Tables

Table 2.1: Examples of P2P on different levels according to (Hauswirth and Dustdar,

2005) ... 15

Table 3.1: Evaluation of related Projects reg. derived Requirements 128

Table 5.1: M2M Application Component FSM Element Mapping 175

Table 5.2: M2M Application Component FSM State Mapping Use Case 1 176

Table 5.3: Relational Operators for logical M2M Device/MMSC Connections 178

Table 5.4: Configuration of TTS MMSC Use Case 1 ... 182

Table 5.5: Parameter Set of Request Resource Message acc. (oneM2M TS-0001-V2.10.0,

2016) ... 186

Table 5.6: Parameter Set of Resource Response Message acc. (oneM2M TS-0001-

V2.10.0, 2016) .. 187

Table 5.7: Evaluation of SM-based Modelling Languages acc. (Steinheimer et al., 2017a)

 ... 211

Table 6.1: M2M Application Service Interface Description Parameter 241

Table 6.2: CoAP Message Format acc. (IETF RFC 7252, 2014) 267

Table 6.3: OneM2M Primitive CoAP Message mapping acc. (oneM2M TS-0008-V1.0.1,

2015) ... 268

Table 6.4: SIP Message Format acc. (IETF RFC 3261, 2002; IETF RFC 3265, 2002)274

Table 6.5: OneM2M Primitive SIP Message mapping ... 275

Table 6.6: Comparison of CoAP and SIP as Communication Protocol 281

Table 6.7: Evaluation P2P Algorithms acc. (Lua et al., 2005; Steinmetz and Wehrle, 2005;

Malatras, 2015) ... 294

Table 6.8: Lookup Costs P2P Overlay Algorithms acc. (Lua et al., 2005; Steinmetz and

Wehrle, 2005; Malatras, 2015).. 294

Table 6.9: Churn Costs of P2P Overlay Algorithms acc. (Lua et al., 2005; Steinmetz and

Wehrle, 2005; Malatras, 2015).. 295

xxii

Table 6.10: Summary Evaluation of structured and unstructured P2P Overlay Algorithms

 ... 302

Table 6.11: Adjacency Matrix of Graph illustrated in Figure 6.50 325

Table 6.12: Transitive Closure based on Figure 6.50 ... 328

Table 7.1: State Configuration Use Case 2 ... 366

Table 7.2: Transition Configuration Use Case 2 ... 366

Table 7.3: State Configuration Use Case 3 ... 372

Table 7.4: Transition Configuration Use Case 3 ... 373

Table 7.5: Signalling Effort for Service Request and Service Response 386

Table 7.6: Performance Analysis central M2M Service Platform for Service Requests

 ... 388

Table 7.7: Performance Analysis distributed M2M Service Platform Concept for Service

Requests .. 390

1

1 Introduction

End-user devices, such as domestic appliances (e.g. refrigerator or washing machine),

lights, heating or electric vehicles are becoming more and more intelligent. The devices

include complex functionality for monitoring and control. Many devices are equipped

with the functionality for communication, which enables remote monitoring and control.

The increasing number of intelligent, so-called Machine-to-Machine Communication

(M2M) devices support the formation of intelligent environments and many new

application fields can be established. (Mackenzie, 2014) predicts 3.4 Billion M2M device

connections up to 2024. (Danila et al., 2015) mentions application fields such as Transport

and Logistic for real time management of vehicles providing vehicle specific data (e.g.

fuel consumption or speed), Intelligent Cities for coordination of traffic or street lights,

and Healthcare for e.g. remote monitoring of health status.

M2M systems realise the integration of such intelligent devices and provision of specific

M2M applications addressing the above mentioned application fields. According to

(Danila et al., 2015) many M2M applications already exist in the business domain using

the control and monitoring functionality of M2M devices to integrate them in their

business processes.

As (Danila et al., 2015) states, the applications for controlling M2M devices and

processing the data generated by the M2M devices are realised via specific vertical

application architectures, which means individual solutions have been developed for each

specific purpose and are executed on central or distributed application servers located in

1.1 Aims and Objectives

2

the Cloud. Because the many different solutions existing for different application fields,

there are efforts, e.g. from oneM2M (oneM2M, 2015) to develop a horizontal M2M

service platform (MSP) that serves as a common basis for M2M applications.

Most of the existing vertical and horizontal MSPs focus on the business domain. They do

not integrate the end-user domain, which is an application field with powerful potential

because the increasing number o7f controllable devices and Smart Home technologies

residing in end-user’s environment (refer to Figure 1.1). The personal environment of the

end-user, illustrated in Figure 1.1, is difficult to access by external entities (other end-

users or service providers), since the activities (controlling and monitoring of M2M

devices) carried out in this area would severely affect the end-user or challenge data

security.

Figure 1.1: End-user’s Personal Environment

External Service

Provider

End-User personal Environment

locked

Photovoltaic

System

Heating

Battery

Electric Vehicle

Lights

Fridge

kWh

Smart Meter Sensors

D

N
Actuators

...

PC

controls

End-User

Smartphone

End-User End-User

Vehicle
End-UserEnd-User

 1 Introduction

3

It would be advantageous if the potential, respectively the resources available in the end-

user domain, could be made accessible for external entities as a service, so that they can

be integrated into external applications or processes. For this, it is necessary to integrate

end-users actively into the service provision process, by having the option to define M2M

applications for their personal environment and additionally having the possibility to

make their applications and M2M device resources available to external entities.

The existing horizontal and vertical MSPs have one or more of the following

disadvantages:

1. The development of applications or utilisation of MSPs requires expert

knowledge. This prevents the end-user from creating applications that integrate

the resources in their personal environment or providing the implemented

functionalities as a service for external entities.

2. The operation of the MSP requires central platform providers or centralised

infrastructures. Both of them are disadvantageous since the users of the M2M

system are dependent of this platform provider or the entire system depends on a

single centralised component in the M2M system architecture.

Often, central MSP providers only provide platforms that are oriented to a specific

application area and thus are restricted in their functionality. Central elements in

the M2M system infrastructure are also disadvantageous since they are very

resource-intensive and can result in bottlenecks or high costs for the operation and

implementation of platform availability.

This research will introduce a more flexible methodology for realisation of M2M systems

with the focus on dissolving the bindings to centralised entities (e.g. MSP providers),

1.1 Aims and Objectives

4

integration of end-users for realisation of M2M applications satisfying their individual

requirements, and realisation without specialised and dedicated M2M infrastructures.

1.1 Aims and Objectives

The aim of this research is to propose a framework for autonomous, decentralised and

cooperative M2M application service provision. The framework should permit M2M

systems to become more flexible and provide the ability to integrate end-users in the

M2M application provision to support their individual requirements. Furthermore, the

framework should dissolve the static binding from M2M application consumer to M2M

application provider as well as avoid the requirement of specialised M2M infrastructures

for M2M application provision.

The main objectives of this research are subsequently outlined:

1. To analyse existing approaches for service provision in M2M systems and to

define the requirements for decentralised M2M application provision with end-

user integration.

2. To specify the architecture and methodologies of the proposed framework for

“Autonomous decentralised M2M Application Service Provision”.

3. To design an approach for graphic-oriented modelling of M2M applications by

combination of building blocks that bases on modelling the behaviour of an M2M

application.

 1 Introduction

5

4. To analyse existing formal description languages and methodologies resulting in

a novel formal M2M application description language for automated generation

and execution of the graphically designed M2M application semantics.

5. To design a concept for provision and integration of M2M applications as a

service to other end-users and analysis of methodologies for decentralised

information exchange between M2M application service provider and consumer

based on existing telecommunication infrastructure.

6. To specify a concept for management of M2M application services using

decentralised system architecture components.

7. To design an approach for an M2M application architecture based on the

combination of distributed M2M application services for cooperative and

composed M2M application provision and to specify an algorithm for automated

configuration of distributed cooperative M2M applications based on formal

description language with avoiding of central entities.

8. To produce a proof-of-concept implementation in order to verify and evaluate the

proposed framework for “Autonomous decentralised M2M Application Service

Provision” based on defined use cases.

The order of objectives declared above corresponds to the general structure of this thesis

as presented within the following sections.

Important aspects for research on a framework for autonomous and decentralised M2M

application service provision based on native end-user integration and a distributed M2M

system architecture are the discussion of security and implementation of associated

policies. These aspects are not discussed within this thesis since the research work is part

1.2 Thesis Structure

6

of the research project P2P4M2M (P2P4M2M, 2016) performed by multiple team

members. In order to avoid overlap with fellow researcher the security aspect is not

considered within this research. Publications of fellow researcher, such as (Shala et al.,

2017a) and (Shala et al., 2017b) provide an introduction of security concept for

autonomous and distributed provision of M2M applications.

1.2 Thesis Structure

Chapter 2 describes the theoretical background of the research field in the focus of this

research by introducing the principles of Peer-to-Peer (P2P) and Machine-to-Machine

Communication (M2M) systems. For this purpose, the principle of P2P systems is first

explained and afterwards the different architectural approaches for implementing a P2P

system are presented. Furthermore, the principle of M2M is introduced and the M2M

system architecture is explained. Chapter 2 also presents the various roles and

stakeholders in an M2M ecosystem. Finally, use cases are described that serve for

illustration and evaluation of the presented concepts in the course of this research.

Chapter 0 introduces existing concepts for application and service provision in the M2M

application field. For this purpose, the MSP from the oneM2M standard specification as

well as several MSPs from research field are described and analysed. The main result of

this chapter is the definition of requirements for a novel framework for providing M2M

applications based on the limitations and advantages of the MSPs presented.

Based on the requirements defined in chapter 0, chapter 4 proposes a novel framework

for “Autonomous decentralised M2M Application Service Provision”. Additionally,

 1 Introduction

7

chapter 4 briefly introduces the architecture and components of the proposed framework

that enables end-users to design and provide individual and cooperative M2M

applications.

Chapter 5 presents the parts of the proposed framework responsible for local M2M

application design and execution. It presents a concept that enables end-users to design

M2M applications intuitively and describes how end-users can interact with the M2M

platform. Furthermore, chapter 5 describes the integration of M2M devices into M2M

platforms as well as the execution of designed M2M applications.

Chapter 6 introduces the framework components responsible for provision of local M2M

application functionality as a service to other end-users. Additionally, chapter 6

introduces methodologies for combination and management of distributed M2M

application services to provide a cooperative M2M application service.

Chapter 7 focuses on the proof-of-concept of the proposed framework by describing the

prototypical implementation and the evaluation of the proposed framework.

Chapter 8 concludes this research by giving a summary of the achievements and

limitations as well as aspects for future research and extensions of the proposed

framework concept.

9

2 Peer-to-Peer, Machine-to-Machine

Communication Systems, Use Cases

This chapter provides the theoretical background for understanding the concepts used in

this thesis. Section 2.1 introduces different execution environments for applications and

services. Section 2.2 introduces the principles of Peer-to-Peer (P2P) systems, which

provide end-to-end communication between participants and decentralised utilisation and

management of resources. A decentralised, distributed Machine-to-Machine

Communication (M2M) service platform would be beneficial for both providers and

consumers of services because its inclusivity and inherent resilience. Section 2.3

introduces the principles of M2M systems, which enable realisation of applications

integrating M2M device functionality. Section 2.3 also deals with the separation from

M2M to IoT, as both terms are often used simultaneously in literature. Therefore, first, a

general introduction of M2M systems is given (section 2.3.1) and afterwards section 2.3.2

introduces the components and services related to an M2M system architecture. Section

2.3.3 introduces the different roles and stakeholders in a traditional M2M ecosystem to

point out their relationships to each other, which will change in a p2p-based service

provisioning architecture. Finally, section 2.3.4 introduces the service composition

approach followed in this project. This chapter closes with a description of the use cases

in section 2.4, which will be used to illustrate and evaluate the novel framework proposed

in this thesis.

2.1 Application Execution Environments

10

2.1 Application Execution Environments

The realisation of an M2M application or M2M service platform (MSP) requires that a

technical environment exists executing the software modules implementing the

application logic (hosting of applications). This is called the application execution

environment (AEE). The AEE of an application or MSP is to be considered as

independent of the application field of the application/MSP. Therefore, the different

AEEs are introduced at the beginning and in the further course of this project it is referred

to them. Figure 2.1 classifies the different approaches of AEEs based on (Grandison et

al., 2010), (Bonomi et al., 2012), (ETSI, 2014), (LeClair, 2014), and (Vaquero and

Rodero-Merino, 2014), already related to an M2M environment (through integration of

M2M Area Networks).

Figure 2.1: Classification of Execution Environments for Services and Applications acc. (Steinheimer

et al., 2016)

IP Network/ Internet

C
e

n
tr

a
lis

e
d

C
o

m
p
u
ti
n

g

Server 1

Central Computing Cloud Computing

Server n Data Centre 1 Data Centre 2 Data Centre n

VM 1 VM 2 VM n Data Centres

M2M AN 1

M
2
M

A
re

a

N
e

tw
o
rk

s

Actuators/

Sensors

F
o
g
 C

o
m

p
u
ti
n

g

M2M

Gateway 1

Households,

Companies,

End Devices

etc.

M2M AN 2 M2M AN 3

M2M

Gateway 2

M2M

Gateway n

3G
LTE/

EPC
4G

Mobile-Edge

FITL DSL

Edge

E
d
g

e
 C

o
m

p
u
ti
n
g

Base

Station

Router

WiFi

Access

Point

PC Smartphone

Router Router Router Router Router

Base

Station

Base

Station

Access

Point

OLT DSLAM

Company
ONU

VMs in network nodes VMs in network nodes

3G:

4G:

DSL:

DSLAM:

EPC:

FITL:

LTE:

M2M AN:

OLT:

ONU:

VM:

WiFi

3rd Generation Mobile Network

4th Generation Mobile Network

Digital Subscriber Line

DSL Access Multiplexer

Evolved Packet Core

Fibre in the Loop

Long Term Evolution

M2M Area Network

Optical Line Termination

Optical Network Unit

Virtual Machine

Wireless Local Area Network

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

11

Figure 2.1 shows the well-known approaches of AEEs, central server approach (using

servers that host the applications on central locations in the network) and Cloud

Computing approach. AEEs hosted in the Cloud can be physically distributed across

multiple datacentres (Grandison et al., 2010). Despite the decentralised AEE, these

approaches are considered to be logically centralised, since they are managed centrally

by a single stakeholder. Next to these approaches two new architectural approaches of

AEEs came up aiming to reduce the load in the core network: Edge and Fog Computing.

Edge computing is an architectural approach in which data-intensive, isolated

applications are moved from central data centres (cloud) to the edge of the network where

the data are generated and processed to avoid sending large amount of data through the

core network (LeClair, 2014).

Fog Computing is a virtualised platform architecture providing storage, networking and

compute services in end-user devices at network edges (Bonomi et al., 2012). End-user

devices form the virtualisation platform of Fog Computing architecture (Vaquero and

Rodero-Merino, 2014).

Both approaches are realised in the infrastructure provided by the network operator (i.e.

access networks or devices located close to the customers, e.g. services executed in base

stations), while Fog computing additionally uses devices closer to the customer (e.g.

Integrated Access Devices, IADs).

(Osanaiye et al., 2017) gives an overview of specific applications that use the Fog

Computing architecture principles, such as a Smart Traffic Light System detecting

pedestrians and sending warning signals to driving cars. This shows that the Fog

2.2 Peer-to-Peer Systems

12

Computing architecture is of great relevance for M2M applications. However, (Osanaiye

et al., 2017) shows that Fog Computing, same as Edge Computing contains centralised

elements in their system architecture. The presented applications are either realised by

providers that use the Fog Computing architecture to provide specific, isolated

applications or contain central servers that in turn are localised in the Cloud.

The shifting of computing and data capturing tasks to the edge of the network is a

promising approach and also a major object in this research. This research additionally

goes a step further by presenting a completely decentralised MSP architecture in which

the end-user has the possibility to generate and provide applications and services

independently.

2.2 Peer-to-Peer Systems

P2P systems offer distributed communication and resource management/utilisation. The

following section 2.2.1 describes the principles of P2P systems and different areas in

which P2P systems can be used. P2P systems can be implemented using different

architectural approaches, characterised by their degree of decentralization. Section 2.2.2

introduces the different architectural approaches and describes how resources can be

localised in them.

2.2.1 Classification of Peer-to-Peer Systems

P2P is according to (Steinmetz and Wehrle, 2005) a paradigm for communication on the

Internet, i.e. for Internet Protocol (IP)-based communication systems (IETF RFC 791,

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

13

1981), following the end-to-end communication principle. P2P communication

mechanisms can be applied to access globally distributed resources located closely to

peers at network edges.

Commonly instead of the term “P2P system”, also the term “overlay network”, “P2P

overlay” or “P2P overlay network” is used. This illustrates that a P2P system is a higher-

level network with independent topology, built on top of existing IP networks (Steinmetz

and Wehrle, 2005; IETF RFC 7890, 2016).

According to (De Boever, 2007) following characteristics specify a P2P system:

 Decentralisation – The participating entities in P2P systems are decentralised.

 Cost efficiency – P2P systems utilises resources of peers that are currently unused.

 Self-organisation – P2P systems are self-organised.

 Sharing of resources – Peers share their resources in P2P systems.

 Autonomy – No dependency exist on single entities required for operating a P2P

system.

 Scalability – Because sharing resources and distributing content among

participating peers a P2P system is highly scalable and avoids bottlenecks.

P2P systems and applications perform a function in a decentralised way by employing

distributed resources (e.g. processing power, data storage/content or humans and other

resources) provided by participating nodes each adding value to the overall P2P system

(Milojicic et al., 2002; De Boever, 2007). The resources in a P2P system are provided by

the participants in the P2P system instead of by few servers as in traditional client/-server

architectures (IETF RFC 7890, 2016).

2.2 Peer-to-Peer Systems

14

According to (De Boever, 2007), the P2P system approach was developed because the

classical approach of a client/-server model, where resources are managed/deployed by a

central server and queried by clients, is very resource intensive. In this context, the

resources are content generated by the end-user and consumed by other end-users. In

client/-server systems, each user of the system generates additional costs because of the

necessary data transmissions to the central server. Because the increasing amount of data

to be transferred and increasing size of individual data sets, the traditional client/-server

approach is inefficient and its scalability is limited e.g. when network connectivity to

external networks and processing/storage are scarce. With an increasing number of users,

a classical client/-server system can hardly cover the demand for resources for data

transmission (increasing bandwidth requirements) and also for the execution of

computation tasks, so that additionally to the single point of failure (in case of breakdown

of the central server) bottlenecks can also arise. P2P systems meet these disadvantages

because they are naturally very cost-effective and scalable.

According to (Steinmetz and Wehrle, 2005), based on (Oram, 2001) and refined in

(Steinmetz and Wehrle, 2004) a P2P system is a self-organised system in which all

entities (peers) are equal and act autonomously and the overall system does not involve

central entities to organise/coordinate/control utilisation of the resources.

According to (Hauswirth and Dustdar, 2005) P2P architectures can be applied on different

level of abstraction, specified as follows:

 Network level – Routing of requests in application-independent way via

physical network.

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

15

 Data access level – Search/modify resources using application-specific

access structures.

 Service level – Combination and expansion of functionalities of the data access

layer to provide higher quality services. The range of these services can vary from

simple file sharing to complex business processes.

 User level – Grouping of users ("Communities") and support of user interactions

using the service level for community management and information exchange.

According to (Hauswirth and Dustdar, 2005) Table 2.1 shows typical examples of P2P

architectures on different levels. Combination of this levels and the utilised P2P concept

on individual levels characterise a specific P2P system.

Table 2.1: Examples of P2P on different levels according to (Hauswirth and Dustdar, 2005)

Thus, it can be stated that a P2P system is always advantageous when 1. decentralised

resources are in the focus of an application, 2. a high scalability is required, 3. a resource

is to be provided directly end-to-end and 4. no dependencies on central entities

(stakeholders or system components) should exist.

2.2.2 Classification of P2P System Architectures

P2P systems can be generally classified according to (De Boever, 2007) based on the

degree of decentralisation and “the presence of a structure in object location and routing”.

Table 2.1 has been removed due to Copyright restrictions.

2.2 Peer-to-Peer Systems

16

Although a P2P system is a distributed architecture in which the distribution of resources

occurs end-to-end, it can contain more or less central entities to create the topology of the

P2P system (illustrated in Figure 2.2) or to locate the resources.

Figure 2.2: Classification of P2P Systems based on Degree of (de)centralisation acc. (De Boever, 2007)

(De Boever, 2007) classifies P2P topologies into hybrid, centralised and pure

decentralised with the characteristics described subsequently.

 Centralised P2P architectures – Centralised P2P architectures (Figure 2.2-a)

contain a central directory server storing a summary of resources and nodes. To

locate a resource in the P2P network, peers contact the directory server and

exchange the information for resource sharing directly with the providing peers.

 Decentralised P2P architectures – A decentralised P2P architectures (Figure 2.2-

b) is completely self-organised and autonomous and involves no centralised

components to locate resources in the P2P network.

 Hybrid P2P architectures – Hybrid P2P architectures (Figure 2.2-c) are a mix of

both, centralised and decentralised P2P architectures. They contain several so-

called “super nodes” having more capabilities and responsibilities than other peers

to support resource location.

Figure 2.2 has been removed due to Copyright restrictions.

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

17

Because avoidance of central entities is in focus of this research project, decentralised

P2P systems are considered in the further course of the project, since centralised and

hybrid P2P system architectures contain central entities.

For implementing a P2P overlay several different approaches exist. A P2P overlay can

have a structured topology (structured P2P overlay) or an unstructured topology

(unstructured P2P overlay). The P2P overlays are generated by algorithms determining

how the structure of an overlay (arrangement of the nodes) is organised. The topology

and algorithms for searching and inserting data sets determine which node in the overlay

stores a specific data set and how the data sets can be located (without centralised

control/coordination) (Steinmetz and Wehrle, 2005).

Structured and unstructured overlays have fundamentally different characteristics in their

topology, search algorithms and data management. The main characteristics of both

approaches are presented subsequently according to (De Boever, 2007).

 Structured P2P Overlays – In structured P2P overlays the nodes and the resources

are assigned to specific locations in the topology. “Distributed Hash Tables

(DHT)” enable to identify the location of a specific resource.

 Unstructured P2P Overlays – In unstructured P2P overlays resources and nodes

are located in an unstructured way with no relationship between location of the

resource and the topology. Identification of resource locations is performed using

the so-called “query flooding model”.

Structured P2P systems ensure that resources can be localised with limited hops (De

Boever, 2007). The global view of the data distributed over several nodes is provided by

2.2 Peer-to-Peer Systems

18

DHTs without dependence on the actual location (Steinmetz and Wehrle, 2005).

According to (De Boever, 2007) in a DHT every resource is assigned with a distinct key

serving as an ID for the resource. The ID is generated by using hash functions (e.g. SHA-

1, IETF RFC 6234, 2011). Each peer is responsible for a sequence of that IDs. To be able

to locate a resource, the requesting node must know the ID of the resource. When

searching for a resource, the search query is continuously forwarded from one node to

another until the node responsible for the resource is reached. To be able to forward the

search query, each node has a routing table with information about various other nodes

possibly providing the requested resource.

A structured P2P network offers according to (Steinmetz and Wehrle, 2005) and (De

Boever, 2007) two ways to store data:

 Direct Storage – The data is stored directly in the overlay at the node responsible

for this data set. The advantage of this variant is that nodes which inserted the data

can leave the overlay after the insertion without losing the inserted data.

 Indirect Storage – The data is not stored directly in the overlay, but only a

reference to the data via which the data can be obtained (e.g. link). The data itself

remains on the node that inserted the reference. The advantage of this variant is

that the load in the overlay is reduced because the reference contains less data

volume the data set itself.

In unstructured P2P systems peers only contain an index of data sets stored at their own

location and do not have information about data sets stored at other peers. A search

request for a data set is forwarded to all peers known to a single peer. Therefore, it is

important that one peer knows as many other peers as possible also present in the P2P

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

19

overlay. To search a data set a peers forward the search query to all known peers. These

in turn forward the query to all known peers. This floods the network with the search

request. For each search query, a “Time-To-Life” (TTL) value is defined that limits the

number of forwardings of a query. Each peer that passes on the search query decrements

the TTL value. If the TTL value is zero, the search query is no longer forwarded. Because

this process, unstructured P2P systems cannot guarantee to locate specific data sets

because the data set might be stored on a peer that does not receive the search query since

it is outside the scope of query forwarding (De Boever, 2007).

Because of the different mechanisms used to generate a P2P overlay and locate resources,

it is important to note that choosing an appropriate approach depends on the intended

purpose and should be based on criteria such as network load and guarantee to locate a

data set.

2.3 Machine-to-Machine Communication Systems

In order to create a unified terminology and explain how various terms are used in context

of the research project, the following section 2.3.1 describes principles of Machine-to-

Machine Communication (M2M) and how M2M correlates with the Internet of Things

(IoT) since both are used simultaneously in literature. Section 2.3.2 introduces the M2M

system architecture by describing the components of an M2M system and points out how

M2M application services are realised applying an M2M system. Section 2.3.3 introduces

different roles and stakeholders in traditional M2M ecosystem. The different roles will be

introduced to show how these are related to each other, as the role assignment will change

in a p2p-based service provisioning architecture enabling end-users to take on the role of

2.3 Machine-to-Machine Communication Systems

20

service provider additionally to the role of service consumer. Finally, section 2.3.4

introduces the approach of service choreography followed in this research projects for

service provision and shows the difference of it to the approach of service orchestration

used in traditional MSPs.

2.3.1 Classification of Machine-to-Machine Communication

M2M describes a communication paradigm that enables devices (machines) to

communicate with other devices without or with minimal human intervention during

configuration/deployment/operation phase (Dawaliby et al., 2016; Sarigiannidis et al.,

2017; Mehmood et al., 2015). M2M enables autonomous measurement, delivery, and

processing of information using Information and Communication Technologies (ICT)

(Sarigiannidis et al., 2017). Often in publications, such as (Dawy et al., 2017) or

(Dawaliby et al., 2016) the terms M2M and Machine-type communications (MTC) are

equated. In this research project M2M is used to specify the communication between

devices. According to (Dawaliby et al., 2016) M2M can be realised through a P2P or

centralised communication model and according to (Holler et al., 2014) an M2M solution

focuses on supporting a particular task of one stakeholder and does not “take a broad

perspective on solving a larger set of issues or ones that could involve several

stakeholders”.

Through M2M many applications (e.g. monitoring, infrastructure management, eHealth,

smart cities, home automation) are supported or enabled (Dawaliby et al., 2016;

Mehmood et al., 2015). M2M is according to (Mehmood et al., 2015) the fundamental

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

21

enabler for the IoT “by providing ubiquitous connectivity between numerous intelligent

devices”.

Publications such as (Kim et al., 2012) mention that M2M and IoT contain the same

aspects. Other publications, such as (Bahga and Madisetti, 2014) or (Holler et al., 2014)

try to separate the aspects of M2M and IoT. According to (Mehmood et al., 2015) M2M

and IoT domain, but also Wireless Sensor Networks (WSNs) and Cyber-Physical Systems

(CPS) domain represent the same key ideas. As stated by (Mehmood et al., 2015) authors

of (Wan et al., 2013) made a correlation of M2M, IoT, WSN and CPS. Since (Wan et al.,

2013) and (Mehmood et al., 2015) precisely describe the aspects of M2M and IoT and

classify the different terms as well as provide the most suitable definitions for the context

of this project, these are presented below. The specifications of (Wan et al., 2013) and

(Mehmood et al., 2015) are used to classify the focus of this project in the described fields.

To illustrate the correlation of M2M, IoT, WSN and CPS, first IoT is introduced since

M2M, WSN, and CPS according to (Wan et al., 2013), from the architectural perspective,

belong to IoT.

Internet of Things (IoT)

According to (Mehmood et al., 2015) the term IoT describes the connection of

“objects/machines” (often defined as “things”) using an Internet-based infrastructure.

According to (Mehmood et al., 2015) and (Wan et al., 2013) the IoT contains the

following fundamental components:

 Data Sensing – Sensing and acquiring data of distributed sensors that should be

processed in services and applications.

2.3 Machine-to-Machine Communication Systems

22

 Heterogeneous Connectivity – The objects and devices implement different

(incompatible) communication technologies.

 Information Processing – The information data acquired needs to be processed to

interpret the captured information.

 Services and Applications – Services and applications use the captured

information data to generate a benefit out of them and additionally control

devices/machines.

Fundamentally, according to (Wan et al., 2013) M2M, WSNs, and CPS “belong to IoT”

because they have the same components as described above. The difference between them

is the proportion among these components in system design. Figure 2.3 shows the

correlation among WSNs, M2M, CPS, as well as IoT according to (Wan et al., 2013) and

(Mehmood et al., 2015), while IoT represents the area created by WSNs, M2M, CPS.

Figure 2.3: Correlation among WSNs, M2M, CPS, IoT acc. (Wan et al., 2013; Mehmood et al., 2015)

Figure 2.3 has been removed due to Copyright restrictions.

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

23

Despite the similarity of WSNs, M2M, CPS in networking aspects they have “major

differences from architecture and design philosophy” (Wan et al., 2013). Subsequently

the main characteristics of WSNs, M2M, CPS are described according to (Wan et al.,

2013), starting with the aspects of M2M.

Machine-to-Machine Communication (M2M)

 Refers to communication between computers, smart sensors/actuators without or

with only minimal human intervention.

 M2M systems have the functionality for making decisions and autonomous

control operations to provide value-added services (VAS).

 End-to-end communication between devices and focus on “practical applications

(e.g., smart home and smart grid)”.

 Through the integration of M2M with WSNs, M2M systems can use the

information provided by the WSNs as a basis for performed actions (i.e. WSNs

support M2M systems).

Wireless Sensor Networks (WSNs)

 WSNs, such as Wireless Body Area Networks (WBANs) consist of distributed

sensors monitoring environmental conditions. The autonomous sensors cooperate

with each other to deliver the collected data to a central location.

 WSNs and Information generation from all sensors is basic scenario of IoT.

 WSNs are the basis of CPS and support M2M.

Cyber-physical System (CPS)

2.3 Machine-to-Machine Communication Systems

24

 CPS is according to (Shi et al., 2011) the closely integration of physical processes

into software. Classical application of CPS according to (Shi et al., 2011) are e.g.

an operating room where all devices (health sensors or medicine indication

systems) are fully networked and accessible for monitoring/control. Another

classical CPS application is an “intelligent road with unmanned vehicle”. The CPS

e.g. monitors and controls the actions of the vehicles, such as stopping or turning

left/right.

 CPS introduces interactive and more intelligent operations and represents an

enhancement of M2M.

 Characteristics of CPS are: “cyber capability in every physical component”, close

integration of all devices, high complexity of system architecture, dynamically

reconfiguration, “high degrees of automation”, dependable and distributed real

time operations.

According to (Wan et al., 2013) M2M and CPS address similar domains. While M2M has

the perspective of autonomous communication and provision of value-added services

supported by WSNs, CPS has the perspective of not only communication but focuses on

applications based on WSNs as well as distributed and real-time control.

Since the aspects of this project focus on providing services via MSPs, the scope of the

project has to be classified in the M2M field.

The following section introduces the architecture of M2M systems starting from a general

perspective of M2M system architecture and refining it afterwards by description of

detailed M2M System architecture as defined by European Telecommunications

Standards Institute (ETSI).

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

25

2.3.2 M2M System Architecture

Implementation of VAS in M2M requires an M2M system architecture establishing

connection of devices among each other and with a (usually business) application. These

M2M applications according to (Holler et al., 2014) can be integrated into business

processes of a company to support them.

Figure 2.4 shows the general structure of an M2M system architecture. M2M Devices

(providing capabilities for sensing and actuation) communicate via an IP-based

Communication Network, such as the Internet or Next Generation Networks (NGNs),

with each other and with a single specific application to exchange information (Holler et

al., 2014; Boswarthick et al., 2012). Permission to reproduce Figure 2.4 has been granted

by the publisher John Wiley and Sons.

Figure 2.4: General Perspective of M2M System Architecture acc. (Wan et al., 2013; Mehmood et al.,

2015; Bahga and Madisetti, 2014; Boswarthick et al., 2012; Holler et al., 2014)

Business

Application

Communication Network

(wired/ wireless)

a) The essence of M2M b) Group of devices in an

M2M relationship

Application Servers

c) The mediated M2M

relationship

Business

Application

M2M

Gateway

Communication Network

(wired/ wireless)

M2M Area

Network
M2M

Device

Communication Network

(wired/ wireless)

Business Application

2.3 Machine-to-Machine Communication Systems

26

M2M applications created by “very specialized developers” realise the main logic to

achieve the requirements of the M2M system. The M2M applications (e.g. “remote car

diagnostics”) usually are deployed on Application Servers inside enterprises (Holler et

al., 2014). An M2M application can address single M2M Devices (Figure 2.4-a) or a group

of M2M Devices (Figure 2.4-b), which can be directly connected to the Communication

Network or via a Gateway (GW) (Figure 2.4-b) forming the mediating interface between

the M2M Area Network and the Communication Network (Boswarthick et al., 2012). For

communication inside an M2M Area Network, several communication technologies and

protocols are used (e.g. Bluetooth, ZigBee, Wi-Fi) (Bahga and Madisetti, 2014).

The following section introduces the functional architecture of an M2M system as

described by ETSI based on (ETSI TS 102 690 V2.1.1, 2013). Figure 2.5 illustrates this

functional architecture according to (ETSI TS 102 690 V2.1.1, 2013) and refined with

information given by (Boswarthick et al., 2012).

The M2M system architecture illustrated in Figure 2.5 is based on so-called Service

Capability Layers. Service Capability Layers provide Service Capabilities, which are

according to (ETSI TR 102 725 V1.1.1, 2013) a set of functions usable commonly by

various applications. In the M2M system architecture it is distinguished between different

kinds of Service Capability Layers referring to the type/location of equipment

implementing these Service Capability Layers. Exemplarily the M2M Device Service

Capability Layer resides on M2M Devices and provides functions usable by the

applications contained in the M2M Devices. Permission to reproduce Figure 2.5 has been

granted by ETSI and the publisher John Wiley and Sons.

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

27

Figure 2.5: Functional Architecture of M2M System acc. (ETSI TS 102 690 V2.1.1, 2013;

Boswarthick et al., 2012)

According to (ETSI TS 102 690 V2.1.1, 2013) and (Boswarthick et al., 2012) the M2M

system architecture is separated in the two areas Device and Gateway Domain and

Network and Applications Domain. The Access Network, such as xDSL, HFC, Wi-Fi or

3/4G, enables the Device and Gateway Domain to connect with the (IP-) Core Network

(ETSI TS 102 690 V2.1.1, 2013). Through the Core Network, entities residing in the

Device and Gateway Domain connect to M2M Applications that use the data information

Transport Network

M2M core

M2M gateway

M2M Area Network

M2M Gateway Applications

(runs Service Logic)

Gateway Service Capabilities Layer

provides M2M (Gateway) Service Capabilities

Device and

Gateway

Domain

Access Network

Core Network

Network Service Capabilities Layer

provides M2M Service Capabilities

M2M Applications

(runs Service Logic)

User Interface (e.g. Web

Portal Interface)

Network and

Applications

Domain

M2M

Device

M2M Device

Device Service Capabilities Layer

provides M2M (Device) Service Capabilities

M2M Device

Applications

(runs Service Logic)

M2M

Communication

Modules

M2M Device

Device Service Capabilities Layer

provides M2M (Device) Service Capabilities

M2M Device

Applications

(runs Service Logic)

M2M

Communication

Modules

M2M gateway

© European Telecommunications Standards Institute 2013. Further use, modification, copy
and/or distribution are strictly prohibited.

2.3 Machine-to-Machine Communication Systems

28

and capabilities of the M2M Devices to realise VAS for supporting various business

processes. The separated areas indicate where the architectural elements of an M2M

system are located.

An M2M system contains in the Devices and Gateway Domain entities such as M2M

Gateways, M2M Area Networks and M2M Devices. These entities are described

subsequently according to (oneM2M TS-0011-V2.4.1, 2016), (ETSI TR 102 725 V1.1.1,

2013), and (Boswarthick et al., 2012):

 M2M Device – An M2M Device is physical equipment that contains capabilities

for communication/computing/sensing/actuation. M2M Devices contain at least

one M2M Device Application (executing the application logic and using M2M

Device Service Capabilities) as well as one M2M Communication Module

(implementing the communication capability).

 M2M Area Network – The M2M Area Network provides functionalities, such as

communication technologies/protocols enabling M2M devices to be connected

with an M2M Gateway.

 M2M Gateway – A M2M Gateway is equipment implementing connection

functionality between M2M Devices and Network and Applications Domain and

can be implemented as a stand-alone entity or integrated within M2M Devices.

The Network and Applications Domain contains the Transport Network consisting of

various Access Networks and the (IP-based) Core Network forming the communication

infrastructure between the Devices and Gateway Domain and the M2M Applications. The

Network and Applications Domain additionally contains the Network Service Capability

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

29

Layer providing functionalities to M2M application service provider (ASP) such as

application registration, data storage or support for NAT traversal.

Since M2M Applications and M2M Services are in the focus of this research these and

corresponding terms should be specified.

(ETSI TR 102 725 V1.1.1, 2013) defines an application as a software entity performing

a specific task to support a user operating on a specific goal. Physical devices, such as

M2M devices or application servers execute software applications, which according to

(ITIL V3.1.24, 2007) realise services. As specified in (ITIL V3.1.24, 2007) software

applications provide functions required by services and can be part of multiple services.

A M2M application consists of one or more underlying services that provide capabilities

to support the M2M applications (ITU-T Y.101, 2000). Service providers provide these

services (ITU-T Y.2301, 2013; OASIS SOA-RM-V1.0, 2006). For using the

functionalities of a service, an interface is required to access these functionalities (OASIS

SOA-RM-V1.0, 2006). Services consist of service components, which form the building

blocks of a service and are combined with other service components to build the whole

service (ISO IEC 20000-1:2011, 2013).

According to (oneM2M TS-0011-V2.4.1, 2016) the logic of an M2M application realises

the M2M application service and is accessible via a specific interface (M2M application

interface). As specified by (UC Santa Cruz, 2017) “applications, themselves, are not

services”. Services are enabled by applications and “may be provided by someone else”.

I.e. an M2M application only is an M2M application service if a stakeholder exists which

operates the M2M application and additionally provides an interface to the M2M

2.3 Machine-to-Machine Communication Systems

30

application that enables an end-user to consume the application logic. The M2M

application service is consumed according to (oneM2M TS-0011-V2.4.1, 2016) by the

end-user that can be as specified in (ITU-T Y.110, 1998) either a company or a private

individual.

Now that the architecture of an M2M system has been described, the following section

describes how M2M applications use the functionality of an M2M system to provide

specific VAS.

An MSP is used to provide M2M applications in an M2M system. This MSP provides the

connectivity between M2M devices and enables the management of participating nodes

as well as the exchange of information between the application and M2M devices. The

standardisation committee oneM2M published several specifications, such as (oneM2M

TS-0007-V2.0.0, 2016) or (oneM2M TS-0001-V2.10.0, 2016) defining the functionality

of an MSP and the interworking of it with other components of an M2M system

architecture. Figure 2.6 illustrates the principle integration of an MSP in the M2M system

architecture according to (oneM2M TR-0001-V2.4.1, 2016; Elloumi, 2014). As Figure

2.6 shows, the MSP is connected to the M2M GW via the Transport Network, which in

turn connects various M2M Devices via an M2M Area Network. The M2M Application is

executed on a central M2M Application Server (e.g. as a Web application) and is provided

via an interface to one or more end-users as an M2M application service. An MSP and

M2M Application Server are usually operated within data centres. It can be derived that

the MSP and M2M Application Server are placed within the Network and Applications

Domain, whereas the M2M Application Servers implementing the application logic are

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

31

not part of the MSP. The components of the Device and Gateway Domain are also not

part of the MSP.

Figure 2.6: Integration of MSP in M2M system architecture acc. (oneM2M TR-0001-V2.4.1, 2016;

Elloumi, 2014)

2.3.3 Roles and Stakeholder in M2M Ecosystems

In the M2M ecosystem, several separated roles and stakeholders exist providing,

operating and consuming M2M applications and M2M services. Figure 2.7 illustrates

them as defined by (oneM2M TS-0002-V1.0.1, 2015). Permission to reproduce Figure

2.7 has been granted by ETSI.

As defined by (oneM2M TS-0002-V1.0.1, 2015) and (oneM2M TS-0011-V2.4.1, 2016),

the user (end-user) consumes an M2M solution. End-users represent private individuals

or companies requiring “information-based services” (ITU-T Y.110, 1998; ISO IEC

20000-1:2011, 2013).

Devices and Gateway Domain

Network and Application Domain

M2M

GW

M2M Application

Server

M2M Application

M2M Service

Platform (MSP)

M2M Area Network

Transport Network (wired/ wireless)

M2M Devices

2.3 Machine-to-Machine Communication Systems

32

Figure 2.7: Functional Roles in the M2M Ecosystem acc. (oneM2M TS-0002-V1.0.1, 2015)

The M2M application service provider (ASP) is the entity that provides and operates the

M2M application service consumed by the end-user (oneM2M TS-0011-V2.4.1, 2016;

oneM2M TS-0002-V1.0.1, 2015; ETSI TR 102 725 V1.1.1, 2013).

According to (ETSI TR 102 725 V1.1.1, 2013) and (oneM2M TS-0011-V2.4.1, 2016) the

M2M (common) service provider provides (and operates) the M2M services to the M2M

ASP, which use the services to create the M2M application, or directly to the end-user.

As specified by (oneM2M TS-0011-V2.4.1, 2016) every stakeholder subscribing to M2M

Services is specified as a service subscriber.

According to (ITU-T E.4110 (2010) service providers generally (i.e. M2M ASP and

M2M service provider in particular) offer their services using network resources. The

network operator provides and operates according to (oneM2M TS-0002-V1.0.1, 2015)

these communication networks used to transmit service information.

M2M Applications

M2M Common Services

Connectivity Services

End-User

M2M Solution

operate

M2M Application Service Providers

M2M

Application
...

M2M

Application

M2M Service Providers

M2M Common

Service
...

M2M Common

Service

Network Operators

Underlying

Network
...

Underlying

Network

operate

operate

consume

Company Individual

© 2015. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

33

The presentation of the different roles shows that these are different stakeholders.

Especially end-users and service providers have separate roles in the M2M ecosystem

presented. The concept presented in the course of this research project aims on the

dissolution of the static link to a central service provider and enabling end-users taking

on the role of a service provider.

2.3.4 End-User M2M Application Services

The aim of the research project is to enable end-users to act as service providers in order

to make the resources available in their personal environments available to other end-

users. Additionally, it should be possible for different end-users to combine their services

and provide them as a distributed application. Since this is a P2P-based service

provisioning, the service definition from (IETF RFC 7890, 2016) is derived to define an

M2M application service (provided by end-users) in context of this thesis as follows:

 M2M Application Service – An M2M application service is a capability provided

by a peer to other peers of the P2P network, while peers can provide different or

same M2M application services.

Combination of service is also referred to as service composition. Service compositions

using traditional MSPs are realised by service orchestration. Service orchestrations

(illustrated in Figure 2.8) according to (Terpak et al., 2016) constitutes a centralised

approach based on “a single executable process” that describe the relationship of the

participating services.

2.3 Machine-to-Machine Communication Systems

34

Figure 2.8: Service Orchestration acc. (Terpak et al., 2016)

Service orchestrations include a central coordinator (service orchestrator) for

coordination of interactions between the participating services. The service orchestrator

actively invokes and combines the services and controls the information exchange

between the services. (Terpak et al., 2016)

The service composition followed in this research project is performed by service

choreography in order to avoid centralised service coordinators. Service choreographies

(illustrated in Figure 2.9) according to (Terpak et al., 2016) constitutes a decentralised

approach.

Figure 2.9: Service Choreography acc. (Terpak et al., 2016)

In service choreography, the combination of the participating services is described

globally. The global description defines the message exchange between the services as

well as the interactions between the service endpoints. In service choreography, each

Service O

Service A

Service D Service C

Service B

© 2016 IEEE

Service A

Service D Service C

Service B

© 2016 IEEE

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

35

service is responsible for information exchange with its corresponding service. The

execution of the service composition during runtime takes place without central

controlling of the information exchange between the services. (Terpak et al., 2016)

2.4 Use Cases

The following section presents use cases for M2M services and M2M application

services. The use cases are introduced in this section to increase the overall understanding

of the framework presented in the following chapters. The use cases represent the

different aspects of the framework and will be used later in chapter 7 to evaluate the

framework based on these aspects. Use cases have been defined that address the Smart

Home/Smart Building sector, since this area is also a popular field of application for M2M

solutions and includes the personal environment of the end-user. These use cases or parts

of it are used inside this research to exemplary illustrate specific technologies, functional

approaches, system architectures, and methodologies after they have been generally

introduced. The use cases presented in this section are close-coupled in its functionality

to demonstrate the possibility for realisation of different applications integrating few

similar use cases.

Use Case 1: Local Window Monitoring

The use case “local window monitoring”, illustrated in Figure 2.10, demonstrates a

service realised in a Smart Home of an individual end-user. The use case combines

different M2M device technologies and multimedia communication.

2.4 Use Cases

36

Figure 2.10: Use Case local Window Monitoring

The use case represents an M2M service designed by the end-user and executed in the

personal environment of the end-user, without integration of other external entities. The

service is realised using a single M2M platform located in end-users environment. It

involves a single end-user as actor. The end-user designs the M2M service represented

by the use case illustrated in Figure 2.10. The local M2M service detects two different

sensor states (window open/closed and raining/not raining) on behalf of sensors using

different M2M communication technologies (e.g. ZigBee, Z-Wave) for transmitting their

sensor states. Depending on the evaluation result of these sensor states, the M2M service

initiates an audio call to inform the end-user in case of raining and window opened at the

same time (by playback an announcement).

Use Case 2: Neighbourhood Weather Station

The use case “neighbourhood weather station”, illustrated in Figure 2.11, demonstrates

the combination of a service provided remotely with the combination of a local service.

The use case represents an M2M application service including the provision of an M2M

service by end-user and the utilisation of that M2M service by another end-user.

Local Window Monitoring

End-User

<<extend>> {Rain detected and Window open} <<include>>

Rain

Detection
<<include>>

Evaluate Sensor

States

Windows State

Detection
Setup Audio Call

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

37

Figure 2.11: Use Case Neighbourhood Weather Station

The use case involves two actors, the SP and the SC. Both actors are end-users. The SP

designs an M2M service for measurement of weather data using its local Smart Home

equipment and provides, if requested, that weather data to other end-users. The SC

designs its individual M2M service with functionality to request and evaluate weather

data provided remotely. For this, the M2M service determines automatically a SP

providing weather data in the neighbourhood and requests the weather data from the

remote service. Depending on the evaluation of the received weather data (e.g. if it is

raining), the M2M service triggers some action (e.g. setup phone call as in previous use

case or trigger an actuator for closing the window automatically).

Use Case 3: Building Surveillance

The use case “building surveillance”, illustrated in Figure 2.12, demonstrates the

concatenation of multiple services provided by multiple SPs. The use case involves five

Neighbourhood Weather Station

Weather Data

Service Provider

Subscribe to

Weather Data

Perform Action

Share Weather

Data

<<extend>>

<<include>>

<<include>>

<<extends>> {Rain detected}

<<include>>

<<include>>

Weather Data

Measurement

Weather Data

Publication
<<include>>

Search Weather

Data Provider
Evaluate Weather Data

End-User

Service Consumer

Request

Weather Data

Remote Weather

Data Consumation

2.4 Use Cases

38

actors, which all are end-users. Four actors provide different M2M services. The different

M2M services are combined to form an M2M application service with the task to monitor

specific buildings and react on alerts detected inside that building. The SC consumes the

M2M application service.

Figure 2.12: Use Case Building Surveillance

The building management SP designs and provides an M2M service for monitoring a

sensor in a specific building. If the M2M service evaluates a specific sensor state (e.g.

water intrusion or fire alarm), it publishes that alert case to another M2M SP, the supporter

management SP. The supporter management SP provides an M2M service for

management of supporters. Multiple individual supporters register at that service and

offer (as a service) reacting on an alert appearing in a specific building. The task of the

Building Surveillance

Building Monitoring

Service Provider

Sensor Monitoring

Building Support

Service Provider React on

BuildingEvent

Supporter

Management

Supporter

Registration

Provide

Alarm Service

Supporter Management

Service Provider

Provide Support

Service

Messaging

Service Provider

<<extends>> {building event received}

<<include>>

Publish Alert Case

<<extends>> {alert detected}

Determine Building

Supporter

<<include>>

End-User

Service Consumer

Request Building

Surveillance Service

Request

Alarm Service

<<include>>

Generate

Alert Message

<<extends>> {alert request received}

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

39

provided service is to manage the supporters and corresponding buildings. The service

identifies the responsible supporter for the received alarm event and requests a service to

send an alarm notification. Because the supporter management service cannot provide the

functionality for multimedia communication via Instant Message (IM), it requests this

functionality as a service provided by the messaging SP. The messaging SP generates an

IM and sends the IM to the recipients. Recipients and message text is defined by the

supporter management SP and specified at the service request. The building support SP

is a group of actors each providing the service to react on an alert appearing in a specific

building. All participants of that group register at supporter management service and

specify their contact information and specific buildings they support. If an alert appears

in a building, the corresponding supporter receives an IM and afterwards reacts on the

alert.

The use case “building surveillance” illustrates the combination of services provided by

individual SPs, all providing different, encapsulated, and independent services. Each of

these services can be integrated in M2M application services with entirely different

contexts.

Use Case 4: Energy Optimisation

The use case “energy optimisation”, illustrated in Figure 2.13, demonstrates an M2M

application service realised by multiple end-users each providing individual and

independent services in parallel. The functionality of the M2M application service is to

reduce energy load by sharing information regarding the total local energy consumption

between all participating end-users.

2.4 Use Cases

40

Figure 2.13: Use Case Cooperative Energy Optimisation (Load Reduction)

The use case involves a group of end-users as M2M SPs as well as the distribution grid

operator as M2M application service consumer. Each end-user designs and runs a service

locally with the functionality to determine the current local energy consumption and

ability to reduce the local energy consumption. Each end-user publishes its locally

determined total energy consumption to all other involved M2M SPs. The distribution

grid operator as M2M application service consumer specifies at application service

request a threshold for total energy consumption. Each individual M2M SP calculates the

overall consumption after receiving the consumption information of the other

participants. Depending on the local evaluation of the total consumption, the individual

end-user service triggers local reduction of energy consumption by e.g. turning of M2M

devices or start consuming energy from a local energy storage (battery).

Cooperative Energy Optimisation (Load Reduction)

<<include>>

<<extends>> {peak exceeded}

Distribution Grid Operator

Service Consumer

Provide Load

Reduction Service

Detect local

Consumption

Calculate overall

Consumption

Reduce local

Consumption

Publish local

Consumption

Request Load

Reduction Service

Publish Consumption

Threshhold

<<include>>

<<include>>

<<include>>

End-User

Service Provider

 2 Peer-to-Peer, Machine-to-Machine Communication Systems, Use Cases

41

2.5 Conclusion

This chapter introduced the main principles of the research field by discussing AEEs as

well as P2P and M2M systems.

Section 2.1 introduced the different AEEs for M2M applications or MSPs. Fog

Computing aspect to shift computing and data capturing tasks to the edge of the network

is a promising approach also included in the framework concepts proposed in the

following chapters.

Section 2.2 presented the P2P communication paradigm that enables to address resources

located at the edge of the network. Using P2P systems can address the disadvantages of

traditional client/-server systems, such as single point of failure or bottlenecks, when large

amount of data needs to be transmitted and processed. Transferring P2P system

approaches to MSPs would be beneficial because a decentralised, distributed MSP could

reduce the load in both system and transport networks. The characteristics of P2P system

architectures have been described that enables autonomous end-to-end communication

between nodes. These principles will be derived to develop a concept for a decentralised

MSP with end-user environment integration. Since avoiding central entities in the

research project is an important topic, the architecture of decentralised P2P systems rather

than centralised or hybrid ones will be applied to the concept of MSP presented in the

following chapters.

The M2M system architecture, as main object of this research, has been introduced in

section 2.3. The principles of M2M have been described as well as its correlation to IoT.

It has been shown that M2M focuses on the provision of value-added services, which is

2.5 Conclusion

42

the subject area addressed in this research. The several components of an M2M system

architecture have been presented and shown how these components are related to each

other. It has been shown that an MSP is located as a separate and centralised element in

traditional M2M system architectures, which will be changed in the concepts developed

in this research to a decentralised and distributed M2M system architecture. The different

roles and stakeholder existing in an M2M ecosystem have been introduced. It has been

highlighted that M2M ASPs and consumer are separated stakeholder. This relationship

will be changed during this research enabling end-users to take the role of both, M2M

ASP as well as consumer. Since M2M services and composition of them are in the focus

of this research, finally the differences of service choreography (common in traditional

MSPs) and service orchestration have been illustrated. Service choreography will be the

approach followed in the course of this research since it does not contain a central

coordinator for service interactions.

The use cases specified in section 2.4 represent exemplary options to link M2M devices

in a Smart Home and to provide the functionality as a service as well as the possibility to

combine several services to realise distributed M2M applications. These use cases will be

applied later in this research to illustrate architectural approaches and methodologies as

well as to evaluate the proposed framework.

The following chapter 0 presents the architecture of MSP defined by standardisation

committees ETSI and oneM2M as well as research projects of MSPs. Advantages and

disadvantages of these approaches will be determined to define the requirements for

optimised architecture and principles for decentralised M2M application service

provision.

43

3 Challenges, Requirements, and Use

Cases of M2M Application Service

Provision

This chapter starts by introducing and analysing in section 3.1 existing concepts for

service/application provision in M2M application field, which partly or completely

address similar topics as addressed in this research, focusing on their benefits and

limitations. The approaches are intended to illustrate how currently M2M service

platforms (MSPs) are implemented. OneM2M's approaches for the specification of an

MSP will be introduced in detail since it is considered as a reference architecture and

because the framework presented in this research should use standardised approaches for

the realisation of an optimised MSP. Furthermore, various research projects on MSPs will

be presented to consider their advantages and disadvantages in the concept of an

optimised MSP. The chapter continues in section 3.2 with an overview of the previously

introduced projects, which forms the basis for establishing the requirements for

decentralised application provision in M2M networks. In order to define the

requirements, the positive aspects of the presented projects are taken into account and

new requirements are defined based on the negative aspects.

3.1 Related Work on M2M Service Platforms

44

3.1 Related Work on M2M Service Platforms

This section introduces the related projects on MSPs. They can be categorised e.g.

according to (Kim et al., 2014) into “commercial M2M platforms” and “research projects

on M2M platforms”. According to (Kim et al., 2014) most of the commercial MSPs are

realised based on the oneM2M standard specification for M2M systems. The oneM2M

standard specification will therefore be introduced as representative of commercial M2M

platforms in section 3.1.1, with the remaining subsections covering related projects from

the research field.

3.1.1 OneM2M Specification for M2M Systems

The standardisation committee oneM2M published several specifications for definition

of an architecture of an MSP, which according to (oneM2M TS-0011-V2.4.1, 2016)

enable to deploy M2M solutions. The purpose of the developed specifications is to

describe a Common Service Layer that enables the connection of myriad devices with

M2M application servers (oneM2M TS-0011-V1.2.1, 2015). This section examines

relevant specifications with focus on the architecture of an MSP according to oneM2M

as well as the mechanisms to realise M2M application services applying the architecture

of an M2M system as defined by oneM2M.

It is specified in (oneM2M, 2015) that the objectives of oneM2M is to define interfaces

that enable “individual industries or businesses” for interoperation, but their objective is

not to standardise the environment across applications. OneM2M defines an MSP

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

45

(consisting of M2M common services) based on a horizontal service layer (illustrated in

Figure 3.1) that is usable across different application fields. (oneM2M TS-0007-V2.0.0,

2016), which describes the specific M2M common services and their interworking in an

M2M architecture, defines as its scope the “use of the M2M Services within the context

of complex business services”. This indicates that the scope of an oneM2M defined M2M

system does not designate to end-user domain, respectively M2M application provision

by end-users, but describes an M2M system for business applications with the goal to

support business processes. Additionally, (oneM2M TS-0011-V2.4.1, 2016) specifies the

M2M service provider (SP), M2M application service provider (ASP) and the M2M

service consumer (SC) as different stakeholders in an M2M system. Although the scope

of M2M systems according to the architecture defined by oneM2M does not focus on

end-user domain and end-user integration in M2M application provision, in the following

the architecture is introduced in detail to differentiate the concept defined in this thesis

and explain approaches integrated in the proposed framework. Permission to reproduce

Figure 3.1 has been granted by author of the referenced publication.

Figure 3.1: M2M Common Service Layer acc. (Damour, 2014)

The purpose of the specified M2M Common Service Layer of the service layer

architecture defined by oneM2M is to avoid multiple coexistent solutions for M2M

Automotive

Automotive

Application

Home

Home

Application

Energy

Energy

Application

Health

Health

Application

Communication Networks

Communication Technologies & Protocols

Communication Devices & Hardware

Common Service Layer

Common functions applicable to different application domains

3.1 Related Work on M2M Service Platforms

46

business applications, realised by different centralised infrastructures of M2M SPs as

illustrated in Figure 3.2.

Figure 3.2: Vertical Pipes of M2M Business Applications acc. (Arndt and Koss, 2014)

OneM2M specifies an architecture for realisation of applications that “share common

infrastructure, environments and network elements” by definition of a single centralised

horizontal MSP architecture as illustrated in Figure 3.3.

Figure 3.3: oneM2M Horizontal Platform Principle acc. (Arndt and Koss, 2014)

The purpose of the defined horizontal infrastructure is to realise central business

applications by central M2M ASPs, but with application of a shared MSP acting as a

Figure 3.2 has been removed due to Copyright restrictions.

Figure 3.3 has been removed due to Copyright restrictions.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

47

middleware that supports the end-to-end data exchange between customer applications

and M2M devices (Arndt and Koss, 2014).

(oneM2M TS-0001-V1.13.1, 2016) defines the following layers (illustrated in Figure 3.4)

comprised in an M2M system to support end-to-end M2M Services. Every Layer can use

the functionalities of the underlying layer.

 Application Layer – M2M application services are realised by implementation of

Application Entities (AE) located in the Application Layer. The AEs can use the

functionalities of the Common Services Layer.

 Common Services Layer – The Common Services Layer comprises functionalities

that are common for M2M applications of several M2M application fields and

across different M2M platforms (e.g. device or location management).

 Network Services Layer – The network services layer provides networking

functionality to the common services layer, which uses the functionalities

provided by the network to connect devices or other entities, using network

communication.

oneM2M defines the functional architecture of an M2M system by specifying several

AEs and service entities (CSEs and NSEs) located in the defined layers as well as various

reference points to connect them for data exchange or to service requests (illustrated in

Figure 3.4). Permission to reproduce Figure 3.4 has been granted by ETSI.

3.1 Related Work on M2M Service Platforms

48

Figure 3.4: oneM2M Layered Model and Functional Architecture acc. (oneM2M TS-0001-V1.13.1,

2016)

Subsequently AE, CSE, NSE of the oneM2M are described as specified in (oneM2M TS-

0001-V1.13.1, 2016).

 Application Entity (AE) – AEs are entities implementing application logic (e.g.

applications for remote blood sugar monitoring or a control applications). Each

AE can reside multiple times in various M2M nodes. AEs and CSEs communicate

via the Mca reference point to enable the AE to utilise the services provided by

the CSE. AE and CSE can but need not be located on the same device.

 Common Services Entity (CSE) – A CSE is an instance “of a set of common

service functions” such as services for device management (management of

device capabilities) or location service. Other entities of the M2M system can

utilise these common service functions (CSF) through the Mca and Mcc reference

points illustrated in Figure 3.4. CSEs and NSEs connect via the Mcn reference

point to enable the CSE to utilise the services provided by the NSE. Connections

AE

CSE

NSE

InfrastructureDomain

AE

CSE

NSE

Field Domain

Application Layer

Common Services Layer

Network Services Layer

Mcn

Mcc

Mcn

Mca Mca

Mca

Mcc

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

49

between CSEs are established via the Mcc reference point to utilise services

provided by the other CSEs.

 Network Services Entity (NSE) – A NSE provides underlying network services to

the CSEs. Such network services are according to (oneM2M TS-0004-V2.7.1,

2016) e.g. device triggering (3GPP TS 23.682, 2016) or location request

(geographical location information).

An oneM2M system consists of several nodes that are whether located in the field domain

or in the infrastructure domain. The Field Domain contains M2M devices, gateways and

M2M Area Networks. The Infrastructure Domain contains the application infrastructure

and the M2M service infrastructure (oneM2M TS-0011-V2.4.1, 2016). According to

(Rayes and Salam, 2017) the Infrastructure Domain contains the communication

networks (e.g. routers) and servers (e.g. data centres) of the M2M SP. The Infrastructure

Domain (i.e. the M2M Service Infrastructure) is according to (oneM2M TS-0011-V1.2.1,

2015) “physical equipment (e.g. a set of physical servers) that provides management of

data and coordination capabilities for the M2M SP and communicates with M2M

Devices”. Therefore the Infrastructure Domain is the place where the main components

of an MSP resides. This is intensified by (oneM2M TS-0007-V2.0.0, 2016) describing

the M2M services that an oneM2M service platform provides, which are “primarily

suitable for the Infrastructure Domain”. As specified in (oneM2M TS-0001-V1.13.1,

2016) a node is considered as a logical entity that is contained in a physical entity such as

the M2M device or M2M application server. Every node provides specific services that

can be consumed by other nodes (CSE of the nodes) in the M2M environment. The AEs,

which are also located in nodes, consume the functionalities (services) provided by the

3.1 Related Work on M2M Service Platforms

50

own node or the functionalities provided by other nodes for implementation of the logic

of an M2M application service.

To consume the functionalities by other nodes, the nodes need to be interconnected via

the defined reference points. Figure 3.5 illustrates the various node types of an M2M

system and shows in which domain they are located. Figure 3.5 also illustrates connection

possibilities of various entities according to (oneM2M TS-0001-V1.13.1, 2016).

Permission to reproduce Figure 3.5 has been granted by ETSI.

Figure 3.5: Configurations supported by oneM2M Architecture acc. (oneM2M TS-0001-V1.13.1,

2016)

Middle Node (MN)

Infrastructure Node (IN)

Mca

Middle Node (MN)

Mca

Application Service

Node (ASN)

Application Dedicated

Node (ADN)

Application Service

Node (ASN)

Application Dedicated

Node (ADN)

McaMca

Field Domain

InfrastructureDomain
IN-AE

MN-AE

ASN-CSE

ASN-AE

ASN-CSE

ASN-AEADN-AE ADN-AE

Non-oneM2M

Device Node

(NoDN)

Non-oneM2M

Device Node

(NoDN)

Non-oneM2M

Device Node

(NoDN)

Non-oneM2M

Device Node

(NoDN)

Non-oneM2M

Device Node

(NoDN)

IN-AE

One or more AE Zero or more AE Link out of scope

Mca

Mcn
Mcc

IN-CSE

Mcc

Mcc

Mcc
Mcn

MN-CSE

Mcn
Mca Mcc

Mca

MN-AE

MN-CSE

McnMcn

Mca

Mcc

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

51

According to (oneM2M TS-0001-V1.13.1, 2016) the “Infrastructure Domain of any

particular M2M SP contains exactly one Infrastructure Node” and the Field Domain can

contain multiple Application Service/ Application Dedicated/ Middle/ and Non-oneM2M

Nodes. These node types are described subsequently as specified in (oneM2M TS-0001-

V1.13.1, 2016).

 Application Service Node (ASN) – ASNs (e.g. M2M devices) contain one CSE

and at least one AE.

 Application Dedicated Node (ADN) – ADNs (e.g. constrained M2M devices)

contain no CSE and at least one AE.

 Middle Node (MN) – MNs (e.g. M2M Gateways) contain one CSE and zero or

more AEs.

 Infrastructure Node (IN) – The IN is a single centralised element in the

infrastructure of an M2M SP containing one CSE and zero or more AEs.

 Non-oneM2M Device Node (NoDN) – NoDNs not contain AEs or CSEs.

To connect between two Infrastructure Nodes (INs) residing in different M2M SP

domains, respectively the CSEs located in the INs, the connection is established using

their Mcc’ reference points. This connection of the INs enable the CSEs of the INs “to

communicate with a CSE of another IN residing in the Infrastructure Domain of another

M2M SP to use its supported services and vice versa”.

After the main architectural components of an oneM2M service platform has been

introduced, subsequently an exemplary M2M application (illustrated in Figure 3.6) is

presented as defined by (oneM2M TR-0025-V1.0.0, 2016). The task of the exemplary

M2M application is to provide functionality for remote monitoring and control of lights

3.1 Related Work on M2M Service Platforms

52

in a Smart Home using a remote light controller application installed on a Smartphone.

The lights (ADNs) are connected to an M2M Gateway (MN) that is connected to the

oneM2M service platform. The “oneM2M service platform is modelled as an IN-CSE”

and located in the Cloud. The Smartphone application (IN-AE) is connected to the MSP

and is controlled by the end-user. Permission to reproduce Figure 3.6 has been granted

by ETSI.

Figure 3.6: oneM2M functional Architecture of M2M Application acc. (oneM2M TR-0025-V1.0.0,

2016)

The Infrastructure Domain illustrated in Figure 3.5 “consists of Application Infrastructure

and M2M Service Infrastructure” (oneM2M TS-0011-V2.4.1, 2016). The M2M

application infrastructure is “equipment (e.g. a set of physical servers of the M2M ASP)

that manages data and executes coordination functions of M2M Application Services”

(oneM2M TS-0011-V2.4.1, 2016). The “Application Infrastructure hosts one or more

M2M Applications” but “specification of Application Infrastructure is not subject of the

current oneM2M specifications” (oneM2M TS-0011-V1.2.1, 2015).

While oneM2M does not specify the Application Infrastructure, they explicitly define the

M2M Service Infrastructure. OneM2M specifies which functionality an MSP should

Mcc

Smartphone with App as a

remote Light Controller

IN-AE

Home Domain

Light 2

ADN-AE 2

Light 1

ADN-AE 1

Mca

Mca

Mca

oneM2M Service Platform

End-User
Home Gateway

MN-CSE

MN-AE

IN-CSE

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

53

provide by specifying so-called M2M common services. According to (oneM2M TS-

0011-V2.4.1, 2016) a common service is a “set of oneM2M specified functionalities that

are widely applicable to different application domains made available through the set of

oneM2M specified interfaces“. M2M common services (also referred to as Common

Service Functions, CSFs) are realised by the CSE of a node that contains a set of M2M

common services. The M2M common services have so-called service capabilities, which

are the functions of an M2M common service usable by AEs or CSEs.

OneM2M separates between definition of functionalities (M2M common services)

specific for an MSP (CSE in IN) and the definition of M2M common services that are

applicable to all nodes in an M2M system. In the following first the M2M common

services, i.e. the functionality of an MSP, is described as specified by (oneM2M TS-0007-

V2.0.0, 2016). After description of the MSP functionality, the M2M common services for

general M2M nodes are described. Because not all M2M common services specified by

oneM2M need to be integrated in an MSP or in M2M nodes, the description of the M2M

common services is limited to the functionalities that are relevant in the scope of this

research.

 Service Subscription – Invoke of AEs and associated M2M service capabilities,

i.e. invoke of functionalities provided by a specific AE.

 Data Exchange – Possibility for data (information) exchange between AEs

supporting “Subscribe-Publish-Notify” and “Request-Response” data exchange

patterns.

 Registration – Functionality to register AEs at the MSP and to refresh or terminate

AE registrations.

3.1 Related Work on M2M Service Platforms

54

The following M2M common services applicable to general nodes are specified by

(oneM2M TS-0001-V2.10.0, 2016).

 Communication Management and Delivery Handling (CMDH) – Functionality

for communication with other entities (CSEs, AEs or NSEs). The CMDH controls

(i.e. decides) which communication connection (communication protocol,

network interface) should be used for message delivery. The transmission of the

message is done without consideration of the message content (i.e. the CMDH “is

not aware of the specific operation requested at the target entity”).

 Data Management and Repository – Functionality for data storage (of e.g.

application data, subscriber information or location information).

 Discovery – Functionality to search for applications and services.

 Registration – Registration functionality to enable registered entities (other AEs

or CSEs) to utilise offered services.

 Subscription and Notification – Functionality for notification to track events

occurred at a resource. AEs or CSEs have to subscribe for a resource they want to

track. While the resource subscription is active, the hosting CSE sends notification

events to the subscriber.

For realisation of an M2M application service it is necessary to interconnect the nodes,

respectively the CSEs of the nodes to use their provided M2M common services. These

interconnections are done by registration of the nodes with each other, respectively

forming a uni-directional connection of nodes. Figure 3.7 illustrates the possible node

connections and the corresponding cardinalities that can exist in an oneM2M system as

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

55

specified in (oneM2M TS-0001-V2.10.0, 2016). Permission to reproduce Figure 3.7 has

been granted by ETSI.

Figure 3.7: Possibilities for Node Interconnections acc. (oneM2M TS-0001-V2.10.0, 2016)

ADN-Nodes can register either to an IN-Node or to a MN-Node. An ADN-Node can

exclusively register to a single IN-Node or MN-Node. ASN-Nodes can also directly

register to an IN-Node or to a MN-Node. A single ASN-Node can exclusively register to

a single MN-Node or IN-Node. MN-Nodes can register with other MN-Nodes or with

IN-Nodes. The registration also can be exclusively to a single MN-Node or an IN-Node.

The IN-Node can register to IN-Nodes of other M2M SPs.

The registration of a node (registree) at another node (registrar) enables the registrar node

using the M2M common services provided by the registree node and vice versa.

Additionally, the registration of an AE at a CSE (on same or remote node) enables the

MN Node

AEAE

MN Node

AEAE

IN Node

AEAEMN Node

AEAE

ASN Node

AEAE

ADN Node

AEAE

ADN Node

AEAE

CSE

AE

CSE

AE AE

CSE

CSE

AE

AE

AE

AE

CSE

n

n

n n

n

n

n

1

1

1 1 1

1

n 1
or or

1

1 1

n

1

1

1

constrained

M2M Device Application Server1x

constrained

M2M Device

M2M Device

M2M Gateway

M2M Gateway M2M Gateway

AEAEIN-AE

1

n

IN

Node

CSE

1 n

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

3.1 Related Work on M2M Service Platforms

56

AE using the M2M common services provided by that CSE and vice versa. The

connections of two CSEs enable both CSEs to consume the M2M common services

reachable by both CSEs (oneM2M TS-0001-V2.10.0, 2016). Figure 3.8 illustrates

exemplarily the set of addressable M2M common services by two registered nodes (MN-

CSE C and MN-CSE D).

Figure 3.8: Scope of addressable M2M Common Services by registered CSEs

(oneM2M TS-0001-V2.10.0, 2016) specifies several restrictions for the possibilities to

connect MN-Nodes (i.e. M2M gateways). It specifies that a MN-Node can only support

one uni-directional registration. I.e. a MN-Node can only register at one other MN-Node.

Furthermore, at an MN-Node only one other MN-Node can register. Figure 3.9 illustrates

some valid connection of MN-Nodes.

Figure 3.9: Valid MN-Node Registrations

Multiple MN-CSEs can register at a single IN-CSE (Figure 3.9a). This enables the MN-

Nodes A and B to consume the M2M Common Services provided by IN-Node A and vice

M2M Common Services addressable by MN-CSE D

ASN-CSE A

ASN-CSE B

M2M Common

Services

M2M Common

Services

MN-CSE C

M2M Common

Services

MN-CSE D

M2M Common

Services

Mcc

Mcc

Mcc

a)

IN-CSE A

MN-CSE A

MN-CSE B

MN-CSE A MN-CSE B MN-CSE C MN-CSE D

b)

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

57

versa. Figure 3.9b illustrates “a concatenation (registration chain) of multiple uni-

directional registrations” (oneM2M TS-0001-V2.10.0, 2016). Here each MN-Node has

maximum registered at one other MN-Node and has maximum one other MN-Node that

is registered to the MN-Node itself. According Figure 3.8 e.g. MN-CSE D can use the

M2M Common Services provided by MN-CSE A, MN-CSE B or MN-CSE C. Figure

3.10 illustrates some invalid connection of MN-Nodes as specified in (oneM2M TS-0001-

V2.10.0, 2016).

