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ABSTRACT

Algebraic Codes For Error Correction In Digital
Communication Systems

Mubarak Jibril

C. Shannon presented theoretical conditions under which communication was pos-
sible error-free in the presence of noise. Subsequently the notion of using error
correcting codes to mitigate the effects of noise in digital transmission was intro-
duced by R. Hamming. Algebraic codes, codes described using powerful tools from
algebra took to the fore early on in the search for good error correcting codes. Many
classes of algebraic codes now exist and are known to have the best properties of
any known classes of codes. An error correcting code can be described by three of its
most important properties length, dimension and minimum distance. Given codes
with the same length and dimension, one with the largest minimum distance will
provide better error correction. As a result the research focuses on finding improved
codes with better minimum distances than any known codes.

Algebraic geometry codes are obtained from curves. They are a culmination of years
of research into algebraic codes and generalise most known algebraic codes. Addi-
tionally they have exceptional distance properties as their lengths become arbitrar-
ily large. Algebraic geometry codes are studied in great detail with special attention
given to their construction and decoding. The practical performance of these codes
is evaluated and compared with previously known codes in different communica-
tion channels. Furthermore many new codes that have better minimum distance
to the best known codes with the same length and dimension are presented from
a generalised construction of algebraic geometry codes. Goppa codes are also an
important class of algebraic codes. A construction of binary extended Goppa codes
is generalised to codes with nonbinary alphabets and as a result many new codes
are found. This construction is shown as an efficient way to extend another well
known class of algebraic codes, BCH codes. A generic method of shortening codes
whilst increasing the minimum distance is generalised. An analysis of this method
reveals a close relationship with methods of extending codes. Some new codes from
Goppa codes are found by exploiting this relationship. Finally an extension method
for BCH codes is presented and this method is shown be as good as a well known

method of extension in certain cases.
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Introduction, Definitions and

Preliminaries






1. INTRODUCTION AND MOTIVATION

The field of coding theory was born with Claude E. Shannon’s (Shannon, ) land-
mark work on digital communications. Digital communications involves the trans-
mission of message signals in digital form. Shannon’s work shed light on the limits
of how fast, efficient and reliable a digital communication system can be through the
most significant transmission channels. Shannon’s work specifically focuses on how
to transmit data reliably through channels where signal altering noise is present. A
key observation was that it was possible to increase the reliability of a digital com-
munication system significantly by using efficient error correction schemes. Digital
signals to be transmitted are encoded with a predefined code at the transmitting
end and then suitably decoded at the receiving end.

Conceptually, a digital communication system with an error correction scheme is
modelled as in Figure 1.1. The source encoder (not shown) accepts source data usu-
ally in binary form and compresses it by exploiting its inherent redundancy. The
compression is done in such a manner that the source decoder can recover the in-
formation without any ambiguity. Compressed data from the source encoder is fed
to the channel encoder at the rate of R bits per second. A channel encoder adds
redundancy to % bits ! to produce n bits where n = k. The channel encoder block
outputs data at a rate of R = 7 bits per second. This block essentially begins the
error correction scheme. It uses error correction codes which can either be linear
block codes or convolutional codes. The next block is the modulator whose purpose
is to transform the signal so that it is suitable for transmission through the chan-
nel. A chosen modulation scheme will take into consideration the specific channel
characteristics. The output of the modulator is sent through the channel where it is
distorted by noise. A channel can be defined by the type of distortion it contributes
to the transmitted signal. Additive white Gaussian noise channels are channels
where an additive, zero mean and Gaussian distributed noise dominates while fad-
ing channels have interference noise due to the fact that signals travel in multiple
paths. From a coding scheme design perspective, a channel can also be defined
by its limitations on power or bandwidth. The demodulator attempts to reproduce
the transmitted signal from the modulator from the impaired received signal. It
achieves this by using a threshold value on a per bit basis. If a single threshold is

used, then the output of the demodulator is called hard and the demodulator is said

1In general the channel encoder need not be a binary encoder and can process non-binary symbols.
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Channel Modulato Channel Demodulato Chanpel
—|  Encoder — water - ) e Decoder [—
From Source To Source
Encoder Decoder

Noise T

Fig. 1.1: Digital Communication System

to perform hard decisions. If more than one threshold value is used, the demodula-
tor produces soft outputs and performs soft decisions. The type of decision taken by
the demodulator decides the kind of channel decoder used in the channel decoder
block. Soft/hard decision channel decoders input soft/hard decided sequences from
the demodulator and using decoding algorithms attempt to detect and correct er-
rors incurred by transmission. Finally a source decoder decompresses the output of
the channel using a decompression algorithm to produce an estimate of the original
message. If the channel decoder succeeds in correcting all errors then the output of
the source decoder is the original message.

The scope of this research lies between the channel encoder and the channel de-
coder. The research focuses mainly on finding good linear error correcting codes that
improve the reliability of digital communications. Specifically, the thesis focuses on
an important sub-class of linear codes, algebraic geometry codes, and codes they
generalise. As a welcomed necessity, the research navigates through the abundant

literature of algebraic codes and their equally rich algebraic structures.

1.1 Shannon’s Contributions and Implications

Shannon’s main result is the relationship (Shannon, ),
R < Wlogy(1+SNR) 1.1

for the additive white Gaussian noise (AWGN), where R is transmission data rate
in bits per second, W is the transmission channel bandwidth in hertz (Hz) and
SNR is the average signal power to the average noise power ratio, a dimension-
less quantity. Equation (1.1) is commonly referred in literature as the Shannon or
Shannon-Hartley equation. The inequality may be removed and R replaced with

the “channel capacity”, C, and obtain a limit on the rate so that
R < C =Wlogy(1+SNR). (1.2)

In order to achieve capacity rates it can see from (1.2) that it is possible to increase
either the bandwidth W or the signal to noise ratio SNR or both. Since channel
noise cannot be controlled by the system designer, increasing SNR is only possible
by increasing the signal power since

s

SNR = 1.3
N (1.3)
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where S and N represent the average signal and noise power respectively. Prior to
channel coding and Shannon’s postulations increasing transmission power was syn-
onymous with increased reliability. There are however limits to how much power is
available for specific applications. Increasing the bandwidth W might seem like a

good solution until one considers that
(1) channel bandwidth is limited,
(i) the additional cost and size of transmission equipment.

In addition, for the AWGN channel the average signal noise N = NoW where Ny
is the noise spectral density. So as the bandwidth increases, the SNR deteriorates
so does the rate albeit logarithmically. In summary Shannon was able to show
that noise in channel limits the rate of data transmission through the channel but
does not limit the reliability and accuracy of transmission. In so far as the data

transmission rate is below channel capacity, reliable transmission is possible.

1.2 History and Development of Coding Theory
1.2.1 1948-1970

An important and perhaps understated contribution to the field of coding theory
was due to Hamming ( ). Whereas Shannon’s approach was non-constructive
and asymptotic, Hamming’s contribution was constructive and combinatorial (Su-
dan, ). Shannon showed that error free communication at rates below capacity
is possible if good error correcting codes are used. However it soon became clear
that finding error correcting codes with efficient decoding schemes that fit this de-
scription was difficult. Hamming was the first to present non-trivial error correcting
codes. These codes are known aptly as Hamming codes. A code is traditionally de-
fined with there parameters (i) its length or number of symbols (ii) its dimension or
number of message symbols (iii) and its minimum distance or the smallest possible
distance between any two distinct code words. The problem of designing good codes
preoccupied coding theorists in the aftermath of these contributions. Golay ( )
presented codes known today as Golay codes. These codes include a generalisation
of Hamming codes and also some perfect codes. The word perfect used here is in
retrospect a misnomer, these codes were not perfect in the sense that they could
correct all forms of error but they were labelled perfect because of their unique
structural properties. Perfect codes have the property that every corrupted code-
word can be uniquely decoded without ambiguity. Reed ( ) and Muller ( )
presented an important class of codes called Reed-Muller codes. Hamming, Go-
lay and Reed-Muller codes have interesting algebraic properties and continue to be
the subject of theoretical investigations. Elias ( ) invented convolutional codes.

Convolutional codes were not described algebraically (although they can be) and are

5
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the first implementation of probabilistic codes. Convolutional codes were soon found
to be equal or better than block codes for almost any practical application (Forney,

). Binary Bose Chaudhari Hocquenghem (BCH) were discovered by Bose and
Chaudhuri ( ) and independently by Hocquenhem ( ). Binary BCH codes
were the first powerful error correcting codes with a potential for practical use.
BCH codes are known to contain Hamming codes as a subset. Reed Solomon (RS)
codes were discovered by Reed and Solomon ( ). RS codes are a subset of BCH
codes and have good properties. Despite being primarily non-binary codes, RS codes
have found extensive practical use to this day. A year later Gorenstein and Zierler
( ) presented BCH codes with binary symbols which are a generalisation of RS
codes. Though algebraic codes were presented with elegant theories and had excep-
tional properties it became difficult to find efficient and simple decoding schemes
that took advantage of their error correcting capabilities. Peterson ( ) was the
first to present a decoding algorithm for BCH (and by definition RS) codes that cor-
rected errors up to the designed error correction capabilities of these codes. Soon
afterwards Berlekamp ( ) presented a much simpler scheme than Peterson’s al-
gorithm. Massey ( ) showed that Berlekamp’s algorithm solved a well known
linear feedback shift register synthesis problem. The algorithm consequently be-
came known as the Berlekamp Massey decoding algorithm. In the first 20 years
since the birth of coding theory, powerful algebraic and probabilistic codes had al-
ready been invented with efficient decoding algorithms. BCH codes were however
shown to be asymptotically bad? i.e. their error correction capabilities deteriorate as
lengths approach infinity. Forney and Costello ( ) showed a method of concate-
nating RS codes with short codes and proved that these codes were asymptotically
good. Concatenated codes proved useful in bursty channels where errors occur in

short consecutive bursts in the transmitted data stream instead of independently.

1.2.2 1970-1990

Justesen ( ) produced the first class of constructive algebraic codes are asymp-
totically good. However Justesen’s codes have found little use, since for practical
lengths far superior codes exist. Goppa ( ) introduced a class of linear algebraic
error correcting codes. These codes were a large class of codes and in some instances
can be seen as generalisations of BCH codes. Patterson ( ) presented a decoding
algorithm for Goppa codes obtained by modifying the Berlekamp Massey algorithm
for BCH codes. Goppa codes are known to be asymptotically good (MacWilliams
and Sloane, ). Goppa ( ) then presented a new class of algebraic codes from

curves called algebraic geometry (AG) codes. These codes are generalisations of RS

2A code is said to be asymptotically good if its minimum distance increases proportionately as the
length becomes arbitrarily large. This means that an extremely long code will have a good minimum
distance.
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and Goppa codes (of which BCH codes are subsets). Certain families of these codes
were shown by Tsfasman et al. ( ) to be asymptotically better than previous
algebraic codes. There was great interest in the decoding of AG codes up to their
designed error correction capabilities. By the fourth decade from the birth of coding
theory, efficient algebraic codes had been realised some of which have been shown
to be asymptotically good. The major obstacle to achieving error-free communica-
tion for these codes was their decoding complexity when utilising channel statistics.
All previously mentioned methods of decoding algebraic codes are bounded distance
decoding schemes that do not exploit channel statistics in decoding but rely solely
on the algebraic structure of the codes. It was clear that to achieve error-free com-
munication one must utilise channel statistics. Although research concentrated on
searching for codes with a good algebraic structure and predetermined properties
it became increasingly apparent that to achieve error free communication random-
like codes with acceptable properties and moderate decoding complexity were re-
quired. This line of thought was first pursued by Elias ( ) and subsequently by
Gallager ( ).

1.2.3 1990-

Berrou et al. ( ) astounded the coding theory community by presenting Turbo
codes which approached Shannon’s limit closely. Turbo codes are derived from con-
volutional codes and are probabilistic codes. Research in the 1990’s was then shifted
from algebraic codes to probabilistic codes. MacKay and Neal ( ) soon reintro-
duced codes by Gallager ( ) showing that these code (called low density parity
check (LDPC) codes) also approached Shannon’s limit. By sacrificing exceptional
properties for reduced decoding complexity coding theorists were able to achieve
these results. Algebraic coding also received a significant boost in the introduction
of bounded distance decoding for AG codes by Feng and Rao ( ) and Sakata et
al. ( ). The decoding algorithm by Feng and Rao ( ) was a generalisation
of the algorithm by Peterson and Weldon ( ) while the algorithm by Sakata et
al. ( ) was a generalisation of the algorithm by Berlekamp ( ) and Massey
( ). An important milestone was reached for algebraic codes when Guruswami
and Sudan ( ) presented a new algorithm for decoding BCH and RS codes that
had better performance than previously known decoding techniques. Sudan’s de-
coding used the notion of a list decoder that returned a list of candidates for each
received sequence. Koetter and Vardy ( ) extended this algorithm to utilise
channel statistics so as to further improve decoding performance. Sudan’s algo-
rithm was soon after extended to decoding AG codes by Shokrollahi and Wasserman
( ). A generalised construction of AG codes was presented by Xing et al. ( )
which have better properties than AG codes.

Near Shannon limit performance is now obtainable from probabilistic codes like

7
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LDPC and turbo codes. At present LDPC codes have shown the most promise in at-
taining error-free communication and current research trends are focused on con-
structing good codes. Some algebraic codes have the best distance properties but
their decoding complexity using channel statistics is proving to be a stumbling block
towards achieving error-free communication. However the search for improved al-
gebraic codes with less complex and efficient decoders is still active since it is known

that performance ultimately depends on the distance properties of a code.

1.3 Research Scope

The work presented in this thesis focuses mainly on algebraic codes. In particular
AG codes and Goppa codes are the major subject of interest while related codes BCH
and RS codes also feature prominently. AG codes were invented by Goppa ( ) but
have not received as much research attention as other error correction codes. This
is in part due to the fact that much of the theory of the codes is obtained from deep
mathematical aspects of algebraic geometry that do not lend themselves to easy
access. Subsequent advances have however simplified construction and decoding of

the most popular AG codes. The thesis has two main objectives;

* To study the AG codes and related algebraic codes. The performance of AG
codes relative to similar codes is investigated in different communication chan-
nels using different decoding approaches. The theory and properties of these

codes are also studied.

* To obtain codes from algebraic codes with better minimum distances than any

previously known codes.

1.4 Major Contributions of the Thesis

e Algebraic geometry codes are studied in great detail with special attention
given to their construction and decoding. The practical performance of these
codes is evaluated and compared with previously known codes in different
communication channels. Decoding performance of AG and nonbinary BCH
codes is compared in the AWGN using soft and hard decision decoding and
erasure channels using maximum likelihood decoding. The Berlekamp Massey
Sakata algorithm (BMSA) decoding is presented for the bounded distance de-
coding of AG codes while the classic Berlekamp Massey algorithm (BMA) is
presented for BCH codes for transmission in the AWGN channel. Symbol
based ordered reliability decoding is carried out for soft decision decoding in
the AWGN channel for both AG and BCH codes. Finally maximum-likelihood
erasure decoding (in-place) is presented for decoding these codes in the era-

sure channel.
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* New codes that have better minimum distances than the best known codes
with the same length and dimension are presented from a generalised con-
struction of algebraic geometry codes. Using this method 237 codes in the fi-
nite field F1¢ from four curves with better minimum distances than any known
codes are presented. Many improvements on constructible codes were also
presented. Furthermore by applying simple modifications to the presented

codes more improvements are possible.

¢ A construction of extended binary Goppa codes is generalised to codes with
nonbinary alphabets and as a result new codes are found. This construction
is shown to be an efficient way to extend another well known class of alge-
braic codes, BCH codes. In total 48 new codes in finite fields F7, Fg and [Fg
were presented directly from this method. With further extensions using con-
struction X (MacWilliams and Sloane, ), 30 more improvements are also
obtained. More improvements are also possible from simple modifications of

the obtained codes.

* A generic method of shortening codes whilst increasing their minimum dis-
tances is generalised. An analysis of this method reveals a close relationship
with methods of extending codes. Codes with a special structure from Goppa

codes are used and this relationship is exploited to obtain 4 new binary codes.

¢ Finally an extension method for BCH codes is presented and this method is

shown be as good as a well known method of code extension in certain cases.
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M. dJibril, M. Tomlinson, M. Z. Ahmed and C. Tjhai. ‘Good codes from generalised
algebraic geometry codes’. IEEE symposium on information theory (ISIT), Proceed-
ings on., July, 2010.http://dx.doi.org/10.1109/ISIT.2010.5513687
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M. Tomlinson, M. dJibril, C. Tjhai, M. Grassl and M. Z. Ahmed. ‘New binary codes
from extended Goppa codes’. Accepted to the third international castle meeting on
coding theory and applications (ICMTA), September, 2011.

Submitted

M. Tomlinson, M. Jibril, C. Tjhai, S. Bezzateev, M. Grassl and M. Z. Ahmed. ‘A
generalised construction and improvements on nonbinary codes from Goppa codes’.
To be submitted to the IEEE Transactions on Information Theory., July, 2011.

M. Jibril, S. Bezzateev, M. Tomlinson, C. Tjhai, M. Z. Ahmed. ‘Some results from
binary Goppa codes and a case of shortening linear codes’. To be submitted to the

IET Journal on Communications., July, 2011.

1.6 Thesis Organisation

¢ Part I: Introduction and Motivation

- Linear Codes Over Finite Fields
In this Chapter the concept of finite fields is introduced. Linear codes
and their basic properties are then defined. Since the thesis focuses on
constructing new codes, details of some well known generic construc-
tions are also given. The most important type of channel models are also
presented. This Chapter provides sufficient preliminary information rel-

evant to subsequent Chapters.
* Part II :Algebraic Codes for Error Correction

— One Dimensional Codes:RS, BCH and Goppa codes
In this Chapter RS, BCH and Goppa codes are introduced. This Chapter
serves as a precursor to subsequent Chapters in the thesis by introducing

three important classes of codes.

- Two Dimensional Codes: AG Codes
AG codes are introduced in this Chapter. Their underlying theory and
definition are then presented. Examples of constructions of AG codes are

also given.

— Decoding Algebraic Codes
The decoding of algebraic codes for the error and erasure channels is dis-
cussed in this Chapter. The BMSA decoding is presented for the bounded
distance decoding of AG codes while the classic BMA is presented for
BCH codes for transmission in the AWGN channel. Ordered reliability
decoding is presented for soft decision decoding in the AWGN channel.

10
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Finally maximum-likelihood erasure decoding (in-place) is presented for

decoding in the erasure channel.

— Performance of Algebraic Codes
Performance of AG codes is compared with shortened nonbinary BCH
codes in the same finite field having the similar rate and length. The
codes are compared the AWGN channel (soft and bounded decoding) and

in the erasure channel. Conclusions are drawn from the results.
e Part III: Search For New Codes

- Introduction
This Chapter details the methods and approaches used in the search for

new codes and introduces Part III of the thesis.

- Improved Codes From Generalised AG codes
This Chapter presents the concept of places of a curve of degree larger
than one and generalised constructions of AG codes. As a result 237
new codes in the finite field F;g from three curves using a generalised

construction of AG codes are presented.

- Improved Codes From Goppa Codes
This Chapter presents 108 improvements to the best known codes in
finite fields F7, Fg, Fg from extended Goppa codes. The method used is a
generalisation of a well known method for extending binary Goppa codes

to nonbinary finite fields.

- A Special Case Of Shortening Linear Codes
Theory and proof of a method of shortening linear codes is provided. The
link between shortening and extending linear codes is then discussed.
Four new binary codes obtained by exploiting this link from a Goppa

code with a special structure.
¢ Part Four: More On Algebraic Codes

- Notes on Extending BCH Codes
A method of extending BCH codes is explored. This method is shown
to be as good as the best generic method of extending codes in certain

cases. The method provides insight into the limits of extendability of
BCH codes.

— Improved Codes From Goppa Codes 11
An alternative construction is presented in this chapter for extended
Goppa codes. This construction produces shorter codes than the previ-
ously described method however provides greater flexibility in construct-

ing codes.

11
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2. LINEAR CODES OVER FINITE
FIELDS

This chapter introduces the theory of finite or Galois fields. This theory forms the
foundation upon which linear codes can be studied. Sufficient information is given
on the finite fields section since it serves as a prerequisite for subsequent chapters.
For an in depth treatment of the subject see Shu and Costello ( ), MacWilliams
and Sloane ( ) and Lidl and Niederreiter ( ). The information provided on
finite fields is obtained from these aforementioned sources. The chapter also intro-
duces linear codes over finite fields. Both these topics are large and only information

relevant to this thesis is provided.

2.1 Finite Fields

In mathematics, fields are loosely defined as algebraic structures that contain a set
of elements for which the operations multiplication and addition (and their respec-
tive inverse operations division and subtraction) are clearly defined. In addition
the result of any of these defined operations results in elements within the field. A

typical example is the field of real numbers.

2.1 Definition (Finite Field). A finite field denoted by F,r is a field with a finite num-

ber of elements where p is always prime and r = 1.

p is called the characteristic of the finite field.

Field Elements: A finite field contains the basic elements of a field; a multiplica-
tive identity element denoted by 1 and an additive identity element denoted by 0.
The order of a finite field element « is the smallest integer n such that a” =1. A

primitive element of a finite field is any nonzero element a with order p”.

2.2 Definition (Subfield). A subfield [ys is a subset of the finite field F,r and contains

13
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only nonzero elements that satisfy,
s_1
pr =1 BeFy

and s|r.

All finite fields [, for which r > 2 are called extension fields of [F,. Henceforth
finite fields will be denoted by [, where g = p” for brevity. Consider the univariate
polynomial ring with coefficients in the finite field F, denoted as Fy[x]. An irre-
ducible polynomial is a polynomial in this ring is one which is prime i.e. it cannot
be factorised. A primitive polynomial of degree m is an irreducible polynomial which
has the primitive element of F,» as a root. Using modulo operations, a primitive

polynomial of degree m can be used to generate Fm.

Example 2.1 (Finite Field F1g): The definition of the finite field F1g is now given.
The field F1¢ has elements,

0,1,a,d,...,a"}.

It is easy to see that « is a primitive element in F1g and the polynomial p(x) = x*+x+
1 is a primitive polynomial. Each element of F1g can be represented as a polynomial
in the ring Fo[x]/p(x). This ring has coefficients in F2 and any polynomial in the
ring cannot be a multiple of p(x). Table 2.1 shows the elements of [ in different
representations. The coefficients of the ring Fo[x]/p(x) map to an m-dimensional

vector space Fy" which can also be used to represent Fym.

