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The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors
of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The
strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-
meson at the physical point. The tree-level Symanzik improved gauge action is employed. We
use three values of the lattice spacing, corresponding to β = 3.9, β = 4.05 and β = 4.2 with
r0/a = 5.22(2), r0/a = 6.61(3) and r0/a = 8.31(5) respectively. We examine the dependence of the
strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion
mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation
theory to extrapolate to the physical point.
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I. INTRODUCTION

Lattice QCD simulations with two light degenerate sea quarks (Nf = 2) as well as with a strange sea quark
(Nf = 2+1) close to physical values of the pion mass are being carried out. Masses of low-lying hadrons are primary
quantities that can be extracted using these simulations. Comparing the lattice and experimental values provides a
check of lattice discretization effects. Such a comparison is necessary before one can use the lattice approach to study
hadron structure. The European Twisted Mass Collaboration (ETMC) has generated a number of Nf = 2 ensembles
at four values of the lattice spacing, ranging from 0.1 fm to about 0.05 fm, at several values of the light sea quark
mass and for several physical volumes with maximally twisted mass fermions. We will use ensembles generated at the
three smallest lattice spacings to evaluate the masses of strange and charm baryons. The strange and charm quarks
are added as valence quarks.
For heavy quarks the Compton wavelength of the associated heavy-light meson is comparable to presently attainable

lattice spacings, which means that cut-off effects maybe large. The charm quark mass is at the upper limit of the range
of masses that can be directly simulated at present. In order to obtain values for the masses that can be compared
to experiment, it is important to assess the size of lattice artifacts. A first study of cut-off effects was carried out
for light and strange baryons in Refs. [1, 2]. In this work we extend the study by including a finer lattice spacing
and calculate besides the mass of strange baryons the masses of charm baryons. Having three lattice spacings the
continuum extrapolation can be better assessed.
In this work we compare our results in the strange baryon sector with recent results obtained with Clover-improved

Wilson fermions with different levels of smearing. The PACS-CS [3] and BMW [4] collaborations evaluated the octet
spectrum using two degenerate flavors of light quarks and a strange quark with mass tuned to its physical value. The
PACS-CS has also computed the decuplet baryon masses. In addition, we compare with the LHPC that computed
the octet and decuplet spectrum using a hybrid action with domain wall valence fermions on Kogut-Susskind sea
quarks [5]
Besides the strange baryons, we also study the ground state spectrum of charm baryons with spin J = 1/2+ and spin

J = 3/2+. Experimental searches of charm hadrons have received significant attention, mainly due to the experimental
observation for candidates of the doubly charm baryons Ξ+

cc(3520) and Ξ++
cc (3460) by the SELEX collaboration [6–8].

The 60 MeV mass difference between the singly and doubly charged states is difficult to understand since it is an
order of magnitude larger compared to what is expected. No evidence was found for these states by the BABAR
experiment [9] and FOCUS Collaboration [10]. The BELLE Collaboration [11] finds Ξ-states lower in mass, that
can be candidates of excited states of Ξc but no doubly charm Ξ. Additional experiments are planned at the new
Beijing Spectrometer (BES-III) and at the antiProton ANnihilation at DArmstadt (PANDA) experiment at GSI,
that can shed light on these charm baryon states. Several lattice QCD studies have been carried out to study charm
baryons. We will compare the results of the current work with recent lattice QCD results all computed in a hybrid
action approach where the charm valence quark was introduced on gauge configurations produced with staggered sea
fermions by the MILC collaboration [12–14].
As in the case of the other lattice QCD studies of heavy baryons, also in this work we use a mixed action approach.

For the strange and charm sector we use an Osterwalder-Seiler valence quark, following the approach employed in the
study of the pseudo scalar meson decay constants [15, 16]. The bare strange and charm valence quark mass is tuned
by requiring that the physical values of the mass of the kaon and D-meson are reproduced after the lattice results are
extrapolated at the physical value of the pion mass. The ETMC Nf = 2 configurations [17, 18] analyzed in this work
correspond to pion masses in the range of 260 to 450 MeV and three values of the lattice spacing corresponding to
β = 3.9, 4.05 and 4.2 with r0/a = 5.22(2), 6.61(3) and 8.31(5), respectively. The Sommer parameter r0 is determined
from the force between two static quarks, the continuum value of which is determined to be 0.462(5) fm. At β = 4.2
we use two ensembles, one corresponding to the lowest value of the pion mass considered in this work and one to
the upper pion mass range. We find that the baryon masses, in general, show a very weak dependence on the lattice
spacing and are fully compatible with an O(a2) behaviour with an almost vanishing coefficient of the a2 term. This
justifies neglecting the O(a2) term in extrapolating results to the continuum limit.
An important issue raised by the twisted mass fermion formulation is isospin symmetry breaking. This symmetry,

although exact in the continuum limit, is broken at a non-vanishing lattice spacing to O(a2). There are, however,
theoretical arguments [19] and numerical evidences [20, 21] that these isospin breaking effects are only sizable for the
neutral pseudo scalar mass whereas for other quantities studied so far by ETMC they are compatible with zero. In
this paper we demonstrate that also in the baryon sector these isospin breaking effects are in general small or even
compatible with zero. Small isospin breaking effects decrease as the lattice spacing decreases and they vanish at the
continuum limit. This corroborates our previous findings [1, 2]. The isospin breaking effects are relevant not only for
neutral pions but also for other particles, e.g. the kaons. However, since the mass of the kaon is higher, the relative
splitting (between K0 and K+) is less drastic.
The paper is organized as follows: The details of our lattice formulation, namely those concerning the twisted mass
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action, the parameters of the simulations, the interpolating fields used and the tuning of the strange and charm quark
masses are given in Section II. Section III contains the numerical results of the baryon masses computed for different
lattice volumes, lattice spacings and bare quark masses. Lattice artifacts, including finite volume and discretization
errors, and continuum extrapolation are also discussed in Section III, with special emphasis on the O(a2) isospin
breaking effects inherent to the twisted mass formulation of lattice QCD. The chiral extrapolations are analyzed in
Section IV. Section V contains a comparison with other existing calculations. Our conclusions are finally drawn in
Section VI.

II. LATTICE FORMULATION

A. The lattice action

For the gauge fields we use the tree-level Symanzik improved gauge action [22], which includes besides the plaquette
term U1×1

x,µ,ν also rectangular (1× 2) Wilson loops U1×2
x,µ,ν

Sg =
β

3

∑

x

(

b0

4
∑

µ,ν=1
1≤µ<ν

{

1− ReTr(U1×1
x,µ,ν)

}

+b1

4
∑

µ,ν=1
µ6=ν

{

1− ReTr(U1×2
x,µ,ν)

}

)

(1)

with b1 = −1/12 and the (proper) normalization condition b0 = 1− 8b1. Note that at b1 = 0 this action becomes the
usual Wilson plaquette gauge action.
The fermionic action for two degenerate flavors of quarks in twisted mass QCD is given by

SF = a4
∑

x

χ̄(x)
(

DW [U ] +m0 + iµγ5τ
3
)

χ(x) (2)

with τ3 the Pauli matrix acting in the isospin space, µ the bare twisted mass and the massless Wilson-Dirac operator
given by

DW [U ] =
1

2
γµ(∇µ +∇∗

µ)−
ar

2
∇µ∇∗

µ (3)

where

∇µψ(x) =
1

a

[

U †
µ(x)ψ(x + aµ̂)− ψ(x)

]

and ∇∗
µψ(x) = −1

a

[

Uµ(x− aµ̂)ψ(x − aµ̂)− ψ(x)

]

. (4)

Maximally twisted Wilson quarks are obtained by setting the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter µ is kept non-vanishing in order to work away from the chiral limit. In Eq. (2) the
quark fields χ are in the so-called ”twisted basis”. The ”physical basis” is obtained for maximal twist by the simple
transformation

ψ(x) = exp

(

iπ

4
γ5τ

3

)

χ(x), ψ(x) = χ(x) exp

(

iπ

4
γ5τ

3

)

. (5)

In terms of the physical fields the action is given by

SψF = a4
∑

x

ψ̄(x)

(

1

2
γµ[∇µ +∇∗

µ]− iγ5τ
3
(

−ar
2

∇µ∇∗
µ +mcr

)

+ µ

)

ψ(x) . (6)

In this paper, unless otherwise stated, the quark fields will be understood as “physical fields”, ψ, in particular when
we define the baryonic interpolating fields.
A crucial advantage of the twisted mass formulation is the fact that, by tuning the bare untwisted quark mass

m0 to its critical value mcr, all physical observables are automatically O(a) improved. In practice, we implement
maximal twist of Wilson quarks by tuning to zero the bare untwisted current quark mass, commonly called PCAC
mass, mPCAC [23], which is proportional to m0 −mcr up to O(a) corrections. The value of mcr is determined at each
β value at the lowest twisted mass used in our simulations, a procedure that preserves O(a) improvement and keeps
O(a2) small [18, 24]. The twisted mass fermionic action breaks parity and isospin at non-vanishing lattice spacing, as
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it is apparent from the form of the Wilson term in Eq. (6). In particular, the isospin breaking in physical observables
is a cut-off effect of O(a2) [25]. To simulate the strange quark in the valence sector several choices are possible.
The strange and charm quarks are added as Osterwalder-Seiler valence quarks and their action reads

SOS
heavy = a4

∑

x

c
∑

h=s

χ̄h(x)
(γµ

2
(∇µ +∇∗

µ)−
a

2
∇∗
µ∇µ +Mcr + iγ5 µh

)

χh(x) (7)

where µs and µc are the strange and charm valence quark masses. This is naturally realized in the twisted mass
approach by introducing two additional doublets of strange and charm quarks and keeping only the positive diagonal
component of τ3. Them0 value is taken to be equal to the critical mass determined in the light sector, thus guaranteeing
the O(a) improvement in any observable. The reader interested in the advantage of this mixed action in the mesonic
sector is referred to the Refs [15, 16, 26–28].