Figure 3.10: Invalid MN-Node Registrations

According to (oneM2M TS-0001-V2.10.0, 2016) a MN-CSE can only register at one

other MN-CSE. MN-CSE A therefore cannot register at two other MN-Nodes (Figure

3.10a). The connection of MN-Nodes by e.g. a registration chain (Figure 3.10b and d) are

not allowed to form a loop. Additionally, it is not possible to register more than one MN-

CSE at the same other MN-CSE (Figure 3.10c).

Especially the restrictions for connection of MNs to other entities in an M2M system

highlight why it is necessary to have an IN available in the architecture of an M2M system

specified by oneM2M.

a)

c)

MN-CSE A

MN-CSE C

MN-CSE A

MN-CSE B

MN-CSE B

MN-CSE C

b)

d)

MN-CSE A MN-CSE B MN-CSE C

MN-CSE A MN-CSE B

3.1 Related Work on M2M Service Platforms

58

For realisation of an M2M application service, integrating several M2M devices for

controlling and monitoring, following two approaches exist:

1. All integrated M2M devices are registered at a central IN inside the infrastructure

domain of the M2M SP (directly or using an M2M gateway as proxy, as illustrated

in Figure 3.6) and a centralised AE located at the IN or outside the IN coordinates

the application process (i.e. message exchange between M2M devices) or

2. the M2M application service logic is distributed to the MNs inside the field

domain, which are connected uni-directional by a registration chain as illustrated

in Figure 3.9b.

Realisation according the first approach requires the existence of a central network

element (IN), which is located in the infrastructure domain. This results in several

disadvantages, such as this central entity is a single point of failure, a complex centralised

infrastructure domain is required, and system user are dependent of a single M2M SP.

Realisation according the second approach in principle seems possible without necessity

of a central IN, but limits the flexibility of the M2M system because MNs are only

allowed to connect to one other MN. As a consequence other MNs cannot be connected

to the MN and therefore not use the functionality provided by a specific M2M Gateway

or devices connected to the M2M Gateway.

The following section describes the utilisation of M2M common services by different

nodes after successful registration of the nodes. According (oneM2M TS-0001-V2.10.0,

2016) the utilisation of M2M common services is based upon information exchange

between the provider and the consumer, respectively CSEs and AEs, via the defined

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

59

reference points. The information exchange is realised by request and response messages

as illustrated in Figure 3.11. Permission to reproduce Figure 3.11 has been granted by

ETSI.

Figure 3.11: Principle of Information Exchange between Entities acc. (oneM2M TS-0001-V2.10.0,

2016)

According to (oneM2M TS-0001-V2.10.0, 2016) and (oneM2M TR-0025-V1.0.0, 2016)

entities that are interested in a specific information provided by another entity, request

that information via a request message. The requested entity responses the requested

information via a response message to the requesting entity. This kind of communication

occurs between AEs and CSEs as well as between CSEs. Inside an M2M system,

everything is considered as a resource, identifiable uniquely by a URI and consumed or

provided by an entity. Controlling of a resource is done in the same way as requesting

information using CRUD (Create Retrieve Update Delete) operations.

The above-specified registrations of nodes are related to a single M2M SP domain and

the intra-domain interconnection of the nodes. This kind of interconnection therefore is

only realisable with existence of a central M2M SP that obtains an infrastructure domain.

Without a central M2M SP the realisation could only be possible if end-users appear in

the role of an M2M ASP hosting an individual IN. For addressing a resource located in

the domain of another M2M SP, it is required to interconnect the domains of both M2M

ReceiverOriginator

Request message

Response message

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

3.1 Related Work on M2M Service Platforms

60

SPs via their INs. The interconnection of the M2M SPs and the routing of messages is

realised including the public domains of the M2M SPs. Precondition is that the domains

of the SPs are reachable via a public DNS server and the IN registers the “public domain

names of the CSEs” at the DNS (oneM2M TS-0001-V2.10.0, 2016).

The disadvantage of this addressing mechanism is that the interconnection of domains is

only possible if INs and additionally registered public domains exist. Both are usually not

common in the application environment of end-users and demonstrate again that the scope

of the defined architecture for M2M systems is limited to the business application field

and not to that of end-user environments.

According to (oneM2M TS-0004-V-2014-08, 2014) the approach for request and control

resources contains an abstraction mechanism for information exchange between entities

and follows the RESTful architecture principles (Fielding, 2000; Bayer, 2002). The

message exchange occurs via Primitives specified in (oneM2M TS-0004-V-2014-08,

2014) that are messages exchanged in the service layer. Figure 3.12 illustrates this kind

of information transmission. Permission to reproduce Figure 3.12 has been granted by

ETSI.

For transport of the messages from one entity to another entity, the primitive is mapped

to application layer communication protocol such as HTTP (IETF RFC 2068, 1997),

CoAP (IETF RFC 7252, 2014), WebSocket Protocol (IETF RFC 6455, 2011) or MQTT

(OASIS mqtt-v3.1.1, 2014). Transport layer protocol (UDP/TCP) with underlying IP

network is used to transmit the messages between the entities. In case of information

exchange between a CSE and a NSE across the Mcn reference point appropriate Mcn

protocols are used. Through the abstraction of the communication inside the

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

61

application/service layer from communication in transport layer, the Primitives are

transport protocol independent.

Figure 3.12: Primitive Overview acc. (oneM2M TS-0004-V2.7.1, 2016)

Benefit of the oneM2M systems architecture is that the purpose of oneM2M is to share

infrastructure and network elements across multiple M2M applications. This is beneficial

with regards to the MSP because sharing infrastructure elements has various advantages,

such as reducing the costs for platform provision (e.g. for maintenance or operation) or

enable the application provider to focus on the business aspects of their applications

without regard of basic functionalities such as M2M device communication or

accounting. The concept of a central MSP has the advantage that communication among

Response RequestRequest Response

Primitive

Receiver

Binding Functions

Primitive

Originator

Binding Functions

IP-based underlying Network

Application/ Common Service Layer

Application Layer Communication Protocol (e.g.

HTTP, CoAP, MQTT)

Transport Layer Protocol

(UDP/ TCP)

Application Layer Communication Protocol (e.g.

HTTP, CoAP, MQTT)

Transport Layer Protocol

(UDP/ TCP)

© 2016. oneM2M TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA and TTC
who jointly own the copyright in them. They are subject to further modifications and are therefore
provided to you as is for information purposes only. Further use is strictly prohibited.

3.1 Related Work on M2M Service Platforms

62

applications components, M2M devices as well as the structure of M2M application

services is unified. This enables the interoperability of different M2M application services

and M2M devices. Especially the protocol translation functionality of nodes to

interoperate between different M2M protocols, support the integration of multiple M2M

devices in different M2M applications.

Next to the advantages presented above, the MSP architecture of oneM2M contains

several disadvantages presented in the following. First disadvantage is that oneM2M

focuses on the interoperation of industries and businesses and the support of complex

business processes but not the integration of end-user environment or application

provision by end-users. OneM2M does not specify the M2M Application Architecture

and limits its specifications to the MSP architecture. Despite the advantages of a common

service layer regarding the shared functionalities, this platform needs a complex setup of

the environment with additional network elements (physical or virtual servers) and end-

to-end communication technologies. It does not reuse commonly existing communication

technologies and network elements for realisation of the MSP. The M2M ASP are

dependent of a single MSP provider. Furthermore, the M2M application service itself is

designed and realised by a central M2M ASP. Through this, the consumer of an M2M

application service is dependent of the M2M ASP. The M2M system as defined by

oneM2M includes the IN as a single centralised element in an oneM2M system

architecture. The IN is e.g. required for M2M application provision and interconnection

of different M2M SP domains. Required central elements in an architecture usually have

negative aspects because realisation of continuous availability and maintenance result in

large costs for the provider. Furthermore, all other participants in the M2M system are

dependent of the central IN. By considering the OM2M project (Monteil and Alaya, 2014;

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

63

OM2M, 2016), a specific implementation of the oneM2M architecture, it becomes clear

that not only the design and operation of an oneM2M system requires expert knowledge,

but also creating an application. Because the required expert knowledge development of

oneM2M compliant applications and the provision in a corresponding oneM2M

architecture is not feasible by end-users.

3.1.2 INOX Managed Service Platform

The INOX Managed Service Platform (Clayman and Galis, 2011) specifies “a M2M

service architecture” (Kim et al., 2014). The INOX platform has been designed to avoid

silo applications that coexist next to each other providing monitoring/control functionality

using sensors and smart objects. According to (Amaral et al., 2015) INOX is a platform

that provides a “M2M service architecture for IoT” including functionality to register and

discover things as well as object virtualisation and capabilities for orchestration to control

and manage services.

The purpose of the INOX architecture and infrastructure is to integrate the smart

objects/things with the “common services and management architectural model”

(Clayman and Galis, 2011). INOX provides a framework to combine the smart objects

“for higher-level processing” (Clayman and Galis, 2011). The INOX platform focusses

intensively on the service approach and combination of different sensor networks inside

the platform (Savaglio and Fortino, 2015).

According to (Clayman and Galis, 2011) and (Savaglio and Fortino, 2015) the INOX

Platform contains the following three layers. Figure 3.13 displays these layers including

the platform components contained in them.

3.1 Related Work on M2M Service Platforms

64

 Service Layer – The Service Layer contains the Services and Applications

connecting through Service APIs to elements in Platform Layer.

 Platform Layer – The Platform Layer provides the functionality for management

and orchestration to deploy Services and Applications as well as virtualises the

Servers, Smart Objects and Things located in the Hardware Layer.

 Hardware Layer – The physical devices (e.g. sensors and servers) and devices

(routers) providing networking functionality over the internet via IP-based

communication protocols are located in the Hardware Layer. The functionality

for hosting services and virtual machines is also provided by the servers in the

Hardware Layer.

Figure 3.13: INOX Managed Service Platform acc. (Clayman and Galis, 2011)

Figure 3.13 has been removed due to Copyright restrictions.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

65

The physical devices are located in the same local environments or distributed across

different locations. An application provided by the INOX platform should be able to use

every device or service provided by the devices. According to (Clayman and Galis, 2011)

it does not matter if the devices that are used and managed by services are located in

different domains because INOX platform provides capabilities to connect them.

Derived from (Clayman and Galis, 2011) the Platform Layer forms the service platform

middleware and contains the main functional elements of the INOX platform. According

to (Clayman and Galis, 2011) this middleware contains a Resource Virtualization Overlay

representing all resources of the Hardware Layer as virtual resources and links both,

virtual and physical resources. The virtualisation overlay provides APIs for manipulation

of resources abstracted from the real resources (virtual resources) or physical resources

(without virtualisation). The abstraction of the devices isolates the devices in the

Hardware Layer and enables upper layers (services, end-user application) using devices

without considering implementation specific device interfaces.

The Management and Orchestration Functions element in the Platform Layer can be

specified as a kind of resource scheduler which is according to (Clayman and Galis, 2011)

responsible to allocate portions of virtual resources to given tasks. It provides capabilities

for controlling and management of services located in various domains.

The Common Protocols/Communication API/Resource Access API element in the INOX

platform provides the physical interfaces to the devices in Hardware Layer. This element

contains the communication protocol stacks to interact with the specific devices

(Clayman and Galis, 2011).

3.1 Related Work on M2M Service Platforms

66

The Service APIs element provides according to (Clayman and Galis, 2011) the interfaces

to the INOX service platform that are used by the user services. The Service APIs form

interfaces to integrate functionality of smart objects into user services. These interfaces

enables smart objects to interact via the internet and to query/update information or

behaviour of objects.

In addition to the functionality provided by the platform elements above, (Clayman and

Galis, 2011) specifies additional functions of the INOX platform like function for

registration and discovery of smart objects by utilisation of e.g. device specific identifiers

or location. The INOX platform supports a large amount of devices and services because

scalability is a requirement provided by the INOX platform.

(Clayman and Galis, 2011) does not describe how to build applications or the architecture

of applications provided by the INOX platform but defines that the platform provides

service applications automatically by processing a manifest specifying the service

elements. This leads to the assumption that applications are defined in a declarative way.

(Clayman and Galis, 2011) does not specify the execution environment of the INOX

platform but mentions that the platform “has the functionality of a service cloud […] and

the ability to run shared applications” as well as the INOX project is “working towards

an IoT cloud environment”. This leads to the assumption that the presented platform is

provided as a (logically) centralised cloud-based solution or is executed in a physically

centralised server environment.

The benefits of the INOX service platform for M2M applications is that it provides

mechanisms to integrate distributed things and smart objects as well as existing services

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

67

into complex applications. The presented approach of the architecture enables avoiding

previous existing implementations of applications that are statically bound to the

corresponding smart objects (silo-applications). According to (Clayman and Galis, 2011)

previously applications have been realised that were statically connected to the sensors

or smart objects. The approach presented in the INOX project defines a dynamic

architecture that enables sharing of resources between different applications (Clayman

and Galis, 2011). The mechanism integrated in the INOX platform for device lookup

enables the applications to address (search and discover) the devices without regard of

the specific device location or contact address. Providing a service-based infrastructure

enables a unified mechanism for integration and combination of M2M devices as well as

other resources located in the Internet into applications based on common service

principles. The introduced virtualisation layer enables the communication between

devices and applications independent of the applied communication protocol and realises

the inter-networking of different M2M protocols and networks (Clayman and Galis,

2011). The seamless integration of different M2M device technologies enlarges the

flexibility of services and applications because the higher number of usable devices. The

abstraction of the devices from the implementing M2M technology enables the use of the

devices without considering implementation specific technologies and permit focussing

on core application aspects instead of technology aspects for realisation. Device

abstraction additionally enables the portability of services and application regardless of

the M2M technology of the integrated devices. The declarative way to describe

applications instead of statically and execution system specific implementation of

application logic supports the independence of application logic from the execution

3.1 Related Work on M2M Service Platforms

68

environment and enables to move applications from one execution system to a different

one without adapting the application logic description.

Besides the advantages of INOX platform, the presented approach also contains several

disadvantages. As the INOX architecture forms a cloud-based centralised integration

platform of smart objects and because the functionality provided by the platform layer for

orchestration to deploy services and application, the user of the platform (SC) is

dependent of both, the central platform provider (for application development and

platform operation) and the central platform components (for service and application

execution). Centralised platform infrastructures require many resources for service

provision (operating costs for hardware and availability as well as service maintenance

or costs for service development). The large costs for operating the platform are

transferred to the consumer, which in turn enlarges the costs for service utilisation.

Additionally, central infrastructures for storing and calculating data by a single entity

always is critical regarding data safety and end-users privacy. (Clayman and Galis, 2011)

mentions end-user applications which can be considered as applications that are

consumed by end-users and not provided by end-users. It can therefore be concluded that

the end-user is no active stakeholder in the context of application creation and also not

able to provide service based on end-users individual personal environment. Therefore

end-users also cannot cooperate with each other to combine their local M2M resources

and provide their functionality as a cooperative M2M service.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

69

3.1.3 M2M Platform Project based on SOA (M2M on SOA)

(Zhang et al., 2010) presents an M2M platform for bridging business applications and

M2M devices using Java 2 Enterprise Edition (J2EE) framework and service oriented

architecture (SOA) concept (Kim et al., 2014). The proposed M2M platform aims to

integrate business applications and M2M devices using Web Service (WS) technology,

which is able to reduce dependencies of system parts and can react on changes in short

terms (Kim et al., 2014; Zhang et al., 2010).

(Zhang et al., 2010) identifies as deficit of traditional M2M solutions (illustrated in Figure

3.14a) that several M2M devices are connected to “different business applications” and

the necessary interfaces are implemented multiple times providing the same functionality.

According to (Zhang et al., 2010) in that architectural approach, all devices are connected

to the applications that integrate the devices. The interfaces to the devices are created

newly for each connection and are rarely reused.

Figure 3.14: M2M Network Topologies (traditional and proposed) acc. (Zhang et al., 2010)

Therefore (Zhang et al., 2010) proposes a platform architecture that has a larger

reusability of interfaces. For this they proposes that a “bridge platform” is used as M2M

Machines Machines

Business Applications Business Applications

b) Proposed M2M Network Topologya) Traditional M2M Network Topology

M2M Platform

...

...

...

...

© 2010 IEEE © 2010 IEEE

3.1 Related Work on M2M Service Platforms

70

platform (illustrated in Figure 3.14b) that connects applications and devices in “star-

topology”. (Zhang et al., 2010) proposes an M2M platform as service-oriented and

distributed system that has a loosely-coupled and multi-layer architecture.

For integration of the M2M Platform with the devices and business applications (Zhang

et al., 2010) proposes a SOA (OASIS SOA-RM-V1.0, 2006) implementation based on

WS and a Message Broker because it enables realisation of applications as encapsulated

services that are accessible via the internet. The participants in such a system structure

includes SP deploying and maintaining services, service broker responsible for

registration and location of services, and service requestor consuming services (Zhang et

al., 2010).

(Zhang et al., 2010) separates an M2M system in four parts: M2M platform, devices,

business applications, and access devices. Figure 3.15 illustrates the parts of the platform

as well as the internal components.

Figure 3.15: M2M Platform Architecture acc. (Zhang et al., 2010)

M2M Devices

M2M PlatformAccess Devices

Business

Applications

Gateway

Module

Gateway

Module

...

Others

DB

Data

Operate

User Interface

Business

Process

Service Broker

Gateway

Other Devices

Cash

Point

Calculator

Surveillance

Cam

TV

Mobile

Phone

PC

© 2010 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

71

In the proposed architecture all parts of the M2M system are separated from each other

(i.e. are executed on separated locations). The M2M devices (e.g. surveillance cameras

or TVs) are connected to the M2M platform via M2M gateways. The gateways are located

at the place where the M2M devices reside. The M2M gateways connect to the M2M

platform via gateway module components of the M2M platform. Business applications

and user interface hardware are also located outside of the M2M platform.

According to (Zhang et al., 2010) the user utilises an end-device (e.g. PC or mobile phone)

to access the business application by sending a request to the M2M platform (or directly

to the business application). The operation request is analysed by the application system,

which connects to the Webservice provided by M2M platform. The M2M platform

afterwards requests the WS that the M2M gateway provides to trigger operation at the

device or request information from it.

As mentioned above, the M2M system proposed by (Zhang et al., 2010) is focused on

services, especially WS. All parts of the M2M system are connected via WS. The service

broker element of the M2M platform provides message routing functionality as well as

functionality for transformation of message format to exchange information between the

WS provided by the system elements (Zhang et al., 2010).

The M2M platform provides the core functionality of the M2M system including a User

Interface for interaction with users (e.g. to display users’ information data). It also

includes internal elements for management of e.g. users, application or M2M devices as

well as functionality for sms/email notification and provides functionality for several

business needs (e.g. payment functionality). For internal data storage and operation, the

M2M platform includes a database system (Zhang et al., 2010).

3.1 Related Work on M2M Service Platforms

72

The architecture of an M2M system as presented by (Zhang et al., 2010) has the following

advantages. The bridge functionality of the platform reduces the dependence of business

applications and M2M devices. Additionally, the SOA-based approach provides the

benefit that the (physical) dependence of applications, application users, the M2M

platform as well as the M2M devices is reduced. The SOA principles as well as the

included asynchronous service/message broker makes the applications and the other

components of the M2M system loosely coupled which enables the M2M system to

quickly response to change request in the runtime system (Zhang et al., 2010). The

presented approach includes the abstraction of communication between device specific

technologies and the platform internal system and application components. This enables

to realise applications without consideration of the specific details of different M2M

device technologies. The M2M system of (Zhang et al., 2010) provides a graphical

interface for the end-user, which enables the user to interact with the M2M system using

commonly available hardware. Additionally, provision of commonly available

communication functionality using email and SMS notification functionality support the

information exchange with the user.

Besides the advantages presented above, the approach of (Zhang et al., 2010) contains

several drawbacks. It focuses exclusively on business applications, which are according

to (ITIL V3.1.24, 2007) and (ISO IEC 20000-1:2011, 2013) provided by single

centralised providers. (Zhang et al., 2010) proposes specifically the realisation of an M2M

system with a single encapsulated M2M platform in the focus that is located in the public

network. This creates a dependency of the platform provider as well as limits the

extension of platform functionality, which requires detailed knowledge about and access

to the M2M platform. The approach considers the end-user as a simple user of the M2M

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

73

system but does not integrate the end-user in the application design. Implementation of

business applications using the frameworks Struts (Apache Struts, 2017), Spring (Spring,

2017), Hibernate (Hibernate, 2017) as proposed by (Zhang et al., 2010) as well as design

principles of SOA requires expert knowledge to design and implement M2M services or

applications. This especially would make the integration of end-users into application

development impossible.

3.1.4 BOSP Business Operation Support Platform

(Xiaocong and Jidong, 2010) presents an architecture of “a business operation support

platform for M2M” (Kim et al., 2014). The presented business operation support platform

(BOSP) focuses on the support of carriers (Kim et al., 2014; Xiaocong and Jidong, 2010).

(Xiaocong and Jidong, 2010) proposes that carriers operate a BOSP according to

architecture presented subsequently. Smart devices provide functionalities (e.g. video,

phone or sound recording) that can be used by carriers to provide “precise services”.

Additionally (Xiaocong and Jidong, 2010) proposes that carriers provide their abilities

like voice and data communication for external usage. Furthermore, the carriers have

large potential for creating “new abilities by processing the data” that they store, analyse

and integrate from various industries.

The proposed M2M architecture of (Xiaocong and Jidong, 2010), illustrated in Figure

3.16 contains four layer. The Perception Layer contains the various sensor networks,

M2M terminals or other equipment like mobile phones, and provides the functionality for

collecting object information. These devices are connected via gateways to the access

networks and the internet, which both reside in Transportation Layer. M2M applications

3.1 Related Work on M2M Service Platforms

74

reside in the Application Layer and are provided by external ASP that use the

functionalities/data information provided by the carrier. The defined BOSP resides inside

the operation supporting layer (Xiaocong and Jidong, 2010).

Figure 3.16: M2M System Architecture acc. (Xiaocong and Jidong, 2010)

The BOSP according to (Xiaocong and Jidong, 2010) is separated in three layers:

 Access Layer – The Access Layer provides protocol adaptation and access control

functions. It translates messages, which are sent to the BOSP in proprietary

protocols into standard protocols for internal processing and vice versa.

 Device Management Layer – The Device Management Layer manages the devices

deployed by the carrier and offers a management portal for monitor/control/check

Application LayerTraffic Industry Agriculture
City

Management
Health

Operation Supporting Layer

Transportation Layer

Internet

Access Network Access Network

Perception Layer

Mobile

Phones

M2M

TerminalsSensor Networks

Gateway Gateway Gateway

Data

Existing

Abilities:

Voice,

Video,

SMS,

MMS,

etc.

BSS/ OSS

E
S

B

CRM

NMS

Billing

BOSP

Ability Formation Layer

Device Management Layer

Access Layer

© 2010 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

75

devices or performing software updates. The Management portal forms the

interface to device vendor for device status feedback, carrier staff for status

monitoring and control of “operating services and associated devices”, and

administrator for device monitoring and account supervision.

 Ability Formation Layer – The Ability Formation Layer provides communication

functionalities like voice/video or data transportation and messaging (SMS,

MMS). Additionally, it provides information of devices like geographical

position, temperature, movement, energy consumption.

The BOSP according to (Xiaocong and Jidong, 2010) contains four interfaces for access.

The Data Interface receiving IP packets via heterogeneous networks (e.g. NGN),

Application Interface forwarding the data to the applications, Existing Abilities Interface

used for communication with the BOSP to provide the abilities of carriers’ network to the

applications using Application Interface. The Existing BSS/OSS Interface can connect

various systems already operated by the carrier like customer relationship management

system (CRM), billing system, network management system (NMS) via the Enterprise

Service Bus (ESB) of the carrier (Xiaocong and Jidong, 2010).

The architecture of an M2M system according to (Xiaocong and Jidong, 2010) with a

dedicated BOSP provided and operated by the carrier has various advantages. Especially

the provision of carriers’ abilities like Voice over IP (VoIP) communication and

messaging functionality via mobile networks is advantageous to form an interface to

M2M system users. Integration of VoIP communication and messaging functionality in

M2M systems offers the benefit that it can be applied for communication with end-user

using commonly existing hardware like PC, Smart Phone or fixed telephone that all

3.1 Related Work on M2M Service Platforms

76

usually exist in end-users environment. Additionally, the functionality of device/protocol

abstraction integrated in the BOSP according to (Xiaocong and Jidong, 2010) enlarges

the flexibility for connecting various M2M communication technologies to the platform

without consideration of technology specific aspects in application provision.

Next to the advantages presented above, (Xiaocong and Jidong, 2010) contains several

disadvantages. First disadvantage is that it focusses only on carriers. It does not consider

the integration of the end-user in system or application design. (Xiaocong and Jidong,

2010) announces benefits by using its proposed BOSP for industries like “government,

agriculture, military, manufacturing business, construction business” to make them more

intelligent, but does not promise advantages for the end-user. The end-user interfaces of

the applications have to be provided by the M2M ASP, which can use the application

interfaces of BOSP to integrate the abilities of the M2M devices and communication

functionality. According to (Xiaocong and Jidong, 2010) “carriers are abundant with

information of things because they monopolize perception devices and communication

tunnels”. This in turn is a big disadvantage because the ASP as well as the end-user are

dependent of a single monopolist. Additionally storing and calculating data by a single

entity always is critical regarding data safety and end-users privacy. The threatening “Big-

Brother effect” becomes clear by looking at the provider's goals presented in (Xiaocong

and Jidong, 2010). According to (Xiaocong and Jidong, 2010) the smart devices and the

travellers can be identified. For example by the “abilities offered by carriers, readers in

the doors of the trains and busses will enable an accurate tracking of every connection

and route of every traveller”. Applying standard protocols for M2M technology

abstraction is advantageous because it supports the interoperability and independence of

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

77

applications, but (Xiaocong and Jidong, 2010) does not give hints regarding the

applied/standardised protocols of BOSP.

3.1.5 IMS enabled M2M Service Platform (IMS M2M SP I)

(Foschini et al., 2011) presents the architecture of an M2M system based on IP

Multimedia Subsystem (IMS) technologies (Magedanz and de Gouveia, 2006; Poikselkä

and Mayer, 2009). The authors present its work with the help of a case study for

realisation of a retractable bollard management system (Kim et al., 2014; Foschini et al.,

2011). The presentation of the case study as well as the system elements explanation has

been used to derive the architecture of an M2M system according to the principles of

(Foschini et al., 2011).

The M2M system introduced by (Foschini et al., 2011) is based on seamless integration

of M2M devices (i.e. M2M area network) into the IMS of a specific provider. In

particular, (Foschini et al., 2011) proposes to reuse existing network technologies and the

services provided by the access network provider or other possibly existing wireless

network infrastructures (e.g. Wi-Fi) for the development and provision of M2M

application services (Foschini et al., 2011).

The M2M system specified by (Foschini et al., 2011), illustrated in Figure 3.17, is a

distributed architecture and separated into three domains: M2M Device Domain, Network

Domain, and Application Domain. The M2M devices reside in the M2M Device Domain.

The Network Domain represents the access network infrastructure and consists of IMS

components as specified in (Trick and Weber, 2015). These components are used to

3.1 Related Work on M2M Service Platforms

78

realise the communication of M2M devices with the M2M servers that are located in the

Application Domain (Foschini et al., 2011).

Figure 3.17: IMS-enabled M2M System Architecture acc. (Foschini et al., 2011)

The core component of the M2M system is according to (Foschini et al., 2011) the M2M

server, residing in the Application Domain. The M2M server interacts with M2M devices

and other elements/systems required for application service provision (authorisation,

authentication, accounting server storing information required for system usage or

application server for M2M application execution) via the IMS. A dedicated application

server of the M2M SP executes the M2M application.

Application Domain
HTTP

Network Domain

 Internet/ IP Network

M2M Device Domain

SGSN

IMS

P-/I-/S-CSCF

IMS

PS

IMS

P-/I-/S-CSCF

SGSNGGSN

HSSIMS/M2M

profiles

AAA Server

AAA

Data

Application Provider AS 1

Managed

Objects

E-Mail WS

Application 1

Web UI SMS

SQL

M2M Server

IMS AS

Web Services

Device Control

Components

SIP Diameter

Diameter

Diameter

SQL

M2M Device

IMS Client

Device

Data

Device

Functions

Device

Hardware

SIPSIP

 Mobile Operator

Network

© 2011 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

79

The application server element communicates with the M2M server via “RESTful

interactions” that are controlled by the WS element in the AS. Additionally, the

application server element provides possibilities for communication (notification of

application user) via SMS or email adopting the communication services of the IMS

(Foschini et al., 2011).

The coordination of information exchange between M2M server and M2M devices via

IMS using SIP messages as well as adopting IMS services (e.g. for sending SMS) is

coordinated by the IMS AS element of the M2M server. The information exchange

between M2M server and M2M devices is based on the Publish/Notify Principle (IETF

RFC 3903, 2004). For realisation of information exchange both, M2M server and M2M

devices subscribe for the presence status of each other at the IMS presence server (IMS

PS). For sending a specific information from M2M device to M2M server and vice versa,

they publish this information to the IMS PS. The IMS PS notifies M2M server or M2M

device about that information by sending a notify message (Foschini et al., 2011).

For realisation of device specific functionality in the M2M devices, the M2M devices

contain corresponding function elements. To persist information in the M2M device, it

contains an element for data storage. Next to the device specific functions an M2M device

requires a component to realise the communication functionality via IMS. For this the

M2M devices host an IMS client (Foschini et al., 2011).

The M2M application user (end-user) can interact with the M2M application service via

“a web-based user interface” (Web UI element), provided by the AS of the application

provider, to monitor the status of the M2M application or M2M devices (Foschini et al.,

3.1 Related Work on M2M Service Platforms

80

2011). The presented case study does not consider controlling the devices but it can be

assumed, that the same user interface is used for device controlling.

The architecture of an M2M system as presented by (Foschini et al., 2011) has the

following advantages. The presented approach utilises already deployed communication

technologies and networks (IMS) for realisation of an M2M system (Foschini et al.,

2011). Reusing existing network technologies and communication services benefits in

that no extra communication networks need to be established. Reusing existing

communication system avoids additional costs for establishing a communication network.

Additionally the M2M system provider can focus on its competence related to M2M and

application service provision without providing and maintaining the communication

network it requires.

Besides the advantages presented above, the approach of (Foschini et al., 2011) contains

the following drawbacks. A single central provider provides M2M server and other

system components required for realisation of an M2M application (application provider

AS and AAA server, see Figure 3.17) as well as M2M application itself. According the

presented approach, the end-user not only is dependent of the M2M system provider, but

also is dependent of the IMS provider whose network elements are seamless integrated

in the M2M system. Particularly the presented approach requires that the M2M ASP have

technical access to the network elements of IMS provider (e.g. HSS). This is a rather

unrealistic scenario, unless the IMS provider itself is the M2M ASP. Furthermore, the

presented approach envisages that network elements of the IMS provider can be used

(IMS PS for Information exchange). Although the utilisation of the IMS is beneficial for

message transport, it can be assumed that functionality of the network elements itself is

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

81

unavailable for external SP. The presented approach again does not consider the end-user

as M2M ASP.

3.1.6 M2M horizontal Services Platform Implementation over IP

Multimedia Subsystem (IMS M2M SP II)

(Padilla et al., 2013) introduces a horizontal MSP (illustrated in Figure 3.18) applying IP

Multimedia Subsystem (IMS) network elements (Magedanz and de Gouveia, 2006;

Poikselkä and Mayer, 2009). The aim of the presented research project according to

(Padilla et al., 2013) is to connect M2M devices and M2M application server (AS)

through the IMS core network to develop a horizontal MSP. The reason of (Padilla et al.,

2013) to propose using the IMS is because its independency from the access network.

Figure 3.18: M2M horizontal Service Platform acc. (Padilla et al., 2013)

Application Domain

Webserver M2M DB M2M AS

GUI

ShISC

P-CSCF

Network Domain

HSS

Mw Mw

Mw

Cx

Cx

I-CSCF

S-CSCF

M2M Domain

M2M GW

© 2013 IEEE

3.1 Related Work on M2M Service Platforms

82

(Padilla et al., 2013) separates the platform architecture into the layers described

subsequently:

 M2M Domain – The M2M devices are located in the M2M Domain, which

enables the M2M devices to communicate with each other for exchanging

information and connect to public network.

 Network Domain – The Network Domain represents the IMS and is connected

with the M2M Domain via an M2M gateway (M2M GW). The functionality of

the M2M GW is to provide protocol translation functionality from protocols used

in the M2M Domain to protocols used in the IMS, which is usually Session

Initiation Protocol (SIP) (IETF RFC 3261, 2002).

 Application Domain – In the Application Domain the M2M application server

(AS) resides providing the functionality to store M2M GW related data and

characteristics of devices connected to it. Additionally M2M AS receives the data

sent by the M2M devices. The Application Domain also contains a webserver

providing the data stored in the database (M2M DB) by the M2M AS, to the

customer via a webpage. The webserver processes the data stored in the M2M DB

according the business model of the customers.

According the concept defined by (Padilla et al., 2013) the M2M devices send the data

generated by them to the M2M AS. For this the M2M GW registers the M2M devices to

the M2M AS. Figure 3.19 shows the process for registration of M2M devices at the M2M

AS. For clarification of the registration process, subsequently the network elements P-/I-

/S-CSCF and HSS of the IMS are introduced briefly according to (Magedanz and de

Gouveia, 2006; 3GPP TS 23.228 v5.15.0, 2006).

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

83

 Proxy-Call Session Control Function (P-CSCF) – The P-CSCF forms the gateway

to the IMS. All signalling messages send from or to the IMS passes the P-CSCF.

 Interrogating-Call Session Control Function (I-CSCF) – The I-CSCF provides

functionality to determine the S-CSCF for a specific user and creates charging

records.

 Serving-Call Session Control Function (S-CSCF) – The S-CSCF is responsible

for session control and user registration. Every user of the IMS have to register to

the S-CSCF for using the IMS. Additionally, S-CSCF detects and integrates

Application Server (AS), such as the M2M AS to provide a requested service.

 Home Subscriber Server (HSS) – The HSS is a database storing user related

information, such as user location and user policy information.

Figure 3.19: M2M Device Registration Process (Padilla et al., 2013)

REGISTER

M2M ASHSSS-CSCFI-CSCFP-CSCFM2M GW

200 OK

REGISTER
User Authorisation Request

User Authorisation Answer

Select S-CSCF

REGISTER

Server Assignment Request

Server Assignment Answer

Compare RES and XRES

200 OK
200 OK

200 OK

INVITE
INVITE

iFCs evaluation

INVITE

200 OK
200 OK

200 OK

ACK
ACK

ACK

MSRP

...

© 2013 IEEE

3.1 Related Work on M2M Service Platforms

84

Initially the M2M GW registers itself at the network domain. For doing this the M2M

GW sends a register request to the P-CSCF using SIP REGISTER method (IETF RFC

3261, 2002). The P-CSCF forwards the request to the I-CSCF. The I-CSCF requests the

corresponding S-CSCF for the specific M2M GW at the HSS. After receiving the

response of the HSS, the I-CSCF forwards the register request to the S-CSCF specified

in the response of the HSS After successful registration of the M2M GW at the Network

Domain the M2M GW establishes a session with the M2M AS. The session establishment

is done by sending a SIP INVITE (IETF RFC 3261, 2002) message to the M2M AS. This

SIP INVITE message contains a Session Description Protocol (SDP) message (IETF RFC

4566, 2006) that specifies to use Message Session Relay Protocol (MSRP) (IETF RFC

4975, 2007) for information exchange between M2M AS and M2M GW, respectively the

M2M devices (Padilla et al., 2013).

It can be derived from (Padilla et al., 2013) that after initial session establishment the

M2M GW requests a list of M2M devices from the M2M AS that are connected to the

M2M GW and which should send its information data to the M2M AS. M2M GW and

M2M AS exchange this information via MSRP messages. After receiving the list of M2M

devices, the M2M GW establishes a MSRP session between each of the M2M devices

and the AS. For this, the M2M GW sends a SIP re-INVITE request (IETF RFC 3261,

2002) and (IETF RFC 6141, 2011) to the M2M AS including SDP with specification of

the MSRP URIs of the specific M2M devices. This MSRP URIs include the device-

specific session-IDs which enables both, M2M GW and M2M AS to assign the MSRP

messages to the M2M devices within the same SIP session. After linking the M2M

devices to the M2M AS, the M2M devices start to transmit their information data to the

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

85

M2M AS which can be monitored by the user via the GUI provided by the webserver

(Padilla et al., 2013).

The architecture of an M2M system as presented by (Padilla et al., 2013) has the following

advantages. The presented approach enables the integration of the M2M devices located

in end-user environments and is based on the IMS. This is advantageous because existing

communication network infrastructure and protocols are utilised to exchange information

between the M2M devices and the MSP. This enables the IMS provider to seamless

integrate M2M systems in its infrastructure and provide the data generated by the M2M

devices as a service to the user. Reusing existing communication network technologies

benefits in that no extra communication networks need to be established which results in

avoiding additional costs for operation and maintenance.

Besides the advantages, the approach of (Padilla et al., 2013) has several drawbacks as

described in the following. The approach only specifies that the M2M GW translates

between protocols in M2M Domain and those in Network Domain but does not specify

the protocol translation between protocols inside the M2M Domain. Interoperability of

M2M device technologies is required to integrate those devices in the M2M platform and

to use their functionality in the M2M services. The architecture of (Padilla et al., 2013)

contains several centralised system entities in the Application Domain and in the Network

Domain (e.g. the M2M AS). The MSP is dependent of these central entities, which limits

the scalability as well as availability of the MSP. Additionally because a central IMS

provider is integrated, the user of the MSP is dependent of this provider. Additionally,

the data storage and processing according customers’ business model is done by the web

server as a centralised element in platform architecture, which might by critical for the

3.1 Related Work on M2M Service Platforms

86

end-user data security and privacy aspects. The functionality of the MSP as introduced

by (Padilla et al., 2013) is limited to monitoring the data, produced by the M2M devices.

The authors do not describe additional functionalities, such as control of the M2M devices

or realisation of control applications.

3.1.7 e-DSON

(Kim et al., 2012) introduced the enhanced Dynamic Service Overlay Network (e-DSON)

platform project that has its focus on distributed service provision. (Kim et al., 2014)

identified the e-DSON platform as “a distributed M2M service platform architecture

using a service overlay network”.

According to (Kim et al., 2012) service overlay networks are used to create “a logical

topology on a physical network” to provide adaptable services and applications. In a

service overlay network, the features of a service are programmable because the service

overlay network is located at application level. The overlay consist of distributed nodes,

each providing controllable services and data delivery. A SP can link the nodes to

compose an individual service.

According to (Kim et al., 2012) the e-DSON platform is based on the DSON platform

introduced in (Kim et al., 2009), (Kim et al., 2010), and (Kim et al., 2011). The DSON

platform is according to (Kim et al., 2012) a “service overlay network framework” that is

based on management of service information and the control of service entities, to realise

the desired application logic. The DSON platform provides the functionality to compose

user-centric distributed multimedia services. Figure 3.21 shows an exemplary scenario of

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

87

the DSON platform in which clients in one home network B use media content (e.g. movie

files) provided by a server in another home network A.

Figure 3.20: DSON Service Scenario: Home Multimedia Streaming Service acc. (Kim et al., 2011)

According to (Kim et al., 2011) the DSON platform is realised by several servers located

in the Internet and operated by the DSON platform provider. The media content of the

home server located in home network A is registered at DSON controller A. DSON

controller A shares its content list with other DSON controller. Clients in other home

networks can search for desired content by contacting an appropriate DSON controller

(e.g. DSON controller B). DSON controller B is aware about the content provided by the

home server located in home network A and forwards the media request to DSON

controller A that again forwards the request to the home server providing the media

content. Through this dynamic forwarding, the DSON platform creates a dynamic service

overlay network to share content between clients located in distributed networks.

According to (Kim et al., 2011) „with DSON, all the service information is stored in

DSON” and “all content and data are managed and controlled by DSON”.

According to (Kim et al., 2012) the DSON platform is restricted to multimedia service

and does not support sensor environments. Because this aspect, (Kim et al., 2012)

Laptop

Internet
Access Point

Desktop

Service request in Home Network A

Service request in Home Network B

Streaming Delivery

DSON Controller A DSON Controller B
Home Network B

(without Home Server)

Laptop

Access Point

Desktop

Home Network A

(with Home Server)

Home Server

Smartphone

© 2011 IEEE

3.1 Related Work on M2M Service Platforms

88

developed the e-DSON platform with the aim to apply the DSON platform concept to

M2M environments. (Kim et al., 2012) identifies that the user is primary stakeholder

consuming M2M services and it is important that the M2M platform used for service

provision satisfies the requirements of the end-user. (Kim et al., 2012) defines several

requirements, such as interoperability or communication efficiency for an MSP to realise

M2M application services based on information exchange between services, M2M

devices and the user. Additionally, (Kim et al., 2012) defines that MSPs have to provide

functions, such as composition and service management or location management and

M2M services must support many different technologies to exchange service messages

between M2M devices. Figure 3.21 shows the platform model of the proposed e-DSON

platform.

Figure 3.21: e-DSON Platform Model acc. (Kim et al., 2012)

As described above, the e-DSON platform is based on the DSON platform. The DSON

platform has been extended by (Kim et al., 2012) by providing not only the information

about media streaming content in the platform (i.e. registering this information in several

Internet

Internet

HTTP/ JDBC

e-DSON Servers

 e-DSON Service Platform

M2M Resources

Smart

Home

Smart

Building
Sensors

Management

Applications

User Applications

Industrial Automation

Service

Security

Service

Home Automation

Service ...

HTTP/ JDBC

Web Applications

User Web Applications Value Added Services
Management Web

Applications

HTTP HTTP HTTP

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

89

DSON controllers), but also the information about M2M devices or local services (e.g.

residing in smart buildings). The registered M2M devices and services can now be

combined by linking them via a service overlay network. This makes it possible to offer

applications that are specific to the different requirements of the user (Kim et al., 2012).

The user interface is realised via a web application. The user can access the M2M services

provided by the platform via the user interface or the user can register devices and

services. The e-DSON platform uses HTTP to exchange information from the MSP and

web application because HTTP is a common protocol and available in common user

environments (Kim et al., 2012).

The e-DSON platform contains services of two types: user service and management

service (for things and services). Service and device providers use the management

services for uploading service/device specification. A user service is the user-specific

application provided by the e-DSON platform. A user-specific application is e.g., when

devices trigger events, another device can be controlled by the e-DSON platform (Kim et

al., 2012). Figure 3.22 illustrated details of the e-DSON platform architecture.

According to (Kim et al., 2012) the architecture of the e-DSON platform is separated in

three layers: presentation layer, business layer and data access layer. The presentation

layer is used to provide an interface for the user via a web-based GUI. Using this GUI the

user can interact with the user application. The data access layer provides the interfaces

to the M2M devices and external data sources as well as the smart servers (M2M gateway

in M2M environments) to be connected to the e-DSON platform. The business layer

contains the core functionality of the e-DSON platform and provides the functionality to

realise user-specific applications.

3.1 Related Work on M2M Service Platforms

90

Figure 3.22: e-DSON Platform Architecture acc. (Kim et al., 2012)

The application contains as illustrated in Figure 3.22 service composition function,

service control function, and management function. The service composition function

creates the service overlay network based on the specified service topology, i.e. connects

the distributed service endpoint with each other. The service control function provides

the functionality for e.g. registration and release of services or request and control

services. The management function is responsible for storage and management of device

information, user profiles, location information, and service topology (i.e. specification

about connection of services). Using these functions, the e-DSON platform composes the

user-specific application out of several devices and services registered to the platform.

The e-DSON platform supports user-centric M2M services because it can provide a

specific service for each user by dynamic composition of services (Kim et al., 2012).

The e-DSON MSP as presented by (Kim et al., 2012) has various advantages as presented

subsequently. The presented approach focuses on addressing the requirements of the end-

Presentation

Layer

Web Applications

Business

Layer

Data Access

Layer

Smart Server

HTTP

User Service Web Applications
Management Service Web

Applications

Data Sources

DSON s

DB

Smart

Home A

Smart

Building A

Smart

Home B

Smart

Building B

Smart Control

Container

including

ORM

User/ Management Application

Service Composition Function

Service Control Function

Management Function

Business Interface

HTTP

User Client

Web Client

Container

HTTP

Applications

JDBC

© 2012 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

91

user by providing user-centric, i.e. user individual services and integrates end-users’

environment. The possibility for dynamic composition of services enlarges the flexibility

of the provided M2M applications as well as the re-use of devices and services in multiple

M2M applications. Especially realisation of M2M applications by service composition

using a service overlay network that links several nodes, each providing resources or

services, enables the flexible combination of device resources and services on service

layer. Using common available technologies and interfaces to connect to the service

platform and access the user applications, such as HTTP protocol, XML as data format,

and web interfaces simplifies the integration in external systems and the access of the

users to the M2M application services. According to (Kim et al., 2012) using overlay

networks for service provision reduces the costs for system operation.

Besides the advantages of the e-DSON platform, the presented concept has several

drawbacks as the following section specifies. As illustrated in Figure 3.20 and Figure

3.21, the e-DSON platform architecture is realised by distributed, but centralised operated

servers, located in the Internet. If one or more servers fail, the platform is limited or no

longer available. Furthermore, the user is dependent on a central platform operator that

operates the e-DSON platform. According to (Kim et al., 2012) the e-DSON platform

does the service composition, but specifies that the user “is not involved in the

composition”. That means a separate stakeholder have to be involved defining the service

composition structure which the e-DSON platform interprets and dynamically allocates.

Although the e-DSON platform can be connected to external systems via a HTTP

interface and the user can use the applications via a web interface, it is not described

whether different M2M technologies in the smart environment can be integrated into the

platform. Although the services and resources can be linked dynamically to each other

3.1 Related Work on M2M Service Platforms

92

via a service overlay network, the authors do not give any indication of how this link is

made (whether formally defined or programmed). Because the application is composed

by the e-DSON platform and as specified by (Kim et al., 2011) “all the service

information is stored in DSON“ as well as “all content and data are managed and

controlled by DSON“ it can be derived that the application itself is defined statically and

stored in the e-DSON platform. The defined applications are stored in the business layer

of the e-DSON platform and are therefore centrally defined and coordinated. Therefore,

no dynamic applications are generated, but rather statically defined applications are

linked with resources (e.g. an application for streaming multimedia content is statically

defined in its functionality, the source and the destination of the contents is generated

dynamically). If, on the other hand, a new application is desired, a developer must first

define the service topology and store this configuration in the central e-DSON platform.

The e-DSON platform offers the possibility to provide specific user-based applications,

but such applications as described in (Kim et al., 2014) more target to the business layer

instead of targeted to private individuals.

3.1.8 M2SP Concept

(Kim et al., 2014) classifies and evaluates currently existing concepts for MSPs from

industry and research area. Based on that research (Kim et al., 2014) proposes its

optimised M2M service platform (M2SP) model.

According to (Kim et al., 2014) their proposed M2SP model, illustrated in Figure 3.23,

includes all functionalities of currently existing MSPs from industry and research area.

Additionally (Kim et al., 2014) extends these functionalities by P2P communication from

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

93

SCs and M2M devices, mediated by the M2SP, to avoid the issue of other MSPs which

require that all the traffic have “to go through the platform between user devices and

objects”.

Figure 3.23: M2SP Model acc. (Kim et al., 2014)

According to (Kim et al., 2014) their M2SP model consists of M2M devices connected

either directly to the Internet or are located in an M2M area network and connected via a

gateway to the Internet. The Internet, respectively any IP-based network, realises the

communication network to connect the M2M devices to the central M2SP. The proposed

platform model includes the stakeholders: device provider, Internet Service Provider

(ISP), platform provider, service users, service provider (SP), and software provider.

Device providers represent the manufacturers of the M2M devices. They equip the M2M

devices with the required functionality and provide them to the SP. The SP places the

M2M devices received by the device provider in physical areas to use them for realising

specific services. The ISP provides the communication network (Internet) to link M2M

devices with the M2SP as well as provide access to the M2SP for users and

Internet

M2M Area Network

Thing

Gateway

RESTful

ISP
Device Provider

Device Management

(Device Searching)

User Management

Data & Service

Management

User Access (Web, App)

App-device Mapping

Network Management

Platform Provider

RESTful

Service User

Service Provider

Software Provider

Busines Model

(B2C, C2C, B2B)

P2P Communication

© 2014 IEEE

3.1 Related Work on M2M Service Platforms

94

service/software providers. Software providers develop apps and web applications in

cooperation with the SP to provide specific services that use the devices. The platform

provider provides and operates the M2SP. Service user, SP, and software provider

connect to the M2SP also via the Internet. Additionally, the service user can connect

directly (P2P) to the M2M devices, after mediation by the M2SP, to reduce the load of

the M2SP by continuously forwarding the M2M device data (Kim et al., 2014).

Figure 3.24 shows the architecture of the M2SP and the M2M network which consists

according to (Kim et al., 2014) out of M2M area/access networks and a core network.

M2M area networks are heterogeneous networks implemented by different M2M

technologies. M2M nodes located in the M2M area networks connect either direct or via

an M2M gateway “through various access networks” to the core network. M2M devices

and users “connect through the core network” and the M2SP manages M2M devices and

users as well as provides M2M services.

Figure 3.24: M2SP Architecture acc. (Kim et al., 2014)

The M2SP according to (Kim et al., 2014) consists of four separate platforms described

subsequently that can be executed on different locations but are integrated by a single

M2SP provider.

M2M Service Platform (MSP)

Core Network

M2M Device

Device Profile

Management

Device and M2M Area

Network Management

Device Searching

User

User Profile

Management

Authentication

Charging

M2M Application

Data Collection

Data Control

Connection Management

Access

App Management

App Searching

Web Portal

Access Networks WiFi Ethernet LTE ...

M2M Area

Network

M2M Area

Network
...

© 2014 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

95

The M2M Device platform holds a database where all M2M devices register. Services,

managers, and users utilise the M2M device platform. The Device Platform provides

functionality for management of device profiles (e.g. location, type, address), query

devices, monitoring status of devices and controlling of devices (Kim et al., 2014).

The M2M User platform provides functionality for managing user profiles or registration

of M2M service users. The M2M User platform interoperates with the M2M Device

platform and manages access restriction of users to devices and services (Kim et al.,

2014).

The M2M Application platform interoperates with the M2M Device platform and

provides the M2M application consisting of multiple services using data collected from

M2M devices (Kim et al., 2014).

The M2M Access platform provides the access for the users. Users connect with the M2M

Access platform to receive the app or access the web page that both form the interface to

the M2M application that is provided by the M2M Application platform or M2M devices.

App developers use the app management functionality of the M2M Access platform to

register their apps (Kim et al., 2014).

Figure 3.25 illustrates a use case scenario and interaction of platform components and

stakeholders as presented by (Kim et al., 2014).

3.1 Related Work on M2M Service Platforms

96

Figure 3.25: M2SP Use Case Scenario acc. (Kim et al., 2014)

The overall task of the use case is to realise an environmental monitoring application

service. Various M2M devices are placed in an M2M area network monitoring

environmental conditions. User of the application service monitor the M2M devices and

“the M2M service provider manages the M2M area network for service maintenance”

(Kim et al., 2014).

An M2M SP receives several sensor devices from the device provider and places them in

the area of interest as well as register them to the M2M Device Platform. Services which

the devices provide, such as actuation services, are registered additionally at the M2M

Application Platform. A software provider develops an app and registers it to the M2M

Access Platform. M2M service user and administrator register themselves to the M2M

User Platform and their mobile devices to the M2M Device Platform. After registration

“they download the appropriate app for the environmental monitoring services by

searching from the Access-platform”. The M2M Application Platform periodically

receives measurement data from the M2M devices. The M2M service user uses the

M2M

Service

User

Application

Platform

M2M Area

Network/

Device

M2M

Software

Provider

M2M

Device

Provider

M2M

Service

Provider

Device

Platform

User

Platform

Access

Platform

Device purchase & install Device registration

Service registration

Software/ app registration

User registrationUser registration (Administrator)

Device registration (Administrator) User device registration

App download
Sending data

Network monitoring Environmental monitoring

Device control

Alarm

M2M Area Network

© 2014 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

97

environmental monitoring app to access the information of sensor devices, provided from

the M2M application Platform to the app. Additionally, the M2M application (executed

by the M2M Application Platform) contains the functionality to control other M2M

devices (e.g. actuators) and send alarm messages to the M2M service user, depending on

pre-defined conditions (Kim et al., 2014).

The M2SP concept as presented by (Kim et al., 2014) has various advantages presented

subsequently. The presented concept targets not only to the business domain. As (Kim et

al., 2014) specifies its concept for MSPs can address multiple business models, especially

the Customer-to-Customer (C2C) business model, it can be derived that also end-user are

able to register their devices to the platform and therefore their individual environments

can be addressed. The presented concept proposes to use the Internet, respectively an IP

network as communication network between M2M devices, M2SP and other stakeholders

(e.g. service users). This has the advantage that common available communication

network technology is used to realise the networking of the participants. As the M2M

devices can connect directly or via a gateway to the core network it can be derived that

the gateway does protocol translation for connecting M2M devices located in an M2M

area network with the Internet. This offers the possibility to connect multiple M2M

devices, implementing different M2M technologies, in the same way to the M2SP.

Because the central registration of the M2M devices and services as well as the possibility

of the M2SP to combine them, flexible applications can be realised using a single

platform. The M2SP concept proposes to use apps or web interfaces to access the MSP

or the M2M application services. Both are common available technologies that can be

used with common hardware (e.g. smartphone), which enables the platform and SPs to

provide interfaces to the platform in a comfortable way. The P2P communication from

3.1 Related Work on M2M Service Platforms

98

SCs and M2M devices is especially advantageous because it reduces the load of the MSP

and the communication network.

Besides the positive aspects of the M2SP presented above, the MSP concept proposed by

(Kim et al., 2014) contains the following disadvantages. The M2SP represents a

centralised platform architecture with central elements included that request device

information or execute application logic. P2P communication with devices that provide

applications is only possible after mediation by M2SP. The user of the M2SP is dependent

of the central stakeholders, such as SPs, software providers and the central M2MSP

platform provider. The M2SP holds a central database as well as manages the M2M

devices, users, and provides the M2M services. These aspects on the one side create a

dependence of the M2SP provider and SC as well as on the other side risks data safety

and end-user privacy because a single entity stores the data and is able to process the data.

As another central element, the M2SP concept includes the M2M Access Platform for

provision of the web-based GUI as well as the apps. Both, app development and webpage

generation needs to be done by expert developers and especially the apps provide an

interface that is highly dependent of the executing device. It can be derived from (Kim et

al., 2014) that individual apps for different M2M application services are required. This

enlarges the effort for development, provision, and maintaining the apps by different

expert developers and creates a dependence of the end-user access device to the

manufacturer of the device operating system, because individual app stores needs to be

involved for installation of the apps. The authors of (Kim et al., 2014) do not mention

how the application logic is realised (i.e. implemented). They only specify that software

developer provide the application software. Although end-user can register their devices

to the M2SP to be used in M2M applications, the end-user are not involved in the M2M

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

99

application creation process. As (Kim et al., 2014) identifies in order to “support the P2P

communication between devices or users and devices in an M2M network, a signalling

process is required for resource allocation and authorization between end devices”. This

is according to (Kim et al., 2014) one of the “main research issues of P2P communication

in an M2M network”. Because this aspect, it can be derived that both is not implemented

in the approach as presented by (Kim et al., 2014).

3.1.9 ENERsip Project

(Lopez et al., 2011a), (Lopez et al., 2011b), (Lopez et al., 2012), (Lopez et al., 2013), and

(Carreiro et al., 2011) present the ENERsip project proposing a service-oriented

monitoring and control concept for energy grids. The aim of the project is to reduce

consumption by increasing the user's awareness of consumption and coordinating their

needs with energy generation facilities in the neighbourhood (Lopez et al., 2011a).

Figure 3.26 illustrates the architecture of the proposed ENERsip system according to

(Lopez et al., 2011a; Lopez et al., 2013).

Figure 3.26: ENERsip Architecture acc. (Lopez et al., 2011a; Lopez et al., 2013)

ENERsip based Grid

User Domain

UI

Information System

Domain

Neighbourhood DomainBuilding Domain

I-BECI

NILMInfrared Box

PlugsComfort Sensors

I-BEGI

Energy Storage

Sensors (WS) Actuators

Energy Generation Sources

PS-BI UAP

M2M

Platform

CNTR
ADR

EP

ADR

EP

External Grid

(DSO, TSO, ND)

External Interface

CELLULAR

GPRS

FIBRE; CABLE; ADSL802.11.4

Infra Mode

COREACCESSHAN/ CAPILLARY

802.15.4/ ZigBee Pro

RS-232

© 2013 IEEE

3.1 Related Work on M2M Service Platforms

100

The Building Domain represents the smart buildings with energy generating/consuming

devices and is separated in In-Building Energy Consumption (I-BECI) and In-Building

Energy Generation (I-BEGI) infrastructure. Both parts contain different types of devices:

I-BECI devices are sensors for measuring environment values, plugs switching and

measuring energy consumption of non-intelligent devices, infrared box for controlling

more intelligent devices (e.g. TVs), and the Non-invasive Load Monitoring (NILM)

module determining consumption of devices “based on their electrical signature”. I-BEGI

devices are energy generation/storage devices and actuators controlling these devices or

determining weather conditions. Both, I-BECI and I-BEGI represent the Home Area

Network (HAN), which is connected via an Automated Demand Response End Point

(ADR EP), i.e. an M2M gateway to the M2M core infrastructure (Lopez et al., 2011a).

The core M2M infrastructure according to (Lopez et al., 2011a) is represented by the

neighbourhood domain, which allows remotely control/manage/monitor a large number

of devices producing/consuming energy. The neighbourhood domain provides

functionality for transmitting data produced in the building domain to the information

system (IS) domain and in turn forwarding control commands initiated by the IS to the

building domain. The neighbourhood domain contains a set of concentrators (CNTR) as

well as the M2M platform for managing/monitoring CNTR and forwarding data to the IS

as well as forwarding control commands generated by the IS to the CNTRs (Lopez et al.,

2011a).

According to (Lopez et al., 2011a) the IS domain contains two different components: the

Power Saving Business Intelligence (PS-BI) and the User Application Platform (UAP).

The PS-BI collect all data information generated by the devices, processes them and

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

101

coordinate efficient usage of available resources. The UAP provides services for

monitoring, visualisation and controlling of energy-efficiency and comfort based on user

profiles and collected data.

The User Domain according to (Lopez et al., 2011a) provides applications enabling the

users to interact with the ENERsip platform through a web-based GUI. The user can

consume the services provided by the UAP to monitor and manually control users’

appliances remotely using the web-based GUI. External SPs (e.g. Distribution System

Operators) could receive information regarding user’s consumption “depending of the

contract with the prosumer”. Additionally the user has the possibility to define rules

executing pre-defined actions, such as switch on/off devices depending on pre-defined

conditions.

Advantages of the concept presented by the ENERsip project are that the project targets

on the end-user domain. It allows integrating several M2M devices of different types,

such as intelligent energy producer or consumer as well as non-intelligent M2M devices

and therefore provides a large range of devices that the user can monitor and control using

the proposed platform. The ENERsip platform provides a web-based interface to the end-

user that can be used for remote monitoring and control M2M devices. Additionally, the

ENERsip platform provides the functionality that the end-user can define individual rules

for automatically control of its devices. This has the positive effect that the end-user can

define the control rules according its requirements and is not limited by the control

services that the service platform provider offers, which has no information about the

requirements of the end-user. According to (Lopez et al., 2013) the ENERsip platform

supports the integration of different M2M technologies via the M2M gateway and

3.1 Related Work on M2M Service Platforms

102

additional communication technologies are supported in principle as long as a RS-232

hardware modem exists to connect the communications technologies to the M2M

gateway.

Besides the advantages described above, the concept of the ENERsip platform has the

following disadvantages. First disadvantage is, that the use cases of the ENERsip platform

are limited to the smart grid application field by environmental and device monitoring as

well as switching electrical devices. Declarative definition of application logic (in

particular defining control rules) makes the application logic independent from the

execution environment because the rules should be interpretable on different execution

systems by providing an appropriate rules interpreter engine. However, none of the

publications mentioned above specify any underlying mechanism for rule definition or

mention a standard used to ensure the portability. The ENERsip platform architecture

includes several centralised components, such as the M2M platform (server) or the

information system providing the business logic and the user interface. This makes the

ENERsip platform dependent of those centralised elements. Additionally, the user of the

platform is dependent of the ENERsip platform provider as a single stakeholder. As

(Carreiro et al., 2011) specifies the ENERsip platform uses the proprietary ENERsip

protocol inside the platform for communication between the platform components (ADR

EP, CNTR, M2M platform, IS), which limits the compatibility with other M2M systems

and requires an individual protocol stack in each system component, next to common

protocol stacks existing by default. The end-user has no possibility to offer the realised

automation functionality as a service to others instead of e.g. offering the collected

information from its devices to Distribution and Transmission System Operators

“depending on the contract with the prosumer” (Lopez et al., 2011a).

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

103

3.1.10 Compose Framework

(Doukas and Antonelli, 2013), (Mandler et al., 2013), (Doukas and Antonelli, 2014),

(Doukas et al., 2015), and (Doukas and Antonelli, 2015) present the COMPOSE

(Collaborative Open Market to Place Objects at your Service) framework that provides

according to (Doukas and Antonelli, 2013) infrastructure and methodologies to build

applications communicating with smart objects (smartphones, sensors, actuators). The

COMPOSE framework according to (Doukas and Antonelli, 2015), (Doukas and

Antonelli, 2014), and (Doukas and Antonelli, 2013) provides an end-to-end solution for

developers and entrepreneurs for designing, implementing, and deploying IoT services

and applications. The COMPOSE framework provides tools for development of apps that

form the end-user interface, integrate smart objects for environment integration, a

processing infrastructure to run the applications and tools for service

discovery/composition or application deployment. All components of the COMPOSE

framework (development tools) and back-end infrastructure for running the applications

according to (Doukas and Antonelli, 2015), (Doukas and Antonelli, 2014), and (Doukas

and Antonelli, 2013) run in “a cloud-based infrastructure”. The COMPOSE framework

according to (Mandler et al., 2013) realises a SOA where all resources are consumed and

provided as a service. The COMPOSE framework aims to enable developers to create

applications using existing services and M2M devices.

3.1 Related Work on M2M Service Platforms

104

Figure 3.27: Logical Architecture of COMPOSE Framework acc. (Mandler et al., 2013)

The logical architecture of COMPOSE (illustrated in Figure 3.27) is separated according

to (Mandler et al., 2013) and (Doukas and Antonelli, 2013) in the four layers described

subsequently.

 Object Layer – The object layer contain all smart objects, which are physical

devices able to communicate and provide sensing/actuating functionality.

 Service Object Layer – The service object layer contains virtual representations

of the objects that can be accessed through the network for obtaining data or

control the actuation functionality. Service objects can represent standalone smart

objects or composite smart objects and can be used by various services.

 Service Layer – The service layer contains services, which are “ICT abstractions

of software systems” providing functionality that can be used for a specific task.

Services consume information data from service objects or control them. A

U

O

Service

Objects

Services

End Users

Objects O O

SE

SE

SOSO

Composite

Service Object
SESE

Composite

Service Object
SOSO

U

U

U

Open Market

Place

© 2013 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

105

service can be a single service or a composition of services processing data and

implementing the application logic.

 End-User Layer – The end-user layer contain the end-users consuming the

services. End-users are persons that access the marketplace using their personal

end devices “through the installation of a given application” or a machine to

integrate the service into their business processes.

The COMPOSE framework consists of three parts. Figure 3.28 shows these parts and the

components of the COMPOSE framework.

Figure 3.28: Components of COMPOSE framework acc. (Doukas and Antonelli, 2014)

The Ingestion Layer contains according to (Doukas and Antonelli, 2013) the smart objects

and devices and forms according to (Doukas and Antonelli, 2014) the interface to these

COMPOSE

Marketplace

Management

Monitoring

Registry/ Repository

Data Mgmt Analytics

Services

Composition Recommend Discovery

Applications

Distribution

Service Objects

Description

SDK IDE GUI End User

High Level Services: Discover/ Download/ Editor/ Development

Run-Time/

Comm.

Infrastructure

Ingestion

Smart Object Smart ObjectSmart ObjectSmart Object

© 2014 IEEE

3.1 Related Work on M2M Service Platforms

106

devices. According to (Doukas and Antonelli, 2015) and (Doukas and Antonelli, 2014)

the devices in the Ingestion Layer communicate with the COMPOSE Runtime Engine via

HTTP or different M2M protocols (MQTT, CoAP) to transmit device information (e.g.

sensor data) or receive control commands.

According to (Mandler et al., 2013) the Runtime Engine “comprise of a cloud

environment” and is responsible for management of services and the platform including

the discovery and monitoring of services and devices as well as control of Smart Objects.

The Runtime Engine contains according to (Doukas and Antonelli, 2014) the service

objects, services, and applications. The services according to (Doukas and Antonelli,

2013) consume the information provided by one or multiple service objects and control

the devices via the service objects “to perform a given task”.

The service registry component according to (Doukas and Antonelli, 2014) provides the

functionality for discovery of services. To implement the service registry component the

COMPOSE framework uses iServe (Pedrinaci et al., 2010) as a central service registry.

Developers use the service registry to query existing services resulting in “a list of

available services and their endpoints that meet the requested criteria”.

Applications are a combination of services and implement a user-specific application

logic to satisfy the requirements of a user.

The COMPOSE Marketplace according to (Doukas and Antonelli, 2013) is an

environment to share services and applications with other developers. According to

(Doukas and Antonelli, 2015) and (Doukas and Antonelli, 2014) the COMPOSE

Marketplace is the “front-end interface” developers use to publish and access services.

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

107

The COMPOSE Marketplace contains an IDE, libraries and SDKs to create application

logic and apps as well as functionality for registration and discovery of services and the

deployment of applications.

According to (Mandler et al., 2013) developers use the IDE and the SDK to develop

services, applications and apps. In this context applications are the combinations of

services to realise the application logic executed in the COMPOSE runtime and apps are

the smartphone applications to interact with the end-user. The COMPOSE framework

according to (Doukas and Antonelli, 2014) provides the functionality to create

applications graphically using a “visual workflow editor”. The visual workflow editor is

realised according to (Doukas and Antonelli, 2014) using Node-RED (NodeRed, 2017),

which is a Node.js-based tool that enables developers to create workflows of services by

graphical combination of service nodes. The result of the combination of services is a

Node.js application that is executed in the CloudFoundry (CloudFoundry, 2017), which

is a cloud-based application platform.

The GUI element of the COMPOSE Marketplace forms the interface to the end-user.

According to (Doukas and Antonelli, 2013) the smartphone application is the “main

graphical interface the user is using to interact with the application for configuration of

user preferences or receiving information data. The apps bi-directionally communicate

with the back-end infrastructure using Web 2.0 technologies.

To illustrate the mechanisms for service and application development using the

COMPOSE framework, the following describes the development process from the

perspective of a developer. According to (Doukas and Antonelli, 2013), (Doukas and

3.1 Related Work on M2M Service Platforms

108

Antonelli, 2014), and (Doukas and Antonelli, 2015) a developer that is going to create

and deploy applications has to perform the following four steps.

1. Create new services or discover existing services using IDE and SDKs. The

services can either be “a set of classes or high level scripts” that define the service

logic (e.g. request and process specific data information).

2. Defining and implementing the interaction with the smart objects (e.g. request the

information data from specific smart object) using existing SDKs and libraries.

3. Deploying the implemented application to COMPOSE infrastructure.

4. Developing the mobile app for accessing the developed application.

While the developer can use the above-mentioned Node-RED workflow editor to design

the back-end application logic, for development of the mobile app the developer uses a

mobile application framework based on Titanium (Appcelerator, 2017). Titanium is a

development SDK that enables the unified development of mobile apps and

transformation to specific mobile runtimes (mobile operating systems, e.g. iOS or

Android) (Doukas and Antonelli, 2013; Doukas and Antonelli, 2015).

The COMPOSE framework as introduced above contains several advantages presented

subsequently. The approach that developers create services and applications as well as

deploy and register them in a global accessible infrastructure enables other developers to

reuse already existing services and applications. This enlarges the reusability of services

and application which in consequence safe time and costs for development of new

services. Reusing the existing services and creation of new services by composition of

the existing services enlarges the flexibility of the platform because several services can

be used to create applications in multiple application fields. Reusing service

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

109

functionalities inside new applications also avoid the implementation of many vertical

silo applications as in case of implementing a different M2M application for different use

cases. The COMPOSE framework targets to the end-user domain, but it has to be

considered that in context of COMPOSE framework the end-user is a business

stakeholder that benefits by integration of the M2M application realised with COMPOSE

into its business process. Designing back-end application logic graphically by defining

workflows that combine service nodes is advantageous because that is an intuitive

methodology to create application, even when the developer has less experience in

application development. Using smartphone application, as a GUI for interaction with the

application is advantageous because it is a common available interface technology.

Additionally, communication of apps with the back-end infrastructure using Web 2.0

technologies reuses common existing protocols and prevents to provide an additional

protocol stack for communication in the end device of the end-user.

Besides the advantages presented above, the COMPOSE framework has several

disadvantages as presented in the following. Most of the elements in the COMPOSE

infrastructure, such as central service registry and execution engine for services and

application, is provided by a single platform provider and run in a cloud-based

infrastructure. This makes the user of the platform dependent of the platform provider

and the platform dependent of specific platform components, including the particular

solutions proposed for realisation of platform components, such as CloudFoundry as

central application platform. Especially according to (Doukas and Antonelli, 2015) the

app server providing the user interface apps as well as the COMPOSE server are stand-

alone elements in the COMPOSE architecture. The output of the graphical combination

of services is a Node.js application. This makes the solution dependent of that technology

3.1 Related Work on M2M Service Platforms

110

and complicates the portability and adaptability because Node.js is no standard

specification. Additionally, the services the developer can create and reuse are static

classes or scripts representing the service logic, which are platform dependent. This also

complicates reusing the services in other platforms. Although the smartphone as runtime

environment for the GUI app is commonly available, it is required to develop a specific

app for each application running in the back-end. Although the COMPOSE framework

provides tools that unifies and simplifies the development, still expert knowledge is

required. Although the developer has the possibility to create application logic

graphically, this is not fully integrated in the development process because particular parts

for providing the M2M solution still have to be developed requiring expert knowledge.

E.g., the developer has to use existing libraries or SDKs for creating the mobile app as an

interface for the application. Mobile application framework is based on Titanium

Appcelerator, which is on the one side advantageous with regards to the platform

independency of app development, but on the other side has the negative effect that,

because using the Titanium SDK as development framework, requires expert knowledge

of the developer to develop the app logic. The COMPOSE framework targets to

developers and entrepreneurs, but not to private individuals as end-users. The end-users

are only provided with the possibility to interact with the applications in the back-end

using apps as input/output interface, but are not provided with the functionality to design

applications by themselves. The COMPOSE framework has another disadvantage

regarding the data safety and end-user privacy aspect. Because according to (Doukas and

Antonelli, 2014) “every data transaction between the different entities (users, applications

and smart objects) is logged inside COMPOSE” as well as the data storage engine of

COMPOSE logs every action of the end-user, the COMPOSE provider has generally

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

111

access to the data created inside the end-user environment. This can represent the

behaviour of the end-user and its environmental conditions.

3.1.11 Distributed Cooperative M2M System for Flood

Monitoring (DistribFloodMon)

(Kitagami et al., 2014) presents a concept of a distributed cooperative M2M system for

the use case of flood disaster prevention. The task of the presented use case is to apply

multiple water level sensors and rainfall sensors in a specific area to realise a system for

flood disaster prevention based on data analysis generated by the sensors. (Kitagami et

al., 2014) proposes to realise the M2M system based on a distributed approach, because

traditional server-centric approaches of M2M systems for data analysis and device control

contain the following disadvantages: M2M devices and the M2M server application

continuously exchange data, which generates a large data volume and delays the control

messages generated by the M2M server. Additionally (Kitagami et al., 2014) criticises

that if communication link between the M2M gateway and the M2M server fails, the

whole system will fail.

