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Abstract

We discuss the computation of the mass of the K and D mesons within the framework of
Nf = 2 + 1 + 1 twisted mass lattice QCD from a technical point of view. These quantities are
essential, already at the level of generating gauge configurations, being obvious candidates to
tune the strange and charm quark masses to their physical values. In particular, we address the
problems related to the twisted mass flavor and parity symmetry breaking, which arise when
considering a non-degenerate (c, s) doublet. We propose and verify the consistency of three
methods to extract the K and D meson masses in this framework.



1 Introduction

The framework of maximally twisted mass fermions as an O(a) improved lattice formulation
[47] has been proved to be highly successful in recent years. The European Twisted Mass
Collaboration (ETMC) has adopted this formulation and has carried through a broad research
program with Nf = 2 flavors of mass-degenerate quarks in various areas of lattice QCD including
light meson physics [1, 2, 3], spectroscopy of light baryons [4, 5], strange and charm physics [6,
7, 8], B-physics [9, 10], spectroscopy of static-light mesons [11, 12], Isgur-Wise functions [13],
meson [14, 15, 16] and nucleon [17] form factors, moments of parton distribution functions [18],
neutral [19] and η′ [20] mesons, ω − ρ mass splitting [21], the vacuum polarization tensor [22],
pion scattering lengths [23], an investigation of the ρ meson as a resonance [24] or the non-
perturbative renormalization of quark bilinear operators [25].

Particular emphasis has been laid on the cut-off effects appearing at O(a2) in the twisted mass
formulation at maximal twist. These effects have been studied theoretically at tree-level of
perturbation theory [26], and within the Symanzik approach [32, 33]. These analyses suggest
that isospin breaking effects strongly affect only a limited set of observables, namely the neutral
pion mass and kinematically related quantities [33]. The same effects have been numerically
investigated in the quenched approximation [27, 28, 29], with two dynamical flavors [3, 4, 5, 30,
31] and with Nf = 2 + 1 + 1 [38]. All numerical results up to date are in agreement with the
theoretical conclusions.

The studies collected so far suggest that the twisted mass formulation at maximal twist is a viable
realization of QCD on the lattice, with the major advantage of automatic O(a) improvement of
physical observables, independently of the specific type of operator considered. Other advantages
worth to mention are that the twisted mass term acts as an infrared regulator of the theory and
that mixing patterns in the renormalisation procedure are expected to be simplified. It is
hence natural to go one step further and include dynamical strange and charm quarks in the
simulations. The theoretical ground for this has been provided in ref. [34] and first feasibility
studies have been performed in ref. [35]. In the last years, we have initiated a comprehensive
research program with dynamical Nf = 2 + 1 + 1 flavors of quarks. Encouraging preliminary
results were reported in [36, 37], while a companion paper [38] presents a more detailed analysis
of the light meson sector for the ensembles used in this paper.

A difficulty arises in Nf = 2+1+1 maximally twisted mass lattice QCD when adding a strange
and a charm quark, due to the explicit violation of the strange and charm flavor quantum
number conservation. At any non-vanishing value of the lattice spacing, the latter leads to
the contamination of correlators by unphysical contributions from intermediate states carrying
the wrong quantum numbers. Moreover, transitions that are not allowed in continuum QCD
become possible, the consequence being that stable states in the continuum with respect to
strong interactions, such as the D meson, become resonances.

In this paper, we provide algorithmic and methodological tools to tackle the problem. In par-
ticular, we present three techniques, a generalized eigenvalue problem, multiple exponential fits,
and enforcing parity and flavor symmetry restoration, to compute the physical K and D me-
son masses. As we will demonstrate below, we find that with all three methods these masses
can be extracted and results agree among the three methods. The paper is conceived as a
technical report on these methods, which can in general be applied whenever flavor symmetry
breaking occurs. Efforts to implement these techniques in combination with a flavor diagonal
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Osterwalder-Seiler valence quark action, see e.g. [6, 34, 42, 43], are ongoing.

The paper is organized as follows. In section 2 we define the setup, the operators used, and the
optimization of the correlation matrices. Section 3 describes the determination of the K and D
meson masses with the three methods. We conclude in section 4.

2 Simulation setup

2.1 Nf = 2 + 1 + 1 twisted mass lattice QCD

This work is based on sets of configurations generated by the ETM collaboration [36, 37] with
the Iwasaki gauge action [44] and Nf = 2 + 1 + 1 flavors of twisted mass quarks. The light
degenerate (u, d) quark doublet is described by the standard twisted mass action [45]

SF,light[χ
(l), χ̄(l), U ] = a4

∑

x

χ̄(l)(x)
(

DW(m0) + iµγ5τ3

)

χ(l)(x), (1)

while for the (c, s) doublet the twisted mass formulation for non-degenerate quarks of [46] has
been used:

SF,heavy[χ
(h), χ̄(h), U ] = a4

∑

x

χ̄(h)(x)
(

DW(m0) + iµσγ5τ1 + τ3µδ

)

χ(h)(x). (2)

In both cases DW denotes the standard Wilson Dirac operator

DW(m0) =
1

2

(

γµ

(

∇µ +∇∗
µ

)

− a∇∗
µ∇µ

)

+m0, (3)

while χ(l) = (χ(u), χ(d)) and χ(h) = (χ(c), χ(s)) are the quark fields in the so-called twisted basis.
For reasons explained in [35] the same value of the standard quark mass parameter m0 has been
used in both sectors.

When tuning the theory to maximal twist, automatic O(a) improvement for physical quantities
applies [46, 47]. This tuning has been done by adjusting m0 such that the PCAC quark mass
in the light quark sector vanishes [38],

amPCAC
χ(l) =

∑

x

〈

∂∗0A
(l)+
0 (x)P (l)−(y)

〉

2
∑

x

〈

P (l)+(x)P (l)−(y)
〉 = 0 , (4)

with the bilinears defined as

A(l)+
µ = χ̄(u)γµγ5χ

(d) , P (l)+ = χ̄(u)γ5χ
(d) , P (l)− = χ̄(d)γ5χ

(u). (5)

At maximal twist, in a massless quark renormalization scheme, the renormalized quark masses
are related to the bare parameters µσ and µδ by [46]

mR
s = Z−1

P

(

µσ −
ZP

ZS
µδ

)

, mR
c = Z−1

P

(

µσ +
ZP

ZS
, µδ

)

(6)
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where ZP and ZS are the renormalization constants of the non-singlet pseudoscalar and scalar
densities in a massless quark scheme, namely for Nf = 4 massless Wilson lattice QCD.

The values of µσ and µδ have been adjusted in our simulations by requiring that the simulated
kaon and D meson mass approximately assume their physical values [38]. For this study we
consider two ensembles, one from each of the currently simulated β values, β = 1.90 and β =
1.95 [36, 37, 38], with a light pseudoscalar mass mPS ≈ 320MeV in both cases, see Table 1.

a mPS # of
Ensemble β (L/a)3 × T/a aµ κ aµσ aµδ in fm in MeV gauges

A40.32 1.90 323 × 64 0.0040 0.163270 0.150 0.190 0.086 324 1003
B35.32 1.95 323 × 64 0.0035 0.161240 0.135 0.170 0.078 318 1042

Table 1: Summary of the ensembles considered in this paper, more details in [36, 37, 38].

2.2 Meson creation operators and trial states

2.2.1 Quantum numbers, physical basis and twisted basis

We are concerned with computing the mass of the K meson, mK , and of the D meson, mD,
within the setup defined by eqs. (1) to (3). Both mesons have total angular momentum J = 0
and parity P = −. Their quark content is e.g. K̄0 ≡ d̄s and D+ ≡ d̄c.

