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ABSTRACT

Algebraic Codes For Error Correction In Digital

Communication Systems

Mubarak Jibril

C. Shannon presented theoretical conditions under which communication was pos-

sible error-free in the presence of noise. Subsequently the notion of using error

correcting codes to mitigate the effects of noise in digital transmission was intro-

duced by R. Hamming. Algebraic codes, codes described using powerful tools from

algebra took to the fore early on in the search for good error correcting codes. Many

classes of algebraic codes now exist and are known to have the best properties of

any known classes of codes. An error correcting code can be described by three of its

most important properties length, dimension and minimum distance. Given codes

with the same length and dimension, one with the largest minimum distance will

provide better error correction. As a result the research focuses on finding improved

codes with better minimum distances than any known codes.

Algebraic geometry codes are obtained from curves. They are a culmination of years

of research into algebraic codes and generalise most known algebraic codes. Addi-

tionally they have exceptional distance properties as their lengths become arbitrar-

ily large. Algebraic geometry codes are studied in great detail with special attention

given to their construction and decoding. The practical performance of these codes

is evaluated and compared with previously known codes in different communica-

tion channels. Furthermore many new codes that have better minimum distance

to the best known codes with the same length and dimension are presented from

a generalised construction of algebraic geometry codes. Goppa codes are also an

important class of algebraic codes. A construction of binary extended Goppa codes

is generalised to codes with nonbinary alphabets and as a result many new codes

are found. This construction is shown as an efficient way to extend another well

known class of algebraic codes, BCH codes. A generic method of shortening codes

whilst increasing the minimum distance is generalised. An analysis of this method

reveals a close relationship with methods of extending codes. Some new codes from

Goppa codes are found by exploiting this relationship. Finally an extension method

for BCH codes is presented and this method is shown be as good as a well known

method of extension in certain cases.
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Part I

Introduction, Definitions and

Preliminaries

1





1. INTRODUCTION AND MOTIVATION

The field of coding theory was born with Claude E. Shannon’s (Shannon, 1948) land-

mark work on digital communications. Digital communications involves the trans-

mission of message signals in digital form. Shannon’s work shed light on the limits

of how fast, efficient and reliable a digital communication system can be through the

most significant transmission channels. Shannon’s work specifically focuses on how

to transmit data reliably through channels where signal altering noise is present. A

key observation was that it was possible to increase the reliability of a digital com-

munication system significantly by using efficient error correction schemes. Digital

signals to be transmitted are encoded with a predefined code at the transmitting

end and then suitably decoded at the receiving end.

Conceptually, a digital communication system with an error correction scheme is

modelled as in Figure 1.1. The source encoder (not shown) accepts source data usu-

ally in binary form and compresses it by exploiting its inherent redundancy. The

compression is done in such a manner that the source decoder can recover the in-

formation without any ambiguity. Compressed data from the source encoder is fed

to the channel encoder at the rate of R bits per second. A channel encoder adds

redundancy to k bits 1 to produce n bits where n ≥ k. The channel encoder block

outputs data at a rate of R = n
k
bits per second. This block essentially begins the

error correction scheme. It uses error correction codes which can either be linear

block codes or convolutional codes. The next block is the modulator whose purpose

is to transform the signal so that it is suitable for transmission through the chan-

nel. A chosen modulation scheme will take into consideration the specific channel

characteristics. The output of the modulator is sent through the channel where it is

distorted by noise. A channel can be defined by the type of distortion it contributes

to the transmitted signal. Additive white Gaussian noise channels are channels

where an additive, zero mean and Gaussian distributed noise dominates while fad-

ing channels have interference noise due to the fact that signals travel in multiple

paths. From a coding scheme design perspective, a channel can also be defined

by its limitations on power or bandwidth. The demodulator attempts to reproduce

the transmitted signal from the modulator from the impaired received signal. It

achieves this by using a threshold value on a per bit basis. If a single threshold is

used, then the output of the demodulator is called hard and the demodulator is said

1In general the channel encoder need not be a binary encoder and can process non-binary symbols.

3



Chapter 1: Introduction

From Source
Encoder

Channel
Encoder

Modulator Channel

Noise

Demodulator Channel
Decoder

To Source
Decoder

Fig. 1.1: Digital Communication System

to perform hard decisions. If more than one threshold value is used, the demodula-

tor produces soft outputs and performs soft decisions. The type of decision taken by

the demodulator decides the kind of channel decoder used in the channel decoder

block. Soft/hard decision channel decoders input soft/hard decided sequences from

the demodulator and using decoding algorithms attempt to detect and correct er-

rors incurred by transmission. Finally a source decoder decompresses the output of

the channel using a decompression algorithm to produce an estimate of the original

message. If the channel decoder succeeds in correcting all errors then the output of

the source decoder is the original message.

The scope of this research lies between the channel encoder and the channel de-

coder. The research focuses mainly on finding good linear error correcting codes that

improve the reliability of digital communications. Specifically, the thesis focuses on

an important sub-class of linear codes, algebraic geometry codes, and codes they

generalise. As a welcomed necessity, the research navigates through the abundant

literature of algebraic codes and their equally rich algebraic structures.

1.1 Shannon’s Contributions and Implications

Shannon’s main result is the relationship (Shannon, 1948),

R <W log2(1+SNR) (1.1)

for the additive white Gaussian noise (AWGN), where R is transmission data rate

in bits per second, W is the transmission channel bandwidth in hertz (Hz) and

SNR is the average signal power to the average noise power ratio, a dimension-

less quantity. Equation (1.1) is commonly referred in literature as the Shannon or

Shannon-Hartley equation. The inequality may be removed and R replaced with

the “channel capacity”, C, and obtain a limit on the rate so that

R <C =W log2(1+SNR). (1.2)

In order to achieve capacity rates it can see from (1.2) that it is possible to increase

either the bandwidth W or the signal to noise ratio SNR or both. Since channel

noise cannot be controlled by the system designer, increasing SNR is only possible

by increasing the signal power since

SNR=
S

N
(1.3)
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where S and N represent the average signal and noise power respectively. Prior to

channel coding and Shannon’s postulations increasing transmission power was syn-

onymous with increased reliability. There are however limits to how much power is

available for specific applications. Increasing the bandwidth W might seem like a

good solution until one considers that

(i) channel bandwidth is limited,

(i) the additional cost and size of transmission equipment.

In addition, for the AWGN channel the average signal noise N = N0W where N0

is the noise spectral density. So as the bandwidth increases, the SNR deteriorates

so does the rate albeit logarithmically. In summary Shannon was able to show

that noise in channel limits the rate of data transmission through the channel but

does not limit the reliability and accuracy of transmission. In so far as the data

transmission rate is below channel capacity, reliable transmission is possible.

1.2 History and Development of Coding Theory

1.2.1 1948–1970

An important and perhaps understated contribution to the field of coding theory

was due to Hamming (1950). Whereas Shannon’s approach was non-constructive

and asymptotic, Hamming’s contribution was constructive and combinatorial (Su-

dan, 2001). Shannon showed that error free communication at rates below capacity

is possible if good error correcting codes are used. However it soon became clear

that finding error correcting codes with efficient decoding schemes that fit this de-

scription was difficult. Hamming was the first to present non-trivial error correcting

codes. These codes are known aptly as Hamming codes. A code is traditionally de-

fined with there parameters (i) its length or number of symbols (ii) its dimension or

number of message symbols (iii) and its minimum distance or the smallest possible

distance between any two distinct code words. The problem of designing good codes

preoccupied coding theorists in the aftermath of these contributions. Golay (1949)

presented codes known today as Golay codes. These codes include a generalisation

of Hamming codes and also some perfect codes. The word perfect used here is in

retrospect a misnomer, these codes were not perfect in the sense that they could

correct all forms of error but they were labelled perfect because of their unique

structural properties. Perfect codes have the property that every corrupted code-

word can be uniquely decoded without ambiguity. Reed (1954) and Muller (1954)

presented an important class of codes called Reed-Muller codes. Hamming, Go-

lay and Reed-Muller codes have interesting algebraic properties and continue to be

the subject of theoretical investigations. Elias (1955) invented convolutional codes.

Convolutional codes were not described algebraically (although they can be) and are
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the first implementation of probabilistic codes. Convolutional codes were soon found

to be equal or better than block codes for almost any practical application (Forney,

1970). Binary Bose Chaudhari Hocquenghem (BCH) were discovered by Bose and

Chaudhuri (1960) and independently by Hocquenhem (1959). Binary BCH codes

were the first powerful error correcting codes with a potential for practical use.

BCH codes are known to contain Hamming codes as a subset. Reed Solomon (RS)

codes were discovered by Reed and Solomon (1960). RS codes are a subset of BCH

codes and have good properties. Despite being primarily non-binary codes, RS codes

have found extensive practical use to this day. A year later Gorenstein and Zierler

(1961) presented BCH codes with binary symbols which are a generalisation of RS

codes. Though algebraic codes were presented with elegant theories and had excep-

tional properties it became difficult to find efficient and simple decoding schemes

that took advantage of their error correcting capabilities. Peterson (1960) was the

first to present a decoding algorithm for BCH (and by definition RS) codes that cor-

rected errors up to the designed error correction capabilities of these codes. Soon

afterwards Berlekamp (1968) presented a much simpler scheme than Peterson’s al-

gorithm. Massey (1969) showed that Berlekamp’s algorithm solved a well known

linear feedback shift register synthesis problem. The algorithm consequently be-

came known as the Berlekamp Massey decoding algorithm. In the first 20 years

since the birth of coding theory, powerful algebraic and probabilistic codes had al-

ready been invented with efficient decoding algorithms. BCH codes were however

shown to be asymptotically bad2 i.e. their error correction capabilities deteriorate as

lengths approach infinity. Forney and Costello (2007) showed a method of concate-

nating RS codes with short codes and proved that these codes were asymptotically

good. Concatenated codes proved useful in bursty channels where errors occur in

short consecutive bursts in the transmitted data stream instead of independently.

1.2.2 1970-1990

Justesen (1972) produced the first class of constructive algebraic codes are asymp-

totically good. However Justesen’s codes have found little use, since for practical

lengths far superior codes exist. Goppa (1970) introduced a class of linear algebraic

error correcting codes. These codes were a large class of codes and in some instances

can be seen as generalisations of BCH codes. Patterson (1975) presented a decoding

algorithm for Goppa codes obtained by modifying the Berlekamp Massey algorithm

for BCH codes. Goppa codes are known to be asymptotically good (MacWilliams

and Sloane, 1983). Goppa (1988) then presented a new class of algebraic codes from

curves called algebraic geometry (AG) codes. These codes are generalisations of RS

2A code is said to be asymptotically good if its minimum distance increases proportionately as the

length becomes arbitrarily large. This means that an extremely long code will have a good minimum

distance.
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and Goppa codes (of which BCH codes are subsets). Certain families of these codes

were shown by Tsfasman et al. (1982) to be asymptotically better than previous

algebraic codes. There was great interest in the decoding of AG codes up to their

designed error correction capabilities. By the fourth decade from the birth of coding

theory, efficient algebraic codes had been realised some of which have been shown

to be asymptotically good. The major obstacle to achieving error-free communica-

tion for these codes was their decoding complexity when utilising channel statistics.

All previously mentioned methods of decoding algebraic codes are bounded distance

decoding schemes that do not exploit channel statistics in decoding but rely solely

on the algebraic structure of the codes. It was clear that to achieve error-free com-

munication one must utilise channel statistics. Although research concentrated on

searching for codes with a good algebraic structure and predetermined properties

it became increasingly apparent that to achieve error free communication random-

like codes with acceptable properties and moderate decoding complexity were re-

quired. This line of thought was first pursued by Elias (1955) and subsequently by

Gallager (1962).

1.2.3 1990–

Berrou et al. (1993) astounded the coding theory community by presenting Turbo

codes which approached Shannon’s limit closely. Turbo codes are derived from con-

volutional codes and are probabilistic codes. Research in the 1990’s was then shifted

from algebraic codes to probabilistic codes. MacKay and Neal (1996) soon reintro-

duced codes by Gallager (1962) showing that these code (called low density parity

check (LDPC) codes) also approached Shannon’s limit. By sacrificing exceptional

properties for reduced decoding complexity coding theorists were able to achieve

these results. Algebraic coding also received a significant boost in the introduction

of bounded distance decoding for AG codes by Feng and Rao (1993) and Sakata et

al. (1995). The decoding algorithm by Feng and Rao (1993) was a generalisation

of the algorithm by Peterson and Weldon (1972) while the algorithm by Sakata et

al. (1995) was a generalisation of the algorithm by Berlekamp (1968) and Massey

(1969). An important milestone was reached for algebraic codes when Guruswami

and Sudan (1999) presented a new algorithm for decoding BCH and RS codes that

had better performance than previously known decoding techniques. Sudan’s de-

coding used the notion of a list decoder that returned a list of candidates for each

received sequence. Koetter and Vardy (2003) extended this algorithm to utilise

channel statistics so as to further improve decoding performance. Sudan’s algo-

rithm was soon after extended to decoding AG codes by Shokrollahi andWasserman

(1999). A generalised construction of AG codes was presented by Xing et al. (1999a)

which have better properties than AG codes.

Near Shannon limit performance is now obtainable from probabilistic codes like
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LDPC and turbo codes. At present LDPC codes have shown the most promise in at-

taining error-free communication and current research trends are focused on con-

structing good codes. Some algebraic codes have the best distance properties but

their decoding complexity using channel statistics is proving to be a stumbling block

towards achieving error-free communication. However the search for improved al-

gebraic codes with less complex and efficient decoders is still active since it is known

that performance ultimately depends on the distance properties of a code.

1.3 Research Scope

The work presented in this thesis focuses mainly on algebraic codes. In particular

AG codes and Goppa codes are the major subject of interest while related codes BCH

and RS codes also feature prominently. AG codes were invented by Goppa (1988) but

have not received as much research attention as other error correction codes. This

is in part due to the fact that much of the theory of the codes is obtained from deep

mathematical aspects of algebraic geometry that do not lend themselves to easy

access. Subsequent advances have however simplified construction and decoding of

the most popular AG codes. The thesis has two main objectives;

• To study the AG codes and related algebraic codes. The performance of AG

codes relative to similar codes is investigated in different communication chan-

nels using different decoding approaches. The theory and properties of these

codes are also studied.

• To obtain codes from algebraic codes with better minimum distances than any

previously known codes.

1.4 Major Contributions of the Thesis

• Algebraic geometry codes are studied in great detail with special attention

given to their construction and decoding. The practical performance of these

codes is evaluated and compared with previously known codes in different

communication channels. Decoding performance of AG and nonbinary BCH

codes is compared in the AWGN using soft and hard decision decoding and

erasure channels usingmaximum likelihood decoding. The BerlekampMassey

Sakata algorithm (BMSA) decoding is presented for the bounded distance de-

coding of AG codes while the classic Berlekamp Massey algorithm (BMA) is

presented for BCH codes for transmission in the AWGN channel. Symbol

based ordered reliability decoding is carried out for soft decision decoding in

the AWGN channel for both AG and BCH codes. Finally maximum-likelihood

erasure decoding (in-place) is presented for decoding these codes in the era-

sure channel.
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• New codes that have better minimum distances than the best known codes

with the same length and dimension are presented from a generalised con-

struction of algebraic geometry codes. Using this method 237 codes in the fi-

nite field F16 from four curves with better minimum distances than any known

codes are presented. Many improvements on constructible codes were also

presented. Furthermore by applying simple modifications to the presented

codes more improvements are possible.

• A construction of extended binary Goppa codes is generalised to codes with

nonbinary alphabets and as a result new codes are found. This construction

is shown to be an efficient way to extend another well known class of alge-

braic codes, BCH codes. In total 48 new codes in finite fields F7, F8 and F9

were presented directly from this method. With further extensions using con-

struction X (MacWilliams and Sloane, 1983), 30 more improvements are also

obtained. More improvements are also possible from simple modifications of

the obtained codes.

• A generic method of shortening codes whilst increasing their minimum dis-

tances is generalised. An analysis of this method reveals a close relationship

with methods of extending codes. Codes with a special structure from Goppa

codes are used and this relationship is exploited to obtain 4 new binary codes.

• Finally an extension method for BCH codes is presented and this method is

shown be as good as a well known method of code extension in certain cases.

1.5 Publication List

Published

M. Jibril, M. Tomlinson, M. Z. Ahmed and C. Tjhai. ‘Performance comparison be-

tween Hermitian and Nonbinary BCH Codes’. International IEEE conference on

microwaves, communications, antennas and electronic systems (COMCAS), Proceed-

ings on., Nov, 2009. http://dx.doi.org/10.1109/COMCAS.2009.5386010

M. Jibril, M. Tomlinson, M. Z. Ahmed and C. Tjhai. ‘Good codes from generalised

algebraic geometry codes’. IEEE symposium on information theory (ISIT), Proceed-

ings on., July, 2010.http://dx.doi.org/10.1109/ISIT.2010.5513687

M. Jibril, M. Tomlinson, M. Z. Ahmed and C. Tjhai. ‘Improvements on codes from

nonbinary fields using generalised algebraic geometry codes’. IEEE international

conference on wireless communication, networking and information security (WC-

NIS), Proceedings on., August, 2010.http://dx.doi.org/10.1109/WCINS.2010.5541920
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M. Tomlinson, M. Jibril, C. Tjhai, M. Grassl and M. Z. Ahmed. ‘New binary codes

from extended Goppa codes’. Accepted to the third international castle meeting on

coding theory and applications (ICMTA), September, 2011.

Submitted

M. Tomlinson, M. Jibril, C. Tjhai, S. Bezzateev, M. Grassl and M. Z. Ahmed. ‘A

generalised construction and improvements on nonbinary codes from Goppa codes’.

To be submitted to the IEEE Transactions on Information Theory., July, 2011.

M. Jibril, S. Bezzateev, M. Tomlinson, C. Tjhai, M. Z. Ahmed. ‘Some results from

binary Goppa codes and a case of shortening linear codes’. To be submitted to the

IET Journal on Communications., July, 2011.

1.6 Thesis Organisation

• Part I: Introduction and Motivation

– Linear Codes Over Finite Fields

In this Chapter the concept of finite fields is introduced. Linear codes

and their basic properties are then defined. Since the thesis focuses on

constructing new codes, details of some well known generic construc-

tions are also given. The most important type of channel models are also

presented. This Chapter provides sufficient preliminary information rel-

evant to subsequent Chapters.

• Part II :Algebraic Codes for Error Correction

– One Dimensional Codes:RS, BCH and Goppa codes

In this Chapter RS, BCH and Goppa codes are introduced. This Chapter

serves as a precursor to subsequent Chapters in the thesis by introducing

three important classes of codes.

– Two Dimensional Codes: AG Codes

AG codes are introduced in this Chapter. Their underlying theory and

definition are then presented. Examples of constructions of AG codes are

also given.

– Decoding Algebraic Codes

The decoding of algebraic codes for the error and erasure channels is dis-

cussed in this Chapter. The BMSA decoding is presented for the bounded

distance decoding of AG codes while the classic BMA is presented for

BCH codes for transmission in the AWGN channel. Ordered reliability

decoding is presented for soft decision decoding in the AWGN channel.
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Finally maximum-likelihood erasure decoding (in-place) is presented for

decoding in the erasure channel.

– Performance of Algebraic Codes

Performance of AG codes is compared with shortened nonbinary BCH

codes in the same finite field having the similar rate and length. The

codes are compared the AWGN channel (soft and bounded decoding) and

in the erasure channel. Conclusions are drawn from the results.

• Part III: Search For New Codes

– Introduction

This Chapter details the methods and approaches used in the search for

new codes and introduces Part III of the thesis.

– Improved Codes From Generalised AG codes

This Chapter presents the concept of places of a curve of degree larger

than one and generalised constructions of AG codes. As a result 237

new codes in the finite field F16 from three curves using a generalised

construction of AG codes are presented.

– Improved Codes From Goppa Codes

This Chapter presents 108 improvements to the best known codes in

finite fields F7, F8, F9 from extended Goppa codes. The method used is a

generalisation of a well known method for extending binary Goppa codes

to nonbinary finite fields.

– A Special Case Of Shortening Linear Codes

Theory and proof of a method of shortening linear codes is provided. The

link between shortening and extending linear codes is then discussed.

Four new binary codes obtained by exploiting this link from a Goppa

code with a special structure.

• Part Four: More On Algebraic Codes

– Notes on Extending BCH Codes

A method of extending BCH codes is explored. This method is shown

to be as good as the best generic method of extending codes in certain

cases. The method provides insight into the limits of extendability of

BCH codes.

– Improved Codes From Goppa Codes II

An alternative construction is presented in this chapter for extended

Goppa codes. This construction produces shorter codes than the previ-

ously described method however provides greater flexibility in construct-

ing codes.
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2. LINEAR CODES OVER FINITE

FIELDS

This chapter introduces the theory of finite or Galois fields. This theory forms the

foundation upon which linear codes can be studied. Sufficient information is given

on the finite fields section since it serves as a prerequisite for subsequent chapters.

For an in depth treatment of the subject see Shu and Costello (2004), MacWilliams

and Sloane (1983) and Lidl and Niederreiter (1986). The information provided on

finite fields is obtained from these aforementioned sources. The chapter also intro-

duces linear codes over finite fields. Both these topics are large and only information

relevant to this thesis is provided.

2.1 Finite Fields

In mathematics, fields are loosely defined as algebraic structures that contain a set

of elements for which the operations multiplication and addition (and their respec-

tive inverse operations division and subtraction) are clearly defined. In addition

the result of any of these defined operations results in elements within the field. A

typical example is the field of real numbers.

2.1 Definition (Finite Field). A finite field denoted by Fpr is a field with a finite num-

ber of elements where p is always prime and r ≥ 1.

p is called the characteristic of the finite field.

Field Elements: A finite field contains the basic elements of a field; a multiplica-

tive identity element denoted by 1 and an additive identity element denoted by 0.

The order of a finite field element α is the smallest integer n such that αn = 1. A

primitive element of a finite field is any nonzero element α with order pr.

2.2 Definition (Subfield). A subfield Fps is a subset of the finite field Fpr and contains

13
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only nonzero elements that satisfy,

βps−1 = 1 β ∈ Fpr

and s|r.

All finite fields Fpr for which r ≥ 2 are called extension fields of Fp. Henceforth

finite fields will be denoted by Fq where q= pr for brevity. Consider the univariate

polynomial ring with coefficients in the finite field Fq denoted as Fq[x]. An irre-

ducible polynomial is a polynomial in this ring is one which is prime i.e. it cannot

be factorised. A primitive polynomial of degree m is an irreducible polynomial which

has the primitive element of Fqm as a root. Using modulo operations, a primitive

polynomial of degree m can be used to generate Fqm .

Example 2.1 (Finite Field F16): The definition of the finite field F16 is now given.

The field F16 has elements,

{0,1,α,α2, . . . ,α14}.

It is easy to see that α is a primitive element in F16 and the polynomial p(x)= x4+x+
1 is a primitive polynomial. Each element of F16 can be represented as a polynomial

in the ring F2[x]/p(x). This ring has coefficients in F2 and any polynomial in the

ring cannot be a multiple of p(x). Table 2.1 shows the elements of F16 in different

representations. The coefficients of the ring F2[x]/p(x) map to an m-dimensional

vector space F
m
2

which can also be used to represent Fqm .

2.1.1 Subfields and Conjugacy Classes

2.3 Definition (Conjugacy Class). A conjugacy class of an element β of a finite field

Fqm is given as the set of distinct elements,

C(β)= {β,βq,βq2 , ....,βq(e−1)} β∈ Fqm

where e is the smallest positive integer such that βqe =β.

Where β is used as a representative of the its conjugacy class. Conjugacy classes

partition Fqm into sets of size r and r|m. As an example consider the conjugacy

classes of F16 over F2,
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F24 F2[x]/(x
24−1) F2[x]/p(x) F

4
2

0 0 0 [0,0,0,0]

1 1 1 [0,0,0,1]

α x x [0,0,1,0]

α2 x2 x2 [0,1,0,0]

α3 x3 x3 [1,0,0,0]

α4 x4 x+1 [0,0,1,1]

α5 x5 x2+ x [0,1,1,0]

α6 x6 x3+ x2 [1,1,0,0]

α7 x7 x3+ x+1 [1,0,1,1]

α8 x8 x2+1 [0,1,0,1]

α9 x9 x3+ x [1,0,1,0]

α10 x10 x2+ x+1 [0,1,1,1]

α11 x11 x3+ x2+ x [1,1,1,0]

α12 x12 x3+ x2+ x+1 [1,1,1,1]

α13 x13 x3+ x2+1 [1,1,0,1]

α14 x14 x3+1 [1,0,0,1]

Table 2.1: Finite Field F16

{{1},

{α,α2,α4,α8},

{α3,α6,α12,α9},

{α5,α10},

{α7,α14,α13,α11}}.

Conjugacy classes are also called cyclotomic cosets. A polynomial with all the mem-

bers of the conjugacy class of the primitive element β of the finite field Fqm as roots

is a primitive polynomial in the subfield Fq (Lidl and Niederreiter, 1986). Thus to

find the primitive polynomial of any subfield Fq of Fqm it is sufficient to obtain the

conjugacy class of a primitive element of Fqm . Consider the conjugacy classes of F16

over its subfield F4 with m= 2,

{{1},

{α,α4},

{α2,α8},

{α3,α12},

{α5},

{α6,α9},

{α7,α13},

{α10},

{α11,α14}}.
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The elements of F4 ⊂ F16 are,

{0,1,α5,α10}

and α is a primitive element of F16. The polynomial with roots {α,α4} is x2+ x+α5

and is primitive over F4.

In Table 2.1 it was shown that an extension field F24 can be represented by a 4-

dimensional vector F
4
2
. The finite field F16 is now defined as a vector space F

2
4
using

the primitive polynomial p(x)= x2+x+α5 in the same manner. Table 2.2 shows the

finite field F16 represented as F2
4
using the primitive polynomial p(x)= x2+ x+α5.

F24 F4[x]/(x
42−1) F4[x]/p(x) F

2
4

0 0 0 [0,0]

1 1 1 [0,1]

α x x [1,0]

α2 x2 x+α5 [1,α5]

α3 x3 x+α10 [1,α10]

α4 x4 x+1 [1,1]

α5 x5 α5 [0,α5]

α6 x6 α5x [α5,0]

α7 x7 α5x+α10 [α5,α10]

α8 x8 x+α10 [1,α10]

α9 x9 α5x+α5 [α5,α5]

α10 x10 α10 [0,α10]

α11 x11 α10x [α10,0]

α12 x12 α10x+1 [α10,1]

α13 x13 α5x+1 [α5,1]

α14 x14 α10x+α10 [α10,α10]

Table 2.2: Finite Field F16

2.2 Linear Codes

2.4 Definition (Linear Code). A linear code is an n-dimensional vector space C ⊂ F
n
q

that can be defined with a basis consisting of k-linearly independent members.

This vector space is known as a code space and consists of qk = |C | distinct vectors
of length n. A linear code is said to have length n, dimension k and rate r = k

n
. A

matrix G consisting of k linearly independent members of C is called the generator

matrix of C . An encoding operation can be seen as a map from a message space F
k
q

to the code space C ⊂ F
n
q . Consider the map,

γ : Fmq 7→C

γ(m)= c m ∈ F
k
q, c ∈C
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which represents an encoding operation. Encoding, carried out with the G matrix

using matrix multiplication is,

c=mG.

2.5 Definition (Generator Matrix). A generator matrix of a linear code C is a k×n

matrix of rank k whose rows are members of C .

Another important matrix associated with a linear code is the parity check ma-

trix, H.

2.6 Definition (Dual Code). A parity check matrix H is an (n−k)×n matrix of rank

n−k which has the property,

cHT = 0

for every c ∈C where T is the transpose operator.

The parity check matrix is used to “test” for codewords of C . The parity check

matrix of a linear code is simply the null space of its generator matrix and is defined

as, HT in the equation,

GHT = 0.

Let [n,k,d]q denote a linear code with length n, dimension k and distance d defined

in a field of size q.

2.7 Definition. A dual code C ⊥ of a linear code C is a code which has the parity check

matrix H of C as its generator matrix. Additionally for any two codewords c ∈ C

and c̄ ∈C ⊥,

c · c̄= 0

where · denotes the component-wise multiplication of vectors or dot product.

The dual code of the code C with parameters [n,k,d]q has length n, dimension

k⊥ = n−k and minimum distance denoted by d⊥.
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2.2.1 Properties of Linear Codes

2.8 Definition (Codeword Weight). The number of nonzero elements of a codeword

c ∈C is called its weight. Formally,

weight (c)= |{i : ci 6= 0, i = [0 . . .n−1]}| c= (c0, . . . , cn−1)

2.9 Definition (Hamming Distance). The Hamming distance between any two

codewords x, y ∈C is given as the weight of their dot product. Formally,

d (x,y)=weight (x ·y)

2.10 Definition (Minimum Weight). The minimum distance or weight of a linear

code C is smallest distance between any two distinct codewords in C .

d(C )=min ({d(x,y) : x,y ∈C })

The minimum distance of a linear code is a useful indicator of the quality of that

code. It is desirable to have linear codes with as large a minimum distance as

possible for a given length, dimension and field size.

2.11 Definition (Weight Distribution). Suppose A i is defined as the number of code-

words in a code C of weight equal to i

A i = |{weight (c)= i |c ∈C }|

then the sequence

[A0,A1, . . . ,An]

is called the weight distribution of the code C .

If M = qk is the number of codewords in C then

M =
n∑

i=0
A i.
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The weight distribution of a code is useful in predicting its performance under max-

imum likelihood decoding. Also if the weight distribution of a code is known the

MacWilliams identity (MacWilliams and Sloane, 1983) can be used to obtain the

weight distribution of its dual code.

2.3 Generic Code Constructions

This section is concerned with the construction of new codes from existing ones.

Henceforth a linear code is assumed to have parameters [n,k,d]q.

2.3.1 Modifying The Length

2.3.1.1 Padding

A linear code can be lengthened if every codeword is padded with a zero symbol.

The result is an [n+1,k,d]q code.

2.3.1.2 Overall Parity Check

A linear code can be extended to an [n+1,k,d+1]q code if q= 2 and d is odd. Every

codeword c ∈C is extended as such,

(c0, . . . , cn−1,
n−1∑

i=0
ci)

with cn =
∑n−1

i=0 . For cases where q 6= 2 adding an overall parity check may or may

not increase the distance to d+ 1. For special cases however it has been shown

(Simonis, 2000) that it is possible to increase the distance to d+1.

2.3.1.3 Puncturing

A linear code can be punctured to an [n− l,k,≥ d− l]q provided that |l| < d. Punc-

turing involves removing l columns of the generator matrix of a code.

2.3.1.4 Construction X

2.12 Definition (Subcode). A subcode C2 of a linear code C1 is a code that has all its

codewords in C1.

C2 ⊂C1

The subcode C2 has parameters [n,< k,≥ d]q.
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The difference between the dimension of a code and the dimension of its subcode is

called co-dimension.

2.1 Theorem (Construction X (Sloane et al., 1972)). If a linear code C1 with pa-

rameters [n,k1,d1] has a subcode C2 with parameters [n,k2,d2], then C1 is extend-

able to a code with parameters [n+ ń,k1,min{d1+δ,d2}] using some auxiliary code

[ń,k1−k2,δ] .

Consider a linear code C1 with parameters [n,k1,d1] with generator matrix G1

which can be represented as,

G1 =




G2

G





where G2 is the generator matrix of a subcode C2 with parameters [n,k2,d2]. Sup-

pose the auxiliary code C3 with parameters [ń,k1− k2,δ] has generator matrix G3,

then the generator matrix (Grassl, 2006) of a code obtained from construction X

using these three codes has generator matrix,

Ǵ=




G2 0

G G3



 .

In some cases the subcode C2 has a length shorter than the length of the supercode

C1. This is the case when C2 is obtained from C1 by shortening. In which case the

code C2 is padded with zeros in the shortened coordinates.

2.1 Corollary. If a linear code C1 with parameters [n1,k1,d1] has a subcode C2 with

parameters [n2,k2,d2] with n2 ≤ n1, then C1 is extendable to a code with parame-

ters [n1+ ń,k1,min{d1+δ,d2}] using some auxiliary code [ń,k1−k2,δ] .

Other extensions methods worthy of mention are constructions X3, X3a and X3u

which use three nested codes,construction X4 which uses two pairs of nested codes

and constructions X6, X6a and X6u which use 6 nested codes. (See Brouwer, 1998;

MacWilliams and Sloane, 1983) for details of these constructions.

2.3.2 Modifying The Dimension

2.3.2.1 Subcodes

Given a code C with parameters [n,k,d] it is possible to form an l co-dimensional

subcode by deleting l rows of the generator matrix of the code C . The resulting code

has parameters [n,k− l,≥ d].
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2.3.2.2 Shortening

A code can be shortened by deleting l information coordinates with l < k. The

shortened code has parameters [n− l,k− l,≥ d]q. These l deleted coordinates need

to be a subset of an information set.

2.13 Definition (Information Sets). IfG is the generator matrix of a linear code, then

an information set is a set of coordinates of any k linearly independent columns of

G.

Shortening can be accomplished by deleting l independent columns of the gener-

ator matrix G as well as l rows. Deleting l independent columns of the parity check

matrix H also has the same effect. In order to state Theorem 2.2, the definition of a

support is first given.

2.14 Definition (Support of a Codeword). Let c ∈ C a codeword of C then the sup-

port of c= (c0, . . . , cn−1) is defined as ,

supp (c)= {i : i ∈ {0, . . .,n−1} | ci 6= 0}.

2.2 Theorem (Construction Y1 , from (MacWilliams and Sloane, 1983)). If the

dual of the code C with parameters [n,k,d] has a codeword ć of minimum weight

d́, then deleting the columns of the parity check matrix of C corresponding to the

support of ć produces a shortened code with parameters [n− d́,k− d́+1,d].

2.3.3 Subfield Constructions

Given a linear code C defined in some extension field Fqm it is possible to obtain

codes from C having elements in a subfield Fq of Fqm . There are three basic ways to

do this; by constructing a subfield image code , by constructing a subfield subcode

or by constructing a trace code.

2.3.3.1 Subfield Image Construction

In the beginning of this chapter a method of representing finite fields was shown.

Another way of representing finite fields is by using matrices. Let p(x) be a prim-

itive polynomial of Fqm over Fq. The companion matrix of a polynomial f (x) =
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a0+a1x+·· ·+am−1x
m−1+ xm is defined as an m×m matrix given as,

C =















0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

0 0 · · · 1 −am−1















and satisfies f (C) = 0 where 0 is an m×m matrix with all zero entries (Lidl and

Niederreiter, 1986; MacWilliams and Sloane, 1983). Let C be the companion matrix

of the primitive polynomial p(x), then there is a one to one mapping between the

elements of the finite field Fqm and the set

{0}∪ {C i : i ∈ [1 . . .(qm−1)]}.

The map σm is given by,

σm : Fqm → F
m×m
q

σm(α j)=C j, α j ∈ Fqm \{0}

σm(0)= 0

where α is the primitive element of Fqm . This map is denoted as σm,

σm : Fqm → F
m×m
q .

In summary each symbol in Fqm can be represented by a unique m×m matrix.

Example 2.2: Consider the finite field F8 defined with the primitive polynomial

p(x)= x3+ x+1. The companion matrix of p(x) is,

C =





001

101

010



 .

It is then straightforward to map,

0 7→





000

000

000



 and αi 7→C i , i = [1, . . .,7]

where α is the primitive element of F8.

It is now possible to give a construction of subfield image codes. Let G be the gener-

ator matrix of a linear code C with parameters [n,k,d]qm defined in the finite field
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Fqm . The matrix G can be defined as,

G=












g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1
...

...
. . .

...

gk−1,0 gk−1,1 · · · gk−1,n−1












.

A generator matrix of the subfield image code using G and the map σm can be

formed. The subfield image code D has parameters [nm,mk,≥ d]q and generator

matrix Ǵ,

Ǵ=











σm

(

g0,0
)

σm

(

g0,1
)

· · · σm

(

g0,n−1
)

σm

(

g1,0
)

σm

(

g1,1
)

· · · σm

(

g1,n−1
)

...
...

. . .
...

σm

(

gk−1,0
)

σm

(

gk−1,1
)

· · · σm

(

gk−1,n−1
)











.

2.3.3.2 Subfield Subcode Construction

2.15 Definition (Subfield Subcode). A subfield subcode C |Fq of a code C defined in

Fqm consists of all those codewords in C that have all their elements in the subfield

Fq.

It is possible to construct the parity check matrix of a subfield subcode from the

parity check matrix of the code C defined in Fqm . First the map πm is defined. In

Section 2.1 it was shown that there is a one to one mapping between the elements of

Fqm and the quotient ring Fq[x]/p(x). Consequently there is also a one to one map-

ping between elements of Fqm and the vector space F
m
q formed from the coefficients

of the elements in Fq[x]/p(x). The map πm is defined as,

πm : Fqm → F
m
q

πm(β)= (a0,a1, . . . ,am−1)
T, β ∈ Fqm , ai ∈ Fq,

where T is the transpose operator, which maps elements of Fqm to F
m
q . Suppose H

is the parity check matrix of the code C in Fqm ,

H =












h0,0 h0,1 · · · h0,n−1

h1,0 h1,1 · · · h1,n−1
...

...
. . .

...

hr−1,0 hr−1,1 · · · hr−1,n−1











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with redundancy r = n−k, then the parity check matrix of the subfield subcode C |Fq
is given (MacWilliams and Sloane, 1983), by,

H̃=












πm

(

h0,0

)

πm

(

h0,1

)

· · · πm

(

h0,n−1
)

πm

(

h1,0

)

πm

(

h1,1

)

· · · πm

(

h1,n−1
)

...
...

. . .
...

πm

(

hr−1,0
)

πm

(

hr−1,1
)

· · · πm

(

hr−1,n−1
)












.

A subfield subcode has parameters [n,≥ n−mr,≥ d]q.

2.3.3.3 Trace Construction

2.16 Definition (Trace of an element). The trace of an element β ∈ Fqm is defined as,

Tm(β)=
m−1∑

i=0
βqi

.

Suppose C is a linear [n,k,d]qm code defined in the finite field Fqm with codewords

c= (c0, . . . , cn−1) its corresponding trace code Tm (C ) consists of all codewords of the

form,

(Tm(c0),Tm(c1), . . . ,Tm(cn−1) ) c ∈C .

The trace code Tm (C ) has parameters [n,≥ k,≤ d]q code. An interesting relation-

ship between subfield subcodes and trace codes was given by Delsarte (1975).

2.3 Theorem (Delsarte). The dual of a subfield subcode is the trace of the dual of the

original code C defined in Fqm ,

(

C |Fq
)⊥ =Tm((C )⊥)

2.3.4 Code Concatenation

A linear code C1 with parameters [n1,k,d1]qm can be concatenated with a linear

code C2 with parameters [n2,
m
r
,d2]qr code provided that r divides m. C1 is called
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the inner code while C2 is called the outer code. Let us define the map,

ψp : F
p×p

qr
7→ C

p×n2
2

ψp(M)=MG2 =N M ∈ F
p×p

qr

which describes multiplication of a p× p matrix M with the generator matrix G2 of

C2. The result of this multiplication is a p×n2 matrix N with each row a codeword

of C2. Let p= r
m
. A concatenated code has generator matrix,

Ǵ=











ψp

(

σm

(

g0,0
))

ψp

(

σm

(

g0,1
))

· · · ψp

(

σm

(

g0,n−1
))

ψp

(

σm

(

g1,0
))

ψp

(

σm

(

g1,1
))

· · · ψp

(

σm

(

g1,n−1
))

...
...