Based on this aspects (Kitagami et al., 2014) introduces a distributed M2M system for the

special use case of a flood prevention application as illustrated in Figure 3.29.

3.1 Related Work on M2M Service Platforms

112

Figure 3.29: Distributed M2M System acc. (Kitagami et al., 2014)

According to (Kitagami et al., 2014) the proposed M2M system consists of central M2M

servers located outside of the M2M area networks, respectively outside the domain where

the sensors and actuators reside. The task of the M2M server is to monitor and control the

sensors and actuators to generate statistics about the sensor values for further analytics,

forecasts and in case of an alert, control the actuators. The M2M coordinate server adjusts

and coordinates the M2M gateway and M2M server for the usage in flood disaster

prevention application.

The sensors and actuator are connected to multiple intelligent M2M gateways (M2M

GWs). These intelligent M2M GWs not only connect the sensors and actuator to the

communication network, but also include “a rule-based autonomous control mechanism”.

The measurement values of the sensors are aggregated in the M2M GWs, which send the

aggregated measurement data continuously to the M2M servers and stores the original

measurement values locally for later processing. Additionally, the M2M GWs

autonomously monitor the measurement values and transmits the original values (not

coordinates

coordinates

M2M

Coordinate

Server

...
Intelligent

M2M GW

Intelligent

M2M GW

Alarm

Rainfall

Sensors

Water Level Sensors

Intelligent

M2M GW

Flood Disaster Prevention System

M2M

Server

Never Die Network

Network

Nodes

Event-driven Data

Collection

Rule-based

Autonomous Control

© 2014 IEEE

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

113

aggregated measurement values) for a specific interval to the M2M server if e.g. pre-

defined variations of measurement values occurs (Kitagami et al., 2014).

To prevent a delayed control of the actuators in the area of interest (e.g. alarm actuators)

caused by connection interrupts from M2M server and M2M GWs, the M2M GWs

include a local rule engine for controlling the actuators. The M2M coordinate server

configures the conditions in the gateways for transmission of the detailed measurement

data, i.e. defines the corresponding thresholds by sending the rules in advance to the M2M

GWs (Kitagami et al., 2014).

According to (Kitagami et al., 2014) the M2M GWs connect via a Never Die Network

(Shiratori et al., 2012) with each other and with the M2M servers. The Never Die Network

is a mobile adhoc network including redundancy of links between the nodes.

The presented approach of (Kitagami et al., 2014) includes various advantages specified

as follows. The transmission of aggregated measurement data enables detection and

storing of measurement values. Through this, it is possible to generate statistics of the

measurement values without stressing the communication network because large amounts

of data. Additionally, the autonomous execution of the parts of the application logic by

local monitoring, evaluation and control of sensors/actuators enlarges the system

availability and reduces the disadvantages of traditional server-centric M2M systems.

Besides the advantages presented above, the M2M system introduced by (Kitagami et al.,

2014) includes several drawbacks. (Kitagami et al., 2014) presents only one single and

very static use case, respectively application field of flood monitoring. They does not

define a general concept of distributed M2M applications or providing the application as

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

114

a service for other users. Setup of an underlying Never Die Network for communication

of the participating nodes seems necessary in the case of the introduced flood prevention

application, especially with regard to the area to deploy the application with disrupted or

not existing communication network. However, considering application field of end-user

domain, which usually provides existing and working communication networks,

additional communication networks are not necessary to implement. The overall use case

application is a combination of decentralised control and central management and data

collection, including central system elements, which again results in the negative aspects

of including central elements or stakeholders in the M2M system architecture, as

described in previous sections. The presented approach of does not focus on or include

end-user integration in application development or the integration of M2M devices

located in end-user environment. The application definition by specification of semantical

rules, representing the application logic, enlarges the independence of application logic

from execution systems because e.g. change of an execution system only requires

exchange of rules interpreter engine. However, (Kitagami et al., 2014) does not specify a

standardised language for definition of the rules executed in the intelligent M2M GWs,

which in consequence again limits the platform independency.

3.2 Requirements for a new Framework for Autonomous

decentralised M2M Application Service Provision

The previous section 3.1 introduced current M2M system architectures for M2M

application services. The positive aspects and weaknesses have been mentioned at the end

of the corresponding sections. This section derives requirements for a new approach for

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

115

application service provision in M2M environments to enable end-users for autonomous

and independent M2M application service provision. The definition of requirements is

based on the strengths and weaknesses of previously introduced M2M system

architectures. For definition of appropriate requirements reasonable aspects of related

work projects will be adopted as requirements and additional ones defined based in order

to avoid the negative related work project aspects. The requirements defined in this

section will be the basis for the proposed framework for “Autonomous decentralised

M2M Application Service Provision” presented in chapter 4.

Many of the related projects introduced above, such as oneM2M specification for M2M

systems focus on the support of interoperation of individual industries or businesses in

professional domains as well as the realisation of complex business applications for

support of business processes. Other ones also focus on the end-user domain with end-

users’ M2M device integration. The personal environment of the end-user has powerful

potential for providing applications with the integration of the M2M devices located at

the end-user environment. Therefore, the end-user environment should be addressable by

the MSP. Based on this aspect, the following requirement can be derived:

 End-user environment integration – The MSP should address end-user

environment.

The projects BOSP, ENERsip, COMPOSE, e-DSON, and M2SP satisfy this requirement

because they directly address M2M devices located in end-user environment. The other

projects are related to the business domain or special use cases without integration of end-

users’ M2M devices.

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

116

Considering the related projects, end-users mostly have no option to be involved in

application development for their personal environments. Because the M2M applications

that effect the environment of the end-users have to meet end-users’ individual

requirements, the end-user should get involved in defining the application semantic

individually regarding end-users’ personal requirements. Based on this aspect, the

following requirement can be derived.

 End-user integration – The end-user has to be integrated in application creation

for its personal environment.

None of the above-mentioned related projects fully satisfies this requirement.

The e-DSON framework partially satisfies this requirement because the e-DSON

platform has its focus on user-centric M2M applications. The end-user is not explicitly

integrated in the application creation process, but the flexible structure of the application

provision concept via service overlay networks allow the application developer to simply

define individual user applications.

The next set of requirements refer to service provision aspects of an MSP. The approaches

described above to define services for the personal environment are limited to personal

use of the services by the owner of the environment in which the M2M devices reside,

respectively to the end-user who has defined the services. Other end-users or external SPs

could benefit from using the services or resources available inside the end-users' personal

environment to include them in their own environments or processes. This enlarges the

possible functionality of applications defined by others by also including the resources

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

117

and functionalities of other personal environments into own applications. Therefore, the

following requirement is derived.

 End-user service provision and utilisation – End-users should be able to provide

resources and applications inside their personal environment as a service to other

end-users or SPs.

Only the related e-DSON project satisfies this requirement by static development of user-

centric applications including distributed resources that other end-users can offer inside

a centralised system architecture.

Although making services and resources that are available in end-users environment

accessible for other entities is advantageous to enlarge the functionalities of end-user

applications, this would be limited to integrate them in applications for single

environments. As mentioned above the end-user environment has powerful potential for

providing services to others. Combination and coordination of those services could enable

applications with higher impact and flexibility regarding realisable functionalities.

Therefore, the next requirement is defined as follows.

 Cooperative end-user service provision – Services of end-users should be

combinable to provide a cooperative application service that can be utilised by

other end-users or SPs.

None of the above projects satisfies this requirement. Only the e-DSON framework

partially satisfies this requirement because the e-DSON platform offers the possibility to

make services of local device resources and services available to others, but does not

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

118

allow to define the cooperative service logic by the end-users themselves, instead a central

expert developer have to define the structure of the service composition.

The next set of requirements refer to the system architecture of the MSP. Almost all of

the related projects are based on centralised architectures or contain centralised elements

in the system infrastructure. Centralised architecture means that the MSPs or parts of the

platforms contain physically central network element (such as a server) or logical central

elements or stakeholders (such as cloud environments or platform providers). This

research should explore alternatives to centralised and cloud-based M2M service platform

architectures. A decentralised system architecture could avoid the following

disadvantages of centralised or partly centralised architectures in context of MSP

provision with end-user integration. 1) A centralised MSP often requires high

performance hardware for providing the platform functionality to be used by many users

or to connect many M2M devices. A single stakeholder has to provide large resources for

service development and maintenance as well as for platform setup, management, and

maintenance. The platform provider additionally has to spend large effort for ensuring

the reliability of the platform. Each of these topics will result in high costs for operating

such a centralised MSP and for developing applications running on those platforms. The

(as usual) companies providing the platforms need to transfer the required costs to the

user of the platform. Since the target group in the focus of this research are the end-users

instead of companies that usually utilise M2M solutions, the costs have to be as low as

possible because the end-users will not accept the costs. 2) The MSP users (SP and SC)

could be dependent on the platform provider as a single stakeholder included in the M2M

system architecture. If that stakeholder stops platform provision, the entire M2M system

solution fails. If a single M2M SP creates and hosts an M2M application service, the

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

119

consumer of this application service is dependent of that central provider too. 3)

Centralised M2M platform solutions often are limited in flexibility. Centralised service

provision via service platforms mostly intend specific application fields (e.g. MSPs

provides solution for Ambient Assisted Living but is not able to address the requirements

for a Smart Grid solution). I.e. centralised solutions might limit the application fields for

specific domains. 4) A further negative aspect of centralised elements has to be

considered regarding the data safety and end-user privacy. Storing a large amount of data

that is produced by M2M applications at a central location (physically or logically) is

always critical. The stakeholders having access to that data storage could misuse the data

for e.g. analysing the end-users’ behaviour by getting detailed information provided by

their M2M devices. Based on disadvantages of centralised architectures for MSPs

identified above, the next criterion is derived to ensure the independence of central

provider, enlarging the flexibility of the platform, avoiding costs for the end-user and

ensures the privacy aspect, which in consequence enlarges the acceptance by the end-

user.

 Decentralised system architecture – The approach for MSP has to avoid

centralised entities in the system architecture to provide the service platform or

the services. Avoidance of centralised entities means that no centralised system

components in the MSP architecture (such as e.g. central service repositories)

should be integrated as well as no central stakeholder involved required for

operation of the MSP and the service provision (development, operation,

maintenance, management, controlling) except the end-user itself.

None of the above-mentioned related projects fully satisfies this requirement.

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

120

The oneM2M service platform specification partially satisfies this requirement because

the highly distributed nature of the components in field domain, but requires a central IN

in the infrastructure domain. The DistribFloodMon project partially satisfies this

requirement because the autonomous mechanism for local sensor monitoring and

controlling the actuators in case of an alert, but the total application infrastructure includes

central M2M servers for data storage and analytics as well as a dedicated M2M coordinate

server for configuration of the intelligent M2M gateways and the central M2M servers.

The e-DSON framework partially satisfies this requirement because the e-DSON

platform allows linking decentralised device resources and service to realise a more

complex composed service. However, the service topologies are defined by a central

stakeholder as well as the e-DSON platform itself includes centralised system elements.

Considering the related projects, almost all of them are able to integrate different M2M

device technologies. The provided applications can request information data from devices

realised with different M2M communication technologies or control them. This is an

important aspect because the applications realised with the MSPs should be independent

from M2M device technologies to ensure the flexibility of applications. Therefore, the

following requirement is derived.

 M2M device technology abstraction – The MSP should abstract the M2M device

technology to include different M2M device technologies.

Multimedia communication functionalities such as instant messaging or audio/video calls

form a well interface to generate outputs of the MSP and to interact with the end-user as

the required end devices (e.g. mobile phone) are already present. Multimedia

communication can also be used for realisation of an input interface to the platform using

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

121

the same device. Additionally, multimedia communication forms a flexible interface for

communication between SP and SC to organise service provision/utilisation. Especially

for social services, often personal communication between SP and SC is required to

arrange an appointment (e.g. via email, IM or call). Multimedia communication is

required to build up services such as surveillance services (e.g. monitoring buildings via

video streams). Therefore, the next requirement is defined as follows.

 Multimedia communication – The MSP should integrate multimedia

communication functionality.

Only the related projects BOSP and IMS M2M SP I satisfy this requirement. BOSP

integrates carriers’ abilities, such as VoIP communication and messaging functionality

into its platform concept. IMS M2M SP I utilises the IMS communication technologies

for exchange of information data between the M2M system elements. Although IMS

M2M SP I uses only messaging functionality of the IMS, because the IMS integration it

is possible to include also audio/video communication.

The M2M on SOA project partially satisfies this requirement because it includes email

and SMS as notification options of users. The M2M on SOA project restricts multimedia

communication to notification functionality and does not use the same kind of

communication to control applications or integrates audio/video communication.

Considering the related projects, almost all of them include a mechanism to manage the

location of M2M devices or M2M services for addressing them. The related approaches

usually realise this functionality by a central management entity in the system

architecture. Additionally, different end-users reside on different and variable locations

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

122

(geographical and topological), the devices and provided services have to be continuously

addressable. E.g., because end-user environments usually cannot be addressed via static

IP addresses, the changing IP addresses must be managed. As specified above, an MSP

should avoid centralised components adopting such management tasks. Therefore a

decentralised management solution is required, which results in the next requirement.

 Device/service lookup mechanism – The devices used for service provision and

the services itself needs to be identifiable and addressable. Therefore a mechanism

for device and service lookup is required.

Beside the functional requirements specified above, several non-functional requirements

can be derived from the related projects as the following section presents. Because no

central entity has to be integrated in M2M system architecture for MSP provision, the

user of the platform, i.e. the end-user is responsible for operating the platform. It is

assumed that the end-user has common technical knowledge but no expert knowledge in

application development or operating a specific service platform. Because the end-user

has to operate the service platform and is responsible for application design, both have to

be simple and intuitive. Based on these aspects the following requirement is derived.

 Simplicity – Both, application development and operating the MSP have to be

simple.

None of the above-mentioned related projects satisfies this requirement.

The COMPOSE framework project partially satisfies this requirement because the

developer is enabled to design the back-end application logic graphically by designing

workflows with the included nodes. This simplifies the development process of the back-

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

123

end application, but operating the system platform, consisting of several different

platforms as well as e.g. development of the GUI apps by using mobile SDKs,

complicates both, application development and platform provision. The ENERsip

platform partially satisfies this requirement because the end-user has the possibility to

define control rules for its devices and can interact with the platform using a web-based

GUI. However, operating multiple system elements located in different parts of the

network that communicate with each other using the specific ENERsip protocol stack

complicates the system architecture.

Most of the related projects contain elements in their platform architecture that require

high performance hardware for e.g. operating central architecture components or network

entities. To ensure less financial effort for the end-user, the components of the MSP

should be executed applying low cost hardware or existing hardware and network

facilities. Therefore, the following requirement is derived.

 Minor hardware requirements – The hardware requirements necessary for

providing the MSP as well as accessing the provided applications have to be low.

None of the above-mentioned related projects fully satisfies this requirement.

The IMS M2M SP I and II architecture partially satisfies this requirement because it

reuses existing network topology of the IMS, but also requires central M2M AS inside

the Cloud. Because the IMS M2M SP I and II approach seamless include the network

elements of the IMS, such as P-/I-/S-CSCF/HSS in the M2M system architecture, instead

using the IMS as plain communication network, these entities can be considered as parts

of the MSP.

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

124

Because the increasing amount of M2M devices, as well making the platform usable for

large number of end-user the following requirement is derived.

 Scalability – The MSP should meet scalability in both directions (M2M devices

and users).

None of the above-mentioned related projects fully satisfies this requirement.

The oneM2M service platform specification partially satisfies this requirement when

assuming the MSP is operated as a cloud solution, which naturally provides scalability

depending on the allocated resources. However, central elements in system architecture

limits the scalability. The INOX service platform project partially satisfies this

requirement because the authors define scalability as a requirement that is provided by

the INOX platform, but does not specify how the scalability is realised. The INOX service

platform runs as a cloud environment, which requires central elements that again limit the

scalability. The IMS M2M SP I and II approach partially satisfy this requirement. The

presented approaches include the IMS as communication network, which is rather

scalable. However, the included central system components, such as the AS or M2M

server in turn limits the scalability. The COMPOSE framework project partially satisfies

this requirement. (Doukas and Antonelli, 2013) specifies the COMPOSE framework as a

scalable cloud-based solution. However, on the opposite side the central framework

entities, such as the compose server, naturally limits the scalability of an architecture. The

M2SP concept partially satisfies this requirement. Included central elements, such as the

app stores required for app installation as well as the P2P communication possibility with

the devices enable scalable systems. However, other central elements in system

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

125

architecture, such as the centralised M2M Application Platform or the M2M User

Platform limits the scalability.

Most of the related projects introduced above contain proprietary components in their

architecture or service implementations, which make them dependent of it. Independence

of platform components and service implementations from specific implementation

technologies is necessary to provide best options for adaptability of platform components

as well as ensure the portability of the MSP components. Portability means that the

services and platform components does not have a static binding to the execution

environment (e.g. using proprietary solutions). Using standardised protocols is

advantageous for ensuring portability and adaptability. Portability is especially important

because of the many existing different devices inside end-user environment that should

be used for MSP execution as well as for access the services. Based on these aspects, the

following requirement is derived.

 Platform independency – The realisation of M2M platform architecture

components as well as applied methodologies should be platform independent.

Only the INOX service platform project satisfies this requirement due it proposes a

loosely-coupled system architecture with high service orientation and additionally,

defines a declarative way to describe applications instead of static and execution system

specific implementation of application logic.

The oneM2M service platform specification partially satisfies this requirement because

the oneM2M specification does not specify implementation details regarding execution

environments, but also no concept for independent application definition. Examination of

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

126

OM2M implementation shows the dependence of application definition on the platform

because the application logic has to be defined programmatically and is translated in

platform dependent software executables. The M2M on SOA project partially satisfies

this requirement because the SOA principles considered in that approach as well as the

combination of system elements based on a message broker enable realisation of

independent application and system elements. In contrast the specific frameworks

proposed by the authors such as Struts, Spring, Hibernate make the application and

execution environment dependent on these frameworks. The IMS M2M SP I approach

partially satisfies this requirement because it applies standardised protocols for

communication between M2M devices and MSP as well as between platform

components, but (Foschini et al., 2011) does not specify how the application architecture

is structured or implemented inside the Application Domain. The ENERsip platform

project partially satisfies this requirement because declarative definition of application

logic makes the application logic independent of the execution environment. However,

the authors did not mention any underlying mechanism or standards for rule definition.

The e-DSON framework partially satisfies this requirement because the e-DSON

platform uses the common available HTTP protocol for communication between

platform, user and home environment as well as XML (Extensible Markup Language)

(W3C, 2008) as data format, but does not specify any standard-based methodology to

describe the application logic for generation of the underlying service overlay network.

The data generated in end-user environments during application execution or M2M

device integration into MSP, such as sensor states or communication data, are highly

sensitive because they can represent the behaviour of the end-user and the environmental

conditions. If the end-users knows their data are secure, this increases the acceptance of

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

127

an MSP. Therefore it is necessary to keep this data protected, keep the end-user as owner

of this data, and avoid the so called “Big Brother Effect”. Based on these aspects, the

following requirement is derived.

 Data safety, end-user privacy – The MSP has to provide the functionality for data

safety and end-user privacy.

Almost none of the related projects satisfy this requirement mainly because the single

central architecture elements storing the data or single platform providers that could have

access to the data and misuse it e.g. for determination of end-users‘behaviour.

The oneM2M service platform specification partially satisfies this requirement because

the standard specification includes security functionality such as access control. However,

because the oneM2M architecture includes central elements may monitoring or storing

data produced in M2M area networks the requirement is not fully satisfied.

Table 3.1 shows the requirements specified above including the evaluation of the related

projects regarding these requirements. Requirements the related project satisfy are

marked with “+”; requirements not satisfied by the projects are marked with “-“;

requirements the projects partially satisfy are marked with “o”. Evaluations that cannot

be determined based on the published information about the projects are marked with “/”.

Table 3.1: Evaluation of related Projects reg. derived Requirements

3.2 Requirements for a new Framework for Autonomous decentralised M2M Application Service Provision

128

With regard to the above-specified requirements, a novel framework for autonomous

decentralised application service provision in M2M networks will proposed in chapter 4.

Chapter 5 and chapter 6 will introduce the underlying concepts of the proposed

framework.

Requirements

o
ne

M
2M

 S
pe

ci
fi

ca
ti

o
n

IN
O

X

M
2M

 o
n

SO
A

B
O

SP

IM
S

M
2M

 S
P

I

IM
S

M
2M

 S
P

II

e-
D

SO
N

M
2S

P

EN
ER

si
p

C
O

M
PO

SE

D
is

tr
ib

Fl
o

o
dM

o
n

End-user environment integration - / - + - + + + + + -

End-user integration - - - - - - o - + - -

End-user service provision and

utilisation

- - - - - - + - - - -

Cooperative end-user service

provision

- - - - - - o - - - -

Decentralised system architecture o - - - - - o - - - o

M2M device technology

abstraction

+ + + + / - / + + + /

Multimedia communication / / o + + + - - - - -

Device/ service lookup

mechanism

+ + + + + / + + / + -

Simplicity - / - - - / - - o o -

Minor hardware requirements - - - - o o - - - - o

Scalability o o - - o o + o / o -

Platform independency o + o / o + o - o - -

Data safety, end-user privacy o / - - - - - - - - -

Related M2M Service Platform Projects

 3 Challenges, Requirements, and Use Cases of M2M Application Service Provision

129

3.3 Conclusion

This chapter introduced related projects on MSPs. The oneM2M standard for M2M

system architectures has been introduced as representative of commercial MSPs in

section 3.1 as well as approaches from the research field. Each of the related projects has

been evaluated regarding its strengths and weaknesses. It can be noted that most related

projects pursue a centralised approach by including central entities or stakeholders in their

system architecture. Furthermore, it can be stated that most of the presented approaches

do not integrate the end-user into the application creation, but this is important to take

account of the requirements of the end-user.

Based on the evaluation of the related projects in section 3.2 requirements have been

derived. One of the main requirements is that an MSP not only addresses the end-user

application field, but also integrates the end-user into the application creation process.

Furthermore, it can be noted that it is important to avoid central entities or stakeholders,

such as central platform provider or network element provider, to ensure the

independence of such entities. Reuse of existing resources for operation of an MSP and

networking of M2M devices and services is important because it reduces the cost of

operating the platform and increases the acceptance of an M2M solution. Additionally to

these aspects, it is important that an MSP integrates the different M2M device

technologies and allows them to be combined with each other.

131

4 Proposed Framework for autonomous

decentralised Application Provision in

M2M Systems

This research proposes a novel framework for autonomous and decentralised application

and service provision in M2M systems. The framework addresses the requirements

defined in section 3.2 and eliminates the deficits of currently existing approaches for

application and service provision in M2M systems. In this chapter, section 4.1 first

introduces the overall concept of the proposed framework to enable end-users to design

and provide individual or cooperative M2M applications as a service to other end-users

or central service providers (SPs) such as companies or organisations. Afterwards section

4.2 describes the framework architecture and its components realising the proposed

framework architecture.

4.1 General Concept

The concept described in this research changes the method of M2M application and

service design, provision as well as utilisation significantly from previous approaches.

Figure 4.1 illustrates the process of service and application development, deployment and

utilisation for traditional M2M service platforms. (MSPs)

4.1 General Concept

132

Figure 4.1: Traditional Approach for M2M Application Service Provision

As constituted in section 3.1 in the traditional approaches for provisioning M2M

applications, highly specialised software developers design and implement M2M

applications supporting specific business process. Such M2M applications are deployed

on application servers (AS) running in centralised infrastructures like the Cloud or

dedicated servers. Application consumers (companies, organisations, end-user) utilise

these applications as a service. The M2M applications control and monitor devices

located in the M2M device domains.

This research project proposes, as illustrated in Figure 4.2, that end-users design M2M

applications corresponding to their personal requirements (Steinheimer et al., 2012a;

Steinheimer et al., 2017a).

Figure 4.2: M2M Application Service Creation and Provision Process with End-User Integration

Cloud

Service Creation Environment (SCE)

Create Service

Logic
M2M Device Domain

M2M Service

Provider

M2M Application

M2M Application

Server (AS)

Company/Organisation/End-User

Deploy Service

Personal Requirements

IP Network/

Internet

Local Service Delivery Platform (SDP)

Interpreter Execution

Engine

Service Creation Environment (SCE)

End-User

M2M Device Domain

Company/Organisation/End-User

Define M2M

Service Logic

Generate

Formal Service

Description

Deploy M2M

Service

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

133

According to (Steinheimer et al., 2013a) and (Steinheimer et al., 2015b) a formal service

description language describes the M2M service logic, which is deployed in the local

environment of the end-user that is also responsible for service execution (instead a

central M2M AS). Here it has to be considered that end-users are no specialised software

developers, but users with common technical knowledge. The designed applications can

be provided as a service to other end-users or SPs (Steinheimer et al., 2013e).

This research defines conceptual models for M2M system architectures enabling

autonomous decentralised M2M service provision as well as horizontal and bottom-up

M2M service provision (Steinheimer et al., 2015a). This project additionally defines new

conceptual models for M2M system architectures to realise cooperative M2M application

service provision consisting of aggregation and composition of M2M services provided

by end-users (Steinheimer et al., 2013e). The conceptual models define novel methods to

provide services and applications in M2M application fields and therefore offer

possibilities for new and highly flexible M2M applications. M2M applications, realised

according to the defined models, are able to address application ranges not addressable

by traditional M2M SPs such as control or monitoring applications including equipment

located in end-users personal environment (e.g. reducing demand for energy by turning

off or shifting energy-consuming devices or monitoring environmental conditions by

accessing devices that include various sensors). The conceptual models are described

subsequently and section 4.2 describes the functional architecture of the framework to

realise these models.

4.1 General Concept

134

Autonomous Decentralised M2M Service Provision (ADSP) Model

As examined in section 3.2 the provision of an M2M service requires an MSP. Most of

the current approaches for M2M application provision require centralised infrastructures

for hosting these service platforms. As examined in section 3.2, such centralised

infrastructures result in less flexibility and dependence on the platform provider/operator

as well as require many resources. More decentralised approaches including Edge or Fog

Computing aspects execute the M2M services closer to end-users, but also do not avoid

the dependence of an MSP provider or make it impossible to use the MSPs by end-users

to deploy their individual services.

To avoid the disadvantages of centralised approaches for M2M service provision, this

research project defines the ADSP model (illustrated in Figure 4.3) as fundamental

structure of the proposed M2M system architecture (Steinheimer et al., 2013a;

Steinheimer et al., 2015b).

Figure 4.3: ADSP Model: Decentralised M2M Application Design and Execution

This conceptual model defines that end-users use the resources available in their personal

environments to design and deploy M2M applications themselves (within their personal

creates

End-User s personal EnvironmentEnd-User

Local Application

Creation

Environment

IAD/ Smartphone

Local Application

Execution Environment

M2M Devices

Heating

D

N
Actuators Sensors Lights ...

controls/ monitors

End-User

End-User

End-User ...

IP Network/

Internet

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

135

environments). The end-users provide the M2M applications without involving a central

entity (e.g. a central MSP provider) or centralised execution environments for M2M

applications. Therefore, the execution environment for M2M applications are arranged in

the areas that are accessible and manageable by the end-users, which are their personal

environments. The personal environment of end-users are either their permanent place of

residence (home/apartment) or their current locations. In the further course of this

research, the local execution environments will be linked so that end-users can realise

cooperative services.

As section 3.2 defines the requirement that the execution system for the MSP does not

require additional hardware, the Integrated Access Device (IAD) already existing at most

permanent locations of end-users is used and the end-user's smartphone at the mobile

location. The IAD represents the M2M-Gateway in end-users environments, which

execute the M2M applications close to the end-user and processes the data where they are

collected (Steinheimer et al., 2013a).

The ADSP model satisfies the requirements of the distributed system architecture and the

end-user is included in the M2M application creation. Compared to the traditional

centralised approaches for MSPs, the above-defined model avoids the resource-intensive

provision of M2M applications by means of additional network elements since the

execution environments use the locally available and cost-efficient resources. This will

make better use of existing resources (network capacity, computing power), avoid

bottlenecks, and reduce the cost of service creation, provision and maintenance. This

satisfies the requirement that low hardware resources are required for platform

provisioning. Furthermore, this model resolves the fixed binding to a central M2M

4.1 General Concept

136

application service provider (ASP) or a central execution platform, since the M2M

applications are performed locally, which increases the independence of the application

users from a central provider, and meets the data security and end-user privacy

requirements.

The following section defines the HSPU model, which builds on the previously defined

ADSP model.

Horizontal M2M Service Provision and Utilisation (HSPU) Model

As stated in section 3.2 the common concepts for MSPs allow end-users to consume M2M

application services defined for their personal environments. However, end-users are not

able to make the functionality of their M2M devices or the applications defined for their

M2M device domain available to other end-users.

The HSPU model defined in this section extends the above-described ADSP model by

providing the functionality of local M2M devices and M2M applications to other end-

users as a service (Steinheimer et al., 2013e; Steinheimer et al., 2015a). Figure 4.4

illustrates the principles of HSPU model.

Figure 4.4: HSPU Model: Horizontal M2M Resource Provision and Utilisation

E
n
d

-U
s
e

r
D

o
m

a
in ...

 Access Network Layer

M2M Service Consumer 1 n

Horizontal M2M Service Provision and Utilisation

M2M Service Provider 1

M2M Service 1

M2M Service Provider n

M2M Service n M2M Service 1 n

IP Core Network/ Internet

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

137

The service provision and utilisation are performed horizontally at end-user level, i.e.

without any central, mediating entity in the M2M system architecture. According to this

model, an end-user takes on the role of an M2M SP and provides independent M2M

services to other end-users that run in the execution environment of this M2M SP. The

connection of M2M SP and M2M service consumer (SC) as well as every required

information exchange occurs directly (P2P) between the participants (Steinheimer et al.,

2012a).

A MSP based on the architecture implementing the HSPU model has the advantage that

both, M2M service provision and utilisation are realised without any central entity and

M2M SCs are independent of such entities. This again satisfies the requirement of

decentralised system architecture. Additionally, realisation of the HSPU model enlarges

the flexibility of an MSP because provided M2M services can address various application

fields, not limited by the functionality of traditional MSPs that are often implemented for

specific application domains. Because all end-users can publish their individual M2M

services a large diversity of available services can exist (because of large number of

different SPs). End-users can search for M2M services satisfying their individual

requirements. Besides these advantages horizontal M2M service provision and utilisation

reduces the costs for service development and provision because end-users provide their

own resources and no additional system elements are required. The HSPU model includes

a naturally redundancy of M2M services, because multiple M2M SPs can provide

identical services.

The following section defines the DCASP model, which extends the above-specified

conceptual models.

4.1 General Concept

138

Decentralised Cooperative M2M Application Service Provision (DCASP) Model

As stated in section 3.2 none of the related projects offer the functionality to combine

individually provided M2M services to form a complex M2M application service on end-

users level. Therefore, this section defines the DCASP model, which is based on the

previous defined conceptual models. Figure 4.5 illustrates the principles of DCASP

model.

Figure 4.5: DCASP Model: Decentralised cooperative M2M Application Service Provision

In the DCASP model the individually provided M2M services are combined to build a

complex M2M application (Steinheimer et al., 2013e). Other end-users or external SPs

(companies/organisations) can utilise these complex M2M applications as a service. The

DCASP model distinguishes two methods for decentralised M2M service combinations:

service aggregation and service composition. In case of service aggregation end-users

(peers) provide a cooperative M2M application service by simultaneously offering

identical local M2M services (with optional information exchange). In case of service

composition end-users provide a cooperative M2M application service by concatenation

(linking) of different individual M2M services. The M2M SPs and SCs are again linked

E
n
d

 U
s
e
r

D
o
m

a
in

S
e
rv

ic
e
 C

o
m

p
o
s
itio

n

M2M Service Composition

Service Consumer
M2M Service Provider 1

M2M Service x

M2M Service Provider 2

M2M Service y

M2M Service Provider n

M2M Service z

S
e
rv

ic
e
 C

o
m

p
o
s
itio

n

M2M Service Aggregation

M2M Service Provider 1

M2M Service x

M2M Service Provider 2

M2M Service x

M2M Service Provider n

M2M Service x

Aggregated/

Composed

M2M Services

IP Core Network/

Internet

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

139

via a P2P network without any central entity required to manage the service combination

or information exchange.

A M2M system architecture that implements the DCASP model by the distributed

provision of M2M application services, avoids the resource-intensive provision of M2M

applications that central approaches use. This will make better use of existing resources

(network capacity, computing power), avoid bottlenecks, and reduce the cost of M2M

service creation, provision and maintenance. Because multiple end-users can deploy the

same M2M application using this approach, the fixed relationship to a central M2M

service or platform provider is resolved, which in turn increases the independence of the

M2M application users.

The DCASP model offers the possibility to provide different M2M applications in a

flexible way. Different M2M services can be flexibly combined. Through the cooperation

of multiple M2M SPs on end-user level new M2M applications can be realised that could

not be realised before because resources located in end-users’ environments were not easy

accessible. By combining several local M2M applications, various use cases can be

realised that are only possible through the cooperation of end-users, such as the reduction

of the load in the energy distribution grid. Such jointly provided M2M application

services could provide an advantage to the end-users involved, if they receive appropriate

incentives from the application SCs.

The following section describes the BSPU model which is based on the ADSP and

DCASP model.

4.1 General Concept

140

Bottom-Up M2M Service Provision and Utilisation (BSPU) Model

The above-specified conceptual models offer new possibilities to make resources located

in end-users personal environment accessible and enable the combination of them. The

BSPU model (see Figure 4.6) extends the previously defined models by specifying that

end-users can provide their individual or cooperative M2M services to external SPs. This

was not possible before without centralised MSPs or defining certain terms and conditions

between end-users and external SPs, which again would be complicated and individual

solutions. (Steinheimer et al., 2015a; Steinheimer et al., 2016)

Figure 4.6: BSPU Model: Bottom-Up M2M Service Provision and Utilisation

The BSPU model reverses the direction of service delivery. Central SPs do not provide

their services to end-users as before, but distributed end-users provide their M2M services

to the central SPs.

External SPs usually are interested in information regarding the personal environment of

end-users to use that information to create a benefit for their individual business

E
n
d

-U
s
e

r
D

o
m

a
in

End-Users End-Users Cooperative End-Users

B
u
s
in

e
s
s
 D

o
m

a
in

Top-down

Bottom-up

Company/Organisation Company/Organisation

BSPU Model

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

141

processes. Another interest of external SPs could be to control M2M devices located in

the personal environment of the end-user, such as energy consumers. The BSPU model

enables central SPs to address the personal environment of the end-user as an application

field of their M2M applications. This area was previously not addressable, e.g. because

of legal restrictions or data-safety regulatory. It is only possible for central SPs to integrate

the end-users’ personal environment into their business processes, if the end-users

provides their information data or control functionality by themselves to the central SP.

Due to the customers’ active participation in the provision of M2M services, it is within

their discretion to determine the scope of control tasks or data collections in their personal

environments.

4.2 Framework Architecture and Components

The previous section 4.1 introduced the principles of conceptual models that form the

basis of the proposed novel framework for “Autonomous decentralised M2M Application

Service Provision”. The proposed framework aims to eliminate the gaps and

disadvantages of current approaches of MSPs identified in section 3.1 by enabling the

end-users to design individual M2M services and make them available to other end-users

or central SPs. Additionally, the service providing end-users can cooperate with each

other to provide complex M2M application services. Figure 4.7 illustrates the functional

basis for the proposed novel framework for autonomous decentralised service and

application provision in M2M application field, with focus on end-users domain.

4.2 Framework Architecture and Components

142

Figure 4.7: M2M Application Service Provision Framework Architecture

The framework consists of four essential parts: Service Creation Environment (SCE),

Service Delivery Platform (SDP), Conceptual Models for autonomous decentralised

M2M Application Service Provision and Utilisation, and the M2M Community

(Steinheimer et al., 2012a; Steinheimer et al., 2013e). SCE and SDP are completely

decentralised as they are located in end-users’ personal environment. The task of the SCE

is to provide functionality for application and service design by end-users. The SDP is

responsible for M2M application/service management and networking of the

participating platforms in end-users domain. The M2M Community is a component in the

proposed architecture supporting the networking of participants and the management of

Service Creation Environment (SCE) Service Delivery Platform (SDP)

Decentralised Networking

Service Runtime Environment

(SRE)

Framework for autonomous decentralised M2M Service and Application Provision

M
2
M

 C
o
m

m
u
n
it
y

Conceptual Models for autonomous decentralised M2M Application Service Provision and Utilisation

Single Service

HSPU Model

BSPU

Model

DCASP Model

Service Aggregation Service Composition

Local Service

ADSP Model

Service/ Application

Registry (SAR)

Service Provision

Unit (SPU)

Service

Interface

Description

Formal Application

Description

Formal

Appl.

Description
Formal Application

Description

Service Execution Engine

(SEE)

Multimedia Service

Components (MMSCs)

Application Description

Interpreter (ADI)

M2M Communication Unit (CU)

Device Abstraction Layer (AL)Service

Design Unit

(SDU)

Service

Creation

Unit (SCU)

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

143

M2M services. The conceptual models are realised by means of the functional

components of SCE and SDP. While section 4.1 described the principles of the conceptual

models, the subsequently section describes the components of SCE, SDP and M2M

Community.

Service Design Unit (SDU)

Integration of end-users implies that the end-users have the possibility to create M2M

applications for their personal environment (e.g. their Smart Home). Currently no

possibility for comfortable and simple M2M application creation exists as identified in

section 3.1.

An intuitive development of M2M applications could be realised by a graphical

development process and by modelling the behaviour of an M2M application

independently from underlying technologies (Steinheimer et al., 2012b; Steinheimer et

al., 2017b). In the e-SCHEMA research Project (e-SCHEMA, 2015) the graphical

development of M2M applications was demonstrated. The use of the proposed principle

of statemachine-based modelling was evaluated as a practicable approach by probands

with different technical backgrounds. The majority (90 percent) of the candidates stated

that they found it easy to model simple or complex M2M applications using the proposed

approach. Therefore this approach was chosen as methodology to graphically model the

semantics of an M2M application. The graphical design of M2M applications by end-

users for their individual personal environments realises the integration of end-users. The

SDU provides the interface for graphically designing M2M applications via a Graphical

User Interface (GUI). The definition of an M2M application is done by the end-users by

modelling the behavior of the M2M application through the combination of graphical

4.2 Framework Architecture and Components

144

building blocks (refer to Figure 4.8). The graphical building blocks represent the control

and monitoring functionalities of M2M devices (available in their personal environment)

as well as Multimedia Service Components (basic communication services). The

definition of M2M application semantic is abstracted from technical realisation meaning

the end-user defines the application logic graphically and the designed application is

automatically transformed into a formal description representing the application semantic

(Steinheimer et al., 2013a; Steinheimer et al., 2017b).

Figure 4.8: Framework Architecture: Service Design Unit (SDU)

The convenient graphical design of M2M applications enables end-users to create M2M

applications for their personal environment according their individual requirements and

satisfies the requirement of end-user integration into the process of M2M application

design. The integration of end-users by offering the possibility to design individual

applications expands the diversity of available M2M services enormous.

Service Creation Unit (SCU)

The approaches for creation and execution of M2M applications, described in section 3.1,

often lack in portability because the service executables are dependent on the specific

Formal Service

Description

End-User

Multimedia Service Component

Building Blocks

D

N

M2M Device Building Blocks

Service Design Unit

(SDU)

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

145

platform. I.e. the platform where the service executables are deployed is not simply

exchangeable. Thus, the service executables are close-coupled to the platform and other

execution environments cannot execute them. Only the INOX Managed Service Platform

(Clayman and Galis, 2011) and the ENERsip platform (Lopez et al., 2013) make use of a

declarative description of M2M application logic instead of programmatically

implementing it, but the authors do not mention any standard used for the declarative

description.

This project proposes an abstraction mechanism for service executables. The graphically

designed M2M application logic is not transformed to application code that is dependent

on the execution environment and therefore dependent on the platform. The SDU (refer

to Figure 4.9) automatically transforms the application logic into a formal application

description using a unified, standardised and machine-readable formal description

language describing the application semantic.

Figure 4.9: Framework Architecture: Service Creation Unit (SCU)

The formal application description can be parsed, interpreted, and the application logic

described can be executed independently of the underlying execution environment. This

makes the formally defined M2M application independent of the execution environment

and can be easily ported to other execution environments, which meets the requirements

of platform independence. Each execution environment that contains a parser for the

unified and standardised formal description language is able to execute the application.

End-User

Service Creation

Unit (SCU)

Service Design Unit

(SDU)

Formal M2M Application

Description

4.2 Framework Architecture and Components

146

The machine readability of the formal description language enables the fully automated

application execution. The application of unified mechanisms for M2M application

description using a standardised formal description language supports the realisation of

an application description parser on different platforms.

M2M Communication Unit (CU) with Device Abstraction Layer

The intention of the presented concept is not only the integration of end-users, but also

the M2M device domain of end-users. The basis of M2M application creation is the

integration and the networking of M2M devices. M2M devices have different, mostly

incompatible communication abilities (i.e. the M2M devices communicate via different

M2M technologies). As a result, M2M devices that use communication technology A will

not be able to communicate with other M2M devices that use communication technology

B. Therefore, it is impossible to connect M2M devices using different communication

technologies with each other for controlling or information processing.

The M2M CU, as illustrated in Figure 4.10, includes multiple M2M device technology

interfaces and integrates different device technologies as most of the approaches

introduced in section 3.1 do (Steinheimer et al., 2012a; Steinheimer et al., 2015b).

Figure 4.10: Framework Architecture: Communication Unit (CU)

M2M Communication Unit (CU)

M2M Technology Interfaces

KNX Z-Wave ZigBee HTTP MBus BidCos

Service Execution Engine (SEE)

Device Abstraction Layer (AL)

EventEvent

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

147

The unified integration of several M2M device technologies is realised by the Device

Abstraction Layer (AL) component of the proposed framework, which is included in the

M2M CU. According to (Steinheimer et al., 2012a) and (Steinheimer et al., 2015b) the

Device AL abstracts the communication between the execution environment and the

different M2M device technologies. Different M2M devices are represented inside the

M2M CU by a unified interface. An M2M application executed by the Service Execution

Engine (SEE) integrates M2M devices using the unified interface. The M2M application

uses this interface to request data from the M2M device or send control commands to it.

The Device AL converts the unified requests into technology specific requests so that they

can be transferred to the M2M device via a specific M2M technology interface.

The Device AL of the M2M CU accomplishes the compatibility of different M2M device

technologies. This part of the proposed concept also enables the integration of M2M

device technologies defined in the future, by definition and integration of corresponding

M2M device technology interfaces into the M2M CU. This realises the separation and

independence of service functionality from communication technologies of the M2M

devices and satisfies the requirement for M2M device technology abstraction, as defined

in section 3.2.

Multimedia Service Components (MMSC)

As identified in section 3.1 in most MSPs the integration of multimedia communication

is not considered or rather not integrated as essential interface. Often in MSPs no

interfaces exist that are simple operable and comparably flexible.

4.2 Framework Architecture and Components

148

This project proposes to provide reusable MMSCs as part of the SRE, which end-users

can utilise to interact with the MSP using common multimedia communication equipment

(Steinheimer et al., 2013a). Integration of multimedia communication forms an interface

that is usable on several ways. Multimedia interfaces are usable by audio/video

communication (e.g. audio/video call), by textual communication (Instant Message) or

combined (speech recognition, text-to-speech). Therefore, the framework contains

MMSCs the end-user can apply to generate an interface for M2M applications. The

interface can work as input and output interface or as control channel between MSP and

end-user.

Central integration of multimedia communication enables the simple realisation of

intuitive interfaces to MSPs. Through the integration of MMSCs it is possible to receive

and exchange information as well as trigger control instructions, just using multimedia

communication devices such as a mobile phone. The precondition to serve a multimedia

interface still exists in the environment of most involved entities. Most end-user have a

multimedia communication device (e.g. a Smartphone) and are familiar with operating it.

Integration of multimedia communication extends the M2M onto the Machine-to-Human

Communication via natural and human readable language.

Service Runtime Environment (SRE)

The SRE (see Figure 4.11) provides the MMSCs and contains the Application Description

Interpreter (ADI) and the Service Execution Engine (SEE) for realisation of the M2M

application execution. The SRE receives the formal application description from the SCU

and executes the defined application logic on behalf of the ADI (parsing and interpreting

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

149

the formal application description) and the SEE (triggering the defined actions)

(Steinheimer et al., 2013a; Steinheimer et al., 2015b).

Figure 4.11: Framework Architecture: Service Runtime Environment (SRE)

Most of the projects introduced in section 3.1 realise the M2M application execution

using remote execution environments or central components in their system architecture.

As mentioned above the SRE is located in the local environments end-users, i.e. the M2M

application is also executed locally and the proposed concept does not require any central

MSP, which satisfies the requirement of decentralised system architecture and also

ensures the data safety and end-user privacy.

The components presented up to this point enable end-users to graphically create a local

M2M application in a simple way and execute it locally. These framework components

enable the realisation of the ADSP model defined in section 4.1. The framework

components described subsequently are proposed to realise the HSPU and BSPU

conceptual models.

Service Runtime Environment (SRE)

Formal M2M

Application Description

Service

Creation

Unit

(SCU)

Application Description Interpreter

(ADI)
Multimedia Service

Components (MMSCs)

Service Execution Engine (SEE)

Communication Unit (CU)

4.2 Framework Architecture and Components

150

Service Provision Unit (SPU) and Service/Application Registry (SAR)

For realising the HSPU and BSPU model, a possibility is still required to provide the

M2M application as a service to other users. This is realised by the SPU component,

which extracts an interface description from the formal application description and

registers it at the SAR. The interface description contains all necessary information

describing the M2M service and its interfaces. Users who intent to use an M2M service

offered by another user, request the SAR for available M2M services and integrate the

M2M service into their graphical application description. The SPU contacts the M2M SP

and requests the desired M2M service.

The decentralised structure of the M2M system architecture presented in this project is an

essential aspect of the designed framework. Figure 4.12 shows the designed approach as

a layer model representing the functional architecture for networking of SPs and SCs as

well as for realisation of M2M application services (Steinheimer et al., 2017a;

Steinheimer et al., 2017b; Steinheimer et al., 2017c). The functionality of the respective

layers is described below.

Network Layer

Since the M2M system architecture, as defined in section 3.2, should not require any

additional resources accept the existing at end-users environment, the end-user’s M2M

gateways are connected with each other via an IP based communication network,

respectively the Internet. Therefore, the networking fundamentals are realisable with

minimal infrastructural costs. End-users can be located at different geographic locations

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

151

as well as in different access networks (wireless mobile networks or fixed access

networks), which are interconnected via the core network.

Figure 4.12: Layer Model of Decentralised Networking Aspect

P2P Network Layer

As defined as a requirement in section 3.2, the entire system architecture must be

decentralised and no central stakeholders should be present. Therefore, end-user nodes

represent equivalent entities and are connected to each other via a P2P network. Each

end-user node in the M2M system architecture represents an individual peer in the P2P

network providing or consuming a service or just behave as passive node supporting the

P2P network infrastructure. The P2P Network Layer includes the sub-layers P2P Overlay

(IP) Network Layer

P2P Network Layer

P2P Overlay Layer

M2M Application

Service

Service Service

M2M Communication Protocol

M2M Service Layer

M2M

Communication

Protocol

Service Service

Access

Network 1

Access

Network N

IP Network/

Internet

P2P

Overlay

Protocol

M2M Application Layer

Service

Description

Language

M2M Application

Service

M2M Application

Service

Peer

A

Peer

N

Peer

A

P2P Communication Layer

Service

Provider

A...N

Service

Consumer

A...N

Peer

N

© 2017 IEEE

4.2 Framework Architecture and Components

152

Layer and P2P Communication Layer realising a decentralised infrastructure for

communication and data storage.

The P2P Communication Layer realises the information exchange between the

participants (i.e. the peers). The information exchange between the participants for the

service utilisation (service requests, confirmations) as well as the necessary signalling to

generate cooperative applications automatically occurs directly between the peers using

M2M communication protocols (e.g., CoAP, SIP). The communication in the P2P

Communication Layer occurs end-to-end between peers providing and consuming

correspondent services. Peers that are not involved in a specific M2M application context

are not integrated in the communication activities between M2M SP and SC.

In addition to the communication between the participants, the required data management

in the M2M system architecture, such as registration of M2M services, must also be

decentralised to prevent central components in the M2M system architecture. Distributed

data storage can be realised with a P2P overlay network (e.g., Chord, Gnutella). The P2P

Overlay Layer realises this functionality by forming the P2P overlay network out of all

existing end-user nodes. All end-user nodes are member of the P2P overlay network,

independent if they are involved in a specific M2M application context or not. Any data

storage in the presented M2M system architecture is decentralised via the end-user nodes

within the P2P Overlay Layer.

M2M Service Layer

The services defined and provided by the end-users are available via the M2M Service

Layer and can be used via their corresponding interfaces. The service interface is

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

153

described by an interface specification and is available in the M2M Service Layer

(explained in section 6.1).

M2M Application Layer

The distributed M2M application services are realised within the M2M Application Layer.

For this purpose, the services available via the M2M Service Layer are combined with

each other following the same approach as defining local M2M applications (combination

of graphical building blocks and application description using formal language). The

exchange of information between the M2M services takes place via the P2P Network

Layer using P2P communication protocols.

The decentralised networking of nodes allows to realise the entire M2M system

architecture decentralised without the inclusion of central entities. The application

composition on the M2M Application Layer makes it possible to compose flexible

applications from fine-grained, independent services. According to the proposed concept,

the infrastructure is provided cooperatively by all participants, whereby the application-

specific communication takes place between the nodes involved in the context of an M2M

application. As a result, the effort required for networking is distributed to the nodes and

does not stress a single system component that would have to be provided centrally.

Because no central component is involved in the networking of nodes, the system

architecture is not dependent on this single component. The entire M2M system

architecture uses existing resources in the end-user domain such as existing IP/NGN

network infrastructure. This makes it possible to realise a communication network for

M2M without providing additional networking infrastructure. Using IP-based

information exchange guarantees the applicability by everyone that has access to the

4.2 Framework Architecture and Components

154

Internet. Therefore, the realisation is possible with minimal costs. The P2P networking

structure offers advantages like redundancy and scalability as well as data security and

end-user privacy because necessary data storage is realised via the P2P overlay network

and distributed over the participating nodes that are decoupled from each other.

The following section describes the M2M Community component of the proposed

framework system architecture.

M2M Community

Up to this point in the proposed framework concept for “Autonomous decentralised M2M

Application Service Provision” it has not been discussed how the participating nodes, i.e.

the end-users, can join the P2P network and how the presented framework manages

different interests of end-users utilising the distributed MSP. To address these topics the

designed concept includes the M2M Community component (see Figure 4.13).

Figure 4.13: P2P connected M2M Environments within the M2M Community

The M2M Community extends the P2P networking approach by adding social networking

functionalities to the P2P network (Steinheimer et al., 2012a; Steinheimer et al., 2013e).

End-users that want to participate in the distributed M2M platform architecture join the

Peer A

SCE

SDP

Sub-Community B

M2M Community

Sub-Community A Mobile M2M Peers

Peer N

SCE

SDP

Peer B

SCE

SDP

Peer D

SCE

SDP

Peer C

SCE

SDP

Data

Sets

M2M Peers

M2M Peers

M2M Peers

Data

Sets

© 2013 IEEE

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

155

M2M Community and as part of the community can utilise the MSP functionalities.

Therefore, the M2M Community forms the basis for networking the peers. The M2M

Community follows the principles of a social network in which users with the same

interests group together. The M2M community has the task to create such groups of

interest. The respective groups of interest are represented by sub-communities, which

group the M2M services by their characteristics or the user groups of the M2M services.

For this purpose, it is e.g. possible to form sub-communities that describe a specific

geographic area in which M2M services are available, such as e.g. the neighbourhood of

an end-user. Figure 4.13 illustrates the structure of the P2P connected nodes within the

M2M Community consisting of various sub-communities. It shows that the nodes are

connected P2P with each other inside the M2M Community and some peers form specific

sub-communities. The M2M Community and its sub-communities form logical groups of

M2M nodes independent of the geographical location of the peers.

4.3 Conclusion

This chapter introduced the concept of a novel framework to realise an M2M system

architecture for “Autonomous decentralised M2M Application Service Provision”. The

combination of application and service provision by end-users with Fog Computing

aspects of execution environments next to the end-users with possibility of information

exchange between end-users individual platforms forms a novel concept for provision of

M2M application services and enables end-users to participate in application provision

on end-users domain.

4.3 Conclusion

156

Section 4.1 introduced the general concept of the proposed framework proposing

conceptual models for M2M service design and provision: The ADSP model that enables

end-users to design individual M2M applications by modelling the behaviour of M2M

applications using an intuitive GUI. The designed M2M applications are executed in the

local SDP of the end-users and therefore does not require any remote or centralised entity

involved in the M2M application execution process. The HSPU model enables end-users

to provide the designed M2M application functionality as a service to other end-users.

The BSPU model enables the provision of the M2M service to external SPs not located

in the end-user domain, such as central distribution grid operators. Both models again use

the resources already present in end-users environment and therefore do not require any

additional hardware or networking resources. The DCASP model enables the different

M2M SPs to combine their M2M services as a service aggregation or a service

composition and provide the combined M2M application service to other end-users or

external SPs.

Section 4.2 introduced the proposed framework architecture and components consisting

of SCE and SDP as well as M2M Community. The SCE provides the functionality for

M2M application design and automatically generates a formal application description out

of the designed graphical model. The formal application description is processed for

application execution in the SDP component of the framework. The SDP additionally

provides the functionality for P2P networking of the participating nodes to realise the

decentralised data exchange between M2M SPs and SCs or required decentralised data

storage functionality. Finally, the M2M Community concept realises the management

functionality of different end-user interests and user groups as well as forms the entry

point to the decentralised MSP.

 4 Proposed Framework for autonomous decentralised Application Provision in M2M Systems

157

The introduced novel framework concept enables addressing M2M application fields that

traditional concept of MSPs are not able to address, such as monitoring and control

functionalities in end-users personal environment. The proposed framework concept has

the advantage that the M2M system architecture is realisable with cost efficient resources

already existing in end-user’s environments and therefore existing resources (e.g. network

capacity or computing power) are used more efficient. Decentralised M2M application

service provision additionally prevents bottlenecks as well as reduces the costs for M2M

application service creation/provision/maintenance and resolves the binding to a specific

central MSP provider.

This chapter defined the basis for “Autonomous decentralised M2M Application Service

Provision”. The following chapter 5 covers aspects of M2M application creation with

native end-user integration and local execution of M2M applications. The aspects of

cooperative application provision through the composition of distributed M2M services

are discussed in chapter 6. Both chapters introduce related projects that are used to derive

the optimal approaches for the design of individual framework components.

159

5 Autonomous M2M Application Provision

Chapter 4 introduced the principles of the proposed concept for “Autonomous

decentralised M2M Application Service Provision”. This chapter 5 introduces the parts

of the framework responsible for M2M applications design by end-users and their

execution in local M2M environments. The next chapter 6 will cover the distributed and

cooperative M2M application service provision. Section 5.1 presents the Multimedia

Service Components that this project proposes as part of the local M2M platform to

provide an interface between end-user and M2M applications using existing multimedia

communication equipment. Afterwards section 5.2 focuses on the proposed principles of

application design by end-users via graphical application behaviour modelling. It

describes an intuitive, platform independent methodology to define M2M application

semantics. Section 5.3 presents an approach of a GUI that enables end-users to graphically

design the behaviour of an M2M application by combining building blocks representing

the M2M devices in their personal environments and previously mentioned Multimedia

Service Components. Section 5.4 presents the concept to integrate different M2M device

technologies into the local M2M platform and make them available to be integrated in

M2M applications. For this, an abstraction mechanism is specified enabling M2M

application definition without regard of the specific M2M technologies used to

communicate with the M2M devices. Section 5.5 goes back to the principles of M2M

application definition and presents an approach for describing state machine-based

applications using a modelling language. After selecting an appropriate modelling

5.1 Multimedia Services Components

160

language, the discussion introduces a formal description of the designed M2M application

behaviour that allows automated execution of the service logic. Finally, section 5.6

defines the principles for processing the formal M2M application description by parsing

and interpreting the defined semantics and executing the service logic.

5.1 Multimedia Services Components

End-user integration is an important aspect of this project. For this reason it is proposed

that an M2M system is not only limited to the communication between M2M devices, but

also that end-users themselves can communicate with an M2M application. This extends

the functionality of traditional M2M systems with machine-to-human communication

capabilities. Thus end-users can be informed about events that occur in an M2M system

or can actively control an M2M application. For this purpose, the requirement was defined

in section 3.2 that an M2M Service Platform (MSP) should have multimedia

communication interfaces via which end-users can communicate with the M2M system,

since the required equipment for communication already exists in end-users’

environment. In order to realise these communication interfaces, this section introduces

the Multimedia Service Components (MMSCs) which, as mentioned in section 4.2, can be

integrated by end-users as interfaces into their individual M2M applications.

A typical scenario should assume that end-users have a smartphone or other multimedia

over IP capable end device, which is used to establish an interface to the M2M

application. In such a scenario, a smartphone may send and receive text messages as well

 5 Autonomous M2M Application Provision

161

as audio and video calls. This offers the following possibilities to interact with the M2M

platform or with an M2M application:

 Natural Language – Natural language that is converted to text and processed in

the M2M application or natural language that is generated and played back via the

audio channel.

 Dual-Tone Multi-Frequency (DTMF) Signalling –DTMF signalling can be used

for signalling during a telephone call using key tones of telephone key pad (ITU-

T Q.23, 1993 and ETSI ES 201 235-1 V1.1.1, 2000).

 Text Message – A text message sent to or generated by the M2M platform to

transmit text-based information.

 Video – A video stream can be transmitted, generated by a video source inside the

M2M environment during a video call.

In order to enable these communication capabilities, it is proposed that the MMSCs

introduced below use the User Agent (UA) (IETF RFC 3261, 2002) integrated in the end-

user's Integrated Access Device (IAD) to communicate with the end-user's multimedia

devices (refer to Figure 5.1). The MMSCs are designed to make use of the Session

Initiation Protocol (SIP) (IETF RFC 3261, 2002) for communication with IAD UA,

respectively with the end-user’s multimedia device because SIP is the common standard

protocol in multimedia communication for controlling communication sessions and most

end-user IADs are equipped with a SIP stack to serve for public telephony connections.

(Steinheimer et al., 2013a)

5.1 Multimedia Services Components

162

Figure 5.1: MSP Multimedia Interfaces

Speech Recognition/DTMF (SR/DTMF) MMSC:

First the SR/DTMF MMSC (see Figure 5.2) is introduced offering the functionality to

receive audio calls with a SIP UA, which is integrated in the local M2M platform. The

designed SR/DTMF MMSC can serve as an easy operable input interface to the local M2M

platform in two ways:

 Detect Spoken Text – During an audio session, this MMSC performs speech

recognition (SR) to detect spoken text by analysing the received Audio Stream.

 Detect DTMF Signals – During the audio session, end-users have the possibility

to generate DTMF signals using the dial pad of their multimedia devices.

Figure 5.2: Architecture of SR/DTMF MMSC

Integrated Access

Device (IAD)

End-User

Service Runtime Environment (SRE)

Service Execution Engine (SEE)

Multimedia Service Components

(MMSCs)

UA

Audio/ Video Call,

Instant Message

AV/TTS

MMSC

IM

MMSC
SR/DTMF

MMSC

Smartphone (UA)

SR/ DTMF MMSC

Character

Sequence

Audio Stream

{stream}

[Audio Stream]

{stream}

Receive

Audio Call

Stream Analyser

Audio Stream
{stream}

[INFO (DTMF Digit)]

{stream}
DTMF Digit

Mode Configuration

 5 Autonomous M2M Application Provision

163

The SR/DTMF MMSC provides either the text detected from the Audio Stream or the

DTMF Digit sequence as an input value to the local M2M application. It consists of the

three parts Receive Audio Call, Stream Analyser, and Configuration. The Receive Audio

Call part receives the call initiated by the End-user UA executing a SIP Three Way

Handshake (IETF RFC 3261, 2002 and IETF RFC 3665, 2003). The platform UA accepts

the call by confirming the session establishment. After the audio session has been

established, the End-User UA starts transmitting the Audio Stream. The SR/DTMF MMSC

has two options for configuration specifying if it serves detecting DTMF signals or

spoken text. The configuration is managed by the Configuration part of this MMSC in

dependence on the Mode parameter. When the MMSC receives the Audio Stream, it starts

analysing the Audio Stream to detect either the spoken text or the DTMF Digit sequence

(depending on the configuration). If the SR/DTMF MMSC is configured for detecting

spoken text, the Stream Analyser performs the SR. If it is configured for detecting DTMF

signals the Stream Analyser detects the DTMF Digits sent by the End-User UA via one

SIP INFO request per DTMF Digit (IETF RFC 6086, 2011). After call termination the

SR/DTMF MMSC provides the detected Character Sequence for further processing to the

local M2M application.

Figure 5.3 illustrates the parameter set of the SR/DTMF MMSC. The Input parameter

Audio Stream is assigned internally by the Receive Audio Call part of this MMSC and

represents the Audio Stream that corresponds to the RTP (Realtime Transport Protocol)

(IETF RFC 3550, 2003) stream received by the platform UA. The Output parameter

Character Sequence is assigned by the Stream Analyser of the SR/DTMF MMSC and

represents the character sequence detected by this MMSC during audio stream analysis.

This Output parameter is usable for further processing in M2M applications.

5.1 Multimedia Services Components

164

Figure 5.3: SR/DTMF MMSC Parameter Set

The Config parameter Mode specifies the operation mode of the MMSC. This parameter

has to be specified by the end-user during application design for configuring this MMSC

to be operated for SR (Mode = “SR Call”) or for DTMF recognition (Mode = “DTMF

Call”).

The following MMSC has been designed to be used as output interface for M2M

applications.

Audio/Video Text-to-Speech MMSC (AV/TTS MMSC):

The AV/TTS MMSC (refer to Figure 5.4) offers the functionality to establish an

audio/video call using the SIP UA integrated in the local M2M platform. This MMSC,

has two options for configuration to serve as an output interface of M2M applications:

 Play back Announcements – Based on predefined text this MMSC can generate

an announcement and play back this announcement during the audio session.

 Forward Audio/Video Streams – During the audio or video session, this MMSC

can forward Audio and Video Streams generated by multimedia sources connected

to the local M2M platform, such as a surveillance cam or door

intercommunication system.

SR/ DTMF MMSC Parameter

Input

Output

Config

Audio Stream

Character

Sequence

Mode

 5 Autonomous M2M Application Provision

165

Figure 5.4: Architecture of AV/TTS MMSC

The AV/TTS MMSC consists of the parts Configuration, Generate Announcement File,

Setup Audio/Video Call, and Stream Media. The Setup Audio/Video part establishes an

audio or video session with the target UA of the end-user. The required address

information of receivers are specified via their SIP URIs (IETF RFC 3261, 2002) and

defined by the SIP URI input interface parameter of this MMSC. The Configuration part

manages, in dependence on the Mode parameter, whether the MMSC serves for generating

announcements (TTS) or forwarding an Audio or Video Stream. The Stream Media Part

contains a local Media Server element for generating or forwarding audio/video streams.

Depending on the configuration, the Stream Media part forwards Audio or Video Streams,

which are connected to the Audio or Video Stream input interfaces, to the End-User UA

or plays back an announcement file. The Generate Announcement File part, when MMSC

is configured for TTS, generates an Announcement File (audio) out of the text sequence

defined via the Text input parameter. After the Announcement File has been generated

and the call is established with the End-User UA, the local Media Server starts play back

of this announcement.

AV/TTS MMSC

Audio Stream

{stream}

[Audio Stream]

Setup Audio/

Video Call

{stream}

[Video Stream]

{stream}

Announcement File

[Announcement

File]Video Stream

{stream}

{stream}

Video

Stream

{stream}

Audio

Stream

Generate

Announcement File

Announcement

File

SIP URI

Text

Mode Configuration

Stream URI

Stream URI

Stream Media

Audio Stream

Video Stream

Media

Server

5.1 Multimedia Services Components

166

Figure 5.5 illustrates the parameter set of the AV/TTS MMSC. The Input parameter Text

has to be specified by the end-user during application design. It defines the text that the

AV/TTS MMSC announces after the call has been established with the End-user UA. The

Input parameters Audio and Video Stream is assigned internally by the Stream Media part

of this MMSC representing the Audio or Video Stream that corresponds to the stream that

the MMSC should forward. The Input parameter SIP URI has to be specified by the end-

user during M2M application design and corresponds to the destination address of End-

User UA that should receive the call.

Figure 5.5: AV/TTS MMSC Parameter Set

The Output parameters Audio and Video Stream are assigned by the Stream Media part

of the MMSC. They represents the Audio or Video Stream that is send to the End-User

UA. The Config parameter Mode specifies the operation mode of the MMSC and has to

be specified by the end-user during application design for configuring if the MMSC

forwards audio stream (Mode = “audio”), video stream (Mode = “video”) or announce a

AV/ TTS Call MM Service

Component Parameter

Input

Output

Config

Text

Audio Stream

Video Stream

Audio Stream

Video Stream

Mode

SIP URI

Stream URI

 5 Autonomous M2M Application Provision

167

predefined text (Mode = “TTS”). The Config parameter Stream URI has also to be

specified by the end-user during application design and defines the source address of the

stream to be forwarded to the End-User UA, such as Real Time Streaming Protocol

(RTSP) (IETF RFC 2326, 1998) URI (e.g. rtsp://192.168.0.22/surveillanceCam

Indoor.stream1) often used for requesting RTSP media streams of local multimedia

devices.

The following MMSC has been designed to be used as both, text-based input and output

interface for M2M applications.

Instant Message MMSC (IM MMSC):

The IM MMSC (refer to Figure 5.6) offers the functionality for text-based communication

with M2M applications using the SIP UA integrated in the local M2M platform. This

MMSC offers communicating abilities in the following ways depending on its

configuration:

 Receiving Instant Message (IM) – The MMSC receives an IM and extracts the

message text for further processing in local M2M applications.

 Sending Instant Message – The MMSC generates an IM based on a character

sequence for transmitting information generated by the M2M applications.

The IM MMSC has been designed to serve as communication interface for both, input and

output interface using the SIP protocol extension for Instant Messaging specified in (IETF

RFC 3428, 2002).

5.1 Multimedia Services Components

168

Figure 5.6: Architecture of IM MMSC

The IM MMSC consists of the parts Receive IM, Configuration, Extract Message Text,

and Transmit IM. The Configuration part manages the configuration of this MMSC in

dependence on the Mode parameter, which specifies whether the MMSC serves for

generating IMs or receiving IMs. The Receive IM part realises the ability to receive IMs

sent by the End-User UA using SIP protocol. The Extract Message Text part extracts the

message text from the received IM and provides it via the output interface Message Text

of the IM MMSC for further processing in the M2M application. The Transmit IM part

realises sending of an IM by generating a SIP request of type MESSAGE carrying the

message text in its message body and sends it to the End-user UA.

Figure 5.7 illustrates the parameter set of the IM MMSC. The Input parameter Instant

Message is assigned internally by the Receive IM part of this MMSC and represents the

IM received by the Platform UA. The Input parameter Message Text has to be defined by

end-users during application design. It specifies the message text that should be

transmitted to the End-user UA. The Input parameter SIP URI has to be defined by the

end-user during application definition and represents the recipient address (SIP URI) of

the IM generated by the IM MMSC carrying the text-based information. The Output

parameter Instant Message is assigned internally by the Transmit IM part of that MMSC

IM MMSC

Instant MessageMessage Text

SIP URI

Message Text

SIP URI

Instant

Message

Extract

Message Text

Message Text

Receive IM
Instant

Message

Transmit IM

Mode Configuration

 5 Autonomous M2M Application Provision

169

representing the SIP MESSAGE generated by the IM MMSC that is transmitted to the

End-user UA. The Output parameter Message Text is assigned by the Extract Message

Text part of that MMSC corresponding to the message body of the received IM,

respectively the text-based information send from End-user UA.

Figure 5.7: IM MMSC Parameter Set

The Config parameter Mode specifies the operation mode of the IM MMSC. The Mode

parameter has to be specified by the end-user during application design for configuring

that MMSC to be operated as input interface (Mode = “inIM”) or as output interface

(Mode = “outIM”). It can be stated that the MMSCs proposed in this section extend the

interface functionality of the MSPs presented in section 3.1 by the use of multimedia

communication. The designed interfaces can be used with existing equipment, so no

additional devices need to be purchased.

The following section 5.2 introduces the methodology to create M2M applications by the

end-user in a comfortable and intuitive way.

Instant Message (IM) MM

Service Component

Input

Output

Config

Instant

Message

Instant

Message

Mode

Message Text

Message Text

SIP URI

5.2 Application Behaviour Modelling

170

5.2 Application Behaviour Modelling

As identified in section 3.1, in existing platforms for providing M2M applications, the

configuration of automation tasks or the creation of application logic is highly dependent

on the implementing systems. Thus, the tools for definition of M2M applications can be

indicated as domain specific languages, which are utilised for creation of M2M

applications that are strictly bound to the executing system. A portability of the

configured applications to another, different system is not possible without redefining the

application (suitable for the new execution platform). Therefore, this research proposes a

methodology for application creation following MDA (Model Driven Approach)

principles derived from (OMG, 2017a) by defining a platform independent application

model (Steinheimer et al., 2017b). Such an abstract application model is expressed by a

modelling language describing the behaviour of an application, separated from the

technology-specific realisation of it (OMG, 2014; OMG, 2017a). The definition of the

abstracted model is independent of the realising platform and can therefore be modelled

without specific knowledge about the platform that implements the application (Petrasch

and Meimberg, 2006). The executing system has to interpret the abstract description of

the application and convert it into a specific structure that is appropriate to the executing

system. In the concept designed in this project end-users graphically create a behaviour

model of the M2M applications, which allows them to define the M2M application

semantic without having specific knowledge of the executing platform (Steinheimer et

al., 2017a).

In order to specify an adequate methodology how end-users can intuitively model the

behaviour of an M2M application, this project proposes that end-users design state

 5 Autonomous M2M Application Provision

171

machines (SMs) describing the activities of an application by connecting building blocks

representing M2M devices and MMSCs (Steinheimer et al., 2017c). According (Rupp et

al., 2007) SMs describe the behaviour of a system that is specified using states. A SM

describes how a system residing in a specific state acts at specific events. This approach

to describe the behaviour of a system has been derived because end-users are able to

understand the principles behind (i.e. describing sequence of activities) as described

subsequently.

Devices have specific functionalities that are executed when the devices are triggered

(e.g. powered on). The functionality of a device is used to perform an activity that

corresponds to the functionality of the device. The end-user knows in principle how a

device works and is familiar with the use case that devices are connected with each other

such as illustrated in Figure 5.8. It shows that if the end-user triggers a device (switch

button by pushing), the switch button activates the lighting.

Figure 5.8: Use Case Switch Lighting

End-users are also familiar in utilising services, respectively service components, such as

illustrated in Figure 5.9. It shows an end-user that uses an email service utilising an

appropriate software, respectively service component on a personal computer (PC) and

inputs the text as well as the email address of the receiver. The service component has

also a specific functionality, which is to generate the email and sends it to the receiver

defined by the end-user as input parameter.

push

Switch Button

D

N
End-User Lighting

5.2 Application Behaviour Modelling

172

Figure 5.9: Use Case Email Service

Considering both use cases, end-users are able to relate that devices are connected to each

other. It is irrelevant whether they exchange data (as in M2M environments) or are

interconnected by an electrical connection (as in traditional electrical circuits). More

generally speaking, devices and services have inputs from which an activity results which

in turn generates outputs. At this point, three classes of devices are specified that can be

present in the personal environment of an end-user:

 Actuators – Actuators control actions depending on the inputs and supply output

values if necessary.

 Sensors – Sensors are used to acquire data which they supply as output values,

possibly triggered by an input.

 Combined – These devices cannot be assigned directly to one of the other groups,

since they offer both, possibility to control and supply of sensor values. E.g. a

surveillance camera offers abilities to detect movements and to communicate this

as an event and can also be triggered to start recordings.

Figure 5.10 illustrates the general structure of M2M devices/MMSCs defined to specify a

general perspective of them (but also of M2M applications). They can have multiple Input

and Output parameters as well as Config (configuration) parameters whereby all of them

in general perspective are optional.