Neither heavy flavor nor parity are exact symmetries in Nf = 2+1+1 twisted mass lattice QCD
at finite lattice spacing. In particular, the τ1-coupling term in eq. (2) violates the conservation of
the strange and charm flavor quantum numbers. Consequently, instead of four different heavy-
light meson sectors (s,−), (s,+), (c,−) and (c,+) there is only a single mixed flavor-parity
sector (s/c,−/+). Problems arise in particular when one tries to determine mD. In continuum
QCD the D meson is the lowest state in the (c,−) sector, while in our setup it is a highly excited
state in the combined sector (s/c,−/+). Notice that, besides the K meson, there are a radially
excited K state (K(1460)), possibly strange mesons with positive parity (K∗

0 (800), K
∗
0 (1430))

and a number of multi particle states K/K∗
0 + n× π [48]. Hence, for a clean extraction of mD

one has to consider sufficiently large correlation matrices, which are able to resolve all these low
lying states. This is possible in principle. In practice, the separation of the excited states would
require the determination of correlation matrices with extremely high statistical precision. At
our currently available statistics, this route seems not to be viable.

Our approach is instead based on the observation that parity and heavy flavor symmetries
are restored in the continuum limit, where the twisted mass theory is expected to reproduce
QCD with Nf = 2 + 1 + 1 quark flavors. In this limit, operators with definite parity [47]
and flavor quantum numbers projecting onto the physical meson states can be reconstructed (cf.
section 3.3). As it is shown in the following, these operators can be defined as linear combinations
of bilinears of the lattice quark fields in the twisted basis.

In the continuum, or in any chirality preserving lattice formulation [45], the twist transformation
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relating the physical quark fields ψ and the twisted quark fields χ reads

ψ(l) = eiωlγ5τ3/2χ(l) , ψ̄(l) = χ̄(l)eiωlγ5τ3/2 (7)

ψ(h) = eiωhγ5τ1/2χ(h) , ψ̄(h) = χ̄(h)eiωhγ5τ1/2, (8)

where ωl,h are the twist angles in the light and heavy quark sector, respectively. Analogous
relations hold for operators projecting, in the continuum limit, on trial states with definite
heavy flavor and parity quantum numbers. In the physical basis, such operators can be chosen
according to1

Oph =













O
(s,γ5)
ph

O
(c,γ5)
ph

O
(s,1)
ph

O
(c,1)
ph













=









+iψ̄(d)γ5ψ
(s)

−iψ̄(d)γ5ψ
(c)

+ψ̄(d)ψ(s)

−ψ̄(d)ψ(c)









(9)

The twist rotations in eqs. (7) and (8) relate the twisted basis operators

Oχ =











O
(s,γ5)
χ

O
(c,γ5)
χ

O
(s,1)
χ

O
(c,1)
χ











=









+iχ̄(d)γ5χ
(s)

−iχ̄(d)γ5χ
(c)

+χ̄(d)χ(s)

−χ̄(d)χ(c)









(10)

to the physical operators of eq. (9) as follows

Oph = M(ωl, ωh)Oχ , O†
ph = O†

χM
T (ωl, ωh) , (11)

with the orthogonal twist rotation matrix given by

M(ωl, ωh) =











cos ωl

2 cos ωh

2 − sin ωl

2 sin ωh

2 − sin ωl

2 cos ωh

2 − cos ωl

2 sin ωh

2

− sin ωl

2 sin ωh

2 cos ωl

2 cos ωh

2 − cos ωl

2 sin ωh

2 − sin ωl

2 cos ωh

2

sin ωl

2 cos ωh

2 cos ωl

2 sin ωh

2 cos ωl

2 cos ωh

2 − sin ωl

2 sin ωh

2

cos ωl

2 sin ωh

2 sin ωl

2 cos ωh

2 − sin ωl

2 sin ωh

2 cos ωl

2 cos ωh

2











. (12)

However, when using the Wilson lattice formulation, the operators in eq. (10), with and without
a γ5 matrix, renormalize differently due to the explicit breaking of chiral symmetry. This
implies that, to be able to build a representation of the chiral group, renormalization factors
must explicitly be taken into account, and eq. (11) only holds for the renormalized counterparts

OR
ph = M(ωl, ωh)O

R
χ , (OR

ph)
† = (OR

χ )
†MT (ωl, ωh), (13)

where the bilinears in eq. (10) have been replaced by their renormalized versions,

OR
χ = diag

(

ZP , ZP , ZS , ZS

)

Oχ =











ZP O
(s,γ5)
χ

ZP O
(c,γ5)
χ

ZS O
(s,1)
χ

ZS O
(c,1)
χ











, (14)

1For definiteness we identify the light flavor with d.
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and ZP and ZS are the same renormalization factors as in (6). At maximal twist, i.e. ωl = ωh =
π/2, one has













O
(s,γ5)
ph

O
(c,γ5)
ph

O
(s,1)
ph

O
(c,1)
ph













R

=
1

2









1 −1 −1 −1
−1 1 −1 −1
1 1 1 −1
1 1 −1 1



















ZP O
(s,γ5)
χ

ZP O
(c,γ5)
χ

ZS O
(s,1)
χ

ZS O
(c,1)
χ











. (15)

A third definition of the quark fields will be useful in the following (where maximal twist applies),
obtained by rotating the lattice χ-fields via eqs. (7) and (8), where now ωl = ωh = π/2. The
rotated fields would reproduce the physical ones in a theory with exact chiral symmetry and
ZP = ZS . In the present formulation with broken chiral symmetry, they define instead a “pseudo

physical basis” (ppb). We denote the rotated fields with ψ
(l, h)
ppb and introduce the operator

bilinears in this basis

Oppb =













O
(s,γ5)
ppb

O
(c,γ5)
ppb

O
(s,1)
ppb

O
(c,1)
ppb













=













+iψ̄
(d)
ppbγ5ψ

(s)
ppb

−iψ̄
(d)
ppbγ5ψ

(c)
ppb

+ψ̄
(d)
ppbψ

(s)
ppb

−ψ̄
(d)
ppbψ

(c)
ppb













=
1

2









1 −1 −1 −1
−1 1 −1 −1
1 1 1 −1
1 1 −1 1



















O
(s,γ5)
χ

O
(c,γ5)
χ

O
(s,1)
χ

O
(c,1)
χ











, (16)

otherwise written as

Oppb = M(π/2, π/2)Oχ ≡ MmtOχ . (17)

The physical operators defined in eq. (13), and eq. (15) at maximal twist, project onto states
that converge to states with definite flavor and parity quantum numbers in the continuum limit.
Since we aim to determine the ground states of the physical system, in at least two of the four
sectors, it is appropriate to first build the correlation matrices in terms of the building blocks
given in eq. (10). We also project to zero momentum by summing over all lattice sites at fixed
Euclidean time t,

O(h,Γ)
χ (t) = ηΓ

∑

x

χ̄(d)(x, t)Γχ(h)(x, t) , h ∈ {s , c} , Γ ∈ {γ5 , 1} (η1 = ±1, ηγ5 = ±i) . (18)

The corresponding trial states

|φ(h,Γ)χ (t)〉 =
(

O(h,Γ)
χ (t)

)†

|Ω〉 (19)

enter the correlation matrices

C(h2,Γ2),(h1Γ1)(t2 − t1) = 〈φ(h2,Γ2)
χ (t2)|φ

(h1,Γ1)
χ (t1)〉 = 〈Ω|

(

O(h2,Γ2)
χ (t2)

)(

O(h1,Γ1)
χ (t1)

)†

|Ω〉 , (20)

and we introduce the shorthand matrix notation for later use

C(t2 − t1) =
〈

O(t2)⊗ (O(t1))
†
〉

. (21)
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Notice also that, due to the discrete symmetries of the twisted mass action in eqs. (1) and
(2), the correlation C(t2 − t1) is a real and symmetric matrix. Eqs. (18) to (21) can also
be generalized to the case of more operators, as for example operators with different levels of
smearing (see the next section) or Dirac structure. In this case C(t2− t1) will be a D×D matrix
(D = 4 × n) defined by the larger operator set. An application of this kind will be considered
in section 3.2. One can easily obtain another set of independent meson creation operators with
identical quantum numbers by replacing Γ → γ0Γ. We found, however, that the corresponding
trial states have worse overlaps to the low lying states of interest. Therefore, we do not consider
these operators in the following. To improve the signal-to-noise ratio, we have computed the
correlators in eq. (20) by using the one-end trick [1, 2].

