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Abstract

We present a stochastic method for the calculation of baryon three-point
functions that is more versatile compared to the typically used sequential
method. We analyze the scaling of the error of the stochastically evaluated
three-point function with the lattice volume and find a favorable signal-to-
noise ratio suggesting that our stochastic method can be used efficiently at
large volumes to compute hadronic matrix elements.
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1. Introduction

Hadron structure calculations in lattice QCD have emerged as a power-
ful tool for providing comparison to and guidance for experiments, see e.g.
refs. [1–4]. Examples include moments of generalized parton distribution
functions, as well as form factors. Lattice computations of such quantities
have been carried out at several values of the lattice spacing allowing the
continuum limit to be taken. In addition, small, sometimes even physi-
cal, values of the pion mass have been employed in the calculation of these
quantities leading to an improved understanding of their quark mass de-
pendence and how they approach the physical point. Unfortunately, studies
of excited state contributions [5–9] suggest that for some quantities these
effects can play an important role as a systematic uncertainty that affects
hadronic three-point function computations. Safely accounting for these ef-
fects requires large statistics, hence methods to speed-up these calculations
are highly desirable.

The progress in nucleon matrix element calculations on the lattice has
prompted an effort to go beyond the simplest observables and to pursue
a larger variety of interesting hadronic quantities. The evaluation of more
observables will deepen our knowledge of hadron structure and provide a
more comprehensive test of QCD. However, using the conventional sequen-
tial method [10] to calculate these matrix elements, it is necessary to perform
a new computation of the needed quark propagators for each observable of
interest1. This then leads to a high computational demand if many physical
quantities are being sought.

In this paper, we describe an alternative approach, based on a stochastic
method, that allows us to obtain a large class of observables with only a sin-
gle computation of the propagators. To this end, we employ stochastically
computed all-to-all propagators. Since a calculation based on a stochastic
evaluation of propagators may lead to very noisy results, we perform a de-
tailed study to determine whether the stochastic noise can be controlled with
a moderate number of stochastic sources. We determine the signal-to-noise
ratio as a function of the lattice size to test whether our stochastic method
can be used in large volumes, such as 483 × 96, that are used in contempo-
rary lattice computations. These questions are addressed specifically for the

1The sequential method allows to compute either the matrix element of a single hadron
or the matrix elements of a single current with one sequential inversion. In particular, a
new computation of propagators has to be performed, when computing matrix elements
of another hadron (fixed sink method) or another current (fixed current method).
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example of the axial charge gA of the nucleon. We would like to emphasize
that we do not perform an analysis of systematic effects, since our goal is
solely to test the stochastic method.

During the course of our work, a similar stochastic approach was em-
ployed in the calculation of meson three-point functions [11], where a (heavy)
all-to-all propagator is estimated stochastically. There it was found that the
stochastic method is competitive and in some cases even superior to the
sequential one. Of course, it is not guaranteed that the same conclusions
hold for baryon matrix elements, since those are subject to a stronger expo-
nentially decreasing signal-to-noise ratio [12].

This paper is organized as follows: in Sec. 2 we outline our stochastic
method, in Sec. 3 we present the results of this method and compare to
those obtained by the fixed sink method, and we summarize our findings in
Sec. 4.

2. Stochastic method for baryon three-point functions

Quantities that are needed for investigating hadron structure can be
extracted by computing matrix elements of baryons with local operators. In
lattice QCD these baryon matrix elements are obtained from baryon three-
point functions in Euclidean space-time that are of the form∑

~x,~y

e−i~p
′·~xe−i~p·~y

〈
B(~x, t)|O(~y, τ)|B̄(0)

〉
, (1)

O(~y, τ) = q̄(~y, τ)Γq(~y, τ) . (2)

Γ represents a combination of γ-matrices and covariant derivatives and we
have used translational invariance to set the source point to zero. Naively
one would need an all-to-all propagator from every lattice point (~y, τ) to all
points (~x, t) for the evaluation of the above three-point function, which is, of
course, prohibitively expensive to calculate. Such a demanding computation
can be circumvented by applying the sequential method to perform the
summation over the spatial coordinates of either the sink or the current [10].
For the example of the fixed sink method, the momentum as well as the
time slice of the sink are fixed and an additional inversion for each flavour
is needed. An alternative approach is to estimate the all-to-all propagator
stochastically, which is the method that we explore in this paper.