Service

Component

PC

receiver@hisdomain.ac.uk

+

Email

Text

End-User

 5 Autonomous M2M Application Provision

173

Figure 5.10: General Structure of M2M Device and MMSC

 Input Parameter – Input parameters are processed from an M2M Device/MMSC to

perform the M2M Device/Service Functionality. Input parameters can be set

statically or connected with an Output parameter of another M2M Device/MMSC.

 Output Parameters – Output parameters are generated by the M2M Device/MMSC

as a result of the performed activity. Output parameters can be queried for

inspection or directed as an Input parameter to another M2M Device/MMSC.

 Config Parameters – Config parameters are used to (statically) predefine specific

configuration options of M2M Devices/MMSCs.

From a general perspective, end-users can define M2M applications by connecting the

Output parameter of one M2M Device with the Input parameter of another M2M Device.

It is defined at this point that not only M2M Devices can be combined, but also M2M

devices and MMSCs because they work according to the same principle (input,

processing, and output). Figure 5.11 shows the general representation of connections

between M2M Devices and MMSCs as described above.

Figure 5.11: General Representation of M2M Device and MMSC Connections

M2M Device/ MMSC

Input 1

Input n

...

Output 1

Output n

...

Config 1 Config n...

...

M2M Device/MMSC

Functionality

M2M Device/

MMSC

Functionality

Input Output

M2M Device/

MMSC

Functionality

Input Output

M2M Device/

MMSC

Functionality

Input Output

5.2 Application Behaviour Modelling

174

In general, the behaviour of an application can be defined as devices/services that are in

a particular state and depending on the input data they generate an output, which in turn

is passed on to another device or service. A SM, in particular a deterministic Finite State

Machine (FSM) specifying this behaviour is used in the concept designed in this project.

A deterministic FSM A is formally defined according (Vossen and Witt, 2016) as follows.

Thereby ∑ is the input alphabet and S is the state quantity of A, S0 ϵ S is the start state,

F S is the quantity of final states, and : S x ∑ → S is the transition function of A (Vossen

and Witt, 2016).

Figure 5.12 exemplarily shows a simple FSM derived from (Wagenknecht and Hielscher,

2015). Figure 5.12-a shows the FSM definition and Figure 5.12-b shows the

corresponding transition function that can be illustrated according (Böckenhauer and

Hromkovic, 2013) as a table. Figure 5.12-c shows the graphical representation of that

FSM. This FSM can be described as follows: The FSM consists of three states S0, S1, S2.

The FSM starts at state S0. If the current state of FSM is S0 and the input is “0” then the

current state moves to state S1. If the input is “1” the current state moves to S2. As both

states, S1 and S2 are end states the SM stops processing after moving to state S1 or S2.

Figure 5.12: FSM derived from (Wagenknecht and Hielscher, 2015)

(5.1)A = (, S, , S0, F)

(c) Graphical Representation of FSM

s0Start

s1 End

s2 End

0

1

(a) FSM Definition

S0

F

S

= {0,1}

= S0

= {S1, S2}

= {S0, S1, S2}

0 1

s0 s1 s2

(b) Transition Function

 5 Autonomous M2M Application Provision

175

To model an application consisting of linked M2M devices and MMSCs with a FSM, the

components of M2M applications are mapped to the elements of the FSM as specified in

Table 5.1.

Table 5.1: M2M Application Component FSM Element Mapping

The following Figure 5.13 illustrates exemplarily the M2M application as defined by Use

Case 1 (refer to section 2.4) represented as a FSM. The graphical representation of the

FSM is shown in Figure 5.13-c.

Figure 5.13: M2M Application Use Case 1 represented as FSM

To realise Use Case 1, an application is defined that detects whether it rains with the help

of a rain sensor as M2M device. Furthermore, within the application, a window sensor is

used as M2M device to check if the window is opened. If it rains and the window is

opened at the same time, a corresponding information should be transmitted to the end-

M2M Application

Component

FSM Element Description

M2M Device/MMSC

Component

State M2M Device/MMSC components are assigned to the states

of a FSM representing them inside the FSM.

M2M Device/MMSC

Component Connection

Transition Connections between the M2M Devices and MMSCs are

assigned to transitions connecting the states of a FSM and

representing the information flow between M2M Devices

and MMSCs inside the FSM.

(c) Graphical Representation of FSM

RainStart
TTS

Call
EndWindow

openraining

(a) FSM Definition Use Case 1

S0

F

S

= {raining, open}

= Rain

= {TTS Call}

= {Rain, Window, TTS Call}

raining open

Rain Window Rain

Window Window TTS Call

(b) Transition Function Use Case 1

5.2 Application Behaviour Modelling

176

user by phone call. This is done using the AV/TTS MMSC defined in section 5.1, which

is configured to announce a specific text using TTS.

According to the above defined principles the M2M devices and MMSC are mapped with

the states as specified in Table 5.2. Thus the state quantity S (refer to Figure 5.13-a) of

the FSM is {Rain, Window, TTS Call}.

Table 5.2: M2M Application Component FSM State Mapping Use Case 1

Since the M2M application should check first if it rains, the start state S0 is specified as

Rain (Rain Sensor). As the M2M devices and MMSC have been assigned to the states

of the FSM, the connections between them need to be specified. This is done by first

defining the input alphabet ∑ representing the sensor states. Therefore, the input alphabet

∑ is {raining, open}. Additionally, the Transition Function needs to be defined as

illustrated in Figure 5.13-b. This Transition Function specifies that if checking the state

of rain sensor results in raining, the current state of the FSM moves to Window checking

if its state is open. If this is the case, the current state of the FSM moves to TTS Call,

which is equivalent to establishing the call with the end-user UA using AV/TTS MMSC.

Since the application should terminate after announcing the text to the end-user, the

quantity of final states F is {TTS Call}.

After the principles of behavior-oriented M2M application modelling by means of FSMs

have been introduced and exemplified, the following section describes how the graphical

modelling is proposed.

M2M Application Component FSM Element

M2M Device Rain Sensor FSM state Rain

M2M Device Window Sensor FSM state TTS Call

 5 Autonomous M2M Application Provision

177

5.3 Graphical Application Behaviour Design

As described in section 4.2, the graphical design of an M2M application is realised via a

GUI provided by the Service Design Unit (SDU) component of the designed framework.

A GUI is proposed as the end-user interface for application design, since most users are

familiar with the use of GUIs. An interface could also be implemented, e.g. through a

text-based input/output system, but this would not satisfy the requirements for simplicity

and usability.

This section deals with the structure of the GUI and the process of modelling an M2M

application graphically in the form of a state machine (SM) to define the application

semantics, i.e. the application model. The description of the process for the graphical

modelling is again illustrated with the help of M2M application represented by Use Case

1 (refer to section 2.4). As introduced in section 4.2 the graphically designed application

is transformed by the SCU component of the proposed framework into a formal

description, which can be executed by the M2M platform (Steinheimer et al., 2013b).

Section 5.5 will specify an adequate modelling concept, respectively a formal modelling

language to describe the behaviour of an M2M application abstracted as a SM.

A GUI should contain the following aspects to provide an adequate interface to end-users

for M2M application modelling:

 M2M Device/MMSC Indication – The GUI should indicate M2M devices and

MMSCs available in the personal environment of end-users (and also remote

available M2M services).

5.3 Graphical Application Behaviour Design

178

 M2M Device/MMSC Interface Integration – The interface of the M2M devices

and MMSCs must be available to specify their Input/Output/Config parameters.

 Connection of M2M Devices/MMSCs – The M2M device and MMSCs,

respectively their Input and Output interfaces have to be connectable.

 Display designed M2M Applications – The GUI should provide the possibility to

manage or change already designed M2M applications.

 Specification of Conditions – To create a decision-based M2M application logic,

the logical connections between the M2M Devices/MMSCs should be equipped

with conditions to process the steps in the M2M application workflow in

dependence on defined conditions. Relational operators illustrated in Table 5.3

are proposed for defining conditions that are understandable for end-users.

Table 5.3: Relational Operators for logical M2M Device/MMSC Connections

The GUI is presented in this project as a web-based application, but could also be realised

as e.g. App on a smartphone or tablet. It is not the kind of application that is important,

but a simple interface to the M2M platform making it possible to design a SM for the

M2M applications.

In the following, the structure of the GUI and the process for service creation by end-

users is described starting with the architecture of the GUI (illustrated in Figure 5.14).

Relational Operator Example Descripion

Greater than (>) A > B Checks if a value A is greater than another value B .

Less than (<) A < B Checks if a value A is less than another value B .

Equal to (==) A == B Checks if two values A and B are equal.

Not equal to (!=) A != B Checks if two values A and B are equal.

 5 Autonomous M2M Application Provision

179

Figure 5.14: Structure of Service Design GUI acc. (Steinheimer et al., 2013c; Steinheimer et al.,

2015b)

The GUI consists of the subsequently described sections:

 M2M Devices Section – The M2M Devices section lists M2M devices present in

end-users’ personal environments (represented by graphical building blocks).

These building blocks represent the interfaces to the M2M Devices and makes

them available for integration in M2M applications.

 MMSCs Section – The MMSCs section lists the MMSCs provided by the local

M2M platform also represented by graphical building blocks representing the

interfaces to the MMSCs for integrating them in M2M application workflows.

Service Management GUI

Output

Config

http://192.168.0.1/SmartHomeSCE/

Rain

Upload new M2M Devices/ Service Components: Please select File...

Window

TTS Call

[state == open]

[state == raining]

Input

$state <raining/notraining>

Type

Remote M2M Service

Description

Provides remote Rain Sensor

values.

Rain Parameter

Service Design GUI

Configuration

Rain Specification

WorkbenchM2M Devices

MM Service

Components

Sensors

Actuators

Window

Rain

...

Light Control

Power Plug

...

Combined

Cam

...

TTS Call

A/V Call

DTMF

Control

SR Call

IM

...

Remote M2M

Services

Rain

...

5.3 Graphical Application Behaviour Design

180

 Remote M2M Services Section – The Remote M2M Services section lists building

blocks of M2M services provided by other end-user (refer to section 6.1). These

remote services can be integrated into local M2M applications according to the

same principles as integration of M2M devices/MMSCs. Additionally, these

building blocks are used to model cooperative M2M applications (refer to section

6.4).

 Configuration Section – The Configuration section provides configuration details

of the individual M2M devices/MMSCs, such as the Config parameters of M2M

devices or information regarding the values provided by Input/Output parameters

(Parameter area). The Configuration section also provides additional information

regarding the specification of M2M devices/MMSCs, such as type specification

of the M2M device (e.g. actuator or sensor), a prose description of the

functionality (e.g. control functionality of an M2M Device) or annotations

regarding the configuration like value ranges parameters (Specification area).

 Workbench Section – The Workbench section is used to create the M2M

applications by graphically combining the building blocks of M2M devices and

MMSCs. This process is illustrated in Figure 5.15 and described subsequently.

According to (Steinheimer et al., 2015b) End-users starts modelling the SM of the desired

M2M application by dragging all the M2M device/MMSC building blocks they want to

integrate in their local M2M application to the Workbench section (Select M2M

Device/Service Component Building Blocks). For Use Case 1, integrated into the

illustration of the GUI structure of Figure 5.14, these are the building blocks of Rain

sensor, Window sensor, and TTS Call MMSC. After placing the M2M Device and MMSC

building blocks to the Workbench section the end-user connects the building blocks with

 5 Autonomous M2M Application Provision

181

an arrow to specify the semantical workflow of the M2M application (Define Logical

Combinations). In the exemplary Use Case 1 the Rain sensor building block is connected

to the Window sensor building block that again is connected to the TTS Call MMSC

building block.

Figure 5.15: M2M Application Design Process

These connections model that first the Rain Sensor is processed (in particular requested),

then the Window Sensor is processed (also requested) and finally the TTS Call MMSC is

processed (to setup up a call). If the end-users want to design, that a specific step of the

application workflow is processed only if a defined condition becomes true, they can add

a condition to each connection between the M2M Devices and MMSCs. In the exemplary

Use Case 1, illustrated in Figure 5.14 following conditions are defined:

Select M2M Device

Building Block
Select MMSC

Building Block

Drag Building Block

to Workbench

[yes]

[no]

Select Two Building

Blocks from

Workbench

Design M2M Application

Select M2M Device/MMSC

Building Blocks

Define Logical Combinations

Define Transition between

Building Blocks

[no]

yes

Specify Condition
[Conditional]

[Not conditional]

Configure M2M Devices/

MMSCs

Select Building

Block

Configure Building Block

Config Parameter

[yes]

[no]

[yes]

[no]

<<decisionInput>>

integrate additional

Building Blocks

<<decisionInput>>

Additional Combination

<<decisionInput>>

Building Block

requires Configuration

<<decisionInput>>

Building Blocks left

5.3 Graphical Application Behaviour Design

182

 [state == raining] – For the connection of Rain sensor and Window sensor it is

specified that the step to process requesting state parameter of Window sensor is

performed, if the state parameter of Rain sensor holds the value “raining”.

Otherwise, the application resides at the step requesting the Rain sensor.

Transferred to the SM paradigm the SM resides in the state corresponding to the

Rain sensor and the transition to the state corresponding to the Window sensor is

performed only if the input of the SM is raining (element of FSM input alphabet).

 [state == open] – For the connection of Window sensor and TTS Call MMSC it is

specified that the step to setup the announcement call is performed, if the window

is open, i.e. if the state parameter of the Window sensor holds the value “open”.

Transferred to the SM paradigm the SM resides in the state corresponding to the

Window sensor until the input of the SM is open (element of FSM input alphabet).

After end-users have defined all logical connections between the M2M devices/MMSCs

they configure those (Configure M2M Devices/MMSCs). For this, they select the

corresponding building block in the Workbench section and define the Config parameter

inside the Configuration section of the GUI. In exemplary Use Case 1 the TTS MMSC is

the only building block that requires configuration. Table 5.4 shows its configuration

according the specification of AV/TTS MMSC introduced in section 5.1 to initialise it for

call setup with end-user’s UA and announcement of a pre-defined text.

Table 5.4: Configuration of TTS MMSC Use Case 1

TTS MMSC Parameter Parameter Value Descripion

config.mode TTS Configuration for TTS call.

input.text "warning window open and starts raining" Warning message to be

announced.

input.sipURI "sip:username@domain" Destination SIP URI of end-user

UA specified to receive the call.

 5 Autonomous M2M Application Provision

183

This section introduced the architecture of the GUI that provides an easy usable interface

to the end-users for graphical design of M2M applications for their local environment

with integration of M2M devices and MMSCs enabling input/output interfaces of M2M

applications. The process for graphical application design has been introduced in detail

and the behaviour of M2M application representing exemplary Use Case 1 was modelled

graphically, which has been defined in previous section 5.2 by means of a FSM.

5.4 M2M Device Management and Communication

The basis for the creation of an M2M application is the integration of M2M devices into

the M2M platform and the networking of M2M devices. As described in section 3.2, the

M2M devices are mostly implemented with different mutually incompatible M2M

communication technologies. If the necessary details for the connection of different M2M

devices were taken into account in an M2M application (e.g. message format,

communication protocols, control commands), a separate interface would have to be

implemented for each M2M technology within the M2M application. The M2M

application would have to consider the devices as well as M2M technology-specific

details. (ETSI TR 101 584 V2.1.1, 2013) confirms this aspect according to the previously

valid standard for M2M (ETSI TR 102 966 V1.1.1, 2014). In this way, the M2M

application would again be close coupled to the executing platform, or could only be used

with the M2M technologies provided inside the M2M application. Porting the application

to a different system would not be possible. It is therefore essential that the M2M devices

can be connected to the M2M platform and be used in the M2M applications

independently of the underlying technology. Therefore, in (Steinheimer et al., 2013a),

5.4 M2M Device Management and Communication

184

(Steinheimer et al., 2013b), and (ETSI TR 101 584 V2.1.1, 2013) the abstraction of M2M

devices, respectively M2M communication technologies from platform-internal

utilisation of M2M devices has been introduced. The abstraction of communication

within the M2M platform from the M2M technology-specific communication has been

defined as a requirement for an M2M system with (oneM2M TS-0002-V1.0.1, 2015;

oneM2M TS-0002-V2.7.1, 2016). Section 4.2 of this thesis introduced the M2M

Communication Unit (CU) with Abstraction Layer (AL) as component of the proposed

framework. The M2M CU with AL component realises the integration of different M2M

device technologies into the local M2M platform. This section describes the principles of

unified M2M device integration.

OneM2M introduces in (oneM2M TR-0007-V1.0.0, 2014) and (oneM2M TR-0007-

V2.11.1, 2016) an approach for M2M device abstraction that allows handling of M2M

devices inside an M2M application independent of the underlying specific M2M

technology (illustrated in Figure 5.16).

Figure 5.16: Principles of oneM2M Device Abstraction acc. (oneM2M TR-0007-V1.0.0, 2014;

oneM2M TR-0007-V2.11.1, 2016)

M2M Platform

M2M Application

Abstract

Information Model

Interworking Proxy Function

Abstracted Device

Control Function

Device-specific Control

Function

Specific M2M

Device

 5 Autonomous M2M Application Provision

185

The presented approach is based on mapping native device interfaces into an abstracted

oneM2M resource addressable by an M2M application. The M2M application does not

communicate with the native device API, but with the abstract representation of the M2M

device. A so-called Abstract Information Model specifies the abstract device, which is a

formal representation of the device including e.g. its operations or parameters. OneM2M

defines the “Interworking Proxy Function” responsible for translating the Abstract

Information Model into the Device-specific Control Functions (oneM2M TR-0007-

V2.11.1, 2016).

As described in section 3.1.1 within an oneM2M architecture according (oneM2M TS-

0001-V2.10.0, 2016) everything is considered as resources that are provided by entities

and are queried or controlled by other entities. Therefore, M2M devices connected to the

M2M platform are considered as resources. Considering now the M2M application as an

entity that consumes a resource and the M2M Technology API as an entity which

provides a resource and the device-specific communication with the physical M2M

equipment, this principle can be transferred to connecting M2M devices to the M2M

platform.

Query and control of resources is done according (oneM2M TS-0001-V2.10.0, 2016)

using specific Create (C), Retrieve (R), Update (U), Delete (D), Notify (N) operations

(CRUDN operations). To query/manipulate a resource, consuming and providing entity

communicate applying the request/response principle described in section 3.1.1.

Table 5.5 and Table 5.6 describe an extract of the parameter sets according (oneM2M TS-

0001-V2.10.0, 2016) that request and response messages contain that are generated by

resource consuming/providing entities.

5.4 M2M Device Management and Communication

186

Table 5.5: Parameter Set of Request Resource Message acc. (oneM2M TS-0001-V2.10.0, 2016)

According (oneM2M TS-0004-V2.7.1, 2016) oneM2M defines Primitives that are

messages exchanged between entities in an M2M system. Originator and receiver can be

located on the same M2M Node or on M2M nodes connected via a network. Primitives

are modelled as a data structure specifying the operations and parameters processed on

the receiver and originator entity. According (oneM2M TS-0004-V2.7.1, 2016) each

(CRUDN) operation related to a resource “comprises a pair of primitives: Request and

Response”. These Primitives become serialised, e.g. as XML or JSON format that can be

exchanged between the entities using e.g. HTTP, CoAP, MQTT protocol to transmit the

Primitives over an IP network. OneM2M specifies so-called Bindings to define unified

Parameter

To

From

Create (C) Creates a new resource at the destination address specified in To

parameter.

Retrieve (R) Requests a resource addressed by the To Parameter.

Update (U) Sets the content of a resource addressed by the To parameter. The

content to be set in the resource is specified in the Content

parameter

Delete (D) Deletes a resource at the destination address specified in To

parameter.

Notify (N) Information that is sent to the receiving resource.

Content

Request Identifier

Description

Address of the resource or URI of an attribute of a resource to be requested.

Operation

Content that should be transferred to the receiving resource and relates to the

operation specified by Operation parameter. Only applicable for following

operations: Create (content of resource to be created), Retrieve (list of attribute

names to be retrieved), Update (content to be updated in the destination

resource), and Notify (information should be notified to the receiver).

Identifies of the specific request message.

Identifier of the message originator.

Operation the receiving resource should execute. The operation parameter is

separated into the specific operations stated below.

 5 Autonomous M2M Application Provision

187

Table 5.6: Parameter Set of Resource Response Message acc. (oneM2M TS-0001-V2.10.0, 2016)

interfaces for the communication protocols HTTP (oneM2M TS-0009-V2.6.1, 2016),

WebSocket Protocol (oneM2M TS-0020-V2.0.0, 2016), CoAP (oneM2M TS-0008-

V1.0.1, 2015), MQTT (oneM2M TS-0010-V2.4.1, 2016) describing how to convert

oneM2M primitives into these specific communication protocol messages. Figure 5.17

and Figure 5.18 illustrate the structure of a Request and Response Primitives that can be

exchanged between M2M entities. A corresponding XML representation is illustrated in

Listing C.1 and Listing C.2.

Figure 5.17: Structure of Request Primitive

Parameter

successful

(2xxx)

Indicates the requested operation has been successful.

unsuccessful

(4xxx, 5xxx,

6xxx)

Indicates the requested operation has been unsuccessful.

Request Identifier

Content

Description

Response Status

Code

Indicates the result of an operation specifies in request message. The result can

describe the status as stated below. Successful status codes are e.g. acc.

(oneM2M TS-0004-V2.7.1, 2016) 1000 ACCEPTED , 2000 OK , or 2004 UPDATED .

Exemplary unsuccessful status codes are 4004 NOT_ALLOWED , 5000

INTERNAL_SERVER_ERROR , or 6005 EXTERNAL_OBJECT_NOT_FOUND .

Request Identifier of the corresponding request message.

Content of the resource. Only applicable for following requested operations:

Create (address and/or the content of the resource created), Update (content of

the resource that has been updated), Delete (all existing information about the

deleted resource), and Retrieve (content that has been requested by the

originator).

Request Primitive

from

operation

content

to

requestIdentifier

5.4 M2M Device Management and Communication

188

Figure 5.18: Structure of Response Primitive

In order to define an appropriate abstract device representation and abstraction

mechanism to integrate M2M devices of different M2M technologies into the M2M

platform, the principles of device handling and communication between M2M entities

have been derived from oneM2M as described subsequently.

The framework architecture designed in this project contains the M2M CU with AL

element (illustrated in Figure 5.19). The M2M CU realises the unified communication

between M2M applications executed inside the M2M platform and the M2M devices of

different M2M technologies connected to the M2M platform. (Steinheimer et al., 2012a;

Steinheimer et al., 2013a; Steinheimer et al., 2015b)

Figure 5.19: M2M Communication Unit (CU) with Abstraction Layer (AL)

Response Primitive

requestIdentifier

content

responseStatusCode

M2M Communication Unit (CU)

Technology-specific

Messages

M2M Technology

Interfaces (TI)

...

M2M Technology

API N
M2M Technology

API B

M2M Technology

API A

M2M Technology Mgmt & Forward

M2M Application

Technology-

independent Messages

Abstraction Layer (AL)

Abstract M2M Device

Representatiom

M2M Device

Capability

Model (DCM) M2M Device

Registry

M2M Devices Technology A

D

N

M2M Devices Technology B

D

N

M2M Devices Technology N

D

N

 5 Autonomous M2M Application Provision

189

The AL as part of the M2M CU abstracts the devices inside the M2M platform from

specific communication technologies, such as KNX or ZigBee. To achieve this

integration, all devices are considered independent of their specific communication

technologies as Abstract M2M Device Representations. To realise the abstraction of

specific M2M device technologies the AL contains the following functionality:

 Message Coordination – The AL coordinates controlling of different types of

M2M equipment and thus offers the possibility to define M2M applications

without depending on the M2M technologies used.

 Abstract M2M Device Management – Management of abstracted M2M devices

by M2M device registration, assignment of abstract device-IDs and administration

of the assignments of abstract and specific device-IDs.

To realise the abstraction, derived from (oneM2M TR-0007-V2.11.1, 2016) an abstract

information model has been designed (M2M Device Capability Model, M2M DCM),

describing the M2M devices. The M2M applications do not communicate with the

specific M2M device, but with the abstract device representation within the platform

described by the M2M DCM.

This M2M DCM is also used by the SDU component of the framework to display and

specify an M2M device representation within the GUI. Since also MMSCs are usable in

applications, they are also described with the M2M DCM and processed in the same way.

To specify an appropriate M2M DCM, following information should be included in it:

 Device-ID – To uniquely identify an M2M device, a device-ID should be

included.

5.4 M2M Device Management and Communication

190

 Input/Output/Config Parameters – In section 5.2 was specified that M2M

devices/MMSCs each have a set of Input/Output/Config parameters. For unified

description of M2M device/MMSC, these parameters should be contained in a

M2M DCM.

 Type and Description – In section 5.3 was specified that additional information

on M2M devices/MMSCs should be displayed in the GUI (description and type).

The M2M DCM therefore should also contain these information.

Considering these requirements, a general structure of an M2M DCM is designed as

shown in Figure 5.20.

Figure 5.20: Structure of M2M DCM

...

...

...

M2M Device/MMSC Capability Model

parameter

input

output

config

type

description

inputParameter id=1

inputParameter id=n

outputParameter id=1

outputParameter id=n

configParameter id=1

configParameter id=n

id

name

value

<name>

<value>

name

value

name

value

name

value

name

value

 5 Autonomous M2M Application Provision

191

To formally describe this structure of an M2M DCM, the XML format is selected since it

is standardised, expandable and machine-readable. Listing C.3 shows a representation of

an uniformly defined M2M DCM in XML. If only predefined values are allowed for

specification of parameters, this can be defined as enumeration within the parameter

specification in a specific instance of an M2M DCM (e.g. for the rain sensor of Use Case

1 this could be defined in this way: {raining| notraining}).

The M2M Technology Interfaces (M2M TI) element of the CU (see Figure 5.19) realises

management of and communication with M2M devices of various M2M technologies. It

is designed to realise abstracted and M2M technology-specific communication, and

contains various M2M technology-specific APIs communicating with the respective

M2M devices via a device-specific technology.

To realise this management and communication the M2M TI contains the following

functionality:

 M2M Device Technology APIs – The M2M TI element contains the M2M

Technology APIs for communication with the M2M devices of the specific

technology to query or control them.

 Message Transformation – Transforms abstracted request messages in technology

specific request messages and transforms technology-specific response and

notification messages into abstracted response and notification messages.

 Message distribution – Distribute technology-specific messages to M2M

Technology APIs implementing the communication with the M2M equipment.

 Device Registration – Registration of technology-specific M2M devices at the AL

component of the M2M CU.

5.4 M2M Device Management and Communication

192

As described above, the M2M application does not communicate with the physical M2M

device but with an abstract representation of it. For this purpose, an application

communicates with the AL to query a value of an M2M device or to control the M2M

device. If the AL receives a request for an abstracted M2M device, it must forward this

request to the corresponding M2M TI. For this purpose, it is necessary for the AL to

manage the allocation of abstract to technology-specific M2M devices. To realise this,

the M2M TI element registers the connected devices at the AL, which records this

registration and assigns them an abstract device-ID. The AL stores the assignment of

abstract and specific device-ID within the M2M Device Registry contained in the CU. The

process of the M2M device registration is shown in Figure 5.21.

Figure 5.21: M2M CU/AL Register Process

To register an M2M device with the AL, the M2M Technology Mgmt & Forward element

sends a Register Request to the AL containing the specific device-ID of the M2M devices.

The AL generates an abstract device-ID for the M2M device specified in the Register

Request and stores it within the M2M Device Registry component. The abstraction of the

M2M devices offers the advantage that the M2M devices, or the technology of an M2M

device can be changed or exchanged, but the M2M application itself is not affected by

such changes since it communicates with the abstracted devices.

Register Request [DeviceID-Spec]

Peer 0
M2M Technology

Mgmt & Forward Peer 0
Abstraction

Layer (AL)

Generate

Abstracted Device

ID [DeviceID-Abs]

Store Mapping [DeviceID-Abs]

and [DeviceID-Spec] Response OK

Peer 0
M2M Device

Registry

Store [DeviceID-Spec, DeviceID-Abs]

 5 Autonomous M2M Application Provision

193

If an M2M application queries a value of an abstract M2M device or sends a control

command to it, this is realised as shown in Figure 5.22.

Figure 5.22: M2M Application/CU/AL Message Exchange

The M2M application sends a technology-independent request message to the AL

containing the abstracted device-ID of the M2M device. Upon receiving the request, the

AL assigns the specific device-ID to the abstracted device-ID (by requesting the M2M

Device Registry) and replaces the abstracted device-ID with the specific device-ID. The

AL now sends this modified request to the M2M Technology Mgmt & Forward element

of the M2M TI. Since the M2M Technology Mgmt & Forward element has done the

registration of the M2M devices with the AL, it knows to which specific M2M Technology

API the request must be forwarded. For this purpose, the M2M Technology Mgmt &

Forward element translates the abstract request message into a technology-specific

request message and forwards this request message to the corresponding M2M

Technology API, which ultimately realises the communication with the device. Figure

Device

Lookup

Request Msg.

[DeviceID-Abs]

Peer 0
Abstraction

Layer (AL)Peer 0
M2M

Application Peer 0
M2M Technology

Mgmt & Forward Peer 0
M2M Technology

API A Peer 0
M2M Technology

API B Peer 0
M2M Technology

API N

Techn. Indep.
Request Msg.

[DeviceID-spec]

Techn. Indep.

Message

Transformation

Request Msg.

[DeviceID-spec]

Techn. spec.

Notification Msg.

[DeviceID-spec]

Techn. spec.

Message

Transformation

Device

Lookup

Notification Msg.

[DeviceID-spec]

Techn. Indep.
Notification Msg.

[DeviceID-Abs]

Techn. Indep.

5.4 M2M Device Management and Communication

194

5.22 also contains the representation of the message exchange by means of a Notify

message sent from a specific M2M device to an M2M application. In this case, the

transformation of a specific request is done analogously to the described method of a

request message initiated by an M2M application.

The M2M DCM is stored within the AL, but must also be known to the M2M TI element

because the M2M TI element receives a query specified for an abstracted M2M DCM and

has to map this request to a specific M2M device.

Up to now, the communication between the M2M application and the M2M device has

been specified via an abstracted communication mechanism. Additionally, it is necessary

to define a uniform message format, which is used for the exchange of information

between the M2M platform components. For this purpose, the approach defined by

oneM2M is used to exchange messages between entities using Primitives. Following this

approach, a Request Primitive must be defined containing the necessary information to

query or control M2M devices. This Request Primitive is generated by the M2M

application or the M2M TI element and sent to the AL. The AL contains an Abstracted

M2M Device Representation (described by the M2M DCM). The M2M TI element of the

M2M CU also contains the M2M DCM. The M2M DCM is therefore a central component

on which the M2M CU performs the abstracted message exchange between M2M

application and M2M devices. It is therefore necessary to integrate the information into a

Request Primitive that is required for querying or controlling M2M devices, as specified

in the M2M DCM. Figure 5.23 illustrates the M2M DCM (specified in Figure 5.20) as

well as the structure of a Request Primitive (specified in Table 5.5) and assigns the

relevant information of an M2M device to the elements of a Request Primitive. Listing

 5 Autonomous M2M Application Provision

195

C.4 illustrates the XML representation of the fully specified Request Primitive template

including the M2M DCM parameters.

Figure 5.23: Mapping M2M DCM to Request Primitive Parameters

Since an M2M device is uniquely identified via an M2M device-ID, this parameter can

be transferred to the To parameter of a Request Primitive. The M2M DCM parameters

...

...

...

M2M Device/MMSC

Capability Model

parameter

input

output

config

type

description

inputParameter id=1

inputParameter id=n

outputParameter id=1

outputParameter id=n

configParameter id=1

configParameter id=n

id

name

value

<name>

<value>

name

value

name

value

name

value

name

value

Request Primitive

from

operation

requestIdentifier

content

to

...

...

...

input

output

config

inputParameter id=1

inputParameter id=n

outputParameter id=1

outputParameter id=n

configParameter id=1

configParameter id=n

name

value

<name>

<value>

name

value

name

value

name

value

name

value

M2M Device/MMSC Parameters Request Primitive Parameters

5.4 M2M Device Management and Communication

196

describe the Input/Output/Config parameters of an M2M device. It is therefore necessary

information that must be transferred to an M2M device. Such information should be

transmitted, as specified in Table 5.5, using the content parameter of a Request Primitive.

Because both, Request Primitive and M2M DCM are specified using XML format, the

Parameter element of M2M DCM as complex datatype can be integrated in the Content

parameter of the Request Primitive XML description. Using these two mappings, all

information required for request/control M2M devices are integrated in the Request

Primitive. Further information, respectively parameter to be specified are:

 From Parameter – The From parameter specifies the Request Primitive originator.

Specification of this parameter depends on the element of the M2M platform

originating the request (M2M Application, AL or M2M TI).

 Operation Parameter – The operation parameter specifies the operation to be

executed at the request receiver (create for M2M device registration, update for

control and config operations, retrieve for value requests, notify for notification

requests)

Up to this point, it has been specified that the communication of M2M application and

physical M2M equipment occur in an abstracted way and how the communication

between the M2M platform components occurs to exchange information for request and

control of M2M devices. The following approaches are proposed for automatically or

partly automatically integration of machine-readable M2M DCMs into the M2M platform

(illustrated in Figure 5.24 including particular steps of installation process).

 5 Autonomous M2M Application Provision

197

 Installation by End-user – End-users installs M2M DCMs as files using the GUI

(1.1). The M2M DCMs are stored inside the M2M platform in the M2M Device

Registry (1.2) containing all installed M2M DCMs. During invocation process of

the GUI, available M2M DCMs are requested from M2M Device Registry and

displayed as M2M device/MMSC building blocks in the GUI (1.3,2.3,3.5) to be

available for application design (refer to section 5.3).

Figure 5.24: Installation of M2M Device Capability Models

 Installation by M2M Device – The M2M DCMs are stored at the M2M device

that should connect to the M2M platform. While connecting M2M devices to the

M2M platform the M2M DCMs transfer to the M2M platform (2.1) and are stored

in M2M Device Registry (2.2).

 Download from M2M Device Vendor – The M2M device to be installed contains

a reference (e.g. a link) incl. M2M device-ID to the vendor of the M2M device

for download the M2M DCM using a network connection to the vendor. While

connecting the M2M device to the M2M platform the reference and M2M device-

IP Network/

Internet

3.4 Device ID 3.2

3.3

Service Design

Unit (SDU)

GUI

1.1

1.3

2.3

3.5

Device ID,

Vendor

M
2

M
 D

e
v
ic

e

A
L

3.1

Device ID,

Vendor

M2M Device ID

M2M

DCM

1.2

M2M

DCM
M2M Device

Registry

M2M

DCM

2.2

M2M

DCM
M2M

Device

M2M

Device

2.1

M2M

DCM
End User

M2M Device

Vendor

M2M

DCM

M2M

DCM

5.4 M2M Device Management and Communication

198

ID transfer to the M2M platform (3.1). The M2M Device Registry contacts the

M2M Device Vendor (3.2) using the provided information and requests the M2M

DCM stored at vendor-side for download (3.3). After downloading the M2M

DCM, the M2M Device Registry stores the M2M DCM in its repository for all

available M2M DCMs (3.4).

The lastly presented approach to automatically download the M2M DCMs from M2M

device vendor has the advantage that M2M devices do not need to provide storage space

for storing M2M DCMs and at the same time enables provision of updated M2M DCMs.

Additionally, the fully automated installation of M2M DCMs is realisable according this

approach. Drawback of this approach is that an active network connection to the

download server of the M2M device vendor must exist. Additional disadvantage is that

the download server represents a centralised element in the M2M system architecture,

which results in risks for e.g. availability (refer to section 3.2) and violates the principle

requirement of the proposed framework to avoid central components. The firstly

presented approach to install M2M DCMs by end-users has the disadvantage, that it

requires manual installation of the M2M DCMs by end-users and therefore is no fully

automated mechanism. Additionally, this approach requires providing the M2M DCM on

a separate installation medium usable for installation or downloading the M2M DCM

from the M2M Device Vendor download server. Therefore, the second approach is the

most practical solution for automated installation of M2M DCMs with the drawback that

the additional storage space on the M2M device needs to be provided.

The following section describes the formal description of graphically designed M2M

application as introduced in section 4.2.

 5 Autonomous M2M Application Provision

199

5.5 Formal M2M Application Notation

The previous sections introduced how end-users can model M2M applications in the form

of a SM. This section determines a concept for SM-based modelling (section 5.5.1) and

introduces the principles of modelling using Statecharts (section 5.5.2). Section 5.5.3

describes how a specific M2M application can be modelled and formally described using

Statecharts according to the approach proposed in this research.

5.5.1 Selection of State Machine-based Modelling Language

As introduced in section 5.2, the end-user should describe the M2M application be means

of an abstract model that is based on a SM. Therefore, a modelling language or a

modelling concept is needed which allows to specify the behaviour of an application in

form of a SM.

Describing an M2M application with a FSM allows to map M2M devices/MMSCs to the

states of an FSM and to map the connections between them to state transitions.

Nevertheless a FSM as introduced in section 5.2 cannot be applied to the description of

an M2M application in particular and generally to the description of combinations of

devices and service components since FSMs do not allow state transitions to be equipped

with data that is required for inputs or outputs of states. However, this is necessary if the

introduced concept should be followed by combining input and output of devices and

services. FSMs also do not allow to configure a state because the states do not have

parameters that could be used for this. Since M2M devices/MMSCs are usually

5.5 Formal M2M Application Notation

200

configurable and cannot be controlled or configured exclusively by input parameters,

definition of configuration parameters is required.

Therefore, an alternative is needed to define the behavior of an application, similar to an

FSM. Since this definition is to be made with a formal language, languages and concepts

are presented and compared with each other that enable a behavioural modelling and

formal description of M2M applications.

To identify an appropriate modelling language enabling the formal description of the

graphically modelled application using SM concept, the following section first defines

requirements according to (Steinheimer et al., 2017a) for selecting an optimal modelling

language for this purpose. Subsequently, potential candidates are presented and then

evaluated with regard to the defined requirements.

 Standardised language – It should be a standardised modelling language to ensure

portability.

 M2M Device/MMSC Mapping – The modelling language must provide elements

that enable representation of M2M devices/MMSCs and connection between

them. The connections between the M2M devices/MMSCs, i.e. information flow

between them or activation should be equipped with a condition.

 Intuitive usability – Since the system is to be used by an average technically

experienced end-user after a short training, the complexity of the graphical

notation should be low. Complex and non-intuitive forms of modelling reduce or

eliminate usability.

 Parallel flows – Within an application, it should be possible to define parallel

sequences to realise concurrent tasks.

 5 Autonomous M2M Application Provision

201

 Synchronisation of states – To synchronise parallel flows there must be a

synchronisation possibility.

 Machine readability – Since the M2M application should be generated

automatically after graphical modelling and automatically processed by the M2M

platform, the modelling language should be a formal language which is machine-

readable.

 State parametrisation – The elements to be combined should be able to be

parameterised (definition of input/output/configuration parameters). Therefore,

the states in the SM must also be parameterisable.

 Existing parser/interpreter implementation – To be able to process the formal

language automatically, an implementation of a corresponding parser or

interpreter should exist.

 Domain independent – The modelling language cannot be a domain specific

language to prevent limiting the scope to the specific domain.

An application according (Harel and Politi, 1998) can be modelled with three different

views onto the system:

 Functional View – The Functional View specifies the processes, activities, and

functions of a system. It includes inputs and outputs of activities, which is the

information flow between the internal and external activities. The Functional

View of a system is described using Activity Diagrams as Modelling Language

(Harel and Politi, 1998). An Activity Diagram describes complex processes,

focuses on the task of the system that has to be divided into single steps, and

5.5 Formal M2M Application Notation

202

answers the question “how a system realises a specific behaviour” (Rupp at al.,

2007).

 Behavioural View – The Behavioural View specifies the behaviour of a system.

It specifies how a system acts on defined conditions and when the activities

defined in the Functional View become active and when the information flow

between the activities take place. The Behavioural View of a system is described

using State Diagrams as Modelling Language (Harel and Politi, 1998). A State

Diagram describes the behaviour of a system using states and transitions between

states that are triggered by external or internal events. A state diagram answers

the question “how the system behaves when residing in a specific state and a

specific event occurs” (Rupp at al., 2007).

 Structural View – The Structural View specifies the modules and subsystems

“constituting the real system and the communication between them”. The

Structural View is considered as the “physical model” of the system describing

the specific hardware and software implementations (Harel and Politi, 1998).

Since the end-user should describe the application in an abstract way and do not need to

know any hardware- and software-specific details, the application cannot be modelled

according to the Structural View. Because modelling the behaviour of an M2M

application is in the focus of the concept described in this research, formal descriptions

based on the Behavioural View appear to be a suitable approach. According (Rupp et al.,

2007), (ISO/IEC 19514, 2017) and (OMG, 2017b) SMs (Behavioural View) and Activity

Diagrams (Functional View) are equivalent and can describe both the same behaviour of

a system, therefore also modelling languages for process-based modelling are considered

in the evaluation for the optimal modelling language.

 5 Autonomous M2M Application Provision

203

According to the above-defined requirements, the following common modelling

languages form a group of SM-based modelling languages that potentially satisfy the

requirements (Steinheimer et al., 2017a):

 Business Process Model and Notation (BPMN) (OMG, 2011)

 UML Activity Diagram (UML AD) (OMG, 2015)

 UML StateMachine Diagram (UML SMD) (OMG, 2011)

These modelling languages are described below and evaluated according to the defined

requirements. The first two modelling languages represent candidates for Functional

View (describing process-oriented modelling, workflows). The last modelling language

represents a candidate for Behavioural View (describing behaviour-oriented modelling).

All of these modelling languages specify a set of elements that can be combined

graphically to describe a process or the behaviour of an application. To evaluate the

modelling language candidates regarding the defined evaluation criteria, the following

section describes if each modelling language can satisfy the specific requirement.

BPMN is a standard, defined by the Object Management Group (OMG) to provide a

formal notation of business processes that is easy to understand by all involved users (e.g.

business analysts, technical developers or people manging/monitoring the defined

processes) (OMG, 2011). BPMN provides a graphical notation that is “widely accepted

for modelling business processes” (Geambasu, 2012).

UML AD is a diagram specified by the Unified Modelling Language standard (OMG,

2015) for describing the behaviour of a system using graphs. The graph consists out of

nodes that are connected to other nodes using edges. Some of the nodes represent “lower-

5.5 Formal M2M Application Notation

204

level steps in the overall Activity” and other nodes “hold data that is input to and output

from executable nodes”. UML AD describes e.g. procedural computations or can be

applied for modelling business processes or workflows in organisations (OMG, 2015).

The focus of modelling with a UML AD is in coordination “lower-level behaviours” of a

system (Geambasu, 2012).

UML SMD is used to model event-driven behaviour of a system with the use of “finite

state-machine formalism”. The finite state-machine formalism applied in UML SMDs is

based on Statecharts as defined by David Harel (Harel, 1987). The UML SMD consists

of states that can be connected to other states by transitions. UML SMD distinguishes

between Simple States without internal transitions or states and Composite States that

contains other states and transitions (OMG, 2011). According (Rupp et al., 2007) UML

StateMachines are an extension of FSMs. The behaviour of a system is specified by means

of states. A SM describes how a system behaves in a certain state during certain events.

It has been defined as a precondition for selecting appropriate candidates that the

modelling language is specified in a common standard. This illustrates the first advantage

against the FSM introduced in section 5.2, which can be described mathematically but is

not specified by any standardisation committee.

M2M Device/MMSC Mapping and Conditional Transition

Using BPMN as modelling language for M2M applications the M2M devices/MMSCs

can by mapped to Activities representing the performed action. Sequence Flows

representing the information flow between M2M devices/MMSCs can connect Activities.

BPMN distinguishes between Conditional Flows and Sequence Flows. A Conditional

 5 Autonomous M2M Application Provision

205

Flow can be equipped with a condition specifying whether a Flow is only processed if the

condition is true. In UML AD the M2M devices/MMSCs can be mapped to Actions that

can be connected using Activity Edges. The Activity Edges in an UML AD represent the

control flow of a process and can be used to describe the connection of M2M

devices/MMSCs. The UML AD contains so-called Control Nodes. The Decision Node is

a specific Control Node that can be used for specifying conditional control flows. To

specify a condition the Activity Edge connected to the Decision Node can be equipped

with a condition. The control flow then only is performed if this condition is satisfied.

Using UML SMD as modelling language the M2M devices/MMSCs can be mapped to

States and connected by a Transition. The Transition between two States can be equipped

with a so-called “Guard Condition” specifying if a Transition from one State to another

State is executed only if the “Guard Condition” is fulfilled.

All three candidates include elements in their modelling language specification that

enable the mapping of M2M devices/MMSCs to elements in the modelling language.

Also all candidates provide connection functionality of elements to represent the

connection of M2M devices/MMSCs, respectively the information flow between them.

The connection can be defined with either direct connections or connections based on a

condition.

Intuitive Usability

BPMN offers a wide range of elements that can be used to model processes. BPMN

enables modelling in a very high degree of detail. This makes the language versatile but

also significantly more complex than e.g. UML SMD. Therefore, when using BPMN, it

is important to select the elements describing an M2M application that are understandable

5.5 Formal M2M Application Notation

206

for the users and to limit the number of elements needed to model an M2M application.

UML AD offers the possibility to describe processes in a very detailed way using a large

number of available elements for the modelling. Since there are many different elements

for the modelling of a process using UML AD, UML AD can only be used if the selection

of the available elements is limited. The elements of UML SMD are clear and become

combined graphically. The basic structure of the UML SMD corresponds to the structure

as M2M applications are modelled using the GUI presented in section 5.3. UML SMDs

describes an abstract view of the system. According (Labiak and Miczulski, 2004),

Statecharts offer the possibility to describe the complex behaviour of a system in

sufficient detail, so that it can be used by non-specialists (i.e. persons who do not have

technical training).

BPMN, UML AD, and UML SMD allow the modelling of the behaviour of an application

with their elements. BPMN and UML AD offer here a very large number of available

elements for modelling. At the same time, this represents a high complexity that restricts

the intuitive use of the modelling language. Using BPMN and UML AD, a system is

modelled using the bottom-up approach. An abstract description with the top-down

approach is not possible because the degree of detail. But this would be better for the end-

user to understand, since not the system details but the overall behaviour should be

described. Since the elements available for the modelling of UML SMDs are limited in

their diversity compared to BPMN and UML AD, but the desired behaviour can be

modelled at the same time, intuitive modelling is possible rather than with the other

candidates.

Parallel Flows

 5 Autonomous M2M Application Provision

207

BPMN provides a Fork element that can be used to divide a path into multiple paths.

Using the Fork element enables parallel processing of activities and therefore parallel

processing of M2M devices/MMSCs. The UML AD enables describing parallel flows by

providing Fork Nodes for splitting control flows into multiple parallel control flows. This

enables the parallel processing of actions (i.e. the parallel information flow between

different M2M devices/MMSCs). UML SMD distinguishes between simple States and

Composite States. A Simple State does not include other States. A Composite State can

include other States connected by Transitions (i.e. another SM). A Composite State can

be separated into so-called Regions that specify two or more included SMs executed in

parallel.

All three candidates enable modelling of parallel sequences in the application structure.

FSM cannot model this kind of behaviour because it specifies only one target state per

transition and does not allow multiple target states be reachable from one originating

state.

Synchronisation of States

The counterpart to a Fork element in BPMN is the Join element. Via the Join element,

parallel Sequence Flows (i.e. parallel M2M devices/MMSCs) are recombined and

synchronised. UML AD provides Join Nodes as counterpart to Fork Nodes to synchronise

(i.e. recombine) parallel control flows. UML SMDs have so-called Join and Fork nodes.

A Fork node can be used to split a transition and a Join node can merge them again. This

makes it possible to generate parallel sequences, which are also recombined again

synchronously. Above described Parallel Flows defined by regions in a Composite State

5.5 Formal M2M Application Notation

208

can also be synchronised. Then the composite state is left by transition only if all

including parallel SMs have reached their Final States.

All three candidates support merging and synchronisation of parallel flows. This FSM

naturally do not support because missing parallel flow capability.

Machine Readability

BPMN is a graphical notation and not machine-readable. According (OMG, 2011) the

standardised Web Service Business Process Execution Language (WSBPEL) (OASIS,

2007) has been specified as a formal description language for definition of business

processes. WSBPEL is a “web service-based XML execution language” for business

processes and is machine-readable. The BPMN standard specification includes mapping

definitions for a subset of BPMN elements to WSBPEL (Geambasu, 2012 and OMG,

2011). According (Geambasu, 2012) no specification exist that maps the UML AD

components “to any business process execution language”, which means that UML AD

is not machine-readable because no formal description exists. UML SMDs are not

machine-readable, since they are a graphical notation. However, with State Chart

extensible Markup Language (SCXML) (W3C, 2015), an execution language for SMs

specified by World Wide Web Consortium (W3C) exists that is based on Harel

Statecharts (same as UML SMDs) and allows formal description of SMs using XML.

Since SCXML is a formal language, it is machine-readable and can therefore be processed

automatically, which means that through UML SMDs described by SCXML automated

processing of the application description is possible.

 5 Autonomous M2M Application Provision

209

None of the three candidates support machine readability out of the box, but for BPMN

and UML SMD standardised execution languages exist enabling the formal description

of modelling languages and therefore are machine-readable. The scope of UML SMDs is

fully implemented by SCXML. WSBPEL only implements a subset of BPMN elements.

For UML AD no standard specification exist for formal description of UML AD which

prohibits the automated execution of M2M applications described using UML AD.

State parametrisation

BPMN represents data using Data Objects that are added to Flows between Activities.

These Data Objects define the data exchanged between the Activities, respectively the

M2M devices/MMSCs. Inside of a BPMN Activity this data need to be associated to Data

Input field of the Activity. The Data produced by Activities are represented as Data

Output field of an Activity. Both, Data Inputs and Data Outputs need to assign the data

contained in the Data Object to the corresponding Input and Output fields of an Activity

using InputOutputSpecification, which is an element of the Activity itself. In a UML AD,

data is represented by Object Nodes exchanged between the Actions. An Action can

generate an Object Node as an output, which in turn is processed as an input in another

Action. The Data Objects leave an Action via an interface and are imported into an Action

via an interface. These interfaces are referred to as parameters of an Action and can be

uniquely identified by name. For the States in UML SMDs, so-called Entry and Exit

Activities can be defined. These Activities are executed as soon as a State is entered or

exited. These Activities are methods that are called and can be used to define input and

output parameters for the State. For input and config parameters the Entry Activity would

be used and for Output parameter the Exit Activity. In SCXML, it is also possible to

5.5 Formal M2M Application Notation

210

explicitly define parameters for a State. They can be used to define the parameters in the

XML description of the Statechart.

All three candidates provide the functionality to equip states with parameter and therefore

enable the configuration of M2M device/MMSC parameters contained in the

corresponding element of the modelling language.

Existing parser/interpreter implementation

For WSBPEL, there are a number of Execution Engines which can interpret and execute

the processes described by WSBPEL, e.g. Apache ODE (Orchestration Director Engine)

(ODE, 2017) or Oracle BPEL Process Manager (Oracle, 2017a). Since UML AD are not

described with a formal language, there is no parser/interpreter implementation. The

Apache Commons Foundation (Commons SCXML, 2016) provides a parser/interpreter

for SMs described with SCXML.

The candidates BPMN and UML SMD therefore satisfy the requirement that a

parser/interpreter exists for the formal description language.

Domain independent

BPMN is a domain independent language but requires WSBPEL as formal execution

language. WSBPEL is a domain specific language because it is limited to integration of

web services. According (Thakar et al., 2016) the WSBPEL standard (OASIS, 2007) is

specified for traditional web service architecture to integrate web services as components

into business processes using Simple Object Access Protocol (SOAP) (W3C, 2000). The

details of the components, such as input and output parameter of services and service

endpoints are described using web services Description Language (WSDL) (W3C, 2001).

 5 Autonomous M2M Application Provision

211

The WSDL specification is designed for SOAP-based web service compositions, not

usable for RESTful architectures, which is the architectural approach for M2M

environments (refer to section 3.1.1). UML AD is a domain independent language

because it can describe processes in various application domains. Since SCXML is

realised using XML, it is a domain independent language. Since its application area is not

limited to a specific field SCXML is a domain independent modelling language for SMs.

The modelling languages UML AD, UML SMD, and FSM are not specified for use in a

specific application domain, but can be used for modelling/describing behaviour-based

systems in various application domains. BPMN itself is not limited, but WSBPEL as

execution language is limited for use in web service application field.

Table 5.7 summarises the evaluation results of the modelling language candidates and

compares it with the FSM principle introduced in section 5.2.

Table 5.7: Evaluation of SM-based Modelling Languages acc. (Steinheimer et al., 2017a)

The result of the evaluation is that UML SMDs fully satisfy the requirements and

therefore the standardised description language SCXML as formal service description is

proposed for describing M2M application behaviour. BPMN and UML AD represent both

BPMN UML AD UML SMD FSM

Standardised Language + + + -

M2M Device/MMSC Mapping + + + +

Intuitive Usability o o + +

Parallel Flows + + + -

Synchronisation of States + + + -

Machine Readability + - + -

State Parametrisation + + + -

Existing Parser/ Interpreter + - + -

Domain independent o + + +

Requirements Modelling Language

Functional View Behavioural View

Requirements Evaluation: += satisfied; o= partially satisfied; -=not satisfied

5.5 Formal M2M Application Notation

212

very extensive modelling languages allowing a fine granular and detailed description of

processes, whereby BPMN serves more for the description of business processes. BMPN

also fulfils almost all requirements for the formal description language. However, the fact

that WSBPEL is limited to Web service environments prevents WSBPEL from being

used for the application description in a RESTful M2M environment.

Since UML SMDs, respectively Statecharts as modelling language and SCXML as

execution language were selected, these are presented in detail below.

5.5.2 Principles of Statechart Modelling

The M2M application semantic is graphically designed by creating an SM-based

behaviour model (see section 5.3) that should be described using UML SMDs or Harel

Statecharts in the formal execution language SCXML (see section 5.5.1). The following

section presents the relevant elements and principles for modelling using Statecharts.

The main elements of Statecharts are states and transitions. States are illustrated as boxes

with rounded corners and the name of the state is placed inside the box. Arrows

connecting the states represent transitions (Harel and Politi, 1998). States in the diagram

can be active representing the current state of the system and by a transition, it can move

to another state of the system (Harel and Naamad, 1996). In particular a state represents

an active configuration of a system and can move from one state (i.e. configuration) to

another state based on specific triggers acting on the system, such as external events or

predefined conditions causing the state transition (Harel and Kugler, 2004).

 5 Autonomous M2M Application Provision

213

The system moves from one state to another state following the specified transitions and

performs defined actions while residing in states or moving along a transition. Execution

of a Statechart starts always at an initial state specifying the entry-point of a system (Harel

and Politi, 1998). Via Transitions, it is described according (Harel and Naamad, 1996)

from which state it should be moved to another state. Transitions describe the connection

between states. The state from which a transition originates is referred to as a Start State

and the state to which the transition terminates is referred to as a Target State. Transitions

can be provided with conditions that specify whether to perform a transition from an

active state.

According (Harel and Kugler, 2004) a Statechart can contain Basic States and

Hierarchical States. A Basic State does not contain substates and forms the lowest

instance in state hierarchy. Hierarchical States are composed out of other states and can

exist in two different configurations: OR-States containing substates that are “related to

each other by exclusive OR” and AND-States including substates that contain

“orthogonal components that are related by AND”.

Figure 5.25 illustrates a Basic State as well as the Initial State specifying the entry point

of the Statechart and the Final State specifying the termination of the described

behaviour.

Figure 5.25: Statecharts Basic State and Default Transitions, derived from (Harel and Politi, 1998)

Basic State

entry: <action_a()>

exit: <action_b()>

Initial State Basic State Final State

Default

Transition

Default

Transition

5.5 Formal M2M Application Notation

214

A Default Transition to the states in a Statechart connects Initial State and Final State

(Harel and Politi, 1998). States and transitions can be equipped with Actions that are

executed during a transition or while either entering a state (Entry Action) or leaving a

state (Exit Action) (Harel and Kugler, 2004). A Default Transition is a special kind of

transition that cannot by equipped with a condition or action. The Statechart in Figure

5.25 describes that after entering the Basic State the action_a() is executed and while

leaving the Basic State the action_b() is executed. Actions can be static calculations or

method calls to trigger any additional functionality to be executed while residing in a state

or moving from one state to another.

As mentioned above two kinds of hierarchical states exist describing different behaviour.

Figure 5.26 illustrates the hierarchical AND-State A. According (Harel and Politi, 1998)

AND-States consist of one or more orthogonal components (sections) executed

simultaneously. AND-States can therefore be used to describe parallel sequences, which

again are defined by states. For each parallel section it has to be defined which state is the

Initial State and therefore should begin with the execution

Figure 5.26: Statecharts AND-State, derived from (Harel and Politi, 1998)

State B

AND-State A

OR-State O.1 OR-State O.2

State O.11

State O.12

State O.21

State O.22

State O.23

t1 t2 t3

t4

t5

t6

t7

Initial State (1)

Initial State (2) Initial State (3)

 5 Autonomous M2M Application Provision

215

In an AND-State, additionally to the enclosing AND-State itself, the embedded states are

always active within a section and execute actions. A Parallel State is left when all

sections have reached their final state (which was not defined in the exemplary AND-

State A, so the AND-State A remains within the contained sections). Another way to leave

an AND-State is when a transition is generated from an inner state to a state outside the

Hierarchical State, or when a transition of the comprehensive Parallel State is triggered.

In the example shown in Figure 5.26, AND-State A is therefore only left when the

transition t7 has been triggered. The active state then changes to State B without regards

of which internal state the AND-State A currently resides.

The second type of Hierarchical State is the OR-State. Figure 5.27 shows an exemplary

OR-State O. The OR-State also contains states that in turn are connected with transitions.

Figure 5.27: Statecharts OR-State, derived from (Harel and Politi, 1998)

An OR-State has no parallel sections, but group’s individual states. It is also necessary to

define for an OR-State which of the contained states is the initial state, i.e. which state

should start processing as soon as the comprehensive OR-State is reached. An OR-State

can terminate its processing when a transition is triggered within the Hierarchical State

(e.g., t5) targeting to a state outside the Hierarchical State. A further possibility to leave

an OR-State is when a transition connected to the comprehensive OR-State is triggered

and leads to an external state (e.g. t6).

OR-State O

t1
State O.1 State O.2 State O.3

t4

t2

t3
t5

t6

State B

5.5 Formal M2M Application Notation

216

After the principles of modelling using Statecharts have been introduced, the following

section introduces the formal description of Statecharts using SCXML.

SCXML has been specified by W3C as recommendation for an executable SM language

that combines Harel semantics of Statecharts with XML syntax. It has been defined

because UML SMDs only are specified as “graphical specification language” without

XML representation for automated execution (W3C, 2015). Subsequently the basic

structure of a formal description of Statecharts using SCXML is presented using two

examples.

Figure 5.28 shows the formal description by SCXML of the example of a minimal

Statechart, shown in Figure 5.25, consisting of a basic state and two default transitions.

Figure 5.28: SCXML Representation of Basic State and Default Transitions

Since the document format of a SCXML description is XML, every SCXML description

starts in the first line with the XML declaration, specifying the XML version and the

encoding used. Next the root element has to be specified as <SCXML> which is the

element encompassing all components of the Statechart. Inside the root element the

namespace and version of SCXML is specified. The root element additionally contains

<?xml version="1.0" encoding="UTF-8"?>

<scxml

xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="BasicStateExample"

datamodel="jexl" initial="BasicState">

<state id = BasicState >

<onentry>

<action name= action_a />

</onentry>

<onexit>

<action name= action_b />

</ onexit >

<final id=BasicStateFinal />

</state>

</scxml>

 5 Autonomous M2M Application Provision

217

the name of the Statechart and the datamodel used in the description. Lastly, the SCXML

root element contains the definition of the Initial State, which is in that example the state

with ID BasicState. The other elements contained in the SCXML description are states

and transitions in different variants. States are defined using the <state> element including

the ID of the state and transitions are defined using the <transition> element. In the

exemplary Statechart, <BasicState> is the only state defined. The action to be executed

when entering a state is defined using the <onentry> element. The actions to be executed

when leaving the state is defined using the <onexit> element. Both elements include the

<action> element specifying the action by name that the system should execute when

entering or leaving the state. If a state should be defined as a Final State, this is defined

using the <final> element defining the encompassing state as a Final State. The Final

State element includes a specific ID, here BasicStateFinal to uniquely identify the Final

State.

Figure 5.29 illustrates a more complex example describing the SCXML representation of

the Statechart illustrated in Figure 5.26.

<?xml version="1.0" encoding="UTF-8"?>

<scxml

xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="ANDStateExample"

datamodel="jexl" initial="AND-StateA">

<parallel id= AND-StateA >

<state id= OR-StateO.1>

<initial>

<transition target= StateO.11 ></transition>

</initial>

<state id= StateO.11>

<transition target= StateO.12 ></transition>

</state>

<state id= StateO.12 >

<transition target= StateO.11 ></transition>

</state>

</state>

5.5 Formal M2M Application Notation

218

Figure 5.29: SCXML Representation of AND-State

This example contains an AND-State (AND-StateA), which SCXML specifies using the

<parallel> element and another simple state (StateB). StateB is defined as Final State

using the <final> element. The AND-State, respectively Parallel State encompasses the

two OR-States OR-StateO.1 and OR-StateO.2. Parallel States and OR-States must specify

the Initial State for their containing states. This is done using the <initial> element that

specifies the Initial State as a Transition Target with the ID of the Initial State element.

In the example Statechart for the hierarchical OR-States StateO.11 and StateO.23 are

defined as Initial States. If states are connected to another state by transition, this is

defined using the <transition> element. Inside the <transition> element, ID of the Target

State defines the Target State of a transition.

This section introduced the principles of behaviour modelling with Statecharts as

modelling language and introduced SCXML as standardised SM execution language.

Both bring the possibility to model and describe systems flexible and very detailed but

<state id= OR-StateO.2>

<initial>

<transition target= StateO.23 ></transition>

</initial>

<state id= StateO.21 >

<transition target= StateO.22 ></transition>

</state>

<state id= StateO.22 >

<transition target= StateO.23 ></transition>

</state>

<state id= StateO.23>

<transition target= StateO.22 ></transition>

<transition target= StateO.21 ></transition>

</state>

</state>

<transition target= StateB ></transition>

</parallel>

<state id= StateB >

<final id=StateBFinal />

</state>

</scxml>

 5 Autonomous M2M Application Provision

219

with reduced complexity. The following section describes how to apply the power of

Statecharts and SCXML to formally describe M2M applications.

5.5.3 M2M Application Modelling using Statecharts

In the previous sections it was introduced how MMSCs can be integrated into M2M

applications to create an interface to them (section 5.1). Furthermore, a unified structure

for an M2M Devices/MMSCs was specified, consisting of input/output/config parameters

as interfaces to a component performing variable functionality (section 5.2). Moreover, it

was worked out that the end-user graphically models the behaviour of an application in

the form of a SM and thereby defines the application logic (section 5.2 and section 5.3).

The modelling is done using Statecharts that are formally described with SCXML

(Steinheimer et al., 2017b). To determine how such a modelled M2M application can be

formally described by means of Statecharts, it is first necessary to define a general

structure for an M2M application and to transfer this structure to the modelling principles

using Statecharts.

It has already been determined that an M2M device/MMSC is represented as a state. It

was also defined that the connection between M2M devices/MMSCs is made by defining

transitions between the states. This is now to be described using Statecharts. Figure 5.30

exemplarily illustrates the Statechart representation of an M2M application with the help

of Use Case 1 (refer to section 2.4), also described as FSM in Figure 5.13 and graphically

modelled as illustrated in Figure 5.14. The corresponding SCXML representation of the

Statechart is illustrated in Listing C.5.

5.5 Formal M2M Application Notation

220

Figure 5.30: Statechart Representation of Use Case 1

M2M devices/MMSCs each are defined as a state (state-id: “Rain”, “Window”,

“TTScall”). The configuration of an M2M device/MMSC and the data exchange between

the components is defined by the parameters of a state. This can be mapped to the

parameters of a state in Statechart representation, respectively SCXML. To determine

which parameters are defined in a state for the specification of an M2M devices/MMSC,

first it has to be defined which parameters an M2M device/MMSC can have. This has

already been specified by the general structure of an M2M devices/MMSC by having any

M2M device/MMSC 0...n Input/Output/Config parameter. The M2M DCM for each

M2M device describes the device-specific structure. The parameters specified by the

DCM are mapped using the parameters of a state. To obtain the best flexibility in

determining the data structure, JEXL (Java Expression Language) (Commons JEXL,

2017) is proposed as the format for the Data Model. By integrating JEXL as a regular

expression language in SCXML, it is possible to define the structure of the parameter

declaration according to the ANT-style (Apache ANT, 2017). This makes it possible to

Initial State Rain

Rain.output.state = ""

Window

Window.output.state = ""

Cond: $Rain.output.state=raining

TTScall

TTScall.input.text = "Warning window open and

 starts raining"

TTScall.input.sipURI = "sip:username@localhost"

TTScall.config.mode = "TTS"

Cond: $Window.output=open

Final State

 5 Autonomous M2M Application Provision

221

categorise the parameters according to their structure within their naming according to

input/output/config. The following structure is defined for the parameters:

 <deviceID>.input.<parameter name>

 <deviceID>.output.<parameter name>

 <deviceID>.config.<parameter name>

Each parameter starts with the ID of an M2M device/MMSC followed by a ".". Attached

to this is the category of the parameter. For this purpose, the input/output/config key

words define the type of parameters. Finally, the parameter name is added to this category

with a previous ".". For assigning the parameters to a state, it is necessary to define a Data

Model for the state. This Data Model is an element of the state and contains a separate

element for each parameter defining the name of the parameter via the entry data id, and

the value of the parameter via the entry expr. In the example for Use Case 1 the output

parameters of Rain and Window were created. Since they are output parameters which are

assigned by the M2M device itself, these are not initialised within the Statechart or

SCXML description, but are defined as "". The MMSC TTScall, respectively the state

TTScall, has input and config parameters that must be specified. This is done in the Data

Model of the state TTScall by assigning the corresponding configuration values to the

input and config parameters via the expr entry.

The connection of the M2M devices/MMSCs is realised by the description of a transition

between the M2M device/MMSCs. As described above, the connection between M2M

application components should be conditional. This condition is specified within the

transition element using the entry cond. In the example of Use Case 1, e.g. the following

condition is defined for the state Rain: $Rain.output.state=raining. This condition defines

5.5 Formal M2M Application Notation

222

that the transition is only executed if the Rain.output.state parameter is equal to the value

"raining".

Expressions can be specified not only in the conditions of a transition, but also in <assign>

elements of SCXML, respectively through onentry/ onexit operations or transitions of

states. These elements allow values to be assigned to parameters in the Data Model.

Figure 5.31 shows, by means of two connected states, an overview of definition, query

and assignment of parameters in a Statechart. The corresponding SCXML description in

illustrated in Listing C.6. However, not only the static assignment of values to the state

parameters is possible, but also the access by the expression to the parameters of the states

or the global parameters of the Statechart. The ability to access the parameters of a state

within a regular expression gives the possibility to define not only the values for the

parameters of the states statically, but to access the contents of the parameters by means

of the parameter name with preceding "$".

Figure 5.31: Principles of State Parameter Definition and Assign in Statecharts

DataModelIntroduction

GlobalParam1 = "GlobalValue1"

GlobalParam2 = "GlobalValue2"

GlobalParam3 = "GlobalValue2"

DataState1

DataState1Param1 = "StateValue1"

DataState1Param2 = "StateValue2"

DataState1.output.transferparam = ""

entry: GlobalParam1 = "abc"

Initial State

DataState2

DataState2Param1 = "StateValue1"

DataState2.input.transferParam = ""

entry: GlobalParam3 = "Last"

 DataState2Param1 = "State"

Assign:

GlobalParam2 = "xyz"

DataState2.input.transferParam = $DataState1.output.transferparam

Final State

 5 Autonomous M2M Application Provision

223

This enables that the M2M device/MMSC receives the output parameters of another

M2M device/MMSC as an input value and can further process it within its service logic.

This extends the original concept by allowing transitions between devices to have

parameters and thus to transfer values to another device or to have transitions without

parameters.

Up to this point it was specified how M2M devices can be connected with each other and

exchange data. It has not been specified yet, how the structure of the application can be

described as generalised as possible. For this purpose, the structure of a Statechart was

derived and transferred to the structure of an M2M application. Thus, an M2M application

can consist of different M2M devices/MMSCs connected sequentially (OR-connections),

or in parallel sequences (AND-connections). Figure 5.32 shows the graphical

representation of a combined OR-/AND-connection. Listing C.7 illustrates the

corresponding SCXML pattern.

Figure 5.32: Graphical Representation OR-/AND M2M Device Combination

Through the generally defined, reusable structure of an M2M application description by

means of SCXML, a possibility is created to formally describe M2M applications

M2M Device A M2M Device F

Parallel Appl Sections

Section 1 Section 2

M2M Device B

M2M Device C

M2M Device D

M2M Device E

5.5 Formal M2M Application Notation

224

according to a unified pattern. This generally defined structure serves for the formal M2M

application description process (described subsequently) to transform the graphically

modelled application into a formal description.

To automate the formal description of the M2M application, the following section

presents the process generating a formal description from the graphically modelled

application. The Service Creation Unit (SCU) of the proposed framework performs this

process. As an input, the process described here receives the graphical notation of the

application description and generates the formal notation from it.

To define an adequate algorithm performing the generation of the formal description, a

General M2M Application Model (see Figure 5.33) and a General State Model (see Figure

5.34) have been derived from the above-described principles of M2M application

modelling by means of Statecharts.

Figure 5.33: General M2M Application Model

M2M Application Model

State 1

Final State

ID

...

State n

AND-State 1

...

AND-State n

OR-State 1

...

OR-State n

State 1

...

State n

Initial State

Initial State

Transition

<Target>

 5 Autonomous M2M Application Provision

225

The General M2M Application Model describes the generalised structure of an M2M

application. This defines that M2M applications always have an ID uniquely identifying

them. Furthermore, the entry point must be defined for each M2M application realised by

the Initial State definition. An M2M application also requires a defined exit point marking

the end of the application realised by the Final State element. Additionally to these

mandatory elements, an M2M applications have states as optional elements. These can

be simple states not containing other states or complex states describing parallel

sequences in M2M applications. Parallel sequences are modelled using AND-States,

which have individual sections executed in parallel. For each of the parallel sections, it is

necessary to define an OR-State that includes the states to be executed in parallel. For

each OR-State, it must also be defined which of the contained Simple States is the entry

point (defined as Initial State). Additionally AND-States have a transition to integrate

them into an application flow.

The General State Model describes the generalised structure of a simple state. They have

an ID to uniquely identify the state or the M2M device. Via OnEntry and OnExit elements

of a state, an action can be defined by name that is executed when the state is entered or

exited. Furthermore, a state has a Data Model (input/output/config parameters) that

specifies the interfaces to an M2M component.

5.5 Formal M2M Application Notation

226

Figure 5.34: General State Model

A value can be assigned to each Input/Output/Config parameter using the <Expr> element

of the parameter. Connections between M2M components are represented by the

Transition elements of a state. The Transition elements are used to specify which state is

the target of the transition defined by the <target> element. For each Transition, a

condition can be defined specifying when the transition is executed. The condition is

defined by the <Condition> element of the transition. If value assignments should be

made to the M2M Components during a transition, this is specified via the <Assign>

State Model

OnEntry

<Action Name>

Final State

ID

OnExit

<Action Name>

Data Model

...

Input Parameter

Output Parameter

...

Config Parameter

...

<Transition 1>

...

<Input Parameter 1> <Expr>

<Input Parameter n> <Expr>

<Output Parameter n> <Expr>

<Output Parameter 1> <Expr>

<Config Parameter 1> <Expr>

<Config Parameter n> <Expr>

<Transition n>

...

<Assign 1>

<Assign n>

<Target> <Condition>

 5 Autonomous M2M Application Provision

227

elements of the Transitions. A state can be declared as a Final State. If so, the state

contains a Final State element in the specification.