2.1.1 Subfields and Conjugacy Classes

2.3 Definition (Conjugacy Class). A conjugacy class of an element f of a finite field

Fqm is given as the set of distinct elements,
2 (e-1)
C(ﬁ):{ﬁ)ﬁq7ﬁq )----)ﬁq } ﬁEﬂ:qm
where e is the smallest positive integer such that f7° = .
Where f is used as a representative of the its conjugacy class. Conjugacy classes

partition Fym into sets of size r and r|m. As an example consider the conjugacy

classes of F1g over [Fg,

14
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Fos | Folxl/(x® 1) | Folxl/p(x) F4

0 0 0 [0,0,0,0]

1 1 1 [0,0,0,1]
a x x [0,0,1,0]
a? x2 x2 [0,1,0,0]
a’ x> x> [1,0,0,0]
at x? x+1 [0,0,1,1]
a® x° X +x [0,1,1,0]
ab x8 x5 +x2 [1,1,0,0]
a’ x’ O +x+1 [1,0,1,1]
ad x8 x?+1 [0,1,0,1]
a’ x° x> +x [1,0,1,0]
all %10 +x+1 [0,1,1,1]
all Kt ©+x’+x | [1,1,1,0]
al? x1? ©+xl+x+1[1,1,1,1]
al? %13 ©+x?+1 |[1,1,0,1]
alt x4 X +1 [1,0,0,1]

Table 2.1: Finite Field Fig

{1},

248}
ki

{a,a”,a*, a

6 12 9}
2

{a3,ab,a1? a

{ab,a

10}
ki

{057, (114, 0513, 0511}}.

Conjugacy classes are also called cyclotomic cosets. A polynomial with all the mem-

bers of the conjugacy class of the primitive element f of the finite field F,= as roots

is a primitive polynomial in the subfield F, (Lidl and Niederreiter,

). Thus to

find the primitive polynomial of any subfield F, of F = it is sufficient to obtain the

conjugacy class of a primitive element of F,=. Consider the conjugacy classes of ¢

over its subfield F4 with m = 2,

{a’,a

{a’,a

{a

{a,a

2 8
{a”,a%},

{1},
4

K

3 12}

)

{a®),

6 .9
{a®,a”},

13}
ki

{a'0)

)

117 0514}}.
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The elements of F4 c F1¢ are,

{0,1,a5,a10}

and a is a primitive element of F1g. The polynomial with roots {a, a*} is x% + x + a®
and is primitive over [Fy4.

In Table 2.1 it was shown that an extension field Fos« can be represented by a 4-
dimensional vector [F‘QL. The finite field F16 is now defined as a vector space [F?1 using

the primitive polynomial p(x) = 2% + x + a® in the same manner. Table 2.2 shows the
5

finite field F1g represented as [F?L using the primitive polynomial p(x) =x%+x+a

Foi | Falxl(x®)) | FalxVp(x) | F2

0 0 0 [0,0]

1 1 1 [0,1]

a x X [1,0]

a’ x2 x+a’ [1,aP]
a’ x° x+ald [1,al9]
at x? x+1 [1,1]

a® x° a® [0, 2]
ab x® a’x [a®,0]
o7 o Px+a® | [ab,al]
ad x5 x+al? [1,al0]
a’ x° a’x+a® | [a®,a’]
alO xlO alO [0, alO]
pasi il a0y [210,0]
al? x1? al%x+1 [alo,l]
al3 %13 adx+1 [ab,1]
paL L a%+ a0 | (a0, a10]

Table 2.2: Finite Field Fig

2.2 Linear Codes

2.4 Definition (Linear Code). A linear code is an n-dimensional vector space € c [

that can be defined with a basis consisting of k-linearly independent members.

This vector space is known as a code space and consists of ¢* = |€| distinct vectors
of length n. A linear code is said to have length n, dimension 2 and rate r = %. A
matrix G consisting of £ linearly independent members of € is called the generator
matrix of 4. An encoding operation can be seen as a map from a message space [F];

to the code space € cFj. Consider the map,

y:Fg— €

Y(m)=c me[F’;,cecg

16
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which represents an encoding operation. Encoding, carried out with the G matrix

using matrix multiplication is,

2.5 Definition (Generator Matrix). A generator matrix of a linear code € isa k xn

matrix of rank k whose rows are members of €.

Another important matrix associated with a linear code is the parity check ma-

trix, H.

2.6 Definition (Dual Code). A parity check matrix H is an (n — k) x n matrix of rank

n —k which has the property,
cH =0

for every ¢ € € where T is the transpose operator.

The parity check matrix is used to “test” for codewords of €. The parity check

matrix of a linear code is simply the null space of its generator matrix and is defined

as, H" in the equation,
GH" =0.

Let [n,k,d],; denote a linear code with length n, dimension £ and distance d defined

in a field of size q.

2.7 Definition. A dual code €~ of a linear code € is a code which has the parity check

matrix H of € as its generator matrix. Additionally for any two codewords ¢ € €

and € € 6+,

where - denotes the component-wise multiplication of vectors or dot product.

The dual code of the code € with parameters [n,k,d], has length n, dimension

k' =n —k and minimum distance denoted by d*.

17
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2.2.1 Properties of Linear Codes

2.8 Definition (Codeword Weight). The number of nonzero elements of a codeword
c € %6 is called its weight. Formally,

weight(e)={i: c; #0, i =[0...n— 1]} c=(cg,...,Cn-1)

2.9 Definition (Hamming Distance). The Hamming distance between any two

codewords X, y € € is given as the weight of their dot product. Formally,

d(x,y)=weight(x-y)

2.10 Definition (Minimum Weight). The minimum distance or weight of a linear

code € is smallest distance between any two distinct codewords in 6.

d(€)=min({dx,y): X,y € 6€})

The minimum distance of a linear code is a useful indicator of the quality of that
code. It is desirable to have linear codes with as large a minimum distance as
possible for a given length, dimension and field size.

2.11 Definition (Weight Distribution). Suppose A; is defined as the number of code-
words in a code € of weight equal to i

A; = {weight(c)=1i|ce €}
then the sequence
[Ag,A1,...,Anl

is called the weight distribution of the code 6.

If M = g" is the number of codewords in € then

n
M=Y A,
1=0

18
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The weight distribution of a code is useful in predicting its performance under max-
imum likelihood decoding. Also if the weight distribution of a code is known the
MacWilliams identity (MacWilliams and Sloane, ) can be used to obtain the

weight distribution of its dual code.

2.3 Generic Code Constructions

This section is concerned with the construction of new codes from existing ones.

Henceforth a linear code is assumed to have parameters [n,k,d],.

2.3.1 Modifying The Length

2.3.1.1 Padding

A linear code can be lengthened if every codeword is padded with a zero symbol.
The result is an [n +1,k,d], code.

2.3.1.2 Overall Parity Check

A linear code can be extended to an [n+1,%,d +1], code if ¢ =2 and d is odd. Every

codeword c € ¥ is extended as such,

n—1

(CO,' ->Cn-1, Z c;)

1=0

with ¢, = Z;"z_ol. For cases where ¢ # 2 adding an overall parity check may or may
not increase the distance to d + 1. For special cases however it has been shown

(Simonis, ) that it is possible to increase the distance to d + 1.

2.3.1.3 Puncturing

A linear code can be punctured to an [n —[,k,>d -], provided that |/| <d. Punc-

turing involves removing / columns of the generator matrix of a code.

2.3.1.4 Construction X

2.12 Definition (Subcode). A subcode 6 of a linear code 61 is a code that has all its

codewords in 6.
62 < 61

The subcode €3 has parameters [n,<k,=d],.
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The difference between the dimension of a code and the dimension of its subcode is

called co-dimension.

2.1 Theorem (Construction X (Sloane et al., )). If a linear code 61 with pa-
rameters [n,k1,d1] has a subcode 65 with parameters [n,ko,d2], then 61 is extend-
able to a code with parameters [n +n,k1,min{d1 + 9§, ds}] using some auxiliary code
[r,k1—ko,0].

Consider a linear code %47 with parameters [n,k1,d1] with generator matrix G;

which can be represented as,

where Go is the generator matrix of a subcode 65 with parameters [n,k9,d2]. Sup-
pose the auxiliary code 635 with parameters [71,k1 — k2,6] has generator matrix Gs,
then the generator matrix (Grassl, ) of a code obtained from construction X

using these three codes has generator matrix,

G 0
G Gs

2

In some cases the subcode %5 has a length shorter than the length of the supercode
%1. This is the case when %5 is obtained from %7 by shortening. In which case the

code %65 is padded with zeros in the shortened coordinates.

2.1 Corollary. If a linear code 61 with parameters [n1,k1,d1] has a subcode 62 with
parameters [ng, ko, ds] with ne < ni, then 61 is extendable to a code with parame-

ters [n1+n,kq1,min{dq + 6,ds}] using some auxiliary code [1,k1—kg,5].

Other extensions methods worthy of mention are constructions X3, X3a and X3u
which use three nested codes,construction X4 which uses two pairs of nested codes
and constructions X6, X6a and X6u which use 6 nested codes. (See Brouwer, ;

MacWilliams and Sloane, ) for details of these constructions.

2.3.2 Modifying The Dimension
2.3.2.1 Subcodes

Given a code ¥ with parameters [n,%,d] it is possible to form an ! co-dimensional
subcode by deleting [ rows of the generator matrix of the code ¢. The resulting code

has parameters [n,k —1,= d].
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2.3.2.2 Shortening

A code can be shortened by deleting [ information coordinates with [ < 2. The
shortened code has parameters [n -,k —1,>d],. These [ deleted coordinates need

to be a subset of an information set.

2.13 Definition (Information Sets). If G is the generator matrix of a linear code, then

an information set is a set of coordinates of any k linearly independent columns of

G.

Shortening can be accomplished by deleting / independent columns of the gener-
ator matrix G as well as [ rows. Deleting / independent columns of the parity check
matrix H also has the same effect. In order to state Theorem 2.2, the definition of a

support is first given.

2.14 Definition (Support of a Codeword). Let ¢ € € a codeword of € then the sup-
port of ¢ =(cq,...,cn—1) is defined as ,

supp(e)=1{i:i€{0,...,n—1}|c; #0}.

2.2 Theorem (Construction Y1, from (MacWilliams and Sloane, ). If the
dual of the code € with parameters [n,k,d] has a codeword ¢ of minimum weight
d, then deleting the columns of the parity check matrix of € corresponding to the

support of é produces a shortened code with parameters [n—d,k—d +1,d].

2.3.3 Subfield Constructions

Given a linear code € defined in some extension field F,~ it is possible to obtain
codes from € having elements in a subfield [, of Fym. There are three basic ways to
do this; by constructing a subfield image code , by constructing a subfield subcode

or by constructing a trace code.

2.3.3.1 Subfield Image Construction

In the beginning of this chapter a method of representing finite fields was shown.
Another way of representing finite fields is by using matrices. Let p(x) be a prim-

itive polynomial of F,» over F,. The companion matrix of a polynomial f(x) =
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ao+ai1x+-+am_1x™ 1+ 2™ is defined as an m x m matrix given as,

(00 - 0 -ag |
10 - 0 -ay
c=101 - 0 -—ay
00 1 —ap 4

and satisfies f(C) = 0 where 0 is an m x m matrix with all zero entries (Lidl and
Niederreiter, ; MacWilliams and Sloane, ). Let C be the companion matrix
of the primitive polynomial p(x), then there is a one to one mapping between the
elements of the finite field F;» and the set

{0u{C:iell...(¢™ - DI
The map o, is given by,

Om :Fgm —
om(@)=C’,  a’ €Fym \{0}
0mn(0)=0

mxm
[F(I

where a is the primitive element of F;~. This map is denoted as o,
O Fgm —FZ7™.

In summary each symbol in F,;» can be represented by a unique m x m matrix.

Example 2.2: Consider the finite field Fg defined with the primitive polynomial

p(x) =x3 +x+ 1. The companion matrix of p(x) is,

101
010

001
- ]

It is then straightforward to map,

000
0— [ 000 ] and a'—C',i=[1,...,7]
000

where a is the primitive element of Fg.

It is now possible to give a construction of subfield image codes. Let G be the gener-

ator matrix of a linear code 6 with parameters [n,k,d];~ defined in the finite field
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Fgm. The matrix G can be defined as,

80,0 801 - 8o0n-1
81,0 811 0 8in-1
G=
gr-10 8k-11 ° 8k-1n-1

A generator matrix of the subfield image code using G and the map o, can be

formed. The subfield image code & has parameters [nm,mk,= d], and generator

matrix G,
’ Om (g0,0) Om (gO,l) 0 Om (gO,n—l) -
G 3 Om (gl,O) Om (gl,l) e Om (gl,n—l)
| Om (gk—l,O) Om (gk—1,1) t Om (gk—l,n—l)_

2.3.3.2 Subfield Subcode Construction

2.15 Definition (Subfield Subcode). A subfield subcode €|r, of a code € defined in
Fgm consists of all those codewords in € that have all their elements in the subfield
Fy.

It is possible to construct the parity check matrix of a subfield subcode from the
parity check matrix of the code ¢ defined in Fym. First the map 7, is defined. In
Section 2.1 it was shown that there is a one to one mapping between the elements of
Fym and the quotient ring F,[x])/p(x). Consequently there is also a one to one map-
ping between elements of F,;» and the vector space ' formed from the coefficients

of the elements in F,[x])/p(x). The map 7, is defined as,

. m
T - [qu _’I]:q

Tm(B) = (ao,a1,.. Om-1), pe Fgm, a; €y,

where T is the transpose operator, which maps elements of Fyn to Fy'. Suppose H

is the parity check matrix of the code € in Fym,

hoo ho1 -+ hon-
hio hi1 - higa
H=
hr—l,O hr—l,l Tt hr—l,n—l
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with redundancy r = n—k, then the parity check matrix of the subfield subcode €|,

is given (MacWilliams and Sloane, ), by,
Tm (Roo)  7m (Ro1) Tm (ho,n-1)
» Tm (hl 0) Tm (hl,l) Tm (hl n—l)
H=
Tm (hr—l,O) Tm (hr—l,l) o TTm (hr—l,n—l)

A subfield subcode has parameters [n,>n—-mr,=d],.
2.3.3.3 Trace Construction

2.16 Definition (Trace of an element). The trace of an element p € Fyn is defined as,

m—1 .
T.(B)=Y p.
i=0

Suppose € is a linear [n,k,d],» code defined in the finite field F,» with codewords
c=(co,...,cp—1) its corresponding trace code T, (¢) consists of all codewords of the

form,
(T (co), Tlc1),...,Tm(cn-1)) ceé.

The trace code T, (¥¢) has parameters [n,> k,< d], code. An interesting relation-

ship between subfield subcodes and trace codes was given by Delsarte ( ).

2.3 Theorem (Delsarte). The dual of a subfield subcode is the trace of the dual of the
original code € defined in Fym,

(€l5,)" = Tm((&))

2.3.4 Code Concatenation

A linear code ¢ with parameters [n1,k,d1]lgm» can be concatenated with a linear

code ¥y with parameters [ng,2Z,ds],r code provided that r divides m. %1 is called
r q
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the inner code while %5 is called the outer code. Let us define the map,

. EP*P pxn2
Yp:Fprt = 6
vp(M)=MG2 =N M€[Ffl’rxp
which describes multiplication of a p x p matrix M with the generator matrix Gg of

%2. The result of this multiplication is a p x ng matrix N with each row a codeword

of 6. Let p = . A concatenated code has generator matrix,

[ ¥p(0m(g00)  Wwplom(go1) - ¥p(om(gon-1)) ]
| volom(gro)  wplom(gi1)) - wplom(g1n-1))
G=

Vo (0m (8r-10)) ¥p(om(gh-11))  ¥p(om(gr-1,0-1))]

when G is the generator matrix of the code 47 defined as,

£0,0 o1 - 80n-1

81,0 811 - 8in-1
G =
8k-10 8k-11 " 8k-1n-1

The map o, is as previously defined. A concatenated code has parameters [nino,kp,=
didalgr.

2.4 Channel Models

In order for channels to be analysed, models are built that encapsulate the be-
haviour of the channel. An important channel model is the discrete memoryless
channel (DMC) in which transmitted symbols are corrupted independently of each
other. Given input alphabet A ={ag,a1,...,a4-1} and output alphabet B = {b¢,b1,...,b,-1}
for the DMC a set of gr conditional probabilities arise,

PB=0b;|A=a;)=P(y;lx;) i=0,....q-1 j=0,...,r-1

Any sequence of n symbols from the input alphabet A denoted as ug,...,u,-1 and
a corresponding sequence of output symbols vy,...,v,_1 form B, the DMC has joint

conditional probability ,

n
PB=vq,....B=v,11A=u1,...,A=u,_1)= HP(B:kaA:uk)
k=1
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0 Lop 0
p

A B
p

1 - 1

Fig. 2.1: Pictorial representation of the BSC

with the right hand side of the equation showing the memoryless nature of the
channel. A particular type of DMC is the binary symmetric channel (BSC). For the
BSC, g =r=2 and A =B ={0,1}. Figure 2.1 shows a pictorial representation of the
BSC with channel probability p. The AWGN channel is a discrete-time memoryless
channel with discrete input alphabet A = {ay,...,a4-1} and real output alphabet

B =(—00,00) where

B=A+X

b;=a;+x;

where X is Gaussian random variable with variance 02 and a zero mean (Proakis,

). Another important channel model is the erasure channel which is also mem-
oryless. The binary erasure channel (BEC) is a specific type of erasure channel. A
BEC is a binary input channel with the possibility of an erasure at the output. The
BEC is shown pictorially in Figure 2.2 with a channel probability p where ? denotes
an erasure. The nonbinary erasure channel is similar to the BEC except the input
and output symbols can take nonbinary values. The AWGN is an accurate commu-
nication link for satellite and communication channels where the noise contribution
is due to thermal or intergalactic noise while the erasure channel is used to model

packet based networks.

2.5 Computing Minimum Distances

Determining the minimum distance of a code is a difficult problem and has been
shown to be NP-complete (Vardy, ) for linear codes in arbitrary sized finite
fields. For moderate length codes one may use a brute force approach to find the
minimum distance. Depending on the rate of a code it is possible to either use the

parity check matrix H or the generator matrix G to compute the minimum distance

26



Chapter 2: Linear Codes

?B

Q1

1-p

Fig. 2.2: Pictorial representation of the BEC

using an exhaustive search. Using the generator matrix, an exhaustive search in-
volves encoding all ¢* codewords and selecting codeword/codewords with the least
minimum weight. For codes with relatively small dimensions (low rate) an exhaus-
tive search is feasible! using this method. For codes with a large dimension (high
rate) the number of computations increases for this method. To describe exhaustive

search using the parity check matrix of a code Theorem 2.4 is stated.

2.4 Theorem (From (MacWilliams and Sloane, )). A code with minimum
distance d has every combination of d — 1 or less columns of its parity check matrix

linearly independent.

The task of finding the minimum weight of a code then becomes checking all
Z?z_zl (%) columns of the parity check matrix H for linear independence. Once a set
of columns d linearly dependent columns are found the search is complete. However
even for lengths up to n < 256 using these brute force approaches can be impracti-
cal (especially if the rate % =~ 0.5) using a common personal computer. Probabilistic
methods can be used compute the minimum distance of a linear codes to a certain
probability of accuracy. Probabilistic methods typically truncate the minimum dis-
tance search after a chosen number of computations and hence cannot guarantee
that their output is indeed the true minimum distance of the code. These meth-
ods are far less time consuming and are especially useful in verifying the minimum
distance of constructed codes for which a proven lower bound is available. They
can also be used to obtain low weight codewords of the code, an attribute that can
be exploited to obtain a partial weight distribution of the code or to construct low
density parity check matrices. A probabilistic algorithm for computing the mini-

mum weight of a linear code was presented in (Canteaut and Chabaud, ). This

IFeasibility as used here means that an exhaustive search is possible in a reasonable amount of
time using a single computer.
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method is a modification of a probabilistic method by Stern (Stern, ). In this
section details of a probabilistic algorithm of computing minimum distance of linear
codes presented by Tomlinson et al. ( ) are given.

It can be deduced from Theorem 2.4 that the parity check matrix of a linear code
with minimum weight d has every possible s x s submatrix nonsingular provided
s <d. It is well known in linear algebra that the nonsingularity of a matrix formed
from the coefficients of a set of linear homogeneous equations guarantees that the
equations can be solved for unknowns. This observation forms the basis of the prob-

abilistic method of computing minimum distance using erasures.

2.5.1 Probabilistic Method of Finding Minimum Distance Using Erasures

If the minimum number of erasures that a code cannot correct is s then its min-
imum distance is s+ 1 and the erasure pattern that meets this criterion can be
solved to find the minimum weight codeword. Any set of erasures on transmitted
codewords can be corrected as long as the number erasures does not exceed the
erasure correcting capacity of the code and the coordinates of the erasures in the
erasure pattern correspond to the linearly independent columns of the parity check
matrix. The latter criterion is needed to ensure that the erasures can be solved
using a set of simultaneous equations and that there are no dependencies between
erasure components, leading to more unknowns than there are equations. This
means that coordinates of correctable erasure patterns are synonymous with the
linearly independent columns of the parity check matrix while coordinates of un-
correctable erasure patterns are synonymous with the linearly dependent columns
of a the parity matrix. Provided that the criterion for the erasure patterns corre-
sponding to the positions of the linearly independent columns parity matrix is met,
the simultaneous equations formed by multiplication with the codeword and the
parity matrix can be expressed in reduced Gaussian form . For z pattern of era-
sures occurring in the first z columns of the H matrix assumed here to be linearly
independent (although in practise can be in any order), then in reduced Gaussian

form

eo=hooxo+ho1x1 4+ +hon-z-1%n-2-1

e1=h1oxo+ho1x1 4+ +hon-z-1%n-2-1
(2.1)

e;—1=h1o0xo+ho1x1+----- +hon—z-1%n-2-1
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The rest of the n — k — z equations in which no erasures are present are

hz,OxO + hz,lxl Foereees + hz,n—z—lxn—z—l =0

hzv10%0+hzi11%1+00 00 +hoi1n-2-1%p—2-1=0

hpn-k-1,0%0+hp—p-1,1%1 +

+ hn—k—l,n—z—lxn—z—l =0

Code Field size, q¢ | Length, n | Dimension, 2 | Minimum distance d,,;, | Time, seconds | Trials
Hermitian 16 60 45 10 658 5926319
Hermitian 16 50 40 5 0 174
Hermitian 4 8 2 6 0 1

Klein 8 21 15 4 0 286

Table 2.3: Timings for different codes

From (2.1) it is possible to solve for each erasure. Now consider the case of the
lowest weight codeword with a weight equal to the minimum distance of the code
with erasures occurring in positions of the codeword where elements are non-zero,
this represents w erasures. It is well known that from the multiplication of code-
words with the transpose parity check matrix cH? =0 V ¢ € C every multiplication
cHT is a linear combination of the columns of H and multiplication with the least
weight codeword implies that there is a set of linearly dependent columns in H
such that the set size is minimal ? and is equal to the minimum distance. Therefore
the coordinates of the erasures of this lowest weight codeword correspond to the lin-
early dependent columns of the H matrix and this erasure pattern cannot be solved.
However for the same codeword there is an erasure pattern of w — 1 erasures which
now correspond to the linearly independent coordinates of H and can be solved. If
these w—1 erasures cannot be solved then it means that the coordinates correspond
to linearly dependent columns of H and a codeword of weight w —1 exists, which is a
contradiction. The steps to finding the minimum distance via the method proposed

by (Tomlinson et al., ) are

2The minimum distance of a code is equal to the least number of linear dependent columns of its
parity check matrix.
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Algorithm 2.1 Erasure method
Require: H

1: fori=1:sdo

2:  Choose n — k random columns of the H matrix

3: Find the rank r of an (n — k) x (n — k) submatrix formed from these columns
and the rows of H

4:  Store (r+1);

5: end for

s Set dpin = min{(r +1);Vi}.