2.2.2 Operator optimization by means of smearing

To optimize the overlap of the trial states in eq. (19) with the physical K and D mesons,
we resort to standard smearing techniques. We use Gaussian smeared quark fields, with APE
smeared spatial links. Additional details can be found in [11], where the same setup has been
used.

We have optimized the smearing by computing effective masses at t = 1 and t0 = 1 (cf. (25)),
where excited states are suppressed the least, for different values of NGauss, and κGauss = 0.5,
NAPE = 10, αAPE = 0.5 kept fixed. This optimization is essentially independent on the lattice
volume and on the light quark mass. Results for β = 3.90, L3 × T = 243 × 48 and µ = 0.0040
are reported in Figure 1. Although the suppression of excited states only weakly depends on
NGauss and, therefore, on the width of the corresponding trial states, it is obvious that the D
meson has a somewhat smaller width than the K meson. Since the D meson is heavier and
hence more difficult to compute, we focus on optimizing the overlap with the D meson state
and choose NGauss = 30. An estimate of the corresponding trial state radius R can be obtained
via [11]

R

a
=

(

NGaussκGauss

1 + 6κGauss

)1/2

, (22)

yielding RK ≈ 7a ≈ 0.60 fm and RD ≈ 5a ≈ 0.43 fm (cf. Figure 1b). A similar optimization
for the parameter NAPE shows essentially no dependence on the ground state overlap. This is
exemplified in Figure 2 corresponding to β = 3.90, L3 × T = 243 × 48 and µ = 0.0100.

We end up with the following optimized set of smearing parameters for ensemble A40.32:

NGauss = 30 , κGauss = 0.5 , NAPE = 10 , αAPE = 0.5. (23)

Given the rather mild dependence of the ground state overlap on NGauss and NAPE, we use the
set of parameters in eq. (23) also for the ensemble B35.32, with only slightly different lattice
spacing. Sometimes in the following of this paper, we will also consider correlation matrices made
of local operators, or mixed local and smeared operators. However, the final determination of all
masses will exclusively be obtained with the correlation matrix made of the smeared operators,
with the optimized smearing parameters of eq. (23).
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Figure 1: a) The effective masses m
(n)
effective(t = 1, t0 = 1) (cf. eq. (25)) for the trial states

defined in eq. (19) as functions of NGauss for β = 3.90, L3 × T = 243 × 48 and µ = 0.0040 with
κGauss = 0.5, NAPE = 10, αAPE = 0.5. b) The same effective masses as a function of the radius
of the trial states in lattice units R/a with κGauss = 0.5.

3 Computation of mK and mD

In contrast to parity and flavor conserving lattice formulations, as the standard Wilson lattice
QCD, it is not possible to compute correlation functions restricted to a single parity and heavy
flavor sector in our Nf = 2 + 1 + 1 twisted mass framework, as outlined in section 2.2.1. While
the determination of mK is anyway straightforward, since the kaon is the lowest state in the
combined heavy flavor and parity sector, the extraction of mD remains rather problematic, being
the D meson a highly excited state. Besides computing mK with high precision, we attempt in
the following to estimate mD without computing the full low-lying spectrum. We present and
compare three different methods, all based on the fact that both heavy flavor symmetry and
parity are only weakly broken, by terms of O(a). The three methods yield a consistent picture.

3.1 Method 1: solving a generalized eigenvalue problem

We consider 4× 4 correlation matrices, as defined in eq. (20), computed with the twisted basis
operators of eq. (10) and the optimized smearing parameters given in eq. (23). We then solve
the generalized eigenvalue problem

∑

k

Cjk(t)v
(n)
k (t, t0) =

∑

k

Cjk(t0)v
(n)
k (t, t0)λ

(n)(t, t0) , t ≡ t2 − t1 (24)

where k runs over the set (h,Γ), h = c, s, Γ = ±, and obtain the four effective masses m
(n)
effective,

with n = 0, . . . , 3, by solving [49]

λ(n)(t, t0)

λ(n)(t+ 1, t0)
=

e−m
(n)
effective(t,t0)t + e−m

(n)
effective(t,t0)(T−t)

e−m
(n)
effective(t,t0)(t+1) + e−m

(n)
effective(t,t0)(T−(t+1))

, (25)
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β = 3.90, L3 × T = 243 × 48 and µ = 0.0100 with αAPE = 0.5, NGauss = 30, κGauss = 0.5.

with T the temporal extension of the periodic lattice.

To interpret these effective masses, we assume that heavy flavor and parity breaking effects are
small. Indeed they are only O(a), since they originate from the flavor non-diagonal and parity
odd Wilson term, which is proportional to the lattice spacing. Consequently, for vanishing lattice
spacing, where heavy flavor and parity are exact symmetries, these correlation matrices would
be diagonal in the physical basis, because the operators in eq. (9) would excite orthogonal trial
states. Thus, solving the generalized eigenvalue problem as stated in eq. (24) would directly
provide the four effective masses with definite heavy flavor and parity. In particular, one of
them would have associated quantum numbers (c, −) and would approach a plateau for large
temporal separation to be identified with the D meson mass.

At finite lattice spacing in the presence of heavy flavor and parity breaking the four effective
masses will approach the masses of the four lowest states in the mixed sector (s/c,−/+) for
large temporal separations. The D meson is not among those states: K and K∗

0 , the radial
excitations and K/K∗

0 + n × π states are lighter than the D. At intermediate times, however,
one of the four effective masses should still be dominated by the D meson and the corresponding
plateau will give a measure of mD.

To identify the heavy flavor and parity content of the four effective masses, we first note that
the trial state corresponding to the n-th effective mass is

|φ(n)χ (t)〉 =
∑

k

v
(n)
k (t, t0)

(

O(k)
χ (t)

)†

|Ω〉 , (26)

When the relations ωl = ωh = π/2 and ZP/ZS = 1 are approximately fulfilled, one can rotate
to the pseudo physical basis. By inserting eq. (16) into the trial state in (26) and using the
orthogonality of the twist rotation matrix Mmt at maximal twist of eq. (17), yields

|φ(n)χ (t)〉 =
∑

k

(

Mmt v
(n)(t, t0)

)

k

(

O
(k)
ppb(t)

)†

|Ω〉 . (27)
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By sorting the terms in eq. (27) according to the pseudo physical basis states (O
(k)
ppb)

†|Ω〉, the
approximate heavy flavor and parity contents of the trial state corresponding to the n-th effective

mass can be read off, and it is given by c
(n)
(h,Γ) ∝ |(Mmt v

(n)(t, t0))(h,Γ)|
2. Explicitly,

c
(n)
(s,γ5)

=
1

N

∣

∣

∣+ v
(n)
(s,γ5)