The SCU now uses the General M2M Application Model, General State Model and the

M2M DCMs to generate the formal M2M application description applying the algorithm

described in Figure 5.35. First, the SCXML frame is generated based on the General

M2M Application Model. Where the name of the modelled application is specified as the

ApplicationID. Furthermore, the start element is defined as initial state. Afterwards, all

graphically modelled states are captured. Each of these states is analysed and inserted into

the SCXML frame based on the result of the analysis. It is first checked whether it is a

simple state or a complex state (parallel flow). If it is a simple state, a state element is

generated based on the General State Model. Figure 5.36 shows the mapping of the

elements from graphical notation into the formal description of the state according to

(Steinheimer et al., 2017b). If it is a parallel sequence element, a parallel state element is

first created in SCXML. All parallel sections are then captured. For each parallel section,

an OR-State element is created and all states that are contained within the parallel section

are captured. The collected states are simple states that are analysed as described above.

After the formal definition of the state is done, the state is inserted into the OR-State

element. After all states are captured and added to the OR-State element, the OR-State

element is added to the previously generated parallel state element. As soon as all parallel

sections have been processed, the parallel state element is added to the SCXML frame.

5.5 Formal M2M Application Notation

228

Figure 5.35: Formal M2M Application Description Generation Process

Capture all

States

Process States
States

Formal

Description

[no]

Create SCXML

Frame

Assign

SCXML.name

=ApplicationID

Analyse StateState

Generate State

Element

Capture State

Parameter

Add State Parameter

to Datamodel

Capture

Transitions

Add Transitions

to State Element

Assign

SCXML.initial=

InitialState

Add Final State

to State Element

Capture Parallel

Sections

Analyse Parallel Section
Parallel

Sections

Add State Element

to SCXML

Add Parallel State

Element to SCXML

Generate OR-

State Element

Capture States

Analyse State

Add State to OR-

State Element

Generate Parallel

State Element

States

Add OR-State to

Parallel State

Element

[yes]

[yes]

[no]

[yes]

[no] [no]

[yes]

[yes]

[no]

<<decisionInput>>

More States

<<decisionInput>>

Final State

<<decisionInput>>

Simple State

<<decisionInput>>

More States

<<decisionInput>>

More Parallel Sections

 5 Autonomous M2M Application Provision

229

Figure 5.36: Assignment graphical Notation Elements to M2M Application Model

5.6 Service Runtime Environment

The previous sections introduced the SM-based modelling and automated formal

description of local M2M applications. As described in section 4.2, the formal M2M

application description is passed from the SCU to the SRE for further processing. Figure

5.37 shows the structure of the SRE, which is responsible for executing the application.

Application Name

End Element

Start Element

T
ra

n
s
it
io

n

ID

P
a
ra

m
e
te

r

Name

C
o

n
fi
g

Name

O
u
tp

u
t

Name

In
p
u
t

M
2

M
 D

e
v
ic

e
 C

a
p

a
b
ili

ty
 M

o
d
e
l

Target

Condition

Assign

P
a
ra

m
e
te

r
V

a
lu

e
s

Value

C
o

n
fi
g

Value

O
u
tp

u
t

Value

In
p
u
t

G
ra

p
h

ic
a
l
N

o
ta

ti
o

n

P
a
ra

m
e
te

r

E
x
p
r

P
a
ra

m
e
te

r

E
x
p
r

ID In
it
ia

l
S

ta
te

ID P
a
ra

m
e
te

r

E
x
p
r

Transition

T
a
rg

e
t

C
o

n
d
it
io

n

A
s
s
ig

n

Config

Parameter

Output

Parameter

Input

Parameter

Data Model

State Model

M2M Application Model

F
in

a
l
S

ta
te

F
in

a
l
S

ta
te

Final State

S
ta

te
s

5.6 Service Runtime Environment

230

Figure 5.37: Service Runtime Environment (SRE)

The Application Description Interpreter (ADI) first parses the formal M2M application

description after receipt and generates a SM from the described semantics defining the

application logic. The generated SM is stored in the State Machine Repository (SM Repo)

holding all SMs included in the M2M platform. The Application Executor (AE) holds an

instance of each SM and receives messages containing Input/Output values from the CU

or the MMSCs. By analysing the defined SM behaviour, the AE executes the defined

actions for each state, depending on the defined conditions and parameter values. For

determining the defined behaviour of the M2M application, the SEE holds the current

state of the SM (starting with the initial state). Figure 5.38 illustrates the AE's analysis

process for receiving messages from the CU and the corresponding SM evaluation.

Service Runtime Environment (SRE)

Service Execution Engine (SEE)

Formal M2M

Application

Description (SCXML)

Service

Creation

Unit

(SCU)

Application Description

Interpreter (ADI)

Multimedia Service

Components

(MMSCs)

Application

Executor (AE)

Communication Unit (CU)

State Machine

Repository (SM Repo)

 5 Autonomous M2M Application Provision

231

Figure 5.38: M2M Application Execution Process

After receiving a Request Primitive message from the CU or MMSC, the AE loads the

current state of the SM, analyses it and executes the defined operations. First, the AE

checks the transitions. If condition are fulfilled or do not exist the AE checks whether

assigns have been defined to set M2M device/MMSC parameters. If the condition of the

transition is FALSE the SM resides in the current state. If assigns have been defined, then

the AE generates a Request Primitive message with the content of the parameter to be set

Receive Request Primitive Message

from CU or MMSC

Load Current State of

Statemachine

Check Transition Set M2M Device/MMSC Parameter

[condition exists]

[no condition exists]

[assigns defined]

[no assigns defined]

Generate Request

Primitive

Send Request Primitive

Message to CU

[condition

TRUE]

Set Current State

to Target State

[final state]

[no final state]

[restart app]

[do not restart

app]

Reset Initial State

[condition

FALSE]

Set Target State Parameter

[target state

parameter defined]

[no target state

parameter defined]

[set M2M

Device

Parameter]

[set MMSC parameter]

Send Request

Primitive Message to

MMSC

Generate Request

Primitive

Send Request Primitive

Message to CU

[set M2M

Device

Parameter]

[set MMSC parameter]

Send Request

Primitive Message to

MMSC

5.7 Conclusion

232

and sends it to either CU or MMSC, which set the values of the parameter as specified in

the Primitive content. Afterwards the AE checks whether target state parameter have been

defined. If yes, the AE triggers setting the specific parameter by sending Request Primitive

messages. After executing the control operation by setting the M2M device/MMSC

parameter the AE sets the defined target state as the new current state of the SM and

checks if it is a final state. If current state is final state, then the AE checks if application

should restart. If this is the case, the initial state is reset and the application starts from

beginning.

5.7 Conclusion

This chapter 5 introduced MMSCs (section 5.1) that form a comfortable input/output

interface to the M2M platform using existing multimedia communication equipment.

Multimedia communication can serve e.g. for controlling M2M applications or to realise

a communication from M2M platform and end-users to e.g. inform them about events

occurred in their local M2M environment.

The principles of M2M application definition by means of modelling the behaviour of the

M2M application has been introduced in section 5.2. It has been illustrated that the

behaviour of an M2M application can be modelled by defining SM-based application

flows. To achieve this a general structure of M2M device/MMSCs containing

input/output/config parameters has been defined and mapped to the states of a SM. This

enables the representation of an M2M device/MMSC inside the application behaviour

model. The connections of M2M devices/MMSCs have been mapped to the transitions of

the SM and representing the connection between them. The defined concept of

 5 Autonomous M2M Application Provision

233

behavioural modelling by means of SMs forms a generalised, intuitive and platform

independent methodology to define the semantic of M2M applications.

Furthermore, it has been presented a structure of a GUI that can be applied for graphical

design of the application model (section 5.3). The GUI forms an end-user interface for

application generation by exposing M2M/MMSCs present in the personal environment

of the end-user. The GUI can be used to graphically design the application model by

combining M2M devices/MMSCs that are represented as building blocks. Conditions can

be defined to make the application flow (connection between M2M devices/MMSCs)

dependent on predefined conditions.

Then, section 5.4 described the principles for integration of different M2M technologies

into the local M2M platform. To achieve this, a concept has been defined to abstract the

communication between the specific M2M technologies and the communication inside

the M2M platform, respectively the communication between M2M devices and defined

M2M application using the AL component of the defined M2M platform architecture.

The communication between M2M devices and M2M platform components takes place

using RESTful communication principles and exchange of Primitive messages. A M2M

DCM has been defined describing the abstract structure of M2M devices/MMSCs and

forms as an interface description of them. It has been specified how to map the M2M

DCM to Primitive messages exchanged between the M2M platform components to realise

a generalised communication principle. Section 5.4 also presented different approaches

for automatically or partly automatically integration of M2M DCMs into the M2M

platform. Presented possibilities were the installation by the end-user, installation by the

M2M device, and the download from M2M device vendor. Installation by the M2M

5.7 Conclusion

234

device has been identified as the most practical way because it prevents manual steps to

be performed by the end-user and does not violate the general requirement of the

presented concept to avoid central entities in M2M platform infrastructure.

Section 5.5 introduced the modelling languages BPMN, UML ADs, and UML SMDs for

SM-based modelling. These modelling languages have been evaluated regarding defined

requirements. The result of the evaluation was that UML SMDs satisfy the defined

requirements and therefore has been selected as graphical modelling language for M2M

applications. Since UML SMDs are based on Harel Statecharts, the principles of

Statechart modelling has been introduced in detail as well as the standardised formal

description language SCXML as machine-readable execution language for Statecharts.

After introduction of Statecharts modelling and SCXML, the semantics have been defined

to model and formally describe M2M applications using Statecharts. For this a general

M2M Application Model and a General State Model were defined enabling the formal

description of M2M applications using SCXML. For automatically generating the formal

M2M application description, a process has been defined that uses the General M2M

Application Model and General State Model to create the SCXML description out of the

graphical notation of the M2M application.

Finally section 5.6 introduced the Service Runtime Environment (SRE) of the proposed

M2M platform architecture concept. The SRE processes the formal M2M application

description by parsing and interpreting the SCXML description and generates a SM from

the described semantics. The SEE of the SRE holds and executes the SMs and therefore

controls the M2M application. To achieve this a process for M2M application execution

 5 Autonomous M2M Application Provision

235

has been defined that controls M2M devices/MMSCs as defined by the M2M application

semantics.

This chapter 5 presented a continuous concept of autonomous M2M application provision

starting with the M2M application design by the end-user followed by automated formal

description and execution of the application logic. The M2M device abstraction offers the

possibility to control different M2M devices and enables independence of the used M2M

technology from M2M application execution. The concept includes a loose coupling of

application description and application execution. It is platform independent and

adaptable because M2M application logic is defined at a higher level than realisation by

means of specific programming languages and compilation of application executables.

By using a modelling and description of applications independent of the target language,

the approach is independent of the technical realisation/programming. This makes it

portable to other M2M platforms and does not require reimplementation or recompilation

of application/service logic. The advantage of using a formal description that is based on

an official standard is that there is a loose coupling between the application generation

tool and the executing environment. Therefore, another GUI or approach for application

definition, such as plain text-based application design, could replace the GUI. The

presented concept uses standardised notation for application modelling (UML

SMDs/Statecharts) and SCXML as standardised formal description language for

application description. The presented concept also uses a standardised approach for

communication between the platform components. This makes the presented M2M

platform architecture concept both, adaptable and portable. Because the defined general

structure of an M2M application and the definition of M2M device capabilities, which

describe the query and control of M2M devices and MMSCs, a generic language has been

5.7 Conclusion

236

defined that allows to model various M2M applications. The communication between the

platform components is realised consistently with the RESTful communication principle.

According (Bayer, 2002) the generic interfaces defined in this way make it possible to

implement and offer generic services.

In this chapter it has been illustrated how to model and execute individual M2M

applications. The concept up to this point forms a local M2M platform realisable without

any central entity. It forms the basis for the second part of the proposed framework

(presented in the following chapter 6) that realises a global, distributed MSP and enables

end-users to cooperate and provide fully distributed M2M application services.

237

6 Cooperative M2M Application Service

Provision

The previous chapter 5 introduced the principles of the proposed concept for individual

M2M application design and local execution. Multimedia Service Components (MMSCs)

have been introduced as interface to M2M applications usable with existing multimedia

communication equipment. The end-user integration in M2M application design has been

enabled through modelling the behaviour of application semantic by graphical design. A

concept has been defined for integrating different M2M device technologies by

abstraction of M2M technology-specific communication. Additionally chapter 5 defined

a Statechart-based formal description language for M2M applications describing the

graphically designed M2M applications as machine-readable format for automated

processing and execution.

This chapter 6 introduces the parts of the proposed framework responsible for provision

of local M2M application functionality as a service to other end-users. Additionally this

chapter introduces the principles for combining distributed M2M application services to

provide cooperative M2M application services. Section 6.1 introduces the concept to

make local M2M devices and M2M applications available as a service to other end-users

and integrate them into local M2M applications. For this purpose, an interface description

of the M2M application service is specified and it is described how service requests are

generated and processed inside the M2M platform architecture.

6.1 Provision and Integration of M2M Application Services

238

Afterwards section 6.2 presents the networking principles of the participating nodes by

introducing the P2P communication between nodes and identifying an appropriate

information exchange pattern for data exchange. Additionally, section 6.2 identifies an

appropriate communication protocol for data transmission between distributed M2M

platforms. Section 6.3 introduces the management and distribution of M2M application

service interface descriptions (IFDs) without central entities for data storage applying the

principles of distributed data storage using a P2P overlay network. The common P2P

overlay algorithms are analysed and evaluated to select an optimal methodology for

distributed data storage in context of the proposed framework. Section 6.4 introduces the

concept for cooperative M2M application service provision by defining mechanisms to

enable distributed M2M application service composition and aggregation. Finally, section

6.5 presents details about the M2M community approach enabling networking of end-

users through social networking principles.

6.1 Provision and Integration of M2M Application Services

In section 4.1 it was shown that the functionality of M2M devices/applications should

also be available to other end-users. For this purpose, it is necessary to define an interface

enabling to access those. Following steps need to be performed to provide the

functionality of M2M devices/applications as a service:

1. An interface must be specified to access the M2M devices/applications.

 6 Cooperative M2M Application Service Provision

239

2. A component must be integrated into the local M2M platform, which accepts

requests for services, passes them on to the M2M devices/applications and returns

the application's response value to the requestor.

3. It must be specified how to integrate the remotely provided M2M application

services into local M2M applications.

4. It must be specified how to register the M2M application services to make them

available to other end-users and where to store the IFDs.

The following sections 6.1.1 - 6.1.3 address these topics. Section 6.1.1 introduces the IFD

specifying a unified interface to provide M2M application services. Section 6.1.2 shows

how requests for an M2M application service are performed in local M2M platforms of

the M2M application service provider (ASP) and finally, section 6.1.3 introduces how to

integrate remote M2M application services in local M2M applications.

6.1.1 M2M Application Service Interface Description

Figure 6.1 shows the characteristics of applications that are behind an M2M service.

Figure 6.1: M2M Application Service Principles

M2M Device/MMSC

...

M2M Device/MMSC

M2M Device/MMSC

b) Multi Component Servicea) Single Component Service

Input/Config

Parameter

Output

Parameter
Input/Config

Parameter

Output

Parameter

6.1 Provision and Integration of M2M Application Services

240

If the functionality of an M2M device should be made available to others, an application

can be defined having only one component whose functionality is to be provided (Figure

6.1-a). A more complex M2M application consists of several connected components

(Figure 6.1-b). The principle of both applications is the same: an application has an input

(these are the Input/Config parameters of the initial state), and an application has an output

(these are the Output parameters of the final state). Therefore, an IFD must contain

information about these parameters (Steinheimer et al., 2017c). Since according to

(oneM2M TS-0001-V1.13.1,2016) M2M applications are considered as resources (refer

to section 3.1.1), the resource type specifications of oneM2M for Application Entity (AE)

resource and Common Resource (CR) (oneM2M TS-0001-V1.13.1, 2016) has been used

as a basis to define an appropriate IFD in the context of this project.

Table 6.1 shows the designed IFD which should be described in machine-readable XML

format to enable automated processing.

Parameters appName, App-ID, pointOfAccess, requestReachability, and

contentSerialisation have been adopted from the resource type specification of AEs as

well as parameters creationTime, lastModifiedTime, and accessControlPolicy from

resource type specification of CRs. Additionally parameters have been added to the IFD

representing the parameters applications expect as input or generate as output. These

parameters could be determined automatically using the formal M2M application

description (AD). For this purpose, it is not necessary to analyse the entire M2M AD, but

only the parts describing initial and final state, since these are start and end points of the

application, respectively represent the input and output interface. These two elements are

already marked as initial and final state in the M2M AD so that they are easily identifiable.

 6 Cooperative M2M Application Service Provision

241

The parameters of these states can now be transferred to the IFD. It is sufficient if only

the Input/Config parameters of the initial state are transferred and from the final state only

the Output parameters.

Table 6.1: M2M Application Service Interface Description Parameter

Parameter

appName

App-ID

pointOfAccess

requestReachability

creationTime

lastModifiedTime

contentSerialisation

accessControlOriginators

Defines which originator is

allowed to use the application.

Comma-separated list of

"all"|<OriginatorURIs>|<Groups>|

<SP-Domains or Subdomains>.

accessControlContexts

Defines when and where the

application can be used. Comma-

separated list of <Time-Window

as Unix TimeStamp>|<Location as

GPS Coordination with Radius>.

accessControlOperations

Specifies which of the CRUD

operations can be used for

requesting the application.

expirationTime

input

output

config

description

Description

Application name specified by developer of application. Type: String.

Application identifier. ID of the application itself. Type: String.

Contact address as list of URIs to communicate with the resource. Type:

String.

Specifies if the AE resource can receive requests, i.e. defines if the service is

currently available. Type: Boolean.

Specifies when the application has been created. Specified by the system that

has created the resource. Type: Unix Timestamp.

Specifies when the application has been modified to show if it is a current

development or outdated. Type: Unix Timestamp.

Specifies the supported serialisation formats of primitive content parameter,

such as XML, JSON. Type: String.

accessControlPolicy

privileges

Specifies how long the resource is valid/ exists. Type: Unix

Timestamp.

content Specifies the Input parameter as a list of parameter names.

Type: String.

Specifies the Output parameter as a list of parameter names.

Type: String.

Specifies the Config parameter as a list of parameter names.

Type: String.

Gives a prose description of the application. Type: String.

6.1 Provision and Integration of M2M Application Services

242

Figure 6.2 illustrates exemplarily as part of Use Case 2 (Neighbourhood Weather Station)

an M2M application service providing the status of a local rain sensor. Other end-users

that want to integrate the sensor data in their local M2M application can request for that

service as described in subsequent section 6.1.3. Figure 6.3 shows the corresponding IFD

based on the interface parameter specified in Table 6.1. Listing C.8 illustrates the

corresponding XML representation of the IFD.

Figure 6.2: Principles of remoteRainSensor Application Service

Figure 6.3: IFD for remoteRainSensor M2M Application Service

remoteRainSensor.output.state=raining|notRaining

Local SDP 1

CU
SRE

remoteRainSensor
Other End-Users

Personal Environment

End-User 1 Personal

Environment

accessControlPolicy

privileges

expirationTime = ""

accessControlOriginators = "all"

appName = "Remote Rain Sensor Service"

App-ID = "remoteRainSensor"

pointOfAccess = "sip:remoteRainSensor@10.10.21.1"

requestReachability = "true"

creationTime = "2017-08-15"

lastModifiedTime = "2017-09-24"

contentSerialisation = "XML"

accessControlContexts = ""

accessControlOperations = "R"

content

output

input

outputParameter id="1"

accessControlContexts = ""

accessControlOperations = "R"

name = "remoteRainSensor.output.state"

value = "raining; notRaining"

config

Description = "Provides the state of a rain sensor at location Kleiststr.1, D-60318, Frankfurt

 a.M., Germany. Possible Output values: remoteRainSensor.output.state=raining|notRaining"

Interface Description (AE)

 6 Cooperative M2M Application Service Provision

243

6.1.2 Performing remote M2M Application Service Requests

An application provided as a service can be used by sending a request message to the

service provider's platform. As indicated in section 5.4, the exchange of messages

between M2M entities, which are also the applications, is realised using Primitives. For

requesting a service, the requestor must therefore generate a Request Primitive based on

the IFD (containing the required Input/Output/Config parameter) and send it to the service

provider (SP). This then responds with a Response Primitive (containing, if intended, the

Output parameter). The content and structure of the Primitive messages have already been

described in section 5.4.

As mentioned above, a component in the local M2M platform needs to be defined that

accepts and handles the requests. The M2M Service Interface Unit (SIU) as part of the

Communication Unit (CU) has been designed for this purpose (see Figure 6.4).

Figure 6.4: Service Interface Unit (SIU)

M2M Communication Unit (CU)

M2M Technology

Interfaces M2M Service Interface Unit (SIU)

IFD Repository

IFD

Response

Request

Company/

Organisation
End-User

IP Network/

Internet

Request

Response

M2M Application

Service Execution

Engine (SEE)

M2M Device

Abstraction Layer

(AL)

M2M Application

Dispatcher (ADisp)

M2M Application

6.1 Provision and Integration of M2M Application Services

244

The SIU includes an IFD Repository storing the IFDs and an M2M Application

Dispatcher (M2M ADisp) forwarding the service requests to the corresponding M2M

application. Figure 6.5 shows the process of request processing by the SIU.

Figure 6.5: SIU: M2M Application Service Request Processing

The SIU receives the request for a service and extracts the Request Primitive from the

request message. The structure of the Request Primitive essentially corresponds to the

Request Primitive shown in Figure 5.23 containing the Input/Output/Config parameter in

the Content section. If the authorisation should be validated, the Request Primitive

message shall contain the corresponding information for checking the

accessControlPolicies.

M2M Application Dispatcher (M2M ADisp)

[allowed]

[denied]

[Input only Operation] [Output only Operation]

[Input with Output

Operation]

Send Request

Primitive to AL

Generate Response

Primitive

Receive M2M Application

Service Request Message

Determine

Operation Type

Extract Request

Primitive

Extract App-ID, Location Data,

Operation, From Parameter

from Request Primitive

Generate Request

Primitive with Input and

Config Parameter

Generate Request

Primitive with Input and

Config Parameter

Generate Request

Primitive with Output

Parameter

Check

accessControlPolicy

Send Request

Primitive to AL

Send Request

Primitive to AL

Send Request

Primitive to AL

Generate Request

Primitive with Output

Parameter

Send Response

Message to Originator

 6 Cooperative M2M Application Service Provision

245

The SIU extracts App-ID, location data, operation, and from parameters from the

Primitive and checks the permissions for application usage based on the IFDs stored in

the IFD Repository. After successful authorisation the M2M ADisp processes the Request

Primitive. The processing steps depend on which operations the M2M application should

perform and can be classified as follows:

 Input only Operation – The application is intended to trigger only one action in

the platform (e.g., switch a device). The application has only Input/Config

parameters and no Output parameters.

 Input with Output Operation – An operation should be triggered that requires input

values and returns output values (e.g., calculation tasks). The application has both

Input and Output parameters.

 Output only Operation – The application has no Input parameters but provides an

Output (e.g., request of a single sensor value).

For operations by which input/config parameters should be set, the M2M ADisp generates

a Request Primitive containing these parameters and the corresponding values and sends

it to the Abstraction Layer (AL) (refer to section 5.4). For operations that request output

parameters, the M2M ADisp generates another Request Primitive containing the output

parameters and sends it to the AL to query the output parameters. The SIU then generates

a Response Primitive (which may contain the output values) and returns it to the

requestor.

6.1 Provision and Integration of M2M Application Services

246

6.1.3 Integration of remote M2M Application Services

After having introduced how M2M applications can be made available as a service via an

interface, this section describes how to integrate these remote M2M services into M2M

applications that are executed locally (see Figure 6.6).

Figure 6.6: Remote M2M Service Integration

The graphical design of an M2M application integrating a remote M2M service is done

in the same way as modelling an application containing only M2M devices/MMSCs that

are locally available (see section 5.3). The remotely offered M2M services are displayed

in the GUI in the section Remote M2M Services as building blocks (see Figure 5.14) and

can be integrated into the information flow of the application (as state in the application

model and by connecting to other M2M devices/MMSCs by using transitions)

(Steinheimer et al., 2017c). This makes it possible to integrate the functionality of remote

M2M applications into local M2M applications.

Request (Primitive)

Input/Config/Output Parameter

Response (Primitive)

Output Parameter (optional)

End-User B Personal

Environment

[condition]

[condition]

Local M2M

device/MMSC

Local M2M

device/MMSC

Service Execution Engine

(SEE)

remote

M2M Service

integration

End-User A Personal

Environment

remote

M2M Service

 6 Cooperative M2M Application Service Provision

247

The formal application description is created in the same way as described in section 5.5.

While in the formal description of a local application, the device/MMSC-IDs are specified

as identifiers for a state (see Figure 5.36), the identifier for the integration of remote

services corresponds to the service-ID (field App-ID in IFD). Figure 6.7 gives an

exemplary section of a formal application description (as part of a Statechart) in which a

remote M2M service is integrated (see Use Case 2). Here it can be seen that there is no

difference to the format when locally available M2M devices/MMSCs are described. The

corresponding SCXML representation is illustrated in Listing C.9.

Figure 6.7: Extract Formal Application Description Use Case 2

The state machine (SM) representing the application semantic is processed as described

in section 5.6 by the Service Execution Engine (SEE) by generating an instance of the SM

and executing it. To utilise a remote M2M service, the Service Execution Engine (SEE)

must identify (e.g., by means of the state-ID) whether the application contains a remote

service that must be requested. Remote services are identifiable because they are defined

by a state whose corresponding device/service logic is locally not available. If such

elements are identified, the service is requested by sending a Request Primitive to the SP

via the CU. The Request Primitive message contains the parameters (Input/Config/Output

parameters) that serve as input for the remote service and are delivered by it as output. If

the requested remote service has a response parameter, it is returned by the service

...

remoteRainSensor

remoteRainSensor.output.state = ""

localWindowSensor

... ...

Cond:

$remoteRainSensor.output.state=raining

6.2 Networking of Nodes

248

providing platform in the Response Primitive message and can be processed further

within the local M2M application.

It should be noted that the formal application description does not contain information

about the specific SP (i.e., no contact data). SPs offering a service register this via the

IFD. This describes the service and contains the information about the addressing options

by specifying the URI of the service endpoint (field pointOfAccess). The administration

of the IFD and how service consumers can request the IFD to obtain this information is

described in section 6.3.1.

6.2 Networking of Nodes

Chapter 4 has proposed that service providers (SPs) and service consumers (SCs)

communicate P2P (i.e. without central entities involved for communication) to exchange

information required for service utilisation. This section introduces how the networking

of SP and SC is proposed in this project. First, the kind of P2P networking between the

nodes is introduced (section 6.2.1). Subsequently, in section 6.2.2, an adequate

information exchange pattern is selected for information exchange between the nodes.

Finally, section 6.2.3 describes which communication protocols can be used to exchange

information between the nodes.

6.2.1 P2P Information Exchange

The P2P Communication Layer (refer to Figure 4.12) realises the communication

between the participating nodes in the proposed framework. P2P communication is a

 6 Cooperative M2M Application Service Provision

249

common methodology to avoid central entities in system infrastructures. As avoiding

central entities in the described framework is a mandatory requirement, the

communication between the involved nodes also follows the P2P communication

principle (Steinheimer et al., 2012a; Steinheimer et al., 2017a).

The Resource Location and Discovery Protocol (RELOAD) project (IETF RFC 6940,

2014) specifies a fully decentralised P2P signalling protocol usable over the Internet.

Figure 6.8 shows the architecture of RELOAD adopted from (Samaniego et al., 2013)

and (IETF RFC 6940, 2014). RELOAD enables nodes to route signalling messages to

other nodes with the help of additional peers in the overlay. In the RELOAD project an

overlay topology is created using a specific overlay algorithm, which also defines how to

route the messages in the overlay. The overlay algorithm that is used to generate the

topology is generic, i.e. exchangeable with other overlay algorithms (IETF RFC 6940,

2014). The nodes in a RELOAD overlay request services from other peers or provide

services to them, such as a Traversal Using Relays around NAT (TURN) service (IETF

RFC 7374, 2014). Permission to reproduce Figure 6.8 has been granted by authors of the

referenced publication and IETF.

Figure 6.8: RELOAD Architecture acc. (Samaniego et al., 2013; IETF RFC 6940, 2014)

RELOAD Architecture
Internet Model

Equivalent in Overlay

Transport

(Routing)

Internet

Internet Model

Application

Message

Transport
Storage

Topology Plugin

Forwarding and Link

Management

Usage Layer

SIP

Usage

CoAP

Usage
Application

LinkTransport DTLSTLS

© 2014 IETF RFC 6940

6.2 Networking of Nodes

250

RELOAD does not only provide the functionality for P2P message routing, but also

provides the functionality for distributed storage of data items inside the overlay using

the selected overlay algorithm (IETF RFC 7374, 2014; IETF RFC 6940, 2014).

According to (IETF RFC 7374, 2014) through the definitions of so-called “Usages”

(which are again protocol definitions) it is specified how the RELOAD overlay is used to

support a specific application. I.e. Usages define how the data items are structured (ID,

data structure) that should be stored in the RELOAD overlay for specific applications and

define how the RELOAD messaging functionality should be applied.

The components of the RELOAD framework are specified according to (IETF RFC 6940,

2014) as follows:

 Usage Layer – Implements application specific functionality by using the

“overlay services provided by RELOAD”. The Usage Layer defines how

applications map their application specific data into data items that can be stored

in and retrieved from the RELOAD overlay.

 Message Transport – Provides the message routing functionality of RELOAD.

The applications defined by Usages use the Message Transport service of

RELOAD to exchange messages between peers. Applications that want to store

data items also use the Message Transport component by sending a “Store

Request” to the RELOAD overlay.

 Storage – Implements “one of the major functions of RELOAD” that is storing

data in the overlay. The Storage component uses the Topology Plug-in to store the

data items using the specified overlay algorithm.

 6 Cooperative M2M Application Service Provision

251

 Topology Plug-in – Provides the implementation of the overlay algorithm and

maintains “the overlay algorithm Routing Table” which the Forwarding and Link

Management Layer contacts for routing of messages.

 Forwarding and Link Management Layer – Establishes the network connections

and transports the messages between peers “as determined by the Topology Plug-

in”.

As described above, so-called Usages are defined specifying how a RELOAD overlay is

used to support a specific application. The SIP Usage for RELOAD (IETF RFC 7904,

2016) is presented below and demonstrates the way of operating a RELOAD-based

application, but also indicates the disadvantages of RELOAD.

The SIP Usage for RELOAD provides the functionality for a distributed VoIP system

without the requirement of Registrar or Proxy Server (IETF RFC 7904, 2016). It is

defined for application in “server-less, peer-to-peer SIP deployments” (IETF RFC 7890,

2016). The SIP Usage defines the following functionality according to (IETF RFC 7904,

2016):

 Registration – Storage functionality for mapping of SIP User Agent (UA) URIs

to RELOAD Node-IDs and functionality to request the Node-ID of other UAs.

 Rendezvous – Functionality for message routing to establish “a direct connection

for exchanging SIP messages”.

Figure 6.9 shows the information flow defined for a service request in a RELOAD overlay

system. It illustrates the principles of RELOAD overlay functionality with the help of

specific SIP Usage according to (IETF RFC 7904, 2016) enabling to establish a SIP

6.2 Networking of Nodes

252

session between two UAs (Alice and Bob). Permission to reproduce Figure 6.9 has been

granted by IETF.

Figure 6.9: RELOAD Message Exchange for Service Request acc. (IETF RFC 7904, 2016)

The preconditions for communication are performed in the URI Resolution phase. For

addressing nodes in a RELOAD overlay specific RELOAD Node-IDs are used (e.g., Alice

has the Node-ID “5678” and Bob “1234”). For being addressable the nodes store a

mapping of their (SIP) URIs to their Node-IDs in the overlay. For contacting a node to

establish a SIP session, the nodes request the Node-ID of the peer to contact at the overlay.

AppAttach

Peer 0
Alice (5678)

Peer 0
Bob (1234)

Peer 0
Peer 1

Peer 0
Peer nOverlay

...

AppAttach

AppAttach

AppAttach

AppAttach

AppAttach

AppAttach

AppAttach

RTP

INVITE

OK

ACK

Fetch Request

bob@reload.p2p.com Fetch

bob@reload.p2p.com

Response

1234

Store Request

bob@reload.p2p.com,

 1234

Store

bob@reload.p2p.com

 1234

(1) URI Resolution

1234

1234

1234

1234

5678

5678

5678

5678

(3) SIP Session Establishment

(2) P2P Communication Establishment

Registration of SIP

URI in Overlay

Request of SIP

URI from Overlay

Messaging P2P

Connection

Establishment

End-to-End

Communication

between Nodes

© 2016 IETF RFC 7904

 6 Cooperative M2M Application Service Provision

253

The overlay searches and responses the corresponding data item applying the specified

overlay algorithm.

Afterwards (P2P Communication Establishment phase) the peer that wants to establish

the connection generates a RELOAD protocol-specific AppAttach message directed to

the destination Node-ID and sends it to the overlay network, which routes it to the

destination host (applying the specified routing algorithm). The destination host

responses also with an AppAttach message to the requestor (routed through the overlay).

After the originator has received the AppAttach message from destination host, both

nodes are connected and ready for using the provided services.

For final session establishment (SIP Session Establishment phase) the originator initiates

a SIP Three-Way-Handshake directly with the destination host using plain SIP signalling

messages.

Another Usage for RELOAD that has been defined is the Constrained Application

Protocol (CoAP) Usage for RELOAD (IETF RFC 7650, 2015). This describes according

to (Rodrigues et al., 2016) a lookup service for resources and how to cache sensor data in

a RELOAD overlay. This Usage again describes the connection establishment between

the end nodes via routing through the P2P network.

The above-described approach of RELOAD to connect nodes P2P is advantageous for

avoiding central entities in a system architecture. The use of P2P overlay algorithms to

generate a shared, distributed database is also an advantage. At the same time, however,

the RELOAD approach has the following disadvantages:

6.2 Networking of Nodes

254

 RELOAD Stack required – RELOAD is a complex system defined by the

RELOAD protocol which requires a corresponding protocol stack to exist at the

runtime environment of the end-user. While most end-users have a SIP stack

integrated in their IAD, this is not the case with a RELOAD stack. Thus end-users

could not use a RELOAD-based system with the available resources and network

access (provided by their Internet Service Provider, ISP).

 Networking of Nodes – RELOAD is building its own routing infrastructure on the

underlying Internet/IP network, which already has an infrastructure for addressing

nodes (refer to Figure 6.10-a). To connect two nodes in a RELOAD overlay, they

must first establish a connection with each other using special RELOAD messages

before they can exchange the actual messages that are associated with a service.

The exchange of the service-specific messages is then end-to-end, but beforehand,

other nodes for the routing of the messages are unnecessarily involved.

In order to eliminate these disadvantages, this research proposes an P2P networking

approach for linking SPs and SCs as illustrated in Figure 6.10-b, which is optimised in

the following aspects:

 Direct Communication of M2M SP and SC – The communication between the SP

and SC takes place on the application layer exclusively end-to-end between the

nodes involved in a service utilisation, meaning for connecting SP and SC the

messages are exchanged directly between these two nodes without intermediary

entities.

 Application of Internet Communication Technology – The involved peers are all

connected to the Internet or another continuous IP network. As a result, the

 6 Cooperative M2M Application Service Provision

255

corresponding routing mechanisms can be reused which are provided in the

underlying network. Addressing is done directly via the URI, which the end-user

platform has been assigned by the ISP. This makes an additional routing

mechanisms unnecessary.

 Storage of Service URI in IFD – The URI of the SP is directly stored in the IFD

in the designated field pointOfAccess (refer to Table 6.1) since the IFD should be

available to the SC when requesting a M2M service.

Figure 6.10: Comparison RELOAD and proposed Networking Topology

The following improvements compared to a RELOAD-based architecture result from the

proposed optimisation approaches.

1. Since the IFD is already available to SCs when they plan to request a remote M2M

service, they can use the URI stored in the IFD without the need for an additional

address resolution (no URI Resolution phase).

a) RELOAD Networking Topology

RELOAD Overlay

Internet/ IP Network

Peer B

Internet/ IP Network

Peer A Peer B

b) Proposed Networking Topology

Peer A

Peer-mediated messaging for End-to-End

Connection Establishment in Overlay

Message Routing for End-to-End Connection

Establishment in underlying IP Network

RELOAD

Peer Y

RELOAD

Peer X

RELOAD

Peer Z

6.2 Networking of Nodes

256

2. No additional nodes on the application layer are required for routing messages,

since the service request is sent directly to the SP (no P2P Communication

Establishment phase). This is possible because the SP's URI is contained in the

IFD.

3. A RELOAD stack in the execution environment is not required since the IP-based

connection functionality of the ISP is used. The SIP stack contained in the end-

user's IAD could also be used for communication between SP and SC. This means

that the resources available to the end-user environment can be used without

having to provide additional communication protocol stacks.

6.2.2 Information Exchange Pattern

For exchanging information between M2M entities several information exchange patterns

(IxPs) exist as specified by (Holler et al., 2014) adopted from (Carrez et al, 2013). This

section describes these IxPs (see Figure 6.11) and evaluates their application for

information exchange in the context of the concept designed in this research. Permission

to reproduce Figure 6.11 has been granted by authors of the referenced publication and

publisher Elsevier.

Figure 6.11: IxPs acc. (Höller, 2014) adopted from (Carrez et al., 2013)

c) Subscribe/ Notify d) Publish/ Subscribe

b) Request/ Responsea) Push

M2M Entity B M2M Entity A

Subscribe

Message Broker

Subscribe

Notify

Notify

M2M Entity C

Publish

M2M Entity BM2M Entity A

Request

Response

M2M Entity BM2M Entity A

Time Push

M2M Entity BM2M Entity A

Subscribe

M2M Entity C

Subscribe

Notify
...

Notify
...

 6 Cooperative M2M Application Service Provision

257

Push IxP

In push IxP (Figure 6.11-a) information are pushed from an M2M entity to another M2M

entity. This IxP requires that the contact information of M2M Entity B is already

configured in M2M Entity A and that M2M Entity B listens for the information might be

pushed (Holler et al., 2014).

Request/Response IxP

In request/response IxP (Figure 6.11-b) an M2M Entity A requests an information at

another M2M Entity B. M2M Entity B responses the information after receiving the

request. The interaction in this IxP is synchronous, i.e. M2M Entity A has to wait for the

response until it continues further processing. In practice, this limitation is addressed by

performing multi-threading capabilities in M2M Entity A. Additionally, M2M Entity B

has to perform capabilities “to handle concurrent requests and responses from multiple

components” (Holler et al., 2014).

Subscribe/Notify IxP

In subscribe/notify IxP (Figure 6.11-c) multiple M2M Entities A and B subscribe for an

information provided by an M2M Entity C. M2M Entity C sends a notify message to all

subscribers of that information once the information is ready for transmission. The

interaction in this IxP is asynchronous. M2M Entity C needs to perform the capability for

storing and managing the contact data and corresponding request topics. The

subscribe/notify IxP is applicable when a single M2M entity provides information of

interest for multiple other M2M entities (Holler et al., 2014).

6.2 Networking of Nodes

258

Publish/Subscribe IxP

In publish/subscribe IxP (Figure 6.11-d) a centralised Message Broker is involved

mediating publications and subscriptions between information publisher and consumer.

M2M entities interested in an information subscribe at the Message Broker for a specific

information. M2M entities that provide that information publish the information to the

Message Broker which send a notify message to the entities interested in that information.

As subscribe/notify IxP, publish/subscribe IxP is also an asynchronous pattern. Different

from the subscribe/notify IxP, here the information producer does not need to manage

information about the information subscriber (Holler et al., 2014).

The evaluation of the IxPs specified by (Holler et al., 2014) leads to the result, that

subscribe/notify IxP is the best fitting pattern to exchange information between M2M

entities in the approach presented in this research with regards to the specified

requirements of section 3.2. The push IxP is not applicable because the contact

information of the receiving M2M entity needs to be configured statically in the

information producing entity. Because the dynamic nature of the services forming an

application in the presented concept, specific service instances cannot be known by

configuration time and furthermore are highly volatile. The request/response IxP is partly

usable for information requests of single services during runtime and receiving

information instantly. However, it is not the best choice for general information exchange

due to the synchronous principle of that pattern and parallel response management that

needs to be performed by the receiving entity. Also for receiving information by multiple

M2M entities during runtime, every M2M entity interested in an information has to

request every information always it wants to consume/process the information.

 6 Cooperative M2M Application Service Provision

259

Configuring an application before running the application and validating the correct

application configuration as proposed in this project is not realisable according to the

principle of synchronous information exchange, since service links are not yet available

at configuration time (see section 6.4.3). The publish/subscribe IxP contains a central

Message Broker. This violates the decentralised principle and requirements of the

approach presented in this research. This leads to select the subscribe/notify IxP as the

best choice for information exchange between distributed M2M entities (Steinheimer et

al., 2013e). Benefit of this pattern is that it is based on asynchronous principles and

additionally entities that want to receive an information have to register a single time for

an information at an information producer and keep informed always the information is

ready for transmission.

6.2.3 Selection of appropriate P2P Communication Protocols

After the principles of proposed P2P communication between SP and SC has been

introduced in section 6.2.1 and 6.2.2, a standardised application layer protocol for

exchanging messages via an IP network is required. As transport protocol usually TCP

(IETF RFC 793, 1981) or UDP (IETF RFC 768, 1980) is used. Since UDP avoids

overhead for connection-oriented communication at transport level, this should be

selected as transport protocol. The Primitive messages are then exchanged with an

application layer protocol. OneM2M defines so-called Protocol Bindings (refer to section

5.4) specifying how the Primitive messages between M2M entities (i.e. SP and SC) are

embedded in an application layer communication protocol. OneM2M defined Protocol

Bindings for HTTP (oneM2M TS-0009-V2.6.1, 2016), MQTT (oneM2M TS-0010-

6.2 Networking of Nodes

260

V2.4.1, 2016), CoAP (oneM2M TS-0008-V1.0.1, 2015) and WebSocket protocol

(oneM2M TS-0020-V2.0.0, 2016).

HTTP follows the Request/Response IxP and MQTT uses the Publish/Subscribe IxP with

a central message broker. Both approaches do not meet the requirements of the framework

introduced in this project (avoidance of central components) or are inconvenient for

implementation of application logic (blocking at invocation). WebSocket Protocol

enables bi-directional end-to-end communication, but has the disadvantages that it relies

on the additional protocols HTTP and TCP and therefore WebSocket communication

results in large overhead for connection establishment and termination. WebSocket

connections using UDP are not possible. Each WebSocket connection requires a separate

TCP connection establishment (Three-Way-Handshake) and HTTP Opening Handshake

as well as for closing connection HTTP Closing Handshake and TCP Connection

Teardown. While the connection exists it is required to exchange keep alive messages

continuously keeping the connection open. Beside the unnecessary overhead for

communication with the WebSocket protocol, at least one HTTP, TCP, and WebSocket

stack is required on the platform of both communication partners, which enlarges the

complexity of the system itself and is not commonly existing on end-users equipment.

Therefore, CoAP remains the only protocol suggested by oneM2M for exchanging

messages between M2M entities in this context. Since multimedia communication is a

central component of the introduced framework, Session Initiation Protocol (SIP), which

is the standard protocol for signalling in multimedia communication networks, is

proposed as an alternative to CoAP (Steinheimer et al., 2013e).

 6 Cooperative M2M Application Service Provision

261

The following illustrates how Subscribe/Notify IxP can be realised using CoAP and SIP.

For this purpose, a general mechanism is first described to specify how a service can be

requested and how the service providing peer manages and processes the requested

information. Afterwards, CoAP is introduced and the message exchange for the service

request is depicted according to the CoAP Protocol Binding. Subsequently, SIP will be

introduced. Since no Protocol Binding has been defined for SIP so far, this Protocol

Binding is designed to realise the exchange of Primitive messages via SIP.

Principle of Service Subscription, Notification, and Termination

A peer requests a service from other peers by sending a Request Primitive message to

them. Mapping this to the Subscribe/Notify IxP, this means that peers subscribe services

(i.e. send subscribe message to service providing peers). Peers providing services then

execute the individual service logic and, if necessary, delivers requested information to

the requesting peer using a Response Primitive message. Mapping this to the

Subscribe/Notify IxP, this means that service providing peers send a notify message to

service requesting peers.

When requesting services according to Subscribe/Notify IxP, the following cases should

be considered:

 Request Once – Requesting peers should be able to request a service once.

 Continuous Request – Requesting peers should be enabled to permanently request

information provided by a service and receive their outputs continuously.

6.2 Networking of Nodes

262

 Terminate Request – Service requesting peers should be able to terminate a

continuous service request (i.e. inform service providing peers they do not

continue using a service).

Figure 6.12 shows these cases and thus the general principles of service

requests/terminations.

Figure 6.12: General Service Subscription/Notification/Termination Process

Peer 0
Service

requesting Peer Peer 0
Service

providing Peer

alt

Request

Service

Subscribe (Request Primitive) Receive

Service

Request

Process

Service

Logic

Notify (Response Primitive)
[Request Once]

Process

Service

Result

Store in

Subscriber

List

Notify (Response Primitive)

[Continuous Request]

Process

Service

Result

Process

Service

Logic

[Terminate Request]

Delete from

Subscriber

List

Terminate (Request Primitive)

input

config

output

content

input

config

output

content

output

content

output

content

 6 Cooperative M2M Application Service Provision

263

A service is requested by sending a Subscribe Request which contains the parameters to

be queried and, if necessary, the parameters to be set. If request are one-time requests of

a service (Request Once), the service providing peers respond directly and return the

output parameters of the service (if defined). These are then processed by the requesting

peer. If the output values of a service are to be transmitted and processed continuously

(Continuous Request), the service providing peers store the contact information (of

requesting peers) in a local subscriber list. To terminate a service subscription (Terminate

Request), the peers that requested the service before send a Terminate Request message

to the service providing peers. The subscriber will then be deleted from the local

subscriber list.

Realisation of Subscribe/Notify IxP using CoAP

CoAP is a protocol for communication in "Constrained RESTful Environments" with the

goal of realising a "REST architecture". A REST architecture is according to (Bayer,

2002) an architectural approach for distributed applications in which all entities or

components are considered as resources. These resources can be addressed directly via a

unique URI. Communication with the resources is done by exchanging representations of

the resources between the client (using the resource) and the server (hosting the resource).

Constrained environments contain nodes that are limited in CPU power, RAM and ROM

capacity. Additionally to the nodes, the networks for transmission of information are also

limited in their transmission capacity (low bandwidth, low power for transmission of

messages) so that message packets to be transmitted should be as small as possible (IETF

RFC 7252, 2014).

6.2 Networking of Nodes

264

According to (IETF RFC 7252, 2014) CoAP offers the following essential features for

message exchange:

 UDP binding with (optional) reliability support – Use of UDP for connectionless

transmission and realisation of reliability on CoAP protocol level.

 Asynchronous message exchange – Messages can be transmitted asynchronously,

so that senders do not block until they have received a response.

 Low Header Overhead and parsing Complexity – CoAP has low header overhead

and because the low complexity of CoAP messages less effort is required to parse

the messages.

Communication between nodes takes place by exchanging messages between so-called

endpoints installed on the nodes. An endpoint is an "entity participating in the CoAP

protocol". Endpoint correspond to a socket on a node (IP address + port) and the

associated additional addressing information of an application that should process the

CoAP messages (URI-Path). CoAP distinguishes between client and server endpoints.

Client endpoints initiate messages and server endpoints receive messages. Server

endpoints process the Request messages and reply with a Response message, which in

turn is processed by the client. The nodes in a CoAP implementation can take on both of

these roles, i.e. in contrast to HTTP implementation, they can act both as clients and

servers (IETF RFC 7252, 2014).

CoAP distinguishes between Confirmable, Non-confirmable, and Acknowledgement

messages to realise the message exchange between endpoints. CoAP enables reliable and

unreliable message transmission as described subsequently.

 6 Cooperative M2M Application Service Provision

265

Figure 6.13 shows the "Reliable Message Transmission". Reliability is implemented by

marking the Request message as "Confirmable (CON)". A confirmable message must be

answered by the recipient with an "Acknowledgement message (ACK)". The ACK

message contains the same Message-ID as the corresponding Request message. If no

acknowledgement message is sent, the client repeats the sending of the Request message

(IETF RFC 7252, 2014). Permission to reproduce Figure 6.13 has been granted by IETF.

Figure 6.13: CoAP Reliable Message Transmission acc. (IETF RFC 7252, 2014)

Figure 6.14 shows the "Unreliable Message Transmission". Unreliable message

transmissions does not require acknowledgement messages. Such messages are marked

as "Non-confirmable message (NON)". NON messages also have a Message-ID to enable

duplicate message detection (IETF RFC 7252, 2014). Permission to reproduce Figure

6.14 has been granted by IETF.

Figure 6.14: CoAP Unreliable Message Transmission acc. (IETF RFC 7252, 2014)

CoAP uses, similar as HTTP, the methods GET, PUT, POST, DELETE to request

resources by a client. Subsequently the semantics of these methods are introduced as

described in (IETF RFC 7252, 2014).

Peer 0
CoAP

ServerPeer 0
CoAP

Client

CON [0x8e45]

ACK [0x8e45]

© 2014 IETF RFC 7252

Peer 0
CoAP

ServerPeer 0
CoAP

Client

NON [0x9f56]

© 2014 IETF RFC 7252

6.2 Networking of Nodes

266

 GET – Retrieves representations of information corresponding to resources

identified by request URIs.

 POST – Requests to process representations included in the request message.

 PUT – Requests to update/create resources with representations included in the

request message.

 DELETE – Deletes resources identified by request URIs.

The resource hosting servers response to a request with Response messages indicating

they have received, understood and performed the request (or indicate errors occurred,

such as requested resource not found). The individual response code, given in the

Response message, indicates the result of the request (IETF RFC 7252, 2014).

Figure 6.15 shows the message format of a CoAP message. Table 6.2 describes the

meaning of the sections in the CoAP message format. The contents of the sections Ver,

T, TKL, Code, Message ID are specified in each case encoded in the Unsigned Integer

format and have the number of bits as shown in Figure 6.15 (IETF RFC 7252, 2014).

Permission to reproduce Figure 6.15 has been granted by IETF.

Figure 6.15: CoAP Message Format acc. (IETF RFC 7252, 2014)

A resource is addressed with the CoAP protocol using a URI that is structured as follows:

coap://<host address>:[<port>]/<Path>[?<query>]. The port is optional and if not

Ver

0 1

T

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

Message IDCodeTKL

Options (if any)

1 1 1 1 1 1 1 1 Payload (if any)

Token (if any)

© 2014 IETF RFC 7252

 6 Cooperative M2M Application Service Provision

267

specified “default port 5683 is assumed”. The path specifies the resource located at the

server. The query is also optional and specifies arguments that serve “to further

parameterize the resource”. Arguments are often specified as “key=value” pairs (IETF

RFC 7252, 2014).

Table 6.2: CoAP Message Format acc. (IETF RFC 7252, 2014)

The size of a CoAP message should be small enough to be transported in a single IP

packet to avoid IP packet fragmentation. I.e. the CoAP message may only be so large that

it can be encapsulated in the payload of a single UDP message. This depends on the MTU

size of the IP network. If the MTU size is not known, an MTU size of 1280 Byte should

be assumed. Minus the UDP header (IETF RFC 7252, 2014) recommends a maximum

Section Description

Version (Ver) Defines the CoAP version.

Type (T) Defines the type of the CoAP message: 0 (Confirmable), 1 (Non-confirmable), 2

(Acknowledgement).

Tokel Length (TKL) Defines the length of the token specified in the Token field.

Indicates type of message (request or response) and gives details about the

request methods or response status.

Following request method codes are specified: 0.01 (GET), 0.02 (POST), 0.03

(PUT), 0.04 (DELETE).

Exemplary response codes are: 2.01 (Created), 2.02 (Deleted), 4.04 (Not Found),

5.00 (Internal Server Error).

Message ID Indicates a message ID in order to detect corresponding acknowledgement

message (for reliable message transmission) or detect duplicate messages (for

unreliable message transmission).

Token Clients can set the token value that can be used “to correlate requests and

responses”.

Options The CoAP message can include individual options (indicated by numbers)

specifying details corresponding to the CoAP message, such as conditions when

to perform a request or content format.

Payload The CoAP message can carry optional payload that carries application specific

data.

Code

6.2 Networking of Nodes

268

message size of 1152 Byte, whereby 1024 Byte are proposed for the payload size (IETF

RFC 7252, 2014).

OneM2M defines in (oneM2M TS-0008-V1.0.1, 2015) a so-called "CoAP Protocol

Binding" specifying how (Request/Response) Primitive messages are mapped to CoAP

messages. This Protocol Binding defines the mapping of parameters of an oneM2M

Primitive to corresponding message fields of a CoAP message. The following introduces

how to realise the Subscribe/Notify IxP with CoAP messaging.

Table 6.3 shows the mapping of a Primitive message to a corresponding CoAP message

according to (IETF RFC 7252,2014) required in the context of this project.

Table 6.3: OneM2M Primitive CoAP Message mapping acc. (oneM2M TS-0008-V1.0.1, 2015)

OneM2M Primitive

Parameter

To

From

oneM2M operation CoAP Method

CREATE POST

DELETE DELETE

NOTIFY POST

Request Identifier

Response Status Code

Content

Operation Field: Code. Only in case of a request. Operation parameter is mapped to

the CoAP method as follows.

In case of Subscribe message (oneM2M operation CREATE) additionally

Resource Type parameter in URI query ty=23.

Field: Option. Option no 257 (oneM2M-RQI). The Request Identifier

parameter is mapped to the oneM2M-RQI option.

CoAP Message Parameter

URI (in Request message). The To parameter is mapped to the URI-Path of

the CoAP message.

Field: Option. Option no 256 (oneM2M-FR). The From parameter (in

Request message) is mapped to the oneM2M-FR option.

Response Status Code is mapped to the Code field of a Response message.

oneM2M 2000 (OK) corresponds to CoAP status code 2.05 (Content).

Field: Payload. Contains the Service Specific Input/ Config/ Output

Parameter.

 6 Cooperative M2M Application Service Provision

269

It should be noted that according to (oneM2M TS-0008-V1.0.1, 2015) both, oneM2M

CREATE requests and oneM2M NOTIFY requests are transmitted with a CoAP POST

(method) message. The distinction between CREATE and NOTIFY requests is realised

using the Resource Type parameter in the URI-query. If this parameter is set, the request

is handled as a CREATE request, i.e. a SUBSCRIBE request. (oneM2M TS-0004-V2.7.1,

2016) defines several Resource Types, such as ty=23 (Subscription). If the parameter has

not been set, the request is handled as a NOTIFY request.

Furthermore, a distinction must be defined as to whether information (i.e., a service)

should be requested once, or whether the requested information should be continuously

sent to the requesting peer. For this purpose, it has been specified that this information is

delivered in the Request message. The option parameter no 259 (oneM2M-OT) is used,

which specifies an originating timestamp as defined in (oneM2M TS-0008-V1.0.1, 2015).

If this is set to "0", the request is handled as a one-time request otherwise it is handled as

a continuous subscription. If the information should be continuously transmitted to the

peer, the information-providing peer stores the contact data locally and sends the

n/a

n/a

n/a

n/a

n/a

n/a

Field Token Length (TKL). Length of the Token field.

Field: Message ID. Unique message ID.

Field: Token. Unique ID set by the client.

Field: Option. Option no 259 (oneM2M-OT) = 0 specifies retrieve of

service/ information once. Otherwise continuous information delivery.

Field: Version (Ver). The Version field should be set to 1.

Field: Type (T). 0 (Confirmable) in case of reliable message transmission, 1

(Non-confirmable) in case of unreliable message transmission, 2

(Acknowledgement) indicates an acknowledgement message.

6.2 Networking of Nodes

270

information continuously to the peer. If this is a one-time request, the peer returns the

information directly and does not store any further information about the requesting peer.

The following Figure 6.16 – Figure 6.18 illustrate the comprehensive message exchange

using the CoAP protocol including the specific protocol message fields to realise the

Subscribe/Notify IxP. Figure 6.16 shows the subscription of an information/service by

sending a CREATE request. The receiving server replies with an Acknowledgement

message. Figure 6.17 shows the notification messages generated by the server delivering

the requested information (once or continuous) to the requesting peer. Figure 6.18

illustrates the message exchange for terminating a subscription. In that case clients

generate a DELETE message indicating that they are not interested in the previously

requested information/service anymore. Message Sequence Charts C.1 – C.3 show the

overall message exchange including message content for subscription, notification, and

termination via CoAP (refer to Appendix C).

Figure 6.16: CoAP Messaging for Service/Information Subscription

Peer 0
CoAP

ServerPeer 0
CoAP

Client

POST coap://10.0.13.20:5683/m2mservice?ty=23

ACK

MessageID = 3130

Type = Acknowledgement

MessageID = 3130

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Payload

 6 Cooperative M2M Application Service Provision

271

Figure 6.17: CoAP Messaging for Service/Information Notification

Figure 6.18: CoAP Messaging for Service/Information Unsubscription

As described above no Protocol Binding for SIP exist. Therefore, a SIP Protocol Binding

is introduced below to also enable the exchange of Primitive messages using SIP.

Peer 0
CoAP

ServerPeer 0
CoAP

Client

POST coap://10.0.4.20:5683/m2mservice

ACK

MessageID = 4080

Type = Acknowledgement

MessageID = 4080

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Payload

value = Parameter-Value1

Peer 0
CoAP

ServerPeer 0
CoAP

Client

DELETE coap://10.0.13.20:5683/m2mservice

ACK

MessageID = 1528

Type = Acknowledgement

MessageID = 1528

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Payload

6.2 Networking of Nodes

272

Implementation of Subscribe/Notify IxP using SIP

SIP is a text-based “application-layer control protocol” enabling „internet endpoints“, so-

called user agents (UAs) to establish a session with each other (shared thread in context

of an application) and exchange information data. SIP is independent of underlying

protocols, such as transport protocol TCP or UDP. SIP is the standard protocol for

signalling (controlling communication sessions) in internet-based telephony

environments and therefore its protocol stack is usually available on common IADs in

end-users environment. Same as CoAP, SIP implements an “HTTP-like request/response

transaction model” and integrates a reliability mechanisms. I.e. a transaction consists of

a request invoking a specific method on the server which is answered by a Response

message. An UA can take the role of both, client (User Agent Client, UAC) initiating SIP

requests and server (User Agent Server, UAS) responding to SIP requests (IETF RFC

3261, 2002).

Additionally to the basic SIP standard RFC 3261 extensions of this standard were defined,

such as extension for “SIP-Specific Event Notification” (IETF RFC 3265, 2002) enabling

Subscribe/Notify IxP or „Extension for Instant Messaging“ (IETF RFC 3428, 2002)

enabling Instant Messaging via SIP.

Figure 6.19 illustrates the structure of a SIP Request message and Figure 6.20 shows the

structure of a SIP Response message.

 6 Cooperative M2M Application Service Provision

273

Figure 6.19: SIP Request Message Format acc. (IETF RFC 3261, 2002)

Figure 6.20: SIP Response Message Format acc. (IETF RFC 3261, 2002)

A SIP Request message always starts with a Start Line. This specifies the method to be

executed on the UAS containing the address information (SIP URI) of the target SIP UA.

A SIP URI has the following structure: sip:<username>@<host address>:[<port>]. The

port is optional and if not specified default port 5060 is assumed. A SIP Response

message also starts with a Start Line containing information about the corresponding

Request message (e.g. Status Code of message transmission). Beside the Start Line, a SIP

message contains various Header Fields giving more details of the session.

Table 6.4 describes an extract of SIP Header Fields as contained in Request/Response

messages. SIP messages can additionally include a Message Body containing required

information in the application context, such as Session Description Protocol information

(describing details of an audio/video call) (IETF RFC 3261, 2002).

Message Body
Message

Body

Method Request URI SIP Version CRLFStart Line

Contact Via From To

Call-ID CSeq Content-Type Content-LengthHeader

...

Blank Line

Event Max-Forwards Expires

SIP Version Status Code Reason Phrase CRLFStart Line

CSeq Call-ID From To

Via CSeq Content-Length Max-ForwardsHeader

Expires
Subscription-

State
...

6.2 Networking of Nodes

274

Table 6.4: SIP Message Format acc. (IETF RFC 3261, 2002; IETF RFC 3265, 2002)

Section Description

Start Line in

Request

Messages

The Start Line has the format <Method name > <Request-URI > <SIP-Version >.

Method Name specifies the method to be executed on the UAS. Request-URI

specifies the addressing information (SIP URI) of the UAS. SIP-Version specifies

the Version of the SIP Protocol used (usually “SIP/2.0”)

Start Line in

Response

Messages

The Start Line has the format <SIP Version > <Status Code > <Reason Phrase >. SIP-

Version specifies the Version of the SIP Protocol used (usually “SIP/2.0”). Status

Code indicates the response status of a request (e.g. 200 for successful request).

Reason Phrase is a textual description of the Status Code (e.g. “OK” for Status

Code 200).

Contact Defines the SIP URI of the message originating UA. Indicates where to send

future requests.

Via Contains information about the routing of Response messages (IP + port + branch

parameter to identify a specific transaction). Indicates where the request

initiating UA expects to receive the Response message and possibly other

network elements included in the routing path.

From Contains the SIP URI as well as a display name of the originator of a request.

From header field of Response messages equals to the From header value of the

original Request message.

To Contains the SIP URI as well as a display name of the receiver of a request. To

header field of Response messages equals to the To header value of the original

Request message.

Call-ID Globally unique identifier to correlate messages send in a specific context

(dialog).

CSeq Command Sequence containing an Integer number as well as a method name.

Implements a sequents number that is incremented for every new Request

message inside the same dialog.

Content-Type Specifies the type of content in the Message Body (e.g. application/xml).

Content-Length Describes the length of the Message Body.

Event Indicates the type of event a subscriber registers for. Can contain additional

parameter specifying details about the type of event.

Max-Forwards Integer value indicating the maximum number of hops on the routing path and is

decremented by each forwarding network element.

Expires Defines the time in seconds a avent subscription is active. Value set to “0”

defines terminating a subscription.

Message Body The SIP message can carry optional payload that carries application specific data.

Subscription-State Indicates the status of the subscription. “Active” indicates that the subscription is

active and will be processed by the notifier and “terminated” means that the

subscription is terminated.

 6 Cooperative M2M Application Service Provision

275

To realise the Subscribe/Notify IxP, an "event notification mechanism" is defined in

(IETF RFC 3265, 2002). Here UAs (subscriber) who are interested in information (i.e. in

specific events) register themselves at the event producing UA (notifier). The notifier then

sends information about this to the subscriber at regular intervals or if a corresponding

event has occurred (IETF RFC 3265, 2002).

To implement the event notification mechanism, (IETF RFC 3265, 2002) defines the

following methods:

 SUBSCRIBE – The SUBSCRIBE method is used in a SIP Request message to

register for an event at another UA.

 NOTIFY – The NOTIFY method is used by the notifier to send an event to a

subscriber.

To specify a SIP Protocol Binding analogous to the CoAP Protocol Binding, it must be

defined how the elements of the Primitive messages are mapped to the elements of a SIP

message. Table 6.5 shows this mapping.

Table 6.5: OneM2M Primitive SIP Message mapping

OneM2M Primitive

Parameter

To

From

oneM2M operation SIP Method

CREATE SUBSCRIBE

DELETE SUBSCRIBE

NOTIFY NOTIFY

Operation The Operation parameter is mapped to the Method Name in Request Line.

Operation parameter is mapped to the SIP method as follows.

From header field and Contact header field. The From parameter is mapped to

the From header field as well as the Contact header field of the SIP message.

In case of Subscribe message for unsubscription the Expires header is set to “0”.

SIP Message Parameter

Request Line SIP URI and To header field. The To parameter is mapped to the

SIP URI in the Request Line as well as the To header field of the SIP message.

6.2 Networking of Nodes

276

The designed SIP Protocol Binding enables transmission of Primitive messages with SIP

and makes it possible to use the existing communication infrastructure, in particular the

existing communication equipment (SIP stack in IAD) in end-users’ environments for

communication between SPs and SCs.

It should be noted that Primitive operations CREATE and DELETE are both sent via a

SIP Request message with the method SUBSCRIBE. The distinction between CREATE

and DELETE is made based on the Expires header field. If this field has the value "0",

the message is handled as an unsubscription message.

It has also been designed to specify whether a service should be used once or whether the

associated information should be transmitted continuously. For this purpose, the

additional parameter “once” has been defined in the Event header field. The parameter

reqId has also been specified as an additional parameter in the Event header field defining

the Request Identifier of a Primitive.

Request Identifier

Response Status

Code

Content

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Field Token Length (TKL). Length of the Token field.

CSeq header field: Command Sequence Number set by the UAC.

Call-ID header field: Unique ID set by the UAC.

Event header parameter reqId has been defining the Request Identifier .

Response Status Code is mapped to the Response Line Status Code of a

Response message. oneM2M 2000 (OK) corresponds to SIP status code 200

(OK).

Message Body . Contains the Service Specific Input/ Config/ Output Parameter.

Content-Length header field. Indicates the size of the Message Body

Via header field: SIP URI of the client, set by the UAC.

Max-Forwards header field. Indicates the maximum number of hops.

Event header parameter once has been specified indicating retrieve of service/

information once (once=true). Otherwise (once=false) continuous information

delivery.

 6 Cooperative M2M Application Service Provision

277

The following Figure 6.26 - Figure 6.28 illustrate the comprehensive message exchange

using SIP including the specific protocol message fields to realise the Subscribe/Notify

IxP.

Figure 6.26 shows the subscription of an information/service by sending a SUBSCRIBE

request. The receiving UAS replies with an acceptance message. Figure 6.27 shows the

notification message generated by the UAS that delivers the requested information (once

or continuous) to the requesting peer. Figure 6.28 shows the message exchange for

terminating a subscription. In that case the UAC generates a SUBSCRIBE message with

Expires header field set to “0” indicating that it is not interested in the previously

requested information/service anymore. Message Sequence Charts C.4 – C.6 show the

overall message exchange including message content for subscription, notification, and

termination via SIP (refer to Appendix C).

Figure 6.21: SIP Messaging for Service/Information Subscription

Peer 0User Agent ServerPeer 0User Agent Client

SUBSCRIBE sip:remoteM2Mservice@10.0.13.20:5060 SIP/2.0

SIP/2.0 200 OK

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Message Body

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Event = m2mService;reqId=465143 [;once=false/true] if one-time subscr.

6.2 Networking of Nodes

278

Figure 6.22: SIP Messaging for Service/Information Notification

Figure 6.23: SIP Messaging for Service/Information Unsubscription

It should be emphasized once again that all communication is P2P, meaning that no

additional mediating network elements on the application layer are involved in the

communication between SP and SC. Thus, there are no dependencies on additional

network elements or on the operators of the network elements.

Peer 0User Agent ServerPeer 0User Agent Client

NOTIFY sip:PeerX@10.0.4.20:5060 SIP/2.0

SIP/2.0 200 OK

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Message Body

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Event = m2mService;reqId=465143 [;once=false/true] if one-time subscr.

value = Parameter-Value1

Peer 0User Agent ServerPeer 0User Agent Client

SUBSCRIBE sip:remoteM2Mservice@10.0.13.20:5060 SIP/2.0

SIP/2.0 200 OK

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Call-ID = 312f640321938e909b96f545344928fe@10.0.4.20

Message Body

content

output

outputParameter id = 1

name = remoteM2MapplicationService.output.parameter1

Event = m2mService;reqId=465143 [;once=false/true] if one-time subscr.

Expires = 0

 6 Cooperative M2M Application Service Provision

279

The entities contained in the architecture of the M2M service platform (MSP) presented

in this research have the possibility to use both, CoAP and SIP as communication

protocols between the peers by using the CoAP Protocol Binding or introduced SIP

Protocol Binding.

In the following, an evaluation of CoAP and SIP as communication protocol in the context

of the presented architectural approach is performed.

Both CoAP and SIP have functionality transporting XML-data and mechanisms for

reliable communication enabling reliable exchange of Primitive messages. CoAP and SIP

are realised in realised in Application Layer (OSI) that offers the functionality to act in

heterogeneous networks. Both protocols can be used for end-to-end communication

between end-users’ platforms. Furthermore, CoAP and SIP offer the functionality for

location-independent availability via unique identifiers (globally defined SIP/CoAP

URIs).

CoAP has an advantage when considering the message size. The header fields of a CoAP

message are smaller than the header fields of a SIP message resulting in more overhead

for a SIP message, because the header fields are not encoded and compressed like in

CoAP, but in text format. The content of the header fields and the payload is the same for

both protocols. However, the overhead of a SIP message according to (IETF RFC 3261,

2002) can be reduced by providing the SIP header fields in a compact form. In this case,

the header fields are abbreviated by a single letter (e.g. compact form of the "From:"

header is "f:"). This reduces the length of the header field name to 4 Byte, since UTF-8

(IETF RFC 3629, 2003) is used for character encoding.

6.2 Networking of Nodes

280

The implementation of the MMSCs within the local M2M platform requires a SIP stack.

The use of SIP as compared to CoAP for message exchange between the distributed M2M

platforms has the advantage that an additional stack is avoided, which in turn reduces the

complexity of the platform architecture. End-users also usually have an end-device (e.g.

smartphone) in which a UA is already included that may be used for communication with

the local M2M platform via SIP. In addition to the implementation of the MMSCs, SIP

can also be used to realise a permanent VoIP communication or messaging (IM) between

SP and SC using additional protocols (e.g., SDP, RTP) whose stacks are also already

included in the common end-user multimedia communication equipment (RTP stack).

This enables communication independent of a public VoIP provider using P2P VoIP

communication. In particular, cellular mobile networks with LTE radio access networks

(3GPP TS 23.002 v8.7.0, 2010) require packet-switched message transport and therefore

SIP is used for implementation of multimedia over IP communication services. SIP

provides in comparison to CoAP integrated presence functionality to request information

regarding the availability of users as well as Instant Messaging functionality for exchange

of text messages between the M2M entities. In contrast to CoAP, a SIP-based platform

architecture could easily be integrated into Next Generation Networks (NGNs) (ITU-T

Y. 2001, 2004; ITU-T Y. 2012, 2006) or IP Multimedia Subsystems (IMS) (ETSI TS 123

228 V11.10.0, 2013) if the provider agrees to do so, since these are based on network

elements, end devices and gateways that communicate with SIP. For example, the

NGN/IMS provider could also act as a provider for the communication platform and, if

necessary, take over some of the platform functionality defined in this research (e.g.

registration of services). Additionally, a standard for NAT traversal practices has already

 6 Cooperative M2M Application Service Provision

281

been defined for SIP in (IETF RFC 6314, 2011), which in turn simplifies the integration

of the M2M services in existing end-user equipment.

Table 6.6 summarises the comparison of the protocols CoAP and SIP in the context of

the presented framework.

Table 6.6: Comparison of CoAP and SIP as Communication Protocol

As result of the evaluation it can be stated that both protocols have advantageous

functionality enabling the communication between M2M SP and SC and therefore are

integrated in the proposed MSP architecture. CoAP has the advantage of low header size

and therefore less overhead in message transmission, which is advantageous in

constrained environments. SIP has the advantage that it offers additional (standardised)

functionalities that prevent integration of additional protocol stacks and client interface

CoAP SIP

Application Layer Protocol + +

Reliable Communication + +

Transport of XML Application Data + +

Possibility for end-to-end Communication + +

Location-independent availability + +

Low Overhead + o

No additional Protocol Stacks in Platform required - +

Existing (cliend-side) User Interface - +

Possibility for VoIP Communication - +

Integrated Presence Functionality - +

Possibility for NGN/ IMS integration - +

NAT traversal functionality o +

+: advantageous; o: moderate; -: disadvantageous

6.3 Service Registry and Distributed Data Storage

282

software. Because the extended functionality of SIP, it is therefore suggested to use SIP

as the communication protocol.

6.3 Service Registry and Distributed Data Storage

After explaining how peers can use services offered by other peers, and how networking

is realised between peers, the following section describes the management and

publication of services. For this, section 6.3.1 defines a common data base for the

administration of the IFDs. Section 6.3.2 introduces the concepts to realise the common

database using structured and unstructured P2P overlays. Finally, section 6.3.3 presents

an evaluation of structured and unstructured overlay algorithms in the context of this

project.