. . .
...

ψp

(

σm

(

gk−1,0
))

ψp

(

σm

(

gk−1,1
))

· · · ψp

(

σm

(

gk−1,n−1
))











when G1 is the generator matrix of the code C1 defined as,

G1 =












g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1
...

...
. . .

...

gk−1,0 gk−1,1 · · · gk−1,n−1












.

Themap σm is as previously defined. A concatenated code has parameters [n1n2,kp,≥
d1d2]qr .

2.4 Channel Models

In order for channels to be analysed, models are built that encapsulate the be-

haviour of the channel. An important channel model is the discrete memoryless

channel (DMC) in which transmitted symbols are corrupted independently of each

other. Given input alphabet A = {a0,a1, . . . ,aq−1} and output alphabetB= {b0,b1, . . . ,br−1}

for the DMC a set of qr conditional probabilities arise,

P(B= b i|A = a j)≡ P(yi|x j) i = 0, . . .,q−1 j = 0, . . . , r−1

Any sequence of n symbols from the input alphabet A denoted as u0, . . . ,un−1 and

a corresponding sequence of output symbols v0, . . . ,vn−1 form B, the DMC has joint

conditional probability ,

P(B= v1, . . . ,B= vn−1|A = u1, . . . ,A= un−1)=
n∏

k=1
P(B= vk|A = uk)
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Fig. 2.1: Pictorial representation of the BSC

with the right hand side of the equation showing the memoryless nature of the

channel. A particular type of DMC is the binary symmetric channel (BSC). For the

BSC, q= r = 2 and A =B= {0,1}. Figure 2.1 shows a pictorial representation of the

BSC with channel probability p. The AWGN channel is a discrete-time memoryless

channel with discrete input alphabet A = {a0, . . . ,aq−1} and real output alphabet

B= (−∞,∞) where

B= A+X

b i = ai+ xi

where X is Gaussian random variable with variance σ2 and a zero mean (Proakis,

2008). Another important channel model is the erasure channel which is also mem-

oryless. The binary erasure channel (BEC) is a specific type of erasure channel. A

BEC is a binary input channel with the possibility of an erasure at the output. The

BEC is shown pictorially in Figure 2.2 with a channel probability p where ? denotes

an erasure. The nonbinary erasure channel is similar to the BEC except the input

and output symbols can take nonbinary values. The AWGN is an accurate commu-

nication link for satellite and communication channels where the noise contribution

is due to thermal or intergalactic noise while the erasure channel is used to model

packet based networks.

2.5 Computing Minimum Distances

Determining the minimum distance of a code is a difficult problem and has been

shown to be NP-complete (Vardy, 1997) for linear codes in arbitrary sized finite

fields. For moderate length codes one may use a brute force approach to find the

minimum distance. Depending on the rate of a code it is possible to either use the

parity check matrix H or the generator matrix G to compute the minimum distance

26



Chapter 2: Linear Codes

0

?A B

p

p

1− p

1− p
1

0

1

Fig. 2.2: Pictorial representation of the BEC

using an exhaustive search. Using the generator matrix, an exhaustive search in-

volves encoding all qk codewords and selecting codeword/codewords with the least

minimum weight. For codes with relatively small dimensions (low rate) an exhaus-

tive search is feasible1 using this method. For codes with a large dimension (high

rate) the number of computations increases for this method. To describe exhaustive

search using the parity check matrix of a code Theorem 2.4 is stated.

2.4 Theorem (From (MacWilliams and Sloane, 1983)). A code with minimum

distance d has every combination of d−1 or less columns of its parity check matrix

linearly independent.

The task of finding the minimum weight of a code then becomes checking all
∑d−1

i=2
(
n
i

)

columns of the parity check matrix H for linear independence. Once a set

of columns d linearly dependent columns are found the search is complete. However

even for lengths up to n≤ 256 using these brute force approaches can be impracti-

cal (especially if the rate k
n
≈ 0.5) using a common personal computer. Probabilistic

methods can be used compute the minimum distance of a linear codes to a certain

probability of accuracy. Probabilistic methods typically truncate the minimum dis-

tance search after a chosen number of computations and hence cannot guarantee

that their output is indeed the true minimum distance of the code. These meth-

ods are far less time consuming and are especially useful in verifying the minimum

distance of constructed codes for which a proven lower bound is available. They

can also be used to obtain low weight codewords of the code, an attribute that can

be exploited to obtain a partial weight distribution of the code or to construct low

density parity check matrices. A probabilistic algorithm for computing the mini-

mum weight of a linear code was presented in (Canteaut and Chabaud, 1998). This

1Feasibility as used here means that an exhaustive search is possible in a reasonable amount of

time using a single computer.
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method is a modification of a probabilistic method by Stern (Stern, 1989). In this

section details of a probabilistic algorithm of computing minimum distance of linear

codes presented by Tomlinson et al. (2007) are given.

It can be deduced from Theorem 2.4 that the parity check matrix of a linear code

with minimum weight d has every possible s× s submatrix nonsingular provided

s< d. It is well known in linear algebra that the nonsingularity of a matrix formed

from the coefficients of a set of linear homogeneous equations guarantees that the

equations can be solved for unknowns. This observation forms the basis of the prob-

abilistic method of computing minimum distance using erasures.

2.5.1 Probabilistic Method of Finding Minimum Distance Using Erasures

If the minimum number of erasures that a code cannot correct is s then its min-

imum distance is s+ 1 and the erasure pattern that meets this criterion can be

solved to find the minimum weight codeword. Any set of erasures on transmitted

codewords can be corrected as long as the number erasures does not exceed the

erasure correcting capacity of the code and the coordinates of the erasures in the

erasure pattern correspond to the linearly independent columns of the parity check

matrix. The latter criterion is needed to ensure that the erasures can be solved

using a set of simultaneous equations and that there are no dependencies between

erasure components, leading to more unknowns than there are equations. This

means that coordinates of correctable erasure patterns are synonymous with the

linearly independent columns of the parity check matrix while coordinates of un-

correctable erasure patterns are synonymous with the linearly dependent columns

of a the parity matrix. Provided that the criterion for the erasure patterns corre-

sponding to the positions of the linearly independent columns parity matrix is met,

the simultaneous equations formed by multiplication with the codeword and the

parity matrix can be expressed in reduced Gaussian form . For z pattern of era-

sures occurring in the first z columns of the H matrix assumed here to be linearly

independent (although in practise can be in any order), then in reduced Gaussian

form

e0 = h0,0x0+h0,1x1+·· · · · ·+h0,n−z−1xn−z−1

e1 = h1,0x0+h0,1x1+·· · · · ·+h0,n−z−1xn−z−1

...

...

ez−1 = h1,0x0+h0,1x1+·· · · · ·+h0,n−z−1xn−z−1

(2.1)

28



Chapter 2: Linear Codes

The rest of the n−k− z equations in which no erasures are present are

hz,0x0+hz,1x1+·· · · · ·+hz,n−z−1xn−z−1 = 0

hz+1,0x0+hz+1,1x1+·· · · · ·+hz+1,n−z−1xn−z−1 = 0

...

...

hn−k−1,0x0+hn−k−1,1x1+·· · · · ·+hn−k−1,n−z−1xn−z−1 = 0

Code Field size, q Length, n Dimension, k Minimum distance dmin Time, seconds Trials

Hermitian 16 60 45 10 658 5926319

Hermitian 16 50 40 5 0 174

Hermitian 4 8 2 6 0 1

Klein 8 21 15 4 0 286

Table 2.3: Timings for different codes

From (2.1) it is possible to solve for each erasure. Now consider the case of the

lowest weight codeword with a weight equal to the minimum distance of the code

with erasures occurring in positions of the codeword where elements are non-zero,

this represents w erasures. It is well known that from the multiplication of code-

words with the transpose parity check matrix cHT = 0 ∀ c ∈C every multiplication

cHT is a linear combination of the columns of H and multiplication with the least

weight codeword implies that there is a set of linearly dependent columns in H

such that the set size is minimal 2 and is equal to the minimum distance. Therefore

the coordinates of the erasures of this lowest weight codeword correspond to the lin-

early dependent columns of theHmatrix and this erasure pattern cannot be solved.

However for the same codeword there is an erasure pattern of w−1 erasures which

now correspond to the linearly independent coordinates of H and can be solved. If

these w−1 erasures cannot be solved then it means that the coordinates correspond

to linearly dependent columns ofH and a codeword of weight w−1 exists, which is a

contradiction. The steps to finding the minimum distance via the method proposed

by (Tomlinson et al., 2007) are

2The minimum distance of a code is equal to the least number of linear dependent columns of its

parity check matrix.
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Algorithm 2.1 Erasure method

Require: H

1: for i = 1 : s do

2: Choose n−k random columns of the H matrix

3: Find the rank r of an (n− k)× (n− k) submatrix formed from these columns

and the rows of H

4: Store (r+1)i

5: end for

6: Set dmin =min{(r+1)i∀i}.

Solving for the erasures is simple over GF(2) since the weight is already known

to be dmin = rmin+1 , the (rmin+1)th erasure can be assumed to be 1 and the rest

of the erasures can be solved by back substitution. For the non-binary case over

GF(2m) with m > 1, the (rmin+1)th erasure can be assumed to take each value of

the finite field and for each element a codeword will be formed by back substitution

of the equations to form a set of q−1 codewords. The minimum codeword will be

the codeword with the minimum weight from this set. The method is well suited for

non-binary codes because it does not test linear dependence of the columns of the

parity check matrix but rather checks for the solvability of a pattern of erasures. In

fact apart from the increased complexity of non-binary symbol additions and multi-

plications, the method is quite similar to the case where it is used for binary codes of

the same length/redundancy. Another important factor that determines the speed

of the algorithm is the behaviour of the random generator used to select the the

columns of the H matrix which causes the speed of the algorithm to vary with each

search. Table 2.3 gives timings for different codes using this probabilistic method .

The search was carried out on a computer with a 1.86GHz central processing unit

(CPU) processor and 1.987GB of random access memory (RAM) memory.

2.6 Summary

A brief description of finite fields is given. Notions related to finite fields (subfields

and conjugacy classes) are also introduced. Berlekamp (1974) in his survey of key

papers in the 1974 attributed the first use of finite fields to E. Prange in an unpub-

lished work. Subsequent work by Zierler (1960) and Mattson and Solomon (1961)

showed the effectiveness of the theory of finite fields when applied to error correct-

ing codes. The invention of linear codes is attributed to Hamming (1950) and since

his discovery researchers in coding theory strove to cosntruct codes with good er-

ror correcting capabilities. Aside from creating entirely new classes of good linear

codes, researchers have also focused on methods of producing good codes from exist-

ing ones. Some of these methods arose from the search for codes with the minimum

distance (construction X (Sloane et al., 1972)) while others like concatenation (For-
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ney and Costello, 2007) were a result from the quest to meet Shannon’s asymptotic

bound. From simple modifications like shortening and puncturing to more advanced

constructions these methods are used today to construct better codes and improve

communication performance.
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3. RS, BCH AND GOPPA CODES

3.1 Introduction

Binary BCH were discovered by Bose and Chaudhuri (1960) and independently by

Hocquenhem (1959). RS codes were later discovered by Reed and Solomon (1960).

A year later Gorenstein and Zierler (1961) presented BCH codes with nonbinary

symbols. Both BCH and RS codes are ideal-based codes for which every codeword

polynomial must have among its roots a certain set of distinct defining elements of

a finite field. In general RS codes are considered as a subclass of BCH codes. This

view is justified as the defining roots of a BCH code always contain as a subset the

defining roots of an RS code. However BCH codes can also be seen as a subclass of

RS codes if one considers the fact that a BCH code consists of codewords of an RS

code with symbols restricted to a subfield. For a more streamlined categorisation

of these codes in relation to other algebraic codes it is better to take the latter

view. In which case it is possible to say that BCH codes are subfield subcodes of RS

codes.with symbols in the finite field Fq denoted by Fq[x].

3.1 Definition (Ideal, (Cox et al., 2007)). A subset I of Fq[x], I ⊂ Fq[x] is an ideal

if the following conditions are satisfied,

1. 0 ∈I

2. f (x), g(x) ∈I , then f (x)+ g(x)∈I

3. f (x)∈I and h(x)∈ Fq[x], then h(x) f (x)∈I

An ideal can be completely defined by a basis of any l independent generator

polynomials

< g1(x), . . . , gl(x)> g i(x) ∈I

Any polynomial in f (x)∈I can be expressed as the sum

f (x)=
l∑

i=1
h i(x)g i(x) h i(x) ∈ Fq[x]
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A principal ideal in Fq[x] is one defined with a basis with a single generator polyno-

mial g(x). In which case any polynomial f (x) ∈ Fq[x] is,

f (x)= h(x)g(x) h(x) ∈ Fq[x]. (3.1)

RS and BCH codes are principal ideals in the univariate ring Fq[x]. Both RS and

BCH codes are cyclic codes in that a codeword polynomial results in another code-

word polynomial under multiplication by xt for some t. This property can be readily

deduced from the definition of an ideal. The choice of the single generator polyno-

mial g(x) for these codes is restricted by the BCH bound.

3.1 Theorem (BCH bound,(MacWilliams and Sloane, 1983)). Any polynomial

c(x) ∈ Fq[x] with δ consecutive roots of the finite field Fq such that,

c(αb)= c(αb+1)= ·· · = c(αb+δ−1)= 0

for some α ∈ Fq, has at least δ+1 nonzero coefficients.

The BCH bound gives the minimum weight of any codeword c(x) of the BCH/RS

code. The generator polynomial g(x) for the BCH/RS code must have as a subset of

its defining roots a set of consecutive roots {αb, . . . ,αb+δ−1} so that every codeword

has weight at least δ+1. RS codes have excellent distance properties and achieve

the Singleton bound1. An RS code with length n and dimension k has minimum

distance d = n− k+1. Codes that meet this bound are called maximum distance

separable (MDS) codes. RS codes are by no means unique in this sense. A large

class of MDS obtainable from RS codes are called generalised Reed Solomon (GRS)

codes.

3.2 Definition (GRS). A GRS code is a code that has codewords of the form,

v ·c= (v0c0,v1c1, . . . ,vn−1cn−1)

where c = (c0, . . . , cn−1) is a codeword of an RS code with parameters [n,k,d]q de-

fined in the finite field Fq while the vector template v = (v0, . . . ,vn−1) has no zero

element. GRS codes have parameters [n,k,d]q.

The dual code of a GRS code is also a GRS code albeit defined with a different

template vector (MacWilliams and Sloane, 1983).

1Singleton bound is d ≤ n−k+1
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3.3 Definition (Alternant Codes). An alternant code is a subfield subcode of a GRS

code. If the GRS code has parameters [n,k,n−k+1]qm, alternant code has param-

eters [n,≥ n−m(n−k),≥ n−k+1]q.

BCH codes are a subclass of alternant codes for which the template vector v =
(1, . . .,1). Another important subclass of alternant codes are Goppa codes. Goppa

(1970) introduced this class of codes 10 years after the discovery of BCH codes.

Goppa codes were very competitive in terms of good properties and as a class include

far more codes than BCH codes. In fact MacWilliams and Sloane (1983) show that

narrow-sense primitive BCH codes (a subclass of BCH codes) are also a subclass of

Goppa codes.

GRS

RS

BCH

GOP

NR-BCH

Parent field

Subfield

GOP = Goppa Codes

ALT

NR-BCH = Narrow-sense

BCH codes

ALT = Alternant Codes

Fig. 3.1: Relationship between algebraic codes
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3.2 Reed Solomon Codes

A Reed Solomon code is principal ideal I in the ring Fqm[x] with each polynomial

c(x) ∈I having distinct cyclically consecutive roots,

A = {αb, . . . ,αb+δ−1} α ∈ Fqm

The minimum distance of an RS code is determined by the BCH bound and is d =
δ+1. By definition,

c(αb)= ·· · = c(αb+δ−1)= 0

Suppose the set B is defined as the set B= F
∗
qm

\A which contains all elements of the

finite field Fqm except the roots in A and the zero element, it is possible to represent

the evaluation of the c(x) for which x takes all the values of the finite field F
∗
qm in

the table below. Let k= |B| = |F∗
qm

|− |A|.

c(αb−k) c(αb−k+1) · · · c(αb−1) c(αb) · · · c(αb+δ−1)

m0 m1 · · · mk−1 0 · · · 0

If c(x) = c0+ c1x+ ·· · + cn−1x
n−1, these evaluations can be represented as a single

matrix multiplication,





















α(b−k)(n−1) α(b−k)(n−2) · · · α(b−k) 1

α(b−k+1)(n−1) α(b−k+1)(n−2) · · · α(b−k+1) 1

...
...

. . .
...

...

α(b−1)(n−1) α(b−1)(n−2) · · · α(b−1) 1

αb(n−1) αb(n−2) · · · αb 1

...
...

. . .
...

...

α(b+δ−1)(n−1) α(b+δ−1)(n−2) · · · α(b+δ−1) 1









































c0

c1

...

ck−1

ck

...

cn−1





















=





















m0

m1

...

mk−1

0

...

0





















.

The evaluations mi, i ∈ [0, . . .,k−1] can be any element from Fqm (not necessarily

equal to zero) since they are non-roots. Isolating the lower part of the matrix equa-

tion for which evaluations are required to be zero i.e. evaluations at the roots of
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c(x),








αb(n−1) αb(n−2) · · · αb 1

...
...

. . .
...

...

α(b+δ−1)(n−1) α(b+δ−1)(n−2) · · · α(b+δ−1) 1




























c0

c1

...

ck−1

ck

...

cn−1





















=








0

...

0








Recall that the parity check matrix is a matrix H such that,

cHT = cTH= 0

The parity check matrix of the RS code is then,

H=








αb(n−1) αb(n−2) · · · αb 1

...
...

. . .
...

...

α(b+δ−1)(n−1) α(b+δ−1)(n−2) · · · α(b+δ−1) 1








which is a Vandermonde matrix.

3.3 BCH Codes

An RS code has a set of cyclically consecutive roots V = {αb,αb+1, . . . ,αb+δ−1} with

cardinality δ. A subfield subcode of this RS code is a BCH code restricted to Fq. A

BCH code consists of codewords of an RS code that have symbols only in Fq and as a

consequence, in addition to the consecutive roots of the RS code the BCH code will

have additional roots that are co-members with the consecutive roots in their re-

spective conjugacy classes. Recall the definition of a conjugacy class from Definition

2.3. The set of roots of a BCH code are given by

R =
⋃

β∈V
C(β), (3.2)

the codes have redundancy |R| and dimension k = n− |R|. Clearly V ⊂ R and the

minimum distance of BCH codes is at least |V |+1= r+1. Often R contains one or

more roots that are cyclically consecutive to the set of roots in V . If T ⊂ R denotes

this additional set of consecutive roots with T * V then the minimum distance of

the BCH code is

d ≥ |V |+ |T|+1
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from the BCH bound. As a result of restricting an RS to a subfield we obtain a

BCH code with a reduced dimension, the same length and often the same minimum

distance as the original RS code.

Example 3.1: Consider the RS code defined with the roots V = {α0,α1,α2} in F16.

This code has parameters [15,12,4]16. The parity check matrix of the RS code is

given by,

Hrs =








1 1 · · · 1 1 1

α14 α13 · · · α2 α 1

α13 α11 · · · α4 α2 1







.

The conjugacy classes of F16 over F2 are

{α0}

{α,α2,α4,α8}

{α3,α6,α12,α9}

{α5,α10}

{α7,α14,α13,α11}

The set of the defining roots of the BCH code in F2 is R = {α0,α,α2,α4,α8} and has

three cyclically consecutive roots. The parity check of the BCH code is given by,

Hbch =















1 1 · · · 1 1 1

α14 α13 · · · α2 α 1

α13 α11 · · · α4 α2 1

α13 α7 · · · α8 α4 1

α7 α14 · · · α α8 1















.

The BCH code therefore has parameters [15,10,4]2. To obtain the best possible

dimension it is desirable that the BCH code defined by (11.19) to be narrow sense.

Narrow sense BCH codes have defining roots in Fqm

V = {α,α2, . . . ,αδ−1}

Narrow sense BCH codes tend to have the cardinality |R| to be comparatively small

when |A| = r1 is also small. A BCH code is said to be primitive if it has length

n= |Fqm |−1.
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3.4 Goppa Codes

Goppa (1970, 1971) introduced a class of linear codes commonly referred to as

Goppa codes or Γ(L,G) codes. Goppa codes meet the well known Gilbert-Varshamov

bound (see Section 4.2). Γ(L,G) codes have good properties and some of these codes

have the best known minimum distance of any known codes with the same length

and rate. Goppa codes are also used extensively in cryptography in public key cryp-

tosystems. The codes are mainly defined in a finite field Fq and are subfield subcodes

of generalised Reed Solomon codes defined in an extension field of Fq.

A Γ(L,G) code is defined by a set L ⊆ Fqm and a polynomial G(x) with coefficients

from Fqm , where Fqm is a finite extension of the field Fq. The set L= {α0,α1, . . . ,αn−1}

with cardinality n contains all elements of Fqm that are not roots of the Goppa poly-

nomial G(x). A codeword (c0, c1, . . . cn−1) with elements from Fq is a word of a Goppa

code defined by the set L and the polynomial G(x) if it satisfies

n−1∑

i=0

ci

x−αi

≡ 0 mod G(x). (3.3)

If r is the degree of the polynomial G(x) ∈ Fqm[x] the parameters of the Goppa code

are:

length: n= |L|,
redundancy: n−k≤mr,

distance: d ≥ r+1.

From (MacWilliams and Sloane, 1983) we know that in the modulo ring Fqm [x]/G(x),

(x−αi) has a inverse since it does not divide G(x).

(x−αi)
−1 =−

G(x)−G(αi)

x−αi

G(αi)
−1 (3.4)

Substituting (3.4) in (3.3) we have,

n−1∑

i=0
ci
G(x)−G(αi)

x−αi

G(αi)
−1 = 0

Let G(x)=
∑r

i=0 g ix
i and gr 6= 0 then

G(x)−G(αi)

x−αi

=gr(x
r−1+ xr−2αi+·· ·+αr−1

i )+

gr−1(x
r−2+ xr−3αi+·· ·+αr−2

i )+·· ·+

g2(x+αi)+

g1

(3.5)
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Equating the coefficients of xr−1, xr−2, . . . ,1 to zero in (3.5) we have the matrix H,

H =















gr
G(α0)

· · · gr
G(αn−1)

gr−1+α0gr
G(α0)

· · · gr−1+αn−1gr
G(αn−1)

...
. . .

...

g1+α0g2+···+αr−1
0

gr

G(α0)
· · · g1+αn−1g2+···+αr−1

n−1gr
G(αn−1)















for which c= (c0, . . . , cn−1) , cH
T = 0. The matrix H can be expanded such that,

H =















gr 0 0 · · · 0

gr−1 gr 0 · · · 0

gr−2 gr−1 gr · · · 0

...
...

...
. . .

...

g1 g2 g3 · · · gr






























1
G(α0)

1
G(α1)

· · · 1
G(αn−1)

α0

G(α0)
α1

G(α1)
· · · αn−1

G(αn−1)

α2
0

G(α0)

α2
1

G(α1)
· · · α2

n−1
G(αn−1)

...
...

. . .
...

αr−1
0

G(α0)

αr−1
1

G(α1)
· · · αr−1

n−1
G(αn−1)
















.

The matrix 













gr 0 0 · · · 0

gr−1 gr 0 · · · 0

gr−2 gr−1 gr · · · 0

...
...

...
. . .

...

g1 g2 g3 · · · gr















is invertible and need not be used, as a result the parity check matrix of a Goppa

code is given by

H =
















1
G(α0)

1
G(α1)

· · · 1
G(αn−1)

α0

G(α0)
α1

G(α1)
· · · αn−1

G(αn−1)

α2
0

G(α0)

α2
1

G(α1)
· · · α2

n−1
G(αn−1)

...
...

. . .
...

αr−1
0

G(α0)

αr−1
1

G(α1)
· · · αr−1

n−1
G(αn−1)
















.

Goppa codes are a large class and include the well known BCH codes as a sub-

class.

3.2 Theorem (From (MacWilliams and Sloane, 1983)). A Γ(L,G) defined with the

polynomial G(x)= xr and the set L = {Fqm \ {0}} corresponds to a BCH code defined

in Fq with length n= qm−1.
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Separable Goppa codes are Γ(L,G) defined by a square-free polynomialG(x), i.e.,

G(x) has distinct roots each having multiplicity exactly one. An irreducible Goppa

code is one which is defined by a Goppa polynomial which is irreducible over its

coefficient field Fqm .

Goppa codes defined in Fqm are GRS codes. The definition of generalised Reed

Solomon (GRS) codes is recalled from (MacWilliams and Sloane, 1983). A GRS code,

denoted by GRSk(α,v), consists of all the vectors,

(v1F(α1),v2F(α2), . . . ,vnF(αn)))

where α= (α1,α2, . . . ,αn) consists of distinct elements of Fqm , a template v= (v1,v2, . . . ,vn)

consists of arbitrary elements from Fqm none of which is zero and F(x) is a polyno-

mial of degree at most k−1. Also from (MacWilliams and Sloane, 1983) it is shown

that Goppa codes defined by some G(x) of degree r and the set L = {α1,α2, . . . ,αn}

are sub-field sub-codes of GRSn−r(α,v) with k= n− r and,

vi =
G(αi)

∏

j 6=i

(αi−α j)
, i = 1, . . . ,n. (3.6)

Again from (MacWilliams and Sloane, 1983) observe that dual code of a GRSk(α,v)

code is also a GRS code of the form GRSn−k(α, v́) for some template v́.

Binary Goppa Codes Binary Goppa codes are the most studied type of Goppa

codes. Some distance properties of binary Goppa codes are given. If a Goppa poly-

nomial G(x) has distinct non-repeated roots then the resulting binary Goppa code

has distance d ≥ 2deg(G(x))+1. If a Goppa polynomial G(x) has repeated roots then

the minimum distance of the resulting binary Goppa code is d ≥ deg(Ǵ(x))+1 where

Ǵ(x) is the smallest degree perfect square polynomial that is divisible by G(x). If a

Goppa polynomial G(x)=G1(x)G2(x) with G1(x) having distinct non-repeated roots

and G2(x) has repeated roots then the resulting binary Goppa code has minimum

distance d ≥ 2deg(G1(x))+deg(Ǵ2(x))+1 (MacWilliams and Sloane, 1983, Ch. 12).

3.5 Summary

Three important classes of algebraic codes have been discussed. These codes are

perhaps the most studied codes in coding theory and the short introduction in this

chapter only aims to serve the purposes of subsequent chapters. In practice BCH

and RS codes have found extensive use in communication systems whereas Goppa

codes are used in cryptosystems. These codes still an active area of research espe-

cially with the introduction of list decoding by Guruswami and Sudan (1999) that

extended the error correction capability of RS and BCH codes. Chapter 4 introduces

algebraic geometry (AG) codes which are evaluations of multivariate functions on
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a curve in a 2-dimensional plane. A more detailed treatment of these codes can be

found in (Blahut, 2008; MacWilliams and Sloane, 1983; Shu and Costello, 2004).
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4. ALGEBRAIC GEOMETRY CODES

4.1 Introduction

In order to meet channel capacity, as Shannon postulated, long error correction

codes with large minimum distances need to be found. A large effort in research

has been dedicated to finding algebraic codes with good properties and efficient

decoding algorithms. Reed Solomon (RS) codes are a product of this research and

have over the years found numerous applications, the most noteworthy being their

implementation in satellite systems and compact discs. These codes are defined

with non-binary alphabets and have the maximum achievable minimum distance

for codes of their lengths. A generalisation of RS codes was introduced by Goppa

using a unique construction of codes from algebraic curves. This development led

to active research in that area so that currently the complexity of encoding and

decoding these codes has been reduced greatly from when they were first presented.

These codes are AG codes and have much greater lengths than RS codes with the

same alphabets. Furthermore these codes can be improved if curves with desirable

properties can be found. AG codes have good properties and some families of these

codes have been shown to be asymptotically superior as they exceed the well-known

Gilbert-Varshamov bound (Tsfasman et al., 1982) when the defining finite field Fq

has size q≥ 49 with q always a square.

4.2 Bounds Relevant to Algebraic Geometry Codes

Bounds on the performance of codes that are relevant to AG codes are presented in

order to show the performance of these codes. Let Aq(n,d) represent the number

of codewords in the code space of a code C with length n, minimum distance d and

defined over a field of size q. Let the information rate be R = k/n and the relative

minimum distance be δ= d/n for 0≤ δ≤ 1 then

αq(δ)= lim
n→∞

1

n
log(Aq(n,δn))
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Fig. 4.1: Tsfasman Vladut Zink and Gilbert Varshamov Bound for q=32

which represents the k/n such that there exists a code over a field of size q that has

d/n converging to δ (Walker, 2000). The q-ary entropy function is given by

Hq(x)=







0, x= 0

x logq(q−1)− x logq x− (1− x) logq(1− x), 0< x≤ θ

The asymptotic Gilbert-Varshamov lower bound on αq(δ) is given by,

αq(δ)≥ 1−Hq(δ) for 0≤ δ≤ θ

The Tsfasman Vladut Zink bound is a lower bound on αq(δ) and holds true for

certain families of AG codes, it is given by

αq(δ)≥ 1−δ−
1

p
q−1

where
p
q ∈N/0

The supremacy of AG codes lies in the fact that the TVZ bound ensures that these

codes have better performance when q is a perfect square and q ≥ 49. The Figures

4.1 to 4.3 show the R vs δ plot of these bounds for some range of q.

4.3 Motivation for Studying AG Codes

Aside from their proven superior asymptotic performance when the field size q2 >
49, AG codes defined in much smaller fields have very good parameters. A closer
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look at tables of best known codes in (Grassl, 2007) and (Schimd and Shurer, 2004)

shows that algebraic geometry codes feature as the best known linear codes for

an appreciable range of code lengths for different field sizes q. To demonstrate a

comparison the parameters of AG codes with shortened BCH codes in fields with

small sizes and characteristic 2 is given. AG codes of length n, dimension k have

minimum distance d = n−k− g+1 where g is called the genus . Notice that n−k+1

is the distance of a maximum distance (MDS) separable code. The genus g is then

the Singleton defect s of an AG code. The Singleton defect is simply the difference

between the distance of a code and the distance some hypothetical MDS code of

the same length and dimension. Similarly a BCH code is a code with length n,

dimension k and distance d = n−k−s+1 where s is the Singleton defect and number

of non-consecutive roots of the BCH code. Consider Table 4.1 which compares the

parameters of AG codes from three curves with genera 3, 7 and 14 with shortened

BCH codes with similar code rates. At high rates, BCH codes tend to have better

minimum distances or smaller Singleton defects. This is because the roots of the

BCH code with high rates are usually cyclically consecutive thus contribute to the

minimum distance. For rates close to half AG codes are better than BCH codes

since the number of non-consecutive roots of the BCH code is increased as a result

of conjugacy classes. The AG codes benefit from the fact that their Singleton defect

or genus remains fixed for all rates. As a consequence AG codes significantly out-

perform BCH codes at lower rates. However the genera of curves with many points

in small finite fields are usually large and as the length of the AG codes increases

in F8, the BCH codes beat AG codes in performance. Tables 4.2 and 4.3 show the

comparison between AG and BCH codes in fields F16 and F32 respectively. With

larger field sizes, curves with many points and small genera can be used and AG

codes do much better than BCH codes. It is worth noting that Tables 4.1-4.3 show

codes in fields with size less than 49.

Rate AG code in F23 Number of points Genus Shortened BCH code in F23 BCH code in F23

0.2500 [23,5,16] 24 3 [23,5,12] [63,45,12]

0.3333 [23,7,14] 24 3 [23,7,11] [63,47,11]

0.5000 [23,11,10] 24 3 [23,10,8] [63,50,8]

0.6667 [23,15,6] 24 3 [23,14,6] [63,54,6]

0.7500 [23,17,4] 24 3 [23,16,5] [63,56,5]

0.8500 [23,19,2] 24 3 [23,18,4] [63,58,4]

0.2500 [33,8,19] 34 7 [33,7,16] [63,37,16]

0.3333 [33,11,16] 34 7 [33,11,14] [63,41,14]

0.5000 [33,16,11] 34 7 [33,15,12] [63,45,12]

0.6667 [33,22,5] 34 7 [33,22,7] [63,52,7]

0.7500 [33,24,3] 34 7 [33,24,6] [63,54,6]

0.2500 [64,16,35] 65 14 [64,16,37] [63,15,37]

0.3333 [64,21,30] 65 14 [64,20,31] [63,19,31]

0.5000 [64,32,19] 65 14 [64,31,22] [63,30,22]

0.6667 [64,42,9] 65 14 [64,42,14] [63,41,14]

0.7500 [64,48,3] 65 14 [64,48,11] [63,47,11]

Table 4.1: Comparison between BCH and AG codes in F8
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Rate AG code in F24 Number of points Genus Shortened BCH code in F24 BCH code in F24

0.2500 [23,5,18] 24 1 [23,4,11] [255,236,11]

0.3333 [23,7,16] 24 1 [23,6,10] [255,238,10]

0.5000 [23,11,12] 24 1 [23,10,8] [255,242,8]

0.6667 [23,15,8] 24 1 [23,14,6] [255,246,6]

0.7500 [23,17,6] 24 1 [23,16,5] [255,248,5]

0.8500 [23,19,4] 24 1 [23,18,4] [255,250,4]

0.2500 [64,16,43] 65 6 [64,16,27] [255,207,27]

0.3333 [64,21,38] 65 6 [64,20,25] [255,211,25]

0.5000 [64,32,27] 65 6 [64,32,19] [255,223,19]

0.6667 [64,42,17] 65 6 [64,41,13] [255,232,13]

0.7500 [64,48,11] 65 6 [64,47,10] [255,238,10]

0.8500 [64,54,5] 65 6 [64,53,7] [255,244,7]

0.2500 [126,31,76] 127 20 [126,30,57] [255,159,57]

0.3333 [126,42,65] 127 20 [126,41,48] [255,170,48]

0.5000 [126,63,44] 127 20 [126,63,37] [255,192,37]

0.6667 [126,84,23] 127 20 [126,84,24] [255,213,24]

0.7500 [126,94,13] 127 20 [126,94,19] [255,223,19]

Table 4.2: Comparison between BCH and AG codes in F16

4.4 Curves and Planes

In this section the notion of curves and planes is introduced. Definitions and dis-

cussions are restricted to two-dimensional planes and all polynomials are assumed

to be defined with coefficients in the finite field Fq. The section draws from the fol-

lowing sources (Blake et al., 1998; Massimo, 2003; Van-Lint, 1990; Walker, 2000).A

two dimensional affine plane denoted by A
2(Fq) is a set of points ,

A
2(Fq)= {(α,β) : α,β∈ Fq}

which has cardinality q2. Let f (x, y) be a polynomial in the bivariate ring Fq[x, y].

4.1 Definition (Curve). A curve is the set of points for which the polynomial f (x, y)

vanishes to zero. Mathematically, a curve X is associated with a polynomial f (x, y)

so that f (P)= {0|P ∈X }.

A curve X is called an affine curve if X ⊂A
2(Fq). A two dimensional projective

plane P
2(Fq) is the algebraic closure of A2 and is defined as the set of equivalence

points,

P
2(Fq)= {(α :β : 1) : α,β∈ Fq}∪ {(α : 1 : 0) : α∈ Fq}∪ {(1 : 0 : 0)}.

A curve X is said to lie in the projective plane if X ⊂ P
2(Fq). The affine polyno-

mial f (x, y) is in two variables, in order to define a projective polynomial in three
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Rate AG code in F24 Number of points Genus Shortened BCH code in F24 BCH code in F24

0.2500 [43,10,33] 44 1 [43,10,18] [1023,990,18]

0.3333 [43,14,29] 44 1 [43,14,16] [1023,994,16]

0.5000 [43,21,22] 44 1 [43,20,13] [1023,1000,13]

0.6667 [43,28,15] 44 1 [43,28,9] [1023,1008,9]

0.7500 [43,32,11] 44 1 [43,32,7] [1023,1012,7]

0.8500 [43,36,7] 44 1 [43,36,5] [1023,1016,5]

0.2500 [75,18,53] 76 5 [75,18,30] [1023,966,30]

0.3333 [75,25,46] 76 5 [75,24,27] [1023,972,27]

0.5000 [75,37,34] 76 5 [75,36,21] [1023,984,21]

0.6667 [75,50,21] 76 5 [75,50,14] [1023,998,14]

0.7500 [75,56,15] 76 5 [75,56,11] [1023,1004,11]

0.8500 [75,63,8] 76 5 [75,62,8] [1023,1010,8]

0.2500 [103,25,70] 104 9 [103,25,42] [1023,945,42]

0.3333 [103,34,61] 104 9 [103,33,38] [1023,953,38]

0.5000 [103,51,44] 104 9 [103,50,28] [1023,970,28]

0.6667 [103,68,27] 104 9 [103,68,19] [1023,988,19]

0.7500 [103,77,18] 104 9 [103,76,15] [1023,996,15]

0.8500 [103,87,8] 104 9 [103,86,10] [1023,1006,10]

Table 4.3: Comparison between BCH and AG codes in F32

variables homogenisation is used,

f (x, y, z)= zd f
(x

z
,
y

z

)

d =Degree of f (x, y)

which turns f (x, y) into a homogeneous1 polynomial in three variables. The points

in the projective plane are called equivalence points since for any point P ∈P
2(Fq),

if f (x0, y0, z0)= 0 then f (αx0,αy0,αz0)= 0 α ∈ F
∗
q, P = (x0 : y0 : z0)

because f (x, y, z) is homogeneous. The colons in the notation of a projective point

(x : y : z) represents this equivalence property. The affine space A
2(Fq) is a subset of

P
2(Fq) and is given by,

A
2(Fq)= {(α :β : 1) : α,β∈ Fq} ⊂P

2(Fq).

A projective curve can then be defined as a set of points,

X = {P : f (P)= 0,P ∈P
2(Fq)}.

A point on a projective curve X that coincides with any of the points of P2(Fq) of the

form,

{(α : 1 : 0) : α ∈ Fq}∪ {(1 : 0 : 0)}

i.e. points (x0 : y0 : z0) for which z0 = 0 is called a point at infinity. A third plane

called the bicyclic plane (Blahut, 2008) is a subset of the A
2(Fq) and consists of

1Each term in the polynomial has degree equal to d.
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points,

{(α,β) :α,β∈ Fq \{0}}.

This plane was defined so as to adapt the Fourier transform to AG codes since the

inverse Fourier transform is undefined for zero coordinates. A curve associated with

a polynomial f (x, y, z) that cannot be reduced or factorised is called irreducible. A

point on a curve is singular if its evaluation on all partial derivatives of the defining

polynomial with respect to each indeterminate is zero. Suppose fx, f y and fz denote

partial derivatives of f (x, y, z) with respect to x, y and z respectively. A point P ∈X

is singular if,

fx(P)= f y(P)= fz(P)= 0.

A curve X is nonsingular or smooth does not contain any singular points. To obtain

AG codes it is required that the defining curve is both irreducible and smooth. The

genus of a curve can be seen as a measure of how many bends a curve has on its

plane. The genus of a smooth curve defined by f (x, y, z) is given by the Plücker

formula,

g=
(d−1)(d−2)

2
d =Degree of f (x, y, z)

The genus plays an important role in determining the quality of AG codes. It is

desirable for curves that define AG codes to have small genera.