− v
(n)
(c,γ5)

− v
(n)
(s,1) − v

(n)
(c,1)

∣

∣

∣

2
(28)

c
(n)
(c,γ5)

=
1

N

∣

∣

∣
− v

(n)
(s,γ5)

+ v
(n)
(c,γ5)

− v
(n)
(s,1) − v

(n)
(c,1)

∣

∣

∣

2
(29)

c
(n)
(s,1) =

1

N

∣

∣

∣+ v
(n)
(s,γ5)

+ v
(n)
(c,γ5)

+ v
(n)
(s,1) − v

(n)
(c,1)

∣

∣

∣

2
(30)

c
(n)
(c,1) =

1

N

∣

∣

∣
+ v

(n)
(s,γ5)

+ v
(n)
(c,γ5)

− v
(n)
(s,1) + v

(n)
(c,1)

∣

∣

∣

2
, (31)

where N is a suitable normalization such that

c
(n)
(s,γ5)

+ c
(n)
(c,γ5)

+ c
(n)
(s,1) + c

(n)
(c,1) = 1 . (32)

To give a specific example, if c
(n)
(c,γ5)

≃ 1, while c
(n)
(s,γ5)

≃ c
(n)
(s,1) ≃ c

(n)
(c,1) ≃ 0, the n-th state would

be interpreted as the D meson. In the continuum limit, where parity and heavy flavor symmetry

are restored, each state will have one associated coefficient c
(n)
(h,Γ) = 1, and all others vanishing.

Figure 3 shows the first four effective masses m
(n)
effective (n = 0, . . . , 3) as functions of t for the

ensembles A40.32 (left) and B35.32 (right), while Figure 4 shows the approximate heavy flavor
and parity contents of those states for the ensemble A40.32, measured by the coefficients in
eqs. (28) to (31). As expected, each one of the effective masses is strongly dominated by and,
therefore, should correspond to one of the sectors (s,−), (s,+), (c,−) and (c,+), which are
approximately projected by the pseudo physical basis operators associated to the labels (s, γ5),
(s, 1), (c, γ5) and (c, 1), respectively.

To extract the numerical values for mK and mD, we perform χ2 minimizing fits to the corre-
sponding effective mass plateaus. The fitting intervals [tmin, tmax] are chosen as follows:

• tmax = T/2− 1 = 31 for the K meson.

• For all the other states tmax is the largest t before which the corresponding effective mass
is lost in statistical noise (cf. Table 2).

• tmin is the smallest t fulfilling the following two requirements:

– t0 + 1 ≤ tmin ≤ tmax.

– All fitting intervals [tmin, t
′
max], with tmin + 1 ≤ t′max ≤ tmax, yield a χ2/dof ≤

(χ2/dof)max, and we require (χ2/dof)max = 2.0.

By choosing tmin in this way we prevent that effective masses at large t with large statistical
errors effectively increase the number of degrees of freedom, while not contributing to the
χ2; in practice, the inclusion of these points would allow to fit ranges with too small values
of tmin, outside the plateau region.
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Figure 3: The four effective masses m
(n)
effective as functions of t (t0 = 1) for the ensemble A40.32

(left) and B35.32 (right). The zoomed in effective masses for the K meson are also shown in
the bottom graphs.

Within this method, a systematic error is associated to the determination of the D meson mass,
due to the fact that the effective mass plateau of the (c, −) dominated state will finally decay to
lighter strange states at large times, as a consequence of the heavy flavor and parity breaking.

We account for this error by taking the difference with a fit in the range [tmin − 1, tmax], and
we combine statistical and systematic uncertainties in quadrature, where the statistical error is
obtained by a standard Jackknife analysis.

The results for mK , mD and the (s, +) state, which for brevity we denote from now on as K∗
0 ,

are collected in Table 2.

As can also be inferred from Figure 3, we obtain excellent results for mK . For both ensembles
the effective mass plateaus extend over more than twenty points, their statistical errors are
essentially independent of t and the relative errors on mK are ≈ 10−3. For mD the situation
is more problematic. As shown in Figure 3, the corresponding effective masses are soon lost in
statistical noise, before they reach unambiguously identifiable plateaus. As mentioned above,
we add for this a systematic uncertainty. The dominantly (s, +) state does not exhibit a true
plateau either. One rather observes two different plateaus, and we thus list two results for mK∗

0

in Table 2, corresponding to two different fitting ranges. A possible explanation might be that

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

c j(0
)

t

ensemble A40.32   ειγενϖεχτορ στατε 0

j = -iψ(d)γ5ψ(s)

j = +iψ(d)γ5ψ(c)

j = +ψ(d)ψ(s)

j = -ψ(d)ψ(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

c j(1
)

t

ensemble A40.32   ειγενϖεχτορ στατε 1

j = -iψ(d)γ5ψ(s)

j = +iψ(d)γ5ψ(c)

j = +ψ(d)ψ(s)

j = -ψ(d)ψ(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

c j(2
)

t

ensemble A40.32   ειγενϖεχτορ στατε 2

j = -iψ(d)γ5ψ(s)

j = +iψ(d)γ5ψ(c)

j = +ψ(d)ψ(s)

j = -ψ(d)ψ(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

c j(3
)

t

ensemble A40.32   ειγενϖεχτορ στατε 3

j = -iψ(d)γ5ψ(s)

j = +iψ(d)γ5ψ(c)

j = +ψ(d)ψ(s)

j = -ψ(d)ψ(c)

K meson

D meson

Figure 4: Approximate flavor and parity content of the four extracted states as a function of t
(t0 = 1) for the ensemble A40.32. Top left: n = 0, mainly (s,−), i.e. the K meson. Top right:
n = 1, mainly (s,+). Bottom left: n = 2, mainly (c,−), i.e. the D meson. Bottom right: n = 3,
mainly (c,+). The time ranges are the same as for the corresponding effective masses shown in
Figure 3.

at small temporal separations t<∼ 10 a positive parity strange meson is seen, while at larger t the
lighter K + π state, with the same strong quantum numbers, dominates. This is also supported
by the fact that at larger values of the light quark mass a single plateau of rather good quality
is recovered, see also the results in section 3.3.

3.2 Method 2: fitting the correlation matrix by exponentials

A complementary approach to determine the heavy-light meson masses is to fit the elements
of the correlation matrix of eq. (20) by decomposing them in terms of the eigenstates of the
Hamiltonian (i.e. the transfer matrix). We consider here the general case with different smearing
levels, where C(t2 − t1), defined in eq. (20), is a D × D matrix. When denoting the energy
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amK t range χ2/dof amK∗

0
t range χ2/dof amD t range χ2/dof

Ensemble A40.32

0.2567(2) 11 − 31 0.69 0.368(32) 14− 28 0.92 0.922(11) 7− 14 0.79
0.473(15) 7− 15 1.65

Ensemble B35.32

0.2184(3) 10 − 31 0.83 0.379(28) 12− 27 0.54 0.829(8) 8− 16 0.40
0.446(7) 7− 13 1.55

Table 2: The masses of the K, K∗
0 and D mesons in lattice units obtained by solving a gener-

alized eigenvalue problem (errors comprise statistical and systematic errors, which are added in
quadrature). The range and the quality of the fit is also shown.

eigenstates by |n〉, n = 1, 2, . . . ,M , the matrix elements of C(t2 − t1) can be written as

Cij(t2 − t1) =
M
∑

n=1

(i|n)t2 (j|n)t1 (33)

with

(i|n)t ≡ 〈Ω|O(i)
χ (t)|n〉 = 〈n|

(

O(i)
χ (t)