(2}

Solving for the erasures is simple over GF(2) since the weight is already known
to be dyin =rmin + 1, the (r,;n + 1)th erasure can be assumed to be 1 and the rest
of the erasures can be solved by back substitution. For the non-binary case over
GF(2™) with m > 1, the (r,,;, + 1)th erasure can be assumed to take each value of
the finite field and for each element a codeword will be formed by back substitution
of the equations to form a set of ¢ — 1 codewords. The minimum codeword will be
the codeword with the minimum weight from this set. The method is well suited for
non-binary codes because it does not test linear dependence of the columns of the
parity check matrix but rather checks for the solvability of a pattern of erasures. In
fact apart from the increased complexity of non-binary symbol additions and multi-
plications, the method is quite similar to the case where it is used for binary codes of
the same length/redundancy. Another important factor that determines the speed
of the algorithm is the behaviour of the random generator used to select the the
columns of the H matrix which causes the speed of the algorithm to vary with each
search. Table 2.3 gives timings for different codes using this probabilistic method .
The search was carried out on a computer with a 1.86GHz central processing unit

(CPU) processor and 1.987GB of random access memory (RAM) memory.

2.6 Summary

A brief description of finite fields is given. Notions related to finite fields (subfields
and conjugacy classes) are also introduced. Berlekamp ( ) in his survey of key
papers in the 1974 attributed the first use of finite fields to E. Prange in an unpub-
lished work. Subsequent work by Zierler ( ) and Mattson and Solomon ( )
showed the effectiveness of the theory of finite fields when applied to error correct-
ing codes. The invention of linear codes is attributed to Hamming ( ) and since
his discovery researchers in coding theory strove to cosntruct codes with good er-
ror correcting capabilities. Aside from creating entirely new classes of good linear
codes, researchers have also focused on methods of producing good codes from exist-
ing ones. Some of these methods arose from the search for codes with the minimum

distance (construction X (Sloane et al., )) while others like concatenation (For-
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ney and Costello, ) were a result from the quest to meet Shannon’s asymptotic
bound. From simple modifications like shortening and puncturing to more advanced
constructions these methods are used today to construct better codes and improve

communication performance.
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3. RS, BCH AND GoPPA CODES

3.1 Introduction

Binary BCH were discovered by Bose and Chaudhuri ( ) and independently by
Hocquenhem ( ). RS codes were later discovered by Reed and Solomon ( ).
A year later Gorenstein and Zierler ( ) presented BCH codes with nonbinary
symbols. Both BCH and RS codes are ideal-based codes for which every codeword
polynomial must have among its roots a certain set of distinct defining elements of
a finite field. In general RS codes are considered as a subclass of BCH codes. This
view is justified as the defining roots of a BCH code always contain as a subset the
defining roots of an RS code. However BCH codes can also be seen as a subclass of
RS codes if one considers the fact that a BCH code consists of codewords of an RS
code with symbols restricted to a subfield. For a more streamlined categorisation
of these codes in relation to other algebraic codes it is better to take the latter
view. In which case it is possible to say that BCH codes are subfield subcodes of RS
codes.with symbols in the finite field [, denoted by F,[x].

3.1 Definition (Ideal, (Cox et al., )). A subset F of Fylx], & cF4lx]is an ideal

if the following conditions are satisfied,
1. 0¥
2. fx), g(x)€ S, then f(x)+g(x)e S

3. f(x)€ S and h(x) € Fylx], then h(x)f(x)€ ¥

An ideal can be completely defined by a basis of any / independent generator

polynomials
<g1(x),...,g1(x) > gilx)e s

Any polynomial in f(x) € .# can be expressed as the sum

!
fx)=) hi(x)gi(x)  hi(x)eFqlx]

=1
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A principal ideal in F,[x] is one defined with a basis with a single generator polyno-

mial g(x). In which case any polynomial f(x) € F,[x] is,
fx)=hx)glx)  h(x)elFqlx]. (3.1)

RS and BCH codes are principal ideals in the univariate ring F,[x]. Both RS and
BCH codes are cyclic codes in that a codeword polynomial results in another code-
word polynomial under multiplication by x? for some ¢. This property can be readily
deduced from the definition of an ideal. The choice of the single generator polyno-
mial g(x) for these codes is restricted by the BCH bound.

3.1 Theorem (BCH bound,(MacWilliams and Sloane, )). Any  polynomial
c(x) € Fylx] with & consecutive roots of the finite field [, such that,

b+1):“ b+5—1):0

c(a®) = c(a =cla

for some a € Fg, has at least 6 + 1 nonzero coefficients.

The BCH bound gives the minimum weight of any codeword c(x) of the BCH/RS
code. The generator polynomial g(x) for the BCH/RS code must have as a subset of
its defining roots a set of consecutive roots {a?,...,a®*%1} so that every codeword
has weight at least  + 1. RS codes have excellent distance properties and achieve
the Singleton bound!. An RS code with length n and dimension %2 has minimum
distance d =n —k + 1. Codes that meet this bound are called maximum distance
separable (MDS) codes. RS codes are by no means unique in this sense. A large
class of MDS obtainable from RS codes are called generalised Reed Solomon (GRS)

codes.

3.2 Definition (GRS). A GRS code is a code that has codewords of the form,
v-¢=(voco,v1€1,...,Un-1Cn-1)

where ¢ = (co,...,cp-1) is a codeword of an RS code with parameters [n,k,d], de-
fined in the finite field T, while the vector template v = (vo,...,v,—1) has no zero

element. GRS codes have parameters [n,k,d],.

The dual code of a GRS code is also a GRS code albeit defined with a different

template vector (MacWilliams and Sloane, ).

ISingleton boundisd sn -k +1
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3.3 Definition (Alternant Codes). An alternant code is a subfield subcode of a GRS
code. If the GRS code has parameters [n,k,n —k + 1],m, alternant code has param-

eters [n,2n-m(n-k),2n—-k+1],.

BCH codes are a subclass of alternant codes for which the template vector v =
(1,...,1). Another important subclass of alternant codes are Goppa codes. Goppa
( ) introduced this class of codes 10 years after the discovery of BCH codes.
Goppa codes were very competitive in terms of good properties and as a class include
far more codes than BCH codes. In fact MacWilliams and Sloane ( ) show that

narrow-sense primitive BCH codes (a subclass of BCH codes) are also a subclass of

Goppa codes.
; GRS :
. . ALT = Alternant Codes
: ‘|' : GOP = Goppa Codes
Parent field , . NR-BCH = Narrow-sense
. | . BCH codes
: RS )
: —— ;
' BCH '
Subfield * :
, ALT ;
. GOP '
' NR-BCH '

Fig. 3.1: Relationship between algebraic codes
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3.2 Reed Solomon Codes

A Reed Solomon code is principal ideal .# in the ring F,n[x] with each polynomial

c(x) € £ having distinct cyclically consecutive roots,

A={a®,... a0 Y a €Fym

The minimum distance of an RS code is determined by the BCH bound and is d =
0 + 1. By definition,

C(ab) T c(ab+5—1) — 0

Suppose the set B is defined as the set B = [F:;m \ A which contains all elements of the
finite field Fym except the roots in A and the zero element, it is possible to represent
the evaluation of the c(x) for which x takes all the values of the finite field [F;m in
the table below. Let £ = |B| = I[F:;m | — Al

c(ab_’“l) c(ab_l) c(ab) c(ab+6—1)

mp—1 0 0

If c(x) = co+c1x + -+ cp_12"" 1, these evaluations can be represented as a single

matrix multiplication,

[ gb-Rn-D) L (b-k)(n-2) a®® 1] co ] mo
q-k+D(n-1)  ,(b-k+1)n-2) a® k0 1| | ey m1

qo-D-1) a0~ D(n-2) a® D 1 lensg mp_1
=1 qbn—2) ab 1 Cr, 0
-a(b+6—1)(n—1) q(0+0-D(n-2) ab+o-D 1) [en-1] | O

The evaluations m;, i € [0,...,k — 1] can be any element from Fym (not necessarily
equal to zero) since they are non-roots. Isolating the lower part of the matrix equa-

tion for which evaluations are required to be zero i.e. evaluations at the roots of
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c(x),
€o
C1
ab(n—l) ab(n—Z) . ab 1 0
Cr-1| =
qB+-Dn-1  b+6-D(n-2) .. b+5-1) 1 ch 0
[Cn-1]
Recall that the parity check matrix is a matrix H such that,
cH =c¢TH=0
The parity check matrix of the RS code is then,
b1 b2 . ot 1
H=
qB+o-Dn=1)  HB+6-D)(n-2) ... b+6-1 1
which is a Vandermonde matrix.
3.3 BCH Codes
An RS code has a set of cyclically consecutive roots V = {ab,a®*t ... ab*971} with

cardinality 6. A subfield subcode of this RS code is a BCH code restricted to ;. A
BCH code consists of codewords of an RS code that have symbols only in F, and as a
consequence, in addition to the consecutive roots of the RS code the BCH code will
have additional roots that are co-members with the consecutive roots in their re-
spective conjugacy classes. Recall the definition of a conjugacy class from Definition

2.3. The set of roots of a BCH code are given by

R=JCp), (3.2)
peV

the codes have redundancy |R| and dimension 2 = n —|R|. Clearly V < R and the
minimum distance of BCH codes is at least |V|+1=r+1. Often R contains one or
more roots that are cyclically consecutive to the set of roots in V. If T < R denotes
this additional set of consecutive roots with 7' V then the minimum distance of

the BCH code is
d=|\V|+|T|+1
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from the BCH bound. As a result of restricting an RS to a subfield we obtain a
BCH code with a reduced dimension, the same length and often the same minimum

distance as the original RS code.

Example 3.1: Consider the RS code defined with the roots V = {a°, a’, a?} in Fs.
This code has parameters [15,12,4]16. The parity check matrix of the RS code is

given by,
1 1 1 1 1
H,,= |a!* a®? a® a 1
ald g1 ... gt a2 1

The conjugacy classes of [F1 over [g are
{a®}

2 4 8
{a,a”,a”, a”}

{aS,a6,a12,a9}

5 10
{a®, a7}

The set of the defining roots of the BCH code in Fy is R = {a°, a, a?, a*, a®} and has
three cyclically consecutive roots. The parity check of the BCH code is given by,

1 1 1 1 1

a* a® ... a?2 a 1

H,,;, = ald g1l oot o2 1
a? a7 .. a® at 1

a’ at a ab 1

The BCH code therefore has parameters [15,10,4]s. To obtain the best possible
dimension it is desirable that the BCH code defined by (11.19) to be narrow sense.

Narrow sense BCH codes have defining roots in Fyn

V= {a,az,...,a‘s_l}

Narrow sense BCH codes tend to have the cardinality |R| to be comparatively small
when |A| = r; is also small. A BCH code is said to be primitive if it has length
n=|Fgm|—1.
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3.4 Goppa Codes

Goppa ( , ) introduced a class of linear codes commonly referred to as
Goppa codes or I'(L,G) codes. Goppa codes meet the well known Gilbert-Varshamov
bound (see Section 4.2). I'(L,G) codes have good properties and some of these codes
have the best known minimum distance of any known codes with the same length
and rate. Goppa codes are also used extensively in cryptography in public key cryp-
tosystems. The codes are mainly defined in a finite field [, and are subfield subcodes
of generalised Reed Solomon codes defined in an extension field of F,.

A T(L,G) code is defined by a set L < Fym and a polynomial G(x) with coefficients
from Fym, where Fym is a finite extension of the field F,. The set L ={ay,az,...,a,-1}
with cardinality n contains all elements of F,~ that are not roots of the Goppa poly-
nomial G(x). A codeword (co,c1,...c,—1) with elements from [, is a word of a Goppa
code defined by the set L and the polynomial G(x) if it satisfies

X—a;

n-1 .
Y —% =0 mod Gx). (3.3)
1=0

If r is the degree of the polynomial G(x) € Fym[x] the parameters of the Goppa code

are:
length: n=|L|,
redundancy: n-—-k<mr,
distance: d=r+1.

From (MacWilliams and Sloane, ) we know that in the modulo ring F,n [x]/G(x),

(x — ;) has a inverse since it does not divide G(x).

G -G(ay)

X—a;

(x—-a;)t= G(a;) ! (3.4)

Substituting (3.4) in (3.3) we have,

n-1 .G(x)_G(ai)G(w)_l _0

Yo
1=0

l
X —a;

Let G(x) = Zgzogixi and g, #0 then

G(x)-G(a;
X—Qa;
gr_l(xr_2+xr_3ai+--.+alr.‘2)+...+ 55)
golx+a;)+
81
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r—2

Equating the coefficients of x” 1, x" 2, ...

&r
G(ao)
8r-1+tao8r
G(ao)

-1
gi1taogat+ag  gr

G(ao)

,1 to zero in (3.5) we have the matrix H,

8r
G(an-1)
8r-1tan_18r
G(an-1)

g1+an_182++al g,
G(an-1)

for which ¢ = (cg,...,cn-1) , cH" =0. The matrix H can be expanded such that,

- 1 1 1 1
8r 0 0 0 G(ap) G(a1) G(ap-1)
ao a1 An-1
gr-1 & O 0| |Gl Glan G(an-1)
ag af az
H=\|8-2 81 &r 0 |Gy Gan Glan1)
agt o a}
| 81 82 83 8r| |Gay Glap Glan-D |
The matrix ) ]
gr 0 0O --- 0
8r-1 8r 0 0
8r-2 8r-1 8r - 0
| 81 82 83 8r|

is invertible and need not be used, as a result the parity check matrix of a Goppa

code is given by

1 1 e 1
G(ap) Glar) G(an-1)

agp al An-1
G(ap) Glar) G(an-1)

2 2 2

% 1 e X1

H= GGy G C@n-1
| G(ao)  Gla1) Glan-1) |

Goppa codes are a large class and include the well known BCH codes as a sub-

class.

3.2 Theorem (From (MacWilliams and Sloane, ). A I'(L,G) defined with the
polynomial G(x) = x" and the set L = {F,m \ {0}} corresponds to a BCH code defined
in Fq with length n =q™ - 1.
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Separable Goppa codes are I'(L, ) defined by a square-free polynomial G(x), i.e.,
G(x) has distinct roots each having multiplicity exactly one. An irreducible Goppa
code is one which is defined by a Goppa polynomial which is irreducible over its
coefficient field [ m.

Goppa codes defined in F,» are GRS codes. The definition of generalised Reed
Solomon (GRS) codes is recalled from (MacWilliams and Sloane, ). A GRS code,
denoted by GRS (a,Vv), consists of all the vectors,

(v1F(a1),veF(ag),...,v F(ay))

where a = (a1, ag,...,a,) consists of distinct elements of F;», a template v = (v1,vo,...

consists of arbitrary elements from F,» none of which is zero and F'(x) is a polyno-
mial of degree at most £ — 1. Also from (MacWilliams and Sloane, ) it is shown
that Goppa codes defined by some G(x) of degree r and the set L = {a1,as,...,a,}
are sub-field sub-codes of GRS,,_,(a,v) with £ =n —r and,

G(a; .
vi:L, i=1,...,n. (3.6)
[[(ai—aj)
J#i
Again from (MacWilliams and Sloane, ) observe that dual code of a GRS (a,v)

code is also a GRS code of the form GRS,,_;(a, V) for some template ¥.

Binary Goppa Codes Binary Goppa codes are the most studied type of Goppa
codes. Some distance properties of binary Goppa codes are given. If a Goppa poly-
nomial G(x) has distinct non-repeated roots then the resulting binary Goppa code
has distance d = 2deg(G(x)) + 1. If a Goppa polynomial G(x) has repeated roots then
the minimum distance of the resulting binary Goppa code is d = deg(G(x))+ 1 where
G(x) is the smallest degree perfect square polynomial that is divisible by G(x). If a
Goppa polynomial G(x) = G1(x)G2(x) with G1(x) having distinct non-repeated roots
and Go(x) has repeated roots then the resulting binary Goppa code has minimum
distance d = 2deg(G1(x)) + deg(G2(x)) + 1 (MacWilliams and Sloane, , Ch. 12).

3.5 Summary

Three important classes of algebraic codes have been discussed. These codes are
perhaps the most studied codes in coding theory and the short introduction in this
chapter only aims to serve the purposes of subsequent chapters. In practice BCH
and RS codes have found extensive use in communication systems whereas Goppa
codes are used in cryptosystems. These codes still an active area of research espe-
cially with the introduction of list decoding by Guruswami and Sudan ( ) that
extended the error correction capability of RS and BCH codes. Chapter 4 introduces

algebraic geometry (AG) codes which are evaluations of multivariate functions on
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a curve in a 2-dimensional plane. A more detailed treatment of these codes can be
found in (Blahut, ; MacWilliams and Sloane, ; Shu and Costello, ).
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4. ALGEBRAIC GEOMETRY CODES

4,1 Introduction

In order to meet channel capacity, as Shannon postulated, long error correction
codes with large minimum distances need to be found. A large effort in research
has been dedicated to finding algebraic codes with good properties and efficient
decoding algorithms. Reed Solomon (RS) codes are a product of this research and
have over the years found numerous applications, the most noteworthy being their
implementation in satellite systems and compact discs. These codes are defined
with non-binary alphabets and have the maximum achievable minimum distance
for codes of their lengths. A generalisation of RS codes was introduced by Goppa
using a unique construction of codes from algebraic curves. This development led
to active research in that area so that currently the complexity of encoding and
decoding these codes has been reduced greatly from when they were first presented.
These codes are AG codes and have much greater lengths than RS codes with the
same alphabets. Furthermore these codes can be improved if curves with desirable
properties can be found. AG codes have good properties and some families of these
codes have been shown to be asymptotically superior as they exceed the well-known
Gilbert-Varshamov bound (Tsfasman et al., ) when the defining finite field [,

has size g =49 with g always a square.

4.2 Bounds Relevant to Algebraic Geometry Codes

Bounds on the performance of codes that are relevant to AG codes are presented in
order to show the performance of these codes. Let A,(n,d) represent the number
of codewords in the code space of a code ¢ with length n, minimum distance d and
defined over a field of size q. Let the information rate be R = k/n and the relative

minimum distance be 6 =d/n for 0 <6 <1 then

1
aq(6) = T}H& - log(A4(n,6n))
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Fig. 4.1: Tsfasman Viadut Zink and Gilbert Varshamov Bound for ¢ =32

which represents the £/n such that there exists a code over a field of size q that has

d/n converging to 6 (Walker, ). The g-ary entropy function is given by

0, x=0
Hy(x)=
xlog,(g —1)—xlog,x—(1-x)log,(1-x), O0<x<6

The asymptotic Gilbert-Varshamov lower bound on «a4(5) is given by,
aq(6)=21-Hy(6) for0<6<06

The Tsfasman Vladut Zink bound is a lower bound on a4(6) and holds true for

certain families of AG codes, it is given by

1
qu(6)2 1-6- ﬁ where \/aEN/O

The supremacy of AG codes lies in the fact that the TVZ bound ensures that these
codes have better performance when ¢ is a perfect square and g = 49. The Figures

4.1 to 4.3 show the R vs 4 plot of these bounds for some range of q.

4.3 Motivation for Studying AG Codes

Aside from their proven superior asymptotic performance when the field size ¢2 >

49, AG codes defined in much smaller fields have very good parameters. A closer
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look at tables of best known codes in (Grassl, ) and (Schimd and Shurer, )
shows that algebraic geometry codes feature as the best known linear codes for
an appreciable range of code lengths for different field sizes ¢q. To demonstrate a
comparison the parameters of AG codes with shortened BCH codes in fields with
small sizes and characteristic 2 is given. AG codes of length n, dimension & have
minimum distance d = n—k —g+1 where g is called the genus . Notice that n—k&+1
is the distance of a maximum distance (MDS) separable code. The genus g is then
the Singleton defect s of an AG code. The Singleton defect is simply the difference
between the distance of a code and the distance some hypothetical MDS code of
the same length and dimension. Similarly a BCH code is a code with length n,
dimension £ and distance d = n—k—s+1 where s is the Singleton defect and number
of non-consecutive roots of the BCH code. Consider Table 4.1 which compares the
parameters of AG codes from three curves with genera 3, 7 and 14 with shortened
BCH codes with similar code rates. At high rates, BCH codes tend to have better
minimum distances or smaller Singleton defects. This is because the roots of the
BCH code with high rates are usually cyclically consecutive thus contribute to the
minimum distance. For rates close to half AG codes are better than BCH codes
since the number of non-consecutive roots of the BCH code is increased as a result
of conjugacy classes. The AG codes benefit from the fact that their Singleton defect
or genus remains fixed for all rates. As a consequence AG codes significantly out-
perform BCH codes at lower rates. However the genera of curves with many points
in small finite fields are usually large and as the length of the AG codes increases
in Fg, the BCH codes beat AG codes in performance. Tables 4.2 and 4.3 show the
comparison between AG and BCH codes in fields F14 and F39 respectively. With
larger field sizes, curves with many points and small genera can be used and AG
codes do much better than BCH codes. It is worth noting that Tables 4.1-4.3 show

codes in fields with size less than 49.