Example 4.1: Consider the Hermitian curve in F4 defined as,

f (x, y)= x3+ y2+ y affine

f (x, y, z)= x3+ y2z+ yz2 projective

It is straightforward to verify that the curve is irreducible. The curve has the fol-

lowing projective points,

(0 : 0 : 1) (0 : 1 : 1) (α :α : 1) (α :α2 : 1)

(α2 :α : 1) (α2 :α2 : 1) (1 :α : 1) (1 :α2 : 1) (0 : 1 : 0)

Notice the curve has a single point at infinity P∞ = (0 : 1 : 0). One can easily check

that the curve has no singular points and is thus smooth.

4.5 Important Theorems and Concepts

The length of an AG code is equal to the number of points on the defining curve.

Since it is desirable to obtain codes that are as long as possible, it is desirable to
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know what the maximum number of points attainable from a curve given a genus

is.

4.1 Theorem (Hasse Weil with Serre’s Improvement (Blake et al., 1998)). The

Hasse Weil theorem with Serre’s improvement says that the number of rational

points2 of an irreducible curve, n, with genus g in Fq is upper bounded by,

n≤ q+1+ g⌊2
p
q⌋.

Curves that meet this bound are called maximal curves. The Hermitian curves

are examples of maximal curves. Bezout’s theorem is an important theorem and is

used to determine the minimum distance of algebraic geometry codes. It describes

the size of the set which is the intersection of two curves in the projective plane.

4.2 Theorem (Bezout’s Theorem (Blake et al., 1998)). Any two curves Xa and Xb

with degrees of their associated polynomials as m and n respectively, have at most

mn common roots in the projective plane counted with multiplicity.

4.2 Definition (Divisor). A divisor on a curve X is a formal sum associated with the

points of the curve.

D =
∑

P∈X

npP

where np ≥ 0 are integers.

A zero divisor is one that has np = 0 for all P ∈X . A divisor is called effective if

it is not a zero divisor. The support of a divisor is a subset of X for which np 6= 0.

The degree of a divisor is given as,

deg(D)=
∑

P∈X

np deg(P)

For simplicity it is assumed that the degree of points P ∈X i.e. deg(P) is 1 (points of

higher degree are discussed in Chapter 7). Addition of two divisors D1 =
∑

P∈X npP

and D2 =
∑

P∈X ńpP is so defined,

D1+D2 =
∑

P∈X

(np+ ńp)P.

2A rational point is a point of degree one. See Chapter 7 for the definition of the degree of point

on a curve.
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Divisors are simply book keeping structures that store information on points of a

curve. Below is an example the intersection divisor of two curves.

Example 4.2: Consider the Hermitian curve in F4 defined as,

f1(x, y, z)= x3+ y2z+ yz2

and the curve defined by

f2(x, y, z)= x

with points

(0 : 0 : 1) (0 : 1 : 1) (0 :α : 1) (0 :α2 : 1) (0 : 1 : 0)

These two curves intersect at points all with multiplicity 1,

(0 : 0 : 1) (0 : 1 : 0) (0 : 1 : 1).

Alternatively, this may be represented using a divisor D,

D = (0 : 0 : 1)+ (0 : 1 : 0)+ (0 : 1 : 1)

with np the multiplicity, equal to 1 for all the points. Notice that the two curves

meet at exactly deg( f1)deg( f2)= 3 points in agreement with Bezout’s theorem.

For rational functions with denominators, points in divisor with np < 0 are poles.

For example D = P1 − 2P2 will denote an intersection divisor of two curves that

have one zero P1 and pole P2 with multiplicity two in common. Below is the formal

definition of the field of fractions of a curve X .

4.3 Definition (Field of fractions). The field of fractions Fq(X ) of a curve X defined

by a polynomial f (x, y, z) contains all rational functions of the form

g(x, y, z)

h(x, y, z)

with the restriction that g(x, y, z) and h(x, y, z) are homogeneous polynomials, have

the same degree and are not divisible by f (x, y, z).

Elements of a subset (Riemann-Roch space) of the field of fractions of X meet-

ing certain conditions are evaluated at points of the curve X to form codewords

of an AG code. Thus there is a one-to-one mapping between rational functions in

this subset and codewords of an AG code. The Riemann-Roch theorem defines this

subset and gives a lower bound on the dimension of AG codes. The definition of a

Riemann-Roch space is given.
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4.4 Definition (Riemann Roch Space). The Riemann Roch space associated with a

divisor D is given by,

L(D)= {t ∈ Fq(X )|(t)+D ≥ 0}∪0

where Fq(X ) is the field of fractions and (t) is the intersection divisor3 of the ratio-

nal function t and the curve X .

Essentially the Riemann-Roch space associated with a divisor D is a set of func-

tions t from Fq(X ) such that (t)+D has no poles. The rational functions in L(D) are

functions from the field of fractions Fq(X ) that must have poles only in the zeros

(positive terms) contained in the divisor D, each pole occurring with at most the

multiplicity defined in the divisor D and most have zeros only in the poles (negative

terms) contained in the divisor D, each zero occurring with at most the multiplicity

defined in the divisor D .

4.3 Theorem (Riemann Roch Theorem (Blake et al., 1998)). Let X be a curve

with genus g and D any divisor with degree (D) > 2g−2, then the dimension of

the Riemann Roch space associated with D, denoted by l(D) is,

l(D)= degree(D)− g+1

Algebraic geometry codes are the image of an evaluation map of a Riemann Roch

space associated with a divisor D so that

L(D)→ F
n
q

t→ (t(P1), t(P2), . . . , t(Pn))

where X = {P1,P2, . . . ,Pn,Px} is a smooth irreducible projective curve of genus g

defined over Fq. The divisor D must have no points in common with a divisor T

associated with X i.e. it has support disjoint from T. For example if the divisor T

is of the form

T = P1+P2+·· ·+Pn

then D = mPx. Codes defined by the divisors T and D = mPx are called one point

AG codes (since the divisor D has a support containing only one point) and AG

codes are predominantly defined as so since the parameters of such codes are easily

determined (Lachaud et al., 1995).

3An intersection divisor is a divisor that contains information on the points of intersection of two

curves.
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4.6 Construction of AG Codes

The following steps are necessary in order to construct a generator matrix of an AG

code,

1. Find the points of a smooth irreducible curve and its genus.

2. Choose divisors D and T = P1+ ·· · +Pn. From the Riemann-Roch theorem

determine the dimension of the Riemann-Roch space L(D) associated with

divisor D. This dimension l(D) is the dimension of the AG code.

3. Find k = l(D) linearly independent rational functions from L(D). These form

the basis functions of L(D).

4. Evaluate all k basis functions on the points in the support of T to form the k

rows of a generator matrix of the AG code.

Example 4.3: Consider again the Hermitian curve defined in F4 as,

f (x, y, z)= x3+ y2z+ yz2

1. In Example 4.1 this curve was shown to have 8 affine points and one point at

infinity. The genus of this curve is given by the Plücker formula,

g=
(r−1)(r−2)

2
= 1

where r = 3 is the degree of f (x, y, z).

2. Let D = 5P∞ where P∞ = (0 : 1 : 0) and T be the sum of all 8 affine points. The

dimension of the Riemann-Roch space is then given by,

l(5P∞)= 5−1+1= 5

thus the AG code has dimension k= 5.

3. The basis functions for the space L(5P∞) are

{t1, . . . , tk}=
{

1,
x

z
,
x2

z2
,
y

z
,
xy

z2

}

By examining the basis it is clear that t1 = 1 has no poles thus (t1)+D has no

poles also. Basis functions with denominator z have (t i)= S−P∞ where S is

a divisor of the numerator. Thus (t i)+D has no poles. Basis functions with

denominator z2 have (t j) = S− 2P∞ where S is a divisor of the numerator.

Thus (t j)+D also has no poles.
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4. The generator matrix of the Hermitian code defined with divisor D = 5P∞ is

thus,

G =









t1(P1) · · · t1(Pn)

...
. . .

...

tk(P1) · · · tk(Pn)









=














1 0 0 0 0 α2 α2 1

0 1 0 0 0 α2 α 0

0 0 1 0 0 α 1 α

0 0 0 1 0 α 0 α2

0 0 0 0 1 1 1 1














4.4 Theorem (From (Blake et al., 1998)). The minimum distance of an AG code is

given by,

d ≥ n−degree(D)

Thus the Hermitian code defined by D = 5P∞ is a [8,5,3]4 code. The dual of an AG

code has parameters (Hoholdt et al., 1998),

Dimension, k⊥ = n−degree(D)+ g−1

Distance, d⊥ ≥ degree(D)−2g+2

4.6.1 Affine Hermitian and Reed Solomon Codes

In (Justesen et al., 1989) a description of AG codes on the affine plane was given

and the construction of these codes does not require deep knowledge of algebraic ge-

ometry or use of divisors. Let VJ be a vector space of all homogeneous polynomials

of degree at most J with J < q in a finite field Fq. Let the affine points of a nonsin-

gular irreducible curve be the set X = {P1,P2, . . . ,Pn} with n points. A Hermitian

code G(J) is given as the result of the evaluation,

G(J)= {( f (P1), f (P2), f (P3)...... f (Pn))| f ∈VJ}

H(J)=G(J)⊥

A polynomial basis of VJ is given as the first k monomials,

xi y j i ≥ 0, j ≥ 0. (4.1)
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If the first k monomials in (4.1) are given as { f1(x, y), f2(x, y), . . . , fk(x, y)} the gener-

ator matrix for the code G(J) is given by,

G =














f1(P1) f1(P2) . . . f1(Pn)

f2(P1) f2(P2) . . . f2(Pn)

. . . .

. . . .

fk(P1) fk(P2) . . . fk(Pn)














(4.2)

The dimension k of the code is not arbitrary and is determined by the Riemann

Roch theorem,

k=mJ− g+1

for a curve of degree m and genus g. For each basis in (4.1), linear dependence

between the rows of G is avoided by a careful choice of the monomials. For example

the Hermitian code defined by xm + ym−1+ y = 0 will have three rows of G corre-

sponding monomials to xm,ym−1 and y linearly dependent. To avoid this the degree

of x is restricted so that the monomial basis of the Hermitian code becomes,

xi y j 0≤ i <m, j ≥ 0. (4.3)

Additionally, the monomials are ordered using a graded lexicographic ordering

(see Section 5.2.1) so that they are of the form,

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, ......

The designed minimum distance of the code of length n is determined by Bezout’s

theorem and is given by

d = n−mJ

The dual code has the matrix in (4.2) as a parity check matrix. The dimension of VJ

for these codes is,

k⊥ = n− (mJ− g+1)

and minimum distance,

d⊥ =mJ−2g+2

The important parameter J is only defined in the range,

m−2≤ J ≤
⌊

n−1

m

⌋

(4.4)

Consider the code defined by the Hermitian curve in F4. The finite field is defined

with the primitive polynomial t2 = t+1 and primitive element α. The Hermitian
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curve is given as,

xm+ ym−1+ y= 0

where m=p
q+1= 3. The curve has n= q

3
2 = 8 affine points,

(0,0) (0,1) (α,α) (α,α2)

(α2,α) (α2,α2) (1,α) (1,α2)

The curve has genus g = 1/2(m−1)(m−2) = 1 and from (4.4), 1 ≤ J ≤ 2. If J = 2

according to (4.3) the first k=mJ− g+1= 6 monomials form a basis,

1, x, y, x2, xy, y2

The generator matrix for G(J) is

G =

















1 1 1 1 1 1 1 1

0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

0 0 1 1 α2 α2 α α

0 0 α α2 α2 1 1 α

0 1 α2 α α2 α α2 α

















The code has minimum distance dmin = 2 and the dual code H(J) has H =G with

dmin = 6. Reed Solomon codes can be represented using a similar construction.

Using the polynomial

x+ y= 0

the curve associated with it X = {(0,0), (1,1), (α,α), (α2,α2), . . . , (αq−2,αq−2)} is simply

a diagonal line with q points in Fq and a zero genus. Choosing any J in the range

0≤ J ≤ q−2 so that,

k= q− (J+1)

and

d = J+2

A monomial basis of the form,

1, x, y, x2, xy, y2, . . .

with monomials with degree at most J can also be chosen. Polynomials with the

indeterminate x as their evaluation will cause linear dependency on the rows of H

(since x = y for all points of the curve) and are therefore neglected. The new basis

is,

1, y, y2, y3, . . . , yJ
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The H matrix can then be the evaluation of these monomials with the points of

the line. The resulting code H(J) is a singly extended RS code with parameters

(q,q− J−1,J+2).

4.7 Summary

Algebraic geometry codes are codes obtained from curves. First the motivation for

studying these codes is given. From an asymptotic point of view some families

of AG codes have superior performance to the previous best known bound on the

performance of linear codes, the Gilbert-Varshamov bound. For codes of moderate

length AG codes have better minimum distances than their main competitors, non-

binary BCH codes with the same rate and length defined in the same finite fields.

Theorems and definitions as a precursor to AG codes are given. Key theorems are

Bezout’s and Riemann-Roch. Examples using the well known Hermitian code in a

finite field of cardinality 4 are then provided. Finally a simplified affine descrip-

tion of Hermitian and Reed Solomon codes is presented. This chapter introduces

concepts on AG codes that will be used in subsequent chapters.
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5. DECODING ALGEBRAIC CODES

5.1 Introduction

In this chapter decoding of algebraic codes for two common channels; the AWGN

channel and the erasure channel is considered. The BMSA (Sakata, 2010) decoder

for AG codes for hard decision decoding and the BMA (Berlekamp, 1974) for the

hard decision decoding of RS codes in the AWGN channel are introduced and imple-

mented. The ordered reliability (Fossorier and Lin, 1995) decoder for soft decision

decoding of linear block codes in the AWGN channel is also presented. An erasure

correction algorithm, the in-place algorithm (Cai et al., 2005), for the erasure chan-

nel is also given. This chapter presents results on the performance comparison of

AG codes to BCH codes in the erasure and AWGN channels using the standard

decoding algorithms for these codes.

5.2 Bounded Distance Decoding

Algebraic geometry codes were discovered as a consequence of the search for gen-

eralizations of BCH, Reed Solomon and other algebraic codes. As a result research

has focused on implementing already known decoding algorithms for Reed Solomon

and BCH codes developed by Peterson, and then Berlekamp and Massey on AG

codes. RS and BCH codes could correct errors with various algorithms up to their

bounded error correction limit of (d−1)/2 with polynomial complexity. Success in

decoding AG codes up to the bounded distance was limited until the introduction

of majority voting of missing syndromes by Feng and Rao (Feng and Rao, 1993).

Subsequent decoding procedures built on this notion to extend the correction capa-

bility of the codes. Table 5.1 gives the chronological milestones in the decoding of

AG codes up to the designed minimum distance.

Two algorithms have since taken the fore on decoding of AG codes namely, the

Feng and Rao algorithm which uses linear algebra only to decode AG codes and

the Sakata Berlekamp Massey algorithm which is an extension of the Berlekamp

Massey algorithm to 2 dimensions. The two algorithms have since been modified

so that they both have the same complexity of O(n3−2/(m+1)) when the codes are

constructed in an m-dimensional affine space (Blahut, 2008)(Feng and Rao, 1993).
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Year Author Correction Decoding Algorithm

1989 Justesen et al (d− g−1)/2 Peterson’s Decoding (First

attempt)

1989 Pellikan (d−1)/2 Algebraic Geometry (Com-

plex and inefficient)

1990 Skorobogatov and Vladut (d− g−1)/2

1991 Feng and Rao (d−1)/2 Peterson’s (Introduced ma-

jority voting)

1992 Justesen et al (d− g/2−1)/2 Peterson’s decoding

1993 Ehrhad (d−1)/2 Sugiyama’s decoding (Only

when d > 6g)

1995 Sakata and Jensen (d−1)/2 BM decoding (majority vot-

ing)

Table 5.1: Developments in decoding AG codes

5.2.1 Berlekamp Massey Sakata Algorithm

The BMSA (Blahut, 2008; Sakata, 1988, 2010; Sakata et al., 1995) is an extension

of the well known Berlekamp Massey Algorithm to codes of multiple dimensions.

AG codes are two dimensional codes and the BMSA can be used to correct up to

t = d−1
2

errors. Whereas the Berlekamp Massey algorithm finds the error locator

polynomial of a corrupted codeword, the BMSA finds a set of polynomials whose

common roots are locations of errors in the corrupted AG codeword. These sets of

polynomials are not unique and form the generators of a locator ideal for those er-

rors. These polynomials are only unique for a certain syndrome when represented

as a reduced Groebner basis i.e. reduced gaussian form in two dimensions.

5.2.1.1 Preliminaries

Firstly some terms used in the algorithm are defined. Discussions are restricted to

the two dimensional plane.

. Ideal : Recall the definition of an ideal from Definition 3.1. An ideal is proper

if it is not zero or F[x, y] and it is principal if there one of its elements which

every other one is a multiple of.

. Generator : A generator of a principal ideal is a member of that ideal which

every other member is a multiple of. A generator set of an ideal is a set of

polynomials which are members of that ideal that generate all the members

of the ideal.

. Monomial Order: A monomial order is the ordering of monomials in poly-

nomials. An ordering is called total if there is no ambiguity in the ordering.

An ordering on monomials is called partial if ambiguities exists on the or-

der. The bidegree of a bivariate monomial is the degree of its indeterminates.

62



Chapter 5. Decoding Algebraic Codes

An example of a partial order is the division order. In a division order in a

monomial m1(x, y) precedes another m2(x, y) in the order if m1(x, y) divides

m2(x, y) without a remainder. Formally, for a division order on monomials

(denoted by <P ) with bidegrees (i1, j1) and (i2, j2) , (i1, j1) is said to be less

than (i2, j2) in the ordering if i1 < i2 and j1 < j2. Clearly this is a partial

order since there are instances when the orders of monomials cannot be re-

solved. An example of a total order, denoted by <T is the graded lexicographic

ordering in which the monomials are first ordered by the sum of their de-

grees and then by the order of their indeterminates in the list of alphabets.

For example the graded lexicographic order in the ring of polynomials F[x, y]

is (0,0), (1,0), (0,1), (2,0), (1,1), (0,2),(3,0),(2,1) . . .. The degree of a bivariate

polynomial is the bidegree of its monomial(called the leading monomial with

the largest degree in a total order. Consequently polynomials can be sorted in

a total order by comparing the bidegrees of their leading monomials.

. Footprint of an ideal: The footprint or Delta-set of an ideal is set of all

bivariate polynomial degrees whose polynomials will divide any member of

the ideal without remainders. Alternatively, the footprint of an ideal is a set

of all bidegrees that are less in the division order (<P ) than any polynomial

member of the ideal.

. Minimal Basis: A minimal basis is a generator set of an ideal that consists of

only monic polynomials (polynomials whose leading coefficient is 1) and whose

footprint is the footprint of the ideal.

The BMSA accepts the two dimensional syndrome S(a,b) of an AG code and finds

the polynomials whose roots are error locations. The graded lexicographic ordering

is used to order the elements of the syndrome array and the locator polynomials.

The algorithm proceeds by processing the syndrome array element by element and

at each stage the locator polynomials are checked if they meet the recursive rela-

tionship at that point of the syndrome array. The recursive relationship is given

by,

s̄i∑

k̄

F i

k̄
Sk̄+(r̄−s̄i ) = 0 for all i (5.1)

where S is the syndrome array at a point of bidegree r̄ and F i is the ith polyno-

mial with bidegree s̄i. The set F= {F0,F1, . . . ,F l} consists of polynomials that have

satisfied (5.1) at a previous stage in the algorithm. A nonzero value for (5.1) by

a polynomial in F is called a discrepancy and polynomials that produce this dis-

crepancy are updated. Not all polynomials are tested by (5.1), since the recursion

holds valid only when r̄− s̄i ≥ 0̄ polynomials that do not meet this criterion are not
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tested and are not updated. An important property of each polynomial in the set F

is called the span of the polynomial so that,

span(F i)= r̄− s̄i.

The footprint, ∆r̄, is calculated at each stage based on the bidegrees of the polynomi-

als in F. The footprint consists of all bidegrees less than any of the bidegrees of the

polynomials in F in the partial order <P . Another important set is the set of inte-

rior polynomials denoted by G= {G0,G1, . . . ,Gl−1} which contains polynomials that

were previously in F at some stage in the algorithm with a nonzero discrepancy and

whose spans at that stage correspond to the largest bidegrees in the footprint at the

present stage. The set G is used to update polynomials with a nonzero disrepancy

in F.

5.2.1.2 Description

The decoding algorithm is described here for Hermitian codes. The Hermitian curve

is defined as ,

xm+ ym−1+ y= 0 (5.2)

with m = q+1 in field Fq2 . The curve is maximal and meets the Hasse-Weil upper

bound on the number of points. The algorithm is divided into two parts; deter-

mining the values of unknown syndromes and updating minimal polynomials. The

syndrome is computed as the two dimensional Fourier transform (FT) of the re-

ceived sequence, however the symbols are first placed on the points that lie on the

curve in the plane prior to the FT. This definition for the syndrome holds true for

Blahut’s presentation of the Hermitian code and the dual code defined by Justesen

(Justesen et al., 1989). For a received vector r of length n, the FT is defined as,

S(a,b) =
n∑

i=0
r ix

a
i y

b
i (5.3)

Since the defining set for the codes is given as a+ b ≤ J, the initial syndromes are

given by

S(a,b) a+b≤ J

all other syndromes are unknown. To correct up to t =
⌊
d−1
2

⌋

errors, the unknown

syndromes need to be determined by either using the equation of the defining curve

or by majority voting. In a plane, the syndrome components agree with the roots of

the curve. For the Hermitian curve in (5.2) the syndromes obey the relationship,

S(a+m,b)+S(a,b+m−1)+S(a,b+1) = 0

S(a,b) = S(a−m,b+m−1)+S(a−m,b+1) = 0
(5.4)
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From (5.4) any syndrome element S(a,b) can be determined if a<m. For cases where

a>m and the syndrome is unknown majority voting is applied. In a simplified form

majority voting is just using the set of minimal polynomials F at some stage of the

BMSA to predict (since the polynomials are recursive) the next syndrome and the

value with the highest occurrence is chosen as the next syndrome element. For each

polynomial F i ∈F

s̄i∑

k̄

F i

k̄
Sk̄+(r̄−s̄i ) = 0

F i
s̄i
S r̄ =

s̄i−1̄∑

k̄

F i

k̄
Sk̄+(r̄−s̄i )

(5.5)

where r̄ = (a,b). The polynomials in F are monic so that F i
s̄i
= 1 and s̄i−1̄ represents

the bidegree preceding si in the chosen monomial order.

vi = S r̄ =
s̄i−1̄∑

k̄

F i

k̄
Sk̄+(r̄−s̄i ) (5.6)

Equation (5.1) applies to polynomials in F with span span= r̄− s̄i ≥ 0. This simpli-

fied majority voting is not sufficient since a vote cannot be decided if all the elements

vi are distinct. A more comprehensive voting scheme was suggested in (Sakata et

al., 1995) and utilizes the properties of the BMSA that the size of the footprint ∆

at the end of the algorithm does not exceed t= ⌊d−1
2

⌋ and certain restrictions on the

number of polynomials in F at some stage of the algorithm that do have a nonzero

discrepancy. Equation (5.4) can be presented as,

S(a+m,b−m+1) = S(a,b)+S(a,b−m+2) b≥m−1 (5.7)

Let si = (s1, s2) if a− s1+m≥ 0 and b−m+1− s2 ≥ 0 then combining (5.7) and (5.1)

results in,
s̄i−1̄∑

k̄

Fk̄S
i
(k1+a−s1+m,k2+b−m+1−s2)+S(a,b−m+2) =wi (5.8)

where k̄ = (k1,k2). To perform majority voting of unknown syndromes at a stage in

the algorithm the sets,

K1 = {(x, y)|0≤ x≤ a∧0≤ y≤ b}

K2 = {(x, y)|0≤ x<m∧0≤ y≤ b−m+1}

K =K1∪K2
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are formed. Associated with each polynomial F i ∈F the sets,

A i = {(x, y)∈K |x+ s1 ≤ a∧ y+ s2 ≤ b}

Bi = {(x, y)∈K |x+ s1 ≤ a+m∧ y+ s2 ≤ b−m+1}

Finally values from (5.6) and (5.8), distinct values from wi and vi obtained from

every valid polynomial in F are selected and form the set of finite field elements

a1,a2, . . . ,az which are candidates for the value S(a,b). For each a j,

P j =
(

⋃

vi=a j

A i∪
⋃

wi=a j

Bi

)∖

∆(a,b) (5.9)

and S(a,b) = {a j : |P j| = |P j|max
}.

For polynomials in the set F at some stage in the algorithm that have a nonzero

discrepancy an update is necessary. A polynomial is not updated if its discrepancy

is zero or if it does not reach that stage i.e. at some stage r̄ = (a,b) the polynomial

of degree s̄i = (s1, s2) reaches r̄ if a− s1 ≥ 0 and b− s2 ≥ 0. The algorithm initializes

with an empty footprint ∆=∅ and the update rules are given as in Algorithm 5.1.

The BMSA is now illustrated with a specific example. The following set of affine

rational points are obtained from the Hermitian curve over F4

(0,0) (0,1) (α,α) (α,α2)

(α2,α) (α2,α2) (1,α) (1,α2)

The dual Hermitian code defined in Section 4.6.1 has parity check matrix H and

and the generator matrix G with j = 1 and dmin = 3 and is a single error correcting

code. The G and H matrices are,

H =








1 1 1 1 1 1 1 1

0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2








G =














1 0 0 0 0 α2 α2 1

0 1 0 0 0 α2 α 0

0 0 1 0 0 α 1 α

0 0 0 1 0 α 0 α2

0 0 0 0 1 1 1 1













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G is in reduced form and the reduction process may involve column interchanges

in both the H and G matrix. These interchanges need to be reversed in order for

the syndrome evaluation to be accurate since the code is not cyclic. The codeword,

c=
[

0 1 0 α2 α 0 0 0
]

is chosen and the corrupted vector is

r =
[

0 1 0 α2 α α 0 0
]

The correspondence between the points of the curve and the coordinates of the code-

words according to the points evaluation is given by (5.2). The syndrome can then

be computed and is given by Equation (5.3) for the initial syndromes that satisfy

a+b≤ J. The syndrome is,

Points Coordinates

(0,0) 0

(0,1) 1

(1,α) 2

(1,α2) 3

(α,α) 4

(α,α2) 5

(α2,α1) 6

(α2,α2) 7

Table 5.2: Correspondence between points and coordinates of the Hermitian code

S =








α 1 ∗

α2 ∗ ∗

∗ ∗ ∗








where * represents the unknown syndromes. The graded lexicographic monomial

order in the bivariate ring F4[x, y] is given by (5.3).

The algorithm initialises with,

F= {1} G=∅ ∆=∅ span(G)=∅
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Index 0 1 2 3 4 5

Bidegree (0,0) (1,0) (0,1) (2,0) (1,1) (0,2)

Monomial 1 x y x2 xy y2

Table 5.3: Graded lexicographic order in F4[x, y]

and at stage 0, r̄ = (0,0) and degree of F1 is s̄1 = (0,0) so that

r̄− s̄1 = (0,0)− (0,0)= (0,0) (F1 reaches r̄)

the discrepancy is calculated as

δ1 =
s̄1∑

k̄

F1

k̄
Sk̄+(r̄−s̄1)

δ1 =
(0,0)∑

k̄

F1

k̄
Sk̄+(0,0)

δ1 = F1
(0,0)S(0,0)

δ1 = 1 ·α=α

the polynomial F1 has a nonzero discrepancy and needs to be updated according to

the rules of Algorithm 5.1. Since r̄− s̄1 ∉ ∆(0,0) the rule of line 9 of Algorithm 5.1

is applied. r̄− s̄1 = (0,0) is appended to the footprint so that ∆(1,0) = {(0,0)} which

changes the bidegrees and number of polynomials in F.

0 1 2

0

1

2

deg(y)

deg(x)

Fig. 5.1: Before update at stage 0

The blackened rectangles in Figures 5.1 and 5.2 are the bidegrees of the leading

monomials in F while the grey rectangles represent the bidegrees of polynomials

in the set F. Appending (0,0) to the footprint expands it so that the new bidegrees

of the minimal polynomials are (1,0) and (0,1) therefore the update needs to take

into consideration this fact. For the first new bidegree ´̄s1 = (1,0), (q1,q2)= ´̄s1− s̄1 =
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0 1 2

0

1

2

deg(y)

deg(x)

Fig. 5.2: After update at stage 0

(1,0)− (0,0)= (1,0) as in line 13 of 5.1,

F́ i = xq1 yq2Fi+
δi

δ j

xp1 yp2G j

and since G=∅, G j = 0. The update is,

F́1 = x1y0 ·1= x.

Similarly, for the bidegree ´̄s2 = (0,1), (q1,q2) = ´̄s2− s̄1 = (0,1)− (0,0)= (0,1) and an

update polynomial,

F́1 = x0y1 ·1= y.

The set G also needs to be updated. Since the polynomial F1 = 1 has the required

bidegree and has a nonzero discrepancy it is appended to G. The span of F1 ,

span(F1)= r̄−s̄1 = (0,0) is then stored and also its discrepancy δ1 by premultiplying,

G1 =
1

δ1
F1

G1 =
1

α
=α2

At stage 1, r̄ = (1,0) and the algorithm sets are

F= {x, y} G= {α2} span(G)= {(0,0)} ∆(1,0) = {(0,0)}

The polynomials in F are tested to see if they reach r̄,

r̄− s̄1 = (1,0)− (1,0)= (0,0)

r̄− s̄2 = (1,0)− (0,1)= (1,−1)

Only F1 = x reaches r̄. The discrepancy of this polynomial is,

δ1 = 0 ·S(0,0)+1 ·S(1,0) =α2
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and r̄− s̄ = (0,0) is already in the footprint therefore there is no need to expand it.

The update for polynomial F1 then follows line 7 of Algorithm 5.1,

´̄F1 = x+α2 ·G1 = x+α2 ·α2 = x+α

Aside from the fact thatG1 =α2 is the only polynomial inG, it satisfies the criterion

s̄1− (r̄− span(G1))≥ (0,0). The new sets are,

F= {x+α, y} G= {α2} span(G)= {(0,0)} ∆(0,1) = {(0,0)}

At stage 2, r̄ = (0,1) and only F2 = y reaches r̄ with discrepancy,

δ2 = 0 ·S(0,0)+0 ·S(1,0)+1 ·S(0,1) = 1 ·1= 1

with r̄− s̄2 = (0,0) which is already in the footprint. F2 is updated by,

´̄F2 = y+1 ·G1 = y+α2

The new sets are,

F= {x+α, y+α2} G= {α2} span(G)= {(0,0)} ∆(2,0) = {(0,0)}

At stage 3, r̄ = (2,0) the syndrome element S(a,b) is unknown, the majority voting

scheme is used and S(a,b) = 1 emerges from the votes. Only polynomial F1 = x+α

reaches r̄ with r̄− s̄1 = (1,0) which is not in the footprint. The discrepancy of F1 is

δ1 = 0 therefore no update is necessary and the sets are unchanged.

At stage 4, r̄ = (1,1) and the syndrome S(1,1) is unknown. Recall that for an un-

known syndrome element S(a,b), if a < m the majority voting procedure is used to

determineS(a,b). Only one candidate emerges from the votes and S(a,b) = α. Using

the new syndrome value decoding proceeds as before and checks if polynomials in

F reach r̄. Both polynomials in F reach r̄ and both have zero discrepancies , even

though r̄− s̄1 = (0,1) ∉ ∆1,1, the footprint is not expanded and the sets remain un-

changed.

For the remaining stages of the algorithm all the syndromes can be computed us-

ing majority voting or the equation of the curve and the polynomials in F remain

unchanged since they have zero discrepancies at every stage. The common root of

the two polynomials in F at the end of the algorithm is the root (α,α2) which from

Figure 5.2 corresponds to co-ordinate 5 of the received vector indicating an error

has occurred there.
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Algorithm 5.1 Update for BMSA

Require: At some stage r̄ = (a,b) of the BMSA

1: for i = 1 : |F| do
2: if r̄− s̄i ≥ (0,0) then

3: Calculate the discrepancy δi of Fi

4: if δi 6= 0 then

5: if r̄− s̄i ∈∆(a,b) then

6: Set (p1, p2)= s̄i− (r̄− span(G j))≥ (0,0) for some G j ∈G

7: Update with F́ i = F i+ δi

δ j
xp1 yp2G j

8: else if r̄− s̄i ∉∆(a,b) then

9: Append r̄− s̄i into ∆(a,b)

10: Calculate new bidegrees bideg{F́}

11: for Every ´̄sk ∈ bideg(F́) do

12: if ´̄sk− s̄i ≥ (0,0) then

13: Set ´̄sk − s̄i = (q1,q2) and (p1, p2) = ´̄si − (r̄− span(G j)) ≥ (0,0) for

some G j ∈G

14: Update F́ i = xq1 yq2Fi+ δi

δ j
xp1 yp2G j

15: end if

16: end for

17: end if

18: end if

19: end if

20: end for
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5.2.1.3 Finding Error Values For BMSA

The error polynomial is given by

e(x, y)=
t−1∑

0

eux
r ys

where {r, s} are the powers of the error locations (common roots) obtained from the

BMSA and e(x, y) has exactly t= ⌊d−1
2

⌋ nonzero coefficients. The error values eu can

be found from using any t independent equations of the n−k possible equations,

e(αa,αb)=
∑

euα
raαsb =

n∑

i=0
r ix

a
i y

b
i = S(a,b) a+b≤ J (5.10)

Solving the t equations for eu then gives the error values. Using equation (5.10) is

straightforward if the error locations are in the bicyclic plane. Recall the bicyclic

plane is a subset of an affine plane with points having no zero coordinates.

For the previous example t= 1 and the error location (α,α2) is in the bicyclic plane.

We have the bivariate error polynomial as,

e(x, y)= e0xy
2

since the error location from the BMSA is (α,α2). Choosing a= b= 0 we have,

e(α0,α0)= e0 = S(0,0)

=α

thus the error vector is

e=
[

0 0 0 0 0 α 0 0
]

.

Only bicyclic Hermitian codes are treated in Section 5.5.2 and for these codes the

procedure above is sufficient to obtain the error values. For the case of Hermitian

codes with error locations that have a zero coordinate (i.e. defined in the affine

plane), Liu (1999) presents a procedure for finding these error values. The method

requires knowledge of syndromes,

S(a,b) a≤ q−1, b≤ q−1

Also for affine AG codes Leonard (1996) presents a generalized Forney formula for

finding the error values.

72



Chapter 5. Decoding Algebraic Codes

5.2.1.4 Decoding Reed Solomon Codes

The algorithm (Sakata, 2010) is given in detail by Algorithm 5.2. In Section 4.6.1 it

is shown how Reed Solomon codes can be constructed as AG codes. In this section

the classical decoding of Berlekamp andMassey as applied to RS codes is presented.

Terminology already established in Section 4.6.1 where decoding of AG codes was

implemented in two dimensions is used. This style of presentation follows (Sakata,

2010). The BerlekampMassey Algorithm (BMA) can be viewed as a one dimensional

version of the SBMA. A key difference between the two algorithms is that in the

BMA the syndromes of a received sequence are sufficient to completely determine

the error locator polynomial whereas in the SBMAmore syndromes need to be found

using majority voting in order to get an error polynomial with the required roots.

The single minimal polynomial f and an interior polynomial g are defined first.

Other important parameters are given as,

s= deg( f ) ,δ f = discrepancy( f ) ,δg = discrepancy(g), span(g), ∆= footprint

The syndrome vector is given as the FT of the received sequence,

S =
n−1∑

i=0
r iω

(i j) j = 0,1, ..,n−1

where ω is an nth root of unity in the field Fq. The discrepancy of a minimal poly-

nomial at stage r is calculated using the recursive relationship,

δ f =
s∑

i=0
f iS i+(r−s)

The BMA decoding on the (7,5,3)8 single error correcting RS codes is used as an

example. Let F8 be a finite field defined with primitive polynomial x3 = x+1 with

the element α as a root. The roots of a generator polynomial of the code as {1,α} are

chosen. Suppose the transmitted codeword c̄, the received vector r̄ and the error

vector ē are given as

c̄=
[

1 0 0 0 0 α α3
]

r̄ =
[

1 1 0 0 0 α α3
]

ē=
[

1 0 0 0 0 0 0
]

The syndrome vector is given by,

S =
[

1 α ∗ ∗ ∗ ∗ ∗
]
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where the syndrome values denoted by * are not relevant since they are not indexed

by the orders of the roots of the code. At step r = 0,

δ f =
s∑

i

f iS i+(r−s)

δ f = 1 ·1= 1

and span( f ) = r− s = 0− 0 is not in the footprint ∆, therefore the update rule of

Algorithm 5.2 line 9 is applied. Since 0 is the maximum element in the footprint

ś= 0+1= 1

f́ = x1−0 = x

At step r = 1 the discrepancy is,

δ f = 0 ·1+1 ·α=α

and span( f )= r− s= 1−1= 0 is already in the footprint. The update for this case is

given by line 5 of the algorithm,

f́ = x+
α

1
x1−(1−0) ·1

= x+α

The algorithm terminates here since the number of roots of f is equal to the error

correction limit of the code t= 1. The root of f is α which has order 1 and therefore

points to index 1 of the received vector as an error. The error value can be obtain by

simply evaluating the received polynomial at the inverse of the error location α.

r(α−1)= 1+α−1+α−5 ·α+α−6 ·α3

= 1

5.3 Maximum Likehood Erasure Decoding

A linear code of minimum distance d is guaranteed to correct d−1 erasures but

will also correct some erasure patterns greater than d−1 (MacWilliams and Sloane,

1983). An analysis of the number of correctable error patterns was presented by

(Tomlinson et al., 2007) and was found to be dependent on the weight distribution

of low weight codewords. The procedure is akin to the erasure method of finding

the minimum distance of linear code described in Section 2.5.1. The first steps

involve testing for solvability in column co-ordinates of the parity check matrix

that correspond to the erased symbols. If the erasures are solvable the erasures

are then solved using back substitution or any other means of solving homogeneous
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equations. On the other hand, unsolvable erasure patterns are left unaltered. The

procedure is described algorithmically in 5.3. At the step 9 of the algorithm, the

submatrix formed by the columns of H corresponding to the positions of erasures

and the rows of H will be in upper triangular form.

5.4 Ordered Reliability Decoding

In erasure decoding an error correction capability of dmin−1 erasures is guaran-

teed however sometimes more errors can be corrected. However in error correction

of codes, bounded distance decoding only guarantees
⌊
dmin−1

2

⌋

errors that can be

corrected. In errors-only decoding a natural disadvantage is that the decoder has

no knowledge of the error locations. In an ideal scenario it would be desirable to

have the locations of error and each error could be treated as an erasure and cor-

rect many more errors. However this is not possible. A midway solution is to use

channel information and attempt to determine the reliability of the individual el-

ements of the received sequence and based on some preferred criterion select the

least reliable elements and treat as erasures. Estimates of reliability from channel

information are not perfect and in soft decision decoding of linear block codes the

decoding procedure for each received sequence will have to be repeated a number of

times so that a list of candidate codewords is created with each decoding. A code-

word from the list that minimizes error is then chosen.

In AWGN channels using binary phase shift keying the reliability of the elements

of the received sequence is known to be proportional to the a-priori likelihood ratio.