B. Simulation details

The input parameters of the calculation, namely β, L/a and aµ are summarized in Table I. The corresponding
lattice spacing a and the pion mass values, spanning a mass range from 260 to 450 MeV, are taken from Ref. [29].
At mπ ≈ 300 MeV we have simulations for lattices of spatial size L = 2.1 fm and L = 2.7 fm at β = 3.9 allowing
to investigate finite size effects. Finite lattice spacing effects are investigated using three sets of results at β = 3.9,
β = 4.05 and β = 4.2. These sets of gauge ensembles allow us to estimate all the systematic errors in order to have
reliable predictions for the baryon spectrum.

β = 4.2, a = 0.056(1) fm r0/a = 8.31(5)
323 × 64, L = 1.8 fm aµsea 0.0065

Statistics 240, 76
mπ (GeV) 0.4698(18)
mπL 4.24

483 × 92, L = 2.7 fm aµsea 0.0020
Statistics 458, 456
mπ (GeV) 0.262(1)
mπL 3.55

β = 4.05, a = 0.070(1) fm, r0/a = 6.61(3)
323 × 64, L = 2.13 fm aµsea 0.0030 0.0060 0.0080

Statistics 144, 144 194, 193 201, 201
mπ (GeV) 0.2925(18) 0.4035(18) 0.4653(15)
mπL 3.31 4.57 5.27

β = 3.9, a = 0.089(1) fm, r0/a = 5.22(2)

243 × 48, L = 2.05 fm aµsea 0.0040 0.0064 0.0085 0.010
Statistics 4112, 310 545, 278 1817, 369 477, 475
mπ (GeV) 0.3032(16) 0.3770(9) 0.4319(12) 0.4675(12)
mπL 3.25 4.05 4.63 5.03

323 × 64, L = 2.74 fm aµsea 0.0030 0.0040
Statistics 659, NA 242, NA
mπ (GeV) 0.2600(9) 0.2978(6)
mπL 3.74 4.28

TABLE I: Input parameters (β, L, µ) of our lattice simulations and corresponding lattice spacing (a) and pion mass (mπ). The
statistics refer to the number of configurations used in calculation of the masses of the strange and charm baryons. The first
entry gives the number used for the tuned value of the strange quark and the second for the tuned value of the charm. An
entry NA indicates that no masses were computed. The lattice spacing was determined using the nucleon mass [29].

C. Tuning of the bare strange and charm quark masses

The dependence of the pseudoscalar meson mass on the valence and sea quarks can be written as a polynomial of
the form [15]

a2M2
PS(aµsea, aµ1, µ2) = B0(aµ1 + aµ2)[1 + aV ξ12 + aseaξsea + aV V ξ

2
12 + a′seaξ

2
sea + aV,seaξ12ξsea + aVDξ

2
D12] , (8)
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where µsea is the sea quark mass and aµ1, aµ2 are the valence quark masses, ξi = B0aµi/(4πf)
2, ξij = 2B0(aµi +

aµj)/(4πf)
2 and ξDij = B0(aµi − aµj)/(4πf)

2. For the β = 3.9 ensembles we consider in total 164 pseudoscalar
meson masses using all possible combinations of sea and valence quark masses. Namely, we have considered 150
combinations obtained from aµsea and aµ1 independently taking the values

{aµsea, aµ1} = {0.0040 0.0064 0.0085 0.0100 0.0150}

whereas aµ2 takes the values

aµ2 = {0.0040 0.0064 0.0085 0.0100 0.0150 0.0220 0.0270 0.0320}.

We have an additional 12 combinations coming from the combinations

aµsea = µ1 = {0.0040 0.0064 0.0085 0.0100} , µ2 = {0.24 0.27 0.30},

plus two extra combinations from

aµsea = aµ1 = 0.0040 , aµ2 = {0.0217 0.25} .

For the tuning at β = 4.05 we use the following 20 combinations

aµsea = aµ1 = 0.0030 aµ2 = {0.0030 0.014 0.0166 0.020 0.17 0.20 0.23 0.26}
aµsea = aµ1 = 0.0060 aµ2 = {0.0060 0.0166 0.019 0.025}
aµsea = aµ1 = 0.0080 aµ2 = {0.0080 0.014 0.0166 0.020 0.17 0.20 0.23 0.26} .

For the tuning at β = 4.2 we consider 10 pseudoscalar meson masses:

aµsea = aµ1 = 0.0065 aµ2 = {0.0065 0.14 0.16 0.185 0.21}
aµsea = aµ1 = 0.0020 aµ2 = {0.0020 0.012 0.015 0.136 0.17}.

In Figs. 1 and 2 we show representative fits to the pseudo-scalar masses in the range of the kaon and D-meson
masses using the expression given in Eq. (8). The values of the strange and charm quark masses are varied until the
resulting kaon and D-meson masses are matched to their physical values. The resulting fit parameters are listed in
Table II. We note that for β = 3.9 two fitting ranges are used, one range spanning the the strange quark mass and
one the charm quark mass, For β = 4.05 and β = 4.2 we fit all data together since we do not have enough mass
combinations in order to apply Eq. (8). If one does the same for β = 3.9 then the tuned value for the strange quark
mass is aµs = 0.0216(7) compatible with the value of aµs = 0.0217(5) if we restrict the fit to the strange region. In
addition, at each β-value we can restrict the fit in the charm region using the Ansatz

mB = m0
B + bµh + c/µh. (9)

The tuned charm quark value is found to be compatible with the one extracted using Eq. (8). This procedure can be
carried out using either the lattice spacing determined from the nucleon mass or form fπ. The difference in the tuned
masses reflects the systematic error in setting the scale.
The tuned values of the strange and charm quark masses ms and mc obtained at the the physical pion are given in

Table III. In a previous paper, the ETMC computed pseudo-scalar meson masses for a number of sea and valence quark
masses using the β = 3.9 gauge configurations. Matching the experimental value of the mass ratio of the kaon to the
pion, mK/mπ, the bare strange quark mass was determined [15]. Depending on the polynomial fit used the values for
ams at β = 3.9 varied from 0.0243(5) to 0.0218(10). Thus, our value of aµs = 0.0216(7) from matching the physical
value of the kaon mass in combination with the lattice spacing determined from the nucleon mass is compatible with
the value determined in Ref. [15]. Such an agreement is satisfactory and shows that the two procedures lead to the
same determination within the uncertainties associated with the extrapolation. The systematic error introduced from
the way the lattice scale is fixed can be assessed by comparing the tuned values extracted using the lattice spacing
determined from the nucleon mass and from the pion decay constant fπ. The values of the lattice spacing determined
using fπ, taken from Ref. [30], are aβ=3.9 = 0.0801(14) fm, aβ=4.05 = 0.0638(10) fm and aβ=4.2 = 0.05142(38) fm. In
Table III we give the tuned values for the charm and strange quark masses expressed in physical units. As can be
seen, the values for the charm quark masses are in agreement, whereas for strange quark masses the differences are
within about two standard deviations.
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β = 3.9 (strange quark) β = 3.9 (charm quark) β = 4.05 β = 4.2
B0 2.252(5) 2.38(6) 1.652(5) 1.295(5)
f 0.077(2) 0.112(2) 0.093(4) 0.069(4)
aV -0.45(2) 0.3(1) 0.85(5) 0.56(5)
asea 0.0 0.0 0.0 0.0
aV V 3.0(1) 1.8(5) -4.0(3) 2.6(2)
aV.sea 0.0 0.0 0.0 0.0
a′
sea 0.0 0.0 0.0 0.0

aV D -2.25(3) -1.4(6) 4.94(5) -1.8(3)
χ2/d.of 0.51 1.33 4.52 4.40

TABLE II: The values of the fit parameters.

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.005  0.01  0.015  0.02  0.025  0.03

a 
M

P
S

a µ2 

β=4.05

aµsea=aµ1=0.003
aµsea=aµ1=0.006
aµsea=aµ1=0.008

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.16 0.18  0.2  0.22 0.24 0.26 0.28  0.3

a 
M

P
S

a µ2 

β=4.05

aµsea=aµ1=0.003
aµsea=aµ1=0.008

FIG. 1: Pseudo-scalar meson masses for β = 4.05 as a function of the heavy valence quark mass aµ2 in the relevant mass range
for the strange quark (left) and charm quark (right). In all the examples shown the sea quark mass aµsea is set equal to the
light valence quark mass aµ1.