)†

|Ω〉 , (34)

where i = 1, . . . ,D labels the operators inserted in the correlation matrix and n = 1, . . . ,M
counts the eigenstates. Since we consider bosonic operators, we have a periodic time dependence
on the time extension of the lattice T that can be written as follows

(i|n)t2 (j|n)t1 = (i|n)(j|n)
(

exp(−(t2 − t1)En) + exp(−(T − t2 + t1)En)
)

. (35)

Here, En is the energy of the eigenstate |n〉 and (i|n) ≡ (i|n)0. In general, the number of
energy eigenstates is as large as the dimension of the Hilbert space of states. However, for large
temporal separations t2− t1, (T − t2+ t1) ≫ 1 a few lowest energy states will dominate to a good
approximation. In this limit, and in analogy with the case of fitting a single correlation function
with the contributions from a few states, one can fit the matrix of correlation functions with
the contributions from the set of dominant lowest energy states. In fact, the relevant number of
energy eigenstates M is small. The number NP of parameters in the fit and the number NC of
independent entries of C(t2 − t1) to be fitted are given by

NP = M(D + 1) , NC = (tmax − tmin + 1)
D(D + 1)

2
, (36)

where also here tmin and tmax define the fitting time interval, with (t2 − t1) ∈ [tmin, tmax]. The
minimal set of operators for determining the heavy-light meson masses is given in this case by
the 4×4 correlation matrix in terms of the operators in eq. (10). The minimal set of states we are
interested in consists of the K and D mesons. At finite lattice spacing, due to the heavy flavor
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and parity breaking, the D meson is not stable and does not correspond to an energy eigenstate
of the lattice theory. However, using the same arguments of section 3.1, the D should dominate
the spectral decomposition of eq. (33) at intermediate temporal separations. In case of fitting
the correlation matrix by several exponentials, essential contributions of the lower sectors in the
D meson channel can be monitored by considering the scalar products of the linear combination
of the operators obtained from the fit with the rows of the maximal twist matrix.

Using the pseudo physical basis operators of eq. (15), one obtains for the coefficients (i|n):

(i|n) ≡ 〈Ω|O(i)
χ (0)|n〉 =

∑

j

(

Mmt

)

ji
〈Ω|O

(j)
ppb(0)|n〉 . (37)

Again, assuming that ωl = ωh ≈ π/2 and ZP/ZS = 1 are approximately verified, the operators
Oppb should reproduce the physical operators associated to the four channels (s,−), (s,+),
(c,−), (c,+) to a good approximation. In particular, the operator with the same quantum
numbers of the state |n〉 should dominate the sum in (37). We therefore conclude

(i|n) ≃ Gn

(

Mmt

)

ni
(38)

to a good approximation, where the proportionality constant Gn is the matrix element of the
physical operator:

Gn ≡ 〈Ω|O
(n)
ph (0)|n〉 . (39)

It turns out that it is enough to require that the relative signs of the vector components (i|n)
agree with the signs in the rows of maximal twist rotation matrix Mmt. (A more stringent
condition on the alignment with the rows of the maximal twist matrix could be imposed by
requiring the scalar products of the linear combinations of the operators obtained from the fit
with the rows of the maximal twist matrix to be close to 1, but such a requirement does not
essentially change the results for the D meson mass.)

Based on the experience with varying the number of states, we determine the K meson mass
with a single intermediate state, while good fits for the D meson mass can be obtained for time
separations around t2− t1 ≃ 10−12, by using three intermediate states. Taking four states gives
compatible results, but the signal is lost at smaller distances with consequently larger errors.
Larger correlation matrices have also been investigated, for instance, 8× 8 matrices spanned by
four Gaussian smeared operators of type (10) and the corresponding four local operators. In
this case stable fits with one, three or four states can also be obtained.

We minimize the uncorrelated χ2

χ2 =

NC
∑

i=1

(

fi(p1, p2, . . . , pNP
)−X i

δXi

)2

, (40)

where the index i runs over the independent matrix elements to be fitted, Xi and δXi are the
mean value and the error of the matrix element i respectively, and fi(p1, p2, . . . , pNP

) is the
fitting function depending on NP parameters defined by eqs. (33) to (35). We determined the
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errors of the matrix elements δXi and of the fit parameters δpi by the method in ref. [50].
Figure 5 illustrates how the extracted masses depend on the fit intervals. We also studied the
correlated χ2 following refs. [51, 52]

χ2
c =

NC
∑

i,j=1

(

fi(p)−Xi

)

Mij

(

fj(p)−Xj

)

, (41)

where Mij = NC−1
ij , with N input data and the estimated covariance matrix

Cij =
1

N − 1

N
∑

n=1

(

Xi,n −Xi

)(

Xj,n −Xj

)

. (42)

It turned out, however, that on our data samples the covariance matrix has a large number of
almost degenerate tiny eigenvalues of the order of magnitude 10−16, which cannot be properly
determined within the present statistical accuracy. The small eigenvalues can be smoothed
[51, 52], at the price of introducing an uncertainty in the value of χ2

c . For this reason, we decided

14



to minimize the uncorrelated χ2, and to use the correlated one χ2
c to estimate systematic errors,

see below.

Relative errors of the elements of our correlation matrices are typically of O(10−2). This results
in rather small errors for the fit parameters on a given time interval: masses have relative errors
of O(10−2) to O(10−3), while the components of the energy eigenvectors have errors O(10−2).
A good fit has to satisfy for our case the following requirements:

1. The quantum number pattern of the fitting operators has to be as expected, i.e. the
relative signs of the components of the fitted vectors are the same as those of the rows of
the maximal twist matrix.

2. We exclude the results from fit intervals, where the relative errors of the masses are sub-
stantially higher than the typical errors. With our statistics, this means 1% for the K
meson mass and 5% for the other masses. Only a few fit intervals turn out to be affected
by this choice.

3. The fit ranges [tmin, tmax] are restricted by applying cuts in tmin and (tmax − tmin) such
that a reasonable “plateau” of the fit values emerges, always keeping a sufficiently large
number of fit ranges in the sample, typically about 30 to 80.

After selecting a set of good fits by these criteria a histogram distribution of the fit values has
been defined by attributing a weight exp(−χ2

c/dof) to the entries in case of the kaon, and a
weight 1/(χ2

c/dof) in the other channels. The exponential suppression is in general preferable,
since it gives robust results but can only be applied for very good fits and plateaus, which is
the case for the kaon. In order to combine statistical and systematic errors, the entries in the
distribution were not attributed to a single point but uniformly to the points on the interval
[pi− δpi, pi+ δpi]. For each final quantity, the quoted value is then the position of the median of
the resulting distribution. The error is given by a symmetric interval around the median such
that 68% of the distribution is contained in it.

We report on single-state, three-state, and four-state fits with a 4 × 4 correlation matrix of
Gaussian smeared operators. For completeness, we also show the results of three-state fits with
an 8×8 matrix of Gaussian smeared and local operators. All results are summarized in Table 3.

As shown in table 3 the four-state fit to a 4 × 4 matrix gives one state in each of the channels
JP = 0− and JP = 0+, with both strange and charmed quarks. On the other hand, errors
are typically larger and/or the light states have higher masses than in the 1× 4 and 3× 4 fits.
Therefore, as final results we quote the K meson mass from the 1× 4 fit and the D meson mass
from the 3× 4 fit.