6.3.1 M2M Service Registration and Storage of M2M Service IFD

To enable the use of services offered by end-users, it is necessary to register the services

at an accessible location and to make the IFD available to other end-users. In this project,

a distinction is made between a service (service functionality) that can be uniquely

identified by a service-ID and service instances (specific implementation of the service).

A service provides a particular functionality, whereas a service instance is an actual

implementation of a service by an end-user that can be addressed via a service endpoint.

The IFD combines this information by describing the functionality of a service,

specifying the interface and including the service endpoints (pointOfAccess).

 6 Cooperative M2M Application Service Provision

283

The Service/Application Registry (SAR) has been designed for the registration of the

services and has the task to manage which services exist, how the IFDs are defined for

these services, and under which URI services are reachable (Steinheimer et al., 2017c).

As defined in section 4.1, several end-users can offer the same services. Therefore, they

have to register the individual instance of their services (specific implementation of a

service offered by an end-user) with the SAR as shown in Figure 6.24. Similar services in

this context means that the services have identical IFDs and are only accessible via

different URIs. Identical services must therefore be registered under an identical service-

ID. Conversely, this means that different services also have different IFDs (e.g. different

in Input/Output parameters or accessControlPolicies) and must therefore be registered

separately using a different service-ID.

Figure 6.24: M2M Services Registration and Request

To be able to use a service (request a specific instance), the platform that wants to use the

service has to make a request to the SAR (specifying the service-ID of the desired service).

The SAR then provides a specific service IFD for the requested service-ID, containing the

...

Register M2M ServiceID X

Request M2M

Services

IFD

IFD

Register M2M ServiceID X

IFD

IFD

Register M2M ServiceID Z

IFD

Display Remote

Service Building

Blocks in GUI

SAR

Service Provision

Unit (SPU)

M2M SPm

Service Provision

Unit (SPU)

M2M SP1

Service Provision

Unit (SPU)

M2M SP2

Service Provision

Unit (SPU)

M2M SPn

SDU

Indentical Service-IDs

6.3 Service Registry and Distributed Data Storage

284

specific addressing information of the M2M SP (or multiple M2M SPs), so that the local

M2M platform can request the service on the remote M2M platform.

To obtain an overview of all registered services, the Service Provision Unit (SPU) of a

local M2M platform makes a request to the SAR for all registered services, which then

returns the registered IFDs. The resulting IFDs are forwarded by the querying SPU to the

Service Design Unit (SDU), which in turn generates remote service building blocks and

displays them in the GUI (see Figure 5.14).

6.3.2 Principles of distributed Data Storage

As introduced in section 4.2 the P2P Overlay Layer realises the functionality of

distributed data storage by forming the P2P overlay network out of all existing end-user

nodes. Distributed data storage means that data is not stored in one place, but stored in a

network, spread across multiple instances (peers). The aim of the presented approaches

is to entirely avoid central entities; therefore central data storage is declared as not

possible.

Also RELOAD (IETF RFC 6940, 2014) and the Distributed Resource Directory

Architecture for M2M Applications (DRD4M) Project (Liu et al., 2013) propose to use a

P2P overlays for registration and lookup of resources.

According to (Liu et al., 2013) registration of resources means storing the resource

description to the overlay (containing the IP, path, type, content type and name of the

resource). Lookup of resources means searching for a specific resource to request the

content of the resource. DRD4M also proposes to cache the resources in the overlay to

 6 Cooperative M2M Application Service Provision

285

reply the resource descriptions and resource content if devices are in sleep mode. To

connect resources, the peers (resources) store their resource content in the overlay and

peers that want to consume the resources, request the content from the overlay.

As mentioned in section 6.2.1 additionally to P2P message routing functionality

RELOAD provides according to (IETF RFC 7374, 2014) and (IETF RFC 6940, 2014)

the functionality for distributed storage of data items inside the overlay using the selected

P2P overlay algorithm.

The approaches of distributed resource registration has been derived and applied to the

concept for distributed M2M service provision presented in this research.

DRD4M uses the structured overlay algorithm Chord (Stoica et al., 2001) to implement

the overlay (Liu et al., 2013). RELOAD also defines the usage of Chord as one mandatory

integrated P2P overlay algorithm. RELOAD enables that other structured or unstructured

P2P overlay algorithms could be used additionally to Chord to extend a RELOAD system

(IETF RFC 6940, 2014).

Since the approaches of structured and unstructured P2P overlays are fundamentally

different, the following section examines how a service registration could be realised

using the respective approaches. The following topics should be clarified:

 Storing Service IFD in the Overlay – The specific information about a service

(e.g. SP URI, interface parameters) is stored in the service IFD. To make it

available, it must be stored in the overlay.

 Retrieving a Service IFD – To obtain the information about a service the IFD must

be retrievable from the overlay.

6.3 Service Registry and Distributed Data Storage

286

 Generate an overview of all existing services or service IFDs – If services are to

be used by other end-users, they must know which services exist at all. Therefore,

a list of all services is required (M2M Service Reference List).

IFD Registration using structured P2P Overlays

In a structured P2P overlay, the data sets are stored in a Distributed Hash Table (DHT)

and are identified by a unique key (refer to section 2.2). The IFD must therefore be stored

as a unique identifiable data item in the DHT. How the storage is carried out is described

below. The corresponding message exchange between the involved peers is shown in

Figure 6.25.

Figure 6.25: Store IFD in structured P2P Overlay

To store an IFD in the P2P overlay the key under which the IFD should be stored and

later searched must be defined. As described in section 6.3.1, an M2M service is uniquely

identified using the service-ID, which is therefore used as a key identifier for the data

item in the DHT. Afterwards, a store request must be sent to the P2P overlay, specifying

the key and the IFD (step 1). The P2P overlay algorithm is used to determine the peer in

Structured P2P Overlay

Peer 5

Peer 7

Peer 3

Peer 8

IFD

Service W

Peer 1

(1) Store IFD

Service X

Peer 9

Peer 2

(2) Store

(3)

Store

IFD

Service Y

IFD

Service Z
IFD Service W

Peer 6

IFD

Service X

(4) Store

(5)

Store

Peer 4

M2M Service

Reference List

 6 Cooperative M2M Application Service Provision

287

the DHT that is responsible for storing the data item. The IFD is then transferred to the

determined peer (step 2 - 5), which saves this IFD as a data item.

It is still necessary to check whether an IFD for an M2M service already does exist. This

is the case if several peers offer the same service. The verification can be realised sending

a request to the P2P overlay with the service-ID as a key. If the overlay already contains

an associated data record this is returned indicating that a service IFD has already been

stored in the SAR. Then peers can register another instance of that service by adding their

URI to the list of already contained M2M SP URIs in the IFD (pointOfAccess). After

adding the entry, peers save the modified IFD back to the P2P overlay.

Figure 6.26 illustrates the process to retrieve an IFD from the P2P overlay. A peer

requesting an IFD sends a request message to the DHT specifying the service-ID as

identifier for the searched IFD (step 1). The DHT then routes the request according to the

P2P overlay algorithm used to the peer storing the data item (step 2-5). The peer that

stores the record returns it directly to the requesting peer without involving the other peers

(step 6). After the IFD has been received, the information defined in it can be further

processed (e.g., by displaying corresponding M2M service building blocks in the GUI).

6.3 Service Registry and Distributed Data Storage

288

Figure 6.26: Request IFD from structured P2P Overlay

DHTs does not enable to determine all keys contained in it (because requests require

specific keys for data items). Therefore, it is necessary for generating an overview of all

existing M2M services that a list of service-IDs is managed, which is stored under a single

record listing all existing services. For this purpose, the M2M Service Reference List has

been introduced (see Peer 8 in Figure 6.25 and Figure 6.26). Peers that want to register a

service load this M2M Service Reference List from the P2P overlay (similar to querying

a service IFD), add the service-ID of the service that should be registered and store the

M2M Service Reference List back to the P2P overlay. Each peer requested the M2M

Service Reference List has an overview of the registered service-IDs and can query the

corresponding IFDs.

IFD Registration using unstructured P2P Overlays

In unstructured P2P overlays, in contrast to structured overlays, the records are stored

locally at the peers offering (i.e. insert) the data sets (see Figure 6.27). The IFD is thus

stored and managed locally by the peers who offer an M2M service. A data item (i.e., the

Structured P2P Overlay

Peer 5

Peer 7

Peer 3

Peer 8

IFD

Service W

Peer 1

(1) Request IFD

Service X

Peer 9

Peer 2

(2) Request

(3)

Request

IFD

Service Y

IFD

Service Z

IFD

Service X

(4) Request

(5)

Request

Peer 4

IFD Service X (6) Response

Peer 6

M2M Service

Reference List

 6 Cooperative M2M Application Service Provision

289

IFD) is stored as a file in the filesystem of the peer. For identifying the IFD the service-

ID of the M2M service is also selected as the identifier for the IFD file.

Figure 6.27: Store IFD in unstructured P2P Overlay

Communication between peers during file storage process is not necessary and takes place

mainly during the search process for the IFD. It is required to manage a separate IFD for

each instance of a service since it is not possible to store files in the filesystems of other

peers (because missing write access). So peers that aim to register a service instance

generate the IFD containing their service endpoint URI and store it in their local

filesystem.

The search mechanism in unstructured P2P overlays (see Figure 6.28, refer to section 2.2)

is also significantly different from the search mechanism in structured P2P overlays.

Unstructured P2P algorithms cannot determine the localisation of data items

independently. Instead, the P2P overlay is flooded by sending a query for an IFD

(corresponding to a specified service-ID) to all neighbouring peers (step 1). The

neighbouring peers also forward the query to their neighbouring peers until the defined

Time-To-Live (TTL) value of the search query has been reached. If a data item is found,

Store StoreStore

Unstructured P2P Overlay

Peer 5

Peer 7

Peer 3

Peer 8

IFD

Service W

Peer 1 Peer 9

Peer 2

IFD

Service Y

IFD

Service Z

Peer 6

IFD

Service X

Peer 4

Store

6.3 Service Registry and Distributed Data Storage

290

the response message from the peer that stores the M2M service IFD is returned to the

requesting peer via the same route (step 2).

Figure 6.28: Request IFD from unstructured P2P Overlay

The query of the IFD is then made by directly information exchange between the peer

that triggered the search query (step 3) and the peer storing the IFD. This then transfers

the service IFD file to the requesting peer (step 4).

An unstructured P2P overlay allows complex search requests. This means that the ID of

the data item does not necessarily have to be exactly known for locating data items. It

may be possible, e.g. to search only for a part of the data item-ID and peers that store data

items corresponding to the searched pattern would respond to the query. Furthermore, a

query can be equipped with metadata in an unstructured overlay, which specifies a

searched data item more detailed. Thus, the requesting peer could e.g. define filter criteria,

such as accessControlPolicy or certain keywords, which specify the search for a service

IFD more detailed.

Unstructured P2P Overlay

IFD

Service Y

IFD

Service Z

IFD

Service X

Peer 5

Peer 7

Peer 3

Peer 8Peer 9

Peer 2 Peer 4(1) Query

IFD

Service X

(2) Query-Hit

IFD Service X

(3) Request IFD Service X

IFD Service X (4) Response

Peer 1 Peer 6

 6 Cooperative M2M Application Service Provision

291

It has to be considered that unstructured P2P overlays do not guarantee reliable location

of data items because the flooding mechanism of unstructured P2P overlays for search

requests. The TTL value of search queries defines the maximum number of hops to which

the query is forwarded. If a record is not found within this range, the search request would

be unsuccessful, although a suitable IFD exists.

Compared to the use of a structured P2P overlays, it is not necessary (and not possible)

to have a separate list of all registered M2M services when using an unstructured P2P

overlay. This would be useless anyway, since it cannot be guaranteed that such a list

would be found. To get an overview of all registered services and service instances, peers

need to send a search query to the P2P overlay and query all existing service IFDs (e.g.

via search for "Service*"). Locally, the peers then process all service IFDs (e.g. to display

corresponding remote M2M Service building blocks in the GUI).

6.3.3 Analysis of structured and unstructured Overlay Architectures

RELOAD mentions the use of structured and unstructured P2P overlay networks for the

storage of data sets, but does not make any statement about the performance and

deployment scenario of different overlay algorithms. Therefore, an analysis of multiple

overlay algorithms is given subsequently.

According to (Malatras, 2015), (Steinmetz and Wehrle, 2005) and (Lua et al., 2005)

following common algorithms for structured P2P overlays exist: Pastry (Rowstron and

Druschel, 2001), Tapestry (Zhao et al., 2006), Chord (Stoica et al., 2001), CAN

(Ratnasamy et al., 2001), Kademlia (Maymounkov and Mazieres, 2002), and Viceroy

(Malkhi et al., 2002). Furthermore, following common algorithm for unstructured P2P

6.3 Service Registry and Distributed Data Storage

292

overlays exist: Gnutella 0.4 (Clip2, 2001), Freenet (Clarke, 2000; Freenet, 2000),

FastTrack (Liang et al., 2006), and BitTorrent (Piatek et al., 2007). FastTrack and

BitTorrent contain according to (Lua et al., 2005) centralised entities in their topologies

such as super nodes or central trackers, which violates the requirement of avoiding central

entities in the overall system architecture. Therefore, they cannot be considered as

appropriate candidates to form a P2P overlay, the others are compared subsequently.

First, the essential criteria are listed below that should be considered according to

(Malatras, 2015), (Lua et al., 2005), and (Steinmetz and Wehrle, 2005) for evaluation of

P2P overlay algorithms.

 Lookup Performance – Defines the performance of the algorithm for routing

lookup requests in the overlay (Lua et al., 2005). It specifies the efficiency for

discovering the location (node) in the P2P overlay where a specific data item is

stored. Additionally, the Lookup Performance specifies the efficiency of

determining the location where to store specific data items (Steinmetz and Wehrle,

2005).

 Churn Performance – Describes the performance of P2P overlay systems when

churn or self-organisation mechanisms of the P2P overlay occurs (Lua et al.,

2005). A single churn process according to (Binzenhöfer and Leibnitz, 2007) is

defined as a peer joins or leaves the overlay. High churn rates represent large

number of peers joining and leaving the overlay. The churn effect according to

(Stutzbach and Rejaie, 2006) characterises a P2P overlay by describing the

behaviour of the P2P overlay system for large number of peers that perform the

 6 Cooperative M2M Application Service Provision

293

“join-participate-leave cycle” collectively, which means that many nodes in

parallel join the P2P system, make a request and leave the P2P system again.

 Success Guaranty – Defines if the P2P overlay algorithm can guarantee to find

and retrieve a data item (if stored in the overlay).

 Fuzzy Search – Possibility to search for a data item whose name is not defined

explicitly. E.g., search for a data item requesting sub-strings of data item identifier

or keyword-based search queries.

Table 6.7 shows the evaluation of the structured and unstructured P2P overlays regarding

the evaluation criteria defined above. The performance parameters define the complexity

class into which the algorithms are assigned and represent the number of nodes involved

(or messages between nodes) for specific operation or effect. The parameter “N” specifies

the number of nodes within the P2P overlay system.

6.3 Service Registry and Distributed Data Storage

294

Table 6.7: Evaluation P2P Algorithms acc. (Lua et al., 2005; Steinmetz and Wehrle, 2005; Malatras,

2015)

To illustrate the lookup and churn performance of different P2P overlay algorithms, Table

6.8 shows the lookup costs and Table 6.9 shows the churn costs for different P2P overlay

algorithms with increasing number of peers.

Table 6.8: Lookup Costs P2P Overlay Algorithms acc. (Lua et al., 2005; Steinmetz and Wehrle, 2005;

Malatras, 2015)

Pa
st

ry

Ta
pe

st
ry

C
ho

rd

C
A

N

Ka
de

m
lia

V
ic

er
o

y

Fr
ee

n
et

G
nu

te
lla

Lookup

Perform.
O(logBN) O(logBN) O(logN) O(dN1/d) O(logBN)+c O(logN) O(N2) O(N2)

Churn

Perform.
O(logBN) O(logBN) O(logN)

2 O(2d) O(logBN + c) O(logN) O(1)
O(1) (O(N2) for

Join)

Success

Guaranty
yes yes yes yes yes yes no no

Fuzzy

Search
no no no no no no yes yes

d=number of dimensions (CAN), c=small constant (Kademlia), B=basis of logarithm, N=number of nodes

Evaluation

Criteria

P2P Overlay Algorithm

structured unstructured

Pa
st

ry

Ta
pe

st
ry

C
ho

rd

C
A

N

Ka
de

m
lia

V
ic

er
o

y

Fr
ee

n
et

G
nu

te
lla

5 0,6989 0,6989 0,6989 5,1299 0,2902 0,6989 25 25

10 1 1 1 6,4633 0,4152 1 100 100

25 1,3979 1,3979 1,3979 8,772 0,5804 1,3979 625 625

50 1,6989 1,6989 1,6989 11,052 0,7054 1,6989 2500 2500

100 2 2 2 13,9247 0,8304 2 10.000 10.000

250 2,3979 2,3979 2,3979 18,8988 0,9957 2,3979 62.500 62.500

500 2,6989 2,6989 2,6989 23,811 1,1207 2,6989 250.000 250.000

1000 3 3 3 30 1,2457 3 1 m 1 m

Number of

Nodes
P2P Overlay Algorithm

structured unstructured

m=million

 6 Cooperative M2M Application Service Provision

295

Table 6.9: Churn Costs of P2P Overlay Algorithms acc. (Lua et al., 2005; Steinmetz and Wehrle,

2005; Malatras, 2015)

Considering the lookup costs for structured P2P overlays (see Figure 6.29), the effort

involved in the use of the CAN algorithm is noticeably higher compared to the other

structured P2P overlay algorithms. Therefore, Figure 6.30 shows the comparison of the

lookup costs without CAN again.

Figure 6.29: Comparison Lookup Costs structured P2P Overlays

Pa
st

ry

Ta
pe

st
ry

C
ho

rd

C
A

N

Ka
de

m
lia

V
ic

er
o

y

Fr
ee

n
et

G
nu

te
lla

5 0,6989 0,6989 0,4885 6 0,2902 0,6989 1 1 (25)

10 1 1 1 6 0,4152 1 1 1 (100)

25 1,3979 1,3979 1,9542 6 0,5804 1,3979 1 1 (625)

50 1,6989 1,6989 2,8864 6 0,7054 1,6989 1 1 (2500)

100 2 2 4 6 0,8304 2 1 1 (10.000)

250 2,3979 2,3979 5,7501 6 0,9957 2,3979 1 1 (62.500)

500 2,6989 2,6989 7,2844 6 1,1207 2,6989 1 1 (250.000)

1000 3 3 9 6 1,2457 3 1 1 (1.000.000)

Number of

Nodes

P2P Overlay Algorithm

structured unstructured

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

Lo
o

ku
p

 C
o

st
s

Number of Nodes

Lookup Costs Comparison Structured P2P Overlay

Pastry Base 10

Tapestry Base 10

Chord

CAN Dimension 3

Kademlia 8 Bit

Viceroy

6.3 Service Registry and Distributed Data Storage

296

Figure 6.30: Comparison Lookup Costs structured P2P Overlays (excl. CAN)

Considering the lookup costs for structured P2P overlays without the CAN algorithm it

shows that Kademlia requires half as much effort for locating a data item as the other

algorithms.

Figure 6.31 illustrates the effort for search queries in unstructured P2P overlays.

Figure 6.31: Comparison Lookup Costs unstructured P2P Overlays

0

0,5

1

1,5

2

2,5

3

3,5

0 200 400 600 800 1000 1200

Lo
o

ku
p

 C
o

st
s

Number of Nodes

Lookup Costs Comparison Structured P2P Overlay (excl. CAN)

Pastry Base 10

Tapestry Base 10

Chord

Kademlia 8 Bit

Viceroy

0

200000

400000

600000

800000

1000000

1200000

0 200 400 600 800 1000 1200

Lo
o

ku
p

 C
o

st
s

Number of Nodes

Lookup Costs Comparison Unstructured P2P Overlay

Freenet

Gnutella

 6 Cooperative M2M Application Service Provision

297

Unstructured P2P algorithms use a flooding mechanism when nodes sending search

queries for data items to their neighbours (see section 2.2). This results according to

(Steinmetz and Wehrle, 2005) in a massive effort of greater than O(N2).

Figure 6.32 illustrates the churn costs of structured P2P overlay algorithm networks as

specified in Table 6.7.

Figure 6.32: Comparison Churn Costs structured P2P Overlays

It can be seen that the churn performance is the best for Kademlia, and Chord has the

worst churn performance.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

C
h

u
rn

 C
o

st
s

Number of Nodes

Churn Costs Comparison Structured P2P Overlay

Pastry Base 10

Tapestry Base 10

Chord

CAN Dimension 3

Kademlia 8 Bit

Viceroy

6.3 Service Registry and Distributed Data Storage

298

Figure 6.33 illustrates the churn costs for unstructured P2P overlays.

Figure 6.33: Comparison Churn Costs unstructured P2P Overlays

The churn costs of unstructured P2P overlays are equal and constant according (Steinmetz

and Wehrle, 2005) O(1). This is because the nodes only connect to their direct neighbours

and only manage their own records. The topology of the overlay does not need to be

restructured when a new node connects to the overlay or leaves it.

Derived from (Malatras, 2015) the effort when entering into a Gnutella overlay should be

O(N2) and when leaving the effort stays at O(1). This is because the fact that a node, after

entering a Gnutella overlay, performs a so-called discovery operation. Such a discovery

operation (node lookup by PING, PONG message) is performed to identify other nodes

when joining the overlay. The discovery operation that uses flooding mechanism is

initiated periodically and therefore the costs should be set to O(N2) (same as for lookup

costs). The Freenet algorithm does not perform any operation when nodes join the

overlay, but nodes only connect to their identified neighbours.

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

C
h

u
rn

 C
o

st
s

Number of Nodes

Churn Costs Comparison Unstructured P2P Overlay

Freenet

Gnutella

 6 Cooperative M2M Application Service Provision

299

In a direct comparison of structured and unstructured P2P overlays with respect to the

lookup costs (illustrated in Figure 6.34) it becomes clear that in an unstructured P2P

overlay there is a massive increase of effort for searching data items. This is especially

important when many search queries are directed to the P2P overlay. Structured P2P

overlay algorithms remain in the complexity class O(logN) for the search of data items.

Thus, if many search requests are sent to a P2P overlay, a structured P2P overlay has the

advantage that the load on the entire overlay is significantly lower in terms of number of

messages exchanged between the nodes, but also in terms of the load on the involved

peers. In the case of unstructured P2P networks, all peers that pass the search queries in

the context of the flooding process are integrated into the communication. The same peers

are involved to route the corresponding response message back to the requesting peer.

Figure 6.34: Comparison Lookup Costs structured and unstructured P2P Overlays

Comparing the churn costs, it can be identified, that structured P2P overlay algorithms

have logarithmic costs, O(logN) for churn (illustrated in Figure 6.35) and unstructured

P2P overlays have cost of O(1). If one considers the additional costs of structured P2P

0

200000

400000

600000

800000

1000000

1200000

0 200 400 600 800 1000 1200

Lo
o

ku
p

 C
o

st
s

Number of Nodes

Lookup Costs Comparison Structured, Unstructured P2P Overlay

Unstructured

Structured

6.3 Service Registry and Distributed Data Storage

300

overlays compared to unstructured P2P overlays, it can be seen that the increase of the

overhead is around 2-3 nodes. The small additional cost should not be relevant in the

evaluation of efficiency.

Figure 6.35: Comparison Churn Costs structured and unstructured P2P Overlays

Although the effect for churn in structured P2P overlays is only a little higher, (Steinmetz

and Wehrle, 2005) states that unstructured P2P overlays are for better use in mobile

networks with large movement of nodes. This is due to the fact that if peers often join or

leave the P2P overlay, the load on the overlay is significantly higher with a structured

overlay because the churn costs are aggregated. With an unstructured overlay, on the other

hand, the effort for connecting and leaving is constantly low. Furthermore, according to

(Binzenhöfer and Leibnitz, 2007) high churn rates in structured P2P overlays can also

cause routing errors or destroy the overlay. Therefore, an unstructured P2P overlay is

more advantageous at high churn rates.

0

0,5

1

1,5

2

2,5

3

3,5

0 200 400 600 800 1000 1200

C
h

u
rn

 C
o

st
s

Number of Nodes

Churn Costs Comparison Structured, Unstructured P2P Overlay

Unstructured

Structured

 6 Cooperative M2M Application Service Provision

301

When using a P2P overlay to manage the IFDs it is important that the data records can be

located. This is the case in an unstructured overlay because it guarantees that a record is

found. With an unstructured overlay, on the other hand, this cannot be guaranteed, since

due to the limited forwarding, it is not guaranteed that the search query will also reach

the peer who stores the IFD. Therefore, structured overlays are preferable for this

scenario.

Structured overlays enable peers not to store the IFD themselves, but only a reference to

the data set. Nodes storing an IFD could therefore be temporarily unavailable. The peer

who requested the reference to the IFD could contact the unavailable node at a later time

to request the IFD without having to request the reference to the IFD again via the overlay.

If, on the other hand, in an unstructured overlay, a node storing the IFD is temporarily

unavailable, then a search query has to be sent again via the overlay, which would again

stress the network. In an unstructured overlay, the information about offered services is

therefore only available if the peers offering the service are also reachable.

In structured P2P overlays the ID of the IFD must have been uniquely determined when

querying it. Therefore, a search request can only be successful if the service-ID of the

IFD is known. In an unstructured P2P overlay, however, the search does not need to be

based on a specific key. This makes it possible to search IFDs whose exact service-ID are

unknown during search requests. Furthermore, in an unstructured P2P overlay, searching

for a set of IFDs is possible, such as all services belonging to a specific group and contains

specific keywords in their names. These types of search queries can only be realised with

unstructured P2P overlays.

6.4 Cooperative M2M Application Service Provision

302

Table 6.10 summarises the comparison of structured and unstructured P2P overlays in

terms of their performance and structure-related search properties.

Table 6.10: Summary Evaluation of structured and unstructured P2P Overlay Algorithms

As a summary result of the evaluation, it can be stated that because the massive

contrasting performance behaviour and properties of the P2P overlay algorithms the

choice of an adequate P2P algorithm depends on the application scenarios of the

framework. Nevertheless, since locating an IFD should be ensured, the use of a structured

overlay is preferable. The significantly lower effort for a search query also argues for the

use of a structured overlay.

6.4 Cooperative M2M Application Service Provision

In section 4.1, the definition of the Decentralised Cooperative M2M Application Service

Provision (DCASP) model introduced the approach that in the framework for the

provision of M2M applications defined in this research, different end-users can combine

their individually offered services and thus act as a cooperative M2M ASP for other end-

users or organisations/companies.

Structured P2P Overlay Untructured P2P Overlay

Many search requests + -

Large churn rates o +

Success guaranty required + o

Complex data search required - +

+: advantageous; o: moderate; -: disadvantageous

 6 Cooperative M2M Application Service Provision

303

Section 6.4.1 describes the principles of cooperative M2M application service provision

as well as the differences to the pure integration of remote M2M services into local M2M

applications (refer to section 6.1.3). Section 6.4.2 describes the basics of the automatic

configuration process of distributed M2M applications required for cooperative

application provision. Section 6.4.2 describes the process how a distributed cooperative

M2M application is executed. Section 6.4.3 deals with invalid configurations that may

occur during the configuration process of a distributed M2M application even though the

application has been correctly configured from the perspective of individual peers. For

this purpose, an algorithm is introduced that enables each peer to independently detect

and resolve invalid application configurations.

6.4.1 Principles of cooperative M2M Application Service Provision

In cooperative (distributed) application provisioning, the M2M services of different end-

users are combined to form a complex distributed M2M application by connecting the

output parameters of M2M services to the input parameters of the other M2M services.

The design and formal description of such an application is done by defining an SM-

based application model (refer to section 6.1.3), but instead of combining remote M2M

services with local M2M devices/MMSCs, here remote M2M services are combined with

each other. The services are linked by information-processing peers independently

requesting the output parameters from the service-providing peers through a request

message (refer to section 6.1.3). This enables the realisation of completely decentralised

M2M application solutions consisting of individual distributed M2M services without the

need for a central coordinator or a central MSP to manage the linking of the services.

6.4 Cooperative M2M Application Service Provision

304

While the mechanism of requesting a service from another peer is the same as described

in section 6.1.3, there is a difference in the architecture of the applications. To illustrate

the difference, Figure 6.36 shows the principle to integrate a remote M2M service in a

local application. The service request is only executed by a (local) M2M platform, and

all returned information (data) is processed by this platform. The SM generated from the

formal application description is thus executed and coordinated locally.

Figure 6.36: Architecture of remote M2M Service Integration

The principle of remote M2M service combinations is illustrated in Figure 6.37. The

difference to the application architecture shown in Figure 6.36 is that the services pass

the information among themselves, thus providing a concatenation of different services

instead of the pure integration of remote M2M services into local M2M applications.

Figure 6.37: Architecture of remote M2M Service Combinations

Service Delivery Platform (SDP)

End-User 2

Service Delivery Platform (SDP)

End-User 1

Local M2M Application

Local M2M

Appl.

Component 1

Local M2M

Appl.

Component 2

Remote M2M

Service 1

Remote M2M

Appl.

Component 1 Data

Two involved SDPs

n involved SDPs

Service Delivery Platform

(SDP) End-User 1

Service Delivery Platform

(SDP) End-User 2

Service Delivery Platform

(SDP) End-User n

Data DataM2M Service 1 M2M Service 2 M2M Service n

 6 Cooperative M2M Application Service Provision

305

When concatenating services, the involved M2M services provide their information to

other M2M SPs, which process the information and, if necessary, provide information to

another M2M SP. There is no instance of a SM that is executed or coordinated locally in

one single platform, but the different distributed peers realise the distributed SM logic.

As described in section 4.1, two variants have been introduced according to (Steinheimer

et al., 2015a) for the cooperative M2M application service provision (illustrated in Figure

6.38).

Figure 6.38: Variants of cooperative M2M Service Combinations

The first option is the previously described composition of M2M services (Figure 6.38-

a). The second option is service aggregation (Figure 6.38-b). In this case, end-users can

each offer the same service (different service instances) and exchange information among

themselves for this one service.

Figure 6.39 shows the exchange of messages for the variant of M2M service

compositions, respectively the service requests for the combination of services that realise

a service chain. In this case, the services/M2M platforms subscribe with the preceding

service in the service chain, since the services should consume the information of that

preceding service.

a) M2M Service Composition b) M2M Service Aggregation

M2M Service 1

End User 2

M2M Service 1

End User n

Data

Data

M2M Service 1

End User 3
DataM2M Service 1

End User 1

M2M Service 1

End User 1

M2M Service 2

End User 2

M2M Service n

End User nData Data

Instance 2

Instance 3Instance 1

Instance n

6.4 Cooperative M2M Application Service Provision

306

Figure 6.39: M2M Service Composition Message Exchange

Figure 6.40 shows the message exchange for the variant of M2M service aggregations.

Since all services require the information of the other services, each service subscribes

with the other services to obtain their data information.

Figure 6.40: M2M Service Aggregation Message Exchange

The semantics for modelling a service composition have already been defined (linking

services by defining a transition from a state representing the service to another state that

represents the service to receive the information, refer to section 5.5). No corresponding

semantics have yet been defined for service aggregation. Therefore, it is defined at this

point that a service aggregation is described by the fact that a state receives a reference to

itself, i.e. as the target of the transition, the same service-ID is specified as for the state

from which the transition originates. In the case of a service composition, the peer who

wants to use the corresponding service requests only one instance of a service. In the case

of a service aggregation, however, all instances of the same service are requested and

information about the entire application is exchanged with these instances.

Peer 0
M2M Service 1

End-User 1 Peer 0
M2M Service 2

End-User 2 Peer 0
M2M Service n

End-User n

Service Request
Response

Service Request
Response

...

Peer 0
M2M Service 1

End-User 1 Peer 0
M2M Service 1

End-User 2 Peer 0
M2M Service 1

End-User n

Service Request
Response

Service Request
Response

Service Request
Response

Service Request
Response

Service Request
Response

Service Request
Response

...

 6 Cooperative M2M Application Service Provision

307

To illustrate the above-described variants of the cooperative M2M application service

provision, two examples are described below. These examples correspond to Use Case 3

(Building Surveillance) and Use Case 4 (Energy Optimisation) described in section 2.4.

Figure 6.41 illustrates the cooperative M2M application service described by Use Case 3

as representation of an M2M service composition.

Figure 6.41: Representation of Use Case 3 (Building Surveillance)

Figure 6.41 shows the information exchange between the participating M2M services and

end-users. The distributed M2M application consists of a total of five M2M services, each

of which is provided by different peers. The following describes the functionality of the

individual services that are integrated into the service composition and thus represent the

functionality of the M2M application.

event=water|smoke

buildingID=Kleiststr.1

Local SDP 1

CU
SRE

remoteSS1

event=water|smoke

buildingID=Nibelungenplatz 1

Local SDP 2

CU
SRE

remoteSS2

event=water|smoke

buildingID=Kleiststr.3

Local SDP 2

CU
SRE

remoteSS3

buildingID=Kleiststr.1

supporterURI=Supporter1@10.10.10.1

buildingID=Kleiststr.3

supporterURI=Supporter2@10.10.20.1

buildingID=Nibelungenplatz 1

supporterURI=Supporter3@10.10.30.1

text=water|smoke detected in $buildingID

sipURI=$supporterURI

Mode=TTS|IM

TTS Call/ IM

Supporter 1

Supporter 2

Supporter 3

Local SDP 4

CU
SRE

remoteBMS

Local SDP 5

CU
SRE

remoteAS

6.4 Cooperative M2M Application Service Provision

308

 Remote Sensor Service (remoteSS) 1-3 – RemoteSS (1-3) are each different

services which have similar functionality. They read the status of local sensors

(water sensor and smoke detector). If one of the two sensors has the value "water"

(indicates water detected) or "smoke" (indicates smoke detected), the service

generates an event and forwards it to the Remote Building Monitoring Service

(remoteBMS) together with the building-ID of the respective building. RemoteSS

(1-3) differ only by the assigned building-ID at their output interfaces and thus

monitor the status of different buildings.

 Remote Building Monitoring Service (remoteBMS) – RemoteBMS provides the

functionality to aggregate the monitoring of different buildings and to manage the

supporters associated with the buildings. The remoteBMS receives the event that

has occurred in a building and determines the supporter responsible for this

building. Depending on the event, the remoteBMS triggers a Remote Alarm

Service (remoteAS). By the transmitted information, the latter is instructed to

inform the registered supporter about the event, either by Text-to-Speech (TTS)

call (in case of smoke detected) or by IM (in case of water detected).

 Remote Alarm Service (remoteAS) – The remoteAS provides the functionality to

send an IM or to initiate a call and announce a text. This service expects as input

parameters the destination SIP URI to which the message should be sent and the

text which should be contained in the IM or which should be announced. Which

of the two notifications to select is defined by the input parameter "mode". If

"mode" parameter has the value "IM", an IM is generated. If "mode" parameter

has the value "TTS", a TTS call is initiated.

 6 Cooperative M2M Application Service Provision

309

The supporters offer the service to take care of a specific building. This service is only

loosely coupled to the M2M application service by not being directly part of the

application, but only using the M2M application service functionality to provide the

service. To utilise the Building Surveillance application, the supporter registers with the

remoteBMS. During this registration, the supporters will tell the remoteBMS which

building they are supporting and what is their contact information.

Because the flexibility of the introduced formal description language, multiple variants

are possible to realise the formal application description (AD) for the scenario of Use

Case 3:

 Separate ADs per Building – Definition of an individual AD for each building to

monitor. Here the first state corresponds to the remoteSS of the building to

monitor.

 One AD for all Buildings – Define one AD for all buildings to monitor. In this

case, the first state of the AD can be modelled as parallel state element containing

one section per remoteSS of the buildings to monitor.

The first variant (separate ADs) has been selected to show an extract of the formal AD

(see Figure 6.42) represented as Statechart, since it has the advantage that an already

existing AD could be reused by simple modifying the parameters corresponding to the

building in focus. Listing C.10 illustrates the corresponding SCXML pattern. In the

second variant, the structure of the AD would have to be customised by adding new states

in the parallel state element and additionally does not hide other monitored buildings in

the AD.

6.4 Cooperative M2M Application Service Provision

310

Figure 6.42: Statechart Representation AD of cooperative M2M Application Service for Use Case 3

Figure 6.43 illustrates the cooperative M2M application service described by Use Case 4

as representation of an M2M service aggregation. The distributed application consists of

two services. The remote Distribution Grid Parameter Provision Service

(remoteDGPPS) is only present as a single instance in the example shown below.

RemoteDGPPS is loosely coupled to the M2M application service by not being directly

part of the application, since it requests the cooperative M2M application service

functionality as a service and does not actively participate in application execution.

Cond:

$remoteSS1.output.event=smoke OR

$remoteSS1.output.event=water

Assign:

remoteBMS.input.buildingID =

$remoteSS1.output.buildingID

remoteBMS.input.event = $remoteSS1.output.event

remoteBMS

remoteBMS.input.buildingID = ""

remoteBMS.input.event = ""

remoteBMS.input.supporterURI = ""

remoteBMS.output.text = ""

remoteBMS.output.supporterURI = ""

remoteAS

remoteAS.config.mode = ""

remoteAS.input.text = ""

remoteAS.input.sipURI = ""

Cond:

$remoteBMS.input.event=water

Assign:

remoteAS.config.mode = IM

remoteAS.input.text = Water Detected

remoteAS.input.sipURI =

$remoteBMS.output.supporterURI

Cond:

$remoteBMS.input.event=smoke

Assign:

remoteAS.config.mode = TTS

remoteAS.input.text = Smoke Detected

remoteAS.input.sipURI =

$remoteBMS.output.supporterURI

Initial State remoteSS1

remoteSS1.output.event = ""

remoteSS1.output.BuildingID = "Kleiststr.1"

Final State

 6 Cooperative M2M Application Service Provision

311

Figure 6.43: Representation of Use Case 4 (Energy Optimisation)

The remote Energy Reduction Service (remoteERS) has multiple instances, each of which

is implemented by a different peer. Subsequently the functionality of these two services

is described that represent the functionality of the total cooperative M2M application

service. Figure 6.44 shows an extract of the corresponding formal AD of Use Case 4

represented as Statechart. Listing C.11 illustrates the corresponding SCXML pattern.

 Remote Distribution Grid Parameter Provision Service (remoteDGPPS) – The

remoteDGPPS provides a limit value for the maximum peak load in a distribution

grid via its output interface. This information the remoteDGPPS distributes to all

instances of the service described below.

 Remote Energy Reduction Service (remoteERS) – The remoteERS offers the

functionality to reduce the local energy consumption. The service receives the

defined upper limit for the maximum peak load via its input interface

(remoteERS.input.consumptionThreshold). Furthermore, the remoteERS

calculates the local energy consumption. The service sends the calculated energy

consumptionThreshold=10.000Watt

currentConsumption=5.000Watt

remoteDGPPS

currentConsumption=500Watt

currentConsumption=1.000Watt

Local SDP 4

CU
SRE

Local SDP 1

CU
SRE

remoteERS

Local SDP 2

CU
SRE

remoteERS

Local SDP 3

CU
SRE

remoteERS

6.4 Cooperative M2M Application Service Provision

312

consumption to all other instances of the service. The other instances of the service

perform the same and send their energy consumption back to all other instances.

The energy consumption of the other instances of the service is received via a

separate parameter of the service interface

(remoteERS.input.remoteConsumption). The remoteERS calculates the total

consumption of all participating service instances from the received consumption

values. The service compares the calculated total consumption with the maximum

peak load value obtained from the remoteDGPPS. If the limit is exceeded by the

sum of all consumptions, the service reduces the local consumption (if possible).

The remoteERS then redistributes the new calculated energy consumption to all

other instances of the service.

Figure 6.44: Statechart Representation AD of cooperative M2M Application Service for Use Case 4

For being able to use a cooperative M2M application service an interface must also be

defined for this purpose. As is apparent from the examples above, the interface to a

cooperative M2M application service does not necessarily have to be the first service in

the service combination. The interface that must be served for service utilisation can also

be provided by a service that is located within the service chain. Therefore, additionally

to the derivation of the IFD in section 6.1.1, it is defined that an interface to an M2M

application service can also be specified addressing interface parameter of a service

within the service combination. Additionally, an interface does not have to contain all

remoteERS

remoteERS.input.consumptionThreshold = ""

remoteERS.input.remoteConsumption = ""

remoteERS.output.currentConsumption = ""

Assign:

remoteERS.input.remoteConsumption = $remoteERS.output.currentConsumption

 6 Cooperative M2M Application Service Provision

313

interface parameters that the service to be addressed has. Therefore, it is further defined

that the IFD of a cooperative M2M application service can only contain a subset of the

interface parameters of all the services involved.

6.4.2 Cooperative M2M Application Configuration and Execution

Phase

The application configuration phase has been designed as an automated and autonomous

configuration process of the distributed M2M application (Steinheimer et al., 2017a). This

configuration process is preceded of the actual application execution to connect the

specific instances of the services involved. The connection of the services to each other

represents the modelled SM and thus defines the exchange of information between the

services.

The connections between the individual peers, respectively interconnection of the

services, cannot be coordinated centrally since no central entities may be included in the

M2M service architecture according to the requirements specification. This means that

no central entity exists which directs the peers to which specific instances of a service

they should connect to realise a distributed SM. Therefore, a mechanism is required

enabling the peers to integrate themselves into the service chain. This means that the peers

must independently determine the instances of the services with which they should

connect and forward the information according to the application logic to the service

succeeding to them (defined as transition between M2M services).

6.4 Cooperative M2M Application Service Provision

314

Following the approach of processing a SM, the decision to forward information to the

requesting service, i.e. to send a corresponding response message to the requesting peer

(if defined as a transition condition), must be made in the service providing the

information. For this purpose, the introduced concept defines that the distributed M2M

application is initially configured (configuration phase), i.e. the services are linked

together, before the actual application logic is executed (execution phase).

To enable peers to configure their individual parts of the application during the

configuration phase independently, they need corresponding information defined in the

formal AD. Peers can determine this information by automatically parsing the AD and

extracting this information. It is sufficient if each peer only receives the segment of the

AD containing the information necessary to configure their individual service and insert

themselves into the overall context of the application according to the AD.

The following describes the information required by peers to embed themselves in the

application context and from which elements of the formal AD this information can be

extracted.

 Service to request – Information about which service (defined by its service-ID)

a peer has to request from another peer. This information can be determined via

the preceding state. The preceding state is identifiable since it has a transition

targeting on its own state. The state-ID corresponds to the service-ID and thus

provides the information about the service that should be requested.

 Parameter to request – Information about which parameters should be requested

or set at the remote service. The data model of the preceding states (see section

5.5.3) specifies these parameters containing their identifier and (if necessary)

 6 Cooperative M2M Application Service Provision

315

initialise them with a value specifying which parameter content should be

transmitted.

These parameters form the basis for determining the preceding service in the service

chain. The following parameters form the basis for deciding when and which information

should be transmitted to a succeeding service.

 Condition when to response – Information about the prerequisites for transmitting

information to a peer who requested this information. This is defined by the

transition condition of the own state. Thus, the decision is made as to when the

distributed SM moves to another state.

 Data to response – Information about which data to transmit to the succeeding

state. There are two possibilities for this: 1. the data being transmitted was defined

via the request message, or 2. the <assign> element of the (own) transition defines

which data is sent to which input interface of a succeeding service (see section

5.5.3).

In addition to this information for embedding in the application context, peers need the

following additional information, which they also get from the AD.

 Start Point of M2M application – Information about the entry point of the

distributed M2M application, i.e. the first service in the service chain. The first

service is labelled as an initial state in the formal AD and can thus be identified.

 End Point of M2M application – Information about the end point of the distributed

M2M application, i.e. the last service in the service chain. This is defined as final

state in the AD.

6.4 Cooperative M2M Application Service Provision

316

Information about the initial and final state is required to validate a correct application

configuration (refer to section 6.4.3).

After peers involved in the distributed M2M application service have extracted the above-

specified configuration information by automated parsing of the formal AD, they

integrate their services autonomously into the overall context of the application. Figure

6.45 illustrates the application configuration process.

First, each peer determines the specific instances of the services (contact information,

URI) to connected to, i.e. determines a list (SP list) of peers offering the service based on

the service-ID. This list is integrated in the IFD. Therefore, peers request the IFD from

the SAR.

The connection to a specific M2M service instance is performed by sending a request

message to the SPs inside the SP list containing the Request Primitive including the

parameter that should be either set (Input/Config parameter) or requested (Output

parameter). If the requested service is available, the requested peer confirms the service

request with a positive response. If the service is not available, the requested peer

responds with a negative response. The requested peer holds a local Requestor List (RL)

to store the requestors contact information and corresponding requested service

parameter.

 6 Cooperative M2M Application Service Provision

317

Figure 6.45: M2M Application Configuration Process

In this RL the service providing peer inserts the requested parameter and corresponding

contact information after receiving the service request (if confirmed). If the service

request contains Input/Config parameter data, the service providing peer assigns the

corresponding values to the Input/Config parameter of the local service (e.g. for

configuration of the service). After confirmation of the service request the SP adds the

transition condition to the corresponding entry in RL for later usage to evaluate whether

a response message should be send to the requestor. Additionally, the SP adds the

information about the data that should be transmitted in response message (if defined

using assign element of the transition).

Peer 0Service

Consumer (SC)
Peer 0Service

Provider (SP)

M2M Application

Description

M2M Application

Description

Service Request

Confirm Registration

<Request Parameter> Store Requestor URI

+ Parameter in local

Requestor List

Determine Service to

request

Determine Final

Service State
Determine Transition

Condition + add to

local Requestor List

Determine Data to

transmit (assign) +

add to local

Requestor List

IFD Service X

Peer 0SAR

Request IFD

Service X

Determine Parameter

to request

Determine Initial

Service State

Select Service

Instance

Configure local M2M

Service

6.4 Cooperative M2M Application Service Provision

318

Through this configuration process, a connection between an M2M SP and an M2M SC

was successfully established and it has been defined under which prerequisites specific

information should be transferred from the SP to the SC.

After the configuration of the distributed M2M application is finished, the execution

phase of the application starts (illustrated in Figure 6.46) (Steinheimer et al., 2017a).

Figure 6.46: M2M Application Execution Process

During execution phase, the peers must distinguish whether their service is the first

service in the service chain and thus starts the execution of the M2M application, or

whether their service is a service within the service chain. If it is the first service in the

Analyse Requestor List Entries

Set local M2M

Service Parameter

Execute local M2M

Service Logic

[Response Message received]

[Initial State Service]

Generate Response

Primitive

Select Requestor

List Entry

[Condition defined]

[No Condition defined]

Send Response Message

to registered Receiver

[Condition TRUE]

[Condition FALSE]

[Remaining Entries] [No Remaining Entries]

Extract Response

Primitive

 6 Cooperative M2M Application Service Provision

319

service chain, the local service logic is executed directly. All other peers are triggered by

a response (notify) message. After receiving a response message, they first extract the

received Response Primitives and (if necessary) set local parameters defined for their

service. Local service logic is then executed. After executing the local service logic, the

peers analyse the RL. For this, they check for each entry whether a condition is defined

and fulfilled. If the condition is fulfilled or no condition has been defined, a Response

Primitive is generated with the parameters and values that are defined in the RL. These

Response Primitives are sent to the receivers also stored in the RL, which in turn execute

the local application logic in the same way and (if appropriate) send a response message

to the peers succeeding of them. The execution of the application ends as soon as the

M2M service defined as the final state in the AD has been reached and has executed its

local application logic.

6.4.3 Cooperative M2M Application Validation Algorithm

Since multiple peers can offer different instances of the same M2M service, it is possible

to create redundant configurations of a cooperative M2M application by creating

redundant connections between the instances of the services. Thus, individual

connections between SPs and SCs could fail without affecting the functionality of the

entire M2M application. To illustrate this, it is assumed that the following service chain

was defined by a formal AD (see Figure 6.47).

Figure 6.47: M2M Service Connections to demonstrate redundant Application Configurations

Service YService X Service Z

6.4 Cooperative M2M Application Service Provision

320

During configuration phase, peers identify to which services to connect and determine a

list of corresponding SPs (refer to section 6.3.1). Peers could connect to multiple SPs in

parallel instead of selecting a single SP from the list (of SP URIs) included in the IFD.

Figure 6.48 illustrates exemplarily the redundant connection of service instances resulting

of optimal service availability.

Figure 6.48: Distributed M2M Application with redundant Service Instances

The peers are represented with their identifiers (Peer 1 - Peer n) and the respective M2M

service instance they provide (e.g. Service X-1 specifies the first instance of Service X).

Figure 6.48 represents the concatenation of services (i.e. information flow), whereby the

services are assigned to different service levels. A service level defines the location of a

service in the sequential arrangement of the services. The first service in a service chain

is located at the first service level, the second service at second service level etc. The last

service in the service chain is on the most right service level. Different instances of a

service, i.e. same services provided by different peers are on the same service level.

Because all service instances on the same service level connect with all service instances

located on the service level besides them, an extremely redundant configuration of the

Peer 3

Service Y-1

Peer 4

Service Y-2

Second Service Level

Peer 1

Service X-1

Peer 2

Service X-2

First Service Level

Peer 5

Service Z-1

Peer 6

Service Z-2

Peer 7

Service Z-3

Third Service Level

Information Flow

 6 Cooperative M2M Application Service Provision

321

distributed M2M application arises since n-1 service instances on each service level can

fail without failing of the application itself.

Figure 6.49 illustrates the application configuration and execution phase and shows the

multiple instances of the services provided by different peers. In addition to a complete

configuration of an application, Figure 6.49 illustrates that invalid configuration of the

M2M application could be generated during configuration phase, although some

individual peers have configured their service connection correctly. Invalid

configurations can be created whenever several service instances exist and should

therefore be considered during the configuration phase.

Figure 6.49: M2M Application Configuration and Execution Phase incl. multiple Service Instances

Connections could arise which do not result in any valid configuration of the application,

since instances of services are connected with each other, which do not guarantee a

Service Level 3Service Level 2Service Level 1

A
p
p

lic
a

ti
o
n

E
x
e
c
u

ti
o
n
 P

h
a
s
e

A
p
p

lic
a

ti
o
n
 C

o
n
fi
g
u
ra

ti
o
n
 P

h
a

s
e

Request Service

Confirm Request
Request Service

Confirm Request

Invalid Configuration

Valid Configuration

Response Message

OK

Response Message

OK

Peer 2

Service X-2

Peer 1

Service X-1

Peer 4

Service Y-2

Peer 3

Service Y-1

Peer 5

Service Z-1

Peer 6

Service Z-2

Peer 7

Service Z-3

Request Service

Confirm Request Request Service

Confirm Request

© 2017 IEEE

6.4 Cooperative M2M Application Service Provision

322

continuous flow of information through all services. If a peer sends a service request

message to another peer the requested peer could reject the service request, e.g. because

invalid access control policies or simply because the service is currently unavailable, then

the connection to a specific service instance is not established. Figure 6.50 illustrates

exemplarily the connections between service instances that only partly exist redundantly.

Figure 6.50: M2M Application Configuration with partly redundant Service Instance Connections

Figure 6.50 shows that no path exists between all instances of the first service in service

chain (initial state, service at most left service level) and the last services (final states,

service at most right service level). This means that the peers have correctly configured

the configuration for their own service according to the AD, but the application was not

configured correctly in total. A fully configured application has at least one closed path,

through all service levels, starting at an instance at first service level and ending at least

one instance of each service at the most right service level. This means that the sequential

concatenation of the services as defined in the application service description has been

fully configured.

The following concatenations of the services illustrated in Figure 6.50 have been set up

correctly according to the application service description (defined in Figure 6.47):

Second Service LevelFirst Service Level Third Service Level

Information Flow

Peer 3

Service Y-1

Peer 4

Service Y-2

Peer 1

Service X-1

Peer 2

Service X-2

Peer 5

Service Z-1

Peer 6

Service Z-2

Peer 7

Service Z-3

 6 Cooperative M2M Application Service Provision

323

1. Service X-1 Service Y-1 Service Z-1

2. Service X-1 Service Y-1 Service Z-2

3. Service X-2 Service Y-1 Service Z-1

4. Service X-2 Service Y-1 Service Z-2

The following concatenation do not result in any valid configuration according to the AD:

Service Y-2 Service Z-2

Because the invalid configurations are unusable for the application execution, they should

first be identified as described subsequently and then removed again.

For enabling peers to identify independently whether they have established an invalid

connection to another peer, the peers need an overview of the overall configuration of the

application. I.e. they need an overview of service instances included in the specific

application service configuration and connections between them (i.e. a representation of

the information included in Figure 6.50). To provide such an overview of the overall

configuration, the peers must document to which other peers they established a

connection. This documentation must then be made available to all other peers, which in

turn use the documentation to identify whether they have embedded themselves in an

invalid application configuration. The SAR is a shared database that could be used to

store this connection documentation using the application-ID as identifier.

The connections of the services can be mapped to a directed graph by representing the

peers as nodes and the connections between the peers as edges between the nodes.

Arithmetic operations can be applied to a graph to determine whether a closed connection

exists from an initial node (first service level of the graph) to an end node (last service

6.4 Cooperative M2M Application Service Provision

324

level of the graph). All nodes whose connections are not in the path between the start and

end nodes have invalid connections and should remove them.

The structure of a graph is representable according to (Turau, 2009) as an adjacency

matrix, which could be stored as a data structure in the SAR. The structure of the

adjacency matrix describing the connection graph is designed as follows: The nodes of a

graph are specified as row and column names in the adjacency matrix, and the connections

between the nodes as entries in the associated fields in the adjacency matrix. Because it

is a directed graph, the nodes from which a connection originates are specified in the row

names, and the destination nodes of these links in the column entries. A unified notation

of the column and row entries is defined as illustrated in Equation 6.1.

Table 6.11 shows the adjacency matrix describing the graph from Figure 6.50. For a

clearer illustration, the table does not label columns and rows as defined above, but as

abbreviation the format SxPy is used where Sx represents the service-ID and Py

represents the peer-ID.

A directed connection between the nodes in the graph is represented by the entry "1" in

the adjacency matrix. If there is no connection between the nodes, the corresponding entry

in the adjacency matrix contains the entry "0".

(6.1)Service-ID – Peer-ID

prefix suffix

Notation Column/Row =

ServiceX – Peer1Example =

 6 Cooperative M2M Application Service Provision

325

Table 6.11: Adjacency Matrix of Graph illustrated in Figure 6.50

If peers established a connection according to the AD to other peers, respectively have

associated a service offered by them with another service, they execute the algorithm

shown in Figure 6.51 to document the established connection in the adjacency matrix

(Steinheimer et al., 2017a).

Figure 6.51: Algorithm for Documentation of Connection Establishments

SX-P1 SX-P2 SY-P3 SY-P4 SZ-P5 SZ-P6 SZ-P7

SX-P1 0 0 1 0 0 0 0

SX-P2 0 0 1 0 0 0 0

SY-P3 0 0 0 0 1 1 0

SY-P4 0 0 0 0 0 1 0

SZ-P5 0 0 0 0 0 0 0

SZ-P6 0 0 0 0 0 0 0

SZ-P7 0 0 0 0 0 0 0

[No Adjacency Matrix exists]

Insert Column and Row for

personal Service Instance

Mark Entries in Adjacency Matrix for personal Row.

Assign "0" (no Connection) or "1" (Connection)

[Corresponding service entries exist]

[Corresponding service

entries not exist]

Store Adjacency Matrix to SAR

Create Adjacency

Matrix
[Adjacency Matrix already exists]

Load Adjacency Matrix

from SAR

6.4 Cooperative M2M Application Service Provision

326

First, peers load the adjacency matrix of the connection graph from the SAR. If the SAR

does not return the adjacency matrix, it can be interpreted that the adjacency matrix has

not been created yet. In this case peers initialise the adjacency matrix. Then, they insert a

column and a row entry for their own service instance. Afterwards peers validate if the

corresponding service they connected to is already documented in the connection graph

(column/row entry exists). If the corresponding entries do not exist, the peer stores back

the adjacency matrix to the SAR. If the corresponding entries exist, then the entries in the

adjacency matrix for the columns/rows assigned to the peer are marked with "0" for no

connection to other peers and "1" for a connection to other peers. Afterwards the peer

stores the customised adjacency matrix back to the SAR and finishes the algorithm for

documentation of established connections.

Since each peer has executed the steps described above for connection documentation, a

complete connection overview of the graph, respectively of the application, has been

generated and is accessible to all peers contained in the application configuration.

The following describes how peers can use the connection overview to identify and

remove invalid connections.

On graphs arithmetic operations and algorithms can be applied which allow an evaluation

of characteristics of a graph. The Transitive Closure of a binary relation in a graph (link

between nodes), calculated e.g. by the algorithm of Warshall (Warshall, 1962), indicates

which node pairs are mutually accessible. This information determines whether a

destination node is reachable from a start node, possibly with the inclusion of other nodes

(Turau, 2009). The following Figure 6.52 shows the transitive closure of Peer 1 and Peer

4 from application configuration illustrated in Figure 6.50.

 6 Cooperative M2M Application Service Provision

327

Figure 6.52: Transitive Closure of Peer 1 and Peer 4 based on Figure 6.50

All peers contained in the transitive closure of a peer can be accessed from the associated

peer. The Transitive Closure of Peer 1 indicates that the nodes Peer 3, Peer 5, and Peer 6

can be reached from the node Peer 1. The node Peer 3 is directly accessible and the other

nodes indirectly via other nodes. The node Peer 7 is e.g. not in the Transitive Closure of

Peer 1 and thus not reachable starting from the node Peer 1. Analogously, the Transitive

Closure of Peer 4 indicates that only node Peer 6 is reachable starting from node Peer 4.

Since the connection graph is stored in the SAR, all peers can request and use it to

compute the Transitive Closure of the connection graph autonomously. Thus, each peer

gets an overview of which peers are reachable among each other.

The transitive closure can also be described as a matrix that indicates which nodes are

mutually accessible (Turau, 2009). The matrix shown in Table 6.12 describes the

complete transitive closure of the exemplary graph from Figure 6.50. Node pairs that can

be reached are marked with "1" as an entry in the associated field. Node pairs that cannot

be reached are marked with "0".

Transitive Closure Peer 1

Second Service LevelFirst Service Level Third Service Level

Information Flow

Peer 3

Service Y-1

Peer 1

Service X-1

Peer 2

Service X-2

Peer 5

Service Z-1

Peer 7

Service Z-3

Transitive Closure Peer 4

Peer 4

Service Y-2

Peer 6

Service Z-2

6.4 Cooperative M2M Application Service Provision

328

Table 6.12: Transitive Closure based on Figure 6.50

The AD specifies which service is on the first service level (initial state) and which

services are on the last service level (final states). Each peer can use the transitive closure

and the information of services on the first and last service level independently to

determine which connections (according to the AD) are valid or invalid and therefore

have to be removed again.

For checking the complete configuration of the application, each peer first determines for

its own node in the connection graph whether at least one instance (node) of each service

on the last service level is reachable from itself (marked by "1" in the associated field of

the matrix). In the above example, nodes Peer 5 and Peer 6 are accessible from the

perspective of node Peer 3. Thus, from the node Peer 3, there is at least one continuous

connection to a node on the last service level.

In the next step, each peer checks whether the own node in the connection graph is

accessible by at least one node on the first service level. If this is also the case, there is a

SX-P1 SX-P2 SY-P3 SY-P4 SZ-P5 SZ-P6 SZ-P7

SX-P1 0 0 1 0 1 1 0

SX-P2 0 0 1 0 1 1 0

SY-P3 0 0 0 0 1 1 0

SY-P4 0 0 0 0 0 1 0

SZ-P5 0 0 0 0 0 0 0

SZ-P6 0 0 0 0 0 0 0

SZ-P7 0 0 0 0 0 0 0

 6 Cooperative M2M Application Service Provision

329

continuous connection from the first service level to the last layer and therefore a

complete configuration of the application.

Incomplete configuration of the application exists when:

1. The own node cannot reach at least one instance of a service on the last service

level of the connection graph and/or

2. the own node cannot be reached by at least one instance of the service at the first

service level of the connection graph.

If peers detect that they are within an incomplete configuration of the application, they

should disconnect the peers to which they previously connected. Figure 6.53 describes

the algorithm according to (Steinheimer et al., 2017a) for verifying a complete

configuration of an application which is executed autonomously by each peer.

Figure 6.53: Algorithm for Determination of invalid Application Service Configuration

Load Adjacency Matrix from SAR

Calculate Transitive Closure of

Adjacency Matrix

Identify Column-IDs for Nodes

on last Service Level

Determine Reachability of

Nodes on last Service Level

[Unreachable Service Nodes exist (no Instance reachable)]

Disconnect Connection to other Nodes

in current Application Context

Identify Row-IDs for Node on

first Service Level

[At least one Instance of each

Service Node reachable]

Determine Reachability of personal Node

starting from Node on first Service Level

[Personal Node not reachable]

[Personal Node not reachable]

6.4 Cooperative M2M Application Service Provision

330

First, the peer queries the complete adjacency matrix of the connection graph from the

SAR. For the resulting connection graph, the peer then calculates the Transitive Closure.

Thus, the peer has an overview of which nodes are mutually accessible. The column

entries for the nodes on the last service level are determined afterwards. The

determination of the services at the last service level is made possible since the last

services in the formal AD are marked as "final state". This determines the prefix of the

column description. The calculating peer does not know the suffix, but by the uniformly

defined format of the column names enables the determination of the column name

without knowledge about the suffix. Afterwards, peers check whether these nodes,

starting from the own node, are reachable. This is the case if the corresponding entry in

the matrix of the Transitive Closure is marked with "1". If there is not at least one instance

of each service at the last service level, an invalid configuration of the application exists

and the connection to the peers must be removed again. If connections to the instances at

the last service level exist, the next step checks whether the own node is accessible by an

instance of a service on the first service level. For this purpose, the row-ID of the nodes

on the first service level is first determined. This determination is made possible by

marking the first service in the formal AD as "initial state". This determines the prefix of

the line notation and enables to identify the row-IDs of nodes on the first service level.

Afterwards, peers check whether the own node is accessible from one of these nodes. If

this is the case, a continuous connection from the first to the last service level exists. If

the own node is unreachable, the connection to other peers has to be removed because no

valid configuration of the application has been established. Removing a connection

between the peers is done by sending a request to the connected peer with the request to

disconnect (unsubscription).

 6 Cooperative M2M Application Service Provision

331

This section introduced an approach for autonomous and distributed administration of the

entities involved in an application. The approach allows the involved peers to generate an

overview of all service instances integrated in an application configuration. This overview

allows the peers to determine independently whether they have embedded themselves in

valid application configuration. Invalid application configurations are automatically

identified and removed, which ensures that a configuration of an application always takes

place according to the AD.

An alternative to the presented approach for application validation would be if each peer

sends a message to the service instances at the first or last service level for connection

control (something like a "PING message"). They could send this message to the peers

connected to them, which in turn forward the message to their neighbours. The peer that

is arranged in the last or first service level could then send back a reply message directly

to the initiating peer or return a message on the same path as it has received it. However,

this approach has the disadvantage that if peers were temporarily unavailable, although

they are embedded correctly in the application context, the link control message would

not be forwarded. As a result, the path to be checked between initiating and target peers

would be declared invalid. Therefore, a connection-independent management of the

connections between the M2M SPs should be preferred.

6.5 M2M Community

In section 4.2 it was already introduced that the framework presented in this thesis

contains the community approach presented in (Steinheimer et al., 2012b) or (Steinheimer

6.5 M2M Community

332

et al., 2013e). The M2M community is a social network that is built between users of the

MSP.

In essence, the M2M Community is used for the following:

 Linking of end-users at interest-level – The community element of the presented

framework enables to manage various interests the end-users using the MSP.

Through the formation of interest groups, the end-users are grouped. To realise

the different groupings, different sub-communities are provided. End-users who

share the same interests enter the same sub-community. The community approach,

enables that services are only released for certain user groups or restricted to

specific geographic areas. If these services should be used, the SC must be

assigned to the relevant sub-community.

 Legal Basis – Through the voluntary participation in the M2M community and

the resulting consent for platform utilisation, a basis for the legal certainty can be

created. This is intended to address the topic that in principle no one is authorised

to act within the personal area of an end-user (e.g. trigger control operations) or

to process data (monitor sensor data) from it. For avoiding the need to conclude

appropriate contracts between the end-users or between end-users and

companies/organisations, the voluntary participation and the acceptance of the

usage conditions approves the data processing.

To organise the M2M community with its approaches the IFD can be used. This includes

the element accessControlPolicy, which in turn contains the element privileges with the

attribute accessControlOriginators. This parameter can be used to define a grouping, i.e.

assignment to specific sub-communities. The accessControlPolicy is defined as part of

 6 Cooperative M2M Application Service Provision

333

the IFD during the generation of the IFD. Since the IFD is generated by SPs, they have

the possibility to define the accessControlPolicy according to their ideas, which again

corresponds to the concept that end-users are extensively involved in the application

creation and have full control over their local M2M applications.

Figure 6.54 illustrates the extract from an IFD for the accessControlPolicy element.

Listing C.12 illustrates the corresponding XML representation of the IFD element.

Figure 6.54: IFD Element AccessControlPolicy for Definition of (Sub-) Community Assignment

The accessControlOriginators parameter defines the sub-community (neighbourhood) in

this section of the IFD. Additionally, the parameter accessControlContexts is also listed,

which can be used to define in which area a service can be used (see section 6.1.1). The

accessControlPolicy

privileges

...

accessControlOriginators = "Sub:Neighbourhood"

...

accessControlContexts = "W: 50.12947; L: 8.6929; R: 500m"

...

...

Interface Description (AE)

accessControlPolicy

privileges

...

accessControlOriginators = "Sub:Neighbourhood"

...

accessControlContexts = "W: 50.12947; L: 8.6929; R: 500m"

...

...

Interface Description (AE)

6.5 M2M Community

334

example shown above maps an IFD to the sub-community neighbourhood and defines

that the associated service at the locality with the GPS coordinates W: 50.12947; L:

8.6929 (Kleiststrasse 1, D-60318 Frankfurt, Germany) is available within a radius of 500

metres.

In order to make the M2M services available grouped according to the sub-communities,

the GUI can be filtered accordingly. Therefore, it is possible that only the M2M services

are displayed which are defined for the sub-community that belongs to an end-user.

Through the community approach and the capabilities of the presented decentralised

MSP, it is possible to realise not only technical services, but also to use the platform

functionality to offer social services (executed by fellow human beings).

Figure 6.55 shows exemplarily an IFD containing the interface parameters necessary for

a service request. For the description of a social service, the prose description is

particularly important, since this is the description of the service. Listing C.12 illustrates

the corresponding XML representation of the IFD.

 6 Cooperative M2M Application Service Provision

335

Figure 6.55: M2M application service IFD for Social Service

In the above example, a social service was specified, which is defined for the sub-

community neighbourhood and is only available in a certain place. The prose description

defines the functionality of the service. The example shows an assistance service for

shopping activities. (Social) Peers, i.e. people in the neighbourhood that register this

service offer to assist other people in their shopping activities. Other possible services

from this category are e.g. assistance service to go for a walk or assistance in gardening.

Through the designed framework and the social networking aspect integrated by the

community approach, not only a decentralised MSP was designed, but also a

decentralised social networking platform was created, which can be used for the

administration and mediation of any (not only M2M) services.

accessControlPolicy

expirationTime = ""

accessControlOriginators = "Sub:Neighbourhood"

appName = "Assistance Service Shopping"

App-ID = "AssistanceShoppingService"

pointOfAccess = "sip:assistanceShoppingService@10.10.21.1"

requestReachability = "true"

creationTime = "2017-08-15"

lastModifiedTime = "2017-09-24"

contentSerialisation = "XML"

accessControlContexts = "W: 50.12947; L: 8.6929; R: 500m"

accessControlOperations = "R"

name = "assistanceShoppingService.input.dateTime"

value = ""

config

Description = "Assistence Service in your neighbourhood. Provides the service to assist you in your

shoping activities. Request the service by specifiind the desired date/time using the input parameter of the

service."

Interface Description (AE)

output

input

content

inputParameter id="1"

privileges

6.6 Conclusion

336

6.6 Conclusion

This chapter introduced the mechanisms and approaches for cooperative M2M

application service provision. Section 6.1 specified a mechanism to make the local M2M

applications and M2M devices available as a service to other end-users and integrate them

into local M2M applications. For this purpose, an IFD has been defined that is based on

the specification of M2M resources according to the oneM2M standard and has been

extended with interface parameters for input/output/configuration of M2M applications.

It has been illustrated how the IFD can be generated from the formal AD by extracting

the essential interface parameters and inserting them into the IFD. It was shown how a

remote M2M application that was made available as a service could be used by sending

a request message to the service, which possibly returns a response message. The

exchange of information between the participating entities was carried out according to

the requirements of the oneM2M standard by means of Request/Response Primitives. The

SIU has been specified as part of the CU realising the communication between SP and

SC. It was shown how remote M2M application services can be integrated into the

graphical modelling of a local M2M application so that its functionality can be used

within the local M2M application.

To enable communication between SPs and SCs, section 6.2 described the networking of

them. It has been specified that the communication is done directly P2P between SP and

SC node without involving further nodes at the application level. Different information

exchange patterns were presented and evaluated in the context of this project. The result

of the evaluation was that communication between the nodes according to the

Subscribe/Notify principle is the optimal mechanism for information exchange. Different

 6 Cooperative M2M Application Service Provision

337

communication protocols for exchanging Primitive messages between the nodes were

analysed and compared. The protocols CoAP and SIP were identified as optimal

communication protocols. It was shown how the Primitive messages can be exchanged

by means of CoAP in accordance with the oneM2M standard and additionally a SIP

Protocol Binding was defined enabling to exchange Primitive messages by means of SIP.

Section 6.3 described how the service IFDs can be made accessible to other end-users,

and how peers register the instances of their services. For this purpose, the SAR was

introduced as a common database storing the IFDs. Peers who wish to use the IFD or an

instance of a service, query the SAR using the service-ID as the key for the respective

data record. To avoid a central entity responsible for data storage (as it would be the case

with a central database), the distributed data storage was defined using P2P overlays as a

mechanism for the realisation of the SAR. P2P overlays can be realised through structured

or unstructured P2P overlay algorithms. Because structured and unstructured P2P

overlays are fundamentally different in their structure, an approach has been presented

for both types to manage the IFDs and service instances. To determine which P2P overlay

mechanisms are best used in the context of the presented framework, common P2P

overlay algorithms and architectural approaches were compared. The result of the

evaluation was that, depending on the respective application scenario of the framework,

structured or unstructured P2P overlays are advantageous. Structured overlays are

advantageous when a large amount of SAR requests are made, or if the discovery of a

record needs to be guaranteed. Unstructured P2P overlays are advantageous when large

movement of peers exist or complex search queries should be made to the SAR.

6.6 Conclusion

338

Section 6.4 specified the principles of the cooperative M2M application service provision

that allows the services offered by end-users to be combined into a complex distributed

M2M application consisting of a service composition or a service aggregation. The design

of a cooperative M2M application takes place by definition of a SM-based application

model defining the application semantics and is formally described by means of SCXML.

A cooperative M2M application service is also made available via an IFD. Furthermore,

it was specified how a cooperative M2M application is configured and executed. The

configuration process of an application was decoupled from the execution phase of an

application. The peers do the configuration of the services and the connection to the

associated services fully autonomous, i.e. without a central control of the connection

between SPs and SCs. To connect the services, the peer who is supposed to process

information from another peer requests the information data at the information-providing

peer. During the execution phase, the peers provide the information by sending a

notification message to the peer following in the service chain. Through the autonomous

configuration and execution as well as the information processing by the involved

services a distributed SM according to the application description was realised that is

executed completely independently. An autonomous configuration of a cooperative M2M

application could create invalid links between the involved services. For this purpose, an

algorithm was designed to enable each peer (also autonomously) to determine these

invalid links so that they can be removed again.

Finally, section 6.5 described the details of the M2M community approach. Through the

grouping via sub-communities it became possible to link the end-users at interest-level

and create a legal basis for utilisation of the decentralised MSP.