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  0.004  0.008  0.012  0.016

a 
M

P
S

a µ1

a MK
phys

a µ2=0.015
a µ2=0.022
a µ2=0.027

 0.6

 0.65

 0.7

 0.75

 0.8

 0  0.004  0.008

a 
M

P
S

a µ1

a MD
phys

a µ2=0.20
a µ2=0.23
a µ2=0.26

FIG. 2: The dependence of the pseudo-scalar masses on the strange quark mass at β = 3.9 (left) and charm quark mass at
β = 4.05 (right). The solid line shows the variation of the pseudoscalar mass at the tuned strange (left) and charm (right)
quark masses. The dashed vertical line corresponds to the value of aµ1 at which the physical pion mass is recovered. The
asterisk denotes the physical value of the kaon and D-meson mass in lattice units. The lattice spacing is determined from the
nucleon mass.

D. Interpolating fields

The low-lying baryons belonging to the octet and decuplet representations of SU(3) are given in Figs. 3 and 4
respectively. They are classified by giving the isospin, I, the third component of the isospin, I3, the strangeness (S),
the spin and the parity. In order to extract their masses in lattice QCD, we evaluate two-point correlators. We use
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β aµs aµc µs (GeV) µc (GeV) µfπ
s (GeV ) µfπ

c (GeV)
3.9 0.0216(7) 0.27(3) 0.0478(16) 0.598(66) 0.0431(17) 0.64(12)
4.05 0.0178(5) 0.21(1) 0.0501(14) 0.591(28) 0.0451(12) 0.556(31)
4.2 0.014(1) 0.17(2) 0.0493(35) 0.598(70) 0.0464(15) 0.575(38)

TABLE III: The strange and charm quark masses at each value of β tuned using the kaon and D-meson masses and the lattice
spacing determined from the nucleon mass are given in lattice units in the second and third columns respectively. The tuned
strange and charm quark masses in GeV are given in the fourth and fifth columns. In the sixth and seventh columns we
determined the corresponding masses in GeV using the lattice determined from fπ.

interpolating fields to create these states from the vacuum that have the correct quantum numbers and reduce to the
quark model wave functions in the non-relativistic limit. The interpolating fields used in this work are collected in
Tables IV [31, 32] and V [31, 33] for the octet and decuplet respectively.
Charm baryons with no strange quarks are obtained from the interpolating fields of strange baryons by replacing

the strange with the charm quark. There are additional charm baryons containing strange quarks, giving a 20-plet
of spin-1/2 and a 20-plet of spin-3/2. In most of this work we do not consider the particles that contained both a
strange and charm quarks. For the lattice with the smallest lattice spacing and at the smallest pion mass we also
consider the spin-1/2 Ξc, Ξ

′
c, Ωc and Ωcc and the spin-3/2 Ξ∗

c , Ω
∗
c and Ω∗

cc. The interpolating fields for these baryons
are given in Table VI.

FIG. 3: The low lying baryons belonging to the octet rep-
resentation labeled by the value of I3 and hyper-charge.

FIG. 4: The low lying baryons belonging to the decu-
plet representation labeled by the value of I3 and hyper-
charge.

Strangeness Baryon Interpolating field I Iz

S = 0
p χp = ǫabc(u

T
aCγ5db)uc 1/2 +1/2

n χn = ǫabc(d
T
aCγ5ub)dc 1/2 −1/2

S = 1

Λ χΛ8

= 1√
6
ǫabc

{

2(uT
aCγ5db)sc + (uT

aCγ5sb)dc − (dTaCγ5sb)uc

}

0 0

Σ+ χΣ+

= ǫabc(u
T
aCγ5sb)uc 1 +1

Σ0 χΣ0

= 1√
2
ǫabc

{

(uT
aCγ5sb)dc + (dTaCγ5sb)uc

}

1 +0

Σ− χΣ−

= ǫabc(d
T
aCγ5sb)dc 1 −1

S = 2
Ξ0 χΞ0

= ǫabc(s
T
aCγ5ub)sc 1/2 +1/2

Ξ− χΞ−

= ǫabc(s
T
aCγ5db)sc 1/2 −1/2

TABLE IV: Interpolating fields and quantum numbers for the baryons in the octet representation.

Local interpolating fields are not optimal for suppressing excited state contributions. We instead apply Gaussian
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Strangeness Baryon Interpolating field I Iz

S = 0

∆++ χ∆++

µ = ǫabc(u
T
aCγµub)uc 3/2 +3/2

∆+ χ∆+

µ = 1√
3
ǫabc

{

2(uT
aCγµdb)uc + (uT

aCγµub)dc
}

3/2 +1/2

∆0 χ∆0

µ = 1√
3
ǫabc

{

2(dTaCγµub)dc + (dTaCγµdb)uc

}

3/2 −1/2

∆− χ∆−

µ = ǫabc(d
T
aCγµdb)dc 3/2 −3/2

S = 1

Σ∗+ χΣ∗+

µ =
√

2
3
ǫabc

{

(uTaCγµu
b)sc + 2(uTaCγµs

b)uc
}

1 +1

Σ∗0 χΣ∗0

µ =
√

2
3
ǫabc

{

(uTaCγµd
b)sc + (dTaCγµs

b)uc + (sTaCγµu
b)dc

}

1 +0

Σ∗− χΣ∗−

µ =
√

2
3
ǫabc

{

(dTaCγµd
b)sc + 2(dTaCγµs

b)dc
}

1 −1

S = 2
Ξ∗0 χΞ∗0

µ = ǫabc(s
T
aCγµub)sc 1/2 +1/2

Ξ∗− χΞ∗−

µ = ǫabc(s
T
aCγµdb)sc 1/2 −1/2

S = 3 Ω− χΩ−

µ = ǫabc(s
T
aCγµsb)sc 0 +0

TABLE V: Interpolating fields and quantum numbers for baryons in the decuplet representation.

J = 1/2 J = 3/2

χΞc = 1√
6
ǫabc

{

2(sTaCγ5db)cc + (sTaCγ5cb)dc − (dTaCγ5cb)sc
}

χ
Ξ∗

c
µ =

√

2
3
ǫabc

{

(sTaCγµd
b)cc + (dTaCγµc

b)sc + (cTaCγµs
b)dc

}

χΞ′

c = 1√
2
ǫabc

{

(sTaCγ5cb)dc + (dTaCγ5cb)sc
}

χΩc = ǫabc(s
T
aCγ5cb)sc χ

Ω∗

c
µ =

√

2
3
ǫabc

{

(sTaCγµs
b)cc + 2(sTaCγµc

b)sc
}

χΩcc = ǫabc(c
T
aCγ5sb)cc χ

Ω∗

cc
µ = ǫabc(c

T
aCγµsb)cc

TABLE VI: Interpolating fields for the spin-1/2 Ξc, Ξ
′
c, Ωc and Ωcc, and the spin-3/2 Ξ∗

c , Ω
∗
c and Ω∗

cc baryons.

smearing to each quark field, q(x, t): qsmear(x, t) =
∑

y
F (x,y;U(t))q(y, t) using the gauge invariant smearing function

F (x,y;U(t)) = (1 + αH)n(x,y;U(t)), (10)

constructed from the hopping matrix,

H(x,y;U(t)) =

3
∑

i=1

(

Ui(x, t)δx,y−i + U †
i (x− i, t)δx,y+i

)

. (11)

Furthermore we apply APE smearing to the spatial links that enter the hopping matrix. The parameters of the
Gaussian and APE smearing are the same as those used in our previous work devoted to the nucleon and ∆ masses [1].

E. Two-point correlators

To extract masses in the rest frame we consider two-point correlators defined by

C±
X(t, ~p = ~0) =

1

2
Tr(1 ± γ0)

∑

xsink

〈JX(xsink, tsink)J̄X(xsource, tsource)〉, t = tsink − tsource . (12)

Space-time reflection symmetries of the action and the anti-periodic boundary conditions in the temporal direction
for the quark fields imply, for zero three-momentum correlators, that C+

X(t) = −C−
X(T − t). So, In order to decrease

errors we average correlators in the forward and backward direction and define:

CX(t) = C+
X(t)− C−

X(T − t) . (13)

In order to decrease correlation between measurement, we choose the source location randomly on the whole lattice
for each configuration. Masses are then extracted from the so called effective mass which is defined by

mX
eff(t) = − log(CX(t)/CX(t− 1)) = mX + log

(

1 +
∑∞

i=1 cie
∆it

1 +
∑∞
i=1 cie

∆i(t−1)

)

−→
t→∞

mX , (14)
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where ∆i = mi −mX is the mass difference of the excited state i with respect to the ground mass mX .
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FIG. 5: Representative effective mass plots for β = 4.2 and aµl = 0.002. For the strange baryons (Left) we used aµs = 0.015,
while for charm baryons (Right) aµc = 0.17.

In Fig. 5 we show representative examples of the effective masses of strange and charm baryons. As can be seen, a
plateau region can be clearly identified. What is shown in these figures are effective masses extracted from correlators
where smearing is applied both at the sink and source. Although local correlators are expected to have the same value
in the large time limit, smearing suppresses excited state contributions yielding a plateau at earlier time separations
and to a better accuracy in the mass extraction. We therefore extract the masses using smeared source and sink. Our
fitting procedure to extract mX is as follows: The sum over excited states in the effective mass given in Eq. (14) is
truncated keeping only the first excited state. Allowing a couple of time slice separation the effective mass is fitted
to the form given in Eq. (14). This yields an estimate for the parameters c1 and ∆1. The lower fit range is increased
until the contribution due to the first excited state is less than 50% of the statistical error of mX . This criterion is
in most of the cases in agreement with a χ2/d.o.f. < 1. In the cases in which this criterion is not satisfied a careful
examination of the effective mass is made to ensure that the fit range is in the plateau region.

