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1. Introduction

Twisted mass fermions provide a promising formulation ¢ttide QCD that allows for auto-
matic ¢'(a) improvement, infrared regularization of small eigenvalaad fast dynamical simula-
tions [3]. This work is an extension of the study on the nuclaadA masses[]2] to the strange
baryon sector. It uses two degenerate dynamical twisted feasiions Nr = 2) and a strange
quark in the partially quenched approximation. The octet éecuplet baryon masses are com-
puted at several pion masses.

We use the tree-level Symanzik improved gauge action anl atamaximal twist to realize
O'(a)-improvement. The fermionic action for two degenerate flavaf quarks in twisted mass
QCD is given by

S =a'y ¢ (Dw[U]+mo+inyst?)Y(x) (1.1)

with Dy [U] the massless Wilson Dirac operator. The parameteis adjusted such that repre-
sents the bare quark mag$ [3] . The twisted mass term in thederaction of Eq. [(1]1) breaks
isospin symmetry since the u- and d- quarks differ by havipgosite signs for thei-term. This
isospin breaking is a cutoff effect af(a?).

In all the results presented here, the lattice spaeiag well as the strange quark mass has
been fixed in the meson sectdy (@] andmy [B]). Our work will confirm the consistency between
meson and baryon description in the partially quenchedapation. It is important to note that
no new parameter has been tuned in this study.

2. Latticetechniques

The input parameters of the calculation (8,and p) are collected in Tabl¢] 1. The corre-
sponding lattice spacing and the pion mass values are taken froff [4] . They span a pies ma
range from 270 to 500 MeV. Atn; ~ 300 MeV we have simulations for lattices of spatial size,
Ls=21fm andLs = 2.7 fm at 3 = 3.9 allowing to investigate finite size effects. We provide a
preliminary check of finite lattice spacing effects by compg results a3 = 3.9 andf = 4.05.
The masses of the octet and decuplet are extracted from amb-gorrelators using the standard
interpolating fields (see e.d][6]) and errors are estimatitil thve jackknife method.

Local interpolating fields are not optimal for suppressingited state contributions. We in-
stead apply Gaussian smearing to each quark fighdt): o°m%(x,t) = 3, F(x,y;U(t))q(y,t)
using the gauge invariant smearing function

F(x,y;U(t)) = (14+aH)"(x,y;U(t)), (2.1)

constructed from the hopping matrii (x,y;U (1)) = 32 ; <Ui(x,t)6x7y_i +UiT(x— i,t)6,<7y+i>.

Furthermore we apply APE smearing to the spatial links thedrahe hopping matrix. The param-
eters for the Gaussian and APE smearing are the same as tsab&wur previous work devoted
to the nucleon[]2].
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For a partially quenched strange quark we use a Osterw&kitter fermion, defined by the
action :

Sos=2a*y S(X) (Dw[U] +ipisys)s(x) (2.2)

The bare masg; is tuned using the mass of the kaon at the physical pfdint [5].

B =3.9,a=0.08556) fm from f [H]

243 % 48,Ls= 2.1 fm au 0.0030 0.0040 0.0064 0.0085 0.010
Stat. - 795 547 348 477
My (GeV) - 0.3131(16) 0.3903(9) 0.4470(12) 0.4839(12)
328 x 64,Ls = 2.7 fm au 0.003 0.004
Stat. 133 101

my (GeV) 0.2696(9)  0.3082(6)

B = 4.05,a= 0.06666) fm from f [f]

328 x64,Ls=2.1fm au 0.0030 0.0060 0.0080 0.012
Stat. 138 126 113 182

my (GeV) 0.3070(18) 0.4236(18) 0.4884(15) 0.6881(18)

Table 1: The parameters of our calculation.

3. Octet baryon masses

We illustrate the quality of the plateaus that we obtain e tase of\ in Fig. I, where we
compare the effective masses computed using local sooceé-$ink (LL) and smeared source-
smeared sink (SS) correlators.
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Figure 1: Plateaus foN for B = 3.9 (a~ 0.085fm) on a 24 x 48 lattice for local-local (LL) and smeared-
smeared (SS) correlators at a pion mass of A&¥.

3.1 Chiral extrapolation

As we will demonstrate in the next section, lattice artdaate small. This allows to perform
the chiral extrapolation of our data to the physical poinfixad lattice spacing. For the current
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discussion we do not distinguish between the differentpsosomponents o and= and present
results averaging over the corresponding correlators.edsnlve mention otherwise we use the
notationZ and = to denote the average of thig*,3% 5) and (=°,=~) multiplet mass. We will
discuss isospin breaking in a separate section.