Rate | AG code in Fy3 | Number of points | Genus || Shortened BCH code in Fgs | BCH code in Fy3
0.2500 [23,5,16] 24 3 [23,5,12] [63,45,12]
0.3333 [28,7,14] 24 3 [23,7,11] [63,47,11]
0.5000 [23,11,10] 24 3 [23,10,8] [63,50,8]
0.6667 [23,15,6] 24 3 [23,14,6] [63,54,6]
0.7500 [23,17,4] 24 3 [23,16,5] [63,56,5]
0.8500 [23,19,2] 24 3 [23,18,4] [63,58,4]
0.2500 [33,8,19] 34 7 [33,7,16] [63,37,16]
0.3333 [33,11,16] 34 7 [33,11,14] [63,41,14]
0.5000 [33,16,11] 34 7 [33,15,12] [63,45,12]
0.6667 [33,22,5] 34 7 [33,22,7] [63,52,7]
0.7500 [33,24,3] 34 7 [33,24,6] [63,54,6]
0.2500 [64,16,35] 65 14 [64,16,37] [63,15,37]
0.3333 [64,21,30] 65 14 [64,20,31] [63,19,31]
0.5000 [64,32,19] 65 14 [64,31,22] [63,30,22]
0.6667 [64,42,9] 65 14 [64,42,14] [63,41,14]
0.7500 [64,48,3] 65 14 [64,48,11] [63,47,11]

Table 4.1: Comparison between BCH and AG codes in [Fg
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Rate | AG code in Fg4 | Number of points | Genus || Shortened BCH code in Fgs | BCH code in Fy4
0.2500 [23,5,18] 24 1 [23,4,11] [255,236,11]
0.3333 [23,7,16] 24 1 [23,6,10] [255,238,10]
0.5000 [23,11,12] 24 1 [23,10,8] [255,242,8]
0.6667 [28,15,8] 24 1 [28,14,6] [255,246,6]
0.7500 [23,17,6] 24 1 [23,16,5] [255,248,5]
0.8500 [23,19,4] 24 1 [23,18,4] [255,250,4]
0.2500 [64,16,43] 65 6 [64,16,27] [255,207,27]
0.3333 [64,21,38] 65 6 [64,20,25] [255,211,25]
0.5000 [64,32,27] 65 6 [64,32,19] [255,223,19]
0.6667 [64,42,17] 65 6 [64,41,13] [255,232,13]
0.7500 [64,48,11] 65 6 [64,47,10] [255,238,10]
0.8500 [64,54,5] 65 6 [64,53,7] [255,244,7]
0.2500 | [126,31,76] 127 20 [126,30,57] [255,159,57]
0.3333 | [126,42,65] 127 20 [126,41,48] [255,170,48]
0.5000 | [126,63,44] 127 20 [126,63,37] [255,192,37]
0.6667 | [126,84,23] 127 20 [126,84,24] [255,213,24]
0.7500 | [126,94,13] 127 20 [126,94,19] [255,223,19]

Table 4.2: Comparison between BCH and AG codes in Fig

4.4 Curves and Planes

In this section the notion of curves and planes is introduced. Definitions and dis-
cussions are restricted to two-dimensional planes and all polynomials are assumed
to be defined with coefficients in the finite field F,. The section draws from the fol-
; Van-Lint, ; Walker, ).A

lowing sources (Blake et al., ; Massimo,

two dimensional affine plane denoted by Az([Fq) is a set of points
A*(Fg)={(a,p): a,f e Fy)

which has cardinality g2. Let f(x, y) be a polynomial in the bivariate ring Fqlx,y].

4.1 Definition (Curve). A curve is the set of points for which the polynomial f(x,y)
vanishes to zero. Mathematically, a curve & is associated with a polynomial f(x,y)

so that f(P)={0|P e X'}.

A curve & is called an affine curve if Z A2([Fq). A two dimensional projective
plane P2([Fq) is the algebraic closure of A2 and is defined as the set of equivalence
points,

PAF)={(a:B:1): a,feFu{(a:1:0): aeF,} U{(1:0:0)}.

A curve ¥ is said to lie in the projective plane if & < [P’z([Fq). The affine polyno-

mial f(x,y) is in two variables, in order to define a projective polynomial in three
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Rate | AG code in Fy4 | Number of points | Genus || Shortened BCH code in Fos | BCH code in Fys
0.2500 [43,10,33] 44 1 [43,10,18] [1023,990,18]
0.3333 [43,14,29] 44 1 [43,14,16] [1023,994,16]
0.5000 [43,21,22] 44 1 [43,20,13] [1023,1000,13]
0.6667 [43,28,15] 44 1 [43,28,9] [1023,1008,9]
0.7500 [43,32,11] 44 1 [43,32,7] [1023,1012,7]
0.8500 [43,36,7] 44 1 [43,36,5] [1023,1016,5]
0.2500 [75,18,53] 76 5 [75,18,30] [1023,966,30]
0.3333 [75,25,46] 76 5 [75,24,27] [1023,972,27]
0.5000 [75,37,34] 76 5 [75,36,211] [1023,984,21]
0.6667 [75,50,21] 76 5 [75,50,14] [1023,998,14]
0.7500 [75,56,15] 76 5 [75,56,11] [1023,1004,11]
0.8500 [75,63,8] 76 5 [75,62,8] [1023,1010,8]
0.2500 | [103,25,70] 104 9 [103,25,42] [1023,945,42]
0.3333 | [103,34,61] 104 9 [103,33,38] [1023,953,38]
0.5000 | [103,51,44] 104 9 [103,50,28] [1023,970,28]
0.6667 | [103,68,27] 104 9 [103,68,19] [1023,988,19]
0.7500 | [103,77,18] 104 9 [103,76,15] [1023,996,15]
0.8500 [103,87,8] 104 9 [103,86,10] [1023,1006,10]

Table 4.3: Comparison between BCH and AG codes in F3o

variables homogenisation is used,

f(JC,y,Z)=2df(f,z) d = Degree of f(x,y)
2’z

which turns f(x,y) into a homogeneous! polynomial in three variables. The points

in the projective plane are called equivalence points since for any point P € IPZ([Fq),
if f(x0,¥0,20) =0 then f(axy,ayg,azy) =0 ae [F:;, P =(xp:y0:20)

because f(x,y,z) is homogeneous. The colons in the notation of a projective point
(x:y:2z) represents this equivalence property. The affine space Az([Fq) is a subset of

I]3’2([Fq) and is given by,
A%F)={(a:B:1): a,feF,} cPAF,).
A projective curve can then be defined as a set of points,
% ={P:f(P)=0,P e P*(F,)}.

A point on a projective curve & that coincides with any of the points of P2([Fq) of the
form,
{(@:1:0): aefFgtu{(1:0:0)}

i.e. points (xg : yo : 29) for which zy = 0 is called a point at infinity. A third plane
called the bicyclic plane (Blahut, ) is a subset of the A2([Fq) and consists of

IBach term in the polynomial has degree equal to d.
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points,
{(a,p): a,pelFy \{O}}.

This plane was defined so as to adapt the Fourier transform to AG codes since the
inverse Fourier transform is undefined for zero coordinates. A curve associated with
a polynomial f(x,y,z) that cannot be reduced or factorised is called irreducible. A
point on a curve is singular if its evaluation on all partial derivatives of the defining
polynomial with respect to each indeterminate is zero. Suppose f;, fy and f, denote
partial derivatives of f(x,y,z) with respect to x, y and z respectively. A point P € &

is singular if,
fx(P)=fy(P)=f.(P)=0.

A curve & is nonsingular or smooth does not contain any singular points. To obtain
AG codes it is required that the defining curve is both irreducible and smooth. The
genus of a curve can be seen as a measure of how many bends a curve has on its
plane. The genus of a smooth curve defined by f(x,y,z) is given by the Pliicker

formula,

_(d-1)d-2)

7 d = Degree of f(x,y,2)

The genus plays an important role in determining the quality of AG codes. It is

desirable for curves that define AG codes to have small genera.

Example 4.1: Consider the Hermitian curve in F4 defined as,

flx,y)=x3+y?+y affine
flx,y,2)= 3+ y2z + y22 projective
It is straightforward to verify that the curve is irreducible. The curve has the fol-
lowing projective points,
(0:0:1)  (0:1:1) (a:a:1) (a:a%:1)
(@®:a:1) (@®:a%2:1) (1:a:1) (1:a?:1) (0:1:0)

Notice the curve has a single point at infinity P,, =(0:1:0). One can easily check

that the curve has no singular points and is thus smooth.

4.5 Important Theorems and Concepts

The length of an AG code is equal to the number of points on the defining curve.

Since it is desirable to obtain codes that are as long as possible, it is desirable to
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know what the maximum number of points attainable from a curve given a genus

is.

4.1 Theorem (Hasse Weil with Serre’s Improvement (Blake et al., )). The
Hasse Weil theorem with Serre’s improvement says that the number of rational

points? of an irreducible curve, n, with genus g in Fq is upper bounded by,

n<qg+1+gl2/4ql.

Curves that meet this bound are called maximal curves. The Hermitian curves
are examples of maximal curves. Bezout’s theorem is an important theorem and is
used to determine the minimum distance of algebraic geometry codes. It describes

the size of the set which is the intersection of two curves in the projective plane.

4.2 Theorem (Bezout’s Theorem (Blake et al., )). Any two curves ¥, and Xy
with degrees of their associated polynomials as m and n respectively, have at most

mn common roots in the projective plane counted with multiplicity.

4.2 Definition (Divisor). A divisor on a curve & is a formal sum associated with the

points of the curve.

D = Z npP
Pex

where n, =0 are integers.

A zero divisor is one that has n, =0 for all P € . A divisor is called effective if
it is not a zero divisor. The support of a divisor is a subset of & for which n, # 0.

The degree of a divisor is given as,

deg(D)= Z n, deg(P)
Pex
For simplicity it is assumed that the degree of points P € & i.e. deg(P)is 1 (points of
higher degree are discussed in Chapter 7). Addition of two divisors D1 =} pcg np,P
and Dg =) peg 1, P is so defined,

Di1+Dy= Y (n,+1,)P.
Pex

2A rational point is a point of degree one. See Chapter 7 for the definition of the degree of point
on a curve.
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Divisors are simply book keeping structures that store information on points of a

curve. Below is an example the intersection divisor of two curves.

Example 4.2: Consider the Hermitian curve in F4 defined as,
filx,y,2) =23+ y2z + y22
and the curve defined by
folx,y,2) =x

with points
(0:0:1) (0:1:1) (0:a:1) (0:a%:1) (0:1:0)
These two curves intersect at points all with multiplicity 1,
(0:0:1) (0:1:0) (0:1:1).

Alternatively, this may be represented using a divisor D,
D=(0:0:1)+(0:1:00+(0:1:1)

with n, the multiplicity, equal to 1 for all the points. Notice that the two curves
meet at exactly deg(f1)deg(f2) = 3 points in agreement with Bezout’s theorem.

For rational functions with denominators, points in divisor with n, < 0 are poles.
For example D = P; — 2P5 will denote an intersection divisor of two curves that
have one zero P and pole Py with multiplicity two in common. Below is the formal

definition of the field of fractions of a curve & '.

4.3 Definition (Field of fractions). The field of fractions F4(Z) of a curve & defined

by a polynomial f(x,y,z) contains all rational functions of the form

g(x,y,2)
h(x,y,2)

with the restriction that g(x,y,z) and h(x,y,z) are homogeneous polynomials, have

the same degree and are not divisible by f(x,y,z).

Elements of a subset (Riemann-Roch space) of the field of fractions of & meet-
ing certain conditions are evaluated at points of the curve & to form codewords
of an AG code. Thus there is a one-to-one mapping between rational functions in
this subset and codewords of an AG code. The Riemann-Roch theorem defines this
subset and gives a lower bound on the dimension of AG codes. The definition of a

Riemann-Roch space is given.
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4.4 Definition (Riemann Roch Space). The Riemann Roch space associated with a

divisor D is given by,
LD)={teF (X)I(t)+D =0}u0

where Fy(X) is the field of fractions and (¢) is the intersection divisor® of the ratio-

nal function t and the curve & .

Essentially the Riemann-Roch space associated with a divisor D is a set of func-
tions ¢ from [, (%) such that (¢) + D has no poles. The rational functions in L(D) are
functions from the field of fractions [ (%) that must have poles only in the zeros
(positive terms) contained in the divisor D, each pole occurring with at most the
multiplicity defined in the divisor D and most have zeros only in the poles (negative
terms) contained in the divisor D, each zero occurring with at most the multiplicity
defined in the divisor D .

4.3 Theorem (Riemann Roch Theorem (Blake et al., ). Let & be a curve
with genus g and D any divisor with degree (D) > 2g — 2, then the dimension of
the Riemann Roch space associated with D, denoted by (D) is,

l[(D)=degree(D)—g+1

Algebraic geometry codes are the image of an evaluation map of a Riemann Roch

space associated with a divisor D so that
L(D)— Ty,

t — (£(P1),¢(P2),...,t(Py))

where & = {P1,Ps,...,P,,P,} is a smooth irreducible projective curve of genus g
defined over ;. The divisor D must have no points in common with a divisor T'
associated with & i.e. it has support disjoint from 7'. For example if the divisor 7'
is of the form

T=Pi+Py+---+P,

then D = mP,. Codes defined by the divisors T' and D = mP, are called one point
AG codes (since the divisor D has a support containing only one point) and AG
codes are predominantly defined as so since the parameters of such codes are easily
determined (Lachaud et al., ).

3 An intersection divisor is a divisor that contains information on the points of intersection of two
curves.
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4.6 Construction of AG Codes

The following steps are necessary in order to construct a generator matrix of an AG

code,
1. Find the points of a smooth irreducible curve and its genus.

2. Choose divisors D and T'= Py +---+ P,,. From the Riemann-Roch theorem
determine the dimension of the Riemann-Roch space L(D) associated with
divisor D. This dimension /(D) is the dimension of the AG code.

3. Find £ =I(D) linearly independent rational functions from L(D). These form
the basis functions of L(D).

4. Evaluate all & basis functions on the points in the support of T to form the %

rows of a generator matrix of the AG code.

Example 4.3: Consider again the Hermitian curve defined in F4 as,
f(x,y,2)=x" +y%z +yz”

1. In Example 4.1 this curve was shown to have 8 affine points and one point at

infinity. The genus of this curve is given by the Pliicker formula,

_(r=1)(r-2)
= =

1

where r = 3 is the degree of f(x,y, 2).

2. Let D =5P,, where P,, =(0: 1: 0) and T be the sum of all 8 affine points. The

dimension of the Riemann-Roch space is then given by,
I(BPy)=5-1+1=5

thus the AG code has dimension £ = 5.

3. The basis functions for the space L(5P,) are

2

X
{tl?-'-,tk}:{l, » 9 T }
V4 V4

[N IR
(NS
|§<
|

By examining the basis it is clear that £; = 1 has no poles thus (¢1) +D has no
poles also. Basis functions with denominator z have (¢;) =S — P, where S is
a divisor of the numerator. Thus (¢;) + D has no poles. Basis functions with
denominator z2 have (¢ j) =8 —2P,, where S is a divisor of the numerator.

Thus (¢;) + D also has no poles.
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4. The generator matrix of the Hermitian code defined with divisor D = 5P, is

thus,
(£1(P) - 11(P)
G =

tp(P1) - tp(Py)
(1 0000 a2 a® 1]
01000 aa a O

=001 00 a 1 a
00010 a 0 a?
0 0001 1 1

4.4 Theorem (From (Blake et al., )). The minimum distance of an AG code is

given by,

d=>n-degree(D)

Thus the Hermitian code defined by D = 5P, is a [8,5,3]4 code. The dual of an AG
code has parameters (Hoholdt et al., ),

Dimension, k' =n — degree(D)+g-1

Distance, d* = degree(D)—2g +2

4.6.1 Affine Hermitian and Reed Solomon Codes

In (Justesen et al., ) a description of AG codes on the affine plane was given
and the construction of these codes does not require deep knowledge of algebraic ge-
ometry or use of divisors. Let V; be a vector space of all homogeneous polynomials
of degree at most J with J < ¢ in a finite field F,. Let the affine points of a nonsin-
gular irreducible curve be the set & = {P1,Pg,...,P,} with n points. A Hermitian

code G(J) is given as the result of the evaluation,

G(J) = {(f (P1), f(P2), f(P3).....f P )If €V}
H(J)=G(J)*

A polynomial basis of Vs is given as the first £ monomials,

%'y i=0,j=0. (4.1)
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If the first £ monomials in (4.1) are given as {f1(x,y), fo(x,y),..., fr(x,y)} the gener-
ator matrix for the code G(J) is given by,

[f1(P1) fi(Py) ... fi(Pp)]

fa(P1) fa(P2) ... fa(Py)
G= . . . . 4.2)

[e(P1) [e(P2) ... [r(Pn))

The dimension % of the code is not arbitrary and is determined by the Riemann
Roch theorem,
k=md—-g+1

for a curve of degree m and genus g. For each basis in (4.1), linear dependence

between the rows of G is avoided by a careful choice of the monomials. For example

the Hermitian code defined by x™ + y™ 1 + y = 0 will have three rows of G corre-
m ,,m—1

sponding monomials to x™,y and y linearly dependent. To avoid this the degree

of x is restricted so that the monomial basis of the Hermitian code becomes,

'y 0<i<m,j=0. (4.3)

Additionally, the monomials are ordered using a graded lexicographic ordering
(see Section 5.2.1) so that they are of the form,

2 2.3 .2 2 .3
1?x,y7x 2y XY, Y X X Y, XY Y 5

The designed minimum distance of the code of length n is determined by Bezout’s
theorem and is given by
d=n—-—md

The dual code has the matrix in (4.2) as a parity check matrix. The dimension of Vy
for these codes is,
Et=n—-(mJd-g+1)

and minimum distance,
dt=md - 2 +2

The important parameter </ is only defined in the range,
-1
m—ZSJS{Z—ﬂ (4.4)

Consider the code defined by the Hermitian curve in F4. The finite field is defined

with the primitive polynomial ¢ = ¢ + 1 and primitive element a. The Hermitian
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curve is given as,
m m-1

x"+y" T+y=0

3
2

where m = ,/q +1 =3. The curve has n = g2 = 8 affine points,

0,00 (0,1) () (a,a?)
(@, (a?,a® Q,a) (1,02

The curve has genus g = 1/2(m —1)(m —2) =1 and from (4.4), 1<J <2. If J =2

according to (4.3) the first £k = m<J — g + 1 = 6 monomials form a basis,

1,x,y,%%xy,y”
The generator matrix for G(<J) is

(111 1 1 1 1 1
00 1 1 a a a® a?
01 a a2 a a?2 a a?

G =

00 1 a2 a2 a «a
00 a a2 a2 1 1 a«a

| 0 1 a2 a a2 a a? «a J

The code has minimum distance d,,;, = 2 and the dual code H(J) has H = G with
dmin = 6. Reed Solomon codes can be represented using a similar construction.
Using the polynomial

x+y=0

the curve associated with it & = {(0,0),(1,1),(a, a),(a?, a?),...,(a?72, a?72)} is simply
a diagonal line with g points in F, and a zero genus. Choosing any < in the range
0<dJ <q—2sothat,

k=q—(J+1)
and
d=J+2
A monomial basis of the form,
1,x,y,2%,x5,5%,...

with monomials with degree at most / can also be chosen. Polynomials with the
indeterminate x as their evaluation will cause linear dependency on the rows of H
(since x = y for all points of the curve) and are therefore neglected. The new basis
is,

2 3 J
Ly,y%y", ...,y
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The H matrix can then be the evaluation of these monomials with the points of
the line. The resulting code H(J) is a singly extended RS code with parameters
(q7q_J_1,J+2)

4.7 Summary

Algebraic geometry codes are codes obtained from curves. First the motivation for
studying these codes is given. From an asymptotic point of view some families
of AG codes have superior performance to the previous best known bound on the
performance of linear codes, the Gilbert-Varshamov bound. For codes of moderate
length AG codes have better minimum distances than their main competitors, non-
binary BCH codes with the same rate and length defined in the same finite fields.
Theorems and definitions as a precursor to AG codes are given. Key theorems are
Bezout’s and Riemann-Roch. Examples using the well known Hermitian code in a
finite field of cardinality 4 are then provided. Finally a simplified affine descrip-
tion of Hermitian and Reed Solomon codes is presented. This chapter introduces

concepts on AG codes that will be used in subsequent chapters.
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5. DECODING ALGEBRAIC CODES

5.1 Introduction

In this chapter decoding of algebraic codes for two common channels; the AWGN
channel and the erasure channel is considered. The BMSA (Sakata, ) decoder
for AG codes for hard decision decoding and the BMA (Berlekamp, ) for the
hard decision decoding of RS codes in the AWGN channel are introduced and imple-
mented. The ordered reliability (Fossorier and Lin, ) decoder for soft decision
decoding of linear block codes in the AWGN channel is also presented. An erasure
correction algorithm, the in-place algorithm (Cai et al., ), for the erasure chan-
nel is also given. This chapter presents results on the performance comparison of
AG codes to BCH codes in the erasure and AWGN channels using the standard

decoding algorithms for these codes.

5.2 Bounded Distance Decoding

Algebraic geometry codes were discovered as a consequence of the search for gen-
eralizations of BCH, Reed Solomon and other algebraic codes. As a result research
has focused on implementing already known decoding algorithms for Reed Solomon
and BCH codes developed by Peterson, and then Berlekamp and Massey on AG
codes. RS and BCH codes could correct errors with various algorithms up to their
bounded error correction limit of (d — 1)/2 with polynomial complexity. Success in
decoding AG codes up to the bounded distance was limited until the introduction
of majority voting of missing syndromes by Feng and Rao (Feng and Rao, ).
Subsequent decoding procedures built on this notion to extend the correction capa-
bility of the codes. Table 5.1 gives the chronological milestones in the decoding of
AG codes up to the designed minimum distance.

Two algorithms have since taken the fore on decoding of AG codes namely, the
Feng and Rao algorithm which uses linear algebra only to decode AG codes and
the Sakata Berlekamp Massey algorithm which is an extension of the Berlekamp
Massey algorithm to 2 dimensions. The two algorithms have since been modified
so that they both have the same complexity of O(n3 2("*D) when the codes are

constructed in an m-dimensional affine space (Blahut, )(Feng and Rao, ).
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Year Author Correction | Decoding Algorithm

1989 Justesen et al (d—-g-1)2 | Peterson’s Decoding (First
attempt)

1989 Pellikan d-1)2 Algebraic Geometry (Com-

plex and inefficient)

1990 | Skorobogatov and Vladut | (d —-g—1)/2

1991 Feng and Rao (d-1)2 Peterson’s (Introduced ma-
jority voting)

1992 Justesen et al (d —g/2—-1)/2 | Peterson’s decoding

1993 Ehrhad (d-1)/2 Sugiyama’s decoding (Only
when d > 6g)

1995 Sakata and Jensen (d-1)2 BM decoding (majority vot-
ing)

Table 5.1: Developments in decoding AG codes

5.2.1 Berlekamp Massey Sakata Algorithm

The BMSA (Blahut, ; Sakata, , ; Sakata et al., ) is an extension
of the well known Berlekamp Massey Algorithm to codes of multiple dimensions.
AG codes are two dimensional codes and the BMSA can be used to correct up to
t = % errors. Whereas the Berlekamp Massey algorithm finds the error locator
polynomial of a corrupted codeword, the BMSA finds a set of polynomials whose
common roots are locations of errors in the corrupted AG codeword. These sets of
polynomials are not unique and form the generators of a locator ideal for those er-
rors. These polynomials are only unique for a certain syndrome when represented

as a reduced Groebner basis i.e. reduced gaussian form in two dimensions.

5.2.1.1 Preliminaries

Firstly some terms used in the algorithm are defined. Discussions are restricted to

the two dimensional plane.

Ideal : Recall the definition of an ideal from Definition 3.1. An ideal is proper
if it is not zero or Flx, y] and it is principal if there one of its elements which

every other one is a multiple of.

Generator : A generator of a principal ideal is a member of that ideal which
every other member is a multiple of. A generator set of an ideal is a set of
polynomials which are members of that ideal that generate all the members
of the ideal.