III. LATTICE RESULTS

Before we extrapolate our lattice results on the strange and charm baryon masses to the physical point, we need to
examine their dependence on the heavy quark mass as well as cut-off effects. We collect lattice results for the masses
of the strange and charm baryons in the Appendix. The errors are evaluated using jackknife and the Γ-method [34]
to check consistency.
In Figs. 6 and 7 we show the dependence of the strange and charm baryon masses on the the strange and charm

quark mass, respectively. Overall, the data display a linear dependence on both the strange and charm quark mass.
One can therefore interpolate between different values of quark masses, if needed.
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FIG. 6: Baryon masses versus the strange quark mass for β = 3.9 and aµl = 0.0064 (circles), β = 4.05 and aµl = 0.006
(squares), β = 4.2 and aµl = 0.0065 (triangles).

A. Strange baryon mass with strange quark mass tuned to its physical value

In this section we restrict our analysis only to the subset of data obtained at the tuned values of the strange quark
mass. Namely, for β = 3.9 and β = 4.05, we use the tuned value given in Table III, whereas for β = 4.2 we use
aµs = 0.015 which agrees with the tuned strange quark mass within error bars.
It is interesting to examine the degree of isospin splitting as a function of the lattice spacing. The splitting is

expected to be zero in the continuum limit. In Fig. 8 we show the mass of Σ+, Σ0 and Σ− at β = 3.9, 4.05 and 4.2.
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FIG. 7: Baryon masses versus the charm quark mass for β = 3.9 and aµl = 0.004 (circles),β = 4.05 and aµl = 0.003 (squares),
beta = 4.2 and aµl = 0.0065 (triangles).

As expected the mass splitting among the three charge states of the Σ decreases with the lattice spacing. The same
behavior is observed for the other strange particles studied in this work. This is shown in Fig. 9 where we plot the
mass difference as a function of a2 at our smallest and heaviest pion mass. As can be seen, the mass difference is
consistent with zero for all particles at the smallest lattice spacing. The small non-zero values seen for the Σ and Ξ
particles are just outside one standard deviation. Therefore, the general conclusion is that indeed isospin splitting is
small at these values of the lattice spacing and it vanishes at the continuum limit. Since for finite a there are small
differnces, for the chiral extrapolation where we use all lattice data we do not average the masses for the different
charge states of the Σ, Ξ and Ξ∗.
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Volume effects can be studied at β = 3.9 where we have simulations at two volumes at pion mass of about 300 MeV.
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As can be seen in Figs. 8, 10 and 11 results at different volumes are consistent. Therefore, we conclude any volume
effects are smaller than our statistical accuracy.
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FIG. 10: Left: The strange octet baryon mass in units of r0 versus (a/r0)
2 for several particles in the octet and decuplet at

two fixed values of mπr0. The solid line is a linear fit in (a/r0)
2 and the dashed line to a constant. Right: Chiral extrapolation

at fixed strange quark mass. Results at β = 3.9 are shown with the open circles for L = 2.1 fm and with the filled circles for
L = 2.7 fm, at β = 4.05 with the open squares and at β = 4.2 with the open triangles.

In order to examine the continuum limit we interpolate our lattice result at a given pion mass in units of r0.
For β = 4.2 we have simulations at only two values of the pion mass at the upper and lower range of pion masses
considered in this work, namely for mπ = 0.254 GeV and mπ = 0.459 GeV. Therefore we interpolate the results for
the other two values of β to these two pion masses. In Figs. 10 and 11, we show results for the octet and decuplet
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FIG. 11: Left: The strange decuplet baryon mass in units of r0 versus (a/r0)
2 at two fixed values of mπr0. The solid line is

a linear fit in (a/r0)
2 and the dashed line to a constant. Right: Chiral extrapolation at fixed strange quark mass. In the case

of the Σ∗ we show the three charge states Σ∗+ (purple), Σ∗0 (blue), and Σ∗− (red). The spread of data at a given pion mass
with the same symbol indicates the level of isospin breaking for the Σ∗ particle. Results at β = 3.9 are shown with the open
circles for L = 2.1 fm and with the filled circles for L = 2.7 fm, at β = 4.05 with the open squares and at β = 4.2 with the
open triangles.

strange baryon masses, respectively, at our three values of the lattice spacing. We perform a continuum extrapolation
by perfroming a linear fit in (a/r0)

2 as well as to constant. As can be seen from Fig. 10, the values obtained in the
continuum limit agree for all octet baryons. In the case of the decuplet the statistical errors are larger and the value
obtained at a = 0 with the linear fit carries a large error. The value obtained using a constant fit has a smaller error
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and it is compatible with one the one obtained using a linear fit. Therefore, for a given charge state and within the
current statistical accuracy, the (a/r0)

2 term can be taken as negligible. Therefore, we can use results at all β-values
to extrapolate to the physical point since cut-off are small for a given charge state. There are two exceptions in the
case of the decuplet. At β = 4.05 the mass of the Ξ∗ and Ω at the lowest pion mass are systematically higher than
that at the other two β-values. Since the results at β = 3.9, with larger lattice space are consistent with those at
β = 4.2 we conclude that this is not a cut-off effect.

B. Charm baryon mass with charm quark mass tuned to its physical value

As in the previous subsection we consider results obtained at the tuned charm mass given in Table III. The
only exception is at β = 4.2 at the heavy pion mass, where we have results close to the tuned value, namely at
aµc = 0.16, 0.185, 0.21. As we have seen, the dependence on the heavy quark is linear and therefore the charm baryon
masses at the tuned value can be easily determined by a linear interpolation.
We follow the same analysis as in the case of the strange baryon sector. In Fig. 12 we show the mass difference

between different charged states as a function of the lattice spacing at the smallest and largest pion masses used in
this work. As can be seen, the mass splittings are zero at the smallest value of the lattice spacing for all particles
confirming restoration of isospin symmetry in the continuum limit. Furthermore, except for the case of the Ξcc mass,
the mass splitting is consistent with zero also at the other two β-values. Therefore, for all particles except the Ξcc
one may average over the mass of different charge states.
In order to examine the continuum limit we interpolate our results at the three β-values at a given pion mass in

units of r0. In Figs. 13 and 14 we show the mass in the octet and decuplet charm sector as a function of lattice
spacing for a given charge state, at the smallest and largest value of the pion mass. A linear fit in (a/r0)

2 and a
constant fit yield consistent results at the continuum limit, albeit with large errors in the case of th elinear fit. We
also note that at the largest pion mass, although results at β = 3.9 are in agreement with those at β = 4.2 indicating
neglegible O(a2)-dependence, at β = 4.05 the results are systematically below. We note that we show only statistical
errors. Systematic errors due, for example, to the matching are not shown. As discussed in the next section these
are (5-10)%. Therefore, a reasonable way to extrapolate our results in the charm sector is to compare the chiral
extrapolation using all lattice data to those using results at β = 3.9 and β = 4.2. We will take the different between
the two values at the physical point as an estimate of a systematic error.

IV. CHIRAL EXTRAPOLATION

Having determined that O(a2) effects are small for the lattice spacings considered here we can combine our lattice
results at the various β-values to extrapolate to the physical pion mass (physical point).
For the strange baryon sector, we consider SU(2) heavy baryon chiral perturbation, which was found to describe

lattice data satisfactorily [2]. To leading one-loop one can described the pion mass dependence using

mB = m
(0)
B − 4c

(1)
B m2

π + cm3
π (15)

where c is a known coefficient given in Ref. [2]. For completeness we give below the coefficients c [35, 36]. For the
octet baryons Λ, Σ and Ξ:

c = − g2ΛΣ

16πf2
π

,−2g2ΣΣ + g2ΛΣ/3

16πf2
π

,− 3g2ΞΞ

16πf2
π

, (16)

respectively, and for the decuplet baryons Σ∗, Ξ∗ and Ω:

c = −10

9

g2Σ∗Σ∗

16πf2
π

,−5

3

g2Ξ∗Ξ∗

16πf2
π

m3
π , 0 . (17)

In addition we consider next to leading order SU(2) χPT results [37]. The expressions are included here for
completeness:

mNLO
Λ (mπ) = m

(0)
Λ − 4c

(1)
Λ m2

π − g2ΛΣ

(4πfπ)2
F(mπ,∆ΛΣ, λ)−

4g2ΛΣ∗

(4πfπ)2
F(mπ,∆ΛΣ∗ , λ)

mNLO
Σ (mπ) = m

(0)
Σ − 4c

(1)
Σ m2

π − 2g2ΣΣ

16πf2
π

m3
π − g2ΛΣ

3(4πfπ)2
F(mπ,−∆ΛΣ, λ)−

4g2ΛΣ∗

3(4πfπ)2
F(mπ,∆ΣΣ∗ , λ)

mNLO
Ξ (mπ) = m

(0)
Ξ − 4c

(1)
Ξ m2

π − 3g2ΞΞ

16πf2
π

m3
π − 2g2Ξ∗Ξ

(4πfπ)2
F(mπ,∆ΞΞ∗ , λ) (18)
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Particle(PDG) m
(0)
B (GeV) −4c