A generic three-point function of a baryon B is defined as

C
(B)
3

(
t, τ ; ~p, ~p′

)
= ζ

(B)
AA′

∑
~x,~y

e−i~p·~ye−i~p
′·~x
〈
I(B)
A′ (~x, t)O(~y, τ)Ī(B)

A (0)
〉
.
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IB is the baryon interpolating field and A and A′ summarize the indices de-
pending on the quantum numbers of the baryon B, which are appropriately

contracted with the function ζ
(B)
AA′ . The insertion time of the operator is de-

noted by τ . For illustration let us now consider the three-point function of
a proton and the operator d̄Γd. We use the interpolating field Ip possessing
the quantum numbers of the proton, namely

I(p)α (~x, t) = εabcuaα(~x, t)

((
db(~x, t)

)T
Cγ5 uc(~x, t)

)
,

where C = iγ0γ2 is the charge conjugation operator. In terms of quark
propagators, the connected piece of this three-point function reads

C
(p)
3

(
t, τ ; ~p, ~p′;P

)
= Pαα

′∑
~x,~y

e−i~p·~ye−i~p
′·~x εcbaεa′b′c′ (Cγ5)β′γ′ (Cγ5)∗γβ Γδ

′δδd′d

×
[
S
(u)
(α′a′)(αa)(x, 0)S

(d)
(β′b′)(δd)(x, y)S

(d)
(δ′d′)(βb)(y, 0)S

(u)
(γ′c′)(γc)(x, 0)

− S(u)
(α′a′)(γc)(x, 0)S

(d)
(β′b′)(δd)(x, y)S

(d)
(δ′d′)(βb)(y, 0)S

(u)
(γ′c′)(αa)(x, 0)

]
, (3)

where x = (~x, t) and y = (~y, τ) and where the up (down) quark propagator
is denoted by S(u) (S(d)). P is an appropriate spin projector, which we will
specify later.

The sequential method with fixed sink makes use of the fact that we
can perform the sum over ~x in Eq. (1) by an additional inversion. Then a
generalized propagator for fixed time slice, projector P and sink momentum
~p′ is obtained, as indicated by the shaded area in the left diagram of Fig. 1.
This renders the explicit calculation of an all-to-all propagator unnecessary.

Our alternative method uses a stochastic estimate of the all-to-all prop-
agator appearing in three-point functions like Eq. (3). Such an estimate is
obtained via

1

NS

NS∑
r=1

η†r(~y, τ)φ(x, t)
NS→∞−→ M−1((~x, t), (~y, τ)), (4)

φ(x, t) =
∑
~̃x

M−1((~x, t), x̃) ηr(x̃)

where M is the Dirac matrix. In the above equations we have suppressed
Dirac and color indices. ηr is a random source obeying

1

NS

NS∑
r=1

η∗r,a,α(x)ηr,b,β(y)
NS→∞−→ δxyδabδαβ .
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O(τ)

N̄(0) N(t)

O(τ)

N̄(0) N(t)

Figure 1: Diagrammatic illustration of the sequential method through the sink (left) and
the stochastic method (right).