At the ith position of the received sequence ȳ given that a codeword c̄ was sent the

log-Likehood ratio is given,

L i = log

(
Pr(yi|ći = 0)

Pr(yi|ći = 1)

)

= log





1p
2πσ

e−(yi+1)
2/2σ2

1p
2πσ

e−(yi−1)
2/2σ2





=−
2

σ2
yi

(5.11)

therefore the probability of the ith element of the received sequence ȳ being correct

is proportional to |yi| (Tjhai, 2007). Reliability based soft decision procedures uti-

lize these reliability values to order the received sequence ȳ in order of reliability

and attempt to correct errors. Notable reliability based decoding algorithms are the

generalized minimum distance decoding introduced by Forney, the Chase type algo-

rithms and the ordered statistics decoding. The first two algorithms exploit the fact

a linear code can correct up to (2×number of errors+number of erasures≤ dmin−1)

combinations of errors and erasures while the latter exploits an earlier observation

that a code can correct up to dmin − 1 erasures and sometimes more. Soft deci-
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sion decoding using ordered reliability decoding is essentially the ordered statistics

decoder of Fossorier and Lin (1995) without the statistics and optional stopping cri-

terion suggested therein.

The procedure is described assuming binary codes and then later adjustments are

made to non-binary codes. A code with message length k and length n has a re-

ceived/corrupted sequence ȳ is ordered according to decreasing reliability |yi| so
that a new sequence z̄ has r i > r i+1 for all i. The ith column of the generator ma-

trix G is also ordered according to the reliability of yi . The new generator matrix

G z̄ is then expressed in reduced row echelon form by Gaussian elimination and if

column interchanges are necessary then these index changes are applied on the se-

quence z̄ to produce a new sequence b̄ and a new generator matrix G b̄. The real

valued sequence b̄ is then hard decided using BPSK demodulation into binary val-

ues and and a bit valued sequence s̄ is formed. The sequence is then partitioned

into two; the most reliable part (MRP) which includes the first k most reliable sym-

bols and the least reliable part (LRP) which is the n− k least reliable symbols of

the sequence. Decoding then involves deleting the n− k least reliable positions of

s̄ and re-encoding using G b̄. If the number of errors in the sequence is ≤ d−1 and

the reliability measure is accurate enough to guess all the error locations, then the

new codeword is the codeword closest to the received codeword. However these two

conditions are not always met and additional reprocessing is needed in order to

eliminate errors in the MRP. This reprocessing is simply subtracting error vectors

systematically from the received binary sequence s̄ and re-encoding until codeword

with minimum euclidean distance from s̄ is found. For all combination of i errors

in the MRP results in, 


k

i





possible error vectors.

There are two ways to implement ordered reliability decoding on non-binary codes;

firstly by using the binary image expansion of the code and secondly by using sym-

bol based decoding. Symbol based decoding is used in this case and some slight

adjustments are made to the procedure. Firstly, the symbols of the codeword in the

field Fqm prior to transmission are mapped to binary using a suitable basis so that

each unique element is represented by m bits. Re-encoding is done in Fqm . Since

each symbol is represented by m bits, it is also represented by m reliability values.

In order to sort the symbols of the received sequence according to reliability, for

each symbol a representative reliability value is chosen from the m possible choices.

A natural choice of a representative is the element from the m values with the least

reliability since it only takes a single value to be in error in an m block in order for

the symbol the block represents to also be in error. These chosen reliability values

now represent the m blocks and consequently a symbol in the sequence and can be
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used to order the sequence of symbols as in the binary case. Euclidean distance is

however still measured using the binary representation of the codewords.

For the case of non-binary codes the reprocessing involves non-binary symbols as

well and for all combinations of i errors results in,




k

i



 (q−1)i

possible error vectors. Reprocessing for all possible combinations so as to achieve

maximum likelihood decoding is difficult and will involve,

k∑

i=0




k

i



 (q−1)i

possible error vectors. Therefore the procedure is terminated after J possible can-

didate codewords have been produced and then choose one with the smallest eu-

clidean distance from the received sequence as the most likely codeword.
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Algorithm 5.2 Berlekamp Massey Algorithm

Require: Syndrome, S

1: Initialize r = 0, f = 1,g= 0,span(g)=-1, ∆=∅
2: Compute the discrepancy δ f

3: if δ f 6= 0 then

4: if span( f )=r− s ∈∆ then

5: Update f́ = f + δ f

δg
xs−(r−span(g))

6: end if

7: if span( f )=r− s ∉∆ then

8: Append r− s to ∆

9: Let l be the largest element in ∆, set ś= l+1

10: Update f́ = xś−s+ δ f

δg
g

11: Set g= f , span(g)= span( f )

12: end if

13: end if

14: r=r+1

15: if number of roots of f =t then

16: Stop

17: else

18: Go to 2

19: end if

Algorithm 5.3 Maximum Likehood Erasure Decoding

Require: H, c1, c2, . . . , ce=erasure positions

1: for i : e do

2: Choose co-ordinate Hi,ci of the H matrix

3: if Hi,ci = 0 and ∃Hk,ci 6= 0∀ k> i then

4: Interchange row i with row k of H

5: else if Hi,ci = 0 and ∄Hk,ci 6= 0∀ k> i then

6: Exit {erasures cannot be solved}

7: end if

8: Perform gaussian elimination on the rows of H so that all positions Hk,ci =
0∀ k> i

9: end for

10: Use reduced H to solve for the erasures
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Algorithm 5.4 Ordered reliability decoding for non-binary codes

Require: A received sequence ā, generator matrix G

1: For each m block in ā associate a reliability value r i corresponding to the small-

est reliability value

2: Perform BPSK demodulation on ā to form a binary sequence b̄

3: Form a sequence of symbols v̄ with elements from Fqm from b̄ using the selected

basis

4: Order v̄ in order of decreasing reliability , apply the corresponding changes to

columns of G and the m blocks of ā

5: Express G in systematic form and apply the same column interchanges that

occurred as result (if any) to v̄

6: for l = 0 : i do

7: for j =
(

k

i

)

(q−1)i do

8: Subtract an error vector of weight l from v̄ to form c̄

9: Delete the n−k least reliable positions of c̄ and re-encode with G to form w̄

10: Store the euclidean distance between the BPSK modulation of w̄ and the

ordered ā

11: end for

12: end for

13: Select the codeword with the minimum euclidean distance
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5.5 Performance of Algebraic Geometry Codes

Performance comparison of AG codes and RS codes in previous literature (Johnston

and Carrasco, 2005) compare these two types of codes defined in the same finite

field and having similar rates but the codes have unequal lengths since RS codes

are by definition shorter. Subfield subcodes of RS codes (namely BCH codes) contain

all those codewords of an original RS code that have alphabets in a smaller field. In

this aspect, AG codes and BCH codes are similar. In comparing AG and BCH codes,

the shortening of BCH codes may be necessary so that the codes have equivalent

lengths without loss in performance. An epicyclic Hermitian1 code defined in Fq2

has length n = q(q2−1)) with message length k has minimum distance d = n− k−
g+1 where g is the genus of the defining curve. Table 5.4 shows the parameters of

some Hermitian codes.

A Reed Solomon code of codeword length n and message length k is described

using a defining set which is a set of n− k consecutive elements of a finite field as

roots of its generator polynomial. BCH codes are formed by first defining a smaller

field and then picking those codewords of the RS code that have elements only in

that field. For each root of an RS generator polynomial, a BCH code generator poly-

nomial will have additional roots that fall within the same conjugacy class in the

smaller field. This has the effect of reducing the rate of the code but not increas-

ing the minimum distance accordingly. The result is that RS codes have greater

minimum distances than BCH codes. BCH codes therefore have minimum distance

d = n− k−δ+1 where δ > 0 . Table 5.5 shows some BCH codes shortened to have

equal lengths and rates as the Hermitian codes. In the comparison, the (60,45,10)16

bicyclic hermitian code is chosen and its performance compared with the (60,45,9)16

BCH code over the additive white Gaussian noise AWGN and the erasure channel.

5.5.1 Encoding

The dual of the hermitian code defined by the divisor D = 20P∞ and divisors T =
P1+·· ·+P60 in F16 where Pi are the 60 points of the hermitian code in the bicyclic

1Epicyclic hermitian codes are hermitian codes defined in the bicyclic plane.

q n k d

4 60 50 5

4 60 45 10

4 60 40 15

8 504 432 45

Table 5.4: Epicyclic Hermitian codes
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q n k nshort kshort d

4 255 245 60 50 6

4 255 240 60 45 9

4 255 235 60 40 11

8 4096 4024 504 432 37

Table 5.5: BCH codes

plane is used. The Hermitian code has parameters [60,15,40]16 while its dual has

parameters [60,45,10]16. The parity check matrix of the dual Hermitian code is

given by,

H=














f1(P1) f1(P2) . . . f1(Pn)

f2(P1) f2(P2) . . . f2(Pn)

. . . .

. . . .

f15(P1) f15(P2) . . . f15(Pn)














where { f1, . . . , f15} are basis rational functions of the Riemann-Roch space L(20P∞).

For the BCH code an RS code is defined in F28 and the subfield subcode in F24 is

found. The subfield subcode is chosen to have a similar rates to the Hermitian

code. The Hermitian code has redundancy n− k = 15 and this number of roots is

easily chosen for the generator polynomial of the BCH code. From Section 2.1 it is

known that conjugacy classes with at most 8
4
= 2 members are obtainable. The first

8 conjugacy classes will suffice,

(1) (α,α16) (α2,α32) (α3,α48)

(α4,α64) (α5,α80) α6,α96) (α7,α112).

The union of these classes has eight consecutive finite field elements and the BCH

code generated by a polynomial with the union as roots will have designed dmin =
8+1 = 9. This will produce a (255,240,9)16 code. However the symbol elements of

the codewords in the new code are still in F28 but are isomorphic to F24 and a choice

of a defining primitive polynomial for the field F24 that preserves this isomorphism

is x4+ x+1 = 0. The elements of the two fields that are present in the codewords

symbols can now be mapped one to one. Finally the code is shortened by deleting

195 information symbols to (60,45,9)16.

5.5.2 AWGN Channel with Hard Decision Decoding

The general procedure used for hard decision decoding both codes is explained here

in detail. The symbols of each codeword is represented by m= 4 bits using the basis
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defined by the primitive polynomial used to obtain the field F24 . The binary bits are

then modulated using binary phase shift keying (BPSK) in which the mapping from

bits to real values is given by [1]→ [−1] and [0]→ [1]. The modulated sequence is

passed through a simulated AWGN channel with variance σ2 and mean µ= 0. The

ratio of energy per bit to the noise spectral density Eb/No is specified in decibels dB

and the mapping to the channel variance is given by,

σ2 =
1

2 · Eb

No
· rate

The sequence output from the channel is then demodulated using BPSK demodu-

lation so that if the sequence is of length l and is denoted by v then, a new binary

sequence w is

wi =







1 if vi < 0

0 if vi ≥ 0

The sequence w is then partitioned into l/4 parts of 4 bits each and each part is

mapped to field symbols using a basis defined by the primitive polynomial used

obtain the field. In order to test for a errors, a syndrome test is carried out to check

for the presence of errors. If errors are found the received sequence is passed to

the appropriate hard decision decoder which attempts to correct the errors. The

entire process is repeated a number of times for each Eb/No value until 100 symbol

errors are encountered and the probability of error is then computed. The results

in Figure 5.3 show that the performance of the two codes is similar in the AWGN

channel. This is expected because the error correction capability of the two codes is

the same,

t=
⌊
dmin−1

2

⌋

tHER =
⌊
10−1

2

⌋

= 4

tBCH =
⌊
9−1

2

⌋

= 4

The theoretical probability of frame error is obtained from the following expression

(Peterson and Weldon, 1972),

P f = 1− (1−Pe)
(45×4)

where Pe is the probability of bit error for BPSK modulation in the AWGN channel

given by (Proakis, 2008),

Pe =Q

(√

2Eb

No

)
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Fig. 5.3: Hard Decision Decoding for Hermitian and BCH Codes

It is also worth mentioning that the BCH codes are decoded in the field F256 since

they do not contain any meaningful roots in the field F16 (and will not satisfy the

syndrome equations).

5.5.3 Erasure Channel
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Fig. 5.4: Erasure Decoding for Hermitian and BCH Codes

In simulating the erasure channel the channel erasure probability p and a real

valued uniform random generator producing values within the range 0≤ x≤ 1 sim-
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Fig. 5.5: Ordered Reliability Decoding for Hermitian and BCH Codes at order 2

ulates the randomness in the channel are specified. The codeword symbols are

erased when the randomly generated value x falls within the range 1− p ≤ x ≤ 1

and left are unaltered otherwise. The corrupted codewords are then decoded with

Algorithm 5.3 which tests for solvability . If the erasures can be corrected the solu-

tion to the homogeneous equations is determined otherwise the corrupted codeword

is left unaltered. For each chosen channel probability p the procedure is repeated

until 100 erasures are unsolved and the frame erasure/error rate is computed. The

performance of hermitian and BCH codes is compared in Figure 5.4 . performance

of the codes that the hermitian codes have a performance that surpasses the BCH

codes. In the region where the probability of channel erasure is low i.e. just around

p= 0.1 it is clear that the performances of the two codes are similar since the num-

ber of erasures are likely to be below the erasure correction capability of the codes.

However at a very large probability of erasure (above p = 0.2 ) the average num-

ber of erasures exceeds the error correction capability of both codes and thus their

performances are similar. In the region in between the Hermitian code has better

performance than the BCH code.

5.5.4 AWGN channel with Soft Decision Decoding

The ordered reliability decoding (symbol based) described in Section 5.4 is used.

Figure 5.5 shows the performance of the two codes using ordered reliability decod-

ing with order 2 reprocessing. From the figure the performance of the Hermitian

code surpasses the BCH code in particular for energy per bit to noise spectral den-

sity ratio within the range 3−5 dB the Hermitian (60,45,10)16 code corrects more
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errors than the BCH (60,45,9)16 code. There is also a slight improvement in perfor-

mance beyond 5 dB.

5.6 Summary

In this chapter the BMSA for AG codes is presented. The BMSA is a hard decision

decoding algorithm that can be used to correct errors up to the bounded distance

error correcting limit of the code. The algorithm finds the error locations of a cor-

rupted received vector. In addition the well known Berlekamp Massey decoding

algorithm for BCH and RS codes was presented. While the BMSA is an algorithm

designed for AG codes, a generic algorithm is presented for erasure correction. This

is called the in-place algorithm (Cai et al., 2005) and solves for erasures in an ef-

ficient manner. Similarly for soft decision decoding a generic ordered reliability

decoding was presented. The performance of non-binary BCH codes and Hermitian

codes in the AWGN and erasure channels was compared. The results show that

the Hermitian code gives a slightly better performance in the AWGN channel with

hard decision decoding and in the AWGN channel with ordered reliability decod-

ing. In the erasure channel the Hermitian code outperforms the non-binary BCH

codes for a range of probability of erasure. This behaviour is most likely due to the

Hermitian code having a more favorable weight structure. It is difficult however to

confirm this as computing the weight distribution of the two codes is difficult.
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6. INTRODUCTION

6.1 Maximising the Minimum Distance

Claude E. Shannon’s deduced in a nonconstructive way that there exist good lin-

ear codes under certain conditions that can help achieve error-free communications

over a chosen channel. It did not take long to realize that the definition of a good

code is one with a good minimum distance. Consider the case of the binary sym-

metric channel (BSC) with channel probability p, the probability of decoding error

for the channel is given by

Pe = 1−
t∑

i=0

(

n

i

)

pi(1− p)n−i

for a code of length n and minimum distance d (MacWilliams and Sloane, 1983).

The expression for Pe assumes bounded distance decoding with the code able to cor-

rect t= ⌊d−1
2

⌋ errors. For a fixed channel probability p and code length n increasing

the minimum distance will increase the number of errors the code can correct and

decrease the probability the decoded codeword will be in error. If maximum like-

lihood hard decision decoding on the BSC is assumed then the expression for Pe

becomes,

Pe = 1−
t∑

i=0

(

n

i

)

pi(1− p)n−i−at+1p
t+1(1− p)n−t−1

where ai is the number of coset leaders with weight i (MacWilliams and Sloane,

1983). Again the effect on an increased minimum distance d on Pe is evident. Con-

sider the additive white Gaussian noise channel (AWGN)1 the union bound on the

probability decoding error using maximum likelihood soft decision decoding is given

by,

Pe ≤ e
− d

4N0

in a channel with noise spectral density N0 using a code with minimum distance

d (Proakis, 2008). Again the role of the minimum distance d of the code can be

observed from the union bound since Pe exponentially decreases with an increasing

1A specific type of the BSC when binary transmission is used.
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d.

6.2 Tables of Best Known Codes

A fundamental question in coding theory is “Given a length n, a dimension k and

a finite field of cardinality q, what is the best possible minimum distance d obtain-

able from any code?”. The tables in (Grassl, 2007) and (Schimd and Shurer, 2004)

contain upper bounds on the best possible minimum distance of a linear codes with

parameters [n,k,d]q. These upper bounds are derived from several different combi-

natorial bounds. The tables also contain lower bounds of the minimum distance of

best known codes. The lower bounds are constructive i.e. there exist known linear

codes with parameters [n,k,d]q for which d has been verified either computation-

ally or mathematically. The goal in this part of the thesis is to obtain codes with

a minimum distance greater than that of codes in these tables that have the same

length and dimension. The first catalog of best known codes was presented by Cal-

Finite Field Range

F2 1≤ k≤ n≤ 256

F3 1≤ k≤ n≤ 243

F4 1≤ k≤ n≤ 128

F5 1≤ k≤ n≤ 100

F7 1≤ k≤ 10

1≤ n≤ 50

F8 1≤ k≤ 40

1≤ n≤ 85

F9 1≤ k≤ 20

1≤ n≤ 121

Table 6.1: Ranges for codes in (Brouwer, 1998)

abi and Myrvaagnes (1964) containing binary codes of length n and dimension k in

the range 1 ≤ k ≤ n ≤ 24. (Sloane, 1972) later presented an updated version of the

tables. Helgert and Stinaff (1973) improved the tables in (Calabi and Myrvaagnes,

1964) and presented bounds on binary codes in the range 1≤ k ≤ n≤ 127. Verhoeff

(1987) updated the tables in Helgert and Stinaff (1973) and Brouwer and Verho-

eff (1993) subsequently made further updates. The tables at the time contained

bounds on binary codes in the range 1≤ k ≤ n≤ 127. Brouwer (1998) subsequently

presented a comprehensive update to the tables which included codes with finite

fields up to size 9 with the ranges for k and n given in Table 6.1. At present Grassl

(2007) maintains a significantly updated version of the tables in (Brouwer, 1998).

The tables now contain codes with k and n in ranges from Table 6.2. A database of

the codes in (Grassl, 2007) is included in computer algebra system Magma (Bosma

et al., 1997). Finally, Schimd and Shurer (2004) provide a online database for op-

timal parameters of (t,m, s)-nets, (t, s)-sequences, orthogonal arrays, linear codes,
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Finite Field Range

F2 1≤ k≤ n≤ 256

F3 1≤ k≤ n≤ 243

F4 1≤ k≤ n≤ 256

F5 1≤ k≤ n≤ 130

F7 1≤ k≤ n≤ 100

F8 1≤ k≤ n≤ 130

F9 1≤ k≤ n≤ 130

Table 6.2: Ranges for codes in (Grassl, 2007)

and ordered orthogonal arrays. These are relatively new tables give the best known

codes up to finite fields of size 256. The tables place a restriction on the length of

code such that n≤ 1×106 and put a restriction on n−k for different fields.

6.3 Methodology and Approach

Improvements to the tables in (Grassl, 2007) can be made using an adhoc approach.

For any two parameters from n, k and d one searches the tables and identifies

possible room for improvement. This room for improvement usually manisfests as a

plateau in a plot of the parameters of the codes (within a range) in the tables. Also

worth taking into consideration is the gap between the lower bounds and upper

bounds for the parameters of the codes in the tables. A large gap suggests that

a code can be improved. For example in the finite field F4 for a fixed dimension

k = 35, consider the plot of distance d versus length n for 55 ≤ n ≤ 100 in Figure

6.1 of codes in (Grassl, 2007). The plot shows the [81,35,23]4 code which is at one

edge of a plateau with the second edge at [77,35,23]4. There is an increase in

length of 4 symbols whilst the distance remains unchanged. Furthermore the gap

between the upper and lower bounds on the minimum distance of the code with

length 81 and dimension 35 is significant. Clearly there is room for improvement

for n= 81 and k = 35 in F4. One can then use the different methods of constructing

good codes from existing ones for codes of length 81 and dimension 35 to produce

improved codes. This approach is quite difficult as the tables in (Grassl, 2007)

are well maintained and include computer routines that do this automatically. A

different approach is to use an efficient method of producing good codes and utilize

computer programs to find codes with better minimum distance than codes in the

(Grassl, 2007). This approach is less intuitive and more generic than the adhoc

approach. Also as mentioned earlier most of the known methods are incorporated in

(Grassl, 2007). In the course of searching for new codes it became clear that methods

that extend the length of the code while increasing the distance in some linear

manner have the most potential to produce codes that improve on the best known

codes. This is because the distance of the codes in the tables does not increase

proportionally as the length increases for a fixed dimension. It is also helpful if the
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Fig. 6.1: Minimum distance against length for best known codes with dimension 35 in F4

method produces codes with a known lower bound as one need only construct the

codes and can skip the tedious procedure of verifying the minimum distance of the

code.

At first the search for new codes began by using AG codes. A catalog of good curves

was obtained from a table of curves with many curves maintained by Van Der Geer

in (Geer et al., 2009). Using these curves, AG codes were constructed and generic

code constructions were applied in the search for new codes. Some of the generic

constructions include but are not limited to,

• Construction X

• Construction X3

• Construction X4

• Code concatenation

• Blokh-Zyabolov (Zinoviev) generalised code concatenation
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• Subfield subcode, subfield image and trace constructions

• (u,u+v) construction

• Grassl special puncturing (Grassl and White, 2004)

Details of these methods can be found in (MacWilliams and Sloane, 1983). No im-

provements were found using these methods with AG codes. However some best

known codes were found. Table 6.3 shows some best known codes from AG codes

using the trace construction. Table 6.4 gives some best known codes in F4 from

hermitian codes in F16 using concatenation.

Best Code Method AG code AG Description Curve Points Genus

[64,41,8]2 Trace [64,21,30]8 AG(34P) x8+ x+ y10+ y3 65 14

[64,44,8]2 Trace [64,24,24]8 AG(37P) x8+ x+ y10+ y3 65 14

[64,53,4]2 Trace [64,30,21]8 AG(43P) x8+ x+ y10+ y3 65 14

[64,56,4]2 Trace [64,34,17]8 AG(47P) x8+ x+ y10+ y3 65 14

[64,57,4]2 Trace [64,36,15]8 AG(49P) x8+ x+ y10+ y3 65 14

[64,13,24]2 Trace [64,6,54]16 AG(10P) x5+ y4+ y 65 6

[64,55,4]2 Trace [64,28,31]16 AG(33P) x5+ y4+ y 65 6

[64,59,2]2 Trace [64,30,29]16 AG(35P) x5+ y4+ y 65 6

[64,63,2]2 Trace [64,38,21]16 AG(43P) x5+ y4+ y 65 6

[32,13,12]4 Trace [32,8,23]16 AG(9P) α10x8 + α5x4y + α10x4 +
x3y2 + α5x2y + α10x2 +
α10xy2+α5xy+ y4+ y3+ y2

33 2

[32,14,12]4 Trace [32,9,22]16 AG(10P) α10x8 + α5x4y + α10x4 +
x3y2 + α5x2y + α10x2 +
α10xy2+α5xy+ y4+ y3+ y2

33 2

[32,18,8]4 Trace [32,11,20]16 AG(12P) α10x8 + α5x4y + α10x4 +
x3y2 + α5x2y + α10x2 +
α10xy2+α5xy+ y4+ y3+ y2

33 2

Table 6.3: Some best known codes from AG codes using Trace Construction

Best code Inner Code Outer Code

[192,38,80]4 [64,19,40]16 [3,2,2]4
[195,38,82]4 [65,19,41]16 [3,2,2]4
[195,40,80]4 [65,20,40]16 [3,2,2]4
[195,42,78]4 [64,21,39]16 [3,2,2]4

Table 6.4: Best codes in F4 from Hermitian codes using concatenation

More complicated constructions were then used in larger fields and in particular

the generalised AG code construction by Xing et al. (1999a); Xing and Yeo (2007) was

used effectively to obtain many new improvements in the finite field F16. Chapter 7

presents these results and give details of the construction. Codes from the database

in MAGMA (Bosma et al., 1997) (other than AG codes) were also used together with

the aforementioned constructions but only best known codes were found. Figure

6.5 shows some best known codes in F8 obtained from puncturing best known linear

codes (BKLC) in MAGMA. The coordinates of the codes are assumed to be indexed

as [1..n]. In Chapter 8 many improvements to codes in (Grassl, 2007) in F7, F8, and

F9 using a construction of extended Goppa codes are presented.
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Best Code Puncturing Coordinates BKLC in MAGMA

[28,10,15]8 [1,2] [30,10,16]8
[31,10,16]8 [1,2,3,4] [35,10,19]8
[86,10,58]8 [1,2,3,4,5,6,8,9,10] [95,10,66]8
[17,10,6]8 [1,2,3,4] [21,10,9]8
[86,10,58]8 [1,2,3,4,5,6,8] [93,10,64]8
[86,10,58]8 [1,2,3,4,5,6,8,10] [94,10,65]8
[86,10,58]8 [1,2,3,4,5,6,8,9,10] [95,10,66]8
[87,10,59]8 [1,2,3,4,5,6,8,9,10] [96,10,67]8
[87,10,59]8 [1,2,3,4,5,6,7,8,9,10] [97,10,68]8
[92,10,63]8 [1,2,3,4,5,6,8,12] [100,10,70]8
[92,10,63]8 [1,2,3,4,5,6,12] [99,10,69]8
[92,10,63]8 [1,2,3,4,5,6,8,12] [100,10,70]8
[92,10,63]8 [1,2,3,4,5,6,7,8,9,10,12] [103,10,73]8

Table 6.5: Some best known codes from puncturing in F8
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7. IMPROVED CODES FROM

GENERALISED AG CODES

7.1 Introduction

The minimum distance of a code is an important measure of performance in coding

theory. It is always desirable to obtain an error correcting code with the maximum

possible minimum distance d, given a code length n and code dimension k. In

1981, Goppa (Goppa, 1988) introduced a family of codes with very good properties

using principles from algebraic geometry. These codes were later shown to include

a class of asymptotically good codes in (Tsfasman et al., 1982) that beat the Gilbert-

Varshamov bound for all fields with sizes both square and greater or equal to 49.

Algebraic geometry codes and codes obtained from them feature prominently in

the databases of best known codes (Grassl, 2007) and (Schimd and Shurer, 2004)

for an appreciable range of code lengths for different field sizes q. Generalised

algebraic geometry codes were first presented by Niederreiter et al. (1999); Xing et

al. (1999b). A subsequent paper by Ozbudak and Stichtenoth (1999) shed more light

on the construction. AG codes as defined by Goppa utilised places of degree one or

rational places. Generalised AG codes however were constructed by Xing et al using

places of higher degree (including places of degree one). In (Xing et al., 1999a), the

authors presented a method of constructing generalised AG codes which uses a

concatenation concept. The paper showed that best known codes were obtainable

via this construction. In (Ding et al., 2000) it was shown that the method can be

effective in constructing new codes and the authors presented 59 codes in finite

fields F4, F8 and F9 better than the codes in (Grassl, 2007). In (Leung et al., 2002),

the authors presented a construction method based on (Xing et al., 1999a) that uses

a subfield image concept and obtained new binary codes as a result. In (Xing and

Yeo, 2007) the authors presented some new curves as well as 129 new codes in F8

and F9. In this Chapter we present 237 new improvements to codes defined in F16

in the tables in (Schimd and Shurer, 2004) from a generalised construction of AG

codes by Xing et al. (1999a). In addition many improvements to constructible codes

in (Schimd and Shurer, 2004) are also presented.
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7.2 Concept of Places of Higher Degree

Recall from Chapter 4 that a two dimensional affine space A
2(Fq) is given by the set

of points

{(α,β) :α,β∈ Fq}

while its projective closure P
2(Fq) is given by the set of equivalence points

{{(α :β : 1)}∪ {(α : 1 : 0)}∪ {(1 : 0 : 0)} :α,β∈ Fq}.

Given a homogeneous polynomial F(x, y, z), a curve X /Fq defined in P
2(Fq) is a set

of distinct points

X /Fq = {T ∈P
2(Fq) : F(T)= 0}

Let Fqℓ be an extension of the field Fq, the Frobenius automorphism is given as

φq,ℓ : Fqℓ → Fqℓ

φq,ℓ(β)=βq β ∈ Fqℓ

and its action on a projective point (x : y : z) in Fqℓ is

φq,ℓ((x : y : z))= (xq : yq : zq).

7.1 Definition (Place of Degree from (Walker, 2000)). A place of degree ℓ is a set

of ℓ points of a curve defined in the extension field Fqℓ denoted by {T0,T1, . . . ,Tℓ−1}

where each Ti =φi
q,l

(T0). Places of degree one are called rational places.

Example 7.1: Consider the curve in F4 defined as,

F(x, y, z)= x

The curve has the following projective rational points (points of degree 1),

(0 : 0 : 1) (0 : 1 : 1) (0 :α : 1) (0 :α2 : 1)

(0 : 1 : 0)

where α is the primitive polynomial of F4. The curve has the following places of

degree 2,
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{(0 :β : 1), (0 :β4 : 1)} {(0 :β2 : 1), (0 :β8 : 1)}

{(0 :β3 : 1), (0 :β12 : 1)} {(0 :β6 : 1), (0 :β9 : 1)}

{(0 :β7 : 1), (0 :β13 : 1)} {(0 :β11 : 1), (0 :β14 : 1)}

where β is the primitive element of F16.

7.3 Generalised Construction I

This section gives details of the construction of generalised AG codes as described

in (Xing et al., 1999a). Two maps that are useful in the construction of generalised

AG codes are now described. Observe that Fq is a subfield of Fqℓ for all ℓ≥ 2. It is

then possible to map Fqℓ to an ℓ-dimensional vector space with elements from Fq

using a suitable basis. The map πℓ is defined as such,

πℓ : Fqℓ → F
ℓ
q

πℓ(β)= (c1 c2 . . . cℓ) β ∈ Fqℓ , ci ∈ Fq.

Suppose (γ1,γ2, . . . ,γℓ) forms a suitable basis of the vector space F
ℓ
q, then β= c1γ1+

c2γ2+·· ·+ cℓγℓ. Finally the map σℓ,n is used to represent an encoding map from an

ℓ-dimensional message space in Fq to an n-dimensional code space,

σℓ,n : F
ℓ
q → F

n
q

with ℓ≤ n.

A description of generalised AG codes as presented in (Ding et al., 2000; Xing et al.,

1999a; Xing and Yeo, 2007) is now presented. Let F = F(x, y, z) be a homogeneous

polynomial defined in Fq. Let g be the genus of the curve X /Fq corresponding to the

polynomial F. Also let P1,P2, . . . ,Pr be r distinct places of X /Fq and k i = deg(Pi)

(deg is degree of). W is a divisor of the curve X /Fq such thatW = P1+P2+·· ·+Pr and

G a divisor so that supp(W)∩ supp(G)=∅. More specifically G =m(Q−R) where

deg(Q) = deg(R)+ 1 for arbitrary divisors Q and R. Associated with the divisor

G is a Riemann-Roch space L (G) with m = deg(G)) an integer, m ≥ 0 . From the

Riemann-Roch theorem it is known that the dimension of L (G) is given by l(G) and

l(G)≥m− g+1

with equality when m≥ 2g−1. Also associated with each Pi is a q-ary code C i with

parameters [n i,k i = deg(Pi),d i]q with the restriction that d i ≤ k i. Let { f1, f2, .., fk :

f l ∈ L (G)} denote a set of k linearly independent elements of L (G) that form a

basis. A generator matrix for a generalised AG code is given as such,
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# Pi deg(Pi)

P1 (0 : 1 : 0) 1

P2 (0 : 0 : 1) 1

P3 (1 : 0 : 1) 1

P4 (1 : 1 : 1) 1

P5 {(α : 1 : 1), (α2 : 1 : 1)} 2

P6 {(α :α+1 : 1), (α2 :α : 1)} 2

Table 7.1: Places of X /F2

M =











σk1,n1
(πk1( f1(P1))) · · · · · · σkr ,nr

(πkr
( f1(Pr)))

σk1,n1
(πk1( f2(P1))) · · · · · · σkr ,nr

(πkr
( f2(Pr)))

...
. . .

...

σk1,n1
(πk1( fk(P1))) · · · · · · σkr ,nr

(πkr
( fk(Pr)))











where f l(Pi) is an evaluation of a polynomial and basis element f l at a point Pi, πki

is a mapping from Fqki to Fq and σki ,ni
is the encoding of a message vector in F

ki
q

to a code vector in F
ni
q . It is desirable to choose the maximum possible minimum

distance for all codes C i so that d i = k i. The same code is used in the map σki ,ni

for all points of the same degree k i i.e. the code C j has parameters [n j, j,d j]q for

a place of degree j. Let A j be an integer denoting the number of places of degree j

and B j be an integer such that 0≤B j ≤ A j. If t is the maximum degree of any place

Pi that is chosen in the construction, then the generalised AG code is represented

as a C1(k; t;B1,B2, . . . ,Bt;d1,d2, . . . ,dt). Let [n,k,d]q represent a linear code in Fq

with length n, dimension k and minimum distance d, then a generalised AG code

is given by the parameters (Xing et al., 1999a),

k= l(G)≥m− g+1

n=
r∑

i=1
n i =

t∑

j=1
B jn j

d ≥
r∑

i=1
d i− g−k+1=

t∑

j=1
B jd j− g−k+1.

Example 7.2: Let F(x, y, z)= x3+xyz+xz2+y2z (Xing et al., 1999a) be a polynomial

in F2. The curve X /F2 has genus g = 1 and A1 = 4 places of degree 1 and A2 = 2

places of degree 2. Table 7.1 gives the places of X /F2 up to degree 2. The field

F22 is defined by a primitive polynomial s2+ s+1 with α as its primitive element.

Points R = (1 : a3+a2 : 1) as a place of degree 4 and Q = (1 : b4+b3+b2 : 1) as a place

of degree 5 are also chosen while a and b are primitive elements of F24 (defined

by the polynomial s4+ s3+ s2+ s+1) and F25 (defined by the polynomial s5+ s2+1)

respectively. The divisor W is W = P1+ ·· · +P6. The basis of the Riemann-Roch
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space L (2D) with D =Q−R and m= 2 is obtained with computer algebra software

MAGMA (Bosma et al., 1997) as,

f1 = (x7+ x3+ x)/(x10+ x4+1)y

+ (x10+ x9+ x7+ x6+ x5+ x+1)/(x10+ x4+1)

f2 = (x8+ x7+ x4+ x3+ x+1)/(x10+ x4+1)y

+ (x8+ x4+ x2)/(x10+ x4+1)

For the map σki ,ni
the codes; c1 a [1,1,1]2 cyclic code for places of degree 1 and c2

a [3,2,2]2 cyclic code for places of degree 2 are used. For the map π2 which applies

to places of degree 2 a polynomial basis [γ1,γ2]= [1,α] is used. Only the first point

in the place Pi for deg(Pi) = 2 in the evaluation of f1 and f2 at Pi is utilised. The

generator matrix M of the resulting [10,2,6]2 generalised AG code over F2 is,

M =




1 1 0 1 0 1 1 0 1 1

0 0 1 1 1 1 0 1 0 1





Example 7.3: Consider again the polynomial F(x, y, z) = x3+ xyz+ xz2+ y2z with

coefficients from F2 whose curve (with genus equal to 1) has places up to degree 2

as in Table 7.1. An element f of the Riemann Roch space defined by the divisor

G = (R −Q) with Q = (a : a3 + a2 : 1) and R = (b : b4+ b3+ b2+ b+ 1 : 1) where a

and b primitive elements of F24 and F25 (since the curve has no place of degree 3)

respectively, is given by,

f = (x3x+ x2z2+ z4)y/(x5+ x3z2+ z5)

+ (x5+ x4z+ x3z2+ z3x2+ xz4+ z5)/(x5+ x3z2+ z5)

Evaluating f at all the 5 places P i from the Table 7.1 and using the map πdeg(Pi )

that maps all evaluations to F2 results in,

[

f (P i) |deg(P i)=1
︷ ︸︸ ︷

1 | 1 | 0 | 1| 1 | α2

︸ ︷︷ ︸

f (P i) |deg(P i)=2

]

This forms the code [6,1,5]4
1. In F2 this becomes,

[ 1 | 1 | 0 | 1 |1 0
︸︷︷︸

1

| 1 1
︸︷︷︸

α2

]

1From Bezout’s dmin = n−m= n−k− g+1
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which forms the code [8,1,5]2. Short auxiliary codes [1,1,1]2 to encode f (P i) |deg(P i)=1

and [3,2,2]2 to encode f (P i) |deg(P i)=2 are used. The resulting codeword of a gener-

alised AG code is ,

[ 1 | 1 | 0 | 1 | 1 0 1 | 1 1 0 ].

This forms the code [10,1,7]2.

7.3.1 Results

Four polynomials and their associated curves are used to obtain codes in F16 better

than the best known codes in (Schimd and Shurer, 2004). The four polynomials

are given in Table 7.2 while Table 7.3 gives a summary of the properties of their

associated curves (with t = 4). w is the primitive element of F16. The number of

places of degree j, A j, is determined by computer algebra system MAGMA (Bosma

et al., 1997). The best known linear codes from (Schimd and Shurer, 2004) over F16

with j = d j for 1≤ j ≤ 4 are

[1,1,1]16 [3,2,2]16 [5,3,3]16 [7,4,4]16

which correspond to C1, C2, C3 and C4 respectively. Since t = 4 for all the codes in

this paper and

[d1,d2,d3,d4]= [1,2,3,4]

The representation C1(k; t;B1,B2, . . . ,Bt;d1,d2, . . . ,dt) is shortened as such,

C1(k; t;B1,B2, . . . ,Bt;d1,d2, . . . ,dt)≡C1(k;B1,B2, . . . ,Bt).

Tables 7.4-7.5 gives new codes that improve on both constructible codes in (Schimd

and Shurer, 2004). Tables 7.6-7.7 show new codes with better minimum distance

than codes in (Schimd and Shurer, 2004). It is also worth noting that codes of

the form C1(k;N,0,0,0) are simply Goppa codes (defined with only rational points).

The symbol # in the Tables 7.4-7.7 denotes the number of new codes from each

generalised AG code C1(k;B1,B2, . . . ,Bt) . The tables in (Geer et al., 2009) contain

curves known to have the most number of rational points for a given genus. Over

F16 the curve with the highest number of points with genus g= 12 from (Geer et al.,

2009) has 88 rational points, was constructed using class field theory and is not

defined by an explicit polynomial. On the other hand the curve X1/F16 obtained

by Kummer covering of the projective line in (Shabat, 2001) has A1 = 83 rational

points and genus g= 12 and is explicitly presented. Codes from this curve represent

the best constructible codes in F16 with code length 83. The curve X2/F16 is defined

by the well-known Hermitian polynomial.