(1)
B (GeV−1) χ2/d.o.f. m (GeV)

Σ−(1193) 1.1368(70) 3.560(40) 2.7 1.1930(62)(660)
Ξ−(1315) 1.3334(46) 1.386(26) 0.82 1.3538(41)(179)
Λ(1116) 1.0678(64) 4.362(37) 1.04 1.1276(57)(721)
Σ∗

av(1384) 1.4244(58) 2.807(34) 2.4 1.4757(51)(740)
Ξ∗−(1531) 1.4808(96) 1.582(58) 3.3 1.5113(89)(400)
Ω(1673) 1.7522(76) 0.361(45) 2.0 1.7591(67)(200)

TABLE VII: The bare mass and cB (related to the σ-term by σB = −4cBm2
π) determined from fitting to the NLO expressions

for strange baryons at the tuned strange quark mass. In the last column, we give the mass in GeV that we obtain at the
physical point using the NLO expressions. The second error given in the parenthesis is an estimate of the systematic error
coming from a comparison between the values obtained at the physical point using the leading order (LO) expressions given in
Eqs. 16 and 17 and the NLO given by Eqs. 18 and 19. In the case of the Ω the systematic error is estimated by evaluating the
impact of the error of the tuned strange quark mass on the extrapolated Ω mass.

and for the decuplet baryons:

mNLO
Σ∗ (mπ) = m

(0)
Σ∗ − 4c

(1)
Σ∗m

2
π − 10

9

g2Σ∗Σ∗

16πf2
π

m3
π − 2

3(4πfπ)2
[

g2Σ∗Σ F(mπ,−∆ΣΣ∗,λ) + g2ΛΣ∗ F(mπ,−∆ΛΣ∗,λ)
]

mNLO
Ξ∗ (mπ) = m

(0)
Ξ∗ − 4c

(1)
Ξ∗m

2
π − 5

3

g2Ξ∗Ξ∗

16πf2
π

m3
π − g2Ξ∗Ξ

(4πfπ)2
F(mπ,−∆ΞΞ∗,λ)

mNLO
Ω (mπ) = m

(0)
Ω − 4c

(1)
Ω m2

π (19)

with the non analytic function [38]

F(m,∆, λ) = (m2 −∆2)
√

∆2 −m2 + iǫ log

(

∆−
√
∆2 −m2 + iǫ

∆+
√
∆2 −m2 + iǫ

)

− 3

2
∆m2 log

(

m2

λ2

)

−∆3 log

(

4∆2

m2

)

(20)

depending on the threshold parameter ∆XY = m
(0)
Y −m

(0)
X and on the scale λ of chiral perturbation theory, fixed to

λ = 1 GeV. For ∆ > 0 the real part of the function F(m,∆, λ) has the property

F(m,−∆, λ) =

{ −F(m,∆, λ) m < ∆

−F(m,∆, λ) + 2π
(

m2 −∆2
)3/2

m > ∆
(21)

which corrects a typo in the sign of the second term in Ref. [5]. We follow the procedure of Ref. [2] and fix the
nucleon axial charge gA and pion decay constant fπ to their experimental values (we use the convention such that
fπ = 130.70 MeV). The remaining pion-baryon axial coupling constants are taken from SU(3) relations [37]. The fit
parameters extracted for fitting to the NLO are given in Table VII. The deviation of the mean values obtained at the
physical point when the results are fitted to leading order i.e. to Eq.( 15) with c = 0 and when they are fitted to the
NLO expressions provide an estimate of the systematic error due to the chiral extrapolation. We give this error in
Table VII. In the case of the Ω there is no difference between leading order and next to leading order. Since the Ω
contains three strange quarks any systematic error in the tuning of the strange quark mass will be largest in this case.
Having results at several values of the strange quark mass we can estimate the change in the Ω mass if the strange
quark mass takes the maximum and minimum value allowed by the statistical error in the tuned strange quark mass.
We take the difference in the mean values at the physical point obtained by varying the strange quark mas to be the
systematic error due to the tuning. In Table VII we give the systematic error on the mass of Ω that we find following
this procedure. This gives an upper bound of the error expected from the uncertainty in the tuning. As can be seen
this is smaller as compared to the systematic error due to the chiral extrapolation and therefore it is only taken into
account for the case of the Ω.
In Figs. 10 and 11 we show the chiral extrapolation for the octet and the decuplet. In the case of the Σ and Ξ∗ the

physical point is reproduced. However, for most other particles the lattice results extrapolate to a higher value. The
worse deviation is seen for the Ω. Since this has three strange quarks it may indicate that the tuning of the strange
quark mass performed using the kaon mass introduces a systematic error. One can study partial quenching effects
using twisted mass fermion simulations with a dynamical strange quark. This will be considered in a future study.
In the charm baryon sector we use the Ansatz

mB = a+ bm2
π + cm3

π, (22)
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Particle(PDG) m (GeV) ∆m (GeV)
Σc,av(2.454) 2.494(47) 0.143
Ξ+

cc 3.563(25) 0.397
Λ+

c (2286) 2.229(43) 0.223
Σ∗

c,av(2.520) 2.650(39) 0.147
Ξ∗

cc,av 3.672(42) 0.274
Ωccc 4.702(11) 0.308

TABLE VIII: For each particle listed in the first column we give in the second column its mass at the physical pion mass using
for the chiral extrpoaltion the masses computed at the tuned value of the charm quark mass mc. In the third column we give
the mass difference between the baryon masses obtained at the tuned value of mc and at the tuned value plus the error, after
extrapolation to the physical point. This is done at β = 3.9 where we have computed the masses at mc± error.

Particle(PDG) m0
B (GeV) −4cB (GeV−1) c (GeV−2) χ2/d.o.f. m (GeV)

Σc,av(2.454) 2.437(25) 1.92(54) -2.09(91) 1.1 2.468(17)(23)
Ξ+

cc 3.476(35) 2.39(83) -3.39(1.5) 2.7 3.513(23)(14)
Λ+

c (2286) 2.198(40) 2.99(96) -3.6(1.7) 0.10 2.246(27)(15)
Σ∗

c,av(2.520) 2.520(25) 2.37(51) -2.96(86) 1.3 2.556(18)(51)
Ξ∗

cc,av 3.571(25) 2.02(57) -2.62(99) 1.0 3.603(17)(21)
Ωccc 4.6706(53) 0.327(35) 0. 2.5 4.6769(46)(30)

TABLE IX: Parameters of the chiral fit for charm baryons at the tuned charm quark mass fitting results at β = 3.9 and β = 4.2.
The last column is our prediction (in GeV) at the physical point. The statistical error is given in the first paranthesis and the
systematic, computed by comparing the fit with all lattice data, in the second parenthesis.

motivated by SU(2) HBχPT to leading one-loop order, with c taken as a fit parameter. For the Ωccc we set c = 0
since one does not expect a cubic term.
In order to assess the systematic error associated with the tuning of the charm quark mass we consider our results

at β = 3.9. At this value of β we have computed the charm baryon masses at the tuned value of the charm quark
and at values of the charm quark shifted by the error on the tuned value. Since these computations were performed
at four different light quark masses we can perform a chiral extrapolion using using the Ansatz of Eq. (22 for the set
of masses obtained at the tuned value and at the value shifted by the error. The difference in the masses obtained at
the physical pion mass is given in Tab. VIII. As can be seen, this difference intorduces an error that varies between
about 5% and 10%. This gives an estimate of the systemastic error due to the tuning of the charm quark mass. Since
this analysis can only be done at β = 3.9 we can only make a qualitative estimate of this error. Therefore in what
follows we will not quote this error on our values,. However, one has to bear in mind that our final values can have a
systematic error of about 10% due to the tunning.
In Figs. 13 and 14 we show fits at for our three β values. We show fits using all data and fits using only data at

β = 3.9 and β = 4.2. The latter case yields a better fit with a smaller value of χ/d.o.f. and this is the value quoted in
Table IX. This is particularly noticeable for the case of Ωccc where the results at β = 4.05 are systematically lower.
This maybe due to a small mismatch in the tuned value of the charm quark mass, which for the Ωccc that contains
three charm quarks would lead to the largest deviation. We take the difference in the extrapolated values at the
physical points when we exclude the β = 4.05 data from the fit as a systematic error.
The extrapolation of the lattice data reproduce the mass of experimentally measured charm baryon masses within

a standard deviation, namely the mass of the Σc, the Λc and the Σ∗
c . Therefore, the extrapolated lattice value can be

taken as a prediction for the mass of the Ξ∗
cc and the Ωccc, within one standard deviation.