Monomial Order: A monomial order is the ordering of monomials in poly-
nomials. An ordering is called total if there is no ambiguity in the ordering.
An ordering on monomials is called partial if ambiguities exists on the or-

der. The bidegree of a bivariate monomial is the degree of its indeterminates.
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An example of a partial order is the division order. In a division order in a
monomial m1(x,y) precedes another mqo(x,y) in the order if m(x,y) divides
mo(x,y) without a remainder. Formally, for a division order on monomials
(denoted by <p) with bidegrees (i1,/1) and (i9,j2) , (i1,/1) is said to be less
than (ig,j2) in the ordering if i1 < i2 and j; < jg. Clearly this is a partial
order since there are instances when the orders of monomials cannot be re-
solved. An example of a total order, denoted by <7 is the graded lexicographic
ordering in which the monomials are first ordered by the sum of their de-
grees and then by the order of their indeterminates in the list of alphabets.
For example the graded lexicographic order in the ring of polynomials F[x, y]
is (0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1).... The degree of a bivariate
polynomial is the bidegree of its monomial(called the leading monomial with
the largest degree in a total order. Consequently polynomials can be sorted in

a total order by comparing the bidegrees of their leading monomials.

Footprint of an ideal: The footprint or Delta-set of an ideal is set of all
bivariate polynomial degrees whose polynomials will divide any member of
the ideal without remainders. Alternatively, the footprint of an ideal is a set
of all bidegrees that are less in the division order (<p) than any polynomial

member of the ideal.

Minimal Basis: A minimal basis is a generator set of an ideal that consists of
only monic polynomials (polynomials whose leading coefficient is 1) and whose

footprint is the footprint of the ideal.

The BMSA accepts the two dimensional syndrome S, ) of an AG code and finds
the polynomials whose roots are error locations. The graded lexicographic ordering
is used to order the elements of the syndrome array and the locator polynomials.
The algorithm proceeds by processing the syndrome array element by element and
at each stage the locator polynomials are checked if they meet the recursive rela-
tionship at that point of the syndrome array. The recursive relationship is given
by,

Si )
2 FSiiosy=0 foralli (5.1)
k

where S is the syndrome array at a point of bidegree 7 and F' is the ith polyno-
mial with bidegree §;. The set F = {FO, F1,...,F'} consists of polynomials that have
satisfied (5.1) at a previous stage in the algorithm. A nonzero value for (5.1) by
a polynomial in F is called a discrepancy and polynomials that produce this dis-
crepancy are updated. Not all polynomials are tested by (5.1), since the recursion

holds valid only when 7 — 5; = 0 polynomials that do not meet this criterion are not

63



Chapter 5. Decoding Algebraic Codes

tested and are not updated. An important property of each polynomial in the set F

is called the span of the polynomial so that,
span(Fi) =r-35j.

The footprint, Ay, is calculated at each stage based on the bidegrees of the polynomi-
als in F. The footprint consists of all bidegrees less than any of the bidegrees of the
polynomials in F in the partial order <p. Another important set is the set of inte-
rior polynomials denoted by G = {G°,G1,...,G'~1} which contains polynomials that
were previously in F at some stage in the algorithm with a nonzero discrepancy and
whose spans at that stage correspond to the largest bidegrees in the footprint at the
present stage. The set G is used to update polynomials with a nonzero disrepancy
in F.

5.2.1.2 Description

The decoding algorithm is described here for Hermitian codes. The Hermitian curve
is defined as ,

m m-1

A" +y" T +y=0 (5.2)

with m = ¢ + 1 in field F 2. The curve is maximal and meets the Hasse-Weil upper
bound on the number of points. The algorithm is divided into two parts; deter-
mining the values of unknown syndromes and updating minimal polynomials. The
syndrome is computed as the two dimensional Fourier transform (FT) of the re-
ceived sequence, however the symbols are first placed on the points that lie on the
curve in the plane prior to the FT. This definition for the syndrome holds true for

Blahut’s presentation of the Hermitian code and the dual code defined by Justesen

(Justesen et al., ). For a received vector r of length n, the FT is defined as,
n
Sap =Y rixty? (5.3)
i=0

Since the defining set for the codes is given as a + b < J, the initial syndromes are
given by

Sw@p a+tbsd
all other syndromes are unknown. To correct up to ¢ = L%J errors, the unknown
syndromes need to be determined by either using the equation of the defining curve
or by majority voting. In a plane, the syndrome components agree with the roots of

the curve. For the Hermitian curve in (5.2) the syndromes obey the relationship,

Sta+mp) +Sw@b+m-1)+S@p+1) =0
a+m, a,b+m a, (5.4)

S(a,b) = S(a—m,b+m—1) + S(a—m,b+1) =0
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From (5.4) any syndrome element S, 5) can be determined if a < m. For cases where
a > m and the syndrome is unknown majority voting is applied. In a simplified form
majority voting is just using the set of minimal polynomials F at some stage of the
BMSA to predict (since the polynomials are recursive) the next syndrome and the
value with the highest occurrence is chosen as the next syndrome element. For each

polynomial F' € F

ZF;%SI%HF—@) =0
fo (5.5)
FéiSF = Z, F;%Sk+(f—§i)
k

where 7 = (a,b). The polynomials in F are monic so that F;; =1and 5; -1 represents

the bidegree preceding s; in the chosen monomial order.

5-1
UV; = Sf = Z F]%S];+(F—§i) (56)
k

Equation (5.1) applies to polynomials in F with span span =7 —3§; = 0. This simpli-
fied majority voting is not sufficient since a vote cannot be decided if all the elements
v; are distinct. A more comprehensive voting scheme was suggested in (Sakata et
al., ) and utilizes the properties of the BMSA that the size of the footprint A
at the end of the algorithm does not exceed ¢ = L%J and certain restrictions on the
number of polynomials in F at some stage of the algorithm that do have a nonzero

discrepancy. Equation (5.4) can be presented as,
S(a+mb-m+1) =S(a,p) *S@pb-m+2) b=zm—1 (5.7)

Let s; =(s1,89)ifa—si+m=0and b —m +1—-s9 =0 then combining (5.7) and (5.1)

results in,
§;-1 )
- Q! — .
Z, Fk (k1+a—s1+m,ko+b—m+1-s9) + S(a,b—m+2) =w; (5.8)
k

where k& = (k1,ks). To perform majority voting of unknown syndromes at a stage in

the algorithm the sets,

Ki={x,y)I0<x<an0<y<b}
Ko={x,y)I0=sx<mAO<y<b-m+1}
K:K1UK2
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are formed. Associated with each polynomial F' € F the sets,

A;={(x,y)eK|x+s1<aAy+sg<b}

B;={x,y)eK|x+s1<a+mAy+sg<b-m+1}

Finally values from (5.6) and (5.8), distinct values from w; and v; obtained from
every valid polynomial in F are selected and form the set of finite field elements

a1,a2,...,a, which are candidates for the value S, ). For each a,

\A(a,b) (5.9)
and S(a,b) = {aj: |Pj| = |Pj|

For polynomials in the set F at some stage in the algorithm that have a nonzero

Pj=

UAiU U Bi

vi=a; wi=a;

max}'

discrepancy an update is necessary. A polynomial is not updated if its discrepancy
is zero or if it does not reach that stage i.e. at some stage 7 = (a,b) the polynomial
of degree 5; = (s1,s92) reaches 7 if a —s1 =0 and b —s9 = 0. The algorithm initializes
with an empty footprint A = & and the update rules are given as in Algorithm 5.1.
The BMSA is now illustrated with a specific example. The following set of affine

rational points are obtained from the Hermitian curve over [F4

0,00 (0,1) (@, (a,a?)

(@%,0) (a?,a? (1,0) (1,02

The dual Hermitian code defined in Section 4.6.1 has parity check matrix H and
and the generator matrix G with j =1 and d,,;, =3 and is a single error correcting

code. The G and H matrices are,

111 1 1 1 1 1
H=|1001 1 a a a® a2

01 a a2 a a2 a «a

(1000 0 a2 a2 1
01000 a 0
G=[{00100 a 1 a
00010 a 0 a?
| 00001 1 1
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(G is in reduced form and the reduction process may involve column interchanges
in both the H and G matrix. These interchanges need to be reversed in order for

the syndrome evaluation to be accurate since the code is not cyclic. The codeword,

c=l0 10 a2 a 0 0 0

is chosen and the corrupted vector is

r=l0 10 a2 a a 0 0

The correspondence between the points of the curve and the coordinates of the code-
words according to the points evaluation is given by (5.2). The syndrome can then
be computed and is given by Equation (5.3) for the initial syndromes that satisfy
a+b <J. The syndrome is,

Points | Coordinates
0,0) 0
(0,1)
1,a)
1,a?)
(a,a)
(a,a?)
(a?,at)
(a?,a?)

|| O | WIN| -

Table 5.2: Correspondence between points and coordinates of the Hermitian code

a 1 =
S = aZ x x
* % %

where * represents the unknown syndromes. The graded lexicographic monomial
order in the bivariate ring F4[x, y] is given by (5.3).

The algorithm initialises with,

F={1} G=g A=9 span(Q)=9
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Index 0 1 2 3 4 5
Bidegree | (0,0) | (1,0) | (0,1) | (2,0) | (1,1) | (0,2)
Monomial 1 x y x2 xy y

Table 5.3: Graded lexicographic order in F4lx,y]

and at stage 0, 7 = (0,0) and degree of F'! is §; =(0,0) so that
7—§1=(0,0)-(0,0)=(0,0) (F!reaches F)

the discrepancy is calculated as

1
01 F]%S

E+(F-31)

Il
M

(=)

(0,0)
_ 1q.
01= Z FiSk+0.0)
k

1
61=F (O,O)S (0,0)

01=1l-a=a

the polynomial F! has a nonzero discrepancy and needs to be updated according to
the rules of Algorithm 5.1. Since 7 — 351 ¢ A(g,0) the rule of line 9 of Algorithm 5.1
is applied. 7—3571 =(0,0) is appended to the footprint so that A o) = {(0,0)} which

changes the bidegrees and number of polynomials in F.

deg(y)

2

1

-l

0 1 2 deg(x)

Fig. 5.1: Before update at stage 0

The blackened rectangles in Figures 5.1 and 5.2 are the bidegrees of the leading
monomials in F while the grey rectangles represent the bidegrees of polynomials
in the set F. Appending (0,0) to the footprint expands it so that the new bidegrees
of the minimal polynomials are (1,0) and (0, 1) therefore the update needs to take

into consideration this fact. For the first new bidegree 51 = (1,0), (g1,g2) =51 —§1 =
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deg(y)

0 1 2 degx)

Fig. 5.2: After update at stage 0

(1,0)—(0,0)=(1,0) as in line 13 of 5.1,
iy 0;
Fi = x11y2F,; + 6_xp1yszj
J

and since G = @, G; = 0. The update is,
F1 :xlyo-lzx.

Similarly, for the bidegree 9 = (0,1), (¢1,92) = §2 —51 =(0,1)—(0,0) = (0,1) and an
update polynomial,
Fl=x%'1=y.

The set G also needs to be updated. Since the polynomial F! = 1 has the required
bidegree and has a nonzero discrepancy it is appended to G. The span of F! ,

span(F1) = 7—§; = (0,0) is then stored and also its discrepancy §; by premultiplying,

1
Gi=—F!
1 5,
1
Glz—zaz
a

At stage 1, 7 = (1,0) and the algorithm sets are
F={r,y} G={a? span(G)=1{0,0)} Agp)={(0,0)}
The polynomials in F are tested to see if they reach 7,

r—5§1=(1,0)-(1,0)=(0,0)
F_§2 :(1)0)_(0,1):(1,_1)

Only F; = x reaches 7. The discrepancy of this polynomial is,

81=0-S0 +1-S10) =a
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and 7 -3 =1(0,0) is already in the footprint therefore there is no need to expand it.

The update for polynomial F'; then follows line 7 of Algorithm 5.1,

F,’l :x+a2-G1:x+a2-a2:x+a
Aside from the fact that G1 = @? is the only polynomial in G, it satisfies the criterion

51— (F —span(G1)) =(0,0). The new sets are,
F={x+a,y) G={a® span(® ={(0,0)} Aqu=1{0,0)
At stage 2, 7 =(0,1) and only Fg = y reaches 7 with discrepancy,
02=0-S0,00+0-S1,00+1-Spon=1-1=1
with 7 —§9 = (0,0) which is already in the footprint. F9 is updated by,
F"gzy+1-G1 :y+a2
The new sets are,
F={x+a,y+a?} G={a? span(G)={0,0)} Ago =1{0,0)}

At stage 3, 7 = (2,0) the syndrome element S, 3) is unknown, the majority voting
scheme is used and S, ) = 1 emerges from the votes. Only polynomial F1 =x+a«a
reaches 7 with 7 —$§; = (1,0) which is not in the footprint. The discrepancy of F'; is
01 =0 therefore no update is necessary and the sets are unchanged.

At stage 4, ¥ = (1,1) and the syndrome S(; 1) is unknown. Recall that for an un-
known syndrome element S, ), if @ < m the majority voting procedure is used to
determineS(, ). Only one candidate emerges from the votes and S(, ) = a. Using
the new syndrome value decoding proceeds as before and checks if polynomials in
F reach 7. Both polynomials in F reach 7 and both have zero discrepancies , even
though 7 —351 =(0,1) ¢ Ay 1, the footprint is not expanded and the sets remain un-
changed.

For the remaining stages of the algorithm all the syndromes can be computed us-
ing majority voting or the equation of the curve and the polynomials in F remain
unchanged since they have zero discrepancies at every stage. The common root of
the two polynomials in F at the end of the algorithm is the root (a0, @?) which from
Figure 5.2 corresponds to co-ordinate 5 of the received vector indicating an error

has occurred there.
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Algorithm 5.1 Update for BMSA
Require: At some stage 7 = (a,b) of the BMSA
1: fori=1:|F| do

2: if 7—35; =(0,0) then
3: Calculate the discrepancy 6; of F;
4: if §; #0 then
5: if 7 -5, € A p) then
6: Set (p1,p2) =5§; — (¥ —span(G,)) =(0,0) for some G; € G
7: Update with ' = F' + §txP1y*G,
8: else if 7 —5; ¢ A4 ) then
9: Append 7 - 5; into A p)
10: Calculate new bidegrees bideg{F}
11: for Every §;, € bideg(F) do
12: if 5, —3; =(0,0) then
13: Set 5, —5; = (q1,92) and (p1,p2) = §; —(r —span(Gy)) = (0,0) for
some G; € G
14: Update F' = x91y©2F; + g—;xplyszj
15: end if
16: end for
17: end if
18: end if
19: end if
20: end for
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5.2.1.3 Finding Error Values For BMSA

The error polynomial is given by

t—1
elx,y)=) eyx"y’
0

where {r,s} are the powers of the error locations (common roots) obtained from the
BMSA and e(x, y) has exactly ¢ = L%J nonzero coefficients. The error values e, can

be found from using any ¢ independent equations of the n — & possible equations,
n
e(a“,ab):ZeuamaSb = Zrix‘i’yf =S(a.p) a+b<dJ (5.10)
=0

Solving the ¢ equations for e, then gives the error values. Using equation (5.10) is
straightforward if the error locations are in the bicyclic plane. Recall the bicyclic
plane is a subset of an affine plane with points having no zero coordinates.

For the previous example ¢ = 1 and the error location (a,a?) is in the bicyclic plane.

We have the bivariate error polynomial as,
e(x,y)= eoxy2
since the error location from the BMSA is (a, a?). Choosing a = b = 0 we have,

e(a®,a’)=eq =S

=qa
thus the error vector is

e=|0 00 00 a 0 0].

Only bicyclic Hermitian codes are treated in Section 5.5.2 and for these codes the
procedure above is sufficient to obtain the error values. For the case of Hermitian
codes with error locations that have a zero coordinate (i.e. defined in the affine
plane), Liu ( ) presents a procedure for finding these error values. The method

requires knowledge of syndromes,
S(a,b) a<qg-1,b<q-1

Also for affine AG codes Leonard ( ) presents a generalized Forney formula for

finding the error values.
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5.2.1.4 Decoding Reed Solomon Codes

The algorithm (Sakata, ) is given in detail by Algorithm 5.2. In Section 4.6.1 it
is shown how Reed Solomon codes can be constructed as AG codes. In this section
the classical decoding of Berlekamp and Massey as applied to RS codes is presented.
Terminology already established in Section 4.6.1 where decoding of AG codes was
implemented in two dimensions is used. This style of presentation follows (Sakata,

). The Berlekamp Massey Algorithm (BMA) can be viewed as a one dimensional
version of the SBMA. A key difference between the two algorithms is that in the
BMA the syndromes of a received sequence are sufficient to completely determine
the error locator polynomial whereas in the SBMA more syndromes need to be found
using majority voting in order to get an error polynomial with the required roots.
The single minimal polynomial f and an interior polynomial g are defined first.

Other important parameters are given as,
s =deg(f) ,0f = discrepancy(f) ,04 = discrepancy(g), span(g), A =footprint

The syndrome vector is given as the FT of the received sequence,
n-1 .
S=Y rio" j=0,1,.,n-1
i=0

where w is an nth root of unity in the field ;. The discrepancy of a minimal poly-

nomial at stage r is calculated using the recursive relationship,
S
8p=) [iSittr—s)
i=0

The BMA decoding on the (7,5,3)g single error correcting RS codes is used as an
example. Let Fg be a finite field defined with primitive polynomial x3 = x + 1 with
the element a as a root. The roots of a generator polynomial of the code as {1, a} are
chosen. Suppose the transmitted codeword ¢, the received vector 7 and the error

vector ¢ are given as

5:[10000aa3]
f:[11000aa3]

¢=[1 00000 0
The syndrome vector is given by,

S:[la*****]
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where the syndrome values denoted by * are not relevant since they are not indexed
by the orders of the roots of the code. At step r =0,

5f=Z,fiSi+(r—s)
§p=1-1=1

and span(f) =r—s =0-0 is not in the footprint A, therefore the update rule of
Algorithm 5.2 line 9 is applied. Since 0 is the maximum element in the footprint
§=0+1=1

At step r = 1 the discrepancy is,
6r=0-1+1-a=a

and span(f)=r—s=1-1=0 is already in the footprint. The update for this case is
given by line 5 of the algorithm,

% a
f=xs2x"0701
=x+a

The algorithm terminates here since the number of roots of f is equal to the error
correction limit of the code ¢ = 1. The root of f is @ which has order 1 and therefore
points to index 1 of the received vector as an error. The error value can be obtain by

simply evaluating the received polynomial at the inverse of the error location a.

5 6 3

r(a_l):1+a_1+a_ a+a Ca

=1

5.3 Maximum Likehood Erasure Decoding

A linear code of minimum distance d is guaranteed to correct d — 1 erasures but
will also correct some erasure patterns greater than d —1 (MacWilliams and Sloane,
). An analysis of the number of correctable error patterns was presented by
(Tomlinson et al., ) and was found to be dependent on the weight distribution
of low weight codewords. The procedure is akin to the erasure method of finding
the minimum distance of linear code described in Section 2.5.1. The first steps
involve testing for solvability in column co-ordinates of the parity check matrix
that correspond to the erased symbols. If the erasures are solvable the erasures

are then solved using back substitution or any other means of solving homogeneous
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equations. On the other hand, unsolvable erasure patterns are left unaltered. The
procedure is described algorithmically in 5.3. At the step 9 of the algorithm, the
submatrix formed by the columns of H corresponding to the positions of erasures

and the rows of H will be in upper triangular form.

5.4 Ordered Reliability Decoding

In erasure decoding an error correction capability of d,,;, — 1 erasures is guaran-
teed however sometimes more errors can be corrected. However in error correction
of codes, bounded distance decoding only guarantees [%J errors that can be
corrected. In errors-only decoding a natural disadvantage is that the decoder has
no knowledge of the error locations. In an ideal scenario it would be desirable to
have the locations of error and each error could be treated as an erasure and cor-
rect many more errors. However this is not possible. A midway solution is to use
channel information and attempt to determine the reliability of the individual el-
ements of the received sequence and based on some preferred criterion select the
least reliable elements and treat as erasures. Estimates of reliability from channel
information are not perfect and in soft decision decoding of linear block codes the
decoding procedure for each received sequence will have to be repeated a number of
times so that a list of candidate codewords is created with each decoding. A code-
word from the list that minimizes error is then chosen.

In AWGN channels using binary phase shift keying the reliability of the elements
of the received sequence is known to be proportional to the a-priori likelihood ratio.
At the ith position of the received sequence y given that a codeword ¢ was sent the

log-Likehood ratio is given,

P.(y;lé; =0
Li=log (Pr(yllc,l = ))

r(yilci =1)
1 e—(yi+1)2/20'2

_ V2no 5.11

=log| 5 e—(i—1)?/20? ©1D
2no

2
= —pyi

therefore the probability of the ith element of the received sequence y being correct
is proportional to |y;| (Tjhai, ). Reliability based soft decision procedures uti-
lize these reliability values to order the received sequence y in order of reliability
and attempt to correct errors. Notable reliability based decoding algorithms are the
generalized minimum distance decoding introduced by Forney, the Chase type algo-
rithms and the ordered statistics decoding. The first two algorithms exploit the fact
a linear code can correct up to (2 x number of errors+number of erasures < d,;,—1)
combinations of errors and erasures while the latter exploits an earlier observation

that a code can correct up to d,,;, — 1 erasures and sometimes more. Soft deci-
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sion decoding using ordered reliability decoding is essentially the ordered statistics
decoder of Fossorier and Lin ( ) without the statistics and optional stopping cri-
terion suggested therein.

The procedure is described assuming binary codes and then later adjustments are
made to non-binary codes. A code with message length £ and length n has a re-
ceived/corrupted sequence j is ordered according to decreasing reliability |y;| so
that a new sequence Z has r; > r;,1 for all i. The ith column of the generator ma-
trix G is also ordered according to the reliability of y; . The new generator matrix
G is then expressed in reduced row echelon form by Gaussian elimination and if
column interchanges are necessary then these index changes are applied on the se-
quence Z to produce a new sequence b and a new generator matrix G 5- The real
valued sequence b is then hard decided using BPSK demodulation into binary val-
ues and and a bit valued sequence § is formed. The sequence is then partitioned
into two; the most reliable part (MRP) which includes the first £ most reliable sym-
bols and the least reliable part (LRP) which is the n — k& least reliable symbols of
the sequence. Decoding then involves deleting the n — k least reliable positions of
§ and re-encoding using Gj. If the number of errors in the sequence is <d -1 and
the reliability measure is accurate enough to guess all the error locations, then the
new codeword is the codeword closest to the received codeword. However these two
conditions are not always met and additional reprocessing is needed in order to
eliminate errors in the MRP. This reprocessing is simply subtracting error vectors
systematically from the received binary sequence s and re-encoding until codeword
with minimum euclidean distance from § is found. For all combination of i errors
in the MRP results in,

possible error vectors.