The stochastic method is diagrammatically illustrated in the right diagram
of Fig. 1. Using the stochastic estimate, we can decompose the double
sum in Eq. (3) into the product of two single sums, which is significantly
computationally cheaper than the naive double sum and reads

C
(p)
3

(
t, τ ; ~p, ~p′;P

)
= Pαα

′∑
~x

e−i~p
′·~x εcba εa′b′c′ (Cγ5)β′γ′ (Cγ5)γβ Γδ

′δδd′d

×
[
S
(u)
(α′a′)(αa)(x, 0)S

(u)
(γ′c′)(γc)(x, 0) (η(x)γ5)β′b′

∑
~y

e−i~p·~y S
(d)
(δ′d′)(βb)(y, 0)

(
γ5φ
∗ (d)(y)

)
δd

−S(u)
(α′a′)(γc)(x, 0)S

(u)
(γ′c′)(αa)(x, 0) (η(x)γ5)(β′b′)

∑
~y

e−i~p·~y S
(d)
(δ′d′)(βb)(y, 0)

(
γ5φ
∗ (d)(y)

)
δd

]
where x = (~x, t) and y = (~y, τ). We have suppressed the average over
the number of stochastic samples, cf. Eq. (4), and used the γ5 Hermiticity
property of the Dirac matrix to obtain the above expression. As before, we
use superscripts to denote the quark flavor.

The drawback of the stochastic method is that we have to average over
a sample of NS stochastic sources. This requires NS inversions compared
to just twelve (one inversion per Dirac and color index) in the sequential
method. However, a major benefit of this method is its flexibility, since we
do not need to fix the spin projector or the sink momentum, nor even the
sink time slice, in principle.

3. Assessment of the stochastic method

To test the applicability of the stochastic method, we need to determine
how large NS must be in order to keep the stochastic noise under control.
This depends on the observable of interest. To be concrete, we compute
a relatively simple benchmark observable of nucleon structure, namely the
nucleon axial charge gA, using our stochastic method. This quantity can be
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obtained from a nucleon matrix element of the isovector axial current. For
the evaluation of matrix elements of the nucleon, we need to introduce the
zero momentum nucleon two-point function,

C
(N)
2 (t) =

∑
~x

Tr

[
1

2
(1 + γ0)

〈
I(N)(~x, t) Ī(N)(0)

〉]
.

We then examine the ratio RgA of the nucleon three-point and two-point
correlation functions,

RgA(t, τ) =
C

(N)
3,Ok(t, τ)

C
(N)
2 (t)

(5)

C
(N)
3,Ok(t, τ ; ~p = ~p′ = 0) =

∑
~x,~y

Tr
[
Γk

〈
I(N)(~x, t)

∣∣∣Ok(~y, τ)
∣∣∣Ī(N)(0)

〉]
Ok (~y, τ) = ū(~y, τ)γ5γku(~y, τ)− d̄(~y, τ)γ5γkd(~y, τ),

Γk =
i

2
(1 + γ0) γ5γk, k = 1, 2, 3

In the limit of large Euclidean time separations, RgA converges to gA up to
the renormalization factor ZA,

ZARgA(t, τ) −→ gA for t→∞, τ →∞ and (t− τ)→∞.

In this paper we use the value of the renormalization constant ZA = 0.757(3)
determined non-perturbatively [13, 14].

In order to demonstrate that the stochastic method can indeed produce
results with a reasonable computational effort and is potentially competitive
with the sequential method, we performed a benchmark calculation with
Nf = 2 + 1 + 1 flavors of quarks. We employed twisted mass fermions
at maximal twist with a lattice spacing of a ≈ 0.082 fm determined from
the nucleon mass [14], a pion mass of mπ ∼ 370 MeV and a volume of
L3 ≈ (2.6 fm)3. In Fig. 2, we show RgA(t, τ) obtained using the stochastic
method as a function of the insertion time τ for a fixed source-sink separation
t = 12a. We compare to the value RgA(t = 12a, τ = 6a) obtained using
the sequential method. For different values of τ close to the middle of the
plateau the picture is similar. We use spin-color diluted random Z(4) vectors
as stochastic sources,

ηaα(~x, t) = δa,a0δα,α0δt,t0 η̃(~x), a0 ∈ {0, 1, 2}, α0 ∈ {0, 1, 2, 3}, η̃(~x) ∈ Z(4) .