We take the chiral expansion of the baryon madg)(in a partially quenched setup to leading
order to be[[7] :

Mx = Mo + axm& -+ bxm} (3.1)

Performing a three-parameter fit of our data is not stablee mMiethod followed in the present
analysis relies on the observation displayed in fig. 2 thatass difference between any member
of the octet and the nucleon is, within errors, lineanfh This suggests that the coefficient of the
cubic term in Eq.[(3]1) for th&, % and= baryons is compatible with the nucleon ofie [8], i.e :

304

N T 3omf2 (3.2)

Note that the SU(6) quark model, as well as the SU(3) phenologital analysis of the semi-
leptonic decays and hyperon-nucleon interactj¢r [P, 1€{ijot different values for this coefficient.
In Fig. 3, we fix the cubic term to the nucleon one and fit the matarsM, anday for the other
states of the octet. The mass values we find extrapolatiotie ghysical point are in good agree-
ment with the experimental results. A careful analysis ef ¢hbic term contribution, including
systematics, is however required and will be detailed inraing paper [[11].
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Figure 2: Mass difference between members of the Figure 3: Chiral fits of theA, >~ and= baryon masses.
octet and the Nucleon extracted from ratio of corre-The experimental values for the masses (shown in ma-
lators as a function ofrZ, at fixed lattice spacing genta) are not included in the fits. The masses ob-
(B = 3.9, a=0.085fm). Physical points are repre- tained from extrapolating lattice data keeping the cu-
sented by triangles. bic term fixed are shown in blue with fixed.
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3.2 Lattice artifacts and isospin breaking

An important issue one needs to check in the twisted fermfonsulation is the isospin
symmetry breaking at finite lattice spacing. In the case eftfaryon it was shown in Ref[][2]
that the isospin breaking is compatible with zero. In thargje baryon sector we can study the
isospin splitting of the thre& states and the tw& states. In Figs[]4 and 5 we show the mass
splitting for theZ’s and='s respectively as a function of the lattice spacing. Usingvtilae of the
Sommer scaley(a) at the chiral limit, we compare results obtained at diff¢tatiice spacings, for
a fixed pion mass of reference)n,; = 1.0). We plot the behavior afyMs androM= as a function
of (a/rp)?. Results show a decrease of the isospin splitting witRurthermore, averaging over the
different charge states of tleand=, results in a weaker lattice spacing dependence and jgstifie
the use of the average for the chiral extrapolation.
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Figure 4: roMs as a function ofa/rg)? for =+, 2% Figure 5: roM= as a function ofa/rg)? for =° and
and>". =.

In Figs.[$ and]7 we display the mass &f"(=° ") and €% =") multiplets as a function of
m?, at fixed lattice spacing. We observe that the splitting d&see with the pion mass. The naive
argument saying that for small quark mass, the u and d prémagare equivalent seems to apply
in this case.

4. Q baryon

In this section we study the mass dependence ofxhe and/ baryons on the bare strange
quark mass. In Fid] 8, we show that their mass is, as expditeds as a function ods.

The chiral extrapolation of th@ mass is very interesting because its dependenas;as a
purely sea quark effect. Our data (see Fjg. 9) confirm thaettseindeed a dependence on the u
and d quark mass, which has to be understood in order to eltapheQ-mass to the physical
point. As can be seen in Fif]. 9, tiiecubic term is expected to be smaller than the nucleon and
A one. A more extended discussion of the chiral extrapolaticthe Q-mass will be detailed in a
forthcoming publication[[41].
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Figure 6: 7,303~ for B = 3.9 (a= 0.0085fm) Figure 7: =%,= for B = 3.9 (a = 0.0085 fm) for
for smeared-smeared correlators as a function of thmeared correlators as a function of the pion mass
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Figure 8: Mass ofA, 2~ andQ at fixed lattice spacing Figure 9: Comparison of the pion mass dependence
for a pion mass of 310MeVas a function of the bareof N, A andQ, at fixed lattice spacinga(= 0.085m).
strange quark mass. The experimental value is shown magenta.
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5. Conclusion

We have shown, in this contribution, that the use of twistessrfermions yields promising
and accurate results in the spectroscopy of strange baryorke chiral extrapolation, the cubic
term of the octet members can be constrained by studyingriess difference with the nucleon.
This leads to the conclusion that thé, term in the octet chiral expansion is compatible with the
nucleon one. Contrary to the case of thethe strange baryon sector shows an isospin breaking,
which however decreases with the pion mass and becomes tiblepéth zero aim; ~ 310MeV.

A first study of lattice artifacts show small finite size eflecStrange quark mass dependence is, as
expected, linear imus. TheQ exhibits a sea quark dependence, which, even if it is sntadlys
the importance of dynamical quarks in this sector.
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