There are two ways to implement ordered reliability decoding on non-binary codes;
firstly by using the binary image expansion of the code and secondly by using sym-
bol based decoding. Symbol based decoding is used in this case and some slight
adjustments are made to the procedure. Firstly, the symbols of the codeword in the
field F,m prior to transmission are mapped to binary using a suitable basis so that
each unique element is represented by m bits. Re-encoding is done in Fym. Since
each symbol is represented by m bits, it is also represented by m reliability values.
In order to sort the symbols of the received sequence according to reliability, for
each symbol a representative reliability value is chosen from the m possible choices.
A natural choice of a representative is the element from the m values with the least
reliability since it only takes a single value to be in error in an m block in order for
the symbol the block represents to also be in error. These chosen reliability values

now represent the m blocks and consequently a symbol in the sequence and can be
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used to order the sequence of symbols as in the binary case. Euclidean distance is
however still measured using the binary representation of the codewords.
For the case of non-binary codes the reprocessing involves non-binary symbols as

well and for all combinations of i errors results in,

(q@-1)
i
possible error vectors. Reprocessing for all possible combinations so as to achieve

maximum likelihood decoding is difficult and will involve,

k [k .
Y| [@-1
i=0 |1
possible error vectors. Therefore the procedure is terminated after / possible can-

didate codewords have been produced and then choose one with the smallest eu-

clidean distance from the received sequence as the most likely codeword.
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Algorithm 5.2 Berlekamp Massey Algorithm

Require: Syndrome, S
1: Initialize r =0, f =1,g =0,span(g)=-1, A=9
2: Compute the discrepancy 6y
3: if 67 #0 then

4: if span(f)=r—se ? then
5: Update f = f + éxs_(’_sf’an(g))
6: end if
7. if span(f)=r—s ¢ A then
8: Append r—s to A
9: Let [ be the largest element in A, set s=7+1
10: Update f = x5 + g—;g
11: Set g = f, span(g) = span(f)
12:  end if
13: end if
14: r=r+1
15: if number of roots of f =t then
16:  Stop
17: else
18: Goto2
19: end if

Algorithm 5.3 Maximum Likehood Erasure Decoding

Require: H, ¢q,c9,...,c.=erasure positions
1: fori:e do
Choose co-ordinate H; ., of the H matrix
if H;.,=0and 3H ., #0V k£ > i then
Interchange row i with row £ of H
else if H; ., =0 and #H}, ., #0VY k& > i then
Exit {erasures cannot be solved}
end if
Perform gaussian elimination on the rows of H so that all positions Hy, ., =
OVE>i
9: end for
10: Use reduced H to solve for the erasures
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Algorithm 5.4 Ordered reliability decoding for non-binary codes
Require: A received sequence @, generator matrix G
1: For each m block in @ associate a reliability value r; corresponding to the small-
est reliability value
2: Perform BPSK demodulation on @ to form a binary sequence b
3: Form a sequence of symbols & with elements from F = from b using the selected
basis
4: Order © in order of decreasing reliability , apply the corresponding changes to
columns of G and the m blocks of @
5: Express G in systematic form and apply the same column interchanges that
occurred as result (if any) to 0
6: for/=0:i do

k .
7. forj=| |(g-—1)} do
i
8: Subtract an error vector of weight [/ from ¢ to form ¢
9: Delete the n — k& least reliable positions of ¢ and re-encode with G to form w
10: Store the euclidean distance between the BPSK modulation of w and the
ordered a
11: end for
12: end for

13: Select the codeword with the minimum euclidean distance
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5.5 Performance of Algebraic Geometry Codes

Performance comparison of AG codes and RS codes in previous literature (Johnston
and Carrasco, ) compare these two types of codes defined in the same finite
field and having similar rates but the codes have unequal lengths since RS codes
are by definition shorter. Subfield subcodes of RS codes (namely BCH codes) contain
all those codewords of an original RS code that have alphabets in a smaller field. In
this aspect, AG codes and BCH codes are similar. In comparing AG and BCH codes,
the shortening of BCH codes may be necessary so that the codes have equivalent
lengths without loss in performance. An epicyclic Hermitian' code defined in Fg2
has length n = g(g2 — 1)) with message length % has minimum distance d =n —% —
g+ 1 where g is the genus of the defining curve. Table 5.4 shows the parameters of

some Hermitian codes.

A Reed Solomon code of codeword length » and message length % is described
using a defining set which is a set of n — k consecutive elements of a finite field as
roots of its generator polynomial. BCH codes are formed by first defining a smaller
field and then picking those codewords of the RS code that have elements only in
that field. For each root of an RS generator polynomial, a BCH code generator poly-
nomial will have additional roots that fall within the same conjugacy class in the
smaller field. This has the effect of reducing the rate of the code but not increas-
ing the minimum distance accordingly. The result is that RS codes have greater
minimum distances than BCH codes. BCH codes therefore have minimum distance
d=n—-k—-0+1where § >0 . Table 5.5 shows some BCH codes shortened to have
equal lengths and rates as the Hermitian codes. In the comparison, the (60,45,10)¢
bicyclic hermitian code is chosen and its performance compared with the (60,45,9)16

BCH code over the additive white Gaussian noise AWGN and the erasure channel.

5.5.1 Encoding

The dual of the hermitian code defined by the divisor D = 20P,, and divisors T =
Pq+---+ Pggy in F1g where P; are the 60 points of the hermitian code in the bicyclic

IEpicyclic hermitian codes are hermitian codes defined in the bicyclic plane.

qg| n k d
4160 | 50 | 5
41 60 | 45 | 10
41 60 | 40 | 15
8 | 504 | 432 | 45

Table 5.4: Epicyclic Hermitian codes
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n k Nshort | Rshort
255 245 60 50

255 | 240 60 45
255 | 235 60 40 11
4096 | 4024 | 504 432 | 37

||

Table 5.5: BCH codes

plane is used. The Hermitian code has parameters [60,15,40]1¢ while its dual has
parameters [60,45,10];6. The parity check matrix of the dual Hermitian code is
given by,

[ APD AP ... 1Py ]

fa(P1)  fo(P2) ... fa(Py)

| f15(P1)  f15(P2) ... f15(Pn))

where {f1,..., f15} are basis rational functions of the Riemann-Roch space L(20P.).
For the BCH code an RS code is defined in Fys and the subfield subcode in Fy4 is
found. The subfield subcode is chosen to have a similar rates to the Hermitian
code. The Hermitian code has redundancy n — & = 15 and this number of roots is
easily chosen for the generator polynomial of the BCH code. From Section 2.1 it is
known that conjugacy classes with at most % = 2 members are obtainable. The first

8 conjugacy classes will suffice,

(1) (a,a'®) (a?,a%%) (a3,a*®)

(a47 a64) (a5, (XSO) a67 a96) (a7, (1112).

The union of these classes has eight consecutive finite field elements and the BCH
code generated by a polynomial with the union as roots will have designed d i, =
8+1 =9. This will produce a (255,240,9):4 code. However the symbol elements of
the codewords in the new code are still in Fos but are isomorphic to Fo« and a choice
of a defining primitive polynomial for the field F,4 that preserves this isomorphism
is x* +x+1=0. The elements of the two fields that are present in the codewords
symbols can now be mapped one to one. Finally the code is shortened by deleting
195 information symbols to (60,45,9)6.

5.5.2 AWGN Channel with Hard Decision Decoding

The general procedure used for hard decision decoding both codes is explained here

in detail. The symbols of each codeword is represented by m = 4 bits using the basis
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defined by the primitive polynomial used to obtain the field Fys. The binary bits are
then modulated using binary phase shift keying (BPSK) in which the mapping from
bits to real values is given by [1] — [—1] and [0] — [1]. The modulated sequence is
passed through a simulated AWGN channel with variance 02 and mean ©=0. The
ratio of energy per bit to the noise spectral density E;/N, is specified in decibels dB
and the mapping to the channel variance is given by,

9 1

o =——F——
E,y
2-m-rate

The sequence output from the channel is then demodulated using BPSK demodu-
lation so that if the sequence is of length / and is denoted by v then, a new binary
sequence w is

1 ifv; <0

w; =

0 ifv; =0
The sequence w is then partitioned into //4 parts of 4 bits each and each part is
mapped to field symbols using a basis defined by the primitive polynomial used
obtain the field. In order to test for a errors, a syndrome test is carried out to check
for the presence of errors. If errors are found the received sequence is passed to
the appropriate hard decision decoder which attempts to correct the errors. The
entire process is repeated a number of times for each E /N, value until 100 symbol
errors are encountered and the probability of error is then computed. The results
in Figure 5.3 show that the performance of the two codes is similar in the AWGN

channel. This is expected because the error correction capability of the two codes is

the same,
= dmin - 1J
. 2
10-1
tHER = _TJ =4
9-1
tBCH = TJ =4

The theoretical probability of frame error is obtained from the following expression
(Peterson and Weldon, ),

Pf — 1 _(1 _Pe)(45x4)

where P, is the probability of bit error for BPSK modulation in the AWGN channel
given by (Proakis, ),

Pe:Q( 2Eb)

N,
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Fig. 5.3: Hard Decision Decoding for Hermitian and BCH Codes
It is also worth mentioning that the BCH codes are decoded in the field Fgs5¢ since
they do not contain any meaningful roots in the field Fi5 (and will not satisfy the

syndrome equations).

5.5.3 Erasure Channel

0.1 .
,)k; -
0.01 e
5 ot
2 .
g .
s T
= X
5 0.001 -
2 :
2 i
S o
£ .
0.0001
BCH(60,45,9) FER —+—
HER (60,45,10) FER —--%-—
le-05 : :

0.1 0.13 0.17 0.2 0.23
Probability of channel erasure

Fig. 5.4: Erasure Decoding for Hermitian and BCH Codes

In simulating the erasure channel the channel erasure probability p and a real

valued uniform random generator producing values within the range 0 <x <1 sim-
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Fig. 5.5: Ordered Reliability Decoding for Hermitian and BCH Codes at order 2

ulates the randomness in the channel are specified. The codeword symbols are
erased when the randomly generated value x falls within the range 1-p<x<1
and left are unaltered otherwise. The corrupted codewords are then decoded with
Algorithm 5.3 which tests for solvability . If the erasures can be corrected the solu-
tion to the homogeneous equations is determined otherwise the corrupted codeword
is left unaltered. For each chosen channel probability p the procedure is repeated
until 100 erasures are unsolved and the frame erasure/error rate is computed. The
performance of hermitian and BCH codes is compared in Figure 5.4 . performance
of the codes that the hermitian codes have a performance that surpasses the BCH
codes. In the region where the probability of channel erasure is low i.e. just around
p =0.11t is clear that the performances of the two codes are similar since the num-
ber of erasures are likely to be below the erasure correction capability of the codes.
However at a very large probability of erasure (above p = 0.2 ) the average num-
ber of erasures exceeds the error correction capability of both codes and thus their
performances are similar. In the region in between the Hermitian code has better

performance than the BCH code.

5.5.4 AWGN channel with Soft Decision Decoding

The ordered reliability decoding (symbol based) described in Section 5.4 is used.
Figure 5.5 shows the performance of the two codes using ordered reliability decod-
ing with order 2 reprocessing. From the figure the performance of the Hermitian
code surpasses the BCH code in particular for energy per bit to noise spectral den-

sity ratio within the range 3 —5 dB the Hermitian (60,45,10)16 code corrects more
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errors than the BCH (60,45,9)16 code. There is also a slight improvement in perfor-
mance beyond 5 dB.

5.6 Summary

In this chapter the BMSA for AG codes is presented. The BMSA is a hard decision
decoding algorithm that can be used to correct errors up to the bounded distance
error correcting limit of the code. The algorithm finds the error locations of a cor-
rupted received vector. In addition the well known Berlekamp Massey decoding
algorithm for BCH and RS codes was presented. While the BMSA is an algorithm
designed for AG codes, a generic algorithm is presented for erasure correction. This
is called the in-place algorithm (Cai et al., ) and solves for erasures in an ef-
ficient manner. Similarly for soft decision decoding a generic ordered reliability
decoding was presented. The performance of non-binary BCH codes and Hermitian
codes in the AWGN and erasure channels was compared. The results show that
the Hermitian code gives a slightly better performance in the AWGN channel with
hard decision decoding and in the AWGN channel with ordered reliability decod-
ing. In the erasure channel the Hermitian code outperforms the non-binary BCH
codes for a range of probability of erasure. This behaviour is most likely due to the
Hermitian code having a more favorable weight structure. It is difficult however to

confirm this as computing the weight distribution of the two codes is difficult.
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6. INTRODUCTION

6.1 Maximising the Minimum Distance

Claude E. Shannon’s deduced in a nonconstructive way that there exist good lin-
ear codes under certain conditions that can help achieve error-free communications
over a chosen channel. It did not take long to realize that the definition of a good
code is one with a good minimum distance. Consider the case of the binary sym-
metric channel (BSC) with channel probability p, the probability of decoding error
for the channel is given by

t (n) . ,
Pe:]-_z ) pl(l_p)n—l
i=0\!
for a code of length » and minimum distance d (MacWilliams and Sloane, ).

The expression for P, assumes bounded distance decoding with the code able to cor-
rect t = %J errors. For a fixed channel probability p and code length n increasing
the minimum distance will increase the number of errors the code can correct and
decrease the probability the decoded codeword will be in error. If maximum like-
lihood hard decision decoding on the BSC is assumed then the expression for P,

becomes,

t (n) . ,
P,=1-}% ( .)p‘(l -p)" —apap™a-py !
i=0\?

where a; is the number of coset leaders with weight : (MacWilliams and Sloane,
). Again the effect on an increased minimum distance d on P, is evident. Con-

sider the additive white Gaussian noise channel (AWGN)! the union bound on the

probability decoding error using maximum likelihood soft decision decoding is given

by,

d
T 4N,
P,<e *No

in a channel with noise spectral density Ny using a code with minimum distance
d (Proakis, ). Again the role of the minimum distance d of the code can be

observed from the union bound since P, exponentially decreases with an increasing

LA specific type of the BSC when binary transmission is used.

89



Chapter 6: Introduction

6.2 Tables of Best Known Codes

A fundamental question in coding theory is “Given a length n, a dimension k and
a finite field of cardinality q, what is the best possible minimum distance d obtain-
able from any code?”. The tables in (Grassl, ) and (Schimd and Shurer, )
contain upper bounds on the best possible minimum distance of a linear codes with
parameters [n,k,d],. These upper bounds are derived from several different combi-
natorial bounds. The tables also contain lower bounds of the minimum distance of
best known codes. The lower bounds are constructive i.e. there exist known linear
codes with parameters [n,k,d], for which d has been verified either computation-
ally or mathematically. The goal in this part of the thesis is to obtain codes with
a minimum distance greater than that of codes in these tables that have the same

length and dimension. The first catalog of best known codes was presented by Cal-

Finite Field | Range

Fo 1<k<n<256

Fs l1<k<n<243

Fyu 1<k=n<128

Fs 1<k=n=<100

Fr 1<k=<10
1<n<50

Fg 1<k =40
1<n<85

Fg 1<k=<20
1<n<121

Table 6.1: Ranges for codes in (Brouwer, )

abi and Myrvaagnes ( ) containing binary codes of length n and dimension % in
the range 1 <k <n < 24. (Sloane, ) later presented an updated version of the
tables. Helgert and Stinaff ( ) improved the tables in (Calabi and Myrvaagnes,

) and presented bounds on binary codes in the range 1 <k <n < 127. Verhoeff
( ) updated the tables in Helgert and Stinaff ( ) and Brouwer and Verho-
eff ( ) subsequently made further updates. The tables at the time contained
bounds on binary codes in the range 1 <k < n < 127. Brouwer ( ) subsequently
presented a comprehensive update to the tables which included codes with finite
fields up to size 9 with the ranges for £ and n given in Table 6.1. At present Grassl
( ) maintains a significantly updated version of the tables in (Brouwer, ).
The tables now contain codes with 2 and n in ranges from Table 6.2. A database of
the codes in (Grassl, ) is included in computer algebra system Magma (Bosma
et al., ). Finally, Schimd and Shurer ( ) provide a online database for op-

timal parameters of (¢,m,s)-nets, (¢,s)-sequences, orthogonal arrays, linear codes,
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Finite Field Range
Fo l1<k=n=<256
Fs l<k=n=<243
Fyu l1<k=n=<256
Fs 1<k<n<130
Fr 1<k<n<100
Fs 1<k<n<130
Fg 1<k<n<130

Table 6.2: Ranges for codes in (Grassl, )

and ordered orthogonal arrays. These are relatively new tables give the best known
codes up to finite fields of size 256. The tables place a restriction on the length of

code such that n <1 x 10% and put a restriction on n — % for different fields.

6.3 Methodology and Approach

Improvements to the tables in (Grassl, ) can be made using an adhoc approach.
For any two parameters from n, £ and d one searches the tables and identifies
possible room for improvement. This room for improvement usually manisfests as a
plateau in a plot of the parameters of the codes (within a range) in the tables. Also
worth taking into consideration is the gap between the lower bounds and upper
bounds for the parameters of the codes in the tables. A large gap suggests that
a code can be improved. For example in the finite field F4 for a fixed dimension
k = 35, consider the plot of distance d versus length n for 55 < n < 100 in Figure
6.1 of codes in (Grassl, ). The plot shows the [81,35,23]4 code which is at one
edge of a plateau with the second edge at [77,35,23]4. There is an increase in
length of 4 symbols whilst the distance remains unchanged. Furthermore the gap
between the upper and lower bounds on the minimum distance of the code with
length 81 and dimension 35 is significant. Clearly there is room for improvement
for n =81 and k£ = 35 in F4. One can then use the different methods of constructing
good codes from existing ones for codes of length 81 and dimension 35 to produce
improved codes. This approach is quite difficult as the tables in (Grassl, )
are well maintained and include computer routines that do this automatically. A
different approach is to use an efficient method of producing good codes and utilize
computer programs to find codes with better minimum distance than codes in the
(Grassl, ). This approach is less intuitive and more generic than the adhoc
approach. Also as mentioned earlier most of the known methods are incorporated in
(Grassl, ). In the course of searching for new codes it became clear that methods
that extend the length of the code while increasing the distance in some linear
manner have the most potential to produce codes that improve on the best known
codes. This is because the distance of the codes in the tables does not increase

proportionally as the length increases for a fixed dimension. It is also helpful if the
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50
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Minimum Distance

Length

Fig. 6.1: Minimum distance against length for best known codes with dimension 35 in [F4

method produces codes with a known lower bound as one need only construct the
codes and can skip the tedious procedure of verifying the minimum distance of the
code.

At first the search for new codes began by using AG codes. A catalog of good curves
was obtained from a table of curves with many curves maintained by Van Der Geer
in (Geer et al., ). Using these curves, AG codes were constructed and generic
code constructions were applied in the search for new codes. Some of the generic

constructions include but are not limited to,

Construction X

Construction X3

Construction X4

Code concatenation

Blokh-Zyabolov (Zinoviev) generalised code concatenation
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¢ Subfield subcode, subfield image and trace constructions
* (u,u +v) construction

¢ Grassl special puncturing (Grassl and White, )

Details of these methods can be found in (MacWilliams and Sloane, ). No im-
provements were found using these methods with AG codes. However some best
known codes were found. Table 6.3 shows some best known codes from AG codes
using the trace construction. Table 6.4 gives some best known codes in F4 from

hermitian codes in F1g using concatenation.

Best Code | Method AG code AG Description | Curve Points | Genus
[64,41,81; | Trace | [64,21,30]s AG(34P) 2 +x+y04y3 65 14
[64,44,8]y | Trace | [64,24,24]s AG(37P) 2B +x+y04+48 65 14
[64,53,4]; | Trace | [64,30,21]s AG(43P) 2B +x+y04+y3 65 14
[64,56,4]y | Trace | [64,34,17]g AG(47P) B +x+y04y3 65 14
[64,57,4]; | Trace | [64,36,15]s AG(49P) 2B +x+y04y3 65 14
[64,13,24]; | Trace | [64,6,54]:6 AG(10P) D+yi+y 65 6
[64,55,4]y | Trace | [64,28,31]6 AG(33P) D +yity 65 6
[64,59,2]s | Trace | [64,30,29]6 AG(35P) D +yi+y 65 6
[64,63,2]; | Trace | [64,38,21116 AG(43P) O +yity 65 6
[32,13,12];y | Trace | [32,8,231s AG(9P) al%8 + aPx%y + al%* +| 33 2

¥y + a2y + al%%? +

Oxy2 + alPxy+y*+ 33 + 42

10,8 a5x4y + al%* + 33 2
3 5,2 10,2
10

IS~

[32,14,12]4 | Trace [32,9,22]16 AG(10P)

8

¥2 + aPx%y + al0x® +

xy2 + alxy + vt + y3 + y2
10,8 4 oc5x4y + a0yt + 33 2
352 4 aPxZy + al%? +
al%%y? + aPxy +y* + 3 + 52

IS

[32,18,8]4 | Trace | [32,11,20]6 AG(12P)

8

Table 6.3: Some best known codes from AG codes using Trace Construction

Best code Inner Code | Outer Code
[192,38,8014 | [64,19,401:6 [3,2,2]4
[195,38,82]4 | [65,19,41]16 [3,2,2]4
[195,40,8014 | [65,20,40116 [3,2,2]4
[195,42,78]4 | [64,21,39]16 [3,2,2]4

Table 6.4: Best codes in F4 from Hermitian codes using concatenation

More complicated constructions were then used in larger fields and in particular
the generalised AG code construction by Xing et al. ( ); Xing and Yeo ( ) was
used effectively to obtain many new improvements in the finite field F1. Chapter 7
presents these results and give details of the construction. Codes from the database
in MAGMA (Bosma et al., ) (other than AG codes) were also used together with
the aforementioned constructions but only best known codes were found. Figure
6.5 shows some best known codes in Fg obtained from puncturing best known linear
codes (BKLC) in MAGMA. The coordinates of the codes are assumed to be indexed
as [1..n]. In Chapter 8 many improvements to codes in (Grassl, )in F7, Fg, and

Fg using a construction of extended Goppa codes are presented.
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Best Code | Puncturing Coordinates BKLC in MAGMA
[28,10,15]g | [1,2] [30,10,16]s
[31,10,16]g | [1,2,3,4] [35,10,19]s
[86,10,58]s | [1,2,3,4,5,6,8,9,10] [95,10,66]s
[17,10,6]s | [1,2,3,4] [21,10,9]s
[86,10,58]g | [1,2,3,4,5,6,8] [93,10,64]s
[86,10,58]s | [1,2,3,4,5,6,8,10] [94,10,65]s
[86,10,58]s | [1,2,3,4,5,6,8,9,10] [95,10,66]s
[87,10,59]s | [1,2,3,4,5,6,8,9,10] [96,10,67]s
[87,10,59]s | [1,2,3,4,5,6,7,8,9,10] [97,10,68]s
[92,10,63]s | [1,2,3,4,5,6,8,12] [100,10,70]s
[92,10,63]s | [1,2,3,4,5,6,12] [99,10,69]s
[92,10,63]s | [1,2,3,4,5,6,8,12] [100,10,70]s
[92,10,63]s | [1,2,3,4,5,6,7,8,9,10,12] [103,10,73]g

Table 6.5: Some best known codes from puncturing in Fg
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7. IMPROVED CODES FROM
GENERALISED AG CODES

7.1 Introduction

The minimum distance of a code is an important measure of performance in coding
theory. It is always desirable to obtain an error correcting code with the maximum
possible minimum distance d, given a code length n and code dimension k2. In
1981, Goppa (Goppa, ) introduced a family of codes with very good properties
using principles from algebraic geometry. These codes were later shown to include
a class of asymptotically good codes in (T'sfasman et al., ) that beat the Gilbert-
Varshamov bound for all fields with sizes both square and greater or equal to 49.
Algebraic geometry codes and codes obtained from them feature prominently in
the databases of best known codes (Grassl, ) and (Schimd and Shurer, )
for an appreciable range of code lengths for different field sizes gq. Generalised
algebraic geometry codes were first presented by Niederreiter et al. ( ); Xing et
al. ( ). A subsequent paper by Ozbudak and Stichtenoth ( ) shed more light
on the construction. AG codes as defined by Goppa utilised places of degree one or
rational places. Generalised AG codes however were constructed by Xing et al using
places of higher degree (including places of degree one). In (Xing et al., ), the
authors presented a method of constructing generalised AG codes which uses a
concatenation concept. The paper showed that best known codes were obtainable
via this construction. In (Ding et al., ) it was shown that the method can be
effective in constructing new codes and the authors presented 59 codes in finite
fields [F4, Fg and Fg better than the codes in (Grassl, ). In (Leung et al., ),
the authors presented a construction method based on (Xing et al., ) that uses
a subfield image concept and obtained new binary codes as a result. In (Xing and
Yeo, ) the authors presented some new curves as well as 129 new codes in [g

and Fg. In this Chapter we present 237 new improvements to codes defined in Fg

in the tables in (Schimd and Shurer, ) from a generalised construction of AG
codes by Xing et al. ( ). In addition many improvements to constructible codes
in (Schimd and Shurer, ) are also presented.
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7.2 Concept of Places of Higher Degree

Recall from Chapter 4 that a two dimensional affine space A2([Fq) is given by the set
of points

{(a,B):a,felF,}
while its projective closure P2([Fq) is given by the set of equivalence points
{f{la::1DNU{(a:1:0}u{(1:0:0)}:a,BeF,}.