Tables 7.4-7.8 give the new codes obtained from X2/F16,X3/F16 and X4/F16.
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F1 = x5z10+ x3z12+ xz14+ y15

F2 = x5+ y4z+ yz4

F3 = x16+ x4y15+ x4+ xy15+w4y15+w4

F4 = x28 +wx20 + x18 +w10x17 +w10x15 +
w4x14 + w3x13 + w3x12 + wx11 + x10 +
w11x9+w12x8+w14x7+w13x6y2+w9x6y+
w6x6+w2x5y2+w13x5y+w14x5+w14x4y4+
w7x4y2+w6x4y+w9x4+w8x3y4+w11x3y+
w4x3+w11x2y4+w11x2y2+wx2y+w5x2+
w8xy4+w6xy2+w9xy+w11y8+y4+w2y2+
w3y

Table 7.2: Polynomials in F16

Curve Genus A1 A2 A3 A4 Reference

X1 12 83 60 1320 16140 (Shabat, 2001)

X2 6 65 0 1600 15600 Hermitian curve

X3 40 225 0 904 16920 (Garcia and Quoos, 2001)

X4 13 97 16 1376 15840 (Geer and Vlugt, 2000) via (Grassl, 2010)

Table 7.3: Properties of Xi/F16

Codes k Range Description #

[83,k,d≥ 72−k]16 8≤ k≤ 52 C1(k; [83,0,0,0]) 45

[89,k,d≥ 76−k]16 9≤ k≤ 54 C1(k; [83,2,0,0]) 46

[94,k,d≥ 79−k]16 10≤ k≤ 57 C1(k; [83,2,1,0]) 48

[92,k,d≥ 78−k]16 9≤ k≤ 57 C1(k; [83,3,0,0]) 49

[98,k,d≥ 82−k]16 11≤ k≤ 59 C1(k; [83,5,0,0]) 49

Table 7.4: Best Constructible Codes from X1/F16

Codes k Range Description #

[72,k,d≥ 64−k]16 11≤ k≤ 50 C1(k; [65,0,0,1]) 40

[79,k,d≥ 68−k]16 11≤ k≤ 48 C1(k; [65,0,0,2]) 38

[77,k,d≥ 67−k]16 10≤ k≤ 51 C1(k; [65,0,1,1]) 42

[75,k,d≥ 66−k]16 9≤ k≤ 51 C1(k; [65,0,2,0]) 43

Table 7.5: Best Constructible Codes from X2/F16

Codes k Range Description #

[70,k,d≥ 63−k]16 10≤ k≤ 50 C1(k; [65,0,1,0]) 41

Table 7.6: New Codes from X2/F16

Code k Range Description #

[232,k,190−k] 102≥ k≥ 129 C1(k; [225,0,0,1]) 28

[230,k,189−k] 100≥ k≥ 129 C1(k; [225,0,1,0]) 30

[235,k,192−k] 105≥ k≥ 121 C1(k; [225,0,2,0]) 17

Table 7.7: New Codes from X3/F16
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Codes k Range Description #

[102,k,88−k] 8≤ k≤ 66 C(k; [97,0,1,0]) 59

[103,k,89−k] 8≤ k≤ 68 C(k; [97,2,0,0]) 61

[106,k,91−k] k= 8 C(k; [97,3,0,0]) 1

Table 7.8: New Codes from X4/F16

7.4 Generalised Construction II

This section describes the construction of generalised AG codes as described in (Le-

ung et al., 2002). This method is a variation of the first method in (Xing et al.,

1999a) and codes constructed from this construction can be seen as subfield image

codes. Suppose Fq ⊂ Fqe ⊂ Fqeℓ with ℓ ≥ 2 and e > 1. It is then possible to map Fqeℓ

to an eℓ× eℓ- matrix with elements from Fq (see Section 2.3.3.1). The map ψeℓ is

defined as such,

ψeℓ : Fqeℓ → F
eℓ×eℓ
q

The map ψeℓ acts on a vector a= (a1, . . . ,au) as such,

ψeℓ((a1, . . . ,au))=ψeℓ(a1)| . . . |ψeℓ(au) ai ∈ Fqeℓ

where | denotes matrix concatenation. The map σeℓ,n is also defined,

σeℓ,n : F
eℓ×eℓ
q → F

eℓ×n
q

σeℓ,n(M)=M×G

where M is matrix with dimension eℓ× eℓ and G is the generator matrix of a code

with dimension eℓ and length n. Let F = F(x, y, z) be a homogeneous polynomial

defined in Fqe . Let g be the genus of the curve X /Fqe corresponding to the polyno-

mial F. Also let P1,P2, . . . ,Pr be r distinct places of X /Fqe and k i = deg(Pi) (deg is

degree of). W is a divisor of the curve X /Fqe such that W = P1+P2+·· ·+Pr and G

a divisor so that

supp(W)∩ supp(G)=∅.

More specifically G = m(Q −R) where deg(Q) = deg(R)+ 1. Associated with the

divisor G is a Riemann-Roch space L (G) with m = deg(G)) an integer, m ≥ 0 .

From the Riemann-Roch theorem it is known that the dimension of L (G) is given

by l(G) and

l(G)≥m− g+1

with equality when m ≥ 2g− 1. Also associated with each Pi is a q-ary code C i

with parameters [n i, ek i = e · deg(Pi),d i]q with the restriction that d i ≤ ek i. Let

{ f1, f2, .., fk : f l ∈ L (G)} denote a set of k linearly independent elements of L (G)

102



Chapter 7: Improved Codes From Generalised AG Codes

that form a basis. A generator matrix for a generalised AG code is given as such,

M =











σek1,n1
(ψek1(πk1( f1(P1)))) · · · · · · σekr ,nr

(ψekr
(πkr

( f1(Pr))))

σek1,n1
(ψek1(πk1( f2(P1)))) · · · · · · σekr ,nr

(ψekr
(πkr

( f2(Pr))))

...
. . .

...

σek1,n1
(ψek1(πk1( fk(P1)))) · · · · · · σekr ,nr

(ψekr
(πkr

( fk(Pr))))











It is desirable to choose the maximum possible minimum distance for all codes C i so

that d i = ek i. The same code is used in the map σeki,ni
for all points of the same de-

gree k i i.e. the code C j has parameters [n j, e j,d j]q for a place of degree j. Let A j be

an integer denoting the number of places of degree j and B j be an integer such that

0≤B j ≤ A j. If t is the maximum degree of any place Pi chosen in the construction,

then the generalised AG code is represented as a C2(k; t;B1,B2, . . . ,Bt;d1,d2, . . . ,dt).

Let [n,k,d]q represent a linear code in Fq with length n, dimension k and minimum

distance d, then a generalised type II AG code is given by the parameters (Leung

et al., 2002),

k= e · l(G)≥ e(m− g+1)

n=
r∑

i=1
n i =

t∑

j=1
B jn j

d ≥
r∑

i=1
d i− e ·deg(G)=

r∑

i=1
d i−k

No improvements were obtained using this method however many best known codes

have been obtained.

7.5 Summary

The concept of place of higher degrees of curves was presented. This notion was

used in the construction of two types of generalised AG codes. Using the generalised

Construction I 237 improvements to the tables in (Schimd and Shurer, 2004) were

found. Further results are also obtainable from trivial modifications on the new

codes like shortening, padding and puncturing. In addition many improvements

on constructible codes in the table in (Schimd and Shurer, 2004) are presented.

Finding curves with many places of small degree and small genera will result in

many new codes using these methods. Tables in (Schimd and Shurer, 2004) can be

improved via these methods using curves with many points in large finite fields.
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8. IMPROVED CODES FROM GOPPA

CODES

8.1 Introduction

Goppa introduced a class of linear codes in (Goppa, 1972) and (Goppa, 1971) com-

monly referred to as Goppa codes or Γ(L,G) codes. These codes form an impor-

tant subclass of alternant codes and meet the famous Gilbert-Varshamov bound.

Γ(L,G) codes have good properties and some of these codes have the best known

minimum distance of any known codes with the same length and rate. The codes

are mainly defined in a finite field Fq and are sub-field sub-codes of generalised

Reed Solomon codes defined in an extension field of Fq. Goppa in a subsequent pa-

per (Goppa, 1972) showed several methods of extending the length of Γ(L,G) codes.

Similarly Sugiyama et al (Sugiyama et al., 1976) presented binary codes derived

from Γ(L,G) codes by extending their length and produced some good codes as a

result. In this chapter a construction of extended nonbinary Goppa codes and some

improved codes that have better minimum distance than the best known codes in

the tables from (Grassl, 2007) with the same length and dimension are presented.

This construction is a generalisation of the method in (Sugiyama et al., 1976) for

binary Goppa codes.

Section 8.2 gives a brief background on Goppa codes and a definition that suits

the purposes of this chapter. Section 8.3 gives a generalisation of Construction

P (Sugiyama et al., 1976) for binary codes and establishes the parameters of non-

binary codes obtained therefrom. Section 8.4 shows that certain extended Goppa

Codes can be seen as BCH codes and an instance of the construction from Section

8.3 is used to present improved codes. And finally, Section 8.6 gives a summary

of the codes found using the construction method and further results from nested

codes using construction X.

8.2 Goppa Codes

Recall the description of Goppa codes from Section 3.4. In designing Goppa codes,

it is usually desirable to obtain codes as long as possible and hence the Goppa poly-

nomial G(x) is commonly chosen to have no roots in the field Fqm , in which case

the length of the code is equal to the size of the field i.e. n = qm. For our purposes
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we are interested in Goppa codes whose polynomial has roots in the field Fqm . A

useful relationship between the parity check matrix of a Goppa code (defined with a

polynomial with roots in its coefficient field) and the Cauchy matrix was presented

in (Sugiyama et al., 1976) and more explicitly in (Tzeng and Zimmermann, 1975).

8.1 Theorem (From (Tzeng and Zimmermann, 1975, Appendix)). A Γ(L,G) defined

by a polynomial G(x) =
ℓ∏

µ=1
(x−βµ)

rµ with each βµ distinct, rµ > 0 and βµ ∈ Fqm

satisfies the parity equations

n−1∑

i=0

ci

(βµ−αi)
j
= 0 for j = 1, . . . , rµ, µ= 1, . . .,ℓ.

The parity check matrix of the code can be expressed as

H =











Hr1

Hr2
...

Hrℓ











, (8.1)

where

Hrµ =












1
(βµ−α0)

1
(βµ−α1)

· · · 1
(βµ−αn−1)

1
(βµ−α0)2

1
(βµ−α1)2

· · · 1
(βµ−αn−1)2

...
...

. . .
...

1
(βµ−α0)

rµ
1

(βµ−α1)
rµ · · · 1

(βµ−αn−1)
rµ












. (8.2)

This code with symbols in Fq and defining set L = Fqm \ {β1, . . . ,βℓ} = {α0, . . . ,αn−1}

has parameters

length: n= |L|,
redundancy: n−k≤m

(
∑ℓ

µ=1 rµ
)

,

distance: d ≥
∑ℓ

µ=1 rµ+1.

A special case is when rµ = 1 for all µ when the parity matrix of the Γ(L,G) code

becomes

H =











1
β1−α0

1
β1−α1

· · · 1
β1−αn−1

1
β2−α0

1
β2−α1

· · · 1
β2−αn−1

...
...

. . .
...

1
βℓ−α0

1
βℓ−α1

· · · 1
βℓ−αn−1











,

which is equivalent to a Cauchy matrix. It is also the parity check matrix of a

separable Goppa code.
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8.2.1 Modified Goppa Codes

In (Goppa, 1971), Goppa defined modified Goppa codes. He showed that adding a

row of all 1’s to the parity check matrix of a Goppa code increases both the minimum

distance and the redundancy by one.

8.2 Theorem (From (Goppa, 1971, Theorem 3)). A modified Goppa code C̃ with the

parity check matrix

H̃ =




11 . . .1

H



 ,

where H is the parity check matrix of a Γ(L,G) code with a Goppa polynomial G(x)

with degree r defined with coefficients in Fqm , has parameters

length: n= |L|,
redundancy: n−k≤mr+1,

distance: d ≥ r+2.

The use of modified Goppa codes is most effective when the codes have symbols

in the field Fq for which q 6= 2. It is possible to extend a modified Goppa code by

adding a parity check on the row with all 1’s

H̃e =




11 . . .1 1

H 0



 . (8.3)

This extended and modified Goppa code has parameters

length: n′ = |L|+1,

redundancy: n′−k′ ≤mr+1.

8.3 Theorem. Theminimum distance of an extended andmodified Goppa code defined

with a polynomial G(x) of degree r is lower bounded by d′ ≥ r+2.

Proof. Let c= (c0, c1, . . . , cn−1) be a non-zero codeword of the Goppa code C defined

by G(x) of degree r and the parity check matrix H in (8.3). A codeword of an

extended and modified Goppa code is then of the form

ce = (c0, c1, . . . , cn−1,−
n−1∑

i=0
ci).

If cn = −
∑n−1

i=0 ci = 0, then c is a codeword of the modified Goppa code of Theo-
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rem 8.2 and its weight is at least r+2. Otherwise, cn 6= 0 and hence

wgt(ce)=wgt(c)+1≥ r+2.

In the literature, these extended and modified Goppa codes are simply called ex-

tended Goppa codes (MacWilliams and Sloane, 1983).

8.3 Code Construction

The construction presented below is a generalisation of Construction P in (Sugiyama

et al., 1976) from binary to nonbinary codes.

We start with extended and modified Goppa codes defined in the previous sec-

tion and a Goppa polynomial with roots exclusively in Fqm . Consider the Goppa

polynomial

G(x)=
ℓ∏

µ=1
(x−βµ)

rµ (8.4)

of degree r =
∑ℓ

µ=1 rµ with distinct roots βµ ∈ Fqm and rµ > 0. The codes CP are

defined via with parity check matrix

HP =











11 . . .1 1 0 0 · · · 0

Hr1 0 HI1
0 · · · 0

...
...

...
...

. . .
...

Hrℓ 0 0 0 · · · HIℓ











. (8.5)

The first qm−ℓ+1 columns of HP contain the parity check matrix H̃e of the extended

and modified Goppa code given in (8.3), where the matrices Hrµ are defined in (8.2).

For each of the matrices Hrµ , we add an rµ×m matrix HIµ of the form

HIµ =











0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1 α α2 · · · αm−1











,

where α is a primitive element of the field Fqm . Clearly the code CP has length and

redundancy

length: n= qm−ℓ+mℓ+1,

redundancy: n−k≤mr+1.
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To obtain a lower bound on the minimum distance of the codes CP, we can basi-

cally follow the logic and presentation of the proof of Theorem 7 in (Sugiyama et al.,

1976).

8.4 Theorem. The minimum distance of the code CP is lower bounded by d ≥ r+2.

Proof. Let c= (c0,c1, . . . ,cℓ) be a codeword of CP, where

c0 = (a1,a2, . . . ,aqm−ℓ,aqm−ℓ+1)

is a codeword of a modified and extended Goppa code C̃e with Goppa polynomial

given in Equation (8.4), and cµ ∈ F
m
q for 1≤ µ≤ ℓ. If at least one of these vectors cµ

for 1≤ µ≤ ℓ is non-zero, then c0 must be non-zero as well since the columns of the

submatrices HIµ are linearly independent over Fq.

Therefore, assume that c0 is non-zero. Furthermore, let UZ and UN be the sets

of integers µ such that cµ, µ ≥ 1 is zero or non-zero, respectively. For µ ∈UN, by

definition cµ 6= 0, and cµ has weight at least 1. Hence the weight of c is lower

bounded by wgt(c0)+|UN|.
In order to obtain a bound on the weight of c0 first note that cµ 6= 0 implies that

the parity check given by the last row of Hµ in HP does not hold for c0, but the other

parity check equations are fulfilled. Hence c0 is a codeword of the extended and

modified Goppa code with Goppa polynomial

G̃(x)=
∏

µ∈UN

(x−βµ)
rµ−1

∏

µ∈UZ

(x−βµ)
rµ.

The degree of G̃(x) is r− |UN|, and hence by Theorem 8.3 wgt(c0) ≥ r− |UN|+2. In

summary we get wgt(c)≥wgt(c0)+|UN| ≥ r+2.

An alternative view of the codes CP is that each codeword c= (c0,c1, . . . ,cℓ) ∈CP con-

sists of a vector c0 over the field Fq, while cµ, 1≤µ≤ ℓ are elements of the extension

field Fqm which are mapped to m symbols in Fq using a basis (1,α, . . .,αm−1).

8.4 CP As Extended BCH Codes

A subset of the codes CP can be seen as extended BCH codes in which case a better

lower bound on the dimension of the codes can be obtained. In this case the Goppa

polynomial in (8.4) is defined with r1 > 1 and rµ = 1 for 2≤µ≤ ℓ, i.e.,

G(x)= (x−β1)
r1

ℓ∏

µ=2
(x−βµ). (8.6)
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8.5 Theorem (see (MacWilliams and Sloane, 1983, Ch. 12. §3, Problem (6))). A

Goppa code Γ(L,G) defined with the polynomial G(x)= (x−β)r, β ∈ Fqm , and the set

L= Fqm \{β} corresponds to a BCH code defined in Fq with length n= qm−1.

For simplicity we choose β = 0. Then the BCH code Γ(L, xr) has consecutive

roots {α−1,α−2, . . . ,α−r} in Fqm . If we choose β1 = 0 in Equation (8.6), the parity

check matrix of the modified Goppa code defined with the polynomial in (8.6) and

location set L= {α0,α1, . . . ,αn−1} is given by

H̃ =














11 . . .1

Hr1

Hr2
...

Hrℓ














=




























1 1 · · · 1

1
α0

1
α1

· · · 1
αn−1

1

α2
0

1

α2
1

· · · 1

α2
n−1

...
...

. . .
...

1

α
r1
0

1

α
r1
1

· · · 1

α
r1
n−1

1
β2−α0

1
β2−α1

· · · 1
β2−αn−1

1
β3−α0

1
β3−α1

· · · 1
β3−αn−1

...
...

. . .
...

1
βℓ−α0

1
βℓ−α1

· · · 1
βℓ−αn−1




























. (8.7)

Suppose c0 = (a1,a2, . . . ,aqm−ℓ) is a codeword of the Goppa code Γ(L, xr1−1) with L=
{β ∈ Fqm : G(β) 6= 0} corresponding to a shortened BCH code1 with roots {α−1, . . . ,α−r1+1}

in Fqm . As noted at the end of the previous section, we can represent c ∈ CP in the

form

c= (a1, . . . ,aqm−ℓ,aqm−ℓ+1,c1,c2, . . . ,cℓ), (8.8)

where a j ∈ Fq and2 cµ ∈ Fqm . We have

aqm−ℓ+1 =−
qm−ℓ∑

i=1
ai,

c1 =−
qm−ℓ∑

i=1
aiα

−r1
i

,

and cµ =−
qm−ℓ∑

i=1

ai

βµ−αi

for µ> 1.

Hence the codes CP defined with G(x) in (8.6) can be seen as extending the BCH

code Γ(L, xr1−1). In many cases the redundancy of the codes is smaller than what

is predicted by the bound Section 8.3. Suppose rBCH is the redundancy of the BCH

1This shortened BCH code has n= qm−ℓ, n−k≤m(r1−1), and d ≥ r1
2cµ maps to a vector in F

m
q using the basis (1,α, . . . ,αm−1).
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code Γ(L, xr1−1) then the parameters of the code CP defined by the Goppa polynomial

in Equation (8.6) are

length: n= |L|+mℓ+1,

redundancy: n−k≤mℓ+ rBCH+1,

distance: d ≥ r1+ℓ+1= r+2.

8.4.1 Example

We use as an illustration of the construction a polynomial G(x)= x2(x+1)(x+α)(x+
α2) with coefficients from F16 to define an extended Goppa code in F4. The finite

field F16 is defined with the primitive polynomial s4+ s+1 and has α as a primitive

element. The set L corresponding to G(x) is then given by

L= F16\{0,1,α,α
2}, |L| = 12.

From (8.7) the parity matrix H̃ of the modified Goppa code over F16 is given as

H̃ =

















1 1 1 1 1 1 1 1 1 1 1 1

α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α1

α9 α7 α5 α3 α1 α14 α12 α10 α8 α6 α4 α2

α1 α14 α5 α2 α6 α13 α8 α10 α3 α4 α9 α12

α6 α0 α13 α4 α1 α5 α12 α7 α9 α2 α3 α8

α9 α5 α14 α12 α3 α0 α4 α11 α6 α8 α1 α2

















.

CP is defined by the parity check matrix HP over F4, given by

HP =

































1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 ω ω ω ω 0 ω 1 ω ω 0 0 0 0 0 0 0 0 0 0

ω ω 0 ω 1 ω ω 0 1 ω 1 1 0 0 0 0 0 0 0 0 0

ω ω ω ω 0 ω 1 ω ω 0 1 ω 0 1 0 0 0 0 0 0 0

ω ω 0 ω 1 ω ω 0 1 ω 1 1 0 0 1 0 0 0 0 0 0

0 ω ω ω 0 1 ω ω ω 1 ω 1 0 0 0 1 0 0 0 0 0

1 ω 0 1 ω ω 1 0 ω 1 ω ω 0 0 0 0 1 0 0 0 0

0 1 1 1 0 ω 1 ω ω ω ω ω 0 0 0 0 0 1 0 0 0

ω 0 ω 1 1 0 ω ω ω 1 ω 1 0 0 0 0 0 0 1 0 0

ω ω ω 1 ω 1 1 0 0 ω 0 ω 0 0 0 0 0 0 0 1 0

ω 0 ω ω ω 0 0 ω 1 0 0 0 0 0 0 0 0 0 0 0 1

































,
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Table 8.1: New Codes CP over F7

# qm m r1 ℓ Γ(L, xr1−1) Codes CP Codes in (Grassl, 2007)

C1 49 2 9 3 [46,33,9]7 [53,33,13]7 [53,33,12]7

C2 49 2 17 3 [46,22,17]7 [53,22,21]7 [53,22,20]7

C3 49 2 9 4 [45,32,9]7 [54,32,14]7 [54,32,13]7

C4 49 2 17 4 [45,21,17]7 [54,21,22]7 [54,21,21]7

C5 49 2 1 5 [44,44,1]7 [55,44,7]7 [55,44,6]7

C6 49 2 9 5 [44,31,9]7 [55,31,15]7 [55,31,14]7

C7 49 2 1 9 [40,40,1]7 [59,40,11]7 [59,40,10]7

where ω is a primitive element of F4. The parity check matrix of CP in reduced

echelon form is thus

HP =

































1 0 0 0 0 0 0 0 0 0 0 ω 0 1 ω 1 1 ω 0 ω ω

0 1 0 0 0 0 0 0 0 0 0 ω 1 1 0 ω 0 ω 1 ω 1

0 0 1 0 0 0 0 0 0 0 0 ω ω ω 1 0 ω 0 0 ω ω

0 0 0 1 0 0 0 0 0 0 0 0 ω 0 ω ω ω ω ω 0 1

0 0 0 0 1 0 0 0 0 0 0 ω ω ω 1 1 ω 1 ω 0 ω

0 0 0 0 0 1 0 0 0 0 0 0 1 ω ω ω ω 1 ω ω ω

0 0 0 0 0 0 1 0 0 0 0 ω 0 0 ω 1 ω ω 1 ω ω

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 ω ω

0 0 0 0 0 0 0 0 1 0 0 ω 0 1 ω ω ω ω 0 ω 0

0 0 0 0 0 0 0 0 0 1 0 ω ω ω 1 ω ω 1 1 0 ω

0 0 0 0 0 0 0 0 0 0 1 ω 0 0 ω ω ω ω ω ω ω

































.

Since degG(x) = 5, m = 2, ℓ = 4 and |L| = 12, the code has parameters [21,10,7]4.

The minimumweight of the code was confirmed by direct computation usingMagma

(Bosma et al., 1997). Observe that the code CP is an extension of the shortened BCH

code [12,10,2]4 defined with Goppa polynomial x and the set L.

8.5 Nested Structure From Codes CP

Consider the code CR defined with the Goppa polynomial

G(x)= xr1
ℓ−2∏

i=0
(x−αi)

and the parity check matrix
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Table 8.2: New Codes CP over F8

# qm m r1 ℓ Γ(L, xr1−1) Codes CP Codes in (Grassl, 2007)

C8 64 2 10 3 [61,46,10]8 [68,46,14]8 [68,46,13]8

C9 64 2 19 3 [61,33,19]8 [68,33,23]8 [68,33,22]8

C10 64 2 28 3 [61,22,28]8 [68,22,32]8 [68,22,31]8

C11 64 2 10 4 [60,45,10]8 [69,45,15]8 [69,45,14]8

C12 64 2 19 4 [60,32,19]8 [69,32,24]8 [69,32,23]8

C13 64 2 10 5 [59,44,10]8 [70,44,16]8 [70,44,15]8

C14 64 2 19 5 [59,31,19]8 [70,31,25]8 [70,31,24]8

C15 64 2 10 6 [58,43,10]8 [71,43,17]8 [71,43,16]8

C16 64 2 19 6 [58,30,19]8 [71,30,26]8 [71,30,25]8

C17 64 2 10 7 [57,42,10]8 [72,42,18]8 [72,42,17]8

C18 64 2 1 8 [56,56,1]8 [73,56,10]8 [73,56,9]8

C19 64 2 1 10 [54,54,1]8 [75,54,12]8 [75,54,11]8

C20 64 2 1 11 [53,53,1]8 [76,53,13]8 [76,53,12]8

C21 64 2 1 12 [52,52,1]8 [77,52,14]8 [77,52,13]8

C22 64 2 1 13 [51,51,1]8 [78,51,15]8 [78,51,14]8

HR =















11 . . .1 1 0 0 · · · 0

Hr1 0 0 0 · · · 0

H0 0 h0 0 · · · 0

...
...

...
...

. . .
...

Hℓ−2 0 0 0 · · · hℓ−2















. (8.9)

The submatrices Hi, 0≤ i ≤ ℓ−2 are 1× qm−ℓ rows of the form

Hi =
[

1
αℓ−1−αi

1
αℓ−αi

1
αℓ+1−αi · · · 1

αqm−2−αi

]

,

where α is a primitive element of the field Fqm and the submatrices h i, 0≤ i ≤ ℓ−2

are 1×m rows of the form

h i =
[

1 α α2 · · · αm−1
]

.
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Table 8.3: New Codes CP over F9

# qm m r1 ℓ Γ(L, xr1−1) Codes CP Codes in (Grassl, 2007)

C23 81 2 11 3 [78,61,11]9 [85,61,15]9 [85,61,14]9

C24 81 2 21 3 [78,46,21]9 [85,46,25]9 [85,46,24]9

C25 81 2 31 3 [78,33,31]9 [85,33,35]9 [85,33,34]9

C26 81 2 41 3 [78,22,41]9 [85,22,45]9 [85,22,44]9

C27 81 2 11 4 [77,60,11]9 [86,60,16]9 [86,60,15]9

C28 81 2 21 4 [77,45,21]9 [86,45,26]9 [86,45,25]9

C29 81 2 31 4 [77,32,31]9 [86,32,36]9 [86,32,35]9

C30 81 2 1 5 [76,76,1]9 [87,76,7]9 [87,76,6]9

C31 81 2 11 5 [76,59,11]9 [87,59,17]9 [87,59,16]9

C32 81 2 21 5 [76,44,21]9 [87,44,27]9 [87,44,26]9

C33 81 2 31 5 [76,31,31]9 [87,31,37]9 [87,31,36]9

C34 81 2 1 6 [75,75,1]9 [88,75,8]9 [88,75,7]9

C35 81 2 11 6 [75,58,11]9 [88,58,18]9 [88,58,17]9

C36 81 2 21 6 [75,43,21]9 [88,43,28]9 [88,43,27]9

C37 81 2 1 7 [74,74,1]9 [89,74,9]9 [89,74,8]9

C38 81 2 11 7 [74,57,11]9 [89,57,19]9 [89,57,18]9

C39 81 2 21 7 [74,42,21]9 [89,42,29]9 [89,42,28]9

C40 81 2 1 8 [73,73,1]9 [90,73,10]9 [90,73,9]9

C41 81 2 11 8 [73,56,11]9 [90,56,20]9 [90,56,19]9

C42 81 2 1 9 [72,72,1]9 [91,72,11]9 [91,72,10]9

C43 81 2 1 10 [71,71,1]9 [92,71,12]9 [92,71,11]9

C44 81 2 1 11 [70,70,1]9 [93,70,13]9 [93,70,12]9

C45 81 2 1 12 [69,69,1]9 [94,69,14]9 [94,69,13]9

C46 81 2 1 13 [68,68,1]9 [95,68,15]9 [95,68,14]9

C47 81 2 1 14 [67,67,1]9 [96,67,16]9 [96,67,15]9

C48 81 2 1 15 [66,66,1]9 [97,66,17]9 [97,66,16]9

Observe from Equations (8.5) and (8.9) that CR is simply a shortened form of CP.

Thus if CR and CP are defined with the same Goppa polynomial G(x) then HR corre-

sponds to HP with the submatrix HI1
removed. The codes CR have parameters,
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length: n= |L|+m(ℓ−1)+1,

redundancy: n−k≤mℓ+ rBCH+1,

distance: d ≥ r1+ℓ+1= r+2.

Suppose CR1 is defined with G1(x) = xa
∏ℓ−2

i=0 (x−αi) and CR2 is defined with G2(x) =
xb

∏ℓ−2
i=0 (x−αi) with a< b, then

CR2 ⊂CR1

holds3. It is well known code that nested codes can be extended using Construction

X. Recall Construction X from Theorem 2.1.

8.6 Theorem (Construction X (Sloane et al., 1972)). If a linear code C1 with pa-

rameters [n1,k1,d1]q has a subcode C2 with parameters [n2,k2,d2]q, then C1 is

extendable to a code with parameters [n1+ n,k1,min{d1+δ,d2}]q using an auxil-

iary code [n,k1−k2,δ]q.

Table 8.4: New Codes From Construction X in F7

# C2 C1 Auxiliary

codes

New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C49 8 5 [53,31,14]7 10 5 [53,27,16]7 [5,4,2]7 [58,31,16]7 [58,31,15]7

8.6 Results

In this section we present results on codes obtained from the two construction meth-

ods.

8.6.1 New Codes From CP

We use Goppa polynomials with coefficients in Fqm of the form

G(x)= xr1
ℓ−2∏

i=0
(x−αi),

where α is a primitive element of Fqm . The Goppa polynomial has degG(x) = r =
r1+ℓ−1. Hence from Theorem 8.4 the codes CP have minimum distance d ≥ r1+
ℓ+1. The codes presented in Tables 8.1–8.3 have minimum distances better than

3Notice however that CP2 *CP1 since CP2H
T
P1
6= 0when CP1 and CP2 are defined byG1(x) andG2(x)

respectively and T is the transpose operator.
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Table 8.5: New Codes From Construction X in F8

# CR1 CR2 Auxiliary

codes

New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C50 9 3 [66,46,13]8 11 3 [66,42,15]8 [5,4,2]8 [71,46,15]8 [71,46,14]8

C51 9 3 [66,46,13]8 12 3 [66,40,16]8 [8,6,3]8 [74,46,16]8 [74,46,15]8

C52 13 3 [66,38,17]8 18 3 [66,33,22]8 [9,5,5]8 [75,38,22]8 [75,38,21]8

C53 18 3 [66,33,22]8 20 3 [66,29,24]8 [5,4,2]8 [71,33,24]8 [71,33,23]8

C54 18 3 [66,33,22]8 21 3 [66,27,25]8 [8,6,3]8 [74,33,25]8 [74,33,24]8

C55 9 4 [67,45,14]8 11 4 [67,41,16]8 [5,4,2]8 [72,45,16]8 [72,45,15]8

C56 13 4 [67,37,18]8 18 4 [67,32,23]8 [9,5,5]8 [76,37,23]8 [76,37,22]8

C57 18 4 [67,32,23]8 20 4 [67,28,25]8 [5,4,2]8 [72,32,25]8 [72,32,24]8

C58 9 5 [68,44,15]8 11 5 [68,40,17]8 [5,4,2]8 [73,44,17]8 [73,44,16]8

the codes with the same length and dimension in (Grassl, 2007). The codes are

represented in the form [n,k,d]q. The dimensions of the codes in Tables 8.1–8.3 are

obtained by expressing their respective parity check matrices in reduced echelon

form.

8.6.2 New Codes From CR

Using Construction X on the codes CR1 and CR2 as defined in Section 8.5 and short

optimal auxiliary codes, we are able to obtain 30 improvements to the tables in

(Grassl, 2007) for the fields F7, F8 and F9. The results are shown in Tables 8.4–8.6.

In addition to the 79 codes presented in Tables 8.1–8.6 many codes that improve

the tables in (Grassl, 2007) can be obtained by shortening and puncturing codes in

Tables 8.1–8.6.

8.7 Further Extensions of the Codes CP

The codes CP defined by the parity check matrix in Equation (8.5) can be denoted

as CP[L,G] since they are defined for a coordinate set L and a Goppa polynomial

G(x). In (Tomlinson et al., 2011) the authors show that it is possible to extend the

coordinate set L and produced new binary codes as a result. The method is applied

for the case of nonbinary codes. A new coordinate set L̃ is defined,

L̃=R∪L R ⊆ {αi : G(αi)= 0, αi ∈ F2m \{0}}.
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which contains a subset of the roots of G(x) except 0. This has the effect of in-

creasing both the length and dimension of the code by |R|. A modified parity check

matrix with the set L̃ and G(x) is formed,

H
P[L̃,G] =






















11..1 1 0 0 · · · 0

Hr1 0 HI 0 · · · 0

...
...

...
...

. . .
...

Hrℓ 0 0 0 · · · HI






















(8.10)

where the row matrices HI are as previously defined. As a consequence of modifying

the coordinate set the matrices Hrµ for µ such that βµ ∈ R will each have an entry

1
βµ−βµ

which is replaced with a zero. Normally each coordinate corresponding to

βu ∈R is deleted from all parity check equations of HP . Replacing
1

βu−βu
with a zero

deletes the coordinates only for the affected parity check equations Hu, βu ∈ R by

multiplying these coordinates by zero. The codes CP are labelled as intermediate

codes.

8.7 Theorem. If the coordinate set of the code CP is appended with a set R and un-

defined entries ( 1
βµ−βµ

) of the intermediate parity check matrix are replaced with a

zero, the intermediate binary code C
P[L̃,G] has minimum distance d ≥ dP−|R| where

dP is the minimum distance of CP. Furthermore all codewords of weight w such

that dP−|R| ≤w< dP are nonzero in at least one of the coordinates in R.

Proof. From the proof of Theorem 8.4, it is clear that any v rows Hrµ of the parity

check matrix of CP contribute v to the distance of the code dP. Consider the inter-

mediate code, all codewords that are zero in the coordinates specified by R in the

intermediate parity check are codewords of the original code CP and have distance

dP. All codewords that are nonzero in at least one coordinate in R are not in the

original code CP thus for these codewords the rows of the intermediate parity check

matrix that have an entry 1
βµ−βµ

replaced with a zero are not guaranteed to con-

tribute to their minimum weight. There are |R| of such rows, hence the minimum

weight is ≥ dP−|R|.

With the knowledge that all codewords of weight < dP in the intermediate code

C
P[L̃,G] are nonzero in at least one of the coordinates specified by R, it is possible

to extend the minimum distance of C
P[L̃,G] by simply repeating each of these co-

ordinates in R so that the minimum distance is increased to dP and the length is
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increased by |R|. The new code is called a modified code denoted by CPm
. These

modified codes CPm
have parameters,

length: n≤ |L|+mℓ+1+2|R| = |L̃|+mℓ+1+|R|

redundancy: n−k≤mdegG(x)+1+|R|

distance: d ≥ degG(x)+2

It is evident from Tables 8.7-8.8 that all the codes obtainable for this method are

also obtainable from Construction X and codes with the same parameters can be

found in Tables 8.4-8.5.