We have used a fixed number of gauge field configurations Ngauge = 460 in
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Figure 2: Plateau region of the ratio RgA(t = 12a, τ) obtained from the stochastic method
on one Nf = 2 + 1 + 1 ensemble with a pion mass of mπ ≈ 370 MeV and a lattice spacing
a ≈ 0.082 fm. We use NS = 2, 4 and 6 spin-color diluted stochastic time-slice sources,
with the source located at the sink. The source-sink separation is 12a and we compare to
the standard sequential method, of which we show the ratio RgA(t = 12a, τ = 6a) with
the light gray band. The dark gray band indicates the PDG value[15].

both our stochastic and sequential approaches. Our observation is that using
at most NS = 4 spin-color diluted stochastic noise vectors per configuration
for the estimate of the all-to-all propagator is sufficient to reach the same
statistical accuracy as with the sequential method.

In terms of inversions, NS = 1 corresponds to using the same number of
inversions as in the sequential method i.e. (4×12) per gauge field configura-
tion, for every additional set of stochastic sources we need (2×12) additional
inversions to obtain the forward and back propagators, respectively. Thus
this method would require four times more inversions. We would like to
remark, however, that in the stochastic approach we can compute the cor-
relation functions of proton and neutron without additional inversions, in
contrast to the sequential method. In addition we used 3 operators k = 1, 2, 3
in Eq. (5), and correspondingly 3 spin projectors for the stochastic method,
again without the need of additional inversions when using the stochastic
method. Our observation is that this procedure reduces the statistical error
by about a factor

√
6, corresponding to a factor of about 6 in statistics. We

would like to remark however that this effective gain in statistics is rather
specific for gA and will change for other observables.

Having demonstrated that it is in fact possible to compute gA using the
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stochastic method with a reasonable computational effort compared to the
sequential method, we would like to know how the situation changes when
the volume is varied. A potential danger of our stochastic method is that
the number of stochastic sources required to reach the same precision as the
sequential method may increase rapidly as the volume increases.

To study the volume effects, we use Nf = 2 flavors of maximally twisted
mass fermions, instead of the Nf = 2 + 1 + 1. We expect that the stochastic
noise should not noticeably depend on the number of dynamical flavors, and
for the Nf = 2 case, there exists a series of four different volumes at the
same value of the lattice spacing, a ≈ 0.082 fm [16] and a pion mass, mπ ≈
370 MeV [17]. These volumes are V = L3 × T , where L/a = 16, 20, 24, 32
and the temporal extent of the lattice is T = 2L in all cases. This enables us
to thoroughly study the volume dependence of the stochastic method over a
relatively large range of spatial volumes, from about (1.4 fm)3 to (2.8 fm)3.
This corresponds to 1.95 / mπL / 3.9.

We performed an analysis using the stochastic method on a fixed number
of gauge field configurations Ngauge = 200 at each of the four volumes. The
source-sink separation is fixed to 12a in all cases, which corresponds to about
1.067 fm.

1 2 3 4 5 6 7 8

0
.0
0
0
.0
5
0
.1
0
0
.1
5
0
.2
0
0
.2
5
0
.3
0

NS

∆
g
A
(N
S
)/
g
A
(N
S
)

L/a=24
sequential

1 2 3 4 5 6 7 8

0
.0
0
0
.0
5
0
.1
0
0
.1
5
0
.2
0
0
.2
5
0
.3
0

NS

∆
g
A
(N
S
)/
g
A
(N
S
)

L/a=32
sequential

Figure 3: The filled circles show the relative error on the value obtained for gA as a function
of the number of spin-color diluted stochastic sources NS per gauge field configuration.
In the left panel we show results for a lattice extent of L/a = 24 and in the right panel we
show results for L/a = 32. The dashed lines represent the error when using the sequential
method. A fixed number of gauge field configurations Ngauge = 200 was used, with a pion
mass of mπ ≈ 370 MeV and a lattice spacing of a ≈ 0.082 fm.

In Fig. 3 we show the relative error of gA as a function of the number
of stochastic sources for two of the four volumes L/a = 24 and L/a = 32,
where also the sequential method has been applied. For both volumes a
convergence towards the error of the sequential method can be seen, which
looks better for the larger volume, where the error is close to the error of
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the sequential method for NS = 4, to be conservative. This confirms the
observation in the Nf = 2 + 1 + 1 calculation mentioned above, which was
done at about the same physical volume. The error of the error is not shown,
but it is roughly of order 10% of the error.