V. COMPARISON WITH THE RESULTS OF OTHER LATTICE FORMULATIONS

In this section we compare our results with those using different discretization schemes by other collaborations. We
also include a comparison for the nucleon and ∆ masses although they were not discussed in detail until now.
Several collaborations have calculated the strange baryon spectrum. The Budapest-Marseille-Wuppertal (BMW)

collaboration carried out simulations using tree level improved 6-step stout smeared Nf = 2 + 1 clover fermions and
a tree level Symanzik improved gauge action. Volume effects were studied using lattices of spatial extent of 2 fm to
4.1 fm. The continuum limit was taken using results produced on three lattice spacings of a = 0.065 fm, 0.085 fm and
a = 0.125 fm. Using pion masses down to 190 MeV a polynomial was performed to extrapolate to the physical value
of the pion mass [4]. The PACS-CS collaboration obtained results using Nf = 2+1 non-perturbatively O(a) improved
clover fermions on an Iwasaki gauge action on a lattice of spatial length of 2.9 fm and lattice spacing a = 0.09 fm [3].
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FIG. 15: The results of this work for the octet strange baryons are shown with the filled (red) circles, results using clover
fermions by the BMW Collaboration are shown with the open (blue) square [4] and by the PACS-CS Collaboration with
the filled (magenta) triangles [3], and domain wall valence quarks on a staggered sea by the LHPC with the open (green)
triangles [5]. The experimental value is shown with the asterisk.

The QCDSF-UKQCD collaboration [39] used Nf = 2 + 1 Clover fermions with a single mild stout smearing and a
lattice spacing a = 0.076(2) fm. Finally, the LPHC collaboration [5] obtained results using a hybrid action of domain
wall valence quarks on a staggered sea on lattice of spatial length 2.5 fm and 3.5 fm at lattice spacing a = 0.124 fm.
In Fig. 15 we compare our results on the strange octet baryons with those from the BMW, the PACS-CS, the

QCDSF-UKQCD and the LHPC collaborations. Our results and the results by the PACS-CS and LHPC are not
continuum extrapolated. The BMW results are extrapolated to the continuum limit and have larger errors than the
rest. Nevertheless, there is an overall agreement, indicating that cut-off effects are small. In Fig. 16 we compare our
results on the strange decuplet baryons with the ones by PACS-CS and LHPC. Lattice results are in agreement except
for the case of the Ξ∗ where our results are consistently lower. Given the agreement of our results in the case of the
Ω this deviation cannot come from the mismatch in the strange quark mass. It is not clear what is the origin of this
deviation for the Ξ∗, but the fact that the value obtained by PACS-CS at almost physical pion mass is high than the
experimental value may indicate that the strange quark mass is larger than physical. In Fig. 17 we show the masses
for the strange baryons after extrapolating to the physical pion mass. Fort the results of this work we plot the values
extracted using NLO HBχPT. Error shown on the twisted mass results is the estimate of the systematic error due to
the chiral extrapolation, whereas the statistical errors are equal to the size of the symbols and are not shown. As can
be seen, our results are in agreement with experiment except for Ω, which is higher by 2%, just like the value found
by PACS-CS.
We also compare in Fig. 18 our results for the charm baryons to those obtained using dynamical gauge configurations.

All previous lattice computations of the mass of charm baryons used gauge configurations produced with staggered
sea quarks with a number of different actions for the valence quarks. In Refs. [41, 42] a Clover charm valence quark
was used on MILC Nf = 2 + 1 gauge configurations at three values of the lattice spacing, a = 0.09, 0.12, 0.15 fm. In
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FIG. 16: Comparison of the results of this work for the strange decuplet baryons to those obtained using domain wall valence
quarks on a staggered sea [5].The notation is the same as that in Fig. 15.
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(shown with the red filled circles) whereas for the rest we give the results obtained at mπ = 260 MeV and β = 4.2 (shown
with open red circles). We include results obtained using a number of hybrid actions with staggered sea quarks from Refs. [40]
(open blue squares), [41, 42] (open green triangles) and [43] (filled magenta triangles).

Ref. [43] Nf = 2 + 1 + 1 gauge configurations produced using the highly improved staggered quark (HISQ) action.
The valence light-quark (up, down and strange) propagators are generated using the clover impoved Wilson action. In
order to reduce discretization artifacts a relativistic heavy-quark action was adopted for the charm quark. Finally in
Ref. [40] domain wall fermions are used for the up, the down and the strange quarks on Nf = 2+ 1 improved Kogut-
Susskind sea quarks at one value of the lattice spacing a = 0.12 fm. The relativistic Fermilab action was employed
for the charm quark. We show the comparison of our results to those obtained in the aforementioned references in
Fig. 18. Our results for Λc, Σc, Ξcc, Σ

∗
c , Ξ

∗
cc and Ωccc are extrapolated to the physical pion mass using a polynomial

fit with up m3
π-terms. For the spin 1/2 Ξc, Ξ

′
c, Ωc and Ωcc we show the results obtained at mπ = 260 MeV, the

smallest value of the pion mass considered in this work on the lattice with the smallest lattice spacing at β = 4.2, for
which cut-off effects are smallest. As can be seen, our results are in agreement with the results of the other studies
except for the Ξcc and with the experimental values. Although for Ξcc we find a value consistent with the result of
the SELEX experiment, one has to study the pion mass dependence in order to reach a final conclusion. In Fig. 18
we compare results for the spin 3/2 charm baryons. Our results for Ξ∗

c , Ω
∗
c and Ω∗

cc are obtained at mπ = 260 MeV
at β = 4.2. There is good agreement among lattice results and with the known experimental values for Σ∗

c , Ξ
∗
c and

Ω∗
c . Thus the lattice results can be taken as a prediction for the masses of the other charm spin 3/2 baryons shown

in the figure.

VI. SUMMARY AND CONCLUSIONS

In this work we have computed the strange and charm baryon masses using Nf = 2 twisted mass fermions. For the
strange and charm sector we use an Osterwalder-Seiler valence quarks. The bare strange and charm valence quark
mass is tuned by requiring that the physical values of the mass of the kaon and D-meson are reproduced after the
lattice results are extrapolated at the physical value of the pion mass.
We analyze gauge configurations for three values of the lattice spacings at the largest and smallest pion mass used

in this study. We find that cut-off effects are small even in case of the charm baryons. This is a somewhat surprising
result given that the Compton wave length of the D-meson mass is same order as the lattice spacing.
Using simulations on two different volumes we obtained results that are consistent showing that any volume effects

are smaller than our statistical accuracy.
Another artifact of our lattice formulation is isospin breaking at finite lattice spacing. We have found that isospin

breaking decreases with the lattice spacing and it is consistent with zero for a = 0.056 fm confirming the expected
restoration of isospin symmetry.
Our results on the strange quark sector are consistent with recent results using Clover improved fermions and

domain wall fermions on a staggered sea. There is an overall agreement also in thee case of charm sector where we
compare our results to other studies that used staggered sea quarks. The overall consistence among lattice results,
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despite the different discretizations used, provides a strong validation of lattice QCD computations. Our results on
the charm baryons reproduce the experimentally known values and thus provide an estimate for the mass of the Ωcc,
Ξ∗
cc, Ω

∗
cc and Ωccc.
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VII. APPENDIX

In Tables X, XI and XII the strange octet baryon masses are collected for β = 3.9, β = 4.05 and β = 4.2, respectively.
In Tables XIII, XIV and XV the strange decuplet baryon masses for the three beta are collected. In Tables XVI,
XVII and XVIII we show the charm octet baryon masses for the three beta, while in Tables XIX, XX and XXI we
show the charm decuplet baryon masses. In Table XXII we show the masses for extra spin-1/2 and spin-3/2 charm
baryons at β = 4.2 at the lightest pion mass we have.

L/a aµh aµl amΣ0 amΣ− amΣ+ amΞ0 amΞ− amΛ

32 0.0217 0.0030 0.597(3) 0.577(4) 0.607(7) 0.657(4) 0.628(3) 0.561(3)
24 0.0217 0.0040 0.610(5) 0.600(3) 0.622(4) 0.671(3) 0.638(2) 0.577(4)
32 0.0217 0.0040 0.616(4) 0.596(5) 0.628(7) 0.675(4) 0.635(3) 0.574(4)
24 0.0217 0.0064 0.628(5) 0.610(6) 0.640(9) 0.687(5) 0.650(4) 0.602(4)
24 0.0217 0.0085 0.649(3) 0.631(2) 0.668(4) 0.697(3) 0.659(2) 0.619(3)
24 0.0217 0.0100 0.654(4) 0.643(5) 0.666(6) 0.696(5) 0.668(3) 0.633(4)
24 0.015 0.0064 0.596(9) 0.585(6) 0.633(9) 0.658(11) 0.597(12) 0.588(4)
24 0.015 0.0085 0.641(5) 0.598(11) 0.663(6) 0.674(5) 0.621(6) 0.594(9)
24 0.015 0.0100 0.635(7) 0.627(8) 0.645(15) 0.659(14) 0.622(7) 0.614(6)
32 0.025 0.0040 0.623(5) 0.606(5) 0.633(9) 0.687(6) 0.651(4) 0.587(8)
32 0.030 0.0040 0.645(4) 0.630(5) 0.664(6) 0.729(6) 0.688(4) 0.606(5)
24 0.030 0.0064 0.654(5) 0.640(6) 0.674(7) 0.732(5) 0.682(7) 0.624(4)
24 0.030 0.0085 0.688(5) 0.651(9) 0.703(6) 0.739(6) 0.706(4) 0.626(9)

TABLE X: Strange octet baryon masses at β = 3.9.