8.8 Summary

Construction P by Sugiyama et al. (1976) for binary Goppa codes was generalised

to the case of nonbinary codes. The concept of an extended Goppa code was used

to obtain improvements to the tables of best known codes in (Grassl, 2007). These

codes can be seen as extended BCH codes and the method can be considered as

an efficient construction of extended BCH codes. In total 48 new codes with better

minimum distances than any known codes with the same length and dimension

were obtained in finite fields F7, F8 and F9. In addition 30 new codes were found

from further extensions using Construction X. Many more codes can be obtained

from the new codes by simple modifications like shortening and puncturing codes

in Tables 8.1-8.6.
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Table 8.6: New Codes From Construction X in F9

# CR1 CR2 Auxiliary

codes

New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C59 10 3 [83,61,14]9 12 3 [83,57,16]9 [5,4,2]9 [88,61,16]9 [88,61,15]9

C60 10 3 [83,61,14]9 13 3 [83,55,17]9 [8,6,3]9 [91,61,17]9 [91,61,16]9

C61 15 3 [83,51,19]9 20 3 [83,46,24]9 [9,5,5]9 [92,51,24]9 [92,51,23]9

C62 20 3 [83,46,24]9 22 3 [83,42,26]9 [5,4,2]9 [88,46,26]9 [88,46,25]9

C63 20 3 [83,46,24]9 23 3 [83,40,27]9 [8,6,3]9 [91,46,27]9 [91,46,26]9

C64 24 3 [83,38,28]9 30 3 [83,33,34]9 [10,5,6]9 [93,38,34]9 [93,38,33]9

C65 30 3 [83,33,34]9 32 3 [83,29,36]9 [5,4,2]9 [88,33,36]9 [88,33,35]9

C66 10 4 [84,60,15]9 12 4 [84,56,17]9 [5,4,2]9 [89,60,17]9 [89,60,16]9

C67 10 4 [84,60,15]9 13 4 [84,54,18]9 [8,6,3]9 [92,60,18]9 [92,60,17]9

C68 11 4 [84,58,16]9 14 4 [84,52,19]9 [8,6,3]9 [92,58,19]9 [92,58,18]9

C69 15 4 [84,50,20]9 20 4 [84,45,25]9 [9,5,5]9 [93,50,25]9 [93,50,24]9

C70 19 4 [84,46,24]9 23 4 [84,39,28]9 [10,7,4]9 [94,46,28]9 [94,46,27]9

C71 20 4 [84,45,25]9 22 4 [84,41,27]9 [5,4,2]9 [89,45,27]9 [89,45,26]9

C72 20 4 [84,45,25]9 23 4 [84,39,28]9 [8,6,3]9 [92,45,28]9 [92,45,27]9

C73 10 5 [85,59,16]9 12 5 [85,55,18]9 [5,4,2]9 [90,59,18]9 [90,59,17]9

C74 10 5 [85,59,16]9 13 5 [85,53,19]9 [8,6,3]9 [93,59,19]9 [93,59,18]9

C75 20 5 [85,44,26]9 22 5 [85,40,28]9 [5,4,2]9 [90,44,28]9 [90,44,27]9

C76 10 6 [86,58,17]9 12 6 [86,54,19]9 [5,4,2]9 [91,58,19]9 [91,58,18]9

C77 20 6 [86,43,27]9 22 6 [86,39,29]9 [5,4,2]9 [91,43,29]9 [91,43,28]9

C78 10 7 [87,57,18]9 12 7 [87,53,20]9 [5,4,2]9 [92,57,20]9 [92,57,19]9

C79 10 8 [88,56,19]9 12 8 [88,52,21]9 [5,4,2]9 [93,56,21]9 [93,56,20]9

# qm m r1 ℓ Codes CP |R| Codes CPm
Codes in (Grassl, 2007)

C1 49 2 9 6 [56,30,16]7 1 [58,31,16]7 [58,31,15]7

Table 8.7: New Codes CPm in F7
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# qm m r1 ℓ Codes CP |R| Codes CPm
Codes in (Grassl, 2007)

C2 64 2 10 4 [69,45,15]8 1 [71,46,15]8 [71,46,14]8

C3 64 2 11 4 [69,43,16]8 1 [71,44,16]8 [71,44,15]8

C4 64 2 19 4 [69,32,24]8 1 [71,33,24]8 [71,33,23]8

C5 64 2 20 4 [69,30,25]8 1 [71,31,25]8 [71,31,24]8

C6 64 2 10 5 [70,44,16]8 1 [72,45,16]8 [72,45,15]8

C7 64 2 10 5 [70,44,16]8 2 [74,46,16]8 [74,46,15]8

C8 64 2 11 5 [70,42,17]8 1 [72,43,17]8 [72,43,16]8

C9 64 2 19 5 [70,31,25]8 1 [72,32,25]8 [72,32,24]8

C10 64 2 19 5 [70,31,25]8 2 [74,33,25]8 [74,33,24]8

C11 64 2 10 6 [71,43,17]8 1 [73,44,17]8 [73,44,16]8

Table 8.8: New Codes CPm in F8
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# qm m r1 ℓ Ecodes CP |R| Ecodes CPm
Ecodes in (Grassl, 2007)

C12 81 2 11 4 [86,60,16]9 1 [88,61,16]9 [88,61,15]9

C13 81 2 12 4 [86,58,17]9 1 [88,59,17]9 [88,59,16]9

C14 81 2 14 4 [86,54,19]9 1 [88,55,19]9 [88,55,18]9

C15 81 2 21 4 [86,45,26]9 1 [88,46,26]9 [88,46,25]9

C16 81 2 22 4 [86,43,27]9 1 [88,44,27]9 [88,44,26]9

C17 81 2 31 4 [86,32,36]9 1 [88,33,36]9 [88,33,35]9

C18 81 2 11 5 [87,59,17]9 1 [89,60,17]9 [89,60,16]9

C19 81 2 11 5 [87,59,17]9 2 [91,61,17]9 [91,61,16]9

C20 81 2 12 5 [87,57,18]9 1 [89,58,18]9 [89,58,17]9

C21 81 2 12 5 [87,57,18]9 2 [91,59,18]9 [91,59,17]9

C22 81 2 13 5 [87,55,19]9 2 [91,57,19]9 [91,57,18]9

C23 81 2 21 5 [87,44,27]9 1 [89,45,27]9 [89,45,26]9

C24 81 2 21 5 [87,44,27]9 2 [91,46,27]9 [91,46,26]9

C25 81 2 22 5 [87,42,28]9 1 [89,43,28]9 [89,43,27]9

C26 81 2 22 5 [87,42,28]9 2 [91,44,28]9 [91,44,27]9

C27 81 2 11 6 [88,58,18]9 1 [90,59,18]9 [90,59,17]9

C28 81 2 11 6 [88,58,18]9 2 [92,60,18]9 [92,60,17]9

C29 81 2 12 6 [88,56,19]9 1 [90,57,19]9 [90,57,18]9

C30 81 2 12 6 [88,56,19]9 2 [92,58,19]9 [92,58,18]9

C31 81 2 21 6 [88,43,28]9 1 [90,44,28]9 [90,44,27]9

C32 81 2 21 6 [88,43,28]9 2 [92,45,28]9 [92,45,27]9

C33 81 2 21 6 [88,43,28]9 3 [94,46,28]9 [94,46,27]9

C34 81 2 10 7 [89,58,18]9 1 [91,59,18]9 [91,59,17]9

C35 81 2 11 7 [89,57,19]9 1 [91,58,19]9 [91,58,18]9

C36 81 2 11 7 [89,57,19]9 2 [93,59,19]9 [93,59,18]9

C37 81 2 12 7 [89,55,20]9 1 [91,56,20]9 [91,56,19]9

C38 81 2 20 7 [89,43,28]9 1 [91,44,28]9 [91,44,27]9

C39 81 2 21 7 [89,42,29]9 1 [91,43,29]9 [91,43,28]9

C40 81 2 10 8 [90,57,19]9 1 [92,58,19]9 [92,58,18]9

C41 81 2 11 8 [90,56,20]9 1 [92,57,20]9 [92,57,19]9

C42 81 2 11 9 [91,55,21]9 1 [93,56,21]9 [93,56,20]9

Table 8.9: New Codes CPm in F8
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9. A SPECIAL CASE OF SHORTENING

LINEAR CODES

9.1 Introduction

The minimum distance of a linear error correcting code is an important measure of

performance of the code. Therefore it is desirable to obtain a linear code with the

maximum possible minimum distance d, given a code length n and code dimension

k. Linear codes in tables (Grassl, 2007) and (Schimd and Shurer, 2004) have the

best knownminimum distance of any known codes with the same length and dimen-

sion. Many of the codes in these tables are obtained from other good codes using

well known methods of constructing new codes from existing ones. New codes can

be obtained from existing ones by examining the low weight codewords of known

optimal codes. Previous methods that have used this approach include Grassl and

White (Grassl and White, 2004) in which a method of puncturing codes which uses

the notion of a hitting set was presented and extending the length of codes by Kohn-

ert (Kohnert, 2009) using a method that solves a set of Diophantine equations. In

this Chapter a method of shortening linear codes in carefully chosen coordinates ob-

tained by examining low weight codewords is presented. It is shown that this short-

eningmethod produces codes with parameters [n−l,k−l,≥ d+δ+1] when there are l

deleted coordinates for some δ. It is also shown that these l coordinates can be used

to extend the codes so that they form codes with parameters [n+(δ+1)l,k,d+δ+1].

The method is most efficient when the codes have a special structure. Recent re-

sults from Bezzateev and Shekhunova (Bezzateev and Shekhunova, 2008) on chains

of binary Goppa codes provides codes with such a structure. Using the relation-

ship between shortening and lengthening, four new binary codes with parameters

[243,124,33]2, [244,124,34]2, [245,124,35]2, and [246,124,36]2 are presented.

9.2 Background

Shortened codes are obtained by deleting information symbols of a longer codes. A

shortening method that has proved effective in producing good codes is construc-

tions Y1 (MacWilliams and Sloane, 1983). Construction Y1 produces a shortened

[n− l,k− l+1,≥d]q code from a code C with parameters [n,k,d]q length n, dimen-

sion k and minimum distance d,defined in a finite field with cardinality q if the
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dual of C has a codeword with weight l. In (Lim and Guan, 2006) a code short-

ening technique was presented for binary BCH codes and product codes. By dis-

carding all the minimum weight codewords of a code with parameters [n,k,d]q the

authors were able to produce a shortened code with parameters [n− l,k− l,d+1]q.

A code with parameters [n,k,d]q punctured in s coordinates has new parameters

[n− s,k,d− s]q. Grassl and White(Grassl and White, 2004) presented a punctur-

ing scheme which in its simplest form punctures the code in coordinates that co-

incide with only zero symbols of any minimum weight codeword thus forming an

[n− s,k,d− s+ 1]q code. By examining codewords of weight ≤ d + j the authors

presented a generalised puncturing method that produced codes with parameters

[n− s,k,d− s+ j]q and as a result many new codes that have better distances than

codes in (Grassl, 2007) with the same code rate were presented. Kohnert (Kohnert,

2009) presented a code extension scheme which extends a code [n,k,d]q to a code

with parameters [n+ l,k,d+1]q. The appended l coordinates are simply repeated

coordinates of the original code and coincide with at least one non-zero symbol in

any minimum weight codewords. Kohnert (Kohnert, 2009) suggests that the pre-

sented lengthening scheme can be seen as an inverse of the puncturing scheme by

Grassl (Grassl and White, 2004). In this Chapter a shortening scheme which can be

seen as a generalisation of the method in (Lim and Guan, 2006) is presented. This

method produces an [n− l,k− l,≥ d+δ+1]q code from a [n,k,d]q code by examining

codewords of weight up to d+δ. In addition the set of l coordinates used in this

method can be used to extend the original code to form an [n+ l,k,d+δ+1] code.

Using this relationship and some well studied Goppa codes from (Bezzateev and

Shekhunova, 2008) improvements to the tables in (Grassl, 2007) are presented.

9.3 Code Shortening and Extension

Let C be a linear code of length n, dimension k and minimum distance d. Let

the set {0, . . .,n−1} be the coordinates of the code C . Shortening involves deleting

l < k information coordinates from the set {0, . . . ,n− 1}. These l < k information

coordinates correspond to any linearly independent columns of the parity check

matrix of C . To ensure that the deleted coordinates are in fact information symbols

Theorem 9.1 is employed.

9.1 Theorem (From (MacWilliams and Sloane, 1983)). A code with minimum

distance d has every combination of d−1 or less columns of its parity check matrix

linearly independent.

By constraining the number of deleted coordinates l such that l < k and l < d it is

ensured that these l coordinates are information coordinates. Let c ∈C a codeword
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of C then the support of c is defined as ,

supp (c)= {i : i ∈ {0, . . . ,n−1} | ci 6= 0}.

Let d be the minimum distance of the code and the weight of a codeword be the

cardinality of its support,

weight(c)= |supp(c)|.

Let M ⊂C be the set of minimum weight codewords

M = {c ∈C : weight(c)= d}

and W a set of sets satisfying,

W = {supp(c) : ∀c ∈M}. (9.1)

9.1 Definition (From (Grassl and White, 2004)). A hitting set J ⊆ {0, . . .,n−1} of

the set W is any set such that every set w ∈W intersects J . Formally,

|J ∩w| ≥ 1 ∀w ∈W

The hitting set J for the set W is a set containing coordinates such that every

codeword of minimum weight in C is non-zero in at least one of the coordinates

contained in J .

9.3.1 Code Shortening

9.2 Theorem. If J is a hitting set of the set W , shortening the code C in coordinates

specified by J will produce a linear code with parameters [n− l,k− l,≥ d+1] where

l = |J |, l < k and l < d.

Proof. Since every codeword of minimum weight in C is non-zero in at least one

coordinate contained J and coordinates of J contain only information coordinates,

all the minimum weight codewords of C are discarded as a result of shortening.

Thus the shortened code Cs has minimum weight ≥ d+1.
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An observation from Theorem 9.2 is that all codewords (not necessarily of mini-

mum weight) that are nonzero in at least one coordinate in J are also no longer in

the shortened code.

if c ∈D then c ∉Cs

This suggests that it is possible to extend the definition of the hitting set to include

codewords of C with weight at most d+δ for some δ. The sets Mi are first defined

as,

Mi = {c ∈C : weight(c)= d+ i}

and the sets M̃ and W̃ as,

M̃ =
δ⋃

i=0
Mi

W̃ = {supp(c) : ∀c ∈ M̃}.

Let Jδ denote the hitting set of W̃ .

|Jδ∩w| ≥ 1 ∀w ∈ W̃

9.1 Corollary (Generalized Shortening). If Jδ is a hitting set of the set W̃, short-

ening the code C in coordinates specified by Jδ will produce a linear code with

parameters [n− l,k− l,≥ d+δ+1] where l = |Jδ|, l < k and l < d.

9.3.2 Code Extension

A code C with parameters [n,k,d] can be extended by appending l new coordinates

so that the extended code Ce has parameters [n+ l,k,d+1], if every codeword of

minimum weight d in C has a weight at least one in the appended l coordinates. It

is possible to extend a code in this manner by examining all codewords of minimum

weight. Let J define the hitting set of the set W as in Section 9.3 with l = |J |.
By repeating the l coordinates of C contained in J for every codeword of C , it is

possible to increase the minimum distance to ≥ d+1.

9.3 Theorem (From (Kohnert, 2009)). If J is a hitting set of the set W , extending

the code C by repeating coordinates specified by J will produce a linear code with
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parameters [n+ l,k,d+1] where l = |J |.

Proof. Since every codeword of minimum weight in C is nonzero in at least one

coordinate in J , repeating the l coordinates contained in J ensures that the weight

of any of these codewords increases to at least d+1.

Suppose G= [g j], j = [0, . . . ,n−1] is the generator matrix of C where g j is a column

of G. A generator matrix of the extended code Ge with parameters [n+ l,k,d+1]

can be formed as such,

Ge =G|Ǵ where Ǵ= [g j] , j ∈J

and | denotes matrix concatenation. This idea was presented in (Kohnert, 2009) in

which the authors refer to this type of extension as an (l,1)-extension. It is possible

to generalise this extension by examining codewords of weight up do d+δ of the

code C . Let Jδ and W̃ be defined as in Section 9.3.1.

9.4 Theorem. If Jδ is a hitting set of the set W̃, extending the code C by repeating

coordinates specified by Jδ a number of p times will produce a linear code with

parameters [n+ pl,k,d+ p] where l = |Jδ| and 1≤ p≤ δ+1.

Proof. Since all codewords of C of weight w, d ≤w ≤ d+δ are nonzero in at least

one coordinate in Jδ, repeating the l coordinates p times ensures that these code-

words have weight at least w+ p. The minimum of these weights is d+ p, thus the

extended code has minimum weight d+ p.

The extended code Ce has generator matrix Ge as,

Ge =G|Ǵ1| · · · |Ǵp

where Ǵi = [g j] , i = [1, . . . , p] and j ∈Jδ

9.2 Corollary. If a code C with parameters [n,k,d] can be shortened to a code Cs

with parameters [n− l,k− l,≥ d+δ+1] with a coordinate set Jδ, then C can also

be extended to a code Ce with parameters [n+ pl,k,d+ p], 1 ≤ p ≤ δ+1 using the

same coordinate set.

Equation (9.2) gives a summary of Corollary 9.2 given an [n,k,d] code and a set

Jδ.
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[n−|Jδ|,k−|Jδ|,≥ d+δ+1]
Shortening←−−−−−−−− [n,k,d]

Extending−−−−−−−−→ [n+(δ+1)|Jδ|,k,d+δ+1]

(9.2)

TABLE I

Codes Γ(L1,G1) and Γ(L2,G1)

Codes G(x) L Length Dimension Distance

Γ(L1,G1) xt−1+1 {Ft2 \Ft}∪ {0} t2− t+1 t2− t−2ℓ
(

t− 3
2

)

2t−1

Γ(L2,G1) xt−1+1 {Ft2 \Ft} t2− t t2− t−2ℓ
(

t− 3
2

)

−1 2t+4

Example 9.1: Consider the Hermitian code CH defined in F16 with parameters

[64,6,24]16. The code is defined with divisors D and G given as

G =mP∞ = 11P∞

D = P0+P2+·· ·+P63

The trace code of CH in F2 is denoted by CT. This code has parameters [64,13,24]2

and is optimal (see tables in Grassl, 2007). The CT code has weight enumerator

x64+368x40y24+2560x36y28+2334x32y32+2560x28y36+368x24y40+ y64.

Using a random search on the supports of the minimum weight codewords of CT

the set J0 = {0,6,8,11,12,14,46,50,54}with |J0| = 9 was found. Note that J0 may

not be unique even for a fixed ordering of the points Pi. Shortening CT in these

coordinates using Theorem 9.2 produces a code with parameters [55,4,28]2 which

is also optimal. It can be observed that the shortened code has minimum distance

much greater than the lower bound which is 25 since the next available weight

(from the weight enumerator) is 28. Extending the code using Theorem 9.3 and J0

we obtain a [73,13,25]2 code.

Example 9.2: Consider the BCH [63,18,21]2 code. A random search on the sup-

ports of the codewords of this code with weights 21 and 22 produces the set

J1 = {10,11,28,30,32,33,36,38,57,58,59}

with |J1| = 11. Shortening the BCH code in these coordinates produces a code with

parameters [57,7,23]2.
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ℓ Ft2 Γ(L1,G1) Γ(L2,G1)

2 F16 [13,2,7]2 [12,1,12]2
3 F64 [57,17,15]2 [56,16,20]2
4 F256 [241,124,31]2 [240,123,36]2
5 F1024 [993,687,63]2 [992,686,68]2

Table 9.2: Codes Γ(L1,G1) and Γ(L2,G1) for 2≤ ℓ≤ 5

9.4 Goppa Codes

Recall the definition and description of Goppa codes from Section 3.4. A Goppa

code is called separable if its defining polynomial has distinct non-repeated roots.

Separable Goppa codes with Goppa polynomials with coefficients in the finite field

Ft2 and t= 2ℓ are of particular interest. These codes are defined in the finite field F2,

a subfield of Ft2 . In (Bezzateev and Shekhunova, 1995) Bezzateev and Shekhunova

present results on Goppa codes defined by G1(x) = xt−1 + 1 and showed that the

minimum distance of these codes is exactly d = 2t−1. The dimension of these codes

was proven in (Véron, 2005) to be,

k= t2− t−2ℓ

(

t−
3

2

)

and the codes have length n = t2 − t+ 1. These codes have a location set L1 =
{Ft2 \ Ft}∪ {0}. These codes are denoted as Γ(L1,G1). In a separate paper (Bezza-

teev and Shekhunova, 2008), Bezzateev and Shekhunova showed that shortened

codes Γ(L2,G1) obtained from Γ(L1,G1) with a set L2 = {Ft2 \Ft} have minimum dis-

tance d = 2t+4. These binary shortened codes have parameters [n−1,k−1,2t+4]2.

Table I gives the parameters of these two codes. Table 9.2 shows the parameters of

these two codes in the range 2≤ ℓ≤ 5. The codes Γ(L1,G1) may be extended using

Corollary 9.2. Using this approach,

C =Γ(L1,G1) Cs =Γ(L2,G1) δ= 2t+4− (2t−1)−1= 4

in addition,

Jδ =J4 = {0} l = 1

if it is assumed that the location set is ordered such that L1 = {0,α1, . . . ,αn−1} where

α0 = 0. This means that shortening the codes Γ(L1,G1) with minimum distance

2t−1 in the coordinate J4 = {0} will increase the distance of the shortened code to

2t+4. From Section 9.3.1 and Corollary 9.1 it is clear that all codewords of Γ(L1,G1)

of weight w such that 2t−1≤ w ≤ 2t+3 are nonzero in location {0}. Consequently

the code Γ(L1,G1) can be extended using Corollary 9.2 to obtain codes Ce with pa-
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ℓ Ft2 Γ(L1,G1) p Ce Codes in (Grassl, 2007)

2 F16 [13,2,7]2

1 [14,2,8]2 [14,2,9]2
2 [15,2,9]2 [15,2,10]2
3 [16,2,10]2 [16,2,10]2
4 [17,2,11]2 [17,2,11]2
5 [18,2,12]2 [18,2,12]2

3 F64 [57,17,15]2

1 [58,17,16]2 [58,17,18]2
2 [59,17,17]2 [59,17,19]2
3 [60,17,18]2 [60,17,20]2
4 [61,17,19]2 [61,17,20]2
5 [62,17,20]2 [62,17,21]2

4 F256 [241,124,31]2

1 [242,124,32]2 [242,124,32]2
2 [243,124,33]2 [243,124,32]2
3 [244,124,34]2 [244,124,33]2
4 [245,124,35]2 [245,124,34]2
5 [246,124,36]2 [246,124,35]2

5 F1024 [993,687,63]2

1 [994,687,64]2 –

2 [995,687,65]2 –

3 [996,687,66]2 –

4 [997,687,67]2 –

5 [998,687,68]2 –

Table 9.3: Codes Ce for 2≤ ℓ≤ 5, 1≤ p ≤ 5

rameters,

[t2− t+1+ pl, t2− t−2ℓ

(

t−
3

2

)

, 2t−1+ p]2 1≤ p≤ 5

Example 9.3 (An Example in F64): Let ℓ= 3, the code Γ(L1,G1) is defined with a

Goppa polynomial with coefficients in F64. The Goppa code has parameters [57,17,15]2.

Examining all the codewords of this code of weight w such that 15≤w≤ 19 using the

computer algebra systemMAGMA (Bosma et al., 1997), it is evident that all of these

codewords are nonzero in the location {0}. Shortening the code at location {0} pro-

duced a [56,16,20]2 code. By repeating the coordinate {0} of the code [57,17,15]2 up

to 5 times the minimum distances of the codes [58,17,16]2, [59,17,17]2, [60,17,18]2,

[61,17,19]2 and [61,17,20]2 are verified.

Table 9.3 shows the extended codes Ce obtainable from the codes Γ(L1,G1) for

1≤ ℓ≤ 5. The codes in bold font have better minimum distances than codes in the

tables (Grassl, 2007) with the same length and dimension. To obtain good codes one

needs to find the weight distribution and an optimal hitting set (one with the least

possible size). Finding the minimum distance of a code in the simplest of finite

fields F2 was shown to be an NP-hard problem in (Vardy, 1997). Thus computing
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the weight distribution of a code, a related problem, can also be considered difficult.

Furthermore, computing the hitting set was shown in (Garey and Johnson, 1979) to

be an NP-complete problem. For example computing the weight distribution of the

[241,124,31]2 code will require enumerating 2124 = 2.1268×1037 codewords. How-

ever there is no need to do this using Corollary 9.2 and results from (Bezzateev and

Shekhunova, 1995) (Bezzateev and Shekhunova, 2008) in order to obtain improved

codes.

9.5 Alternative Method

The code extension method in Section 9.3.2 may not be the most efficient code ex-

tension method since every |Jδ| increase in length increases the minimum distance

by 1. Using the ubiquitous construction X it is possible to obtain better extensions.

Construction X (Sloane et al., 1972) (described in Section 2.1) uses a code and its

subcode to extend the original code. It is enough to show that any shortened code is

a subcode of the original code in order to obtain codes from construction X for this

case.

9.5 Theorem. If a code C can be shortened to a code Cs in coordinates R ⊂ {0, . . .,n−1},
then the code Cp obtained by inserting a 0 (padding) in every deleted coordinate in

R for every codeword in Cs is a subcode of C .

The proof of the theorem is straightforward since every codeword in C satis-

fies the parity check equations of the code Cp. Suppose a code C with parameters

[n,k,d] is shortened to a code Cs using Corollary 9.1 to a code with parameters

[n−|Jδ|,k−|Jδ|,ds] where ds ≥ d+δ+1, then a padded code Cp can be formed by

inserting zeros in every coordinate in Jδ for every codeword in Cs. As Cp ⊂ C it

is possible to extend C to a code with parameters [n+ ń,k,d+ d́] with construction

X using an auxiliary code [ń,Jδ, d́] provided d́ ≤ ds−d. For the case of the Goppa

codes in Section 9.4, it is possible to pad the codewords of Γ(L2,G1) with parameters

[n−|Jδ|,k−|Jδ|,2t+4]2 in the coordinate J4 = {0} to form a code Cp with param-

eters [n− |Jδ| + 1,k− |Jδ|,2t+ 4]2. Consequently Cp ⊂ Γ(L1,G1) where Γ(L1,G1)

has parameters [n,k,2t−1]2 . Using Construction X with auxiliary repetition codes

[ń,1, ń]2 up to 1≤ ń ≤ 5 will produce the codes in Table 9.3 with dimension k. The

two extension methods will produce the same results for the case when |Jδ| = 1

since the size is minimal. However as |Jδ| increases, construction X will produce

better extensions.
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9.6 Summary

A method of shortening linear codes whilst improving the minimum distance by

examining low weight codewords of the code is presented. The relationship be-

tween shortening and extending linear codes is examined. Using this relationship

four new binary codes from a well studied Goppa code are obtained with param-

eters [243,124,33]2, [244,124,34]2, [245,124,35]2 and [246,124,36]2. Since short-

ened codes can be viewed as subcodes of the original code, the shortening method is

then a method of obtaining good subcodes of a linear code.
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10. ON EXTENDING BCH CODES

Wolf (1969) showed that Reed Solomon codes can be extended by adding at most two

columns to their parity check matrices. An [n,k,d]q RS code can be extended to a

singly extended RS code with parameters [n+1,k+1,d]q code or a doubly extended

RS code with parameters [n+2,k+2,d]q code. The motivation behind this Chapter

was to find out the extendability of the subfield subcodes of RS codes namely BCH

codes. It turns out that the extendability of a BCH code depends on its subcodes.

The necessary conditions under which a BCH code defined in a finite field Fq with

an extension field Fqm having a code length n, dimension k and minimum distance

d is extendable to a code of length n+ p(m+1), dimension k and minimum distance

d+δ for some p> 1 and δ> 0 are presented.

10.1 The Method

First a criterion on extending the length of any linear code C by adding a single

parity check on a set of co-ordinates of C so that the minimum distance of the

code increases by 1 is established. A linear code of length n is an n-dimensional

vector space and has a set of co-ordinates {0,1, . . .n−1}. If the code C has minimum

distance d and the set S is defined as,

S = {c : c ∈C and weight(c)= d}

where supp and weight denote the support and weight of a codeword of C respec-

tively.

10.1 Theorem. If there exists a set of co-ordinates l ⊆ {0,1, . . .n−1} of a linear code C

with length n, dimension k and minimum distance d (and thus has parameters

[n,k,d]), such that every codeword of minimum weight has weight exactly 1 in

these l co-ordinates, then by adding a single parity check on the l co-ordinates the

code C can be extended to an [n+1,k,d+1] code.

Proof. The proof is straight forward. Since for all the minimum weight codewords

the l co-ordinates have only 1 co-ordinate non-zero, a parity check on only these l
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co-ordinates will also be non-zero for every codeword of minimum weight. Conse-

quently all codewords of previous weight d will have weight d+1.

10.2 BCH Codes

Recall the well known BCH bound (MacWilliams and Sloane, 1983) for cyclic codes

without proof. Let Fq be a finite field and Fqm as its extension field. Let α be the

primitive element of the extension field Fqm

10.2 Theorem (BCH Bound from (MacWilliams and Sloane, 1983)). A cyclic code

C having defined with d−1 cyclically consecutive elements of a finite field Fqm as

roots of the form,

{αb,αb+1, . . . ,αb+d−2} α ∈ Fqm

has minimum distance at least d.

The BCH bound in Theorem 10.2 describes a lower bound on the weight of any

codewords c ∈C . Given any codeword c ∈C , the BCH bound can be used to obtain

a lower bound on the weight of c.

10.1 Corollary. Any codeword c ∈C having the set of cyclically consecutive elements of

finite field Fqm as

{αb,αb+1, . . . ,αb+w−2} α ∈ Fqm

as roots has weight at least w.

Consider the parity check matrix of a Reed Solomon code with redundancy r and

length n defined in a field Fqm with α as a primitive element,

HRS =












1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
. . .

...

1 αb+r α2(b+r) · · · α(n−1)(b+r)












(10.1)

The RS code has a set of cyclically consecutive roots V = {αb,αb+1, . . . ,αb+r} with

cardinality r. A subfield subcode of this RS code is a BCH code restricted to Fq. In

addition to the consecutive roots of the RS code, the BCH code will have additional

roots that are co-members with the consecutive roots in conjugacy classes defined by

the Frobenius automorphism. Recall the definition of a conjugacy class. A conjugacy
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class of an element β of a finite field Fqm is given as the set,

C(β)= {β,βq,βq2 , . . . ,βq(e−1)} β ∈ Fqm (10.2)

where e is the smallest positive integer such that βqe =β. The set of roots of a BCH

code are given by

R =
⋃

β∈V
C(β), (10.3)

the codes have redundancy |R| and dimension k = n− |R|. Clearly V ⊂ R and the

minimum distance of BCH codes is at least |V |+1= r+1. Often R contains one or

more roots that are cyclically consecutive to the set of roots in V . Let T ⊂R denote

these additional set of consecutive roots with T *V then the minimum distance of

the BCH code is

d ≥ |V |+ |T|+1

from the BCH bound. The notations ∼ and ≁ are used to denote whether elements

of a set are cyclically consecutive. Thus

∼ A

means that all elements in a set A are cyclically consecutive and

≁ A

means that not all elements in A are cyclically consecutive. Similarly these nota-

tions are used to denote whether the union of two sets has all its elements cyclically

consecutive. Thus A is consecutive to B is expressed as,

A ∼B if and only if C = A∪B and∼C

Clearly if A ∼B then B∼ A. Also

A≁B if and only if C = A∪B and≁C

Let a gap root β of the sets A and B be defined as a root neither in the set A nor

in the set B but one which when included in either set makes the elements of the

two sets consecutive. Formally,

if A≁B, β ∉ A , β∉B

then (A∪ {β})∼B

or (B∪ {β})∼ A
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From the definition of a conjugacy class in Equation (10.2), it is possible express the

parity check matrix of the BCH code HBCH as in Equation (10.4),

HBCH =
































1 αb α2b · · · α(n−1)b

1 αbq α2bq · · · α(n−1)bq

...
...

...
. . .

...

1 αb(qm−1) α2b(qm−1) · · · α(n−1)bqm−1

...
...

...
. . .

...

...
...

...
. . .

...

1 αb+r α2(b+r) · · · α(n−1)(b+r)

1 α(b+r)q α2(b+r)q · · · α(n−1)(b+r)q

...
...

...
. . .

...

1 α(b+r)(qm−1) α2(b+r)(qm−1) · · · α(n−1)(b+r)qm−1
































(10.4)

HBCH is the parity matrix obtained by restricting HRS to Fq. Let

V = {αb,αb+1, . . . ,αb+r}

be the set of consecutive roots of the RS code CRS, R the set defined in Equation

(10.3) and T ⊂ R, T * V be a set such that V ∼ T. The parameters of CBCH are de-

noted as [n,k,d]q. For the sake of clarity we recall from Section 3.3 some important

sets for CBCH that will be continually referred to. The set V contains consecutive

roots of the RS code in Fqm that defines CBCH in Fq, the set T is obtained from el-

ements in the conjugacy classes of all the elements in V and has all its elements

consecutive to the elements in V , and finally a set D = V ∪T. The BCH code CBCH

has minimum distance d ≥ |D|+1.

10.3 Single Extension

It is possible to extend the BCH code in the same manner as singly extended RS

codes (Wolf, 1969). Consider the parity check matrix of a singly extended BCH code

with an additional row and column as in Equation (10.5). A codeword c of CBCH is

represented as a polynomial in a univariate polynomial ring ,

c(x)= c0+ c1x+·· ·+ cn−1x
n−1

therefore a codeword ć of CEBCH will be

ć(x)= c0+ c1x+·· ·+ cn−1x
n−1+ xncn

138



Chapter 10: Extending BCH Codes

HEBCH =































1 αb α2b · · · α(n−1)b 0

1 αbq α2bq · · · α(n−1)bq 0

...
...

...
. . .

...
...

1 αb(qm−1) α2b(qm−1) · · · α(n−1)bqm−1
0

...
...

...
. . .

...
...

...
...

...
. . .

...
...

1 αb+r α2(b+r) · · · α(n−1)(b+r) 0

1 α(b+r)q α2(b+r)q · · · α(n−1)(b+r)q 0

...
...

...
. . .

...
...

1 α(b+r)(qm−1) α2(b+r)(qm−1) · · · α(n−1)(b+r)qm−1
0

1 αb+r+1 α2(b+r+1) · · · α(n−1)(b+r+1) 1































(10.5)

with

cn =
n−1∑

i=0
c i(α

b+r+1)i (10.6)

from the last row of the parity check matrix of HEBCH. For the purpose of this con-

struction it is required that

αb+r+1 ∉D =V ∪T (10.7)

or more precisely αb+r+1 ∉ T. This is an essential requirement for Theorem 10.3.

For Theorem 10.4 the condition in 10.7 ensures that αb+r+1 is a gap root of the two

sets D and P where,

P ⊂R and ∼ P.

10.4 Construction

Consider a codeword of the single extended BCH code CEBCH,

ć(x)= c0+ c1x+·· ·+ cn−1x
n−1+ xncn

with cn defined in (10.6). Our construction involves restricting co-ordinates of CEBCH

in the range [0 . . .n−1] (i.e those that form codewords of CBCH) to the subfield Fq

while on the additional co-ordinate n no such restriction is applied. In this way the

symbol defined by cn is in Fqm and is represented as an m-length vector in Fq. This

is possible since Fqm can be expressed as an m-dimensional vector space in Fq using

a suitable map (Lidl and Niederreiter, 1986). The map πm is defined as such,

πm : Fqm → F
m
q

πm(α j)= (a1,a2, . . . ,am)
T α j ∈ Fqm , ai ∈ Fq.
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which maps elements of Fqm Suppose [γ1,γ2, . . . ,γm] forms a suitable basis of the

vector space F
m
q , then α j = a1γ1+a2γ2+·· ·+amγm. A common choice for the basis

is the normal basis.

[α,αq, . . . ,αqm−1
] β ∈ Fqm

which exists for any subfield of Fqm (Lidl and Niederreiter, 1986). We define another

map σm, Let p(x) be a primitive polynomial of Fqm over Fq. The companion matrix

of a polynomial f (x)= a0+a1x+·· ·+am−1x
m−1+xm is defined as in Subsection 2.3.3.

The map σm is given by,

σm : Fqm → F
m×m
q

ψm(α
j)=C j, α j ∈ Fqm \{0}.

where α is the primitive element of Fqm . This map is denoted by σm,

σm : Fqm → F
m×m
q .

In summary each symbol in Fqm can be represented by a unique m×m matrix. The

parity check matrix of CEBCH can then be expressed as,

HEBCH =















πm(1) πm(αb) · · · πm(α(n−1)b) σm(0)

πm(1) πm(αb+1) · · · πm(α(n−1)(b+1)) σm(0)

...
...

. . .
...

...

πm(1) πm(αb+r) · · · πm(α(n−1)(b+r)) σm(0)

πm(1) πm(αb+r+1) · · · πm(α(n−1)(b+r+1)) σm(1)















(10.8)

10.3 Theorem (Single Extension). The minimum weight of the code CEBCH is d + 1,

where d is the minimum weight of CBCH.

Proof. Consider again the codeword of CEBCH

ć(x)= c0+ c1x+·· ·+ cn−1x
n−1+ xn

n−1∑

i=0
c i(α

b+r+1)i

= c(x)− xn
n−1∑

i=0
c i(α

b+r+1)i
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with c ∈CBCH. Clearly the symbol,

−cn =
n−1∑

i=0
c i(α

b+r+1)i = c(αb+r+1)

is an evaluation of the codewords of CBCH at the root α
b+r+1. Let c ∈ S i.e. weight(c)=

d then,

−cn = c(αb+r+1)=
n−1∑

i=0
c i(α

b+r+1)i 6= 0

since from Equation 10.7 it is known that αb+r+1 is not a root of the code CBCH

i.e. αb+r+1 ∉ D. Suppose αb+r+1 were a root of CBCH, then from the BCH bound

in Theorem 10.2 the code CBCH will have minimum weight d+1 which is not the

case. This means that all codewords of minimum weight d in CBCH are extended to

codewords of minimum weight ≥ d+1 in CEBCH (since the symbol on the co-ordinate

n of a codeword of CEBCH is mapped to an m length vector representing cn). If we

assume that c ∈ CBCH is not a codeword of minimum weight i.e. weight(c) ≥ d+1

then,

c(αb+r+1)=
n−1∑

i=0
c i(α

b+r+1)i = 0

for codewords c which have D∪ {αb+r+1} as roots. From Corollary 10.1 these code-

words have weight at least d+1 since {αb+r+1}∼D and |D∪{αb+r+1}| = d. Therefore

the minimum weight codewords of CEBCH consist of;

(1) Codewords c ∈ CBCH that have weight d appended with an m-length vector

representing cn with weight exactly 11.

(2) Codewords c ∈ CBCH that have weight d+ 1, αb+r+1 as a root and appended

with an m-length vector representing cn having weight exactly zero.

The minimum weight of CEBCH is thus d+1.

Example 10.1: Consider the code restricted to F2 from the RS code defined in F32

therefore m= 5. The RS code has a set of defining roots

V = {1,α,α2,α3,α4,α5,α6}.

1If cn maps to an m-length vector of weight greater than 1 then the codeword ć will have weight

≥ d+2.
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The conjugacy classes F32 over F2 are ,

{1}

{α,α2,α4,α8,α16}

{α3,α6,α12,α24,α17}

{α5,α10,α20,α9,α18}

{α7,α14,α28,α25,α19}

{α11,α22,α13,α26,α21}

{α15,α30,α29,α27,α23}

where α is the primitive element of F32. The set R for the BCH code is thus,

R = {1,α,α2,α4,α8,α16,α3,α6,α12,α24,α17,α5,α10,α20,α9,α18}

with |R| = 16 and T =;. The set D is

D =V ∪T =V

and |D| = 7.

The BCH code has length n= qm−1= 31, dimension k= n−|R| = 15 and minimum

distance d = |D|+1= 8. The parity check matrix of CEBCH is,

HEBCH =















π5(1) π5(1) . . . π5(1) σ5(0)

π5(1) π5(α) . . . π5(α
30) σ5(0)

...
...

. . .
...

...

π5(1) π5(α
6) . . . π5(α

25) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(1)















which maps to
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HEBCH =

































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0

0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0

1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0

0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0

0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0

0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0

0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0

0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0

0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0

0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0

0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0

1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0

0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0

1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0

0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0

0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0

0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1

































and reduces to

HEBCH =







































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1







































in echelon form. The code has length n+m = 36 and dimension k = 15. The min-

imum distance of this code was verified using computer algebra system MAGMA

(Bosma et al., 1997) to be 9. This result agrees with Theorem 10.3. The code CEBCH

has parameters [36,15,9]2 and is an extension of the code CBCH with parameters

[31,15,8]2.

The code CEBCH is therefore an [n+m,k,d+1]q code. The necessary conditions

for which an [n+m+1,k,d+2]q code can be obtained from CEBCH by adding a parity
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check on the appended m length vector representing cn are now looked at. Ideally

a situation where cn is non-zero2 for all the minimum weight codewords of CEBCH is

desirable so that Theorem 10.1 can be applied.

10.4 Theorem (Single Extension with Parity Check). The extended BCH code CEBCH

with parameters [n+m,k,d+1]q can be further extended to an [n+m+1,k,d+2]q

code by adding a parity check on the appended m-length vector representing cn of

every codeword of CEBCH if the original BCH code CBCH has αb+r+2 as a root.

Proof. For the sake of clarity recall from Theorem 10.3 the minimum weight

codewords of CEBCH ,

(1) Codewords c ∈ CBCH that have weight d with an appended m-length vector

representing cn with weight exactly 1.

(2) Codewords c ∈ CBCH that have weight d+ 1, αb+r+1 as a root and appended

with an m-length vector representing cn having weight exactly zero.

If CBCH also contains αb+r+2 as a root i.e. all codewords have this root, then the

set of minimum weight codewords corresponding to (2) above that have αb+r+1 as a

root will have αb+r+2 as a root also. From Corollary 10.1, these codewords will have

weight equal to d+2 since D ∼ {αb+r+1,αb+r+2} and |D ∪ {αb+r+1,αb+r+2}| = d+1.

Since CEBCH has minimum weight d+1, all codewords of minimum weight in CEBCH

will be from the set (1) above. These codewords have the appended m-length vector

representing cn having weight exactly 1. From Theorem 10.1, it is evident that CEBCH

can then be extended to an [n+m+1,k,d+2]q code by adding a single parity check

on the m-length vector.

Example 10.2: Consider again the BCH code described in Example 10.1. We see

that the gap root is αb+r+1 =α7 and by examining the set R it can be observed that

α8 ∈ R, thus P = {α8}. From Theorem 10.4 it should be possible to extend the code

CEBCH from a [36,15,9]2 code to a [37,15,10]2 code by adding a single parity check

on the last m= 5 coordinates since D ∼ {α7,α8}. The parity check matrix H is that

of the extended code CEBCH with a single parity check on the m-length vector repre-

senting the last symbol,

2The corresponding m-length vector will have weight exactly 1 from Theorem 10.3.
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H =









































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1









































the resulting code was verified to be a [37,15,10]2 code which coincides with the

best known code from the tables in (Grassl, 2007).