Given a homogeneous polynomial F(x,y,z), a curve Z/F, defined in IP2([Fq) is a set
of distinct points
X [F, ={T € P*(F,): F(T) =0}

Let [, be an extension of the field F,, the Frobenius automorphism is given as

(OPW [qu — [qu

(;bq,[(,B):,Bq ﬁE":q[
and its action on a projective point (x:y:z)in F ¢ is

Ggo((x:y:2)=(x7:y7:27).

7.1 Definition (Place of Degree from (Walker, )). A place of degree ¢ is a set
of ¢ points of a curve defined in the extension field F ¢ denoted by {To,T1,...,T¢-1}

where each T; = (,bfl (To). Places of degree one are called rational places.

Example 7.1: Consider the curve in [F4 defined as,
F(x,y,z)=x
The curve has the following projective rational points (points of degree 1),

(0:0:1) (0:1:1) (0:a:1) (0:a%:1)
0:1:0)

where a is the primitive polynomial of F4. The curve has the following places of

degree 2,
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{(0:6:1),(0:p*: 1)} {(0:8%:1),(0:88:1)}
{(0:82:1),(0:812:1)y {(0:8%:1),(0:p%:1)}
{(0:87:1),(0: 813:1)} {(0:B8M1:1),(0:p1:1))

where S is the primitive element of Fy¢.

7.3 Generalised Construction I

This section gives details of the construction of generalised AG codes as described
in (Xing et al., ). Two maps that are useful in the construction of generalised
AG codes are now described. Observe that [, is a subfield of F ¢ for all £=2. It is
then possible to map F,¢ to an ¢-dimensional vector space with elements from [,

using a suitable basis. The map 7/ is defined as such,

ot
me:Fge—F,

me(B)=(c1ce...c))  PeF ., ci€ly.

Suppose (y1,72,...,Y¢) forms a suitable basis of the vector space [Fg, then f=cy1y1 +
coy2+-+-+ceye. Finally the map oy, is used to represent an encoding map from an

¢-dimensional message space in [, to an n-dimensional code space,

. [_} n
Ug,n.ﬂ:q [Fq

with ¢ <n.
A description of generalised AG codes as presented in (Ding et al., ; Xing et al.,
; Xing and Yeo, ) is now presented. Let F' = F'(x,y,z) be a homogeneous

polynomial defined in ;. Let g be the genus of the curve &/F, corresponding to the
polynomial F'. Also let P1,Ps,...,P, be r distinct places of X/F, and k; = deg(P;)
(deg is degree of). W is a divisor of the curve Z/F,; such that W = P1+Pg+---+P, and
G a divisor so that supp(W)nsupp(G) = &. More specifically G = m(@ — R) where
deg(Q) = deg(R) + 1 for arbitrary divisors @ and R. Associated with the divisor
G is a Riemann-Roch space £ (G) with m = deg(G)) an integer, m =0 . From the
Riemann-Roch theorem it is known that the dimension of Z(G) is given by /(G) and

I(G)zm-g+1

with equality when m = 2g — 1. Also associated with each P; is a g-ary code C; with
parameters [n;,k; = deg(P;),d;], with the restriction that d; < k;. Let {f1,f2,..,f%:
f1 € Z(G)} denote a set of £ linearly independent elements of Z(G) that form a

basis. A generator matrix for a generalised AG code is given as such,
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# Pi deg(Pi)
Pq 0:1:0) 1
Py 0:0:1) 1
P (1:0:1) 1
Py (1:1:1) 1
Ps {(a:1:1),(a?:1:1)} 2
Ps |l {(@:a+1:1),(a®:a:1) 2

Table 7.1: Places of X' /Fg

[0k 0y Ty (F1(P1)) oo Okpn, (T, (F1(PP))]
Y Okyny Tk, (fa(P1))) +oooe Ok, (TR, (F2(P)))
| Oky g (T (fr(P1))) --eee Ok, (T, (fr(Pr))) ]

where f;(P;) is an evaluation of a polynomial and basis element f; at a point P;, np,
is a mapping from F ot to Fq and o0y, ,, is the encoding of a message vector in [F};i
to a code vector in [Ffl”. It is desirable to choose the maximum possible minimum
distance for all codes C; so that d; = k;. The same code is used in the map oy, ,,
for all points of the same degree k; i.e. the code C; has parameters [n},j,d ], for
a place of degree j. Let A; be an integer denoting the number of places of degree j
and B; be an integer such that 0 <B; < A;. If t is the maximum degree of any place
P; that is chosen in the construction, then the generalised AG code is represented
as a C1(k;t;B1,Bg,...,Bs;d1,dg,...,d;). Let [n,k,d], represent a linear code in [,
with length n, dimension 2 and minimum distance d, then a generalised AG code

is given by the parameters (Xing et al., ),
E=1G)zm—-g+1
r t
n=) ni=) Bjn;
i=1 j=1

r t
d=) di-g-k+1=) Bid;—-g-k+1.
i=1 j=1

Example 7.2: Let F(x,y,z) = x> +xyz+x22+y?z (Xing et al., ) be a polynomial
in Fg. The curve X /F2 has genus g =1 and A; = 4 places of degree 1 and Ag =2
places of degree 2. Table 7.1 gives the places of &'/Fo up to degree 2. The field
Fy2 is defined by a primitive polynomial s +s+ 1 with @ as its primitive element.
Points R = (1:a®+a?:1) as a place of degree 4 and @ = (1:b*+53+b2:1) as a place
of degree 5 are also chosen while a and b are primitive elements of Fos (defined
by the polynomial s* +s3 + 52 + s+ 1) and Fy5 (defined by the polynomial s® +s2 + 1)
respectively. The divisor W is W = Py + .- + Pg. The basis of the Riemann-Roch
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space Z(2D) with D =@ — R and m = 2 is obtained with computer algebra software
MAGMA (Bosma et al., ) as,

fi= (x7 +x° +3c)/(3c10 +at+ 1)y
+(x10+x9 v a8+ x+ 1)/(x10+x4+ 1)
fo= B+’ +at+ 3+ D0+t + 1)y

+OB+at + 20+ 2t + 1)

For the map oy, ,, the codes; c1 a[1,1,1]s cyclic code for places of degree 1 and cg
a [3,2,2]s cyclic code for places of degree 2 are used. For the map 7o which applies
to places of degree 2 a polynomial basis [y1,y2] =[1, @] is used. Only the first point
in the place P; for deg(P;) = 2 in the evaluation of f; and f3 at P; is utilised. The

generator matrix M of the resulting [10,2,6]s generalised AG code over [ is,

1101011011
“loo11110101

Example 7.3: Consider again the polynomial F(x,y,z) = x> + xyz + xz2 + y2z with
coefficients from Fo whose curve (with genus equal to 1) has places up to degree 2
as in Table 7.1. An element f of the Riemann Roch space defined by the divisor
G=[R-Q)with@=(@:a®+a?:1)and R =(b:b*+ b3+ b2+ b +1:1) where a
and b primitive elements of Fos and Fo5 (since the curve has no place of degree 3)

respectively, is given by,

f= (3x+ 2222 + z4)y/(x5 +x322+2%)
+ P +atz+a222 + 2302 + a2t + 20D + %22 + 25)

Evaluating f at all the 5 places 2?; from the Table 7.1 and using the map 7geg(p;)

that maps all evaluations to Fg results in,
f(2) ldeg)=1
P_/% 2
[ 1[1]0][1] l|a ]
——
(2 ldeg()=2
This forms the code [6,1,5]4 1. In Fy this becomes,

[1]1]0]1]1 01 1]
=~
1 a’

IFrom Bezout’s dpj, =n-m=n—-k—g+1
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which forms the code [8,1,5]2. Short auxiliary codes [1,1, 1]z to encode f(2%) |deg(#;)=1
and [3,2,2]s to encode f(2?;) |geg(#,)=2 are used. The resulting codeword of a gener-
alised AG code is,

[1]/1/0]1]1 011101

This forms the code [10, 1, 7]o.

7.3.1 Results

Four polynomials and their associated curves are used to obtain codes in Fig better
than the best known codes in (Schimd and Shurer, ). The four polynomials
are given in Table 7.2 while Table 7.3 gives a summary of the properties of their
associated curves (with ¢ = 4). w is the primitive element of Fig. The number of
places of degree j, Aj, is determined by computer algebra system MAGMA (Bosma
et al., ). The best known linear codes from (Schimd and Shurer, ) over Fig

with j=d;for 1< ;<4 are
[1,1,1116 [3,2,2116 [5,3,3l16 [7,4,4]16

which correspond to C1, Co, C3 and C4 respectively. Since ¢ =4 for all the codes in
this paper and
[dl,d29d37d4] = [1?27374]

The representation C1(k;t;B1,Bo,...,B:;d1,ds,...,d;) is shortened as such,
Cl(k;t;Bl,Bz""’Bt;dl?d2>”"dt)E Cl(k;Bl,BZ,---,Bt).

Tables 7.4-7.5 gives new codes that improve on both constructible codes in (Schimd
and Shurer, ). Tables 7.6-7.7 show new codes with better minimum distance
than codes in (Schimd and Shurer, ). It is also worth noting that codes of
the form C;(%;N,0,0,0) are simply Goppa codes (defined with only rational points).
The symbol # in the Tables 7.4-7.7 denotes the number of new codes from each
generalised AG code C1(k;B1,Bo,...,B;) . The tables in (Geer et al., ) contain
curves known to have the most number of rational points for a given genus. Over
F1¢ the curve with the highest number of points with genus g = 12 from (Geer et al.,

) has 88 rational points, was constructed using class field theory and is not
defined by an explicit polynomial. On the other hand the curve %/Fi6 obtained
by Kummer covering of the projective line in (Shabat, ) has A; = 83 rational
points and genus g = 12 and is explicitly presented. Codes from this curve represent
the best constructible codes in F1g with code length 83. The curve ¥3/F1¢ is defined
by the well-known Hermitian polynomial.

Tables 7.4-7.8 give the new codes obtained from %¥5/F14,%3/F16 and X4/F1¢.
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F1=x2210 4+ 43212 4 x21 4 915
Fo=x°+y*z+yz*

Fo=x0+x%yD %+ 2y + iy 1 ?
Fy= 22 +wx?0 + 218 + w1017 + 1015 4

w4x14 + w3x13 + w3x12 + wxll + xlo +
w11x9+w12x8+w14x7+w13x6y2+w9x6y+

w6x6+w2x5y2+w13x5y+w14x5+w14x4y4+

w7x4y2 +w6x4y+w9x4+w8x3y4+w11x3y+

LU4.9C3 + w11x2y4 + w11x2y2 + wx2y + w5x2 +

L08xy4+w6xy2 +w9xy+wlly8 +y4 +w2y2 +
w3 y
Table 7.2: Polynomials in Fqg
Curve | Genus | A1 | Ay | Ag Ay Reference
X1 12 83 | 60 | 1320 | 16140 (Shabat, )
X, 6 65 0 | 1600 | 15600 Hermitian curve
X3 40 225 | 0 | 904 | 16920 (Garcia and Quoos, )
X4 13 97 | 16 | 1376 | 15840 | (Geer and Vlugt, ) via (Grassl, )

Table 7.3: Properties of %;/F1g

Codes k Range | Description #
[83,k,d=72—-Fkl1g | 8<k<52 | C1(k;[83,0,0,0]) | 45
[89,k,d=76—-Fklig | 9<k <54 | C1(k;[83,2,0,0]) | 46
[94,k,d =79 —-Fkl16 | 10<k <57 | C1(%;[83,2,1,0]) | 48
[92,k,d=78—-Fkl16 | 9<k <57 | C1(%;[83,3,0,0]) | 49
[98,k,d =82—-Fk]1g | 11<k <59 | C1(k;[83,5,0,0]) | 49

Table 7.4: Best Constructible Codes from %1/Fig

Codes k Range | Description #
[72,k,d =264 —-Fk]1 | 11<k <50 | C1(%;[65,0,0,1]) | 40
[79,k,d =68 —-Fklig | 11<k <48 | C1(k;[65,0,0,2]) | 38
[77,k,d =67—-Fklig | 10<k <51 | Cy(k;[65,0,1,1]) | 42
[75,k,d =66—-Fklig | 9<k <51 | C1(k;[65,0,2,0]) | 43

Table 7.5: Best Constructible Codes from Z5/F1g

Codes k Range | Description #
[70,k,d 263 -kl | 10<k <50 | C1(%;[65,0,1,0]) | 41

Table 7.6: New Codes from Zs/F1g

Code k Range Description #
[232,k,190—-%] | 102>k =129 | C1(%;[225,0,0,1]) | 28
[230,£,189—-%] | 100=% =129 | C1(%;[225,0,1,0]) | 30
[235,k,192—-F] | 105=k =121 | C1(%;[225,0,2,0]) | 17

Table 7.7: New Codes from Z3/F1¢
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Codes k Range | Description #
[102,k,88—-Fk] | 8<k <66 | C(k;[97,0,1,0]) | 59
[103,£,89-Fk] | 8<k <68 | C(k;[97,2,0,0]) | 61
[106,%,91 - k] k=8 C(k;[97,3,0,0D) | 1

Table 7.8: New Codes from Z4/F1¢

7.4 Generalised Construction II

This section describes the construction of generalised AG codes as described in (Le-
ung et al., ). This method is a variation of the first method in (Xing et al.,

) and codes constructed from this construction can be seen as subfield image
codes. Suppose Fy cFge cFper with £ =2 and e > 1. It is then possible to map F .
to an e/ x e/- matrix with elements from [F, (see Section 2.3.3.1). The map v,/ is

defined as such,
'(//ef . [qu[ — [Fgéxe[
The map ., acts on a vector a =(ay,...,a,) as such,

Yer((@1,...,au)) =Yer(ad)l... [Wer(ay) ai€F e

where | denotes matrix concatenation. The map o,/ , is also defined,
. elxel elxn
Octln - |Fq — [Fq

Tern(M)=M x G

where M is matrix with dimension e/ x e/ and G is the generator matrix of a code
with dimension ef and length n. Let F = F(x,y,z) be a homogeneous polynomial
defined in Fge. Let g be the genus of the curve X /F,e corresponding to the polyno-
mial F. Also let P1,Ps,...,P, be r distinct places of X /F4 and k; = deg(P;) (deg is
degree of). W is a divisor of the curve &/Fse such that W =P;+Py+---+P, and G
a divisor so that

suppW)nsupp(G)=32.

More specifically G = m(@ — R) where deg(Q) = deg(R)+ 1. Associated with the
divisor GG is a Riemann-Roch space £(G) with m = deg(GG)) an integer, m =0 .
From the Riemann-Roch theorem it is known that the dimension of Z(G) is given
by I(G) and

I(G)zm—-g+1

with equality when m = 2g — 1. Also associated with each P; is a g-ary code C;
with parameters [n;,ek; = e-deg(P;),d;l, with the restriction that d; < ek;. Let
{fi,f2,-.fr : [1 € L(Q)} denote a set of k linearly independent elements of £(G)
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that form a basis. A generator matrix for a generalised AG code is given as such,

[ ey Wk, (T, (F1(P1))) <o ety Wek, Tk, (F1(Pr)))]
Ve Ockyn(Wer, (e (f2(P1)))) ------ Oekrn,Wek, (r, (f2(Pr))))
| Oetyns (Wer, (e, (Fr(P1)))  --- Oekrn,Wek, (r, (fr(Pr))))

It is desirable to choose the maximum possible minimum distance for all codes C; so
that d; = ek;. The same code is used in the map oy, ,, for all points of the same de-
gree k; i.e. the code C; has parameters [n;,ej,d ], for a place of degree j. Let A be
an integer denoting the number of places of degree j and B; be an integer such that
0=<B;<A;. Iftis the maximum degree of any place P; chosen in the construction,
then the generalised AG code is represented as a Co(k;¢;B1,B9,...,B;;d1,ds,...,ds).
Let [n,k,d], represent a linear code in [, with length n, dimension £ and minimum
distance d, then a generalised type II AG code is given by the parameters (Leung
et al., ),

k=e-l(G)ze(m—-g+1)
r t
Y. ni=) Bjn,
i=1 j=1
d;
i=1

n
d=)

r
—e-deg(G)= Zdi—k
i=1
No improvements were obtained using this method however many best known codes

have been obtained.

7.5 Summary

The concept of place of higher degrees of curves was presented. This notion was
used in the construction of two types of generalised AG codes. Using the generalised
Construction I 237 improvements to the tables in (Schimd and Shurer, ) were
found. Further results are also obtainable from trivial modifications on the new
codes like shortening, padding and puncturing. In addition many improvements
on constructible codes in the table in (Schimd and Shurer, ) are presented.
Finding curves with many places of small degree and small genera will result in
many new codes using these methods. Tables in (Schimd and Shurer, ) can be

improved via these methods using curves with many points in large finite fields.
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8. IMPROVED CODES FROM GOPPA
CODES

8.1 Introduction

Goppa introduced a class of linear codes in (Goppa, ) and (Goppa, ) com-
monly referred to as Goppa codes or I'(L,G) codes. These codes form an impor-
tant subclass of alternant codes and meet the famous Gilbert-Varshamov bound.
I'(L,G) codes have good properties and some of these codes have the best known
minimum distance of any known codes with the same length and rate. The codes
are mainly defined in a finite field F, and are sub-field sub-codes of generalised
Reed Solomon codes defined in an extension field of ;. Goppa in a subsequent pa-
per (Goppa, ) showed several methods of extending the length of I'(L,G) codes.
Similarly Sugiyama et al (Sugiyama et al., ) presented binary codes derived
from I'(L,G) codes by extending their length and produced some good codes as a
result. In this chapter a construction of extended nonbinary Goppa codes and some
improved codes that have better minimum distance than the best known codes in
the tables from (Grassl, ) with the same length and dimension are presented.
This construction is a generalisation of the method in (Sugiyama et al., ) for
binary Goppa codes.

Section 8.2 gives a brief background on Goppa codes and a definition that suits
the purposes of this chapter. Section 8.3 gives a generalisation of Construction
P (Sugiyama et al., ) for binary codes and establishes the parameters of non-
binary codes obtained therefrom. Section 8.4 shows that certain extended Goppa
Codes can be seen as BCH codes and an instance of the construction from Section
8.3 is used to present improved codes. And finally, Section 8.6 gives a summary
of the codes found using the construction method and further results from nested

codes using construction X.

8.2 Goppa Codes

Recall the description of Goppa codes from Section 3.4. In designing Goppa codes,
it is usually desirable to obtain codes as long as possible and hence the Goppa poly-
nomial G(x) is commonly chosen to have no roots in the field Fy=, in which case

the length of the code is equal to the size of the field i.e. n = q™. For our purposes
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we are interested in Goppa codes whose polynomial has roots in the field F,». A
useful relationship between the parity check matrix of a Goppa code (defined with a
polynomial with roots in its coefficient field) and the Cauchy matrix was presented

in (Sugiyama et al., ) and more explicitly in (Tzeng and Zimmermann, ).

8.1 Theorem (From (Tzeng and Zimmermann, , Appendix)). A I'(L,G) defined

4
by a polynomial G(x) = H(x—ﬁ#)r” with each B, distinct, ry, >0 and B, € Fgm

p=1
satisfies the parity equations

n—1 c;
— =0 forj=1,...,r, u=1,...,¢.
igo(ﬁu_ai)] for J w

The parity check matrix of the code can be expressed as

H,,
H
H=|"|, (8.1)
.Hr[.
where
1 1 e 1
(Bu—ao) (Bu—a1) (Bu—an-1)
1 1 e 1
— 2 _ 2 _ 2
H,, = B .ao) By .al) | Bn o.cnfl) ' (8.2)
1 1 ve. 1
| (Bu—ao)™®  (Bu—a1)* (Bu—an-1)" |

This code with symbols in [, and defining set L = F,m \ {B1,..., B¢} ={ao,...,an-1}

has parameters

length: n=|L|,
redundancy: n—-k<m (Zizl ry),

distance: d= Zﬁ:l ru+1.

A special case is when r;, = 1 for all u when the parity matrix of the I'(L,G) code

becomes

1

1

1

f1—ao P1-a1 B1—an-1
1 1 1
Pe—ao Pa—a1 Bo—an—1
H= ) ,
1 1 1
L Br—ao  Br—a1 Be—an-11

which is equivalent to a Cauchy matrix. It is also the parity check matrix of a

separable Goppa code.
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8.2.1 Modified Goppa Codes

In (Goppa, ), Goppa defined modified Goppa codes. He showed that adding a
row of all 1’s to the parity check matrix of a Goppa code increases both the minimum

distance and the redundancy by one.