L/a aµh aµl amΣ0 amΣ− amΣ+ amΞ0 amΞ− amΛ

32 0.0178 0.0030 0.477(5) 0.470(8) 0.488(9) 0.519(6) 0.504(4) 0.455(5)
32 0.0178 0.0060 0.500(5) 0.483(5) 0.503(8) 0.529(5) 0.519(4) 0.482(5)
32 0.0178 0.0080 0.512(4) 0.506(5) 0.522(4) 0.541(4) 0.527(3) 0.496(5)
32 0.014 0.0030 0.463(5) 0.456(9) 0.474(9) 0.496(6) 0.482(4) 0.445(6)
32 0.014 0.0060 0.495(4) 0.473(6) 0.497(8) 0.513(6) 0.500(4) 0.479(4)
32 0.014 0.0080 0.494(8) 0.508(9) 0.508(5) 0.512(7) 0.507(3) 0.485(6)
32 0.0166 0.0030 0.477(5) 0.465(5) 0.487(6) 0.515(4) 0.498(3) 0.451(4)
32 0.0166 0.0060 0.496(5) 0.483(5) 0.502(5) 0.526(4) 0.511(4) 0.480(5)
32 0.0166 0.0080 0.510(3) 0.502(3) 0.518(4) 0.535(3) 0.521(3) 0.496(3)
32 0.019 0.0060 0.501(6) 0.495(8) 0.519(13) 0.532(6) 0.524(6) 0.483(5)
32 0.020 0.0030 0.486(6) 0.478(8) 0.495(8) 0.531(6) 0.517(4) 0.461(5)
32 0.020 0.0060 0.510(6) 0.493(5) 0.515(7) 0.544(6) 0.534(4) 0.492(5)
32 0.020 0.0080 0.516(4) 0.510(7) 0.514(7) 0.547(4) 0.533(4) 0.500(5)
32 0.025 0.0060 0.522(5) 0.501(6) 0.531(7) 0.572(5) 0.556(4) 0.501(5)

TABLE XI: Strange octet baryon masses at β = 4.05.

L/a aµh aµl amΣ0 amΣ− amΣ+ amΞ0 amΞ− amΛ

32 0.012 0.0065 0.402(4) 0.396(4) 0.405(5) 0.418(4) 0.406(4) 0.392(4)
48 0.012 0.0020 0.362(3) 0.360(3) 0.368(4) 0.390(2) 0.381(2) 0.344(3)
32 0.013 0.0065 0.406(7) 0.405(7) 0.417(7) 0.430(6) 0.416(6) 0.395(7)
32 0.015 0.0065 0.411(4) 0.409(4) 0.413(4) 0.431(4) 0.421(4) 0.397(4)
48 0.015 0.0020 0.374(2) 0.371(3) 0.380(3) 0.404(2) 0.397(2) 0.352(2)
32 0.016 0.0065 0.417(7) 0.409(4) 0.413(4) 0.442(5) 0.421(4) 0.397(4)

TABLE XII: Strange octet baryon masses at β = 4.2.
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L/a aµh aµl amΣ∗0 amΣ∗− amΣ∗+ amΞ∗0 amΞ∗− amΩ

32 0.0217 0.0030 0.700(7) 0.713(5) 0.700(6) 0.710(6) 0.702(5) 0.798(3)
32 0.0217 0.0040 0.726(4) 0.718(6) 0.715(6) 0.739(4) 0.721(4) 0.809(3)
24 0.0217 0.0040 0.716(12) 0.726(14) 0.717(17) 0.737(8) 0.714(8) 0.805(7)
24 0.0217 0.0064 0.749(7) 0.749(7) 0.740(11) 0.754(8) 0.734(8) 0.815(6)
24 0.0217 0.0085 0.759(5) 0.755(4) 0.755(5) 0.767(3) 0.738(5) 0.820(3)
24 0.0217 0.0100 0.773(8) 0.772(8) 0.773(9) 0.784(5) 0.749(7) 0.834(4)
24 0.015 0.0064 0.737(24) 0.736(7) 0.746(7) 0.728(15) 0.708(10) 0.772(16)
24 0.015 0.0085 0.751(10) 0.736(20) 0.755(7) 0.723(11) 0.659(18) 0.771(9)
24 0.015 0.0100 0.730(18) 0.757(19) 0.746(16) 0.720(15) 0.667(10) 0.771(11)
32 0.025 0.0040 0.730(9) 0.723(12) 0.710(14) 0.747(12) 0.738(8) 0.827(7)
32 0.030 0.0040 0.724(11) 0.743(10) 0.739(9) 0.782(7) 0.765(8) 0.870(6)
24 0.030 0.0064 0.772(6) 0.769(6) 0.760(11) 0.797(7) 0.781(6) 0.874(6)
24 0.030 0.0085 0.782(11) 0.736(7) 0.746(7) 0.812(7) 0.751(11) 0.771(9)

TABLE XIII: Strange decuplet baryon masses at β = 3.9.

L/a aµh aµl amΣ∗0 amΣ∗− amΣ∗+ amΞ∗0 amΞ∗− amΩ

32 0.0178 0.0030 0.597(11) 0.589(10) 0.590(13) 0.596(8) 0.588(6) 0.661(7)
32 0.0178 0.0060 0.593(8) 0.586(8) 0.582(8) 0.582(7) 0.583(7) 0.638(6)
32 0.0178 0.0080 0.606(6) 0.607(7) 0.606(6) 0.609(6) 0.598(5) 0.651(6)
32 0.014 0.0030 0.589(12) 0.595(8) 0.603(6) 0.578(8) 0.570(6) 0.627(8)
32 0.014 0.0060 0.586(11) 0.574(13) 0.582(12) 0.568(10) 0.559(11) 0.623(7)
32 0.014 0.0080 0.588(10) 0.606(7) 0.592(6) 0.574(9) 0.574(6) 0.614(8)
32 0.0166 0.0030 0.570(12) 0.578(7) 0.561(8) 0.573(6) 0.567(6) 0.630(5)
32 0.0166 0.0060 0.582(12) 0.578(10) 0.568(14) 0.579(6) 0.577(7) 0.622(8)
32 0.0166 0.0080 0.615(4) 0.609(6) 0.604(7) 0.601(5) 0.586(5) 0.648(4)
32 0.019 0.0060 0.592(16) 0.576(13) 0.551(19) 0.579(8) 0.583(9) 0.648(5)
32 0.020 0.0030 0.611(7) 0.605(8) 0.610(7) 0.606(7) 0.596(8) 0.671(5)
32 0.020 0.0060 0.599(10) 0.591(9) 0.595(11) 0.594(11) 0.591(9) 0.657(6)
32 0.020 0.0080 0.610(6) 0.619(6) 0.605(6) 0.613(8) 0.597(6) 0.660(5)
32 0.025 0.0060 0.598(11) 0.589(12) 0.577(15) 0.613(7) 0.613(8) 0.674(8)

TABLE XIV: Strange decuplet baryon masses at β = 4.05.

L/a aµh aµl amΣ∗0 amΣ∗− amΣ∗+ amΞ∗0 amΞ∗− amΩ

32 0.012 0.0065 0.480(7) 0.482(6) 0.476(8) 0.468(6) 0.464(6) 0.498(6)
48 0.012 0.0020 0.453(4) 0.451(4) 0.451(4) 0.444(3) 0.440(3) 0.487(3)
32 0.013 0.0065 0.501(11) 0.500(10) 0.495(14) 0.494(9) 0.489(9) 0.522(10)
32 0.015 0.0065 0.478(6) 0.487(5) 0.477(6) 0.478(5) 0.475(5) 0.513(4)
48 0.015 0.0020 0.458(4) 0.455(3) 0.452(2) 0.440(4) 0.448(4) 0.505(3)
32 0.016 0.0065 0.507(11) 0.487(5) 0.503(12) 0.504(10) 0.505(9) 0.540(10)

TABLE XV: Strange decuplet baryon masses at β = 4.2.

L/a aµh aµl am
Σ+

c

amΣ0
c

am
Σ++

c

am
Ξ++
cc

am
Ξ+
cc

am
Λ+
c

24 0.240 0.0040 1.100(6) 1.105(13) 1.102(14) 1.532(5) 1.528(4) 1.015(8)
24 0.240 0.0064 1.117(6) 1.059(20) 1.122(6) 1.552(3) 1.533(4) 1.045(5)
24 0.240 0.0085 1.131(6) 1.125(5) 1.135(5) 1.555(4) 1.541(5) 1.063(3)
24 0.240 0.0100 1.139(4) 1.131(5) 1.138(5) 1.559(3) 1.551(2) 1.070(3)
24 0.250 0.0040 1.128(7) 1.120(9) 1.099(14) 1.591(5) 1.575(5) 1.055(6)
24 0.270 0.0040 1.154(5) 1.157(5) 1.161(6) 1.640(4) 1.628(3) 1.069(4)
24 0.270 0.0064 1.172(7) 1.164(5) 1.176(7) 1.648(5) 1.634(4) 1.096(5)
24 0.270 0.0085 1.192(4) 1.181(4) 1.188(5) 1.658(3) 1.651(3) 1.115(3)
24 0.270 0.0100 1.196(4) 1.189(4) 1.197(4) 1.660(3) 1.649(25) 1.122(3)
24 0.300 0.0040 1.203(9) 1.214(5) 1.221(5) 1.736(6) 1.731(4) 1.135(4)
24 0.300 0.0064 1.227(4) 1.162(22) 1.236(5) 1.747(4) 1.722(6) 1.148(5)
24 0.300 0.0085 1.244(4) 1.236(4) 1.244(4) 1.759(3) 1.736(6) 1.169(3)
24 0.300 0.0100 1.251(3) 1.237(5) 1.249(4) 1.762(2) 1.751(3) 1.172(3)