One can verify a posteriori how well the quantum number content of each fitted vector corre-
sponds to the expected one. This is simply given by the scalar product of the unit vector in the
direction of the fitted vector with the row of the matrix in eq. (15) that gives the expected vector
in the continuum limit at maximal twist. For this, we remind that the K meson, strange 0+

state, D meson and charmed 0+ state correspond to the rows 1, 3, 2 and 4, respectively. Table 4
shows that the fitted vectors are actually well saturated by the expected quantum numbers,
with scalar products close to 1 in all cases.
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Ensemble M ×D amK amK∗

0
amD amD∗

0

A40.32 1x4 0.25542(67)

3x4 0.25853(88) 0.448(13) 0.903(20)

4x4 0.26272(62) 0.4905(60) 0.939(46) 1.09(15)

3x8 0.2627(23) 0.478(18) 0.885(22)

B35.32 1x4 0.21766(64)

3x4 0.21864(51) 0.422(11) 0.835(20)

4x4 0.2226(69) 0.449(24) 0.896(70) 1.19(10)

3x8 0.2203(13) 0.4369(94) 0.814(18)

Table 3: Masses of the K, K∗
0 , D and D∗

0 in lattice units, resulting from the fits to the correlation
matrices with several eigenstates for the ensembles A40.32 and B35.32. The label M ×D means
a fit with M eigenstates to a D ×D matrix.

Ensemble M ×D zK zK∗

0
zD zD∗

0

A40.32 1x4 0.98659(6)

3x4 0.9871(2) 0.9896(17) 0.9392(78)

4x4 0.9870(2) 0.9845(23) 0.9929(1) 0.9830(133)

B35.32 1x4 0.98518(8)

3x4 0.9847(1) 0.9772(33) 0.9518(94)

4x4 0.9848(1) 0.9770(21) 0.9777(86) 0.9732(110)

Table 4: Saturation of the fitted states with the expected quantum numbers, for the four-states
fits of table 3, measured by the scalar product z (see text). A value z = 1 indicates complete
saturation. Mean values and errors for z are determined analogously to masses.

3.3 Method 3: parity and flavor symmetry restoration

This third method is a generalization of the “parity restoration method” originally introduced
for the twisted mass formulation with two degenerate quarks [53, 54, 55]. In the Nf = 2 setup the
twist angle can be determined by requiring that the operators reproducing the correct definition
of the chiral currents in the continuum limit (physical chiral currents) possess the appropriate
transformation properties under parity. This condition allows to fix the twist angle for the
degenerate light quark doublet and the correctly normalized physical currents. We generalize
the method to the case of bilinear densities with mixed heavy-light flavor composition, used
here for the determination of the K and D meson masses. A first account of this method can
be found in [35]. As an outcome, approximations of the physical operators in eq. (9) can be
constructed, from which the masses in the four heavy-flavor and parity channels can be extracted
by conventional techniques.

Consider the four-by-four correlation matrix of the renormalized lattice operators in eq. (14):

CR(t2 − t1) =
〈

OR(t2)⊗ (OR(t1))
†
〉

. (43)
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After rewriting the renormalized lattice operators in terms of the bare ones one obtains

CR(t2 − t1) = diag
(

ZP , ZP , ZS , ZS

)

C(t2 − t1) diag
(

ZP , ZP , ZS , ZS

)

, (44)

where C(t2 − t1) is the correlation matrix defined in eq. (20), the starting point of the previous
two methods. The transformation properties of the correlation matrix (43) can be read from
eq. (13), implying that the correlation matrix of the physical operators (9) is given by

CR
ph = M(ωl, ωh)C

R MT (ωl, ωh) =

M(ωl, ωh) diag
(

ZP , ZP , ZS , ZS

)

C diag
(

ZP , ZP , ZS , ZS

)

MT (ωl, ωh) , (45)

where, we recall, the general orthogonal twist rotation matrix M(ωl, ωh) is given by (12). Since
we are working at maximal twist, we are supposed to insert ωl = ωh = π/2 in the rotation matrix
of eq. (45). However, differently from the previous two methods and accounting for the presence
of O(a) effects, we treat the two twist angles, along with the renormalization factors ZP and ZS ,
as free parameters. We will return to this point in the following. These free parameters can be
determined by imposing that the physical operators indeed possess the appropriate parity and
flavor quantum numbers of their associated channel. This in particular implies that the physical
correlation matrix of eq. (45) should be diagonal

(

CR
ph

)

jk
= 0 , j 6= k . (46)

Since C(t2−t1) is a symmetric matrix (see section 2.2.1), the matrix in eq. (45) is by construction
symmetric and eq. (46) actually amounts to only six independent conditions. The latter can be
rearranged as follows

Z2
P

Z2
S

= −
C34

C12
(47)

ctg(ωl) = +
(+C11 −C22)(ZP /ZS) + (−C33 + C44)(ZS/ZP )

2(C13 − C24)
(48)

ctg(ωh) = +
(+C11 − C22)(ZP /ZS) + (+C33 − C44)(ZS/ZP )

2(C14 − C23)
(49)

tan(ωl + ωh) =

= −
C14 + C23 + C13 +C24

(+C11 + C22)(ZP /ZS) + (−C33 − C44)(ZS/ZP ))/2 + C12(ZP /ZS)− C34(ZS/ZP )
(50)

tan(ωl − ωh) =

= +
C14 + C23 − C13 −C24

(+C11 + C22)(ZP /ZS) + (−C33 − C44)(ZS/ZP ))/2 − C12(ZP /ZS) + C34(ZS/ZP )
(51)

tan(ωl)

tan(ωh)
= −

C13 + C24

C14 + C23
. (52)

Observe that the right hand sides of (48) to (52) are fully determined by the ratio ZP /ZS , i.e.
they do not depend individually on either ZP or ZS.
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In Figure 6 we report on the ratios of correlators on the right hand sides of the conditions (47)
to (52) as functions of the time separation t ≡ t2 − t1, for the ensemble A40.32 and the original
operators without Gaussian smearing. The ratios appear to approach a plateau after a transient:
from these plateaus we determine the unknown parameters ZP /ZS , ωl and ωh.

Notice that the time dependence of the ratios is an O(a) discretization effect, and therefore
not predicted by eqs. (47)-(52), which were derived in the continuum limit. For large times the
lightest eigenstate of the lattice transfer matrix, corresponding to the kaon in the continuum,
is supposed to saturate the spectral decomposition of the correlation matrix C(t2 − t1) (see
eqs. (33) and (34)). Assuming a single intermediate state, the six conditions (47)-(52) are not
independent any more and in particular the first three of relations (47)-(49) are equivalent to
(50)-(52). Parity and flavor restoration amounts in this case to requiring that the three physical
operators associated to the heavier channels have no projection on the lightest state, namely

∑

x

〈Ω|O
(s,1)
ph (x, t)|K〉 =

∑

x

〈Ω|O
(c,γ5)
ph (x, t)|K〉 =

∑

x

〈Ω|O
(c,1)
ph (x, t)|K〉 = 0 . (53)

We also observe that this procedure, which relies on asymptotic times, is supposed to be optimal
from the point of view of the cutoff effects: at large times, contribution from high-mass inter-
mediate states, which are expected to introduce large discretization effects in the correlator, is
suppressed. A similar argument was used when tuning the theory to maximal twist in the light
sector, see [2].