 6 Cooperative M2M Application Service Provision

339

This chapter 6 presented the second part of the proposed concept for “Autonomous

decentralised M2M Application Service Provision”. The concept of a decentralised MSP

at the end-user level has been refined and an application architecture for cooperative

M2M application provision has been introduced. The continuous concept has been

extended by the fact that end-user can not only define applications for a local M2M

platform but can also integrate remote offered M2M services into their individual

applications. Furthermore, the concept has been extended in such a way that end-user can

combine their M2M services and thus the possibility exists to appear as a cooperative

M2M application service provider.

By providing local M2M application functionality as a service to other end-users,

resources become available that were previously not addressable. These resources can

now be integrated into other M2M applications. The control and monitoring of M2M

devices are carried out exclusively according to the end-user's requirements, which means

that end-users have full control over the performed activities in their personal

environment. Because the large number of functionalities provided by other local M2M

applications, many new applications can be realised. For example, no longer all M2M

devices have themselves to be present locally, but end-user can integrate the functionality

of other remote M2M devices into their own applications. This extends the available

possibilities to build up a local "smart environment" and at the same time reduces the

costs for the required hardware.

The communication between distributed M2M platforms for provision and integration of

the application functionality as a service is realised again consistently with the RESTful

communication principle. According (Bayer, 2002) the generic interfaces defined in this

6.6 Conclusion

340

way make it possible to implement and offer generic services. The IFD can be generated

automatically from the formal application description. The unified interface cannot just

be used to provide a local M2M application for others. When generalising the principle

of service provision and defining a corresponding interface (e.g. via the MMSCs), non-

technical services, such as supporting services can also be provided via the defined

interface.

Through the fully decentralised structure and the defined decentralised M2M application

architecture, the presented approaches follow continuously the requirement not to contain

any central entity in the MSP architecture. There is therefore no dependency on

stakeholders and single point of failures are avoided. Because the distributed and

decentralised approach, especially through the application of P2P mechanisms for data

management and communication, a high degree of scalability of the MSP is already

achieved in the approach. By specifying different mechanisms to use different types of

P2P overlays, a high degree of flexibility is achieved for realising the MSP. Avoiding

central entities achieves data security and end-user privacy, since only SPs and SCs are

involved in the communication and the data are not stored together in a central location.

The use of SIP as a communication protocol between the peers enables communication

with existing technologies and reuse of existing multimedia communication interfaces at

the end-users‘environment.

Through the combination of distributed resources, the presented concept enables end-

users to cooperate and provide complex and fully distributed M2M application services.

Each peer in the context of an application acts autonomously (both in the configuration

 6 Cooperative M2M Application Service Provision

341

of an application and during the execution of an application). This avoids the use of a

central component for controlling the application coordination.

The principle of application creation by the end-users is followed so that the end-users

continue to have control over the modelled applications. The modelling is also graphical

and thus intuitive. Thus, even complex distributed applications can be realised simply,

according to the same principle as local M2M applications. The approach to define a

cooperative M2M application follows the principle of describing the application

semantics using the specified formal description language. This means that the defined

application is independent of the implementation of the execution environment because

only the application description has to be parsed, instead of implementing the application

logic in possibly different programming languages on a platform-dependent basis. Thus,

different local platform technologies can be used, which are linked by the formal

application description to a higher abstraction level. The application logic can be easily

exchanged between platforms, so already defined applications can be used as a template

for new applications.

Through the M2M community element of the proposed framework the flexible MSP

could be enhanced by social networking aspects for linking end-users and enabled a

decentralised social networking platform that can be used also for administration and

mediation of social service.

343

7 Research Prototype and Framework

Evaluation

This chapter introduces the research prototype and evaluates the proposed framework

components. Section 7.1 analyses the defined requirements and describes how they are

fulfilled by the proposed framework aspects. Section 7.2 describes the architecture of the

developed prototype with its components and describes their functionality and how they

were implemented. Section 7.3 discusses the utilisation of the prototype by means of

exemplary M2M application service to evaluate the functionality of the proposed

framework components.

7.1 Evaluation of Framework Requirements

This section evaluates the proposed framework for “Autonomous decentralised M2M

Application Service Provision” in relation to the requirements defined in section 3.2. In

the following, each requirement is evaluated with regard to its fulfilment in the presented

framework.

 End-user environment integration – End-user environment integration into the

M2M service platform (MSP) is supported through integration of M2M devices

residing in end-users’ personal environments. These M2M devices can be used to

include their functionality in the application logic to realise an application that

7.1 Evaluation of Framework Requirements

344

processes detected M2M device data or triggers control actions on the devices

(see section 5.4). The M2M devices can be integrated regardless of their M2M

device technology due to defined M2M device technology abstraction

mechanism.

 End-user integration – The requirement of end-user integration is fulfilled since

end-users are in focus of interest and continuously integrated in all aspects of the

proposed framework. End-users can participate in application definition by

graphically modelling of the application behaviour according their individual

requirements (see section 5.2). They also participate in MSP provisioning by

providing their local equipment used as Application Execution Environment

(AEE) for hosting the MSP executables. End-users are additionally integrated

essentially when providing/consuming social end-user services (see section 6.5).

 End-user service provision and utilisation – The requirement end-user service

provision is fulfilled because end-users have the possibility to provide their local

M2M applications as a service to others. For this purpose, a unified interface has

been defined which contains information on the description of a service, such as

service provider (SP) or time restrictions and specifies the service parameters (see

section 6.1). End-user service provision/utilisation is enabled by the unified

mechanism to request services and exchange information data using

Subscribe/Notify Information exchange Pattern (see section 6.2). Remote M2M

service parameters can be integrated into local M2M applications by processing

their parameters or calling provided method functionality.

 Cooperative end-user service provision – The ability of cooperative end-user

service provision is supported through the aspect of the proposed framework to

 7 Research Prototype and Framework Evaluation

345

combine end-user services by defining choreographies of end-user services (see

section 6.4). This makes it possible to realise complex M2M applications that are

executed in the end-user environments and that combine the resources provided

by different end-users.

 Decentralised system architecture – The requirement of decentralised system

architecture is fulfilled because all components of the proposed framework are

completely decentralised. The services are created locally via the Service Design

Unit (SDU). The application logic as well as all components of the framework are

executed locally on end-user equipment (e.g. IAD) and not on a remote server or

in the Cloud. The communication between SP and service consumer (SC) is P2P

without intermediary entities on the application layer (see section 6.2). By using

P2P overlays, the necessary data storage is decentralised (see section 6.3). The

possibility that services can be offered multiple times means that there is no

dependency on a central SP. The decentralised integration of different M2M

devices provides a high degree of flexibility, so that M2M applications are not

limited to a specific field of application predefined by the MSP. End-users

together provide the MSP so that there is no dependency on a central stakeholder

or central components for MSP provision.

 M2M device technology abstraction – The ability to abstract M2M device

communication is provided by the Abstraction Layer (AL) component of the

proposed framework (see section 5.4). The AL abstracts the communication

between devices and the application by communicating with unified M2M device

representations within the platform. The AL translates the uniform commands into

7.1 Evaluation of Framework Requirements

346

technology-specific commands which are then sent to the devices by the

corresponding technology interfaces and vice versa.

 Multimedia communication – The multimedia communication aspect of the

proposed framework is supported through the specification of Multimedia Service

Components (MMSCs) enabling to interact with the MSP using existing

telephony equipment (see section 5.1). These MMSCs can be integrated into the

M2M application flow to serve as an input/output interface for audio/video/text

communication.

 Device/service lookup mechanism – The prerequisite for this ability is the

provision of a shared database. The aspect is supported through the Service and

Application Registry (SAR) realised by a P2P overlay (see section 6.3). This can

be used to register M2M services and applications. For this purpose, an Interface

Description Model (IFD) was defined containing the parameters and descriptions

required for the service utilisation (see section 6.1). Instantiations of that IFDs

describing specific M2M services can be requested by the Service Delivery

Platforms (SDPs) of other end-users for e.g. displaying it in the SDU or detect

specific M2M service instances. Within a local SDP, the M2M devices are

registered and managed in the M2M Device Registry within the Communication

Unit (CU), so that they can be queried by the SDU and, for example, listed in the

GUI (see section 5.4). To describe the devices (and MMSCs), Device Capability

Models (DCMs) have been specified which define the properties and parameters

of the devices.

 Simplicity – The requirement of simplicity is fulfilled through the graphical

modelling methodology of an M2M application (see section 5.2 and section 5.3).

 7 Research Prototype and Framework Evaluation

347

The modelling of a state machine (SM) describing the behavior of an application

can be intuitively modelled by the end-user. The unified structure of an M2M

application (connecting building blocks with input/config/output parameters

supports the simple modelling of an application. Apart from modelling the

application, no further steps are required that need to be done manually. The

generation of the formal application description, the configuration of the M2M

application and the execution of the application logic is done automatically (see

section 5.5 and section 5.6).

 Minor hardware requirements – The aspects of minor hardware requirements is

supported because the software executables of the framework components have

low footprints and do not require heavy-weight application servers to execute

them. The framework components could by executed locally on existing end-user

equipment, which is powerful enough to run the executables. The entire AEE

could be operated within the IAD, eliminating the need for additional resource-

intensive AEEs such as high-performance servers. It can be assumed that a single-

user application running locally requires significantly less resources than a remote

multi-user application environment. The runtime environment for the prototype

requires little resources: Java SE 8: 124MB RAM, 128MB Disk (Oracle, 2017d);

Java SE Embedded 8: 32MB RAM, 50MB Disk (Oracle, 2017e). The entire

runtime environment has 190MB (Karaf: 60MB, Spring Boot Jar: 10MB, Docker

Container: 120MB). Due to their small size, they can be deployed on an IAD.

 Scalability – The requirement for scalability is fulfilled because the P2P

mechanisms integrated in the proposed framework are naturally very scalable.

Since the service provision and communication between the nodes as well as the

7.1 Evaluation of Framework Requirements

348

data storage are P2P, the entire MSP is scalable. The defined framework enables

the same services to be offered by several peers at the same time. The scalability

of service utilisation therefore depends on the load distribution among the peers.

Assuming that the load is equally distributed between the peers, then the load on

the individual peers and subnets is low and the service utilisation scales.

 Platform independency – The requirement for platform independency of the

proposed framework is supported through multiple aspects. When designing the

concept, attention was paid to using standardised mechanisms and protocols. An

application is specified by defining a formal application description independent

of the execution environment (see section 5.5). The standardised SCXML was

used as the formal description language. The application description (and also the

modelling process) is independent of the system that interprets the application

description and is therefore platform-independent. The interface description was

also defined platform-independently in XML (see section 6.1). Only the

algorithms used for P2P overlay are not standardised. Here, however, with Chord

and Gnutella two widely used algorithms were used. There is also platform

independence at the communication level. Communication between the platform

components as well as between SP and SC takes place by means of service layer

messages (Primitives) standardised by oneM2M. The communication between SP

and SC is also established using the standardised protocols CoAP or SIP, so that

no proprietary protocols are used. The prototypical implementation was done with

platform-independent concepts. By using Java as a programming language,

platform independence at operating system level is achieved. Through the

 7 Research Prototype and Framework Evaluation

349

additional use of Docker, a complete system independence was achieved, so that

the entire SDP can be deployed as a container on the executing platform.

 Data safety, end-user privacy – The aspect of data safety and end-user privacy is

supported through the avoidance of central entities storing data. Data is not stored

in a central location, but rather decentralised by the users who do not have access

to the entire data sets. Due to the cooperative platform provisioning at the end-

user level, there is no binding to a central provider that could possibly misuse the

data. The ability to define access control policies includes a mechanism for

controlling access rights. It is possible to define access rights at user/group/time/

or location level.

The essential parts of the proposed framework have been implemented for the proof of

concept. The following section presents the architecture of the research prototype.

7.2 Research Prototype Architecture and Implementation

To demonstrate the essential functionalities of the proposed framework for “Autonomous

decentralised M2M Application Service Provision”, a research prototype has been

developed. The research prototype implements most of the components described in the

framework architecture with required functionality for the proof-of-concept.

Beside the graphical user interface SDU with basic functionalities, trimmed versions of

the Service Creation Unit (SCU) for transforming the graphical application model into

formal application description, and the Service Runtime Environment (SRE) with

Application Description Parser (ADP), Application Description Interpreter (ADI), State

7.2 Research Prototype Architecture and Implementation

350

machine Repository (SM Repo), Service Execution Engine (SEE), and Instant Message

Multimedia Service Component (IMMMSC) have been implemented. Also the CU with

AL have been implemented with communication modules for Session Initiation Protocol

(SIP), Constraint Application Protocol (CoAP), TC IP 1 Control Protocol (TC IP 1, 2013),

and Bidirectional Communication Standard BidCos (eQ-3 BidCos, 2016). Furthermore

basic functionality of Service Provision Unit (SPU) with overlay modules for Chord and

Gnutella and integrated TCP fileserver have been implemented. Additionally as end-user

communication interface a SIP Instant Message Client (representing end-user

smartphone) have been implemented in both GUI variant as well as console-based variant.

To make local M2M devices and MMSCs available to the SDU M2M Device/Service

Capabilities have been specified for localRainSensor, localSmokeDetector,

localWindowSensor, localWaterSensor, and IMMMSC as well as interface descriptions

for remoteSensorService, remoteBuildingMonitoringService, remoteRainSensorService,

remoteAlarmService, remoteEnergyReductionService.

Figure 7.1 shows the structure of the research prototype execution environment.

Figure 7.1: Research Prototype Application Architecture

The research prototype was developed with the Java programming language (Oracle,

2017b) as this is a common programming language for the development of software

Java Runtime Environment (Oracle JRE v1.8)

Linux Operating System (Ubuntu 16.04 LTS)

A
p
a

c
h
e
 K

a
ra

f

OSGi

Application Logic Bundles

SDU SCU

Spring Boot

Application Logic Executable Jar

CU SRE SPU

 7 Research Prototype and Framework Evaluation

351

applications. Java is also known as a platform-independent language, which supports the

implementation of the prototype on different platforms. In addition to Java as the basis

for the implementation, the frameworks OSGi (OSGi Alliance R5, 2012) and Spring Boot

(Spring Boot R1.5.8, 2017) were used. The use of the two different frameworks

demonstrates the flexibility of the developed prototype. Depending on the preferences, it

is therefore possible to extend the prototype using one or the other framework. The part

responsible for creating the application description was developed with OSGi and the part

responsible for application execution was developed with Spring Boot.

The focus in application development was on the development of loosely coupled

application components to facilitate the simple extensibility of the prototype. This

characteristic is supported by both frameworks. OSGi implements the loose coupling of

application components by a so-called Bundle concept. The application components are

deployed in the form of independent modules (Bundles) in an OSGi container. Apache

Karaf (Apache Karaf, 2017) was used as OSGi container for the prototype

implementation. However, other implementations such as Apache Felix (Apache Felix,

2017) or Eclipse Equinox (Eclipse Equinox, 2017) can also be used as OSGi containers,

so that the implementation is not limited to a specific container environment. The Bundles

are linked by the OSGi Container. This principle of component interconnection is called

Inversion of Control (IOC). IOC is also an essential aspect of Spring Boot, whereby

modularity is implemented by Dependency Injection (DI). Unlike OSGi-based platforms,

running a Spring Boot-based application does not require a separate runtime environment

(OSGi container) for the application modules. Spring Boot applications are deployed and

executed as a single Jar executable. A comparison of these two frameworks is not in the

focus of this work, but it is mentioned here briefly that OSGi has the advantage that

7.2 Research Prototype Architecture and Implementation

352

Bundles can be exchanged during runtime. Spring Boot does not have this aspect, but has

the advantage that no additional container is required to run the application, which has to

be deployed and maintained in the target environment. To achieve not only independence

from the operating system, but also a complete platform independence (also from the

executing hardware), the container virtualisation technology Docker (Docker 17.06.2-ce,

2017) was used additionally to the mentioned frameworks. All the dependencies required

for running an application (up to the operating system) are integrated into a container,

which is then deployed as the only element on the target platform. The use of Java, OSGi,

Spring Boot and Docker enables a complete platform-independence using up-to-date

technologies.

The presented framework can be classified roughly into a part that can be validated locally

and a part that can only be validated on several distributed systems. Figure 7.2 shows the

system architecture created for the prototype.

Figure 7.2: Research Prototype Emulation System Architecture

In order to validate the locally executable parts (e.g. application modelling, creation of

formal application description, parsing of formal description), these parts of the research

prototype were executed locally on the system. The Common Open Research Emulator

(CORE) (CORE, 2017) was used to validate the implementation of scenarios that require

Java Runtime

Linux Operating System (Ubuntu 16.04 LTS)

SIP IM

Client

Spring Boot

SDP

CU

SRE

SPU

Common Open Research Emulator (CORE)

Docker

Container

Java

Alpine Linux

SDP

Node (N)

Core Network
(Internal Network)

...

N N N...

Access Network
(Internal Network)

N N N...

Access Network
(Internal Network)

N N N...

Access Network
(Internal Network)

OSGi

SCE

SCU

SDU

 7 Research Prototype and Framework Evaluation

353

a distributed system architecture. CORE allows to create different virtual networks and

emulate their behaviour. These virtual networks can be used to connect different nodes

(representing peers) that communicate with each other via virtual networks. It is also

possible to execute application logic on the nodes using CORE. To deploy the application

logic to the respective nodes, the local execution environment (SDP) was packaged into

a Docker container, which was then deployed on the virtual nodes of CORE. Figure 7.3

shows the GUI of CORE with the created networks and nodes for the emulation

environment.

Figure 7.3: Research Prototype Emulation System Architecture

Coming back to the application architecture of the framework prototype, the following

Figure 7.4 illustrates the application architecture of the framework prototype. The

7.2 Research Prototype Architecture and Implementation

354

architecture depicts the individual modules of the prototype and how they are linked with

each other. The modules are classified by name and the implementing Java package. The

communication between the individual modules is represented by arrows. The numbering

on the arrows defines the individual steps in the application creation and execution

process. The different modules are described below and the interaction between them is

explained. The modules are all loosely coupled, so they can be easily extended/replaced.

Figure 7.4: Research Prototype Architecture Components (illustrated as Packages)

(13) deliver [interface description]

(1) deliver [DCs/ SCs\

(7) deliver [stateMachine]

(8) getStatemachine (9) deliver [stateMachine]

(10) processRequestPrimitive

(11) deliver [responsePrimitive]

(6) deliver [primitiveContentList, assignList]

(12) getInterfaceDescription

(3) deliver [application description]

(5) deliver [applicationDescription]

(4) parseApplicationDescription

(2) saveUserServiceDesign

SCXML

XML

Service Creation

Unit (SCU)

de.fuoas.research.scu

Instant Message Multimedia Service

Component (IMMMSC)

de.fuoas.research.p2p4m2m.sre.mmservicecomponents

Service Provision Unit

(SPU)

de.fuoas.research.p2p4m2m.spu

Application Executor (AE)

de.fuoas.research.p2p4m2m.sre.see.ae

Statemachine Repository

(SM Repo)

de.fuoas.research.p2p4m2m.sre.see.smrepo

Application Description Parser

(ADP)

de.fuoas.research.p2p4m2m.sre.see.adi.adp

Application Description

Interpreter (ADI)

de.fuoas.research.p2p4m2m.sre.see.adi

Communication Unit

(CU)

de.fuoas.research.p2p4m2m.cu

Service Design

Unit (SDU)

WebApplication

M2M Device/

Service Registry

IFD

 7 Research Prototype and Framework Evaluation

355

Application creation starts with modelling the application. The SDU module has been

developed in the form of a GUI which is illustrated in Figure 7.5.

Figure 7.5: Screenshot of Service Design Unit GUI Web Application

The GUI is provided as a web application enabling the end-user to model the behaviour

of an application as a SM. The WebContainer "Jetty" (Eclipse Jetty, 2017) integrated in

Apache Karaf was used to provide the web application. The SM is modelled by dragging

the building blocks representing M2M devices or M2M services into the workspace and

connecting them to each other. Each building block (state) and the connections between

the building blocks can be configured as described in section 5.5.3. The JavaScript library

7.2 Research Prototype Architecture and Implementation

356

"JsPlumb" (JsPlumb, 2017) was used in Community Edition v1.5.5 for the

implementation of the graphical modelling. JsPlumb allows to graphically model flow

chart diagrams within a web application. To obtain an overview of the available M2M

devices/services, the SDU receives a HashMap with capability objects representing the

device/service capabilities or interface descriptions of the remote M2M services (step 1).

The capability representations are also used to display the configuration area for the states

as an input mask (see Figure 7.6). This defines the configuration parameters of a state and

displays the prose description of the M2M devices/service.

Figure 7.6: Screenshot of SDU GUI showing M2M Device/Service Configuration Section

Using JsPlumb, a data model is generated which describes the states and the connections

between the states. The SDU generates two HashTables describing the states and

transitions including the defined parameter configurations. By calling the

saveUserServiceDesign method, these HashTables containing the application model and

further information about initial and final state are passed to the SCU as a JSON object

(IETF RFC 7159, 2014) (step 2). The SCU module generates a Java object from the

 7 Research Prototype and Framework Evaluation

357

received data containing the application information. The SCU then generates a formal

description of a SM that represents the application logic according to the principles

described in section 5.5.3 and transfers the SCXML document to the ADI module (step

3).

In addition to generating the graphical application model, the SCU also generates the

interface description for a modelled application. The content of the interface description

described in section 6.1.1 (e.g. input parameter, AppID, prose description) is defined by

the application creator using an input mask in the SDU (see Figure 7.7). The SDU passes

this information back to the SCU as a JSON object which then generates an interface

description in XML format. This is done by the SCU converting the JSON object with the

interface description information into a Java object. Both, generation of the SCXML

description and interface description is done with JAXB (Oracle, 2017c). This API

enables to import XML documents and process them as Java objects, as well as to

generate an XML document from a Java object.

Figure 7.7: Screenshot of SDU GUI showing IFD Specification Form

7.2 Research Prototype Architecture and Implementation

358

In order for the ADI to be able to process the application logic defined in the application

description, the ADI requires it in a compatible format. To obtain this, the ADI invokes

the method parseApplicationDescription of its internal component ADP (step 4). The

ADP returns the formally described application logic to the ADI in the form of an object

(step 5). The generation of the Application Description Object is done by the ADP reading

and parsing the SCXML representation of the application. Parsing is done using the Java

library "Apache Commons SCXML" (Commons SCXML, 2016) which allows to get a

representation of the statechart described with SCXML in the form of Java objects. The

ADP analyses the generated Java objects and transfers the information on the application

logic (such as applicationID, initialStateID, finalStateID) into an internal application

description model (ADM). Furthermore, the ADP analyses all defined states and transfers

the information defined such as stateDataModel, transitions, assigns, targetStates,

predecessorStates into the ADM.

The ADI now analyses the ADM and interprets the application logic. The ADI must

differentiate between a distributed application and a local application that integrates

remote services. In the case of a local application, the ADI first determines whether

remote services are to be integrated into the local application. This is the case if the ADM

includes states that refer to a remote service or attributes of a remote service are contained

in transition conditions or assignments. The ADI registers remote services to be integrated

in a primitiveContentList which it transfers to the CU module (step 6). In the next step,

the ADI generates a local SM from the ADM, which is represented by an internal SM

model. To create the SM model, the ADI analyses all state information defined in the

ADM and creates an entry for each of the states in the SM. The ADI adds information

about the state transitions (e.g. targetState, condition, stateConfiguration,

 7 Research Prototype and Framework Evaluation

359

targetStateConfig) to these entries, which it also extracts from the ADM. Furthermore,

the information about initialState and finalState as well as the currentState of a SM are

added. The generated stateMachine object is passed to the SM Repo module, which

manages the generated SMs in an internal HashMap allStateMachines (step 7). If it is a

distributed application provided by multiple peers, no local SM is created. Instead,

additional information is required for linking to other peers. The ADI also determines this

information by analysing the ADM. In this case, the state within the application

description is in focus that represents the local peer or the service offered by the local

peer. It is necessary to determine which other services a peer should connect to. The ADI

receives this information by determining a list of predecessorStates. Additionally, it is

necessary to determine which parameters of a predecessorStates are to be requested if

necessary. For all states in the predecessorStateList, the ADI therefore determines

whether output parameters are contained in their assign definitions and registers them in

an outputParameterList. Furthermore, the ADI will determine the information to be sent

to a connected service. This is done by analysing the stateTransitionList of its own state.

This creates a list (assignList) which contains the condition and remote parameter

assignments for each successorStateID. The ADI has thus determined all the information

necessary for linking with other peers and transmits this information to the CU module

(step 6).

The module AE executes the local SM. For this purpose, the AE first requests a list of all

existing SMs from the SM Repo. The AE periodically traverses the list of all SMs and

loads the respective SM from the SM Repo using the getStateMachine method (step 8).

The SM Repo provides the AE with the requested SM (step 9), which is executed by the

AE. This is done by the AE determining and analysing the currentState of the SM via the

7.2 Research Prototype Architecture and Implementation

360

currentState attribute. For this active state, the AE sets the stateConfiguration and checks

if the condition (if defined) for the transition to the next state is true. If the condition is

true, the AE sets the parameters defined via targetStateConfig and sets the targetState as

new currentState. To check the condition and to set stateConfiguration and

targetStateConfig, the AE requests the CU via a RequestPrimitive object (step 10) and

receives the parameter value that is required for checking the condition via a

ResponsePrimitive object (step 11).

The CU is responsible for communication with local M2M devices and MMSCs or for

communication with other peers. For communication via CoAP and SIP, communication

modules have been integrated into the CU for both protocols. For this purpose, the Java

libraries "Californium" (Eclipse Californium, 2017) were used as CoAP stack and JAIN

SIP (JAIN SIP, 2017) as SIP stack, which enable generating and receiving of CoAP/SIP

messages via local network interface. For remote service requests using CoAP and SIP,

the communication modules enable the query scenarios as defined in section 6.2.3 (one-

time and continuous subscription of output parameter, termination of subscriptions and

input/config requests). When remote services are requested, the CU traverses the

primitiveContentList to request parameters from the SP. To do this, the CU generates a

service request message as defined in section 6.2.3. To manage subscriptions, the CU

includes the SubscriptionManager component. All active subscriptions are managed in

SubscriptionManager (activeSubscriptionsList). The SubscriptionManager manages

besides the activeSubscriptions also a list of activeNotifications. This stores the requests

for services generated by other peers. If the CU receives a service request from another

peer, it extracts the information defined in it, creates a requestPrimitive object and

transfers it to the AL component for processing. If a parameter is queried by the service

 7 Research Prototype and Framework Evaluation

361

request, the CU generates a Request Primitive message and replies it to the requesting

peer. If the service request is a continuous subscription, the CU saves the generated

responsePrimitive object and a defined condition in the activeNotification list. The

component notificationAutomator of the CU runs periodically through the

activeNotifications list and checks if defined conditions are true. If this is the case, or if

no condition has been defined, the notificationAutomator triggers the sending of a

Request Primitive message to the defined receiver via the CoAP or SIP communication

module.

The AL component of the CU is implemented using an internal m2mDeviceServiceCache.

This contains a representation of the parameters defined via the Device Capability Model.

Parameters that are to be set or queried for an M2M device or an MMSC are processed

by this component. To determine the addressing information of an M2M application

service provider, the CU requests the interface description from the SPU module using

the getInterfaceDescription method (step 12), which then returns the

InterfaceDescription for a specific service (step 13).

The SPU implements the connection to a P2P overlay for distributed management of

interface descriptions. The SPU has the functionality to join a Gnutella overlay or a Chord

overlay. To realise the Gnutella overlay functionality, the Java Library “JTella” (JTella,

2016) was used, which is an implementation of the unstructured P2P overlay Gnutella.

To implement the Chord overlay functionality, the Java library "Open Chord" (Open

Chord, 2015) was used, which is an implementation of the Chord DHT. The SPU saves

the URL of an interface description within the overlay and can also query it in the overlay.

The URL of the interface description specifies the peer that stores the interface description

7.2 Research Prototype Architecture and Implementation

362

as XML document. To download the interface description from the peer, the SPU includes

a TCPfileServer and a TCPfileClient. The TCPfileClient requests the TCPfileServer of

the target platform with the service-ID, which then returns the interface description

document. To transfer the interface description, it must first be serialised and transmitted

as TCP stream. On the TCPfileClient side, the serialised interface description must be

deserialised again. Serialisation and deserialization is done again using JAXB.

In addition to the modules described above, the IMMMSC was implemented. This MMSC

is considered to be a representative of the MMSCs defined in section 5.1. IMMMSC

enables receiving and sending IMs. IMMMSC uses the SIP communication module of the

CU as well as the AL. The AL contains a representation of the capability description of

the IMMMSC and manages its input and output parameters. The AE can therefore use this

interface to generate an IM or to process the text that has been sent to the platform via an

IM. To provide an input and output interface for the end-user, an IM client has also been

implemented as representation of a mobile phone interface (see Figure 7.8).

Figure 7.8: Screenshot of Instant Message Client

 7 Research Prototype and Framework Evaluation

363

In addition to the communication modules for CoAP and SIP, the CU has also

implemented communication modules for the TC IP 1 control protocol and for BidCos.

The physical integration of M2M devices using TC IP 1 Control Protocol and BidCos

were implemented in the associated e-SCHEMA research project (Steinheimer et al.,

2013b; e-SCHEMA, 2015). The TC IP 1 communication module allows to control several

energy manager devices and to read out the parameters provided by their sensors. The

communication with the devices is realised via datagramSockets, which can be addressed

natively from the Java programming language. To implement the communication via

BidCos it was necessary to use an M2M gateway (so-called Common Control Unit, CCU)

which implements the wireless communication with the M2M devices. The BidCos

communication module communicates with the CCU via XML RPC (XML-RPC, 1999)

to transmit the control commands to the M2M devices or to query parameters from the

M2M devices. To establish a communication channel between the BidCos control module

and the CCU, the communication module must register with the XML-RPC server of the

CCU. Furthermore, it is necessary that an XML RPC server is also used in the BidCos

communication module, so that the CCU can send push messages to the BidCos control

module. Both, the communication with the CCU via XML-RPC and the operation of a

local XML-RPC server is realised using the Java library "Apache XML-RPC" (Apache

XML-RPC, 2017).

7.3 Proof of Framework Concepts

After the architecture and implementation of the research prototype was presented based

on the novel concepts of the framework for “Autonomous decentralised M2M

7.3 Proof of Framework Concepts

364

Application Service Provision”, this section deals with the proof of concept and the

evaluation of the underlying approaches. The research prototype was developed to

demonstrate the essential aspects of the presented framework. To cover as many aspects

of the presented framework as possible, the following use cases from the use cases

presented in section 2.4 were selected:

 Use Case 2: Neighbourhood Weather Station – Local execution of SM-based

application logic with remote M2M service integration. A remote M2M service

provides the values of a rain sensor. A local M2M application integrates these

values. If rain is detected and the window is open at the same time, an IM will be

sent with a corresponding message.

 Use Case 3: Building Surveillance – Cooperative M2M application service

provision based on horizontal M2M application service composition. A remote

M2M service monitors water and smoke sensor in a building and reports them (in

case of corresponding event occurred) to a remote building monitoring service

that manages supporters of that building. The building monitoring service triggers

another remote alarm service to send an IM with a specific text (depending on the

event) to end-users taking care of the corresponding building.

For both scenarios, the M2M applications must be modelled and transferred to the formal

application description. The application description must be interpreted and the local

system configuration must be performed according to the defined logic. The M2M

application must then be executed. The following section 7.3.1 demonstrates these steps

for Use Case 2 and section 7.3.2 for Use Case 3. Since both contain the service request

from other nodes, this scenario is considered separately in section 7.3.3.

 7 Research Prototype and Framework Evaluation

365

7.3.1 Local M2M Application Execution with remote M2M Service

Integration

First, the M2M application for Use Case 2 is graphically modelled. Figure 7.9 shows the

graphical model and a section of the automatically generated formal M2M application

description.

Figure 7.9: Screenshot of SDU GUI Web Application with SM Model Use Case 2

7.3 Proof of Framework Concepts

366

The building blocks remoteRainSensor (remote M2M service providing rain sensor

information data), localWindowSensor (provides the state of a window sensor located in

local environment) and mmscIM (MMSC enabling sending of instant messages) are used

in this scenario. These building blocks are placed in the workbench and connected with

each other. States and transitions are configured as shown in Table 7.1 and Table 7.2, thus

completing the definition of the application logic.

Table 7.1: State Configuration Use Case 2

Table 7.2: Transition Configuration Use Case 2

Saving the M2M Application Model automatically generates the formal description of

the M2M application in SCXML format (illustrated in Figure 7.10). The formal

description can also be viewed via the GUI (see Figure 7.9).

State (Device/MM/M2M Service

Building Block)

remoteRainSensor

localWindowSensor

Parameter Value

mmscIM.input.text Warning window open and starts raining

mmscIM.input.sipURI sip:michael@192.168.50.68

mmscIM.config.mode outIM

mmscIM

Configuration

No configuration required

No configuration required

Transition (connection between

building blocks)

remoteRainSensor -->

localWindowSensor Expression $remoteRainSensor.output.state=raining

localWindowSensor --> mmscIM Expression $localWindowSensor.output.state=open

Configuration

 7 Research Prototype and Framework Evaluation

367

Figure 7.10: Use Case 2 M2M Application Description

Once the application has been formally described, the application description is

transferred to the ADI. The ADI triggers the ADP which then imports the application

description. Figure 7.11 shows the information imported by ADP into an internal

application description object.

<?xml version="1.0" encoding="UTF-8"?><scxml xmlns="http://www.w3.org/2005/07/scxml"

datamodel="jexl" initial="remoteRainSensor" name="remoteRainSensorIntegrationApp"

version="1.0">

<datamodel>

<data expr="remoteRainSensor" id="initial"/>

<data expr="mmscIM" id="final"/>

</datamodel>

<state id="remoteRainSensor">

<datamodel>

<data expr="" id="remoteRainSensor.output.state"/>

<data expr="true" id="initial"/>

</datamodel>

<transition cond="$remoteRainSensor.output.state=raining"

target="localWindowSensor"/>

</state>

<state id="localWindowSensor">

<datamodel>

<data expr="" id="localWindowSensor.output.state"/>

</datamodel>

<transition cond="$localWindowSensor.output.state=open" target="mmscIM"/>

</state>

<state id="mmscIM">

<datamodel>

<data expr="Warning window open and starts raining" id="mmscIM.input.text"/>

<data expr="sip:michael@192.168.50.68" id="mmscIM.input.sipURI"/>

<data expr="" id="mmscIM.output.messageText"/>

<data expr="outIM" id="mmscIM.config.mode"/>

<data expr="true" id="final"/>

</datamodel>

<final id="mmscIMFinal"/>

</state>

</scxml>

7.3 Proof of Framework Concepts

368

Figure 7.11: Screenshot of Terminal Output ADP Use Case 2

The ADP returns the application description object to the ADI which processes the

information defined in it to configure the application locally. In this case, this means that

the ADI generates a local SM as shown in Figure 7.12 and stores it locally. Figure 7.13

shows the SM object generated by the ADI.

Figure 7.12: SM generated by ADI Use Case 2

$remoteRainSensor.output.state=raining $localWindowSensor.output.state=open

remoteRainSensor mmscIMlocalWindowSensor

 7 Research Prototype and Framework Evaluation

369

Figure 7.13: Screenshot of Terminal Output ADI Use Case 2

The outlined scenario integrates a remote M2M service that provides the values of a rain

sensor. To use this service, it must be requested from the SP. The following sequence

chart (see Figure 7.14) illustrates the service request and information delivery process.

7.3 Proof of Framework Concepts

370

Figure 7.14: SM generated by ADI Use Case 2

After the SP has received the service request, it continuously sends the rain sensor values

to the SC, which stores them locally.

The Application Executor (AE) component periodically executes the SM by checking the

current state. As soon as the value of the remote rain sensor changes to status "raining",

the AE initiates the transition to the next state. If the output value of the local window

sensor now has the value "open", a state transition is also triggered which causes the local

Peer 0

Service

requesting Peer Peer 0

remoteRainSensor

Service providing

Peer

Request

Service

Subscribe (Request Primitive)

<Content>

<output>

<outputParameter id="1">

 <name>remoteRainSensor.output.state</name>

 </outputParameter>

</output>

</Content>

Receive

Service

Request

Store in

Subscriber

List

Notify (Response Primitive)

<Content>

<output>

<outputParameter id="1">

 <name>remoteRainSensor.output.state</name>

<value>notRaining</value>

 </outputParameter>

</output>

</Content>

OK

OK

Notify (Response Primitive)

...

Notify (Response Primitive)

<Content>

<output>

<outputParameter id="1">

 <name>remoteRainSensor.output.state</name>

<value>raining</value>

 </outputParameter>

</output>

</Content>

OK

 7 Research Prototype and Framework Evaluation

371

MMSC for sending Instant Messages (mmscIM) to send an IM to the specified user (see

Figure 7.15).

Figure 7.15: Screenshot of IM Client Use Case 2

This section demonstrated the local M2M application creation and execution processes.

The following section demonstrates the cooperative M2M application service provision

and execution.

7.3.2 Cooperative M2M Application Service Provision

The second scenario to demonstrate (Use Case 3) also starts with modelling the M2M

application description in the same way as the previous one (refer to Figure 7.16). In this

scenario the following building blocks are used: remoteSS1 (remote M2M service that

monitors a building and generates information about detected events), remoteBMS

(remote M2M service managing supporter registered for specific buildings), and

remoteAS (remote M2M service providing the ability to send Instant messages).

7.3 Proof of Framework Concepts

372

Figure 7.16: Screenshot of SDU GUI Web Application with SM Model Use Case 3

The configuration of the states and the transitions is illustrated in Table 7.3 and Table 7.4.

Table 7.3: State Configuration Use Case 3

State (Device/MM/M2M

Service Building Block)

Parameter Value

remoteSS1.output.buildingID Kleiststr.1

remoteBMS

remoteAS

remoteSS1

Configuration

No configuration required

No configuration required

 7 Research Prototype and Framework Evaluation

373

Table 7.4: Transition Configuration Use Case 3

This configuration defines that if a an event in the building monitored by remoteSS1

occurs that is “water” or “smoke”, remoteSS1 should send the event occurred to remote

BMS. RemoteBMS should invoke another service remoteAS for sending an alarm

message to supporters registered for the building to inform them about the event. Saving

the M2M Application Model again automatically generates the formal description of the

M2M application (illustrated in Figure 7.17). This formal description then is transferred

to the service providing peers included in the service composition. Here it should be again

highlighted that all participating peers stay at different locations.

Transition

Expression

Location Expression

Assign (1) remoteBMS.input.buildingID $remoteSS1.output.buildingID

Assign (2) remoteBMS.input.event $remoteSS1.output.event

Expression

Location Expression

Assign (1) remoteAS.config.mode IM

Assign (2) remoteAS.input.text Water detected

Assign (3) remoteAS.input.sipURI $remoteBMS.output.supporterURI

Expression

Location Expression

Assign (1) remoteAS.config.mode IM

Assign (2) remoteAS.input.text Smoke detected

Assign (3) remoteAS.input.sipURI $remoteBMS.output.supporterURI

Configuration

remoteSS1 -->

remoteBMS

$remoteBMS.input.event=smoke

$remoteBMS.input.event=water

remoteBMS -->

remoteAS (1)

remoteBMS -->

remoteAS (2)

$remoteSS1.output.event=smoke OR $remoteSS1.output.event=water

7.3 Proof of Framework Concepts

374

Figure 7.17: Use Case 3 M2M Application Description

Since it is an M2M application, which should be used by other peers (Building supporter,

which want to register for a specific building), the designed cooperative M2M application

<?xml version="1.0" encoding="UTF-8"?><scxml xmlns="http://www.w3.org/2005/07/scxml"

datamodel="jexl" initial="remoteSS1" name="corporateBuildingMonitoringApp" version="1.0">

<datamodel>

<data expr="remoteSS1" id="initial"/>

<data expr="remoteAS" id="final"/>

</datamodel>

<state id="remoteSS1">

<datamodel>

<data expr="" id="remoteSS1.output.event"/>

<data expr="Kleiststr.1" id="remoteSS1.output.buildingID"/>

<data expr="true" id="initial"/>

</datamodel>

<transition cond="$remoteSS1.output.event=smoke OR $remoteSS1.output.event=water"

target="remoteBMS">

<assign expr="$remoteSS1.output.buildingID"

location="remoteBMS.input.buildingID"/>

<assign expr="$remoteSS1.output.event" location="remoteBMS.input.event"/>

</transition>

</state>

<state id="remoteBMS">

<datamodel>

<data expr="" id="remoteBMS.input.buildingID"/>

<data expr="" id="remoteBMS.input.event"/>

<data expr="" id="remoteBMS.input.supporterURI"/>

<data expr="" id="remoteBMS.output.text"/>

<data expr="" id="remoteBMS.output.supporterURI"/>

</datamodel>

<transition cond="$remoteBMS.input.event=water" target="remoteAS">

<assign expr="IM" location="remoteAS.config.mode"/>

<assign expr="Water detected" location="remoteAS.input.text"/>

<assign expr="$remoteBMS.output.supporterURI"

location="remoteAS.input.sipURI"/>

</transition>

<transition cond="$remoteBMS.input.event=smoke" target="remoteAS">

<assign expr="TTS" location="remoteAS.config.mode"/>

<assign expr="Smoke detected" location="remoteAS.input.text"/>

<assign expr="$remoteBMS.output.supporterURI"

location="remoteAS.input.sipURI"/>

</transition>

</state>

<state id="remoteAS">

<datamodel>

<data expr="" id="remoteAS.input.text"/>

<data expr="" id="remoteAS.input.sipURI"/>

<data expr="" id="remoteAS.config.mode"/>

<data expr="true" id="final"/>

</datamodel>

<final id="remoteASFinal"/>

</state>

</scxml>

 7 Research Prototype and Framework Evaluation

375

needs to be equipped with an application IFD. This IFD is generated using the SDU GUI

(illustrated in Figure 7.16) and afterwards stored in the P2P overlay. Figure 7.18 shows

the automatically generated IFD.

Figure 7.18: Use Case 3 corporateBuildingMonitoringApp IFD

The ADI of each peers interprets the formal application description by means of the ADP

providing the internal application description object. This step is illustrated in Figure 7.19

once for all peers.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<AE>

<appName>corporateBuildingMonitoringApp</appName>

 <App-ID>corpBuildMonApp</App-ID>

 <pointOfAccess></pointOfAccess>

 <requestReachability></requestReachability>

 <creationTime>2017-11-30</creationTime>

 <lastModifiedTime>2017-11-30</lastModifiedTime>

 <contentSerialisation></contentSerialisation>

 <accessControlPolicy>

 <privileges>

 <accessControlOriginators></accessControlOriginators>

 <accessControlContexts></accessControlContexts>

 <accessControlOperations></accessControlOperations>

 </privileges>

 <expirationTime></expirationTime>

 </accessControlPolicy>

 <content>

 <input>

 <inputParameter id="1">

 <name>remoteBMS.input.buildingID</name>

 <value></value>

 </inputParameter>

 <inputParameter id="2">

 <name>remoteBMS.input.supporterURI</name>

 <value></value>

 </inputParameter>

 </input>

 <output/>

 <config/>

 </content>

 <description>Manages supporter registered for specific buildings....</description>

</AE>

7.3 Proof of Framework Concepts

376

Figure 7.19: Screenshot of Terminal Output ADP Use Case 3

After generation of the application description object the peers process it to perform their

individual configurations. Peers only process the information related to themselves to

determine the information required to embed them into the distributed SM described by

the formal description. Figure 7.20, Figure 7.21, and Figure 7.22 show the determined

information by the individual peers.

 7 Research Prototype and Framework Evaluation

377

Figure 7.20: Screenshot of Terminal Output ADI Use Case 3 remoteSS1

Figure 7.21: Screenshot of Terminal Output ADI Use Case 3 remoteBMS

Figure 7.22: Screenshot of Terminal Output ADI Use Case 3 remoteAS

7.3 Proof of Framework Concepts

378

The distributed SM that is to be generated after all peers have automatically connected

with each other is illustrated in Figure 7.23.

Figure 7.23: Distributed SM Use Case 3

To generate this distributed M2M application the signalling illustrated in Figure 7.24 is

performed by the peers. After the signalling process is finished, the distributed

cooperative M2M application has been successfully configured and is ready for

execution. Here it should be again mentioned, that the peers perform their individual part

of the SM logic by checking the condition locally and send the response message (i.e.

perform the state transition) only if the defined condition becomes TRUE.

Figure 7.24: M2M Application Configuration Phase Use Case 3

$remoteSS1.output.event=smoke OR

$remoteSS1.output.event=water $remoteBMS.input.event=water

$remoteBMS.input.event=smoke

remoteSS1 remoteASremoteBMS

Peer 0

remoteSS1

providing Peer Peer 0

remoteBMS

providing Peer

Receive

Service

Request

<outputParameter id="1">

<name>

remoteSS1.output.buildingID

</name>

<value>

Kleiststr.1

</value>

</outputParameter>

<outputParameter id="2">

<name>

remoteSS1.output.event

</name>

</outputParameter>

Request

Service

OK

Subscribe (Request Primitive)

Peer 0

remoteAS

providing Peer

Request

Service

Store in

Subscriber

List

Subscribe (Request Primitive)

<outputParameter id="1">

<name>

remoteBMS.output.supporterURI

</name>

</outputParameter>

OK

Receive

Service

Request

Store in

Subscriber

List

 7 Research Prototype and Framework Evaluation

379

In the next step, supporter register for the buildings they take care of by requesting the

M2M application service at the remoteBMS providing peer (illustrated in Figure 7.25).

Figure 7.25: Service Request Process Supporter at remoteBMS Use Case 3

As soon as events “water” or “smoke” occur in the building monitored by remoteSS1 the

M2M application execution starts. The performed message exchange is illustrated in

Figure 7.26.

Figure 7.26: M2M Application Execution Process Use Case 3

RemoteSS1 generates a NOTIFY message and sends it to the remoteBMS providing peer.

This determines the supporter of the building and generates the alarm message text in

Peer 0
Supporter Peer

Peer 0

remoteBMS

providing Peer

Request

Service

Subscribe (Request Primitive)

<Content>

<input>

<inputParameter id="1">

 <name>remoteBMS.input.buildingID</name>

 <value>Kleiststr.1</value>

 </inputParameter>

<inputParameter id="2">

 <name>remoteBMS.input.supporterURI</name>

 <value>Supporter1@10.0.19.20</value>

 </inputParameter>

</input>

</Content>

Receive

Service

Request

Store in

Subscriber

List

OK

Peer 0

remoteSS1

providing

Peer Peer 0

remoteBMS

providing

Peer

n: remoteSS1.output.buildingID

v: Kleiststr.1

n: remoteSS1.output.event

v: water

OK

Peer 0

remoteAS

providing

Peer

Notify (Response Primitive)

Peer 0

Supporter

Peer

n: remoteAS.config.mode

v: IM

n: remoteAS.input.text

v: Water detected in

 Kleistst.1

n: remoteAS.input.sipURI

v: Supporter1@10.0.19.20

Notify (Response Primitive)

SIP MESSAGE

text: Water detected in

 Kleistst.1

OK

200 (OK)

7.3 Proof of Framework Concepts

380

dependence of the occurred event. Afterwards the remoteBMS sends a NOTIFY message

to the remoteAS providing peers, which generated a SIP IM and sends it to the building

supporting peer (illustrated in Figure 7.27).

Figure 7.27: Screenshot of Terminal Output Supporter receiving Alarm Message Use Case 3

This section demonstrated the distributed cooperative M2M application creation and

execution processes. The following section will demonstrate storing and requesting IFDs

in a P2P overlay.

7.3.3 Communication Scenarios for M2M Service Requests

To demonstrate the processes for the service request and the corresponding response

messages, the following two scenarios are presented.

 One-time subscription via CoAP – A SC requests once for an M2M

service/resource at an M2M service providing peer using the communication

protocol CoAP.

 Continuous subscription via SIP – A SC requests for an M2M service/resource at

an M2M service providing peer using the communication protocol SIP. Requested

resource is continuously sent to the requesting peer.

 7 Research Prototype and Framework Evaluation

381

To request a service from a service providing peer, a subscription request is sent to that

service (see Figure 7.28). The requested parameter is defined in the message body of the

message. The service request can also contain parameters that are to be set for the service

(input/config parameter). It can be seen that each message is answered with an

acknowledgement message (ACK).

Figure 7.28: Screenshot of Wireshark Trace Request Message via CoAP one-time Subscription

Peers that receive service request messages generate Request Primitive messages from

the received messages which are then further processed (see Figure 7.29).

Request Message

Response Message

Acknowledgement

Messages

7.3 Proof of Framework Concepts

382

Figure 7.29: Screenshot of Terminal Output received Request Primitive via CoAP

Since the service request shown is a one-time subscription request of a resource, a single

response message is sent back to the requesting peer (see Figure 7.30).

Figure 7.30: Screenshot of Wireshark Trace Response Message via CoAP

 7 Research Prototype and Framework Evaluation

383

The response message contains only the requested output parameters of a service request.

After the service requesting peer has received the response message, it generates a

Request Primitive for further processing containing the requested parameter values (see

Figure 7.31).

Figure 7.31: Screenshot of Terminal Output received Response Primitive via CoAP

The following Figure 7.32 shows a service request message transmitted via SIP.

Figure 7.32: Screenshot of Wireshark Trace Request Message via SIP continuous Subscription

7.3 Proof of Framework Concepts

384

In a continuous subscription, the requested parameter is also specified in the message

body. The information about the continuous request is given in the shown example in the

message header. This causes the SP to send the requested information continuously until

the subscription is terminated (Expires: 0) (see Figure 7.33).

Figure 7.33: Screenshot of Wireshark Trace Terminate Request Message via SIP

In summary, it can be concluded that the framework and the prototype implementation

could be evaluated by implementing different scenarios. The scenarios demonstrate the

implementation of application and framework components without central entities and

the central integration of the end-user into application creation. It could be shown that by

applying the new concepts, M2M applications can be conveniently created and formally

described with distributed provision and execution.

 7 Research Prototype and Framework Evaluation

385

7.4 Performance Evaluation

As shown in the proof-of-concept, an M2M application is based on the linking of

distributed services through signalling based on the service request and transmitting

service result via notification messages.

Assuming that when using a central MSP, services are also linked by the same signalling

principle, the effort for the required signalling messages can be compared. The following

scenarios (as illustrated in Figure 7.35 and Figure 7.36) are defined for the comparison:

 N Services in same Subnet – N services that are to be connected to each other are

located in the same access network (subnet) and on different nodes.

 Two Services in different Subnets – Two services to be linked are located in

different subnets that are not connected to each other by a direct link.

 Two Services in different Subnets (direct link) – Two services to be linked to each

other are located in different subnets connected by a direct link.

Furthermore, a uniform data basis for message exchange via CoAP and SIP is required.

For this purpose, the service request message shown in Figure 7.28 is used as CoAP data

basis. The same scenario has been performed via SIP as illustrated in Figure 7.34.

The signalling effort for the request of a service shown in Table 7.5 can be determined

from the displayed messages. To determine the message volume in relation to the number

of messages, the average message size consisting of request and response messages is

used. Derived from Figure 7.28 and Figure 7.34, the average message size for CoAP is

therefore exemplarily set to 306Byte and for SIP 781Byte.

7.4 Performance Evaluation

386

Figure 7.34: Screenshot of Wireshark Trace Request/Response Messages via SIP one-time

Subscription

Table 7.5: Signalling Effort for Service Request and Service Response

Based on the defined scenarios and using a central MSP, Figure 7.35 shows the messaging

effort. It is assumed that the nodes are each connected to an Access Network (AN), which

in turn is connected to the Core Network. The Core Network connects the ANs with each

other and also consists of several Core Subnets (CSNs).

Category Description SIP CoAP

Service Request (Request + Acknowledgement) 1731 Byte 774 Byte

Service Response (Notify + Acknowledgement) 1394 Byte 452 Byte

M2M Communication Protocol

Service Request/

Response

 7 Research Prototype and Framework Evaluation

387

Figure 7.35: Signalling Effort using centralised M2M Service Platform (MSP)

A central MSP must always request all services to be linked to each other and receives a

response from these services. Derived from the signalling behaviour shown in Figure

7.35, the message effort for requesting n services that are located in the same subnet can

be derived as shown in Equation 7.1. The variable "m" corresponds to the number of

mediating CSNs located between the CSNs to which the ANs of the service nodes and

the MSP are connected.

For the messaging effort of requesting two services located in different subnets, the

signalling effort shown in Equation 7.2 can be derived. Since a different number of

mediating CSNs can exist in this scenario, this is taken into account by the variable "m1"

and "m2". The messaging effort for the scenario in which the ANs are connected to each

Request/ Ack

Notify/ Ack

Access

Network 1

Node 1 Node 2

Access

Network 2

Node 3 Node 4

Access

Network 3

Node 5 Node 6

Core Network

Core Subnet 1 Core Subnet 2 Core Subnet 3
Access

Network 4

M2M ServiceM2M Service

Service in different SubnetsService in same Subnet

M2M Service

Platform

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

Request/ Ack

Notify/ Ack

M2M Service M2M Service

Request/ Ack

Notify/ Ack

(7.1)Signalling Messages (S) = n * [8 + (4 * m + 4) + 8]

mediating CSN

M2M Server AN CSNM2M Service AN CSN

Services

7.4 Performance Evaluation

388

other is identical, since the services are requested by the central MSP and therefore there

would be no advantage by connecting ANs.

Table 7.6 shows the messaging effort for signalling using a central MSP for scaling

services (n) and number of mediating CSNs (m), assuming that m1 is equal to m2 and that

in the scenario where n services are connected to each other m is equal to 1 (as shown in

Figure 7.35).

Table 7.6: Performance Analysis central M2M Service Platform for Service Requests

In comparison, Figure 7.36 shows the message effort using signalling approaches from

the proposed framework.

(7.2)
Signalling Messages (S) = [8 + (4 * m1 + 4) + 8]

+

 [8 + (4 * m2 + 4) + 8]

Scenario

n n CoAP SIP

2 48 2 14688 37488

10 240 10 73440 187440

100 2400 100 734400 1874400

m m CoAP SIP

2 56 2 17136 43736

5 80 5 24480 62480

10 120 10 36720 93720

2 services

different subnets

n = number of services; m = number of mediating subnets, mx = different number of mediating subnets

[8 + (4 * m1 + 4) + 8]

+

[8 + (4 * m2 + 4) + 8]

Messages

Central M2M Service Platform

Total Byte

N services same

subnet
n * [8 + (4 * m + 4) + 8]

 7 Research Prototype and Framework Evaluation

389

Figure 7.36: Signalling Effort using proposed Framework

Derived from the signalling behaviour shown in Figure 7.36, the messaging effort shown

in Equation 7.3 or requesting n services within the same subnet can be derived. Since the

services are connected P2P, only signalling between the nodes in the same AN is

necessary.

For requesting two services located in different subnets, the signalling effort shown in the

following Equation 7.4 can be derived.

If the ANs are connected to each other by a direct link, the connection via the CSNs can

be reduced. In this way, the signalling effort shown in Equation 7.5 can be derived.

Access

Network 1

Node 1 Node 2

Access

Network 2

Node 3 Node 4

Access

Network 3

Node 5 Node 6

Core Network

Core Subnet 1 Core Subnet 2 Core Subnet 3

Request/ Ack

Notify/ Ack

Request/

Ack

Notify/

Ack

M2M ServiceM2M Service

Notify/

Ack

Request/

Ack

Service in different SubnetsService in same Subnet

M2M Service M2M Service

Request/ Ack

Notify/ Ack

Notify/

Ack
Request/

Ack

Request/

Ack

Notify/

Ack

Request/ Ack

Notify/ Ack

(7.3)
Signalling Messages (S) = (n * 4) - 4

Services

(7.4)Signalling Messages (S) = [8 + (4 * m + 4) + 8]

mediating CSN

M2M Service AN2 CSNM2M Service AN1 CSN

7.4 Performance Evaluation

390

Table 7.7 shows the messaging effort for signalling using the proposed framework for

scaling services (n) and number of mediating CSNs (m).

Table 7.7: Performance Analysis distributed M2M Service Platform Concept for Service Requests

The comparison visualised in Figure 7.37 shows the significantly lower signalling effort

using the presented framework. The number of messages required for linking n services

in the same subnet is about one-fifth with the proposed framework. Only half of the

messages are needed to connect two services in different subnets (without a direct link).

If the subnets are connected by a direct link, on the other hand, only 12 messages are

needed constantly.

(7.5)Signalling Messages (S) = [4 + 4 + 4]

AN1 AN2

M2M Service AN2M2M Service AN1

Scenario

n n CoAP SIP

2 4 2 1224 3124

10 36 10 11016 28116

100 396 100 121176 309276

m m CoAP SIP

2 28 2 8568 21868

5 40 5 12240 31240

10 60 10 18360 46860

SIP

9372

2 services

different subnets
[8 + (4 * m + 4) + 8]

Distributed M2M Service Platform Concept

Messages Total Byte

N services same

subnet
(n * 4) – 4

n = number of services; m = number of mediating subnets

2 services

different subnets

(direct link)

12 (4 + 4 + 4) 12

CoAP

3672

 7 Research Prototype and Framework Evaluation

391

Figure 7.37: Comparison Signalling Effort (# Messages)

Figure 7.38 visualises the comparison under consideration of the required data volume.

Again, it can be seen that the effort required by the proposed framework is significantly

lower.

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120

M

es
sa

ge
s

Number of Services

N Services same Subnet

Central M2M Service Platform

Proposed Framework

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

M

es
sa

ge
s

Mediating Subnets

2 Services different Subnets (no Link)

Central M2M Service Platform

Proposed Framework

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

M

es
sa

ge
s

Mediating Subnets

2 Services different Subnets (direct Link)

Central M2M Service Platform

Proposed Framework

7.4 Performance Evaluation

392

Figure 7.38: Comparison Signalling Effort (Data Volume)

In particular, it should be noted that the load on the central MSP and the AN to which it

is connected is a multiple higher, since the messages all have to be processed in a single

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 20 40 60 80 100 120

D
at

a
V

o
lu

m
e

Number of Services

N Services same Subnet

Central M2M Service Platform CoAP

Proposed Framework CoAP

Central M2M Service Platform SIP

Proposed Framework SIP

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12

D
at

a
V

o
lu

m
e

Mediating Subnets

2 Services different Subnets (no Route)

Central M2M Service Platform CoAP

Proposed Framework CoAP

Central M2M Service Platform SIP

Proposed Framework SIP

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12

D
at

a
V

o
lu

m
e

Mediating Subnets

2 Services different Subnets (direct Route)

Central M2M Service Platform CoAP

Proposed Framework CoAP

Central M2M Service Platform SIP

Proposed Framework SIP

 7 Research Prototype and Framework Evaluation

393

place, whereas the load in the presented framework is distributed among several nodes

and ANs.

7.5 Conclusion

This chapter presented the evaluation of the proposed framework for “Autonomous

decentralised M2M Application Service Provision” (section 7.1). The framework has

been analysed with regard to the requirements defined in section 3.2 and determined

whether or not these requirements are met. All the requirements for the framework were

met by the concepts and the M2M system architecture presented.

Section 7.2 presented the research prototype architecture and implementation. The

relevant developed components were described and the interaction between the

framework components was discussed.

The research prototype was successfully implemented for the proof-of-concept evaluation

of the proposed framework (section 7.3). This demonstrated the main functionality of the

framework and proved its applicability. The proof-of-concept was demonstrated using

previously defined use cases that illustrate the essential aspects of the framework (end-

user integration, formal description of application logic, decentralised SM-based service

execution, combination of distributed M2M application services, and cooperative M2M

application service provision). All the relevant steps for modelling, generating and

executing an M2M application service were illustrated using the respective use cases.

Finally, in section 7.4 the signalling effort for service requests and transmission of service

results required for linking services was considered. The connection of a scaling number

7.5 Conclusion

394

of services in the same AN was analysed. Furthermore, the connection of two services in

different (possibly directly linked) ANs was analysed, which are interconnected by a

scalable number of mediating CNs. The number of messages was determined and based

on exemplary message sizes the required data volume was calculated. The comparison of

the distributed MSP system architecture introduced in this project with a centrally

organised system architecture has shown that the presented approach requires

significantly less effort for signalling (services in the same AN 80%, different ANs 50%,

directly linked ANs constant 12 messages).

395

8 Conclusion and Future Work

This chapter concludes the research project. Section 8.1 summarises the main

achievements. Section 8.2 discusses limitations of the project. Section 8.3 suggests scopes

and ideas for further research.

8.1 Achievements of the Research

The research performed in this project was dedicated to the design of a novel approach

for M2M application service provision. A framework has been designed enabling the

realisation of a distributed M2M service platform (MSP). This showed an alternative to

traditional approaches of MSPs. The proposed MSP eliminates certain disadvantages of

traditional MSPs such as dependencies on central system components or stakeholders.

The MSP, as well as the M2M applications, can be operated autonomously with existing

equipment. The framework is an integrated solution for decentralised M2M application

service provision with native end-user integration. It describes all necessary steps from

application modelling to execution and automated configuration of M2M applications.

The analysis of currently existing approaches in the field of MSPs was presented (refer

to section 3.2). For this purpose, the oneM2M standard and approaches from the research

field were considered. Requirements for a new framework for “Autonomous

decentralised M2M Application Service Provision” were determined on the basis of their

advantages and deficits (refer to section 3.2). It has been analysed whether one of the

8.1 Achievements of the Research

396

considered projects fulfils the requirements with the result that none of them fulfils the

overall requirements catalogue, since the existing approaches for MSPs usually comprise

individual solutions or do not include essential aspects for decentralisation or end-user

integration.

A new framework has been designed based on the requirements resulting from the deficits

and advantages of related projects (refer to chapter 4). The designed framework

architecture contains new conceptual models for M2M system architectures enabling

decentralised, horizontal and cooperative M2M application service provision.

The Decentralised M2M Service Provision (ADSP) model was introduced as the first new

model. With the introduced framework, end-users have the possibility to create their

individual applications with the resources existing in their personal environment and

execute them locally. In the related projects, M2M applications for supporting specific

business processes are created by specialised developers and are executed centrally on

M2M application servers. Often the MSPs are limited to specific application fields and

therefore not flexible enough to cover the end-user's individual field of application. By

integrating end-users into the application creation they can create applications that meet

their individual requirements. Since the end-users themselves provide the execution

environment, they are not dependent on a central platform operator or central system

components that they cannot manage. Additionally, end-users are not dependent on the

functionality of a central MSP, but use the functionality that exists in their personal area

for which the application is intended. By distributing the load across different execution

environments, the platforms that provide the execution environment can have

significantly less system resources than if all applications were running on a central

 8 Conclusion and Future Work

397

platform. A further advantage of the decentralised platform architecture and the

avoidance of central stakeholders is that there are no dependencies on them and there is

no central data storage that could compromise end-users' privacy.

The Horizontal M2M Service Provision and Utilisation (HSPU) model was introduced as

the second new conceptual model. The HSPU model allows end-users to provide their

local resources and M2M applications end-to-end as a service to other end-users, but also

to external service providers (SPs) who can then integrate them into their own M2M

applications. As a result of this facility, the end-user is no longer only in the role of a

service consumer (SC), but can also act as a SP. The HSPU model enables external access

to the end-user's personal environment, which is not intended for most existing MSPs.

The integration of resources from the domain of other end-users in M2M applications can

extend their functionality or be integrated into certain business processes.

The third newly introduced Decentralised Cooperative M2M Application Service

Provision (DCASP) model allows end-users to connect their distributed M2M services.

Thereby, the functionality and effectiveness of an M2M application can be extended by

integrating the personal environments of other end-users that were previously not

addressable.

To enable decentralised and autonomous M2M application provisioning, several

approaches and algorithms have been designed enabling the most automatic application

generation and execution (refer to chapter 5).

The prerequisite for M2M application provisioning where the end-user is in focus is the

integration of the end-user into application creation. This is one of the key novelties of

8.1 Achievements of the Research

398

this research. A unified structure of an M2M application was designed and based on it a

concept for the graphical modelling of an M2M application was introduced that is

independent of the execution environment. With the proposed new approach of

application creation, the end-user has the possibility to graphically model the behavior of

an application in an intuitive way as a state machine. Compared to other related

approaches, where the application logic has to be implemented programmatically, no

expert knowledge is required for this kind of application development.

Another key novelty of this research relates directly to the previous one. An approach has

been designed that maps the graphically modelled application logic into a formal

language. For this purpose, different standardised modelling languages were examined

and based on a defined catalogue of requirements, UML StateMachine Diagrams were

selected as the basis for the formal description. Using SCXML as a standardised formal

language, a new description language for M2M applications has been introduced

describing the semantics of the M2M application.

The advantage that the application logic is described in a formal language defines another

novelty of the described framework in the context of MSPs. Due to the formal description,

the application logic is machine-readable and can be executed on other systems that

contain a corresponding parser. New algorithms have been designed with which the

formal description can be generated automatically and to generate an executable state

machine which is executed by the local M2M platform.

Reusable Multimedia Service Components (MMSCs) have been defined which can be

integrated into M2M applications and serve as an input/output interface. This enables to

interact with the M2M platform or M2M applications via a comfortable interface (natural

 8 Conclusion and Future Work

399

language or textual) using existing multimedia communication equipment. Although the

principles of these MMSCs are already common communication methods, the integration

into an MSP was not considered in any of the related projects. Through this the scope of

traditional MSPs have been extended to the M2M application field that (Decker, 2012)

classifies as 2nd generation M2M (M2M end-user/devices/environment interaction) and

3rd generation M2M (Social M2M, integration of people and networking of people).

The basis for decentralised and cooperative application provisioning is the networking of

SP and SC as well as the composition of a distributed M2M application. For this purpose,

several approaches and algorithms have been defined, which again focus on automated

execution (refer to chapter 6).

Another key novelty of this research is the provision of local resources and applications

for other end-users and their integration into M2M applications. For this purpose, a

unified interface description for M2M device/application services based on the resource

descriptions defined by oneM2M has been introduced containing all necessary parameters

for service utilisation. An approach was defined how M2M service requests can be

requested and integrated into other M2M applications by exchanging service layer

messages in a standard-compliant manner. Due to the uniformly defined structure of an

M2M application, it is possible to integrate remote M2M services with the same

semantics as local M2M devices into the application logic. The designed parsing

algorithm determines whether the resource is a local or remote resource and requests it

from the SP.

8.1 Achievements of the Research

400

As a central concept of the presented framework and thus as a new approach for the

realisation of an MSP, central components in the platform architecture were completely

avoided. To achieve this, a number of new approaches have been designed.

Networking between SPs and SCs is end-to-end. This means that no intermediary entities

on the application layer are involved in the communication. To achieve this, the P2P

networking approaches were applied to the networking of SPs and SCs. To define an

adequate approach for the exchange of messages, different Information Exchange

Patterns (IxP) have been analysed with the result that the Subscribe/Notify IxP is the most

appropriate pattern. To define an optimal P2P communication protocol, the protocols

suggested by oneM2M were analysed. The evaluation has shown that CoAP is the only

suitable of the proposed protocols considering the defined framework requirements. As

an alternative, SIP was proposed as communication protocol, since the technical

requirements for communication via SIP are already present in the end-user environment.

A new SIP Protocol Binding was specified to enable oneM2M standards-compliant

communication between SP and SC for service utilisation. The comparison of CoAP and

SIP showed that although CoAP has the lower message overhead, SIP should be regarded

as more advantageous, in particular through the newly proposed integration of multimedia

communication in M2M service platforms.

The use of a P2P overlay was proposed to realise decentralised data management for the

administration of the service interface descriptions. Different algorithms for managing

structured and unstructured P2P overlays were analysed in the context of the presented

framework. As a result, structured overlays were found to be advantageous for many

 8 Conclusion and Future Work

401

search queries and a required guarantee of success. Unstructured overlays have the

advantage of supporting a high fluctuation of peers.

Another key novelty of this research work is the cooperative M2M application service

provision approach. Approaches and algorithms were defined to carry out a decentralised

composition of the distributed M2M application. The application modelling and the

formal description is also done by modelling a state machine. A mechanism has been

designed to realise a distributed state machine which corresponds to the described

application logic and to build a service overlay network. In this completely new approach,

all nodes involved are able to embed themselves autonomously in the application context

by analysing the relevant part of the formal description. Since the autonomous embedding

in the application context can lead to invalid interconnections, an algorithm has been

designed enabling each peer to recognise independently whether an invalid configuration

exists. This new approach enables realise distributed M2M applications, which in the

existing MSP approaches is only possible with the help of a central service orchestrator.

The new approach for the decentralised M2M application service provision is completed

by the introduction of a new M2M community. The introduction of an M2M community

created the ability for end-users to interlink with each other on the basis of a social

network for offering and utilising services.

The final chapter 7 described the evaluation of the defined requirements (refer to section

3.2) with the result that all the specified requirements are fulfilled by the presented

framework. The verification of the main framework functionalities has been established

by the development of a research prototype. The research prototype has been successfully

adopted for the proof of concept of the proposed framework by demonstrating exemplary

8.2 Limitations of the research

402

use cases for local M2M application modelling and execution with remote M2M service

integration as well as for cooperative M2M application service execution.

Several publications on the different aspects of the research outcomes were presented at

related conferences, which received positive comments from the reviewers and delegates.

8.2 Limitations of the research

Although the overall objectives of research were achieved, some decisions had to be made

that limited the work of this research. In principle, these decisions were made for practical

reasons, to limit the expenditure in areas where no new findings were expected or were

outside the scope of this research. The main restrictions are summarised below.

1. Only the IMMMSC of the defined MMSCs was implemented in the framework

prototype, since its interfaces can be operated with the same client application.

However, the implementation of the other MMSCs would not have been relevant,

since the IMMMSC already serves both input and output interface.

2. The Service Design Unit does not support parallel state elements. This is because

the JsPlumb library does not support nested state elements in the used and freely

available version. However, the modelling of AND-State elements has been

described in detail, so that this functionality can be easily implemented when the

library functionality is available. Furthermore, the conditions for the state

transitions must be defined statically. Here, the definition could be done via

selection lists, but this is only a design aspect of the GUI. The basic functionality

 8 Conclusion and Future Work

403

of dynamic conditions (defined in JEXL format) and their evaluation have been

validated so that it can be implemented easily.

3. The implementation of structured and unstructured overlays for Gnutella and

Chord algorithms were integrated into the prototype implementation. However,

the performance is highly dependent on the library implementation and its

configuration options (e.g. stabilisation processes, redundancies or update

intervals), so that no reliable analysis can be performed with the prototype

implementation. However, the performance of the different overlay algorithms

was evaluated based on literature research results. A modular design of the

prototype makes it easy to replace the overlay algorithm.

4. The application validation algorithm has not been implemented. The

mathematical principles used have already been sufficiently proven, so that it can

be assumed that the algorithm is valid. Implementation in the prototype would not

have brought much added value.

5. The integration of the P2P overlay layer into the system architecture enables

completely decentralised data storage, which meets the requirements of avoiding

central entities. Distributed data storage, however, creates additional traffic for

overlay management and searching datasets.

6. The security aspect of the proposed platform architecture is limited to distributed

data storage and the definition of access rights via the IFDs. This prevents data

from being stored at central locations and enables applications to be restricted to

specific user groups. Security aspects such as trustworthiness of applications

provided by end-users, access protection for the overlay or authentication of users

to use M2M applications were not considered.

8.3 Suggestions and Future Work

404

7. The presented framework does not include any approaches to validate the

provided M2M applications in terms of functionality, reliability or availability.

These aspects were not the focus of this project and could be part of further

research.

Despite this restrictions, this research project made valid contributions to knowledge and

provided sufficient evidence of the concept for the proposed approaches.

8.3 Suggestions and Future Work

This research has expanded the field of MSPs by introducing new approaches and ideas

for the decentralised realisation of MSPs with native end-user integration. However, some

areas for future research have been identified during this research. Possible extensions of

this research are listed subsequently.

1. Further research can be undertaken in the area of application modelling. Since

application semantics modelling is independent of the executing component,

alternative approaches for generating the application model could be designed.

Possible are, e.g. the definition of an application model by means of natural

language, in which the connections of the devices and services are described

verbally.

2. Because of the independence from central components that are located somewhere

in the Cloud, it can be investigated whether the described concepts can be used

advantageously in networks that are locally limited in their extent and are not

 8 Conclusion and Future Work

405

connected to public networks, e.g. Mobile Ad-hoc networks or Wireless Mesh

Networks.