TABLE XVI: Charm spin-1/2 baryon masses at β = 3.9.
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L/a aµh aµl am
Σ+

c

amΣ0
c

am
Σ++

c

am
Ξ++
cc

am
Ξ+
cc

am
Λ+
c

32 0.170 0.0030 0.843(4) 0.841(5) 0.839(6) 1.134(5) 1.137(4) 0.774(5)
32 0.170 0.0060 0.844(4) 0.831(9) 0.836(8) 1.149(3) 1.139(4) 0.791(5)
32 0.170 0.0080 0.852(4) 0.852(5) 0.852(7) 1.146(2) 1.142(3) 0.791(6)
32 0.200 0.0030 0.900(4) 0.888(7) 0.894(6) 1.244(3) 1.244(5) 0.828(6)
32 0.200 0.0060 0.903(4) 0.886(10) 0.891(8) 1.255(2) 1.250(3) 0.843(5)
32 0.200 0.0080 0.905(5) 0.907(5) 0.908(8) 1.250(2) 1.247(3) 0.848(5)
32 0.210 0.0030 0.917(4) 0.912(6) 0.908(7) 1.282(3) 1.276(4) 0.845(6)
32 0.210 0.0060 0.919(4) 0.911(4) 0.921(4) 1.286(3) 1.279(3) 0.859(5)
32 0.210 0.0080 0.926(3) 0.925(4) 0.926(4) 1.288(2) 1.283(2) 0.865(4)
32 0.230 0.0030 0.952(5) 0.942(7) 0.948(6) 1.345(3) 1.342(5) 0.883(5)
32 0.230 0.0060 0.952(4) 0.940(11) 0.945(8) 1.355(3) 1.353(3) 0.895(5)
32 0.230 0.0080 0.959(5) 0.960(5) 0.959(5) 1.349(3) 1.349(3) 0.899(5)
32 0.260 0.0030 1.004(5) 1.005(10) 1.003(5) 1.444(3) 1.441(5) 0.935(5)
32 0.260 0.0060 1.001(5) 0.992(11) 0.997(8) 1.457(3) 1.451(4) 0.946(5)
32 0.260 0.0080 1.010(6) 1.011(7) 1.012(8) 1.449(3) 1.446(5) 0.955(3)

TABLE XVII: Charm spin-1/2 baryon masses at β = 4.05.

L/a aµh aµl am
Σ+

c

amΣ0
c

am
Σ++

c

am
Ξ++
cc

am
Ξ+
cc

am
Λ+
c

32 0.130 0.0065 0.696(6) 0.694(6) 0.698(6) 0.932(4) 0.927(5) 0.653(4)
32 0.160 0.0065 0.733(6) 0.731(6) 0.734(7) 0.999(4) 0.997(5) 0.688(4)
32 0.185 0.0065 0.778(7) 0.776(6) 0.779(7) 1.085(4) 1.082(5) 0.731(4)
32 0.210 0.0065 0.821(7) 0.819(7) 0.822(7) 1.168(4) 1.156(5) 0.774(4)
48 0.136 0.0020 0.653(3) 0.656(3) 0.652(3) 0.899(2) 0.898(2) 0.603(2)
48 0.170 0.0020 0.716(3) 0.719(3) 0.715(4) 1.017(2) 1.016(2) 0.663(3)

TABLE XVIII: Charm spin-1/2 baryon masses at β = 4.2.

L/a aµh aµl amΣ∗

c
+ amΣ∗

c
0 amΣ∗

c
++ amΞ∗

cc
++ amΞ∗

cc
+ amΩccc

24 0.240 0.0040 1.148(10) 1.142(16) 1.147(15) 1.572(6) 1.564(6) 1.989(3)
24 0.240 0.0064 1.159(10) 1.151(9) 1.166(11) 1.580(6) 1.572(5) 1.991(4)
24 0.240 0.0085 1.175(8) 1.164(8) 1.174(10) 1.594(5) 1.578(7) 1.997(4)
24 0.240 0.0100 1.184(6) 1.184(4) 1.181(6) 1.599(3) 1.591(3) 1.999(3)
24 0.250 0.0040 1.173(8) 1.182(9) 1.173(11) 1.602(7) 1.606(8) 2.043(4)
24 0.270 0.0040 1.201(8) 1.204(7) 1.210(5) 1.671(7) 1.668(5) 2.130(3)
24 0.270 0.0064 1.209(10) 1.210(5) 1.225(6) 1.680(5) 1.672(5) 2.133(3)
24 0.270 0.0085 1.231(4) 1.224(5) 1.230(4) 1.692(5) 1.686(3) 2.136(4)
24 0.270 0.0100 1.239(4) 1.234(4) 1.238(5) 1.694(4) 1.690(4) 2.141(3)
24 0.300 0.0040 1.263(5) 1.245(15) 1.260(6) 1.775(6) 1.764(5) 2.269(3)
24 0.300 0.0064 1.267(5) 1.260(5) 1.275(6) 1.779(5) 1.768(5) 2.270(3)
24 0.300 0.0085 1.281(4) 1.274(5) 1.280(4) 1.794(3) 1.770(8) 2.274(4)
24 0.300 0.0100 1.292(3) 1.283(4) 1.282(6) 1.795(3) 1.789(3) 2.277(2)

TABLE XIX: Charm spin-3/2 baryon masses at β = 3.9.
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L/a aµh aµl amΣ∗

c
+ amΣ∗

c
0 amΣ∗

c
++ amΞ∗

cc
++ amΞ∗

cc
+ amΩccc

32 0.170 0.0030 0.889(6) 0.889(6) 0.890(4) 1.170(6) 1.174(5) 1.468(3)
32 0.170 0.0060 0.887(4) 0.883(5) 0.868(12) 1.184(3) 1.172(6) 1.476(2)
32 0.170 0.0080 0.885(5) 0.890(7) 0.884(5) 1.176(3) 1.175(4) 1.468(3)
32 0.200 0.0030 0.940(6) 0.940(6) 0.941(4) 1.277(4) 1.281(4) 1.616(3)
32 0.200 0.0060 0.928(6) 0.937(4) 0.918(11) 1.288(3) 1.281(3) 1.623(2)
32 0.200 0.0080 0.936(5) 0.945(6) 0.935(5) 1.279(3) 1.281(3) 1.612(3)
32 0.210 0.0030 0.956(6) 0.956(6) 0.958(4) 1.310(4) 1.314(4) 1.663(3)
32 0.210 0.0060 0.955(5) 0.954(4) 0.948(5) 1.316(3) 1.310(4) 1.667(2)
32 0.210 0.0080 0.957(4) 0.962(4) 0.958(4) 1.316(3) 1.313(3) 1.663(3)
32 0.230 0.0030 0.989(6) 0.989(6) 0.992(4) 1.376(4) 1.379(4) 1.761(3)
32 0.230 0.0060 0.984(4) 0.987(4) 0.967(11) 1.387(3) 1.380(4) 1.768(2)
32 0.230 0.0080 0.986(5) 0.995(6) 0.986(5) 1.378(3) 1.380(3) 1.758(3)
32 0.260 0.0030 1.039(6) 1.038(6) 1.036(7) 1.473(4) 1.476(4) 1.905(3)
32 0.260 0.0060 1.033(5) 1.032(5) 1.016(11) 1.485(3) 1.478(4) 1.910(3)
32 0.260 0.0080 1.034(5) 1.039(6) 1.032(10) 1.472(3) 1.472(5) 1.898(4)

TABLE XX: Charm spin-3/2 baryon masses at β = 4.05.

L/a aµh aµl amΣ∗

c
+ amΣ∗

c
0 amΣ∗

c
++ amΞ∗

cc
++ amΞ∗

cc
+ amΩccc

32 0.130 0.0065 0.730(8) 0.730(8) 0.727(8) 0.958(6) 0.963(6) 1.191(3)
32 0.160 0.0065 0.763(8) 0.763(8) 0.761(8) 1.025(6) 1.029(6) 1.287(3)
32 0.185 0.0065 0.805(8) 0.804(8) 0.802(8) 1.107(6) 1.109(6) 1.408(3)
32 0.210 0.0065 0.845(9) 0.845(8) 0.843(8) 1.188(6) 1.193(6) 1.526(3)
48 0.136 0.0020 0.686(4) 0.688(3) 0.683(4) 0.925(2) 0.926(2) 1.166(1)
48 0.170 0.0020 0.744(4) 0.746(3) 0.741(4) 1.039(2) 1.039(2) 1.333(1)

TABLE XXI: Charm spin-3/2 baryon masses at β = 4.2.

L/a aµs aµc aµl amΞc
amΞ′

c
amΩc

amΩcc
amΞ∗

c
amΩ∗

c
amΩ∗

cc

48 0.015 0.17 0.0020 0.708(2) 0.745(3) 0.771(2) 1.044(1) 0.770(3) 0.794(2) 1.065(2)

TABLE XXII: Strange-charm spin-1/2 and 3/2 baryon masses at β = 4.2 at the tuned heavy quark masses.