We determine ZP/ZS , ωl and ωh by using the relations (47-49), while the remaining relations
serve for cross checking of the results. The latter are reported in Table 5. We observe an
excellent agreement between the different determinations of the twist angles from (48-49) and
(50-51), respectively, confirming that a single intermediate state contributes. The quality of
the agreement deteriorates, of course, when the parameters are estimated at smaller temporal
separations outside the asymptotic region. Notice that the ratio tan(ωl)/ tan(ωh) is in all cases
compatible with zero, since ωh ≈ π/2. Note instead that the value of the light twist angle

eqs. ZP /ZS eqs. ωl/π ωh/π tan(ωl)/ tan(ωh)

ensemble A40.32

(47) 0.6575(14) (48-49) 0.6504(21) 0.4980(8) -0.012(5)

(47) same value (50-51) 0.6498(22) 0.4990(10) -0.006(5)

(47) same value (52) − − -0.009(5)

ensemble B35.32

(47) 0.6793(22) (48-49) 0.6453(34) 0.5005(8) 0.003(5)

(47) same value (50-51) 0.6467(29) 0.5007(9) 0.005(6)

(47) same value (52) − − 0.005(5)

Table 5: summary of different determinations of the ratio of renormalization factors and of
the twist angles with point-like operators (no Gaussian smearing); the first and third column
indicate the equations used for the determination of the quantities in the corresponding line.

in Table 5 significantly deviates from the expected value π/2. In order to understand this
discrepancy it is useful to recall that the theory is tuned to maximal twist by requiring the
vanishing of the untwisted PCAC quark mass mPCAC

χ(l) in the light quark sector, see eq. (4)).
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Figure 6: ratios of correlators corresponding to the right hand sides of the conditions (47) to
(52) as functions of the temporal separation t for ensemble A40.32 with point-like operators (i.e.
no Gaussian smearing); the lines indicate the fits in the asymptotic regime.

This can be shown to be equivalent [55] to requiring parity restoration in the light quark sector.
One constructs in this case the physical vector current as follows [55]

V
(l)+
ph (x) ∝ cos(ωl)ZV V

(l)+(x) − i sin(ωl)ZAA
(l)+(x) , (54)

where the bilinear of the lattice fields A(l)+(x) is defined in eq. (5) and, analogously,

V (l)+
µ = χ̄(u)γµχ

(d) , (55)

and ZA, ZV are the respective renormalization constants in the massless scheme. The twist
angle ωl is fixed in this case by the condition

∑

x

〈Ω|V
(l)+
0 (x, t)|π〉 = 0 , (56)

from which one obtains

ctg(ωl) =
ZAm

PCAC
χ(l)

µ
. (57)
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From this we can conclude that our maximal twist condition mPCAC
χ(l) = 0 amounts to ωl = π/2, if

the condition (56) is assumed. This must be confronted with the conditions (53) presently used
to fix the twist angles ωl

2. We conclude that the deviation of ωl from π/2 should be attributed
to different O(a) effects in the pion and kaon sectors.

We stress that the prescription of eq. (4), which is based on the charged pion state, is to be
preferred for tuning the theory to maximal twist, since it ensures the smallest O(a2) discretiza-
tion errors in physical quantities [32]. Nevertheless, for the determination of the masses in the
heavy-light meson sector, we use the values of the twist angles obtained from (47) to (52), since
they deliver optimal projecting operators as defined in eq. (13), with the smallest heavy flavor
and parity violations. The relation in (57) can also be enforced for the present determination of
the light twist angle with heavy-light quark bilinears, and the cutoff effects can be absorbed in a
lattice redefinition of the PCAC quark mass, m̃PCAC

χ(l) = mPCAC
χ(l) +O(a). For the ensemble A40.32,

we get for instance ZAm̃
PCAC
χ(l) /µ ≈ −0.5, a pretty large value3. The analogous of relation (57)

for the heavy twist angle reads

ctg(ωh) =
ZAm̃

PCAC
χ(l)

µσ
. (58)

The heavy twisted mass µσ replaces the light twisted mass µ, explaining why ωh is very close
to π/2: since µσ ≫ µ, the non-zero value of m̃PCAC

χ(l) only results in a small deviation of ωh from

maximal twist. When inserting the above estimate in (58) we indeed obtain ωh = 0.4956.

The ratio of normalization factors ZP /ZS and the twist angles ωl and ωh allow to determine the
physical operators up to an overall renormalization (bare physical operators). We choose this
renormalization to be ZP , so that (cf. eqs. (13) and (14))

Obare
ph ≡ Z−1

P OR
ph = M(ωl, ωh) diag

(

ZP /ZS , ZP /ZS , 1, 1
)

Oχ . (59)

Observe that in the case of the negative parity densities, eq. (59) corresponds to the conventional
relation between renormalized and bare operators

O
(h,γ5) bare
ph = Z−1

P O
(h,γ5)R
ph ; (60)

on the other hand, the conventional definition for the bare scalar densities, for which

O
(h,1) bare, conv.
ph = Z−1

S O
(h,1)R
ph (61)

holds, is related to the definition (59) by a finite renormalization

O
(h,1) bare, conv.
ph = ZP /ZS O

(h,1) bare
ph . (62)

2In the asymptotic regime, where only the kaon state is considered as intermediate state, the light twist angle
ωl is fixed by the vanishing of the first two matrix elements in (53); this is so because, in this regime, the two
conditions can be proven to imply in particular relations (47) and (48) (analogously, ωh is fixed in particular by
the vanishing of the second and third matrix element).

3For comparison, in the tuning procedure we require ZA|m
PCAC
χ(l) |/µ ≤ 0.1.
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Of course, with ZP/ZS at hand both definitions can be computed.

Figure 7 shows the diagonal and off-diagonal correlators of the bare physical operators for the
ensemble B35.32 with Gaussian smearing, which are the ones used for the final computation of
all masses. A general feature is that starting from time separation t>∼ 5 most of the off-diagonal
elements become small and compatible with zero within statistical errors. An exception is

the matrix element 〈O
(c,γ5)
ph (O

(s,1)
ph )†〉, which remains large and comparable in size with the two

smallest diagonal elements in the (c,−/+) sectors. At the moment we have no explanation for
this observation.

It should also be noted that, following the arguments of [47, 46], O(a) improvement can only
be expected for the diagonal elements of the physical correlation matrix. Since the twist angles
and the ratio ZP /ZS are obtained from conditions on the off-diagonal elements, one should a
priori expect O(a) discretization errors for these quantities. However, it should be stressed that
for physical quantities such as meson masses and decay constants, which are extracted from the
diagonal matrix elements, O(a) improvement is at work. The mass of the low-lying state in each
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Figure 7: Bare physical correlators for the ensemble B35.32 with Gaussian smeared operators.

of the four different channels can now be extracted by standard techniques from the diagonal
correlator of the appropriate operator in (59). The effective masses for the four channels and
the two ensembles are reported in Figure 8, for negative parity, and Figure 9, for positive parity.
The final values for all masses are obtained by applying single-mass fits with a cosh function
in the asymptotic regime. Also in this case the statistical error of the fitting parameters is
determined by the linearization method of [50]. The starting time tmin for the fits was chosen
by requiring χ2/dof<∼ 1.

The plateaus for the charmed meson states are generally quite short, since the noise sets in
early, typically around t>∼ 11. This is, however, expected. For those temporal separations the D
correlator is only a small fraction of the kaon correlator, as shown in the left panel of Figure 7.
On the other hand, the D correlator results from a linear combination of the correlators of
the twisted basis χ-field bilinears in eq. (10), all dominated by the kaon. This means that the
condition (53) can only be fulfilled through a cancellation of large terms, one of the results being
the comparably small D correlator. The latter inherits the statistical fluctuations of the original
bilinears and a large relative error is the consequence. As already stated many times in this
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Figure 8: The effective masses in the pseudoscalar channel, with Gaussian smeared operators,
for the ensembles A40.32 (left) and B35.32 (right). The error bands indicate the total error,
statistical plus systematic.

paper, this is an inherent problem in our twisted mass setup, where the D is actually a highly
excited state in the mixed (s/c,−/+) heavy-light meson sector.