10.5 Theorem (Multiple Extensions). If the code CBCH contains elements of the set

P = {αb+r+2,αb+r+3, . . . ,αb+r+δ+1} , P ⊂R , |P| = δ and∼ P

as roots then each codeword of c of CBCH can be extended to

ć(x)= c(x)+ xncn + xn+1cn+1 +·· ·+ xn+t−1cn+ t−1

where

cn = cn+1 = ·· · = cn+ t−1 =−
n−1∑

i=0
c i(α

b+r+1)i,

1≤ t≤ δ+1 and ć ∈CEBCH with the extended code C having length n+mt, dimension

k and minimum distance at least d+ t.

Proof. It is assumed as before that each c j, j ≥ n is restricted to Fqm and maps to an

m-length vector in Fq. Henceforth each c j, j ≥ n is referred as cn since they are all

equal. Every codeword c ∈CBCH has the elements of P as roots, thus any codeword of

CBCH having αb+r+1 as a root will have the set D∪({αb+r+1}∪P) as a set of consecutive

roots. From Corollary 10.1 this codeword will have weight at least d+δ+1 since

|D ∪ ({αb+r+1}∪P)| = d + δ, therefore all codewords of CBCH of weight w such that
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d ≤w≤ d+δ cannot have cn equal to zero. Thus for 1≤ t≤ δ each cn is an m-length

vector having weight exactly 1 and CEBCH has minimum weight codewords of weight

d+ t consisting of minimum weight codewords of CBCH of weight d appended with

t m-length vectors each representing cn with weight exactly 1. Thus ć has weight

d+ t. If t = δ+1, the minimum weight codewords of CEBCH consists of codewords of

CBCH with weight d+δ+1 having roots D∪ ({αb+r+1}∪P) and appended with δ+1

m-length vectors representing cn each all zero, and minimum weight codewords of

CBCH appended with δ+1 m-length vectors representing cn with weight exactly 1.

Thus ć has weight d+δ+1. For t> δ+1 no improvement on the minimum distance

is possible since codewords with roots D∪({αb+r+1}∪P) cannot be extended because

they have αb+r+1 as a root. Therefore given any t in the range 1≤ t≤ δ+1 the code

CEBCH has minimum weight at least d+ t.

Example 10.3: Using the BCH code in Example 10.1, it can be observed that the

set R contains the set P = {α8,α9,α10} and D ({α7}∪P). Thus δ = |P| = 3. Theo-

rem 10.5 says it is possible to obtain codes [36,15,9]2 if t = 1, [41,15,10]2 if t = 2 ,

[46,15,11]2 if t = 3 and [51,15,12]2 if t = 4. Since the t = 1 coincides with Example

10.1, codes for t ≥ 2 are constructed. If t = 2, the parity check matrix of CEBCH is

given by,

HEBCH =


















π5(1) π5(1) . . . π5(1) σ5(0) σ5(0)

π5(1) π5(α) . . . π5(α
30) σ5(0) σ5(0)

...
...

. . .
...

...
...

π5(1) π5(α
6) . . . π5(α

25) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(1) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(1)


















this code was verified to be a [41,15,10]2 code. If t= 3 , HEBCH is

HEBCH =





















π5(1) π5(1) . . . π5(1) σ5(0) σ5(0) σ5(0)

π5(1) π5(α) . . . π5(α
30) σ5(0) σ5(0) σ5(0)

...
...

. . .
...

...
...

...

π5(1) π5(α
6) . . . π5(α

25) σ5(0) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(1) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(1) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(0) σ5(1)




















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this is a [46,15,11]2 code. Finally if t= 4,

HEBCH =
























π5(1) π5(1) . . . π5(1) σ5(0) σ5(0) σ5(0) σ5(0)

π5(1) π5(α) . . . π5(α
30) σ5(0) σ5(0) σ5(0) σ5(0)

...
...

. . .
...

...
...

...
...

π5(1) π5(α
6) . . . π5(α

25) σ5(0) σ5(0) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(1) σ5(0) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(1) σ5(0) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(0) σ5(1) σ5(0)

π5(1) π5(α
7) . . . π5(α

24) σ5(0) σ5(0) σ5(0) σ5(1)
























which results in a [51,15,12]2 code.

In Theorem 10.4, αb+r+1 is a gap root of the sets D and P = {αb+r+2}. Cases

where αb+r+1 is a gap root to sets D and P with |P| ≥ 1 are now treated.

10.6 Theorem (Multiple Extensions with Parity Checks). If the code CBCH contains

elements of the set

P = {αb+r+2,αb+r+3, . . . ,αb+r+δ+1} , P ⊂R , |P| = δ and∼ P

as roots then each codeword of c of CBCH can be extended to

ć(x)= c(x)+ xncn + xn+1cn+1 +·· ·+ xn+t−1cn+ t−1

where

cn = cn+1 = ·· · = cn+ t−1 =−
n−1∑

i=0
c i(α

b+r+1)i,

1≤ t≤ δ and ć ∈CEBCH with the extended code C having length n+mt+l, dimension

k and minimum distance at least min{d+ t+ l,d+δ+1} by adding l single parity

checks on any of the m-length vectors representing c j, j ≥ n.

Proof. From the proof of Theorem 10.5, it can be observed that for 1 ≤ t ≤ δ all

minimum weight codewords of CEBCH have m-length vectors representing c j, j ≥ n

each with weight exactly 1. Thus by Theorem 10.1 each c j, j ≥ n is a candidate

for extension by adding a single parity check on any l m-length vectors. It can

also be observed that no extensions are possible for codewords with weight d+δ+1

with roots D∪ ({αb+r+1}∪P), therefore the maximum possible minimum distance of

any extension of the code CBCH with Theorem 10.6 is d+δ+1. Thus the minimum

distance of the code is min{d+δ+1,d+ t+ l}.
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Example 10.4: Using the sets R,D and P of BCH code in Example 10.3, t = 3 and

l = 3 are chosen. For t= 3 from Example 10.3 a [46,15,9]2 code is obtained which is

then extended by adding l = 3 single parity checks to each c j, j ≥ n. H is the parity

check matrix of the extended code obtained from CBCH using Theorem 10.6

H =
































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
































































in echelon form. The code has parameters [49,15,12]2.

Example 10.5: Consider the code restricted to F4 from the RS code defined in F64

with m= 3. The RS code has a set of defining roots

V = {αk : k ∈ [41 .. 62]}
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The conjugacy classes F64 over F4 are ,

{1},

{α,α4,α16},

{α2,α8,α32},

{α3,α12,α48},

{α5,α20,α17},

{α6,α24,α33},

{α7,α28,α49},

{α9,α36,α18},

{α10,α40,α34},

{α11,α44,α50},

{α13,α52,α19},

{α14,α56,α35},

{α15,α60,α51},

{α21},

{α22,α25,α37},

{α23,α29,α53},

{α26,α41,α38},

{α27,α45,α54},

{α30,α57,α39},

{α31,α61,α55},

{α42},

{α43,α46,α58}

where α is the primitive element of F64. The set R for the BCH code is thus,

R = {α3,α7,α11,α12,α13,α14,α15,α19,α23,α26,α27,α28,α29,

α30,α31,α35,α38,α39,α41,α42,α43,α44,α45,α46,α47,α48,

α49,α50,α51,α52,α53,α54,α55,α56,α57,α58,α59,α60,α61,α62}

with |R| = 40 and T =;. The set D is

D =V ∪T =V

and |D| = 22.

The BCH code has length n= qm−1= 63, dimension k= n−|R| = 23 and minimum

distance d = |D|+1= 23. By studying R it is clear that α40 is a gap root of the sets
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D and P = {α38,α39}. The parity check matrix of CEBCH is,

HEBCH =















π3(1) π3(α
62) . . . π3(α) σ3(0) . . . σ3(0)

π3(1) π3(α
61) . . . π3(α

2) σ3(0) . . . σ3(0)

...
...

. . .
...

...
...

...

π3(1) π3(α
41) . . . π3(α

22) σ3(0) . . . σ3(0)

π3(1) π3(α
40) . . . π3(α

23) σ3(1) . . . σ3(0)















which is a [66,23,24]4 code. Applying Theorem 10.6 a [67,23,25]4 code is obtained

which corresponds to the best known code from the tables in (Grassl, 2007).

10.5 Observations

If it is assumed that an overall parity check is included for each m extended sym-

bols, this method can be seen as extending a BCH code with parameters [n,k,d]q

,

[n,k,d]q → [n+ t(m+1),k,min(d+δ+1,d+2t)]

where δ = |P| and t ≥ 1. Clearly the minimum distance of the extended code is

upper bounded by the d+δ+1 which is the minimum distance of the subcode of the

original [n,k,d]q code with parameters [n,k−m,d+δ+1]q. A well known method

that extends a code based on the parameters of its subcode is Construction X (Sloane

et al., 1972) (see also Theorem 2.1). Construction X extends a code [n,k,d]q with a

subcode [n,k−m,d+δ+1]q to form a code with parameters [n+ń,k,min(d+δ+1,d+
s)]q using an auxiliary code [ń,m, s]q. A best known code is usually chosen as the

auxiliary code. Codes obtainable from the two constructions are now compared. For

an extended code [n+ t(m+1),k,min(d+δ+1,d+2t)] obtained from extending BCH

codes, it is assumed that δ is arbitrarily large. The best known auxiliary code for

construction X with length t(m+1) and dimension m is obtained from the database

in MAGMA (Bosma et al., 1997). Thus by comparing 2t and s the possible increase

in distance from the two different methods for extended codes of the same length

can be seen. Figures 10.1-10.4 show the extensions possible from the previously

presented method of extending BCH codes and construction X for codes in different

fields. The plots show the effect of m and q on the two extension methods. When

m and q are small the two methods are similar as the length of the extended code

increases. When m is small and q is large, construction X produces codes with much

better parameters. This is because the auxiliary codes used in construction X get

better as the field size increases. When q is small and m is large construction X

produces much better codes as the length of the extended code increases. When q is

large and m is small, the two methods seem to produce codes with similar distances
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Fig. 10.1: BCH extension compared with Construction X in F2 for different m
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Fig. 10.2: BCH extension compared with Construction X in F3 for different m
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Fig. 10.3: BCH extension compared with Construction X in F4 for different m
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when the difference between the length of the extended code and the original code

is small. In the figures the difference in distance between the original code and

the extended codes is allowed to go up to 30. In practice this difference is quite

small as was seen in previous examples and the extended codes have lengths not

much longer than the original codes. In summary when m is small this method

of extending BCH codes produces similar results with construction X provided q is

relatively small as well.

10.6 Summary

It was shown that it is possible to extend BCH codes by adding in some cases more

than two columns to their parity check matrices whereas with RS codes it is only

possible to add at most two columns. The extension method was shown to be as

good as construction X in producing codes in some cases however as the field size

increases the efficacy of the method deteriorates in comparison to construction X.

The method has provided insight into the extendability of BCH codes. It has also

provided insight into the inner workings of the method of extending Goppa codes in

Chapter 8.
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11. IMPROVED CODES FROM GOPPA

CODES II

11.1 Introduction

In this chapter an alternative construction to the codes to the extended Goppa codes

in Chapter 8 is given. Recall that the extended Goppa codes in Chapter 8 can be

seen as extended BCH codes. The main advantage of the construction presented

here to that in Chapter 8 is that it is possible extend non narrow-sense BCH codes.

A drawback however is that for the codes in Chapter 8 with parameters [n,k,d]q

the codes using the construction in this chapter will produce [n−1,k−1,d]q codes.

In other words codes presented in this Chapter are shortened when compared with

codes from Chapter 8. This is because the codes in Chapter 8 use the concept of a

modified Goppa code. It is not known at present if this concept can be applied to the

construction in this Chapter. The method presented here can be used for any BCH

code (not just narrow sense BCH codes) thus providing better flexibility. The codes

in the strict sense are not Goppa codes but alternant codes (a super-class of Goppa

codes).

11.2 Goppa Codes

Recall the definition and description of Goppa codes from Section 3.4 and Sec-

tion 8.2. In this chapter we assume the coordinate set L is indexed such that

L = {α1, . . . ,αn} and codewords of the Goppa code are indexed c = (c1, . . . , cn). The

code defined in Fqm which contains all the codewords of a Goppa code is a gener-

alised Reed Solomon code and is maximum distance separable (MacWilliams and

Sloane, 1983). The parity check matrix of a Goppa code, which by definition is re-

stricted to Fq, can be expressed with elements from Fq . It is possible to represent

Fqm as an m-dimensional vector space with elements from Fq using a suitable basis.

Let πm define the map,

πm : Fqm → F
m
q

πm(β)= [a1,a2, . . . ,am] β ∈ Fqm , ai ∈ Fq.
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Suppose [γ1,γ2, . . . ,γm] forms a suitable basis of the vector space Fmq , then β= a1γ1+
a2γ2+·· ·+amγm. A common choice for the basis is the normal basis,

[β,βq, . . . ,βqm−1
] β ∈ Fqm

which exists for any subfield of Fqm (Lidl and Niederreiter, 1986). Given a parity

check matrix defined in Fqm ,

H =












h1,1 h1,2 . . . h1,n

h2,1 h2,2 . . . h2,n

...
...

. . .
...

hr,1 hr,2 . . . hr,n












it is possible to replace each h i, j in H with anm-tuple column vector [h i, j,1,h i, j,2, . . . ,h i, j,m]T

. Finally performing row reductions on the mr×nmatrix obtains a parity check ma-

trix in Fq (MacWilliams and Sloane, 1983). The new matrix is a parity check matrix

of the Goppa code in Fq.

11.3 Construction

11.3.1 Preliminary: Cauchy and Vandermonde Matrices

Reed Solomon codes are maximum distance separable (MDS) codes and have the

maximum achievable minimum distance. Their generator and parity check matri-

ces are defined by a Vandermonde matrix. The parity check matrix of an RS code of

length n= |Fq−1|, dimension k and minimum distance d defined in a finite field Fq

with α as a primitive element is given by,

HRS =











1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
. . .

...

1 αb+n−k−1 α2(b+n−k−1) · · · α(n−1)(b+n−k−1)











(11.1)

for some integer b. The parity check matrix of a doubly extended Reed Solomon

(RS) code was shown by Wolf (1969) and Kasami et al (1966) to be

HERS =











1 αb α2b · · · α(n−1)b 1 0

1 αb+1 α2(b+1) · · · α(n−1)(b+1) 0 0

...
...

...
. . .

...
...

...

1 αb+n−k−1 α2(b+n−k−1) · · · α(n−1)(b+n−k−1) 0 1











(11.2)
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Doubly extended RS codes have length n+2, dimension k+2 and distance d. Wolf

(Wolf, 1969) proved the minimum distance of the codes defined by HERS have dis-

tance d by showing that each d−1× d−1 determinant of the matrix is non-zero.

This follows from the definition of minimum distance; all d−1×d−1 submatrices

of a parity check matrix of a code with minimum distance d must have a nonzero

determinant. The determinant of any d−1× d−1 submatrix of the Vandermonde

matrix HRS (Wolf, 1969) is given by,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αb j1 αb j2 · · · αb jd−1

α(b+1) j1 α(b+1) j2 · · · α(b+1) jd−1

...
...

. . .
...

α(b+n−k−1)( j1) α(b+n−k−1) j2 · · · α(b+n−k−1) jd−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.3)

= αb( j1+ j2+···+ jd−1) det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1

α j1 α j2 · · · α jd−1

...
...

. . .
...

α j1 α j2 · · · α jd−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.4)

for any columns j1, j2, . . . , jd−1. The determinant in 11.3 is called a Vandermonde

determinant and is known to have a nonzero determinant for any columns j1, j2, . . . , jd−1.

If HERS in 11.2 is considered, any d−1×d−1 determinant of the matrix with columns

j1, j2, . . . , jd−1 from the submatrix HRS of HERS is nonzero. There is also a need to

cater for determinants that include the appended columns to prove the minimum

distance of the code defined by HERS. Consider the determinant that includes the

first appended column of HERS in j1, j2, . . . , jd−1 chosen columns,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αb j1 αb j2 · · · αb jd−2 1

α(b+1) j1 α(b+1) j2 · · · α(b+1) jd−2 0

...
...

. . .
...

...

α(b+n−k−1)( j1) α(b+n−k−1) j2 · · · α(b+n−k−1) jd−2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.5)

expanding about the appended column gives Equation 11.5 as,

= 1 ·det

∣
∣
∣
∣
∣
∣
∣
∣
∣

α(b+1) j1 · · · α(b+1) jd−2

...
. . .

...

α(b+n−k−1)( j1 ) · · · α(b+n−k−1) jd−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

The determinant in 11.5 reduces to a d−2× d−2 determinant of a Vandermonde

matrix and is therefore nonzero. This proves that adding the appended column to
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HERS does not decrease the minimum distance from d. Similarly the determinant

which includes the second appended column in HERS reduces to,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣

αb j1 · · · αb jd−2

...
. . .

...

α(b+n−k−2)( j1) · · · α(b+n−k−2) jd−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.6)

which is also a Vandermonde determinant and is nonzero. Any d−1×d−1 deter-

minant that contains both of the appended columns will also result in,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣

α(b+1) j1 · · · α(b+1) jd−2

...
. . .

...

α(b+n−k−2)( j1) · · · α(b+n−k−2) jd−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.7)

after expansion about either of the appended columns. This is also a Vandermonde

determinant and is nonzero. Thus every d−1×d−1 determinant of HERS is nonzero

and the doubly extended RS code has distance d. Notice however that any d−1×
d−1 determinant of the matrix in 11.8,

HE =











1 αb α2b · · · α(n−1)b 0

1 αb+1 α2(b+1) · · · α(n−1)(b+1) 1

...
...

...
. . .

...
...

1 αb+n−k−1 α2(b+n−k−1) · · · α(n−1)(b+n−k−1) 0











(11.8)

which includes the appended column is as in 11.9,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αb j1 αb j2 · · · αb jd−2 0

α(b+1) j1 α(b+1) j2 · · · α(b+1) jd−2 1

...
...

. . .
...

...

α(b+n−k−1)( j1) α(b+n−k−1) j2 · · · α(b+n−k−1) jd−2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.9)

The determinant in 11.9 after expansion about the appended column reduces to;

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αb j1 · · · αb jd−2

α(b+2) j1 · · · α(b+2) jd−2

...
. . .

...

α(b+n−k−2)( j1) · · · α(b+n−k−2) jd−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.10)

which is not a Vandermonde determinant1 therefore is not guaranteed to be nonzero.

Appending columns with a 1 in any position except the first and the last, with 0’s

1Since the row with powers b+1 is excluded thus upsetting the sequence bi , i ∈ [0..n−k−1].
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elsewhere will result in determinants that are not guaranteed to be nonzero. This

completes Wolf ’s (Wolf, 1969) observation. In summary, only the two columns that

were appended in 11.2 will guarantee anMDS code from a Vandermonde matrix the

only known exception (MacWilliams and Sloane, 1983) being the case where there

are 3 rows which allows appending a 3×3 identity matrix2.

From the previous discussion it can be observed that a Vandermonde matrix has

the property that any square submatrix is non-singular (has a nonzero determi-

nant). Another matrix that shares this property with the Vandermonde matrix is

the Cauchy matrix (MacWilliams and Sloane, 1983). A Cauchy matrix in a finite

field Fq is formed from two mutually disjoint sets {α1,α2, . . . ,αr} and {β1,β2, . . . ,βl}

and is given by

HC =











1
α1−β1

1
α1−β2

· · · 1
α1−βl

1
α2−β1

1
α2−β2

· · · 1
α2−βl

...
... · · ·

...

1
αr−β1

1
αr−β2

· · · 1
αr−βl











(11.11)

such that r+ l ≤ |Fq|, αi,β j ∈ Fq and {α1,α2, . . . ,αr}∩ {β1,β2, . . . ,βl} = ;. The codes

defined by HC are also MDS. Appending a column to HC in the same manner as

singly extended RS codes results in a parity check matrix of an extended Cauchy

code with d = r+1 of the form,

HEC =











1
α1−β1

1
α1−β2

· · · 1
α1−βl

1

1
α2−β1

1
α2−β2

· · · 1
α2−βl

0

...
... · · ·

...
...

1
αr−β1

1
αr−β2

· · · 1
αr−βl

0











(11.12)

A d−1×d−1 determinant of HEC with any columns j1, j2, . . . , jd−2 and the appended

column is given by 11.13,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
α1−β j1

1
α1−β j2

· · · 1
α1−β jd−2

1

1
α2−β j1

1
α2−β j2

· · · 1
α2−β jd−2

0

...
... · · ·

...
...

1
αr−β j1

1
αr−β j2

· · · 1
αr−β jd−2

0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.13)

which reduces to 11.14,

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
α2−β j1

1
α2−β j2

· · · 1
α2−β jd−2

...
... · · ·

...

1
αr−β j1

1
αr−β j2

· · · 1
αr−β jd−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11.14)

2Codes from this construction are called triply extended RS codes.
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after expansion about the appended column. Clearly the determinant in 11.14 is a

Cauchy determinant formed from the sets {α2, . . . ,αr}∩ {β1,β2, . . . ,βl} and is there-

fore nonzero. It is also clear that any appended column with a single nonzero entry

on any row of HEC will also result in a Cauchy determinant. This is because there

is no criterion for ordering of the elements of the two defining sets of the Cauchy

matrix i.e. any set of mutually distinct elements will suffice. It is possible append

any column with a single nonzero entry to HEC and obtain a Cauchy determinant.

In general it is possible to add an identity matrix to the parity check of a Cauchy

code and still have minimum distance d = r+1. This may appear as a disadvantage

for Vandermonde codes when the two codes are compared. However it has to be

taken into account that Cauchy codes defined by HC are always in shortened form

since the set {β1,β2, . . . ,βl} which determines the length of the Cauchy code cannot

contain any members of the set {α1,α2, . . . ,αr}. Appending an identity matrix to HC

will make up for the difference in length between the two types of codes. In effect,

in terms of code length there is nothing to choose from between the Vandermonde

codes and the extended Cauchy codes. In the next section this key difference is

taken advantage of so as to extend Goppa codes and obtain new codes.

11.3.2 Construction of Extended Length Goppa Codes

The Goppa polynomial of the form,

Ǵ(x)= xr1(x−β2)(x−β3) · · · (x−βℓ) (11.15)

is used, with ℓ distinct roots and the set,

Ĺ= {Fqm \{β1, . . . ,βℓ}}

which is an instance of the Goppa polynomial from Equation (8.4) in Section 8.2

with rµ = 1 when µ > 1 and with β1 = 0. From Equation (8.2) in Section 8.2 the

parity check matrix of the Γ(Ĺ,Ǵ) code defined by Ǵ(x) is,

H́ =











Hr1

Hr2

...

Hrℓ











=

























1
α1

1
α2

· · · 1
αn

1

α2
1

1

α2
2

· · · 1

α2
n

...
...

. . .
...

1

α
r1
1

1

α
r1
2

· · · 1

α
r1
n

1
β2−α1

1
β2−α2

· · · 1
β2−αn

1
β3−α1

1
β3−α2

· · · 1
β3−αn

...
...

. . .
...

1
βℓ−α1

1
βℓ−α2

· · · 1
βℓ−αn

























(11.16)
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It is clear from Equation (11.16) and Theorem 3.2 that Hr1 , the parity check matrix

corresponding to the factor of the Goppa polynomial xr1 from Equation (11.15), is

a parity check matrix of a BCH code. The method used to obtain new codes in this

thesis involves extending the length of the code by adding columns to the parity

check matrix H́ of the code Γ(Ĺ,Ǵ). The matrix H́ is partitioned into two; the parity

check matrix of a BCH code defined by xr1 and a Cauchy matrix. The Cauchymatrix

with ℓ−1 rows is the parity check matrix corresponding to all distinct factors of Ǵ(x)

excluding xr1 .

HY =

























1
α1

1
α2

· · · 1
αn

0 0 · · · 0

1

α2
1

1

α2
2

· · · 1

α2
n

0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

1

α
r1
1

1

α
r1
2

· · · 1

α
r1
n

0 0 · · · 0

1
β2−α1

1
β2−α2

· · · 1
β2−αn

1 0 · · · 0

1
β3−α1

1
β3−α2

· · · 1
β3−αn

0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

1
βℓ−α1

1
βℓ−α2

· · · 1
βℓ−αn

0 0 · · · 1

























(11.17)

The parity check matrix HY of the lengthened code is given by (11.17). An all-

zeros matrix is appended to Hr1 while an identity matrix is appended to the Cauchy

matrix. In order to represent the matrix HY with elements from the subfield Fq

the map πm is applied to elements of the sub-matrix H́ of HY while the 0’s in the

appended columns map to m×m zero matrices and the 1’s map to m×m identity

matrices. Each extended symbol of a codeword of CY in Fqm corresponding to an

appended column is therefore an alphabet in Fqm expanded3 to an m-tuple in Fq. It

is clear that the codes defined by HY have parameters,

Length,n= |Ĺ|+m(ℓ−1)

Dimension,k≥ n− (mr1+m(ℓ−1))

≥ |Ĺ|−mr1

(11.18)

11.1 Theorem. The minimum distance d of the lengthened Goppa code denoted by CY

with a parity check matrix HY is d ≥ deg(Ǵ(x))+1 .

Proof. In order to obtain a lower bound on the minimum distance of the code CY it

is enough to show that minimum distance of the code defined by HY in the parent

field4 Fqm is d = deg(Ǵ(x))+1. This means that the appended columns in HY do not

3This is referred to in literature as subfield image expansion.
4Since all subfield subcodes of CP have distance at least deg(Ǵ(x))+1.
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deteriorate the minimum distance of the code such that it is less than the distance

of the code defined by H́.

Recall that a linear code has minimum distance d if any d−1 or less columns of

its parity check matrix are linearly independent. Alternatively, a code has distance

d if any d− 1× d− 1 sub-matrix formed from its parity check matrix has a non-

zero determinant. Consider Equation (11.17), any d − 1× d − 1 matrix (with d =
deg(Ǵ(x))+1) formed from the matrix HY that does not include any of the appended

columns is a sub-matrix of H́ (a Vandermonde matrix) and hence has a non-zero

determinant. Any d−1×d−1 sub-matrix of HY which includes a single appended

column having a 1 on a row of HY corresponding to a root βµ of Ǵ(x) for any µ > 1

and zeros elsewhere will have a d−2×d−2 determinant after expansion about the

appended column in question. This d−2× d−2 determinant is formed from the

columns of a parity check matrix of a Goppa code defined with a Goppa polynomial

with all the roots of Ǵ(x) except βµ and hence has distance d−1. The d−2×d−2

determinant is therefore non-zero. Similarly any d−1×d−1 sub-matrix of HY that

includes any two of the appended columns having 1’s in rows corresponding to roots

βµ and βν of Ǵ(x) with ν,µ> 1 and zeros elsewhere has a d−3×d−3 determinant

after expansion about the columns in question. This determinant is formed from

the columns of a Goppa code with a defining polynomial having all the roots of Ǵ(x)

except βµ and βν. The code has distance d−2 therefore the d−3×d−3 determinant

is non-zero. Applying this reasoning successively until all ℓ−1 appended columns

in (11.17) are considered, it can be concluded that any d−1×d−1 columns of the

matrix HY defined in Fqm are linearly independent hence the code CY defined in Fq

has distance d ≥ deg(Ǵ(x))+1.

The approach used in the proof of Theorem 11.1 is similar to the one used by

Wolf in (Wolf, 1969) to determine the minimum distance of doubly-extended Reed

Solomon codes. It is known from (MacWilliams and Sloane, 1983) that Vander-

monde and Cauchy matrices both have the property that any square sub-matrix is

non-singular. The proof relies on the observation that a Cauchy matrix with r rows

may have an r× r identity matrix appended to it and still retain the property that

any r× r sub-matrix is non-singular. This is not possible with Vandermonde matri-

ces as at most two columns can be appended (as is the case with doubly extended

Reed Solomon codes) whilst retaining this property.

11.3.3 Codes with Better Dimensions

From (11.18) it can be observed that the exact dimension of the codes CY depends on

the dimension of the BCH code defined by xr1 . The dimension of a BCH code can be

completely determined by examining its defining roots. A parity check matrix of a

BCH code defined as a Goppa code with polynomial xr1 is given (11.19). By observ-

ing (11.19) it is possible to see that if α is a primitive element of Fqm , the defining
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roots of the BCH in Fq consist of the elements of the set A = {αqm−2,αqm−3, . . . ,αqm−1−r1}

and all their conjugates.

Hr1 =












α
(qm−2)
1

α
(qm−2)
2

· · · α
(qm−2)
n

α
(qm−3)
1

α
(qm−3)
2

· · · α
(qm−3)
n

...
...

. . .
...

α
(qm−1−r1)
1

α
(qm−1−r1)
2

· · · α
(qm−1−r1)
n












(11.19)

Recall the definition of a conjugacy class. A conjugacy class of an element β of a

finite field Fqm is given as the set,

C(β)= {β,βq,βq2, ....,βq(e−1)} β ∈ Fqm

where e is the smallest positive integer such that βqe =β. The set of roots of a BCH

code are given by

R =
⋃

β∈A
C(β),

the codes have redundancy |R| and dimension k= n−|R|.

To obtain the best possible dimension it is desirable the BCH code defined by

(11.19) to be narrow sense. Narrow sense BCH codes tend to have the cardinality

|R| to be comparatively small when |A| = r1 is also small. It is possible to shift the

roots of the sub-matrix Hr1 in H́ from (11.16) so that the BCH code is narrow sense.

We can accomplish this by multiplying H́ with a matrix M.

M =












α
−(qm−1−r1)
1

0 · · · 0

0 α
−(qm−1−r1)
2

· · · 0

...
...

. . .
...

0 0 · · · α
−(qm−1−r1)
n












Ḧ = H́×M (11.20)
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and

Ḧ =



























α
(r1−1)
1

α
(r1−1)
2

· · · α
(r1−1)
n

α
(r1−2)
1

α
(r1−2)
2

· · · α
(r1−2)
n

...
...

. . .
...

1 1 · · · 1

α
−(qm−1−r1)
1

β2−α1

α
−(qm−1−r1)
2

β2−α2
· · · α

−(qm−1−r1)
n

β2−αn

α
−(qm−1−r1)
1

β3−α1

α
−(qm−1−r1)
2

β3−α2
· · · α

−(qm−1−r1)
n

β3−αn

...
...

. . .
...

α
−(qm−1−r1)
1

βℓ−α1

α
−(qm−1−r1)
2

βℓ−α2
· · · α

−(qm−1−r1)
n

βℓ−αn



























(11.21)

11.2 Theorem. The code defined by Ḧ restricted to Fq has minimum distance d ≥
deg(Ǵ(x))+1 .

Proof. Recall the definition of generalised Reed Solomon (GRS) codes from (MacWilliams

and Sloane, 1983). A GRS code, denoted by GRSk(α,v), consists of all the vectors,

(v1F(α1),v2F(α2), . . . ,vnF(αn)))

where α= (α1,α2, . . . ,αn) consists of distinct elements of Fqm , a template v= (v1,v2, . . . ,vn)

consists of arbitrary elements from Fqm none of which is zero and F(x) is a polyno-

mial of degree at most k−1. Also from (MacWilliams and Sloane, 1983) it is known

that Goppa codes defined by some G(x) of degree r and the set L = {α1,α2, . . . ,αn}

are subfield subcodes of GRSn−r(α,v) with k= n− r and,

vi =
G(αi)

∏

j 6=i

(αi−α j)
, i = 1, . . .,n. (11.22)

Again from (MacWilliams and Sloane, 1983) it is observed that dual code of a

GRSk(α,v) code is also a GRS code of the form GRSn−k(α, v́) for some template

v́. Clearly the code defined by Ḧ in Fqm is a GRS code of the form GRSn−deg(Ǵ(x))(α,uv)

where v is defined as in (11.22) and

ú= (α
−(qm−1−r1)
1

,α
−(qm−1−r1)
2

, . . . ,α
−(qm−1−r1)
n ).

Since the code defined by Ḧ in Fq is a subfield subcode it has minimum distance at

least that of the code defined in Fqm . GRS codes are maximum distance separable

and in this case the code defined in Fqm has distance deg(Ǵ(x))+ 1, therefore its

subfield subcode has distance d ≥ deg(Ǵ(x))+1.
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Codes defined by Ḧ in Fq, denoted by C̈Y, have a better dimension but the same

minimum distance was the code defined by H́. It is possible to add columns to

the parity-check matrix of the code defined by Ḧ in Fq in the same manner as in

(11.17). Equation (11.27) shows the parity check matrix of the lengthened code. As

with codes defined by HY the length, dimension and minimum distance of the codes

are,

Length,n= |Ĺ|+m(ℓ−1)

Dimension,k≥ |Ĺ|−mr1

Distance,d ≥ deg(Ǵ(x))+1

(11.23)

ḦY =



























α
(r1−1)
1

· · · α
(r1−1)
n 0 . . . 0

α
(r1−2)
1

· · · α
(r1−2)
n 0 . . . 0

...
. . .

...
...

. . .
...

1 · · · 1 0 . . . 0

α
−(qm−1−r1)
1

β2−α1
· · · α

−(qm−1−r1)
n

β2−αn
1 . . . 0

...
. . .

...
...

. . .
...

α
−(qm−1−r1)
1

βℓ−α1
· · · α

−(qm−1−r1)
n

βℓ−αn
0 . . . 1



























(11.24)

It is straight forward to show that codes defined by ḦY have distance at least

deg(Ǵ(x))+1 by using the same reasoning as in Theorem 11.1.

11.3.4 An Example

As an illustration of the construction, a polynomial Ǵ(x)= x2(x+1) with coefficients

from F8 is used to define an extended Goppa code in F2. The finite field F8 is defined

with the primitive polynomial s3+ s+1 and has α as a primitive element. The set

Ĺ corresponding to Ǵ(x) is then given by,

Ĺ=
[

α α2 α3 α4 α5 α6
]

and from (11.16) the matrix H́ is,

H́ =








α6 α5 α4 α3 α2 α

α5 α3 α α6 α4 α2

α4 α α6 α2 α3 α5








For this example clearly ℓ= 2, r1 = 2, |Ĺ| = 6 and m = 3. To make the BCH part of

H́ narrow sense it is multiplied with the matrix M,
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M =

















α2 0 0 0 0 0

0 α4 0 0 0 0

0 0 α6 0 0 0

0 0 0 α 0 0

0 0 0 0 α3 0

0 0 0 0 0 α5

















and this results in the matrix Ḧ,

Ḧ = H́×M =








α α2 α3 α4 α5 α6

1 1 1 1 1 1

α6 α5 α5 α3 α6 α3








adding a single column the matrix ḦY in F8 is obtained.

ḦY =








α α2 α3 α4 α5 α6 0

1 1 1 1 1 1 0

α6 α5 α5 α3 α6 α3 1








ḦY is then expressed in F2 as,

ḦY =



























0 0 1 0 1 1 0 0 0

1 0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0

0 1 1 1 0 1 0 1 0

1 1 1 0 1 0 0 0 1



























The matrix ḦY is the parity check matrix of the extended length Goppa code and
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after row reductions the code has parameters [9,2,5]2.

ḦY =





















1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0





















It can be observed that the minimum distance of the code is one more than the

lower bound i.e. deg(Ǵ(x))+1= 4. Results on codes obtained from the construction

method are presented. These codes have minimum distances better than the codes

in (Grassl, 2007) with same length and rate. They are derived from Goppa codes

defined by the polynomial in (11.15). Goppa polynomials with coefficients in Fqm of

the form,

G(x)= xr1
ℓ−2∏

i=0
(x−αi)

where α is the primitive element of Fqm are used. Tables 11.1 - 11.3 give a summary

of the results of new codes in F7, F8 and F9 which are subfield subcodes of codes

defined in F49, F64 , and F81 respectively. The codes are represented in the form

[n,k,d]q. The dimensions of the codes are confirmed by expressing their parity

check matrices in reduced echelon form. It is worth noting that some of the codes

in Tables 11.1 - 11.3 can be obtained from other codes in the tables by shortening in

one or more positions. For example C37 can be obtained from C38 by shortening in

one position.

0 # qm m r1 ℓ Codes Codes in (Grassl, 2007)

C1 49 2 2 5 [52,41,7]7 [52,41,6]7
C2 49 2 9 6 [53,29,15]7 [53,29,14]7

Table 11.1: New Codes in F7

# qm m r1 ℓ Codes Codes in (Grassl, 2007)

C3 64 2 1 9 [71,54,10]8 [71,54,9]8
C4 64 2 1 12 [74,51,13]8 [74,51,12]8
C5 64 2 1 13 [75,50,14]8 [75,50,13]8
C6 64 2 10 6 [68,42,16]8 [68,42,15]8
C7 64 2 10 7 [69,41,17]8 [69,41,16]8
C8 64 2 11 6 [68,40,17]8 [68,40,16]8

Table 11.2: New Codes in F8
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# qm m r1 ℓ Codes Codes in (Grassl, 2007)

C9 81 2 1 6 [85,74,7]9 [85,74,6]9
C10 81 2 2 6 [85,72,8]9 [85,72,7]9
C11 81 2 3 6 [85,70,9]9 [85,70,8]9
C12 81 2 4 6 [85,68,10]9 [85,69,9]9
C13 81 2 11 6 [85,57,17]9 [85,57,16]9
C14 81 2 12 6 [85,55,18]9 [85,55,17]9
C15 81 2 21 6 [85,42,27]9 [85,42,26]9
C16 81 2 22 6 [85,40,28]9 [85,40,27]9
C17 81 2 1 7 [86,73,8]9 [86,73,7]9
C18 81 2 2 7 [86,71,9]9 [86,71,8]9
C19 81 2 3 7 [86,69,10]9 [86,69,9]9
C20 81 2 11 7 [86,56,18]9 [86,56,17]9
C21 81 2 12 7 [86,54,19]9 [86,54,18]9
C22 81 2 21 7 [86,41,28]9 [86,41,27]9
C23 81 2 2 8 [87,70,10]9 [87,70,9]9
C24 81 2 11 8 [87,55,19]9 [87,55,18]9
C25 81 2 1 9 [88,71,10]9 [88,71,9]9
C26 81 2 2 9 [88,69,11]9 [88,69,10]9
C27 81 2 10 9 [88,55,19]9 [88,55,18]9
C28 81 2 11 9 [88,54,20]9 [88,54,19]9
C29 81 2 1 10 [89,70,11]9 [89,70,10]9
C30 81 2 1 11 [90,69,12]9 [90,69,11]9
C31 81 2 1 12 [91,68,13]9 [91,68,12]9
C32 81 2 2 12 [91,66,14]9 [91,66,13]9
C33 81 2 1 13 [92,67,14]9 [92,67,13]9
C34 81 2 2 13 [92,65,15]9 [92,65,14]9
C35 81 2 1 15 [94,65,16]9 [94,65,15]9
C36 81 2 2 15 [94,63,17]9 [94,63,16]9
C37 81 2 2 13 [92,65,15]9 [92,65,14]9
C38 81 2 1 14 [93,66,15]9 [93,66,14]9
C39 81 2 1 15 [94,65,16]9 [94,65,15]9
C40 81 2 2 15 [94,63,17]9 [94,63,16]9

Table 11.3: New Codes in F9
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11.3.5 Adding One More Column

It is possible to add a single column to the parity-check matrix HY in the same

manner as singly extended Reed Solomon codes (Wolf, 1969). A parity-check matrix

HP,

HP =

























0 1
α1

· · · 1
αn

0 0 · · · 0

0 1

α2
1

· · · 1

α2
n

0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

1 1

α
r1
1

· · · 1

α
r1
n

0 0 · · · 0

0 1
β2−α1

· · · 1
β2−αn

1 0 · · · 0

0 1
β3−α1

· · · 1
β3−αn

0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 1
βℓ−α1

· · · 1
βℓ−αn

0 0 · · · 1

























(11.25)

is formed which leads to the next theorem.