3. The distributed provision of M2M applications, especially in the end-user domain,

results in new challenges. It can be investigated how the functionality of a

distributed application can be tested. Since according to the described concept

there is no central entity that would test applications as in traditional systems, it is

possible to research how a distributed autonomous test approach could be realised.

Another aspect of testing that can be considered is the compatibility of services

with each other.

4. While some of the aforementioned security restrictions can be solved by

development activities (e.g. access protection), the aspect of trust could be further

examined. Since M2M services are provided by end-users, a mechanism could be

designed that allows a distributed trust determination, so that only trusted M2M

services can connect to each other.

5. In this approach, the application developers define the interface descriptions.

Since this contains many freely definable fields, semantics and ontologies can be

examined for their application in describing M2M services to specify them

uniquely and also to get alternative services offered during the search process.

407

References

1. 3GPP TS 23.002 v8.7.0 (2010), Technical Specification, “Network Architecture

(Release 8)”, 3GPP

2. 3GPP TS 23.228 v5.15.0 (2006), Technical Specification, “IP Multimedia

Subsystem (IMS); Stage 2 (Release 5)”, 3GPP

3. 3GPP TS 23.682 v14.2.0 (2016), Technical Specification, “Architecture

enhancements to facilitate communications with packet data networks and

applications (Release 14)”, 3GPP

4. Amaral, L. A.; Tiburski, R. T.; Matos, E.; Hessel, F. (2015), "Cooperative

Middleware Platform as a Service for Internet of Things Applications",

Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC’ 15),

pp. 488-493, Salamanca, Spain, ACM

5. Apache ANT (2017), “The Apache ANT Project”, Available at:

http://ant.apache.org/, [accessed 19th February 2017]

6. Apache Felix (2017), “Apache Felix”, Available at: http://felix.apache.org/,

[accessed 07th November 2017]

7. Apache Karaf (2017), “Apache Karaf”, Available at: http://karaf.apache.org/,

[accessed 07th November 2017]

8. Apache Struts (2017), Apache Foundation, “Apache Struts”, Available at:

https://struts.apache.org/[accessed 1st February 2017]

9. Apache XML-RPC (2017), “Apache XML-RPC”, Available at:

https://ws.apache.org/xmlrpc/, [accessed 09th November 2017]

10. Appcelerator (2017), Appcelerator Inc., “Titanium – Cross-platform mobile app

development using JavaScript”, Available at:

http://www.appcelerator.com/mobile-app-development-products/[accessed 15th

February 2017]

11. Arndt, M. and Koss, J. (2014), “ETSI M2M Horizontal Platform Strategy”, DG

Connect & ETSI Workshop on Smart Appliances, ETSI

12. Bahga, A. and Madisetti, V. (2014), “Internet of Things (A Hands-on-

Approach)”, USA, ISBN: 978-0996025515

13. Bayer, T. (2002), “REST Web Services”, Whitepaper, Orientation in Objects

GmbH, Available at: http://www.oio.de/public/xml/rest-webservices.pdf,

[accessed 18th June 2017]

14. Binzenhöfer, A. and Leibnitz, K. (2007), “Estimating Churn in Structured P2P

Networks”, Proceedings of the 20th International Teletraffic Congress (ITC20

2007), pp. 630-641, June 2007, Ottawa, Canada

References

408

15. Böckenhauer, H. and Hromkovic, J. (2013), “Formale Sprachen” (translated title:

“Formal Languages”), Springer, Wiesbaden, Germany, ISBN: 3-658-00725-7,

2013

16. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. (2012), "Fog Computing and Its Role

in the Internet of Things", Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing (MCC ’12), pp. 13-16, Helsinki, Finland, ISBN: 978-

1-4503-1519-7, ACM

17. Boswarthick, D., Elloumi, O., Hersent, O. (2012), “M2M Communications: A

Systems Approach”, Wiley, Chichester, West Sussex, United Kingdom, ISBN:

978-1-119-99475-6

18. Carreiro, A. M.; López, G. L.; Moura, P. S.; Moreno, J. I.; Almeida, A. T.;

Malaquias, J. L. (2011), "In-house monitoring and control network for the Smart

Grid of the future", Proceedings of the 2011 2nd IEEE PES International

Conference and Exhibition on Innovative Smart Grid Technologies, pp. 1-7, IEEE

19. Carrez, F.; Bauer, M.; Boussard, M.; Bui, N.; Jardak, C.; De Loof, J.; Magerkurth,

C.; Meissner, S.; Nettsträter, A.; Olivereau, A.; Thoma, M.; Walewski, J. W.;

Stefa, J.; Salinas, A. (2013), Technical Report, “Deliverable D1.5 - Final

architectural reference model for the IoT v3.0”, The Internet of Things –

Architecture, IoT-A (257521)”, IoT-A

20. Clarke, I.; Sandberg, O.; Wiley, B.; Hong, T. W. (2000), “Freenet: a distributed

anonymous information storage and retrieval system”, Proceedings of the

International workshop on Designing privacy enhancing technologies: design

issues in anonymity and unobservability, pp. 46-66

21. Clayman, S. and Galis, A. (2011), "INOX: A Managed Service Platform for Inter-

Connected Smart Objects", Proceedings of the Workshop on Internet of Things and

Service Platforms (IoTSP 2011), Tokyo, Japan, ACM

22. Clip2 Distributed Search Services (2001), “The Gnutella Protocol Specification

v0.4”, Available at: http://web.stanford.edu/class/cs244b/gnutella_protocol_0.4

.pdf, [accessed 28th April 2014]

23. CloudFoundry (2017), Cloud Foundry Foundation, “Cloud Foundry Platform”,

Available at: https://www.cloudfoundry.org/[accessed 15th February 2017]

24. Commons JEXL (2017), “Java Expression Language (JEXL)”, Available at:

http://commons.apache.org/proper/commons-jexl/, [accessed 19th February 2017]

25. Commons SCXML (2016), “Apache Commons SCXML”, Available at:

http://commons.apache.org/proper/commons-scxml/, [accessed 13th January 2016]

26. CORE (2017), U.S. Naval Research Laboratory, “Common Open Research

Emulator (CORE)”, Available at: https://www.nrl.navy.mil/itd/ncs/products/core

[accessed 08th February 2017]

27. Damour, N. (2014), “oneM2M Taking a Look Inside”, Webcast, Available at:

http://www.etsi.org/news-events/events/831-2014-10-taking-a-look-inside-

onem2m [accessed 16th December 2016], ETSI, oneM2M

References

409

28. Danila, I.; Dobrescu, R.; Popescu, D.; Marcu, R.; Ichim, L. (2015), “M2M service

platforms and device management“, Proceedings of the 9th International

Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 67-72,

IEEE

29. Dawaliby, S.; Bradai, A.; Pousset, Y. (2016), “In depth performance evaluation of

LTE-M for M2M communications”, Proceedings of the 2016 IEEE 12th

International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), pp. 1-8, December 2016, New York, USA, IEEE

30. Dawy, Z.; Saad, W.; Ghosh, A.; Andrews, J. G.; Yaacoub, E. (2017), “Toward

Massive Machine Type Cellular Communications”, IEEE Wireless

Communications, Vol. 24, no.1, pp. 120-128, IEEE

31. De Boever, J. (2007), “Peer-to-Peer Networks as a Distribution and Publishing

Model”, Proceedings of the ELPUB2007 Conference on Electronic Publishing, pp.

175-187, Vienna, Austria

32. Decker, P. (2012), “Facebook of Things – The challenge of Endusers within M2M

Systems”, Symphony Teleca Corporation, M2M Summit 2012, Düsseldorf,

Germany

33. Docker 17.06.2-ce (2017), Docker Inc., “Docker”, Version 17.06.2-ce, Available

at: https://www.docker.com/[accessed 05th November 2017]

34. Doukas, C. and Antonelli, F. (2013), "COMPOSE: Building smart & context-

aware mobile applications utilizing IoT technologies", Proceedings of the Global

Information Infrastructure Symposium (GIIS 2013), pp. 1-6, IEEE

35. Doukas, C. and Antonelli, F. (2014), "A full end-to-end platform as a service for

smart city applications" Proceedings of the 2014 IEEE 10th International

Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob), pp. 181-186, IEEE

36. Doukas, C.; Capra, L.; Antonelli, F.; Jaupaj, E.; Tamilin, A.; Carreras, I. (2015),

"Providing generic support for IoT and M2M for mobile devices", Proceedings of

the 2015 IEEE RIVF International Conference on Computing & Communication

Technologies - Research, Innovation, and Vision for Future (RIVF), pp. 192-197,

IEEE

37. Doukas, C. and Antonelli, F. (2015), "Developing and deploying end-to-end

interoperable & discoverable IoT applications," Proceedings of the 2015 IEEE

International Conference on Communications (ICC), pp. 673-678, IEEE

38. Eclipse Californium (2017), “CoAP in Java”, Available at:

https://www.eclipse.org/californium/, [accessed 08th November 2017]

39. Eclipse Equinox (2017), “Equinox OSGi”, Available at:

http://www.eclipse.org/equinox/, [accessed 07th November 2017]

40. Eclipse Jetty (2017), “Jetty://”, Available at: https://www.eclipse.org/jetty/,

[accessed 10th November 2017]

References

410

41. Elloumi, O. (2014), oneM2M, “oneM2M Service Layer Platform – Initial

Release”, Available at: http://www.onem2m.org/onem2m-showcase/showcase-

presentations [accessed 18th August 2017]

42. e-SCHEMA (2015), Steinheimer, M.; Trick, U.; Wacht, P.; Fischer, M.; Hölker,

D.; Tönjes, R., “e-SCHEMA Schlussbericht” (translated title: “e-SCHEMA Final

Report”), Research Project: easy- Service Creation for Home and Energy

Management (e-SCHEMA), Federal Ministry of Education and Research (BMBF),

Federal Republic of Germany, 2012-2015, Grant Number 17018B11

43. ETSI (2014), “Mobile-Edge Computing–Introductory Technical White Paper”,

Available at: https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-

edge_Computing_-_ Intr oductory_Technical_White_Paper_V1%2018-09-14.pdf,

ETSI

44. ETSI ES 201 235-1 V1.1.1 (2000), ETSI Standard, “Specification of Dual Tone

Multi-Frequency (DTMF); Transmitters and Receivers Part 1: General”, ETSI

45. ETSI TR 101 584 V2.1.1 (2013), ETSI Technical Report, “Machine-to-Machine

Communications (M2M); Study on Semantic support for M2M Data”, ETSI

46. ETSI TR 102 725 V1.1.1 (2013), ETSI Technical Report, “Machine-to-Machine

communications (M2M); Definitions”, ETSI

47. ETSI TR 102 966 V1.1.1 (2014), ETSI Technical Report, “Machine-to-Machine

Communications (M2M); Interworking between the M2M Architecture and M2M

Area Network technologies”, ETSI

48. ETSI TS 102 690 V2.1.1 (2013), ETSI Technical Specification, “Machine-to-

Machine communications (M2M); Functional architecture”, ETSI

49. ETSI TS 123 228 V11.10.0 (2013), ETSI Technical Report, “IP Multimedia

Subsystem (IMS); Stage 2; Release 11”, ETSI

50. eQ-3 BidCos (2016), eQ-3 AG, “BidCoS: Funkstandard bei HomeMatic”,

Available at: https://www.homeandsmart.de/bidcos-funkstandard-eq-3-

hausautomation [accessed 7th June 2016]

51. Fielding, R. T. (2000), “Architectural Styles and the Design of Network-based

Software Architectures”, Ph.D. Thesis, University of California, Irvine, USA

52. Foschini, L.; Taleb, T.; Corradi, A.; Bottazzi, D. (2011), “M2M-based

metropolitan platform for IMS-enabled road traffic management in IoT”, IEEE

Communications Magazine, Vol. 49, no. 11, pp. 50-57, IEEE

53. Freenet (2000), “The Freenet Project”, Available at:

https://freenetproject.org/pages/documentation.html, [accessed 10th March 2017]

54. Geambasu, C. V. (2012), "BPMN vs. UML Activity Diagram for Business Process

Modeling", Journal of Accounting and Management Information Systems, Vol. 11,

No. 4, pp. 637-651

55. Grandison, T.; Maximilien, E. M.; Thorpe, S.; Alba, A. (2010), “Towards a Formal

Definition of a Computing Cloud”, Proceedings of the 2010 IEEE 6th World

Congress on Services, pp. 191-192, IEEE

References

411

56. Harel, D. (1987), "Statecharts: a visual formalism for complex systems", Science

of Computer Programming, Vol. 8, No. 3, pp. 231-274

57. Harel, D. and Kugler, H. (2004), “The RHAPSODY Semantics of Statecharts (or,

On the Executable Core of the UML)”, Integration of Software Specification

Techniques for Applications in Engineering, Vol. 3147, pp. 325-354, Springer

58. Harel, D. and Naamad, A. (1996), “The STATEMATE Semantics of Statecharts”,

Transactions on Software Engineering and Methodology (TOSEM), Vol. 5, Issue

4, pp. 293-333, ACM

59. Harel, D. and Politi, M. (1998), “Modeling Reactive Systems with Statecharts: The

Statemate Approach”, McGraw-Hill, New York, USA, ISBN: 0-07-026205-5

60. Hauswirth, M. and Dustdar, S. (2005), “Peer-to-Peer: Grundlagen und Architektur”

(translated title: “Peer-to-Peer: Fundamentals and Architecture”), Datenbank-

Spektrum, Vol. 13, pp. 5-13

61. Hibernate (2017), Red Hat Inc. “Hibernate”, Available at:

http://hibernate.org/[accessed 1st February 2017]

62. Holler, J.; Tsiatsis, V.; Mulligan, C.; Avesand, S.; Karnouskos, S.; Boyle, D.

(2014), “From Machine-to-Machine to the Internet of Things”, Elsevier, Waltham,

USA, ISBN: 978-0-12-407684-6

63. IETF RFC 768 (1980), Request For Comments, “User Datagram Protocol”, IETF

64. IETF RFC 791 (1981), Request For Comments, “Internet Protocol”, IETF

65. IETF RFC 793 (1981), Request For Comments, “Transmission Control Protocol”,

IETF

66. IETF RFC 2068 (1997), Request For Comments, “Hypertext Transfer Protocol --

HTTP/1.1”, IETF

67. IETF RFC 2326 (1998), Request For Comments, “Real Time Streaming Protocol

(RTSP)”, IETF

68. IETF RFC 3261 (2002), Request For Comments, “SIP: Session Initiation

Protocol”, IETF

69. IETF RFC 3265 (2002), Request For Comments, “Session Initiation Protocol

(SIP)-Specific Event Notification”, IETF

70. IETF RFC 3428 (2002), Request For Comments, “Session Initiation Protocol (SIP)

Extension for Instant Messaging”, IETF

71. IETF RFC 3550 (2003), Request For Comments, “RTP: A Transport Protocol for

Real-Time Applications”, IETF

72. IETF RFC 3629 (2003), Request For Comments, “UTF-8, a transformation format

of ISO 10646”, IETF

73. IETF RFC 3665 (2003), Request For Comments, “Session Initiation Protocol (SIP)

Basic Call Flow Examples”, IETF

References

412

74. IETF RFC 3903 (2004), Request For Comments, “Session Initiation Protocol (SIP)

Extension for Event State Publication”, IETF

75. IETF RFC 4566 (2006), Request For Comments, “SDP: Session Description

Protocol”, IETF

76. IETF RFC 4975 (2007), Request For Comments, “The Message Session Relay

Protocol (MSRP)”, IETF

77. IETF RFC 6086 (2011), Request For Comments, “Session Initiation Protocol (SIP)

INFO Method and Package Framework”, IETF

78. IETF RFC 6141 (2011), Request For Comments, “Re-INVITE and Target-Refresh

Request Handling in the Session Initiation Protocol (SIP)”, IETF

79. IETF RFC 6234 (2011), Request For Comments, “US Secure Hash Algorithms

(SHA and SHA-based HMAC and HKDF)”, IETF

80. IETF RFC 6314 (2011), Request For Comments, “NAT Traversal Practices for

Client-Server SIP”, IETF

81. IETF RFC 6455 (2011), Request For Comments, “The WebSocket Protocol”, IETF

82. IETF RFC 6940 (2014), Request For Comments, “REsource LOcation And

Discovery (RELOAD) Base Protocol”, IETF

83. IETF RFC 7159 (2014), Request For Comments, “The JavaScript Object Notation

(JSON) Data Interchange Format”, IETF

84. IETF RFC 7252 (2014), Request For Comments, “The Constrained Application

Protocol (CoAP)”, IETF

85. IETF RFC 7374 (2014), Request For Comments, “Service Discovery Usage for

REsource LOcation And Discovery (RELOAD)”, IETF

86. IETF RFC 7650 (2015), Request For Comments, “A Constrained Application

Protocol (CoAP) Usage for REsource LOcation And Discovery (RELOAD)”,

IETF

87. IETF RFC 7890 (2016), Request For Comments, “Concepts and Terminology for

Peer-to-Peer SIP (P2PSIP)”, IETF

88. IETF RFC 7904 (2016), Request For Comments, “A SIP Usage for REsource

LOcation And Discovery (RELOAD)”, IETF

89. ISO/IEC 19514 (2017), International Standard, “Information Technology – Object

Management Group Systems Modeling Language (OMG SysML), First Edition,

ISO/IEC

90. ISO IEC 20000-1:2011 (2013) “Part 1: Service management system requirements”,

IEEE

91. ITIL V3.1.24 (2007), “Glossary of Terms, Definitions and Acronyms”, ITIL

92. ITU-T E.4110 (2010), Recommendation, “Framework for operations requirements

of next generation networks and services”, ITU-T

References

413

93. ITU-T Q.23 (1993), Recommendation, “Technical Features of Push-Button

Telephone Sets”, ITU-T

94. ITU-T Y.101 (2000), Recommendation, “Global Information Infrastructure

terminology: Terms and definitions”, ITU-T

95. ITU-T Y.110 (1998), Recommendation, “Global Information Infrastructure

principles and framework architecture”, ITU-T

96. ITU-T Y.2001 (2004), Recommendation, “General overview of NGN”, ITU-T

97. ITU-T Y.2012 (2006), Recommendation, “Functional requirements and

architecture of the NGN release 1”, ITU-T

98. ITU-T Y.2301 (2013), Recommendation, “Network intelligence capability

enhancement – Requirements and capabilities”, ITU-T

99. JAIN SIP (2017), “JSR 32: JAIN SIP API Specification”, Available at:

https://jcp.org/en/jsr/detail?id=32, [accessed 09th November 2017]

100. JsPlumb (2017), jsPlumb Pty Ltd, “jsPlumb Toolkit”, Available at:

https://jsplumbtoolkit.com/, [accessed 07th November 2017]

101. JTella (2016), “JTella, a Java API for GNUTella”, Available at:

https://osdn.net/projects/sfnet_jtella/, [accessed 07th January 2016]

102. Kim, E. K.; Kim, Y.; Chong, I. (2009), "Architectural model and service scenario

of dynamic service overlay network (DSON)", Proceedings of the 2009 First

International Conference on Ubiquitous and Future Networks, pp. 52-55, IEEE

103. Kim, Y.; Kim, E.; Chong, I. (2010), "An architectural view of service overlay

networking platform for future user-centric networking", Proceedings of the 2010

Second International Conference on Ubiquitous and Future Networks (ICUFN),

pp. 22-26, IEEE

104. Kim, E. K.; Kim, Y. J.; Chong, I. (2011), "Architecture of service overlay network

platform for web-based multimedia applications", Proceedings of the 2011 Third

International Conference on Ubiquitous and Future Networks (ICUFN), pp. 387-

392, IEEE

105. Kim, Y. J.; Kim, E. K.; Nam, B. W.; Chong, I. (2012), "Service composition using

new DSON platform architecture for M2M service," Proceedings of the

International Conference on Information Network 2012, pp. 114-119, IEEE

106. Kim, J.; Lee J.; Kim, J.; Yun, J. (2014), "M2M Service Platforms: Survey, Issues,

and Enabling Technologies", Proceedings of the 16th IEEE Communications

Surveys & Tutorials, pp. 61-76, IEEE

107. Kitagami, S.; Miyanishi, Y.; Urano, Y.; Shiratori, N. (2014), "Proposal of a

Distributed Cooperative M2M System for Flood Disaster Prevention", Proceedings

of the 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and

2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE

14th Intl Conf on Scalable Computing and Communications and Its Associated

Workshops, pp. 637-642, IEEE

References

414

108. Labiak, G. and Miczulski, P. (2004), "UML statecharts and Petri nets model

comparison for system level modelling", Mezdunarodnyj sbornik naucnych trudov:

Progressivnye technologii i sistemy masinostroenija, Vol. 27, pp. 310-314

109. LeClair, D. (2014), Innovation Insights, “The Edge of Computing: It’s Not ALL

About the Cloud”, Available at: http://insights.wired.com/profiles/blogs/the-edge-

of-computing-it-s-not-all-about-the-cloud#axzz3rC9fmJ23 [accessed 11th

November 2015]

110. Liang, J.; Kumar, R.; Ross, K. W. (2006), "The FastTrack overlay: a measurement

study", The International Journal of Computer and Telecommunications

Networking - Overlay distribution structures and their applications, Vol. 50, no.6,

pp. 842-858

111. Liu, M.; Leppänen, T.; Harjula, E.; Ou, Z.; Ramalingam, A; Ylianttila, M.; Ojala,

T. (2013), “Distributed resource directory architecture in Machine-to-Machine

communications”, 2013 IEEE 9th International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob), pp. 319-324,

October 2013, Lyon, France, IEEE

112. López, G.; Moura, P.; Moreno, J. I.; Almeida, A. (2011a), "ENERsip: M2M-based

platform to enable energy efficiency within energy-positive neighbourhoods",

Proceedings of the 2011 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pp. 217-222, IEEE

113. López, G.; Moura, P.; Sikora, M.; Moreno, J. I.; Almeida, A. T. (2011b),

"Comprehensive validation of an ICT platform to support energy efficiency in

future smart grid scenarios", Proceedings of the 2011 IEEE International

Conference on Smart Measurements of Future Grids (SMFG), pp. 113-118, IEEE

114. López, G.; Moura, P. S.; Custodio, V.; Moreno, J. I. (2012), "Modeling the

Neighborhood Area Networks of the Smart Grid", Proceedings of the 2012 IEEE

International Conference on Communications (ICC), pp. 3357-3361, IEEE

115. López, G.; Almeida, A.; Moura, P.; Pérez, M.; Moreno, J.; Blanco, L. (2013),

"Monitoring system for the local distributed generation infrastructures of the Smart

Grid", Proceedings of the 22nd International Conference and Exhibition on

Electricity Distribution (CIRED 2013), pp. 1-4, IEEE

116. Lua, E. K.; Crowcroft, J.; Pias, M. (2005), "A Survey and Comparison of Peer-To-

Peer Overlay Network Schemes", Journal IEEE Communications Surveys &

Tutorials, Vol. 7, no.2, pp. 72-93, IEEE

117. Mackenzie, M. (2014), Analysis Mason, “M2M device connections and revenue:

worldwide forecast 2014 - 2024”, Available at:

http://www.analysysmason.com/Research/Content/Reports/M2M-forecast-2014-

Nov2014-RDME0/[accessed 18th April 2017]

118. Magedanz, T. and de Gouveia, F.C. (2006), “IMS – the IP Multimedia System as

NGN Service Delivery Platform”, Elektrotechnik & Informationstechnik, Vol. 123,

Issue 7-8, pp. 271-276, Springer

References

415

119. Malatras, A. (2015), "State-of-the-art survey on P2P overlay networks in pervasive

computing environments", Journal of Network and Computer Applications, Vol.

55, pp. 1-23

120. Malkhi, D.; Naor, M.; Ratajczak, D. (2002), “Viceroy: a scalable and dynamic

emulation of the butterfly”, Proceedings of the ACM PODC ’02 twenty-first annual

symposium on Principles of distributed computing, pp. 183-192, ACM

121. Mandler, B.; Antonelli, F.; Kleinfeld, R.; Pedrinaci, C.; Carrera, D.; Gugliotta, A.;

Schreckling, D.; Carreras, I.; Raggett, D.; Pous, M.; Villares, C. V.; Trifa, V.

(2013), "COMPOSE -- A Journey from the Internet of Things to the Internet of

Services" Proceedings of the 2013 27th International Conference on Advanced

Information Networking and Applications Workshops, pp. 1217-1222, IEEE

122. Maymounkov, P. and Mazieres, D. (2002), “Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric”, Proceedings of the IPTPS ’01 International

Workshop on Peer-to-Peer Systems, pp. 53-65

123. Mehmood, Y.; Görgn C.; Muehleisen, M.; Timm-Giel, A. (2015), "Mobile M2M

communication architectures, upcoming challenges, applications, and future

directions", EURASIP Journal on Wireless Communications and Networking,

Springer

124. Milojicic, D.; Kalogeraki, V.; Lukose, R.; Nagaraja, K.; Pruyne, J.; Richard, B.;

Rollins, S.; Xu, Z. (2002), “Peer-to-Peer Computing”, Technical Report, HP

Laboratories Palo Alto, Available at:

http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf [accessed 3rd

September 2017]

125. Monteil, T. and Alaya, M. B. (2014), “OM2M: A flexible ETSI-compliant service

platform for M2M”, Eclipse IoT Day, Grenoble, France

126. NodeRed (2017), JS Foundation, “Node-RED Flow-based programming for the

Internet of Things”, Available at: http://nodered.org/[accessed 15th February 2017]

127. OASIS SOA-RM-V1.0 (2006), “Reference Model for Service Oriented

Architecture 1.0”, OASIS

128. OASIS (2007), OASIS Standard, “Web Services Business Process Execution

Language Version 2.0”, OASIS

129. OASIS mqtt-v3.1.1 (2014), “MQTT Version 3.1.1”, OASIS

130. Object Management Group, OMG (2011), “Business Process Model and Notation

(BPMN)”, Version 2.0, Boston, USA, January 2011, OMG

131. Object Management Group, OMG (2014), “Model Driven Architecture (MDA)

MDA Guide rev. 2.0”, Version 2.0, Boston, USA, June 2014, OMG

132. Object Management Group, OMG (2015), “OMG Unified Modeling Language

(OMG UML)”, Version 2.5, Boston, USA, March 2015, OMG

133. Object Management Group, OMG (2017a), “OMG Model Driven Architecture”,

Available at: http://www.omg.org/mda/[accessed 25th January 2017], OMG

References

416

134. Object Management Group, OMG (2017b), “Information Technology – Object

Management Group Systems Modeling Language (OMG SysML)”, Boston, USA,

Mai 2017, OMG

135. ODE (2017), “Apache ODE”, Available at: http://ode.apache.org/, [accessed 8th

June 2017]

136. OM2M (2016), The Eclipse Foundation, “OM2M Connecting Things”, Available

at: http://www.eclipse.org/om2m/[accessed 22th December 2016]

137. oneM2M (2015), “The Interoperability Enabler for entire M2M and IoT Ecosystem

[White Paper]”, oneM2M

138. oneM2M TR-0001-V2.4.1 (2016), Technical Report, “Use Cases Collection”,

oneM2M

139. oneM2M TR-0007-V1.0.0 (2014), Technical Report, “Study of Abstraction and

Semantics Enablements”, oneM2M

140. oneM2M TR-0007-V2.11.1 (2016), Technical Report, “Study of Abstraction and

Semantics Enablements”, oneM2M

141. oneM2M TR-0025-V1.0.0 (2016), Technical Report, “Application Developer

Guide”, oneM2M

142. oneM2M TS-0001-V1.13.1 (2016), Technical Specification, “Functional

Architecture”, oneM2M

143. oneM2M TS-0001-V2.10.0 (2016), Technical Specification, “Functional

Architecture”, oneM2M

144. oneM2M TS-0002-V1.0.1 (2015), Technical Specification, “Requirements”,

oneM2M

145. oneM2M TS-0002-V2.7.1 (2016), Technical Specification, “Requirements”,

oneM2M

146. oneM2M TS-0004-V-2014-08 (2014), Technical Specification, “Service Layer

Protocol Core Specification”, oneM2M

147. oneM2M TS-0004-V2.7.1 (2016), Technical Specification, “Service Layer

Protocol Core Specification”, oneM2M

148. oneM2M TS-0007-V2.0.0 (2016), Technical Specification, “Service

Components”, oneM2M

149. oneM2M TS-0008-V1.0.1 (2015), Technical Specification, “CoAP Protocol

Binding”, oneM2M

150. oneM2M TS-0009-V2.6.1 (2016), Technical Specification, “HTTP Protocol

Binding TS”, oneM2M

151. oneM2M TS-0010-V2.4.1 (2016), Technical Specification, “MQTT Protocol

Binding”, oneM2M

152. oneM2M TS-0011-V1.2.1 (2015), Technical Specification, “Common

Terminology”, oneM2M

References

417

153. oneM2M TS-0011-V2.4.1 (2016), Technical Specification, “Common

Terminology”, oneM2M

154. oneM2M TS-0020-V2.0.0 (2016), Technical Specification, “WebSocket Protocol

Binding TS”, oneM2M

155. Open Chord (2015), “Open Chord”, Available at:

https://sourceforge.net/projects/open-chord/, [accessed 8th November 2015]

156. Oracle (2017a), Oracle Corporation, “Oracle BPEL Process Manager”, Available

at: http://www.oracle.com/technetwork/middleware/bpel/overview/index.html,

[accessed 8th June 2017]

157. Oracle (2017b), Oracle Corporation, “Java Platform, Standard Edition”, Available

at: http://www.oracle.com/technetwork/java/javase/downloads/index.html

[accessed 05th November 2017]

158. Oracle (2017c), Oracle Corporation, “Java Architecture for XML Binding

(JAXB)”, Available at: http://www.oracle.com/technetwork/articles/javase/index-

140168.html [accessed 09th November 2017]

159. Oracle (2017d), Oracle Corporation, “Windows System Requirements for JDK and

JRE”, Available at: https://docs.oracle.com/javase/8/docs/technotes/guides/

install/windows_system_requirements.html#BABHGIJF [accessed 22th November

2017]

160. Oracle (2017e), Oracle Corporation, “JAVA SE EMBEDDED SYSTEM

REQUIREMENTS”, Available at: http://www.oracle.com/technetwork/java/

embedded/embedded-se/documentation/javase-embedded-sysreq-2043454.html

[accessed 22th November 2017]

161. Oram, A. (2001), “ Peer-to-Peer: Harnessing the Power of Disruptive Technologies

(1st edition)”, O’Reilly & Associates, Inc., Sebastopol, USA, ISBN: 978-

0596001100

162. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.; Dlodlo, M. (2017), “From cloud

to fog computing: A review and a conceptual live VM migration framework”, IEEE

Access Journal Issue: 99, IEEE

163. OSGi Alliance R5 (2012), “OSGi Core Release 5”, OSGi specification, Version

5.0.0

164. P2P4M2M (2016), Steinheimer, M.; Shala, B.; Trick, U.; Ghita, B., “P2P4M2M

Zwischenbericht” (translated title: “P2P4M2M Preliminary Report”), Research

Project: Optimierte P2P-Dienstearchitektur für hochverfügbare M2M-

Applikationen (P2P4M2M) (translated title: Optimised P2P Service Architecture

for highly available M2M Applications (P2P4M2M)), Federal Ministry of

Education and Research (BMBF), Federal Republic of Germany, 2015-2019, Grant

Number 03FH022IX5

165. Padilla, J. E. V.; Lee, J. O.; Kim, J. H. (2013), "A M2M horizontal services

platform implementation over IP multimedia subsystem (IMS)," Proceedings of

the 2013 15th Asia-Pacific Network Operations and Management Symposium

(APNOMS), pp. 1-3, IEEE

References

418

166. Pedrinaci, C.; Liu, D.; Maleshkova, M.; Lambert, D.; Kopecky, J.; Domingue, J.

(2010), “iServe: a linked services publishing platform”, Proceedings of the

Ontology Repositories and Editors for the Semantic Web Workshop at the 7th

Extended Semantic Web Conference, Heraklion, Greece.

167. Petrasch, R. and Meimberg, O. (2006), “Model Driven Architecture”,

dpunkt.verlag, Heidelberg, Germany, ISBN: 978-3-89864-343-6, 2006

168. Piatek, M.; Isdal, T.; Anderson, T.; Krishnamurthy, A.; Venkataramani, A. (2007),

“Do incentives build robustness in bit torrent”, Proceedings of the NSDI'07 4th

USENIX conference on Networked systems design & implementation, Cambridge,

USA

169. Poikselkä, M. and Mayer, G. (2009), “The IMS: IP Multimedia Concepts and

Services (3rd edition)”, John Wiley & Sons Inc, Hoboken, USA, ISBN: 978-0-

4707-2196-4

170. Ratnasamy, S.; Francis, P.; Handley, M.; Karp, R.; Shenker, S. (2001), “A scalable

content-addressable network”, Proceedings of the ACM SIGCOMM 2001

conference on Applications, technologies, architectures, and protocols for

computer communications, pp. 161-172, ACM

171. Rayes, A and Salam, S. (2017), “Internet of Things From Hype to Reality”,

Springer, Heidelberg, Germany, ISBN: 978-3-319-44858-9

172. Rodrigues, L.; Guerreiro, J.; Correia, N. (2016), “RELOAD/CoAP architecture

with resource aggregation/disaggregation service”, 2016 IEEE 27th Annual

International Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), pp. 1-6, September 2016, Valencia, Spain, IEEE

173. Rowstron, A. I. T.; Druschel, P. (2001), "Pastry: Scalable, Decentralized Object

Location, and Routing for Large-Scale Peer-to-Peer Systems", Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms, pp. 329-

350, Heidelberg, Germany, ISBN: 3-540-42800-3, ACM

174. Rupp, C.; Queins, S.; Zengler, B. (2007), “UML Glasklar – Praxiswissen für die

UML-Modellierung (3rd edition)“ (translated title: “UML Crystal Clear – Practical

Knowledge for UML Modelling (3rd edition)”), Hanser, Munich, Germany, ISBN

978-3-446-41118-0, 2007

175. Samaniego, M. L.; Yelmo, I. M.; Sanchez, R. G. (2013), "Analysis of relod.net, a

basic implementation of the RELOAD protocol for peer-to-peer networks", Actas

de las Jornadas de Ingeniería Telemática 2013, pp. 147-154, ISBN: 978-84-616-

5597-7

176. Sarigiannidis, P.; Zygiridis, T.; Sarigiannidis, A.; Lagkas, T. D.; Obaidat, M.;

Kantartzis, N. (2017), “Connectivity and coverage in machine-type

communications”, Proceedings of the 2017 IEEE International Conference on

Communications (ICC), pp. 1-6, May 2017, Paris, France, IEEE

177. Savaglio, C. and Fortino, G. (2015), “Autonomic and Cognitive Architectures for

the Internet of Things”, Proceedings of the 8th International Conference on Internet

and Distributed Computing Systems (IDCS 2015), pp. 39-47, Windsor, UK

References

419

178. Shala, B.; Wacht, P.; Trick, U.; Lehmann, A.; Ghita, B.; Shiaeles, S. (2017a),

“Trust Integration for Security Optimisation in P2P-based M2M Applications“,

Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 949-954, August

2017, Australia, IEEE

179. Shala, B.; Wacht, P.; Trick, U.; Lehmann, A.; Ghita, B.; Shiaeles, S. (2017b),

“Ensuring Trustworthiness for P2P-based M2M Applications “, Proceedings of the

Seventh International Conference on Internet Technologies and Applications (ITA

17), pp. 58-63, September 2017, Wrexham, UK, IEEE

180. Shi, J.; Wan, J.; Yan, H.; Suo, H. (2011), “A Survey of Cyber-Physical Systems”,

Proceedings of the Int. Conf. on Wireless Communications and Signal Processing,

November 2011, Nanjiing, China

181. Shiratori, N.; Inaba, T.; Nakamura, N.; Suganuma, T. (2012), "Disaster-resistant

Green-oriented Never Die Network", Journal of Information Processing Society of

Japan, Vol. 53, no. 7, pp. 1821-1831

182. Spring (2017), Pivotal Software, “Spring Framework”, Available at:

https://spring.io/[accessed 1st February 2017]

183. Spring Boot R1.5.8 (2017), Pivotal Software, “Spring Boot Reference Guide

1.5.8.RELEASE”, Release 1.5.8

184. Steinheimer, M.; Trick, U.; Ruhrig, P. (2012a), “New approaches for energy

optimisation in Smart Homes and Smart Grids by automated service generation

and user integration“, Proceedings of the Collaborative European Research

Conference (CERC), pp. 111-119, April 2012, Darmstadt, Germany

185. Steinheimer, M.; Trick, U.; Ruhrig, P. (2012b), “Energy communities in Smart

Markets for optimisation of peer-to-peer interconnected Smart Homes“,

Proceedings of the 2012 8th International Symposium on Communication Systems,

Networks & Digital Signal Processing (CSNDSP), pp. 1-6, July 2012, Poznan,

Poland, IEEE

186. Steinheimer, M.; Trick, U.; Ruhrig, P.; Wacht, P.; Tönjes, R.; Fischer, M.; Hölker,

D. (2013a), “SIP-basierte P2P-Vernetzung in einer Energie-Community“

(translated title: “SIP-based P2P Networking inside an Energy-Community”),

Proceedings of the Eighteenth VDE/ITG Mobilfunktagung, pp. 64-70, Mai 2013,

Osnabrück, Germany, VDE

187. Steinheimer, M.; Trick, U.; Ruhrig, P.; Fuhrmann, W.; Ghita, B. (2013b), “Load

Reduction in Distribution Networks through P2P networked Energy-Community“,

Proceedings of the Fifth International Conference on Internet Technologies and

Applications (ITA 13), pp. 90-97, September 2013, Wrexham, UK

188. Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P. (2013c), “Decentralised

optimisation solution for Smart Grids using Smart Market aspects and P2P

internetworked Energy-Community“, VDE/IEC World Smart Grid Forum 2013,

September 2013, Berlin, Germany, VDE

189. Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P.; Fuhrmann, W.; Ghita, B.

(2013d), “Decentralised optimisation solution for provision of value added services

References

420

and optimisation possibilities in Smart Grids“, 2013 Collaborative European

Research Conference (CERC), October 2013, Cork, Ireland

190. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2013e), “P2P-based

community concept for M2M Applications“, Proceedings of the Second

International Conference on Future Generation Communication Technologies

(FGCT 2013), pp. 114-119, November 2013, London, UK, IEEE

191. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015a), “P2P based service

provisioning in M2M networks“, Proceedings of the Sixth International

Conference on Internet Technologies and Applications (ITA 15), pp. 132-137,

September 2015, Wrexham, UK, IEEE

192. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015b), “P2P based service

provisioning in M2M networks“, Second Spanish-Geman Symposium on Applied

Computer Science (SGSOACS), Invited Talk, December 2015, Frankfurt, Germany

193. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2016), “P2P-based M2M

Community Applications“, Proceedings of the Eleventh International Network

Conference (INC 2016), pp. 115-120, July 2016, Frankfurt, Germany

194. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B.; Frick, G. (2017a), “M2M

Application Service Provision: An autonomous and decentralised Approach“,

Journal of Communications, Vol. 12, no. 9, pp. 489-498, 2017

195. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017b), “Decentralised

System Architecture for autonomous and cooperative M2M Application Service

Provision“, Proceedings of the 2017 IEEE International Conference on Smart Grid

and Smart Cities (ICSGSC 2017), pp. 312-317, July 2017, Singapore, IEEE

196. Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017c), “Autonomous

decentralised M2M Application Service Provision“, Proceedings of the Seventh

International Conference on Internet Technologies and Applications (ITA 17), pp.

18-23, September 2017, Wrexham, UK, IEEE

197. Steinmetz, R. and Wehrle, K. (2004), “Peer-to-Peer Networking & -Computing”,

Informatik-Spektrum, Vol. 27, Issue 1, pp. 51-54, Springer

198. Steinmetz, R and Wehrle, K. (2005), “Peer-to-Peer Systems and Applications”,

Springer, Heidelberg, Germany, ISBN: 978-3-540-29192-3, 2005

199. Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M. F.; Balakrishnan, H. (2001),

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications”,

Proceedings of the ACM SIGCOMM 2001 conference on Applications,

technologies, architectures, and protocols for computer communications, pp. 149-

160, ACM

200. Stutzbach, D. and Rejaie, R. (2006), “Understanding churn in peer-to-peer

networks”, Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement, pp. 189-202, ACM

201. TC IP 1 (2013), UDP Control Protocol for TC IP 1 Energy Manager, Available at:

http://www.rutenbeck.de/downloads/softwarefirmwareupdates.html, [accessed

10th July 2013]

References

421

202. Terpak, J.; Horovcak, P.; Lukac, M. (2016), “Mathematical models creation using

orchestration and choreography of web services”, Proceedings of 17th International

Carpathian Control Conference (ICCC), pp. 739-742, IEEE

203. Thakar, U.; Tiwari, A.; Varma, S. (2016), “On Composition of SOAP Based and

RESTful Services”, 2016 IEEE 6th International Conference on Advanced

Computing, pp. 500-505, August 2016, Bhimavaram, India, IEEE

204. Trick, U. and Weber, F. (2015), “SIP und Telekommunikationsnetze (5. Auflage)”

(translated title: “SIP and Telecommunication Networks (5th edition)”), De Gruyter

Oldenbourg, Berlin, Germany, ISBN: 3-486-77853-3

205. Turau, V. (2009), “Algorithmische Graphentheorie (3. Auflage)” (translated title:

“Algorithmic Graph Theory (3rd edition)”), Oldenbourg Wissenschaftsverlag,

Munich, Germany, ISBN: 978-3-486-59057-9

206. UC Santa Cruz (2017), “Is It a Service?”, University of California Santa Cruz,

Available at: https://its.ucsc.edu/itsm/service.html [accessed 20th February 2017]

207. Vaquero, L. M. and Rodero-Merino, L. (2014), "Finding Your Way in the Fog:

Towards a Comprehensive Definition of Fog Computing", ACM SIGCOMM

Journal of Computer Communication Review, Vol. 44, no. 4, pp. 27-32, ACM

208. Vossen, G. and Witt, K. (2016), “Grundkurs Theoretische Informatik” (translated

title: “Basic Course Theoretical Computer Science”), Springer, Wiesbaden,

Germany, ISBN: 978-3-8348-1770-9, 2016

209. W3C (2000), Recommendation, “Simple Object Access Protocol (SOAP) 1.1”,

W3C

210. W3C (2001), Recommendation, “Web Services Description Language (WSDL)

1.1”, W3C

211. W3C (2008), Recommendation, “Extensible Markup Language (XML) 1.0 (Fifth

Edition)”, W3C

212. W3C (2015), Recommendation, “State Chart XML (SCXML): State Machine

Notation for Control Abstraction”, W3C

213. Wagenknecht, C. and Hielscher, M. (2015), “Formale Sprachen, abstrakte

Automaten und Compiler” (translated title: “Formal Languages, abstract Finite

State Machines and Compiler”), Springer, Wiesbaden, Germany, ISBN 3-658-

02692-8, 2015

214. Wan, J.; Chen, M.; Xia, F.; Li, D.; Zhou, K. (2013), "From Machine-to-Machine

Communications towards Cyber-Physical Systems", Computer Science and

Information Systems, Vol. 10, no. 3, pp. 1105-1128

215. Warshall, S. (1962), “A Theorem on Boolean Matrices”, Journal of the ACM

(JACM), Vol. 9, Issue 1, pp. 11-12, ACM

216. Xiaocong, Q. and Jidong, Z. (2010), "Study on the structure of “Internet of

Things(IOT)” business operation support platform", Proceedings of the 12th

International Conference on Communication Technology, pp. 1068-1071, IEEE

References

422

217. XML-RPC (1999), XML-RPC Specification, Available at:

http://xmlrpc.scripting.com/spec.html, [accessed 19th February 2017]

218. Zhang, S. K.; Zhang, J. W.; Li, W. (2010), "Design of M2M Platform Based on

J2EE and SOA", 2010 International Conference on E-Business and E-

Government, pp. 2029-2032, IEEE

219. Zhao, B. Y.; Huang, L.; Stribling, J.; Rhea, S. C.; Joseph, A. D.; Kubiatowicz, J.

D. (2006), "Tapestry: a resilient global-scale overlay for service deployment",

IEEE Journal on Selected Areas in Communications, Vol. 22, no.1, pp. 41-53,

IEEE

423

Appendix A – Abbreviations

3/4G 3rd/4th Generation Mobile Network

3GPP Third Generation Partnership Project

A

AD Application Description

ADI Application Description Interpreter

ADM Application Description Model

ADN Application Dedicated Node

ADP Application Description Parser

ADSP Autonomous Decentralised M2M Service Provision

AE Application Entity, Application Executor

AEE Application Execution Environment

AL Abstraction Layer

AS Application Server

ASN Application Service Node

ASP Application Service Provider

AV Audio/Video

B

BPMN Business Process Model and Notation

BSPU Bottom-Up M2M Service Provision and Utilisation

C

CoAP Constrained Application Protocol

Appendix A – Abbreviations

424

CPS Cyber Physical System

CR Common Resource

CRUD Create Request Update Delete

CSE Common Service Entity

CSF Common Service Function

CU Communication Unit

D

DCASP Decentralised Cooperative M2M Application Service Provision

DCM Device Capability Model

DHT Distributed Hash Table

DI Data Item

DNS Domain Name System

DRD4M Distributed Resource Directory Architecture for M2M Applications

DTLS Datagram Transport Layer Security

DTMF Dual-tone multi-frequency

E

ETSI European Telecommunications Standards Institute

F

FSM Finite State Machine

G

GUI Graphical User Interface

GW Gateway

 Appendix A – Abbreviations

425

H

HFC Hybrid Fibre Coaxial

HSPU Horizontal M2M Service Provision and Utilisation

HTTP Hypertext Transfer Protocol

I

IAD Integrated Access Device

ICT Information and Communications Technology

ID Identifier

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineering

IETF Internet Engineering Task Force

IF Interface

IFD Interface Description

IM Instant Message

IMMMSC Instant Message Multimedia Service Component

IMS IP Multimedia Subsystem

IN Infrastructure Node

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

ISP Internet Service Provider

ITU International Telecommunication Union

IxP Information Exchange Pattern

Appendix A – Abbreviations

426

J

JDBC Java Database Connectivity

JEXL Java Expression Language

JSON JavaScript Object Notation

L

LTE Long Term Evolution

M

M2M Machine-to-Machine Communication

M2M ADisp Application Dispatcher

M2M DCM M2M Device Capability Model

M2M TI M2M Technology Interface

MDA Model Driven Architecture

MM Multimedia

MMSC Multimedia Service Component

MN Middle Node

MQTT Message Queue Telemetry Transport

MSP M2M Service Platform

MSRP Message Session Relay Protocol

N

NGN Next Generation Networks

NSE Network Services Entity

 Appendix A – Abbreviations

427

O

OASIS Organization for the Advancement of Structured Information Standards

OMA Open Mobile Alliance

OMG Object Management Group

ORM Object Relational Mapping

P

P2P Peer-to-Peer

R

RELOAD Resource Location and Discovery Protocol

RemoteAS Remote Alarm Service

RemoteBMS Remote Building Monitoring Service

RemoteDGPPS Remote Distribution Grid Parameter Provision Service

RemoteERS Remote Energy Reduction Service

RemoteSS Remote Sensor Service

REST Representational State Transfer

RFC Request for Comments

RL Requestor List

RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

S

SAR Service/Application Registry

SC Service Consumer

SCE Service Creation Environment

Appendix A – Abbreviations

428

SCU Service Creation Unit

SCXML State Chart extensible Markup Language

SDP Service Delivery Platform, Service Description Protocol

SDU Service Design Unit

SEE Service Execution Engine

SIP Session Initiation Protocol

SIU Service Interface Unit

SM State Machine

SM Repo State Machine Repository

SOA Service Oriented Architecture

SP Service Provider

SPU Service Provision Unit

SR Speech Recognition

SRE Service Runtime Environment

T

TLS Transport Layer Security

TTL Time-to-Live

TTS Text-to-Speech

TURN Traversal Using Relays around NAT

TCP Transmission Control Protocol

U

UA User Agent

UAC User Agent Client

UAS User Agent Server

 Appendix A – Abbreviations

429

UDP User Datagram Protocol

UML Unified Modelling Language

UML AD UML Activity Diagram

UML SMD UML Statemachine Diagram

URI Uniform Resource Identifier

V

VAS Value-added Service

VM Virtual Machine

VoIP Voice over Internet Protocol

W

W3C World Wide Web Consortium

Wi-Fi Wireless Local Area Network

WS Webservice

WSBPEL Webservice Business Process Execution Language

WSDL Webservice Description Language

WSN Wireless Sensor Network

X

xDSL Digital Subscriber Line (all variants)

XML Extensible Markup Language

431

Appendix B – Own Publications

Appendices B has been removed due to copyright restrictions

Steinheimer, M.; Trick, U.; Ruhrig, P. (2012a), New approaches for energy optimisation in Smart Homes and Smart Grids

by automated service generation and user integration , Proceedings of the Collaborative European Research Conference

(CERC), pp. 111-119, April 2012, Darmstadt, Germany

Steinheimer, M.; Trick, U.; Ruhrig, P. (2012b), Energy communities in Smart Markets for optimisation of peer-to-peer

interconnected Smart Homes , Proceedings of the 2012 8th International Symposium on Communication Systems, Networks

& Digital Signal Processing (CSNDSP), pp. 1-6, July 2012, Poznan, Poland, IEEE

DOI: https://doi.org/10.1109/CSNDSP.2012.6292732

Steinheimer, M.; Trick, U.; Ruhrig, P.; Wacht, P.; Tönjes, R.; Fischer, M.; Hölker, D. (2013a), SIP-basierte P2P-

Vernetzung in einer Energie-Community (translated title: SIP-based P2P Networking inside an Energy-Community),

Proceedings of the Eighteenth VDE/ITG Mobilfunktagung, pp. 64-70, Mai 2013, Osnabrück, Germany, VDE

Steinheimer, M.; Trick, U.; Ruhrig, P.; Fuhrmann, W.; Ghita, B. (2013b), Load Reduction in Distribution Networks

through P2P networked Energy-Community , Proceedings of the Fifth International Conference on Internet Technologies

and Applications (ITA 13), pp. 90-97, September 2013, Wrexham, UK

Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P. (2013c), Decentralised optimisation solution for Smart Grids using

Smart Market aspects and P2P internetworked Energy-Community , VDE/IEC World Smart Grid Forum 2013, September

2013, Berlin, Germany, VDE

Steinheimer, M.; Trick, U.; Wacht, P.; Ruhrig, P.; Fuhrmann, W.; Ghita, B. (2013d), Decentralised optimisation solution

for provision of value added services and optimisation possibilities in Smart Grids , 2013 Collaborative European

Research Conference (CERC), October 2013, Cork, Ireland

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2013e), P2P-based community concept for M2M Applications ,

Proceedings of the Second International Conference on Future Generation Communication Technologies (FGCT 2013),

pp. 114-119, November 2013, London, UK, IEEE

DOI: https://doi.org/10.1109/FGCT.2013.6767198

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015a), P2P based service provisioning in M2M networks ,

Proceedings of the Sixth International Conference on Internet Technologies and Applications (ITA 15), pp. 132-137,

September 2015, Wrexham, UK, IEEE

DOI: https://doi.org/10.1109/ITechA.2015.7317383

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2015b), P2P based service provisioning in M2M networks , Second

Spanish-Geman Symposium on Applied Computer Science (SGSOACS), Invited Talk, December 2015, Frankfurt, Germany

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2016), P2P-based M2M Community Applications , Proceedings of

the Eleventh International Network Conference (INC 2016), pp. 115-120, July 2016, Frankfurt, Germany

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B.; Frick, G. (2017a), M2M Application Service Provision: An

autonomous and decentralised Approach , Journal of Communications, Vol. 12, no. 9, pp. 489-498, 2017

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017b), Decentralised System Architecture for autonomous and

cooperative M2M Application Service Provision , Proceedings of the 2017 IEEE International Conference on Smart Grid

and Smart Cities (ICSGSC 2017), pp. 312-317, July 2017, Singapore, IEEE

DOI: https://doi.org/10.1109/ICSGSC.2017.8038597

Steinheimer, M.; Trick, U.; Fuhrmann, W.; Ghita, B. (2017c), Autonomous decentralised M2M Application Service

Provision , Proceedings of the Seventh International Conference on Internet Technologies and Applications (ITA 17), pp.

18-23, September 2017, Wrexham, UK, IEEE

DOI: https://doi.org/10.1109/ITECHA.2017.8101904

 Appendix C – Low Level Descriptions

507

Appendix C – Low Level Descriptions

Listings

Listing C.1: XML Representation of Request Primitive

Listing C.2: XML Representation of Response Primitive

Listing C.3: XML Representation of M2M DCM

<?xml version="1.0" encoding="UTF-8"?>

<requestPrimitive>

<to> ---Parameter Content--- </to>

<from> ---Parameter Content--- </from>

<operation> ---Parameter Content--- </operation>

<content> ---Parameter Content--- </content>

<requestIdentifier> ---Parameter Content--- </requestIdentifier>

</requestPrimitive>

<?xml version="1.0" encoding="UTF-8"?>

<requestPrimitive>

<to> ---Parameter Content--- </to>

<from> ---Parameter Content--- </from>

<operation> ---Parameter Content--- </operation>

<content> ---Parameter Content--- </content>

<requestIdentifier> ---Parameter Content--- </requestIdentifier>

</requestPrimitive>

<?xml version="1.0" encoding="UTF-8"?>

<M2MDeviceCapabilityModel>

<id> ---Parameter Content--- </id>

<parameter>

<input>

<inputParameter id=1>

<name/>

<value/>

</inputParameter>

...

<inputParameter id=n>

<name/>

<value/>

</inputParameter>

</input>

<output>

<outputParameter id=1>

<name/>

<value/>

Appendix C – Low Level Descriptions

508

Listing C.4: XML Representation of Request Primitive incl. M2M DCM Parameters

</outputParameter>

...

<outputParameter id=n>

<name/>

<value/>

</outputParameter>

</output>

<config>

<configParameter id=1>

<name/>

<value/>

</configParameter>

...

<configParameter id=n>

<name/>

<value/>

</configParameter>

</config>

</parameter>

<type> ---Parameter Content--- </type>

<description> ---Parameter Content--- </description >

</M2MDeviceCapabilityModel>

<?xml version="1.0" encoding="UTF-8"?>

<requestPrimitive>

<to>

{DeviceID-Abs, DeviceID-Spec}

</to>

<from>

{M2Mapplication, M2MdeviceAL, M2MtechnologyInterfaces}

</from>

<operation>

{create (c), update (u), retrieve(r), notify (n)}

</operation>

<content>

<input>

<inputParameter id=1>

<name/>

<value/>

</inputParameter>

...

<inputParameter id=n>

<name/>

<value/>

</inputParameter>

</input>

<output>

<outputParameter id=1>

<name/>

<value/>

</outputParameter>

...

 Appendix C – Low Level Descriptions

509

Listing C.5: SCXML Representation of Use Case 1

<outputParameter id=n>

<name/>

<value/>

</outputParameter>

</output>

<config>

<configParameter id=1>

<name/>

<value/>

</configParameter>

...

<configParameter id=n>

<name/>

<value/>

</configParameter>

</config>

</content>

<requestIdentifier> ---randomID--- </requestIdentifier>

</requestPrimitive>

<?xml version="1.0" encoding="UTF-8"?>

<scxml

xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="LocalWindowMonitoring"

datamodel="jexl" initial="Rain">

<state id= Rain >

<datamodel>

<data id="Rain.output.state" expr=""/>

</datamodel>

<transition target= Window cond= $Rain.output.state=raining />

</state>

<state id= Window >

<datamodel>

<data id="Window.output.state" expr=""/>

</datamodel>

<transition target= TTScall cond= $Window.output=open />

</state>

<state id= TTScall >

<datamodel>

<data id="TTScall.input.text" expr="Warning window open and starts raining"/>

<data id="TTScall.input.sipURI" expr="sip:username@localhost"/>

<data id="TTScall.config.mode" expr="TTS"/>

</datamodel>

<final id= TTScallFinal />

</state>

</scxml>

Appendix C – Low Level Descriptions

510

Listing C.6: Principles of SCXML State Parameter Definition and Assign

Listing C.7: SCXML Representation of OR-/AND M2M Device Combination

<?xml version="1.0" encoding="UTF-8"?>

<scxml

xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="DataModelIntroduction"

datamodel="jexl" initial="DataState">

<datamodel>

<data id="GlobalParam1" expr="GlobalValue1"/>

<data id="GlobalParam2" expr="GlobalValue2"/>

<data id="GlobalParam3" expr="GlobalValue3"/>

</datamodel>

<state id = DataState1 >

<datamodel>

<data id="DataState1Param1" expr="StateValue1"/>

<data id="DataState1Param2" expr="StateValue2"/>

<data id= DataState1.output.transferparam expr= />

</datamodel>

<onentry>

<assign location= GlobalParam1 expr="abc"/>

</onentry>

<transition target=" DataState2">

<assign location= GlobalParam2 expr="xyz"/>

<assign location= DataState2.input.transferParam

expr= $DataState1.output.transferparam />

</transition>

</state>

<state id = DataState2 >

<datamodel>

<data id="DataState2Param1" expr="StateValue1"/>

<data id= DataState2.input.transferParam expr= />

</datamodel>

<onentry>

<assign location= GlobalParam3 expr="Last"/>

<assign location= DataState2Param1 expr="State"/>

</onentry>

<final id= DataState2Final />

</state>

</scxml>

<?xml version="1.0" encoding="UTF-8"?>

<scxml

xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="ANDORm2mDeviceCombination"

datamodel="jexl" initial="M2MdeviceA">

<state id= M2MdeviceA >

<transition target= ParallelApplSection ></transition>

</state>

<parallel id= ParallelApplSection >

<state id= Section1>

<initial>

<transition target= M2MdeviceB ></transition>

</initial>

<state id= M2MdeviceB>

<transition target= M2MdeviceC ></transition>

</state>

 Appendix C – Low Level Descriptions

511

Listing C.8: XML Representation of IFD for remoteRainSensor M2M Application Service

<state id= M2MdeviceC >

<final id=M2MdeviceCFinal />

</state>

</state>

<state id= Section2>

<initial>

<transition target= M2MdeviceD ></transition>

</initial>

<state id= M2MdeviceD>

<transition target= M2MdeviceE ></transition>

</state>

<state id= M2MdeviceE >

<final id=M2MdeviceEFinal />

</state>

</state>

<transition target= M2MdeviceF ></transition>

</parallel>

<state id= M2MdeviceF >

<final id=M2MdeviceFFinal />

</state>

</scxml>

<?xml version="1.0" encoding="UTF-8"?>

<AE>

<appName>Remote Rain Sensor Service</appName>

<App-ID>remoteRainSensor</App-ID>

<pointOfAccess>sip:remoteRainSensor@10.10.21.1</pointOfAccess>

<requestReachability>true</requestReachability>

<creationTime>2017-08-15</creationTime>

<lastModifiedTime>2017-09-24</lastModifiedTime>

<contentSerialisation>XML</contentSerialisation>

<accessControlPolicy>

<privileges>

<accessControlOriginators>all</accessControlOriginators>

<accessControlContexts></accessControlContexts >

<accessControlOperations>R</accessControlOperations>

</privileges>

<expirationTime></expirationTime>

</accessControlPolicy>

<content>

<input></input>

<output>

<outputParameter id="1">

<name>remoteRainSensor.output.state</name>

<value>raining; notRaining</value>

</outputParameter>

</output>

<config></config>

</content>

<description>

Provides the state of a rain sensor at location Kleiststr.1, D-60318, Frankfurt a.M., Germany.

Possible Output values: remoteRainSensor.output.state=raining|notRaining

</description>

</AE>

Appendix C – Low Level Descriptions

512

Listing C.9: Extract SCXML Representation Use Case 2

Listing C.10: Formal AD of cooperative M2M application service for Use Case 3 in SCXML format

<?xml version="1.0" encoding="UTF-8"?>

<scxml ...> ...

<state id="remoteRainSensor">

<datamodel>

<data id="remoteRainSensor.output.state" expr=""/>

</datamodel>

<transition target="localWindowSensor"cond="$remoteRainSensor.output.state=raining"/>

</state> ...

</scxml>

<?xml version="1.0" encoding="UTF-8"?> <scxml ...>

<state id="remoteSS1">

<datamodel>

<data id="remoteSS1.output.event" expr=""/>

<data id="remoteSS1.output.BuildingID" expr="Kleiststr.1"/>

</datamodel>

<transition target="remoteBMS" cond="$remoteSS1.output.event=smoke OR

$remoteSS1.output.event=water">

<assign location="remoteBMS.input.buildingID"

expr="$remoteSS1.output.buildingID"/>

<assign location="remoteBMS.input.event"

expr="$remoteSS1.output.event"/>

</transition>

</state>

<state id="remoteBMS">

<datamodel>

<data id="remoteBMS.input.buildingID" expr=""/>

<data id="remoteBMS.input.event" expr=""/>

<data id="remoteBMS.input.supporterURI" expr=""/>

<data id="remoteBMS.output.text" expr=""/>

<data id="remoteBMS.output.supporterURI" expr=""/>

</datamodel>

<transition target="remoteAS" cond="$remoteBMS.input.event=water">

<assign location="remoteAS.config.mode" expr="IM"/>

<assign location="remoteAS.input.text" expr="Water Detected"/>

<assign location="remoteAS.input.sipURI"

expr="$remoteBMS.output.supporterURI"/>

</transition>

<transition target="remoteAS" cond="$remoteBMS.input.event=smoke">

<assign location="remoteAS.config.mode" expr="TTS"/>

<assign location="remoteAS.input.text" expr="Smoke Detected"/>

<assign location="remoteAS.input.sipURI"

expr="$remoteBMS.output.supporterURI"/>

</transition>

</state>

<state id="remoteAS">

<datamodel>

<data id="remoteAS.config.mode" expr=""/>

<data id="remoteAS.input.text" expr=""/>

<data id="remoteAS.input.sipURI" expr=""/>

</datamodel>

</state> </scxml>

 Appendix C – Low Level Descriptions

513

Listing C.11: Formal AD of cooperative M2M Application Service for Use Case 4 in SCXML

format

Listing C.12: AccessControlPolicy for Definition of (Sub-) Community Assignment

Listing C.13: M2M application service IFD for Social Service

<?xml version="1.0" encoding="UTF-8"?>

<scxml ...>

<state id="remoteERS">

<datamodel>

<data id="remoteERS.input.consumptionThreshold" expr=""/>

<data id="remoteERS.input.remoteConsumption" expr=""/>

<data id="remoteERS.output.currentConsumption" expr=""/>

<data id="initial" expr="true"/>

<data id="final" expr="true"/>

</datamodel>

<transition target="remoteERS" cond="">

<assign location="remoteERS.input.remoteConsumption"

expr="$remoteERS.output.currentConsumption"/>

</transition>

</state>

</scxml>

<?xml version="1.0" encoding="UTF-8"?>

<AE>

...

<accessControlPolicy>

<privileges>

<accessControlOriginators> Sub:Neighbourhood </accessControlOriginators>

<accessControlContexts> W: 50.12947; L: 8.6929; R: 500m </accessControlContexts>

...

</privileges>

...

</accessControlPolicy>

...

</AE>

<?xml version="1.0" encoding="UTF-8"?>

<AE>

<appName> Assistance Service Shopping </appName>

<App-ID> AssistanceShoppingService </App-ID>

<pointOfAccess> sip:assistanceShoppingService@10.10.21.1 </pointOfAccess>

<requestReachability> true </requestReachability>

<creationTime> 2017-08-15 </creationTime>

<lastModifiedTime> 2017-09-24 </lastModifiedTime>

<contentSerialisation> XML </contentSerialisation>

<accessControlPolicy>

<privileges>

<accessControlOriginators> Sub:Neighbourhood </accessControlOriginators>

<accessControlContexts>

W: 50.12947; L: 8.6929; R: 500m

</accessControlContexts>

Appendix C – Low Level Descriptions

514

<accessControlOperations> R </accessControlOperations>

</privileges>

<expirationTime></expirationTime>

</accessControlPolicy>

<content>

<input>

<inputParameter id="1">

<name> assistanceShoppingService.input.dateTime </name>

<value></value>

</inputParameter>

</input>

<output></output>

<config></config>

</content>

<description>

Assistence Service in your neighbourhood. Provides the service to assist

you in your shoping activities. Request the service by specifiind the

desired date/time using the input parameter of the service.

</description>

</AE>

 Appendix C – Low Level Descriptions

515

Message Sequence Charts

Message Sequence Chart C.1: CoAP Messaging for Service/Information Subscription

Peer 0
CoAP

ServerPeer 0
CoAP

Client

POST coap://10.0.13.20:5683/m2mservice?ty=23

Version=01 (Version: 1)

Type= 00 (Confirmable)

Token Length= 0100 (4)

Code= 0.02 (POST)

Message ID= 3130

Token= bfb31d74

Opt Name #1: 07 (Uri-Port): 5683

Opt Name #2: 11 (Uri-Path): m2mService

Opt Name #3: 12 (Content-Format): application/xml

Opt Name #4: Uri-Query: ty=23

...

Opt Name #6: 256 (oneM2M-FR): coap://10.0.4.20:5683/m2mservice

Opt Name #7: 257 (oneM2M-RQI): 333933333834

[Opt Name #7: 259 (oneM2M-OT): 0] if one-time subscription

Payload:

<Content>

 <output>

 <outputParameter id="1">

<name>

remoteM2MapplicationService.output.parameter1

</name>

 </outputParameter>

 </output>

</Content>

ACK

Version=01 (Version: 1)

Type= 10 (Acknowledgement)

Token Length= 0100 (4)

Code= 2.05 (Content)

Message ID= 3130

Token= bfb31d74

Opt Name #1: 257 (oneM2M-RQI): 333933333834

Appendix C – Low Level Descriptions

516

Message Sequence Chart C.2: CoAP Messaging for Service/Information Notification

Message Sequence Chart C.3: CoAP Messaging for Service/Information Unsubscription

Peer 0
CoAP

ServerPeer 0
CoAP

Client

Version=01 (Version: 1)

Type= 00 (Confirmable)

Token Length= 0100 (4)

Code= 0.02 (POST)

Message ID= 4080

Token= 19ff3db4

Opt Name #1: 11 (Uri-Path): m2mService

Opt Name #2: 12 (Content-Format): application/xml

Opt Name #3: 256 (oneM2M-FR): coap://10.0.13.20:5683/m2mservice?ty=23

Opt Name #4: 257 (oneM2M-RQI): 333933333834

Payload:

<Content>

 <output>

 <outputParameter id="1">

 <name>

remoteM2MapplicationService.output.parameter1

</name>

 <value>Parameter-Value1</value>

 </outputParameter>

 </output>

</Content>

POST coap://10.0.4.20:5683/m2mservice

Version=01 (Version: 1)

Type= 10 (Acknowledgement)

Token Length= 0100 (4)

Code= 2.05 (Content)

Message ID= 4080

Token= 19ff3db4

Opt Name #1: 257 (oneM2M-RQI): 333933333834

ACK

...

Peer 0
CoAP

ServerPeer 0
CoAP

Client
DELETE coap://10.0.13.20:5683/m2mservice

Version=01 (Version: 1)

Type= 00 (Confirmable)

Token Length= 0100 (4)

Code= 0.02 (POST)

Message ID= 1528

Token= bfb31d75

Opt Name #1: 07 (Uri-Port): 5683

Opt Name #2: 11 (Uri-Path): m2mService

Opt Name #3: 12 (Content-Format): application/xml

...

Opt Name #5: 256 (oneM2M-FR): coap://10.0.4.20:5683/m2mservice

Opt Name #6: 257 (oneM2M-RQI): 333933333834

Payload:

<Content>

 <output>

 <outputParameter id="1">

 <name>

remoteM2MapplicationService.output.parameter1

</name>

 </outputParameter>

 </output>

</Content> ACK

Version=01 (Version: 1)

Type= 10 (Acknowledgement)

Token Length= 0100 (4)

Code= 2.05 (Content)

Message ID= 1528

Token= bfb31d75

Opt Name #1: 257 (oneM2M-RQI): 333933333834

 Appendix C – Low Level Descriptions

517

Message Sequence Chart C.4: SIP Messaging for Service/Information Subscription

Message Sequence Chart C.5: SIP Messaging for Service/Information Notification

Peer 0User Agent ServerPeer 0User Agent Client
SUBSCRIBE sip:remoteM2Mservice@10.0.13.20:5060 SIP/2.0

Call-ID= 312f640321938e909b96f545344928fe@10.0.4.20

CSeq= 1 SUBSCRIBE

From= "PeerX" <sip:PeerX@10.0.4.20>

To= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

Via= SIP/2.0/UDP 10.0.4.20:5060

Max-Forwards= 70

Contact= "PeerX" <sip:PeerX@10.0.4.20:5060>

Event= m2mService;reqId=465143[;once=false/true] if one-time subscr.

Content-Type= application/xml

Content-Length= 320

Message Body:

<Content>

 <output>

 <outputParameter id="1">

 <name>

remoteM2MapplicationService.output.parameter1

</name>

 </outputParameter>

 </output>

</Content> SIP/2.0 200 OK

CSeq= 1 SUBSCRIBE

Call-ID= 312f640321938e909b96f545344928fe@10.0.4.20

From= "PeerX" <sip:PeerX@10.0.4.20>

To= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

Via= SIP/2.0/UDP 10.0.4.20:5060

Contact= "remoteM2Mservice"

<sip:remoteM2Mservice@10.0.13.20:5060>

Content-Length= 0

Peer 0User Agent ServerPeer 0User Agent Client
NOTIFY sip:PeerX@10.0.4.20:5060 SIP/2.0

Call-ID= 312f640321938e909b96f545344928fe@10.0.4.20

CSeq= 1 NOTIFY

From= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

To= "PeerX" <sip:PeerX@10.0.4.20>

Via= SIP/2.0/UDP 10.0.13.20:5060

Max-Forwards= 70

Contact= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20:5060>

Event= m2mService;reqId=465143[;once=false/true] if one-time subscr.

Content-Type= application/xml

Content-Length= 430

Subscription-State= active (terminated if one-time subscr.)

Message Body:

<Content>

 <output>

 <outputParameter id="1">

 <name>

remoteM2MapplicationService.output.parameter1

</name>

 <value>Parameter-Value1</value>

 </outputParameter>

 </output>

</Content> SIP/2.0 200 OK

CSeq= 1 NOTIFY

Call-ID= 312f640321938e909b96f545344928fe@10.0.13.20

From= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

To= "PeerX" <sip:PeerX@10.0.4.20>

Via= SIP/2.0/UDP 10.0.13.20:5060

Contact= "PeerX" <sip:PeerX@10.0.4.20:5060>

Content-Length= 0 ...

Appendix C – Low Level Descriptions

518

Message Sequence Chart C.6: SIP Messaging for Service/Information Unsubscription

Peer 0
User Agent

ServerPeer 0
User Agent

Client
SUBSCRIBE sip:remoteM2Mservice@10.0.13.20:5060 SIP/2.0

Call-ID= 312f640321938e909b96f545344928fe@10.0.4.20

CSeq= 2 SUBSCRIBE

From= "PeerX" <sip:PeerX@10.0.4.20>

To= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

Via= SIP/2.0/UDP 10.0.4.20:5060

Max-Forwards= 70

Contact= "PeerX" <sip:PeerX@10.0.4.20:5060>

Event= m2mService;reqId=465143[;once=false/true] if one-time subscr.

Expires= 0

Content-Type= application/xml

Content-Length= 320

Message Body:

<Content>

 <output>

 <outputParameter id="1">

 <name>

remoteM2MapplicationService.output.parameter1

</name>

 </outputParameter>

 </output>

</Content> SIP/2.0 200 OK

CSeq= 2 SUBSCRIBE

Call-ID= 312f640321938e909b96f545344928fe@127.0.0.1

From= "PeerX" <sip:PeerX@10.0.4.20>

To= "remoteM2Mservice" <sip:remoteM2Mservice@10.0.13.20>

Via= SIP/2.0/UDP 10.0.4.20:5060

Contact= "remoteM2Mservice"

<sip:remoteM2Mservice@10.0.13.20:5060>

Content-Length= 0