In the case of the D meson we attempt to estimate the systematic error produced by possible
residual contributions of excited states and the influence of an unphysical mixing with the rather
light K∗

0 state4. We apply a procedure analogous to the one of section 3.2, and consider the
spread of results by including all good fits (those with high significance) obtained by varying
the fit interval [tmin, tmax]. The resulting systematic error is much larger than the statistical
one, and decreases on the finer lattice. This is reflected by the better quality of plateaus for the
ensemble B35.32, as compared to A40.32, see Figure 8.

The numerical results for all masses are listed in Table 6. For K∗
0 different plateaus could be

identified for the effective mass. In this case the value for each plateau is reported. It is unclear
at this stage, whether this multi plateau behavior reflects the physical structure of QCD states
in this sector, or is just a statistical effect, as also discussed at the end of section 3.1.

We conclude the illustration of this method by briefly discussing its generalization to the case of

4The mixing with the kaon has been eliminated by construction.
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Figure 9: The effective masses in the scalar channel, with Gaussian smeared operators, for the
ensembles A40.32 (left) and B35.32 (right). The error bands indicate the total error, statistical
plus systematic.

4×n operators, the immediate application being the one considered in the previous section with
both local and smeared operators. The obvious route would just be to diagonalize each 4 × 4
correlation sub-matrix with homogeneous composition (e.g. local or smeared operators only) as
we have done so far. As a result, the twist angles and the ZP /ZS factors are obtained for each
set; observe that the ZP /ZS factors are heavily affected by the smearing, which brings the former
closer to one. Also the twist angles are expected to differ, due to different O(a) effects for local
and smeared operators. Once these parameters are known, the physical correlation matrices
with mixed local/smeared operators can be reconstructed, too. However, this procedure is not
expected to be optimal for the latter correlation matrices, since the parameters are adjusted
to optimize the correlation matrices with homogeneous composition. A better way would be
to apply an independent diagonalization, with new parameters, of the matrices with mixed
local/smeared composition.
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Ensemble amK t1, t2 amK∗

0
amD amD∗

0

A40.32 0.25668(35) 7-8 0.452(8) 0.909(4)(22) 1.029(26)

9-12 0.431(12)
14-32 0.37(5)

B35.32 0.21842(33) 7-10 0.476(8) 0.823(4)(14) 0.968(16)

11-15 0.437(23)
16-32 0.358(39)

Table 6: Masses of the K, K∗
0 , D and D∗

0 mesons in lattice units, obtained with the parity and
flavor restoration method, and using Gaussian smeared operators. The third row contains the
temporal separations used for the determination of mK∗

0
.

4 Conclusions

We have proposed and compared three methods to determine mK and mD in Nf = 2 + 1 + 1
twisted mass lattice QCD. The computation of these masses is less straightforward in this case,
since parity and flavor are not good quantum numbers. We have therefore explored strategies
to extract the desired states and have developed three distinct methods all of which exploit
the exponential fall-off of correlation matrices for suitably chosen heavy-light meson creation
operators. Method 1 amounts to solving a generalized eigenvalue problem, method 2 is equivalent
to fitting a linear superposition of exponentials and method 3 transforms the correlators to the
physical basis by means of the twist rotation. Results for mK and mD obtained with the three
methods and for both ensembles investigated here are summarized in Table 7 and visualized
in Figure 10. Since the kaon is the lightest state in the combined (s/c,−/+) sector, the

Method 1 Method 2 Method 3

Ensemble A40.32

amK 0.2567(2) 0.25554(88) 0.25668(35)
amD 0.922(11) 0.901(21) 0.909(22)

Ensemble B35.32

amK 0.2184(3) 0.21768(84) 0.21842(33)
amD 0.829(8) 0.835(20) 0.823(15)

Table 7: Comparison of the results for mK and mD obtained with the three methods exposed
in this work, for both ensembles.

computation of its mass is rather simple and we obtain precise values for mK with errors <
∼ 0.4%

including statistical and systematical uncertainties. Moreover, within these errors all three
methods yield very compatible results which is very reassuring.

In contrast tomK , the mass of the D meson is difficult to determine, because in our twisted mass
setup the D meson is a highly excited state in the combined (s/c,−/+) sector. However, also in
this case our three methods yield results, which are in excellent agreement within the combined
statistical and systematical errors, whose relative magnitudes are <

∼ 2.5%. Therefore, we are
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Figure 10: Comparison of the results for mK (top) and mD (bottom) obtained with the three
methods exposed in this work, for both ensembles. The results for methods 1 to 3 are shown
from left to right.

confident that we are able to obtain reliable estimates for mD without resolving all the low lying
(multi particle) states below the D meson. The latter would require to compute correlation
matrices with a significantly larger operator basis and with extremely high statistical precision,
an endeavor, which hardly seems to be feasible. It is therefore very important that already with
the much smaller correlator matrix employed here, one can obtain a satisfactory estimate of the
D meson mass.

The errors we obtain with our three methods differ by factors of around 2 to 4, originating
from the fact that the three methods estimate the systematic error in different ways. While
method 2 (fitting exponentials) tends to yield the largest error, its procedure to determine the
systematic error is also the most conservative: the error is computed from the spread of a
large set of fit results corresponding to different fitting ranges. In contrast to that method 1
(solving a generalized eigenvalue problem) estimates the corresponding error by just taking two
“neighboring fitting ranges” into account. Consequently, the total error is somewhat smaller.

We stress that as far as K physics is concerned, our analysis shows that this sector can be
analyzed in the unitary setup without problems. This provides a very good perspective to
compute corresponding decay constants and also the strange baryon spectrum in the future. For
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charm physics, the situation is different and it will be quite difficult to extract reliable physics
results in the charm sector from the unitary setup. Here, we plan to employ a mixed action
approach by using an Osterwalder-Seiler (OS) valence quark action [34]. This has the advantage
[56] that there is no flavor mixing and that the valence quarks stay as close as possible to the sea
twisted mass quarks, e.g. there is no need to re-tune κ to realize maximal twist. The idea is to
match the K and D meson masses between the unitary setup and the valence OS quarks. After
this matching step further physical quantities such as decay constants will then be computed
with OS quarks. The matching condition will guarantee that in the continuum limit we recover
the situation of a unitary setup. Of course, it needs to be seen, whether discretization errors in
this strategy remain small. Investigations in this direction are in progress.

With respect to the matching of K and D meson masses between the unitary setup and the
valence OS quarks, the outcome of our work in this paper is extremely important. The fact that
we can compute the K meson with high accuracy and the D meson with acceptable precision
in the unitary setup is a necessary prerequisite to allow for applying such a matching condition.

Instead of matching the K and D meson masses in the sea and valence sectors, one can directly
match the renormalized strange and charm quark masses [34]. The latter can be determined in
the sea sector by using eq. (6). Only the finite ratio ZP/ZS is needed as an input for the matching.
We have shown in this paper one possible way to determine this quantity, which is specific for the
twisted mass setup. In compliance with the massless quark renormalization scheme, however,
the extrapolated value of ZP /ZS for four massless quarks is required. We mention here that
the ETMC has started a dedicated program to evaluate the renormalization constants for our
Nf = 2 + 1 + 1 setup in the massless quark limit. Once the relevant renormalization constants
will be available, this information will be used for an alternative tuning of the mass parameters
in the valence sector. This can result in different values of the valence quark masses with
respect to the procedure relying on the hadron masses, and hence to different cut-off effects for
the resulting mixed action theory. Employing both matching conditions can therefore be used
to have independent computations for physical observables and will provide a most valuable
cross-check of the way this setup approaches the continuum limit.
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