11.3 Theorem. The linear code CP defined by the parity-check matrix HP in Fq has

Length= n+1

Dimension= k+1

Distance= d

where CY is a code of length n, dimension k and distance d defined by the parity-

check matrix HY from (11.17) .

Proof. As in Theorem 11.1 it is sufficient to prove that appending the column does

not cause the distance of CP to be less than that of CY. The length and dimension

of the codes CP are 1 more than that of CY since the parity check matrix HP has an

additional column.

Since HY has already been established in Theorem 11.1 to have all d−1 columns

linearly independent and thus CY has minimum distance d ≥ deg(Ǵ(x))+1, the case

where d − 1 random chosen columns of HP include the new appended column is

considered. The determinant of a d−1×d−1 submatrix of HP that includes the new

appended column can be found by expanding about the column in question. This

d−1× d−1 determinant of HP which includes the appended column will have a 1

on a row of HP corresponding to the defining root of the BCH code αr1 i.e. the last

row of the Vandermonde matrix defined by xr1 and is zero elsewhere thus forming a

d−2×d−2 determinant. This d−2×d−2 determinant is formed from the columns

of a parity check matrix of a Goppa code defined with a Goppa polynomial defined
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by

xr1−1(x−β2) · · · (x−βℓ) (11.26)

and hence has a non-zero determinant. All d− 1× d − 1 determinants of HP are

non-zero, therefore CP defined in Fq has minimum distance d ≥ deg(Ǵ(x))+1.

Every CY is a code shortened from CP in one coordinate. It is possible to shift the

roots of the BCH part of the matrix HP in the same way as (11.20) so that better

dimensions are obtained by multiplying HP with a matrix M,

M =















1 0 0 · · · 0

0 α
−(qm−1−r1)
1

0 · · · 0

0 0 α
−(qm−1−r1)
2

· · · 0

...
...

...
. . .

...

0 0 0 · · · α
−(qm−1−r1)
n















corresponding to a template,

v= {1,α
−(qm−1−r1)
1

,α
−(qm−1−r1)
2

, . . . ,α
−(qm−1−r1)
n }

so that ḦP =HP×M which results in,

ḦP =



























0 α
(r1−1)
1

· · · α
(r1−1)
n 0 . . . 0

0 α
(r1−2)
1

· · · α
(r1−2)
n 0 . . . 0

0
...

. . .
...

...
. . .

...

1 1 · · · 1 0 . . . 0

0
α
−(qm−1−r1)
1

β2−α1
· · · α

−(qm−1−r1)
n

β2−αn
1 . . . 0

...
...

. . .
...

...
. . .

...

0
α
−(qm−1−r1)
1

βℓ−α1
· · · α

−(qm−1−r1)
n

βℓ−αn
0 . . . 1



























(11.27)

It is clear that one can easily choose the template v so that the BCH code is defined

with any set of roots. Let C̈P denote the code defined by ḦP. Clearly, Theorem 11.3

describes the parameters of C̈P. New codes obtained from this construction of the

form C̈P are now given. Tables 11.4 - 11.6 give new codes of the form C̈P. As with

codes obtained previously the dimension of each of the codes is confirmed using row

reductions while their minimum distances are obtained from the bound in Theorem

11.3.
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# qm m r1 ℓ Codes Codes in (Grassl, 2007)

C41 49 2 2 5 [53,42,7]7 [53,42,6]7
C42 49 2 9 5 [53,31,14]7 [53,31,13]7
C43 49 2 17 5 [53,20,22]7 [53,20,21]7
C44 49 2 1 6 [54,43,7]7 [54,43,6]7
C45 49 2 9 6 [54,30,15]7 [54,30,14]7

Table 11.4: New Codes C̈P in F7

# qm m r1 ℓ Codes Codes in (Grassl, 2007)

C46 64 2 10 5 [68,44,15]8 [68,44,14]8
C47 64 2 12 5 [68,40,17]8 [68,40,16]8
C48 64 2 19 5 [68,31,24]8 [68,31,23]8
C49 64 2 20 5 [68,29,25]8 [68,29,24]8
C50 64 2 10 6 [68,43,16]8 [68,43,15]8
C51 64 2 19 6 [69,30,25]8 [69,30,24]8
C52 64 2 10 7 [70,42,17]8 [70,42,16]8
C53 64 2 10 8 [71,41,18]8 [71,41,17]8
C54 64 2 1 9 [72,55,10]8 [72,55,10]8
C55 64 2 1 12 [75,52,13]8 [75,53,12]8
C56 64 2 1 13 [76,51,14]8 [76,51,13]8

Table 11.5: New Codes C̈P in F8

# qm m r1 ℓ Codes Codes in (Grassl, 2007)

C57 81 2 11 5 [85,59,16]9 [85,59,15]9
C58 81 2 21 5 [85,44,26]9 [85,44,25]9
C59 81 2 31 5 [85,31,36]9 [85,31,35]9
C60 81 2 1 6 [86,75,7]9 [86,75,6]9
C61 81 2 11 6 [86,58,17]9 [86,58,16]9
C62 81 2 21 6 [86,43,27]9 [86,43,26]9
C63 81 2 1 7 [87,74,8]9 [87,74,7]9
C64 81 2 11 7 [87,57,18]9 [87,57,17]9
C65 81 2 21 7 [87,42,28]9 [87,42,27]9
C66 81 2 1 8 [88,73,9]9 [88,73,8]9
C67 81 2 11 8 [88,56,19]9 [88,56,18]9
C68 81 2 21 8 [88,41,29]9 [88,41,28]9
C69 81 2 1 9 [89,72,10]9 [89,72,9]9
C70 81 2 11 9 [89,55,20]9 [89,55,19]9
C71 81 2 1 10 [90,71,11]9 [90,71,10]9
C72 81 2 1 11 [91,70,12]9 [91,70,11]9
C73 81 2 1 12 [92,69,13]9 [92,69,12]9
C74 81 2 1 13 [93,68,14]9 [93,68,13]9
C75 81 2 1 14 [94,67,15]9 [94,67,14]9
C76 81 2 1 15 [95,66,16]9 [95,66,15]9
C77 81 2 1 16 [96,65,17]9 [96,65,16]9

Table 11.6: New Codes C̈P in F9
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11.4 Nested Structure and Construction X

It is possible to form a chain of nested codes from this construction. A linear code

C1 is a subcode of a linear code C2 if all the codewords of C1 are contained in C2.

Suppose these codes have parity check matrices H1 and H2 respectively, then the

vector space defined by H1 contains the vector space defined by H2.

C1 ⊂C2 iff H2 ⊂H1

The difference between the dimensions of a code and its subcode is called co-dimension.

11.4 Theorem. Any extended Goppa code Γ(Ĺ,Ǵ1) defined by a Goppa polynomial,

Ǵ1(x)= xs(x−β2)(x−β3) · · · (x−βℓ)

is a subcode (of co-dimension t−s) of the Goppa code Γ(Ĺ,Ǵ2) defined by the Goppa

polynomial,

Ǵ2(x)= xt(x−β2)(x−β3) · · · (x−βℓ)

provided t< s and βi ∈ Fqm .

Proof. Implied in Theorem 11.4, Ǵ1 and Ǵ2 must have exactly the same roots not

necessarily with the same multiplicity. If HY1
is parity check matrix of the extended

Goppa code defined by Ǵ1 and HY2
is the parity check matrix of the extended Goppa

code defined by Ǵ2 then from Equation 11.17 it is clear that,

HY2
⊂HY1

thus CY1
⊂CY2

.

11.1 Corollary. Any code C̈Y1
derived from a Goppa code with polynomial Ǵ1 is subcode

of the code C̈Y2
derived from a Goppa code with polynomial Ǵ2 provided both codes

are defined with the same template v= (v1,v2, . . . ,vn).

Clearly if codes C̈Y1
and C̈Y2

have different templates then the codewords of C̈Y1

will not satisfy the parity check equations of C̈Y2
. Corollary 11.1 leads to a well

known method of extending linear codes, Construction X as presented in Theorem

2.1. Tables 11.7 - 11.9 give new codes obtained from construction X with complete
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information on the codes C2, their corresponding subcodes C1 and auxiliary codes.

The template v is fixed for codes C1 and C2 such that,

v= {α
−(qm−2)
1

,α
−(qm−2)
2

, . . . ,α
−(qm−2)
n }

# C2 C1 Auxiliary codes New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C78 9 5 [54,31,14]7 11 5 [58,28,16]7 [4,3,2]7 [58,31,16]7 [53,31,15]7

Table 11.7: New Codes From Construction X in F7

# C2 C1 Auxiliary codes New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C79 10 4 [66,44,14]8 12 4 [66,40,16]8 [5,4,2]8 [71,44,16]8 [71,44,15]8
C80 11 4 [66,42,15]8 13 4 [66,38,17]8 [5,4,2]8 [71,42,17]8 [71,42,16]8
C81 10 4 [66,44,14]8 12 4 [66,40,16]8 [5,4,2]8 [71,44,16]8 [71,44,15]8
C82 19 4 [66,31,23]8 21 4 [66,27,25]8 [5,4,2]8 [71,31,25]8 [71,31,24]8

Table 11.8: New Codes From Construction X in F8

# C2 C1 Auxiliary codes New Codes Codes in (Grassl, 2007)

r1 ℓ Codes r1 ℓ Codes

C83 11 4 [83,59,15]9 13 4 [83,55,17]9 [5,4,2]9 [88,59,17]9 [88,59,16]9
C84 11 4 [83,59,15]9 14 4 [83,53,18]9 [8,6,3]9 [91,59,18]9 [91,59,17]9
C85 12 4 [83,57,16]9 14 4 [83,53,18]9 [5,4,2]9 [88,57,18]9 [88,57,17]9
C86 12 4 [83,57,16]9 15 4 [83,51,19]9 [8,6,3]9 [91,57,19]9 [91,57,18]9
C87 13 4 [83,55,17]9 15 4 [83,51,19]9 [5,4,2]9 [88,55,19]9 [88,55,18]9
C88 21 4 [83,44,25]9 23 4 [83,40,27]9 [5,4,2]9 [88,44,27]9 [88,44,26]9
C89 21 4 [83,44,25]9 24 4 [83,38,28]9 [8,6,3]9 [91,44,28]9 [91,44,27]9
C90 22 4 [83,42,26]9 24 4 [83,38,28]9 [5,4,2]9 [88,42,28]9 [88,42,27]9
C91 11 5 [84,58,16]9 13 5 [84,54,18]9 [5,4,2]9 [89,58,18]9 [89,58,17]9
C92 11 5 [84,58,16]9 14 5 [84,52,19]9 [8,6,3]9 [92,58,19]9 [92,58,18]9
C93 12 5 [84,56,17]9 14 5 [84,52,19]9 [5,4,2]9 [89,56,19]9 [89,56,18]9
C94 21 5 [84,43,26]9 23 5 [84,39,28]9 [5,4,2]9 [89,43,28]9 [89,43,27]9
C95 11 6 [85,57,17]9 13 6 [85,53,19]9 [5,4,2]9 [90,57,19]9 [90,57,18]9
C96 11 7 [86,56,18]9 13 7 [86,52,20]9 [5,4,2]9 [91,56,20]9 [91,56,19]9

Table 11.9: New Codes From Construction X in F9

11.5 Summary

An alternative construction of extended Goppa codes is given. The first construction

in Chapter 8 uses the concept of a modified Goppa code (Goppa, 1971) and thus

produces longer codes than the method in this Chapter. The method presented in

this Chapter utilises the fact that Goppa codes defined in the parent field are GRS

codes. Since the codes are extensions of BCH codes, one can choose a template that

extends any type of BCH code. Both methods are generalisations of Construction P

by Sugiyama et al. (1976).
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12. SUMMARY AND FUTURE

RESEARCH

12.1 Summary and Contributions

Research has focused mainly on finding improved algebraic codes with better prop-

erties than any known codes. Two important classes of codes invented by V.D Goppa

namely Goppa codes and AG codes feature prominently. AG codes were studied in-

depth and their advantages and benefits in comparison to some best known codes

are investigated. Decoding performance of AG and nonbinary BCH codes is com-

pared in the AWGN using soft and hard decision decoding and erasure channels

using maximum likelihood decoding. The BMSA decoding was presented for the

bounded distance decoding of AG codes while the classic BMA was presented for

BCH codes for transmission in the AWGN channel. Symbol based ordered relia-

bility decoding was carried out for soft decision decoding in the AWGN channel for

both AG and BCH codes. Finally maximum-likelihood erasure decoding (in-place)

is presented for decoding these codes in the erasure channel. Soft and hard decision

performance in the AWGN channel shows that the codes have similar performance.

In the erasure channel AG codes show superior performance at low probabilities

of erasure, an indication of a more favourable low weight distribution. Research

naturally lead to finding improved codes from AG codes. A construction of gener-

alised AG codes that utilised places of degree larger than one and a concatenation

concept was presented. Using this method 237 codes in the finite field F16 from

four curves with better minimum distances than any known codes were presented.

Many improvements on constructible codes were also presented. The search for new

codes was then extended to Goppa codes. A construction of extended binary Goppa

codes was generalised to nonbinary codes. The concept of an extended Goppa code

was used to obtain improved codes. In total 48 new codes in finite fields F7, F8

and F9 were presented directly from this method. Using construction X, 30 further

improvements were also obtained. More improvements are also possible from sim-

ple modifications of the obtained codes. Finally an alternative method of obtaining

these codes is given. A method of shortening linear codes whilst increasing the min-

imum distance is analysed and generalised. The method works by examining the

low weight codewords of a code. A link between this shortening method and meth-
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ods of extending codes was presented. Codes with a special structure from Goppa

codes are used to obtain 4 new binary codes. A method of extending BCH codes was

then presented. The method is shown to be as good as an optimal method of con-

structing codes; construction X, in cases when the field size is small. The method

provides an insight into extending algebraic codes and can be used to obtain best

known codes. The major contributions are summarised below,

• Algebraic geometry codes are studied in great detail with special attention

given to their construction and decoding. The practical performance of these

codes is evaluated and compared with previously known codes in different

communication channels.

• Furthermore many new codes that have better minimum distance than the

best known codes with the same length and dimension are presented from a

generalised construction of algebraic geometry codes.

• A construction of binary extended Goppa codes is generalised to codes with

nonbinary alphabets and as a result many new codes are found. This con-

struction is shown as an efficient way to extend another well known class of

algebraic codes, BCH codes.

• A generic method of shortening codes whilst increasing the minimum distance

is generalised. An analysis of this method reveals a close relationship with

methods of extending codes. Some new codes from Goppa codes are found by

exploiting this relationship.

• Finally an extension method for BCH codes is presented and this method is

shown be as good as a well known method of code extension in certain cases.

12.2 Future Research Directions

Xing’s generalised construction of algebraic geometry codes holds promise of pro-

ducing new codes. However this hinges on finding constructible curves with many

places of small degree and small genera. Further contributions to the tables in

(Schimd and Shurer, 2004) from generalised AG codes are possible for larger fields

if one scours the literature for constructible curves with good genera. The exten-

sion method for Goppa which is a generalisation of construction P for nonbinary

codes can be extended to other alternant codes like Srivastava codes. A thorough

search may well reveal some new codes. An extensive search of the database of best

known codes in MAGMA for improved codes from shortening can be carried out if

sufficient computational resources are available 1. If best known codes by shorten-

ing are found it may be useful not to rely on the lower bound (as the distance may

1The MAGMA software used in this research was issued under a student license and as such has

limited memory capacity.

176



Chapter 12: Summary

be larger) on minimum distance of codes produced by shortening instead one can

find the minimum distance by brute force. In a more general context, a method of

constructing algebraic codes with bad dual codes is an appealing area of research.

These type of codes can be used to construct good LDPC codes as not much is known

on the structural properties of LDPC codes aside from their sparseness.
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13. APPENDIX

13.1 Construction P For Binary Goppa Codes From (Sugiyama

et al., 1976)

Let G(x) be a polynomial of degree 2t with coefficients from F2m such that the fac-

torisation over F2m[x] is given by

G(x)=
s0∏

u=1
(x−βu)

bu

s∏

u=s0+1
(gu(x))

bu , (13.1)

where βu, u= 1, . . . , s0 are distinct elements of F2m ; bu, u= 1, . . . , s are even integers;

and s0 satisfies 0≤ s0 ≤ t. In addition, for u= s0+1, . . ., s the roots of the irreducible

factors gu(x) are not in F2m . Let L= {α1, . . . ,αn} denote the elements of F2m that are

not roots of the Goppa polynomial G(x). The parity check matrix of the code CP is

given by

HP[L,G] =




























H0 0 0 · · · 0

H1 HI 0 · · · 0

H2 0 HI · · · 0

...
...

...
. . .

...

Hs0 0 0 · · · HI

0 HJ 0 · · · 0

0 0 HJ · · · 0

...
...

...
. . .

...

0 0 0 · · · HJ




























. (13.2)

Here H0 is the parity check matrix of the Goppa code defined by the polynomial

s0∏

u=1
(x−βu)

max{bu−3,0}
s∏

u=s0+1
(gu(x))

bu−1.

The matrices Hu, u= 1, . . . , s0 are single-row matrices of the form

Hu =
[

1
(βu−α1)bu−1

1
(βu−α2)bu−1

· · · 1
(βu−αn)bu−1

]

,
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the matrix HI is a single row matrix of the form

HI =
[

1 α · · · αm−1 0
]

,

where α is a primitive element of F2m , and finally the matrix HJ is a row matrix of

length m+1 of the form,

HJ =
[

1 1 · · · 1 1
]

.

The code CP has length n = 2m +ms0, redundancy n− k ≤ mt+ s0, and distance

d ≥ 2t+1 (Sugiyama et al., 1976). See Chapters 8 and 11.

182



BIBLIOGRAPHY

Berlekamp, E. (1968). Algebraic coding theory. New York: McGraw-Hill (cit. on

pp. 6, 7).

— (1974). Key papers in the development of coding theory. New York: IEEE press

(cit. on pp. 30, 61).

Berrou, C., A. Glavieux and P. Thitimajshima (1993). ‘Near Shannon Limit Error-

Correcting Coding: Turbo Codes’. In: Proc. IEEE International Conference on

Communications. Geneva, Switzerland, pp. 1064–1070 (cit. on p. 7).

Bezzateev, S. and N. Shekhunova (2008). ‘Chain of Separable Binary Goppa Codes

and Their Minimal Distance’. In: IEEE Transactions on Information Theory

54.12, pp. 5773––5778 (cit. on pp. 123, 124, 129, 131).

Bezzateev, S. V. and N. A. Shekhunova (1995). ‘Subclass of binary Goppa codes with

minimal distance equal to the design distance’. In: Information Theory, IEEE

Transactions on 41.2, pp. 554––555 (cit. on pp. 129, 131).

Blahut, R. E. (2008). Algebraic Codes on Lines, Planes and Curves. New York: Cam-

bridge (cit. on pp. 44, 50, 61, 62).

Blake, I. et al. (1998). ‘Algebraic-geometry codes’. In: Information Theory, IEEE

Transactions on 44.6, pp. 2596 –2618 (cit. on pp. 49, 52, 54, 56).

Bose, R. C. and D. K. Ray Chaudhuri (Mar. 1960). ‘On a class of error correcting

binary group codes’. In: Information and Control 3.1, pp. 68–79 (cit. on pp. 6,

35).

Bosma, W., J. Cannon and C. Playoust (1997). ‘The MAGMA algebra system I: The

user language’. In: J. Symbolic Comput. 24 (3-4), pp. 235–265 (cit. on pp. 90, 93,

99, 100, 112, 130, 143, 150).

Brouwer, A. (1998). ‘Bounds on the size of linear codes’. In: Handbook of Coding

theory: Volume I. Ed. by V.S. Pless and W.C. Huffman. Amsterdam: Elsevier (cit.

on pp. 20, 90).

Brouwer, A. E. and T. Verhoeff (Mar. 1993). ‘An updated table of minimum-distance

bounds for binary linear codes’. In: Information Theory, IEEE Transactions on

39.2, pp. 662 –677 (cit. on p. 90).

Cai, J. et al. (2005). ‘An Efficient Solution to Packet Loss : Erasure Correcting

Codes’. In: Proc. Fourth IASTED International Conference (CSN’05), pp. 224 –

229 (cit. on pp. 61, 85).

183



Bibiliography

Calabi, L. and E. Myrvaagnes (Oct. 1964). ‘On the minimal weight of binary group

codes (Corresp.)’ In: Information Theory, IEEE Transactions on 10.4, pp. 385 –

387 (cit. on p. 90).

Canteaut, A. and F. Chabaud (1998). ‘A new algorithm for finding minimum-weight

words in a linear code: application to McEliece’s cryptosystem and to narrow-

sense BCH codes of length 511’. In: Information Theory, IEEE Transactions on

44, pp. 367–378 (cit. on p. 27).

Cox, David A., John Little and Donald O’Shea (2007). Ideals, Varieties, and Algo-

rithms: An Introduction to Computational Algebraic Geometry and Commutative

Algebra, 3/e (Undergraduate Texts in Mathematics). Secaucus: Springer-Verlag

(cit. on p. 35).

Delsarte, P. (1975). ‘On subfield subcodes of modified Reed-Solomon codes (Cor-

resp.)’ In: Infosrmation Theory, IEEE Transactions on 21.5, pp. 575 –576 (cit.

on p. 24).

Ding, Cunsheng, H. Niederreiter and Chaoping Xing (2000). ‘Some new codes from

algebraic curves’. In: Information Theory, IEEE Transactions on 46.7, pp. 2638–

2642 (cit. on pp. 95, 97).

Elias, P. (1955). ‘Coding for noisy channels’. In: IRE Conv. Rec. 4 (cit. on pp. 5, 7).

Feng, G and T. N. Rao (1993). Reflections on Decoding Algebraic-Geometric Codes

up to the Designed Minimum Distance. Electronic Article. URL: http://
itese

erx.ist.psu.edu/viewdo
/download?doi=10.1.1.47.1970&rep=rep1&type=

pdf (cit. on pp. 7, 61).

Forney, G. D. and D. J. Costello (2007). ‘Channel Coding: The Road to Channel Ca-

pacity’. In: Proceedings of the IEEE 95.6, pp. 1150–1177 (cit. on pp. 6, 30).

Forney G., Jr. (1970). ‘Convolution Codes I: Algebraic Structure’. In: Information

Theory, IEEE Transactions on 16, pp. 720–738 (cit. on p. 6).

Fossorier, M. P. C. and Shu Lin (Sept. 1995). ‘Soft-decision decoding of linear block

codes based on ordered statistics’. In: Information Theory, IEEE Transactions on

41.5, pp. 1379–1396 (cit. on pp. 61, 76).

Gallager, R. (1962). ‘Low-Density Parity-Check Codes’. In: IRE Trans. Inform. The-

ory IT-8, pp. 21–28 (cit. on p. 7).

Garcia, A. and L. Quoos (2001). ‘A Construction of Curves Over Finite Fields’. In:

ACTA Arithmetica 98.2 (cit. on p. 101).

Garey, M. R. and D. S. Johnson (1979).Computers and Intractability. San Francisco:

W.H. Freeman and Company (cit. on p. 131).

Geer, Gerard van der and Marcel van der Vlugt (2000). ‘Kummer Covers with Many

Points’. In: Finite Fields and Their Applications 6.4, pp. 327 –341 (cit. on p. 101).

Geer, Gerard van der et al. (2009). Manypoints: A table of curves with many points.

Online available at http://www.manypoints.org (cit. on pp. 92, 100).

184

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.1970&rep=rep1&type=pdf
http://www.manypoints.org


Bibiliography

Golay, M. J. E. (1949). ‘Notes on digital coding’. In: Proc. IRE (corresp.) 37 (cit. on

p. 5).

Goppa, V. D. (1970). ‘A New Class of Linear Error Correcting Codes’. In: Probl.

Peredachi Inf. 6 (3) (cit. on pp. 6, 37, 41).

— (1971). ‘A Rational Representation of Codes and (L,g)-Codes’. In:Probl. Peredachi

Inf. 7 (3) (cit. on pp. 41, 105, 107, 173).

— (1972). ‘Codes Constructed on the Base of (L, g)-Codes’. In: Probl. Peredachi Inf.

8 (2) (cit. on p. 105).

— (1988). Geometry and Codes. Dordrecht: Kluwer Academic Publishers (cit. on

pp. 6, 8, 95).

Gorenstein, D. and N. Zierler (June 1961). ‘A class of error correcting codes in pm

symbols’. In: J. Soc. Ind. Appl. Math. 9 (cit. on pp. 6, 35).

Grassl, M. (2006). ‘Searching for linear codes with large minimum distance’. In:

Discovering Mathematics With MAGMA: Reducing Abstract to Concrete. Ed. by

Wieb Bosnan and John Cannon. Algorithms and Computations in Mathematics.

Berlin: Springer-Verlag (cit. on p. 20).

— (2007). Bounds on the minimum distance of linear codes and quantum codes.

Online available at http://www.
odetables.de. Accessed on 21/12/2010 (cit.

on pp. 48, 90, 91, 93, 95, 105, 112–116, 118–121, 123, 124, 128, 130, 145, 150,

167, 168, 171, 173).

— (2010). Private communication (cit. on p. 101).

Grassl, M. and G. White (2004). ‘New good linear codes by special puncturings’. In:

Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on,

p. 454 (cit. on pp. 93, 123–125).

Guruswami, V. and M. Sudan (1999). ‘Improved decoding of Reed-Solomon and

algebraic-geometry codes’. In: Information Theory, IEEE Transactions on 45.6,

pp. 1757 –1767 (cit. on pp. 7, 43).

Hamming, R. W. (1950). ‘Error detecting and error correcting codes’. In: Bell Syst.

Tech. J. 29 (cit. on pp. 5, 30).

Helgert, H. and R. Stinaff (May 1973). ‘Minimum-distance bounds for binary linear

codes’. In: Information Theory, IEEE Transactions on 19.3, pp. 344 –356 (cit. on

p. 90).

Hocquenhem, A. (1959). ‘Codes correcteurs d’erreurs’. In: Chiffres 2 (cit. on pp. 6,

35).

Hoholdt, T. et al. (1998). Handbook of coding theory. Amsterdam: Elsevier (cit. on

p. 56).

Johnston,M. and R. A. Carrasco (2005). ‘Construction and performance of algebraic-

geometric codes over AWGN and fading channels’. In: Communications, IEE

Proceedings- 152.5, pp. 713–722 (cit. on p. 80).

185

http://www.codetables.de


Bibiliography

Justesen, J. (1972). ‘A class of constructive, asymptotically good algebraic codes’. In:

IEEE Trans. Inform. Theory 18, pp. 652–656 (cit. on p. 6).

Justesen, J. et al. (1989). ‘Construction and decoding of a class of algebraic geometry

codes’. In: Information Theory, IEEE Transactions on 35.4, pp. 811–821 (cit. on

pp. 56, 64).

Kasami, T., L. Costello and W. Peterson (1966). ‘Some Results on the Weight Distri-

bution of BCH Codes’. In: Information Theory, IEEE Transactions on 2.12, p. 274

(cit. on p. 156).

Koetter, R. and A. Vardy (2003). ‘Algebraic soft-decision decoding of Reed-Solomon

codes’. In: Information Theory, IEEE Transactions on 49.11, pp. 2809–2825 (cit.

on p. 7).

Kohnert, Axel (2009). ‘(l,s)-extension of linear codes’. In:Discrete Mathematics 309.2,

pp. 412 –417. URL: http://arxiv.org/pdf/
s.IT/0701112 (cit. on pp. 123, 124,

126, 127).

Lachaud, G. et al. (1995). ‘Introduction to the Special issue on Algebraic Geometry

Codes’. In: Information Theory, IEEE Transactions on 41.6, p. 1545 (cit. on p. 54).

Leonard, D. A. (1996). ‘A generalized Forney formula for algebraic-geometric codes’.

In: Information Theory, IEEE Transactions on 42.4, pp. 1263 –1268 (cit. on

p. 72).

Leung, Ka Hin, San Ling and Chaoping Xing (2002). ‘New binary linear codes from

algebraic curves’. In: Information Theory, IEEE Transactions on 48.1, pp. 285

–287 (cit. on pp. 95, 102, 103).

Lidl, R. and H. Niederreiter (1986). Introduction to finite fields and their applica-

tions. Cambridge: Cambridge Univeristy Press (cit. on pp. 13, 15, 22, 139, 140,

156).

Lim, K. C. and Y. L. Guan (May 2006). ‘Improved Code Shortening for Block and

Product Codes’. In: Vehicular Technology Conference, 2006. VTC 2006-Spring.

IEEE 63rd. Vol. 3, pp. 1367 –1371 (cit. on p. 124).

Liu, C. (1999). ‘Determination of Error Values for Decoding Hermitian Codes with

the Inverse Affine Fourier Transform’. In: Fundamentals of Electronics, Commu-

nications and Computer Sciences, IEICE Transactions on E82-A.10, pp. 2302–

2305 (cit. on p. 72).

MacKay, D. J. C. and R. M. Neal (1996). ‘Near Shannon Limit Performance of Low-

Density Parity-Check Codes’. In: IEEE Electron. Lett. 32.18, pp. 1645–1646 (cit.

on p. 7).

MacWilliams, F. J. and N. J. A. Sloane (1983). The Theory of Error-Correcting Codes

(North-HollandMathematical Library). Amsterdam: North Holland (cit. on pp. 6,

9, 13, 19–22, 24, 27, 36, 37, 41–44, 74, 89, 93, 108, 110, 123, 124, 136, 155, 156,

159, 162, 164).

186

http://arxiv.org/pdf/cs.IT/0701112


Bibiliography

Massey, J. L. (1969). ‘Shift register synthesis and BCH decoding’. In: IEEE Trans.

Inform. Theory 15 (cit. on pp. 6, 7).

Massimo, Giullietti (2003). Notes on Algebraic-Geometric Codes. URL: http://www.

math.kth.se/math/forskningsrapporter/Giulietti.pdf (cit. on p. 49).

Mattson, H. F. and G. Solomon (1961). ‘A new treatment of error of Bose Chaudhari

codes’. In: J. Soc. Industr. Appl. Math. 9 (cit. on p. 30).

Muller, D. E. (1954). ‘Application of boolean algebra to switching circuit design and

error detection’. In: IRE Trans. Electron. Comput. EC-3 (cit. on p. 5).

Niederreiter, H., C.P. Xing and K. Y. Lam (1999). ‘A new construction of algebraic-

geometry codes’. In: Appl. Algebra Engrg. Comm. Comput. 9.5 (cit. on p. 95).

Ozbudak, F. and H. Stichtenoth (1999). ‘Constructing codes from algebraic curves’.

In: Information Theory, IEEE Transactions on 45.7 (cit. on p. 95).

Patterson, N. (1975). ‘The algebraic decoding of Goppa codes’. In: Information The-

ory, IEEE Transactions on 21.2, pp. 203 –207 (cit. on p. 6).

Peterson, W. and E. Weldon (1972). Error-correcting Codes. Cambridge: MIT Press

(cit. on pp. 7, 82).

Peterson,W.W. (1960). ‘Encoding and error-correction procedures for Bose-Chaudhuri

codes’. In: IRE Trans. Inform. Theory 3 (cit. on p. 6).

Proakis John G.and Salehi, Masoud (2008). Digital Communications. New York:

McGraw Hill (cit. on pp. 26, 82, 89).

Reed, I. S. (1954). ‘A class of multiple error correcting codes and the decoding

scheme’. In: IRE Trans. Inform. Theory IT-4 (cit. on p. 5).

Reed, I.S and G. Solomon (1960). ‘Polynomial Codes over certain fields’. In: J. Soc.

Ind. Appl. Math. 8 (cit. on pp. 6, 35).

Sakata, S. (1988). ‘Finding a minimal set of linear recurring relations capable of

generating a given finite two-dimensional array’. In: J. Symb. Comput. 5.3, pp. 321–

327 (cit. on p. 62).

— (2010). On the BMS algorithm. Electronic article. Last accessed April, 2010.

URL: http://www.ri
am.oeaw.a
.at/spe
sem/srs/groeb/download/BMSalg

W
.pdf (cit. on pp. 61, 62, 73).

Sakata, S. et al. (1995). ‘Fast decoding of algebraic-geometric codes up to the de-

signed minimum distance’. In: Information Theory, IEEE Transactions on 41.6,

pp. 1672–1677 (cit. on pp. 7, 62, 65).

Schimd, W and R Shurer (2004). Mint: A database for optimal net parameters.

Online available at http://mint.sbg.a
.at. Accessed on 2009-12-21 (cit. on

pp. 48, 90, 95, 100, 103, 123, 176).

Shabat, V. (2001). ‘Curves with many points’. PhD thesis. Amsterdam: Univ. of Am-

sterdam. URL: http://www.s
ien
e.uva.nl/math/Resear
h/Dissertations/

Shabat2001.text.pdf (cit. on pp. 100, 101).

187

http://www.math.kth.se/math/forskningsrapporter/Giulietti.pdf
http://www.math.kth.se/math/forskningsrapporter/Giulietti.pdf
http://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/BMSalgWc.pdf
http://mint.sbg.ac.at
http://www.science.uva.nl/math/Research/Dissertations/Shabat2001.text.pdf
http://www.science.uva.nl/math/Research/Dissertations/Shabat2001.text.pdf


Bibiliography

Shannon, C. E. (1948). ‘A mathematical theory of communication’. In: Bell System

Technical Journal 48 (cit. on pp. 3, 4).

Shokrollahi, M. A. and H. Wasserman (1999). ‘List decoding of algebraic-geometric

codes’. In: Information Theory, IEEE Transactions on 45.2, pp. 432–437 (cit. on

p. 7).

Shu, Lin and Daniel J. Costello (2004). Error Control Coding, Second Edition. New

Jersey: Prentice Hall (cit. on pp. 13, 44).

Simonis, J. (July 2000). ‘Adding a parity-check bit’. In: Information Theory, IEEE

Transactions on 46.4, pp. 1544 –1545 (cit. on p. 19).

Sloane, N., S. Reddy and Chin-Long Chen (July 1972). ‘New binary codes’. In: Infor-

mation Theory, IEEE Transactions on 18.4, pp. 503 –510 (cit. on pp. 20, 30, 115,

131, 150).

Sloane, N. J. A. (1972). ‘A survey of constructive coding theory, and a table of binary

codes of highest known rate’. In: Discrete Mathematics 3.1-3, pp. 265 –294 (cit.

on p. 90).

Stern, J. (1989). ‘A method for finding codewords of small weight’. In: Proceedings of

the 3rd International Colloquium on Coding Theory and Applications. London,

UK: Springer-Verlag, pp. 106–113 (cit. on p. 28).

Sudan, M. (2001). Coding theory: Tutorial and Survey. URL: http://people.
sai

l.mit.edu/madhu/papers/2001/fo
s01-tut.pdf (cit. on p. 5).

Sugiyama, Y. et al. (1976). ‘Further results on Goppa codes and their applications to

constructing efficient binary codes’. In: Information Theory, IEEE Transactions

on 22.5 (cit. on pp. 105, 106, 108, 109, 118, 173, 181, 182).

Tjhai, C. J. (2007). ‘A Study of Linear Error Correcting Codes’. PhD thesis. Devon:

Univ. of Plymouth (cit. on p. 75).

Tomlinson, M. et al. (2007). ‘Analysis of the distribution of the number of erasures

correctable by a binary linear code and the link to low-weight codewords’. In:

IET Communications 1, pp. 539–548 (cit. on pp. 28, 29, 74).

Tomlinson, M. et al. (2011). ‘New Binary Codes From Extended Goppa Codes’. Sub-

mitted to the 3rd International Castle Meeting for Coding Theory and Applica-

tions (cit. on p. 116).

Tsfasman, M. A., S. G. Vladut and T. Zink (1982). ‘On Goppa codes which are better

than the Varshamov-Gilbert bound’. In:Math. Nacr. 109, pp. 21–28 (cit. on pp. 7,

45, 95).

Tzeng, K. and K. Zimmermann (1975). ‘On extending Goppa codes to cyclic codes

(Corresp.)’ In: Information Theory, IEEE Transactions on 21.6 (cit. on p. 106).

Van-Lint, J. H. (1990). ‘Algebraic geometry codes’. In: Coding theory and design

theory: Part I: Coding Theory. Ed. by D. Ray-Chaudhari. New York: Springer-

Verlag, p. 137 (cit. on p. 49).

188

http://people.csail.mit.edu/madhu/papers/2001/focs01-tut.pdf


Acronyms

Vardy, A. (Nov. 1997). ‘The intractability of computing the minimum distance of a

code’. In: Information Theory, IEEE Transactions on 43.6, pp. 1757 –1766 (cit. on

pp. 26, 130).

Verhoeff, T. (1987). ‘An updated table of minimum-distance bounds for binary linear

codes’. In: Information Theory, IEEE Transactions on 33.5, pp. 665 –680 (cit. on

p. 90).

Véron, P. (2005). ‘Proof of Conjectures on the True Dimension of Some Binary Goppa

Codes’. In: Des. Codes Cryptography 36 (3), pp. 317–325 (cit. on p. 129).

Walker, Judy L. (2000). Codes and Curves. Rhode Island: American Mathematical

Society (cit. on pp. 46, 49, 96).

Wolf, J. K. (1969). ‘Adding two information symbols to certain non-binary BCH codes

and some applications’. In: Bell Syst. Tech. J. 48 (cit. on pp. 135, 138, 156, 157,

159, 162, 169).

Xing, C., H. Niederreiter and K. Y. Lam (1999a). ‘A generalization of algebraic-

geometry codes’. In: Information Theory,IEEE Transactions on 45.7, pp. 2498–

2501 (cit. on pp. 7, 93, 95, 97, 98, 102).

Xing, C. P., H. Niederreiter and K. Y. Lam (1999b). ‘Constructions of algebraic-

geometry codes’. In: IEEE Trans. Inform. Theory 45.4, pp. 1186 –1193 (cit. on

p. 95).

Xing, Chaoping and Sze Ling Yeo (2007). ‘New linear codes and algebraic function

fields over finite fields’. In: Information Theory, IEEE Transactions on 53.12,

pp. 4822–4825 (cit. on pp. 93, 95, 97).

Zierler, G. (1960). ‘On decoding linear error-correcting codes’. In: Information The-

ory, IRE Transactions on 6 (cit. on p. 30).

189



Acronyms

190



ACRONYMS

AG algebraic geometry. 6–8, 45, 85, 175

AWGN additive white Gaussian noise. 4, 8, 10, 11, 26, 61, 175

BCH Bose Chaudhari Hocquenghem. 6, 10, 35

BEC binary erasure channel. 26

BMA Berlekamp Massey algorithm. 8, 10, 61, 175

BMSA Berlekamp Massey Sakata algorithm. 8, 10, 61, 62, 85, 175

BSC binary symmetric channel. 26

CPU central processing unit. 30

DMC discrete memoryless channel. 25

GRS generalised Reed Solomon. 36, 43

LDPC low density parity check. 7, 8, 177

MDS maximum distance separable. 36

RAM random access memory. 30

RS Reed Solomon. 6, 10, 35, 61

191



INDEX

BCH

narrow sense, 40

primitive, 40

bound

Singleton, 36

sloane, 36

channel

binary erasure, 26

binary symmetric, 26

code

AG, 45

algebraic geometry, 45

BCH, 39
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