We show the combined statistical and stochastic error of gA obtained
using the stochastic method with NS = 8 for four different volumes in Fig. 4.
In order not to be subject to a systematic error we do not fit the ratio given in
Eq. (5) using an estimated plateau range τ between source and sink. Instead,
we take the renormalized ratio RgA(t = 12a, τ = 6a) and its error in the
middle between source and sink as our estimate for gA, where contributions
from excited states are expected to be the smallest. For the larger volumes
the error scales like the one of the sequential method, V −0.5 [18]. Therefore
the plot is consistent with the error being dominated by the gauge noise
for larger volumes, which we have demonstrated above, see Fig. 3. Thus
this method appears to work as well or even better at the larger volumes
typically employed in current calculations, an observation which, of course,
needs to be verified for other quantities and different physical situations.

●

●

●

●0.
1

0.
2

0.
5

(L/a)3

∆g
A

L/a=16 L/a=20 L/a=24 L/a=32

●

●

●

●

● NS=8

V−1 2

V−1

Figure 4: The filled circles show the error of gA using the stochastic method with a fixed
number of stochastic sources NS = 8 on a fixed number of gauge fields Ngauge = 200 for
four different lattice sizes. The pion mass is mπ ≈ 370 MeV and the lattice spacing is
a ≈ 0.082 fm. The dashed lines indicate a scaling proportional to V −1/2 and V −1 and are
solely meant to guide the eye. The error of the error is not much bigger than the symbol
size, hence we do not show it. Please note the double logarithmic scale.

The suitability of the method is demonstrated in Fig. 5 where we compare
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Figure 5: Comparison of GA(Q2) and Gp(Q
2) computed with the stochastic and standard

sequential method (refered as exact in the legend). For the stochastic estimate we use
a fixed number of stochastic sources NS = 4 and we use one projector for the proton
correlators. The computation is performed using Nf = 2 + 1 + 1 configurations fixed to
Ngauge = 500 with a pion mass of mπ ≈ 370 MeV and a lattice spacing of a ≈ 0.082 fm.

the nucleon axial form factors GA(Q2) and Gp(Q
2) [14] computed using

the standard approach and our new method. For this comparison we use
the same number of configurations and one projector. Since we use four
stochatic noises diluted in colour and spin the computation is four times
more expensive producing errors that are comparable to the exact case.
However, the new method allows to compute the three point functions of the
neutron as well as for three different projectors for free thus compensating
for the increases cost. This compared with the fact that one can consider
different final states e.g. a nucleon carrying momentum for free makes the
new method more versatile.

4. Conclusion

We have applied a stochastic method for the calculation of nucleon ma-
trix elements using spin-color diluted time slice sources. We have taken the
case of the nucleon axial charge as a typical example of a three-point function
to explore the method. Our conclusions for our test case is that the error
is comparable to the error of the sequential method already at a moderate
number of stochastic sources, namely four spin and color diluted timeslice
stochastic sources, when using the same number of gauge field configura-
tions. In this particular case we have effectively increased the statistics used
in the stochastic method by a factor 6 through averaging over neutron and
proton correlators and using 3 different currents, which does not require the
computation of new propagators. Moreover, our results indicate that the
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convergence behaviour in the number of stochastic sources, NS , appears to
improve when the volume is increased.

Since the stochastic method needs of O(10) more inversions (we needed
NS = 4 for gA but this maybe different for other matrix elements) it is
competitive with the sequential method when one computes O(10) more
types of matrix elements. In the case of gA the increase in computational
effort is easily compensated by computing 6 different matrix elements with
3 different spin projections for the proton and the neutron. Thus, even with
the additional computational overhead, the great versatility of the stochastic
method explained in this paper outweighs the sequential method when many
baryon matrix elements or form factors are computed.
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