8.2 Theorem (From (Goppa, , Theorem 3)). A modified Goppa code € with the

parity check matrix

where H is the parity check matrix of a I'(L,G) code with a Goppa polynomial G(x)

with degree r defined with coefficients in Fym, has parameters

length: n=|L|,
redundancy: n—-k<mr+1,

distance: d=r+2.

The use of modified Goppa codes is most effective when the codes have symbols
in the field F, for which g # 2. It is possible to extend a modified Goppa code by
adding a parity check on the row with all 1’s

. (8.3)
H 0

11...1 1]

This extended and modified Goppa code has parameters

length: n'=|L|+1,

redundancy: n'—k'<mr+1.

8.3 Theorem. The minimum distance of an extended and modified Goppa code defined
with a polynomial G(x) of degree r is lower bounded by d' =r + 2.

Proof. Letc=(cg,c1,...,cn—1) be a non-zero codeword of the Goppa code ¢ defined
by G(x) of degree r and the parity check matrix H in (8.3). A codeword of an
extended and modified Goppa code is then of the form

n—1

Ce = (CO)CI,---,Cn—l)_ Z Ci).
1=0

If ¢, = —Z?z_ol c; =0, then ¢ is a codeword of the modified Goppa code of Theo-
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rem 8.2 and its weight is at least r + 2. Otherwise, ¢, # 0 and hence

wgt(e.) =wgt(e) +1=r+2. [

In the literature, these extended and modified Goppa codes are simply called ex-

tended Goppa codes (MacWilliams and Sloane, ).

8.3 Code Construction

The construction presented below is a generalisation of Construction P in (Sugiyama
et al., ) from binary to nonbinary codes.

We start with extended and modified Goppa codes defined in the previous sec-
tion and a Goppa polynomial with roots exclusively in F,». Consider the Goppa

polynomial

l
G@) = []Gx— B (8.4)

p=1

of degree r = Zi:l"# with distinct roots g, € Fym and r, > 0. The codes 6, are

defined via with parity check matrix

(8.5)

The first ¢ —¢+1 columns of H, contain the parity check matrix H, of the extended
and modified Goppa code given in (8.3), where the matrices H, , are defined in (8.2).

For each of the matrices H, > We add an r; x m matrix H, ” of the form

(00 0 - 0
H, = ,
““1loo 0 -~ 0

1 a a2 - am!

where « is a primitive element of the field Fy». Clearly the code 6 has length and

redundancy

length: n=q"-¢{+ml+1,

redundancy: n—-k<mr+1.
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To obtain a lower bound on the minimum distance of the codes %,, we can basi-
cally follow the logic and presentation of the proof of Theorem 7 in (Sugiyama et al.,
).

8.4 Theorem. The minimum distance of the code 6, is lower bounded by d =r + 2.

Proof. Let ¢ =(cy,c1,...,¢¢) be a codeword of 6,, where
co =(ay,az,...,agm_¢,agm_¢+1)

is a codeword of a modified and extended Goppa code €, with Goppa polynomial
given in Equation (8.4), and ¢, € F7’ for 1 < u < /. If at least one of these vectors ¢,
for 1 < p <7 is non-zero, then cg must be non-zero as well since the columns of the
submatrices H 1, are linearly independent over [,.

Therefore, assume that ¢ is non-zero. Furthermore, let U, and Uy be the sets
of integers u such that ¢,, u =1 is zero or non-zero, respectively. For u € Uy, by
definition ¢, # 0, and ¢, has weight at least 1. Hence the weight of ¢ is lower
bounded by wgt(cg) + |Uyl.

In order to obtain a bound on the weight of ¢ first note that ¢, # 0 implies that
the parity check given by the last row of H, in H; does not hold for ¢, but the other
parity check equations are fulfilled. Hence cg is a codeword of the extended and

modified Goppa code with Goppa polynomial

G)= ] =+ ] x=Bu)™
/JEUN ,UEUZ
The degree of G(x) is r — |Uyl, and hence by Theorem 8.3 wgt(cg) = r — |Uy| +2. In

summary we get wgt(c) = wgt(co) + |[Uy| =7+ 2. =

An alternative view of the codes % is that each codeword ¢ = (¢g,cq,...,¢y) € 6; con-
sists of a vector cq over the field [, while ¢, 1 < u < £ are elements of the extension

field Fym which are mapped to m symbols in [, using a basis (1,a,..., a™ ).

8.4 %, As Extended BCH Codes

A subset of the codes %, can be seen as extended BCH codes in which case a better
lower bound on the dimension of the codes can be obtained. In this case the Goppa

polynomial in (8.4) is defined with 7y >1andry=1for2=<pu</,ie,,

l
Gx) = (x— )" [] - B. (8.6)

p=2
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8.5 Theorem (see (MacWilliams and Sloane, , Ch. 12. §3, Problem (6))). A

Goppa code I'(L,G) defined with the polynomial G(x) = (x— B), B €Fym, and the set
L =Fgm \{p} corresponds to a BCH code defined in [, with length n =q™ — 1.

For simplicity we choose f = 0. Then the BCH code I'(L,x") has consecutive
roots {a L, a™2,...,a”"} in Fgm. If we choose 1 = 0 in Equation (8.6), the parity
check matrix of the modified Goppa code defined with the polynomial in (8.6) and

location set L ={ag,aq,...,a,_1} is given by

1 1 1
1 1
ao al Ap-1
r 1 1 1
11...1 al a? a’
H,, : :
H = H = }1 }1 LR r11 (8.7)
"2 @y @y Ap_1
: 1 1 . 1
Bo—ao Po-a Ba—an-1
H 1 1 ... 1
Te f3—ao Ps—a1 B3—an-1
1 1 . 1
| Be—a0  Pr—a1 Be—an-1 |

Suppose €9 =(a1,az,...,a4m_¢) is a codeword of the Goppa code ['(L,x"1 1) with L =
{B €Fym: G(P) # 0} corresponding to a shortened BCH code! with roots {a™1,...,a 71"}
in Fgm. As noted at the end of the previous section, we can represent c € 6; in the

form
c= (al,- <o @gm_p,Agm—¢+1,€1,C2,.. '705), (8.8)

where a; €, and® ¢, € F,m. We have

for u>1.
i1 Pu—ai
Hence the codes 6, defined with G(x) in (8.6) can be seen as extending the BCH
code T'(L,x"1~1). In many cases the redundancy of the codes is smaller than what

is predicted by the bound Section 8.3. Suppose rgcy is the redundancy of the BCH

IThis shortened BCH code has n = q"-{l,n—-k<m(ri—1),andd =r;
Zcu maps to a vector in [FZL using the basis (1,a,...,a™ ).
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code I'(L,x"~1) then the parameters of the code %, defined by the Goppa polynomial

in Equation (8.6) are

length: n=|Ll+mfé+1,
redundancy: n—-k<mf+rgcg+1,
distance: d=r1+¢+1=r+2.

8.4.1 Example

We use as an illustration of the construction a polynomial G(x) = x2(x + 1)(x + a)(x +
a?) with coefficients from Fig to define an extended Goppa code in F4. The finite
field F1g is defined with the primitive polynomial s* + s+ 1 and has « as a primitive

element. The set L corresponding to G(x) is then given by
L=F;s\{0,1,a,a?, |L|=12.

From (8.7) the parity matrix H of the modified Goppa code over Fig is given as

(1 1 1 1 11 1 1 1111

a12 all alO (Xg (XS a7 a6 a5 a4 (XS aZ (Xl

9 7 5 3 1 a14 a12 alO a8 a6 a4 a2

al a14 a® a2 a6 a13 a8 alO a3 a? a9 a12

a6 aO 0513 054 al a5 a12 a7 a9 a2 a3 aS

. a9 a5 Gf14 alZ a3 aO a4 all a6 a8 al Gf2

%, is defined by the parity check matrix H; over F4, given by

(111111111111100000000 |
1000wow0wlww0000000000
0o0wlww0l®w11000000000
wowwlwlwow01l1w010000000
w00l ww01wl11001000000
H=|000ww0loowl w1000100000 |,
1901 wwl0®wlww000010000
011100l 0wwww000001000
w0wll0wwwl®wl1000000100
woolwll00w0w000000010
w0 @B00®w1000000000001 |

111



Chapter 8: Improved Codes From Goppa Codes

Table 8.1: New Codes 6, over [y

# g™ | m | ri| 0| T(L,xh Codes 6, Codes in (Grassl,
61| 49 | 2 9|3 | [46,33,9]7 | [63,33,13]7 [63,33,12];
62 | 49 | 2 | 17 | 3 | [46,22,17]7 | [53,22,21]; [63,22,20];
63| 49 | 2 | 9|4 | [45,32,9]7 | [54,32,14]7 [54,32,13]7
64| 49 | 2 | 17 | 4 | [45,21,17]7 | [54,21,22]; [64,21,21];
65 | 49 | 2 1|5 | [44,44,1]; | [55,44,7]7 [65,44,6]7
66 | 49 | 2 9|5 | [44,31,9]7 | [65,31,15]7 [65,31,14];
67 | 49 | 2 1|9 [40,40,1]7 | [569,40,11]7 [69,40,10]

where w is a primitive element of F4. The parity check matrix of %, in reduced

echelon form is thus

(1000000000000 1w011w0wd)
01000000000wl110w0wlwl
00100000000ww®wl10 w00 ww
000100000000 w0 wwwwwi 1
00001000000wowllwlwlw
0000010000001 vvowl Dwo
00000010000w00wlowwl vw
0000000100010000010 ww
0000000010000 10www0 w0
00000000010wwwl wwll0w
1 00000000001w00wwwwwww |

Since degG(x) =5, m =2, ¢ =4 and |L| = 12, the code has parameters [21,10,7]4.
The minimum weight of the code was confirmed by direct computation using Magma
(Bosma et al., ). Observe that the code %é; is an extension of the shortened BCH
code [12,10,2]4 defined with Goppa polynomial x and the set L.

8.5 Nested Structure From Codes %,

Consider the code 6; defined with the Goppa polynomial

=2 ,
Gx)=x""[[(x—a’)
i=0

and the parity check matrix
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Table 8.2: New Codes 6, over [Fg

# | g™ | m|ri| ¢| T(W,xY Codes 6, Codes in (Grassl, )

€3 | 64 | 2 | 10 | 3 |[61,46,10]s | [68,46,14]5 [68,46,13]s
69 | 64 | 2 | 19| 3 |161,33,19]g | [68,33,23]g [68,33,22]s
610 64 | 2 | 28| 3 |[61,22,28]g | [68,22,32] [68,22,31]g
611 | 64 | 2 |10| 4|[60,45,10]5 | [69,45,15]g [69,45,14]g
612 | 64 | 2 | 19| 4 1[60,32,19]g | [69,32,24]g [69,32,23]s
613 64 | 2|10 | 5 |1[569,44,10]g | [70,44,16]g [70,44,15]g
614 | 64 | 2 19| 5[69,31,19]g | [70,31,25]g [70,31,24]g
615 64 | 2|10 | 6 [568,43,10]g | [71,43,17]g [71,43,16]g
616 | 64 | 2 |19| 6][58,30,19]5 | [71,30,26]s [71,30,25]s
€7 | 64| 2 10| 7]1[57,42,1015 | [72,42,181s (72,42 1715
618 | 64 | 2 1| 8| [56,56,1]g | [73,56,10]s [73,56,9]3

€19 | 64 | 2 1|10 | [54,54,1]g | [75,54,12]g [75,54,11]g
690 | 64 | 2 1|11 | [53,53,1]g | [76,53,13]s [76,53,12]g
691 | 64 | 2 1|12 [62,562,1]g | [77,52,14] [77,52,13]g
620 | 64 | 2 | 1|13 [51,51,1]g | [78,51,15] [78,51,14]g

11...1 1 0 O
H., 0 0 0
H.,=| Hy 0 ho O (8.9)
- H;, 2 0 0 O h[_g‘

The submatrices H;, 0 <i<¢ -2 are 1 x g™ — ¢ rows of the form

1 1

1

H;=

P

al—al

2t g

1

a2 gl |’

where «a is a primitive element of the field F;=» and the submatrices 2;,0<i</¢-2

are 1 x m rows of the form

hi=|1 a a2 - «a

m—1
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Table 8.3: New Codes 6, over [Fg

# gt \m | ri| ¢| TL,x Y Codes 6, Codes in (Grassl,
623 | 81 | 2 | 11| 3 |[78,61,11]9 | [85,61,15]9 [85,61,14]9
624 | 81 | 2 | 21| 3 |[78,46,21]9 | [85,46,25]9 [85,46,24]9
625 | 81 | 2 | 31| 31[78,33,31]9 | [85,33,35]9 [85,33,34]9
626 | 81 | 2 | 41| 3 |[78,22,41]9 | [85,22,45]9 [85,22,44]9
627 | 81 | 2 | 11| 4 |[77,60,11]y | [86,60,16]9 [86,60,15]9
628 | 81 | 2 | 21| 4 |[77,45,21]9 | [86,45,26]9 [86,45,25]9
629 | 81 | 2 | 31| 41[77,32,31]9 | [86,32,36]9 [86,32,35]9
63 | 81 | 2| 1| 5| [76,76,1]9 | [87,76,7]9 [87,76,6]9
631 | 81 |2 |11 | 5 |1[76,59,11]9 | [87,59,17]9 [87,59,16]9
632 | 81 | 2 | 21| 5 |[76,44,21]9 | [87,44,27]9 [87,44,26]9
633 | 81| 2 |31| 5]1[76,31,31]9 | [87,31,37]9 [87,31,36]9
634 | 81| 2| 1| 6| [75,75,1]9 | [88,75,8]9 [88,75,7]9
635 | 81 | 2 | 11| 6 |[75,58,11]9 | [88,58,18]9y [88,58,17]9
636 | 81 | 2 | 21| 6 |[75,43,21]9 | [88,43,28]9y [88,43,27]9
637 | 81 | 2| 1| 7| [74,74,1]9 | [89,74,9]9 [89,74,8]9
638 | 81 | 2 | 11| 7 |[74,57,11]9 | [89,57,19]9 [89,57,18]9
639 | 81 | 2 | 21| 7 |[74,42,21]9 | [89,42,29]9 [89,42,28]
640 | 81| 2| 1| 8] [73,73,1]9 | [90,73,10]9 [90,73,9]9
641 | 81| 2 | 11| 8[73,56,11]9 | [90,56,20]9 [90,56,19]9
Ga2 | 81 | 2 | 1| 9] [72,72,1]9 |[91,72,11]9 [91,72,10]9
643 | 81 | 2 | 1|10 [71,71,1]9 |[92,71,12]9 [92,71,11]9
644 | 81 | 2 | 1|11 | [70,70,1]9 | [93,70,13]9 [93,70,12]9
645 | 81 | 2 | 1|12 [69,69,1]9 | [94,69,14]9 [94,69,13]9
646 | 81 | 2 | 1|13 | [68,68,1]9 | [95,68,15]9 [95,68,14]9
647 | 81 | 2| 1|14 [67,67,1]9 |[96,67,16]9 [96,67,15]9
648 | 81 | 2 | 1|15 [66,66,1]9 |[97,66,17]9 [97,66,16]9

Observe from Equations (8.5) and (8.9) that %; is simply a shortened form of %,.
Thus if 6; and %, are defined with the same Goppa polynomial G(x) then Hy corre-

sponds to H, with the submatrix H,, removed. The codes €; have parameters,
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length: n=|Ll+m(f-1)+1,
redundancy: n—-k<mfl+rgcg+1,
distance: d=zr1+¢+1=r+2.

Suppose 6y, is defined with G1(x) = x® Hf;g(x —a') and 6, is defined with Go(x) =
xb Hf;g(x —a') with a < b, then

CgRZ < CgRl

holds?. It is well known code that nested codes can be extended using Construction

X. Recall Construction X from Theorem 2.1.

8.6 Theorem (Construction X (Sloane et al., )). If a linear code 6, with pa-
rameters [n1,k1,d1]l; has a subcode 6> with parameters [ng,ko,ds2ly, then €1 is
extendable to a code with parameters [n1+n,k1,min{d1 +6,d2}], using an auxil-

iary code [n,k1—ko,6],.

Table 8.4: New Codes From Construction X in Fy

# 6o 61 Auxiliary| New Codes Codes in (Grassl, )
codes

ri| ¢ Codes ri | ¢ Codes

619 | 8 | 5|[63,31,14]7 | 10 | 5 | [53,27,16]7 | [5,4,2]7 | [68,31,16]; [58,31,15];

8.6 Results

In this section we present results on codes obtained from the two construction meth-

ods.

8.6.1 New Codes From %,
We use Goppa polynomials with coefficients in Fym of the form
-2 .
G@x) =2 [[(x—ah),
i=0

where a is a primitive element of F,». The Goppa polynomial has degG(x) =r =
ri1+¢—1. Hence from Theorem 8.4 the codes %, have minimum distance d =ry +

¢+ 1. The codes presented in Tables 8.1-8.3 have minimum distances better than

3Notice however that €p, gZ Gp; since EposH PTI # 0 when %5, and %5, are defined by G1(x) and Ga(x)
respectively and T is the transpose operator.
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Table 8.5: New Codes From Construction X in [Fg

# G Gro Auxiliary| New Codes | Codes in (Grassl, )
codes
ri| ¢ Codes ry | ¢ Codes
650 | 9 | 3|166,46,13]g | 11 | 3 | [66,42,15]g | [5,4,2]g | [71,46,15]g [71,46,14]g
651 | 9 | 3|166,46,13]g | 12 | 3 | [66,40,16]g | [8,6,3]s | [74,46,16]g [74,46,15]g
652 | 13 | 3 | [66,38,171s | 18 | 3 | [66,33,22]g | [9,5,5]g | [75,38,22]s [75,38,21]g
653 | 18 | 3 | [66,33,22]g | 20 | 3 | [66,29,24]g | [5,4,2]g | [71,33,24]3 [71,33,23]s
654 | 18 | 3 | [66,33,22]g | 21 | 3 | [66,27,25]g | [8,6,3]s | [74,33,25]g [74,33,24]g
655 | 9 | 4|167,45,14]g | 11 | 4 | [67,41,16]g | [5,4,2]g | [72,45,16]g [72,45,15]g
656 | 13 | 4| [67,37,18]g | 18 | 4 | [67,32,23]g | [9,5,5]s | [76,37,23]g [76,37,22]g
€s7 | 18 | 4 | [67,32,23]g | 20 | 4 | [67,28,25]g | [5,4,2]s | [72,32,25]g [72,32,24]g
658 | 9 | 5|168,44,15]g | 11 | 5 | [68,40,17]g | [5,4,2]g | [73,44,17]g [73,44,16]s
the codes with the same length and dimension in (Grassl, ). The codes are

represented in the form [n,k,d];. The dimensions of the codes in Tables 8.1-8.3 are
obtained by expressing their respective parity check matrices in reduced echelon

form.

8.6.2 New Codes From %;

Using Construction X on the codes %%, and 6%, as defined in Section 8.5 and short
optimal auxiliary codes, we are able to obtain 30 improvements to the tables in
(Grassl, ) for the fields F7, Fg and Fg. The results are shown in Tables 8.4-8.6.
In addition to the 79 codes presented in Tables 8.1-8.6 many codes that improve
the tables in (Grassl, ) can be obtained by shortening and puncturing codes in
Tables 8.1-8.6.

8.7 Further Extensions of the Codes %,

The codes %, defined by the parity check matrix in Equation (8.5) can be denoted
as 6;[L,G] since they are defined for a coordinate set L and a Goppa polynomial
G(x). In (Tomlinson et al., ) the authors show that it is possible to extend the
coordinate set L and produced new binary codes as a result. The method is applied

for the case of nonbinary codes. A new coordinate set L is defined,

L=RUL Rc{a':Ga")=0,a’eFsm \{O}}.
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which contains a subset of the roots of G(x) except 0. This has the effect of in-
creasing both the length and dimension of the code by |R|. A modified parity check

matrix with the set L and G(x) is formed,

1.1 1 0 0 --- 0
H., 0 H 0 - 0

Hyi g = (8.10)
H, 0 0 0 - H,

where the row matrices H, are as previously defined. As a consequence of modifying
the coordinate set the matrices H,, for u such that f, € R will each have an entry
Flﬁ,u which is replaced with a zero. Normally each coordinate corresponding to
B € R is deleted from all parity check equations of H,. Replacing Flﬁu with a zero
deletes the coordinates only for the affected parity check equations H,, 8, € R by
multiplying these coordinates by zero. The codes %6, are labelled as intermediate

codes.

8.7 Theorem. If the coordinate set of the code 6, is appended with a set R and un-
defined entries ( ﬁ) of the intermediate parity check matrix are replaced with a
zero, the intermediate binary code CKPUZ,G] has minimum distance d = d,— |R| where
d, is the minimum distance of 6,. Furthermore all codewords of weight w such

that d, — |R| <w < d, are nonzero in at least one of the coordinates in R.

Proof. From the proof of Theorem 8.4, it is clear that any v rows H,, of the parity
check matrix of %6, contribute v to the distance of the code d,. Consider the inter-
mediate code, all codewords that are zero in the coordinates specified by R in the
intermediate parity check are codewords of the original code 6, and have distance
dp. All codewords that are nonzero in at least one coordinate in R are not in the
original code ¥, thus for these codewords the rows of the intermediate parity check
matrix that have an entry Flﬁu replaced with a zero are not guaranteed to con-
tribute to their minimum weight. There are |R| of such rows, hence the minimum
weight is = d, — |R]|. [

With the knowledge that all codewords of weight < d, in the intermediate code
€,

P

to extend the minimum distance of €,; ; by simply repeating each of these co-

(L) are nonzero in at least one of the coordinates specified by R, it is possible

ordinates in R so that the minimum distance is increased to d, and the length is
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increased by |R|. The new code is called a modified code denoted by %,,. These

modified codes 6,, have parameters,
length: n<|Ll+ml+1+2R|=|LI+m¢+1+|R|
redundancy: n-k<mdegG(x)+1+|R|

distance: d =degG(x)+2

It is evident from Tables 8.7-8.8 that all the codes obtainable for this method are
also obtainable from Construction X and codes with the same parameters can be
found in Tables 8.4-8.5.

8.8 Summary

Construction P by Sugiyama et al. ( ) for binary Goppa codes was generalised
to the case of nonbinary codes. The concept of an extended Goppa code was used
to obtain improvements to the tables of best known codes in (Grassl, ). These
codes can be seen as extended BCH codes and the method can be considered as
an efficient construction of extended BCH codes. In total 48 new codes with better
minimum distances than any known codes with the same length and dimension
were obtained in finite fields F7, Fg and Fg9. In addition 30 new codes were found
from further extensions using Construction X. Many more codes can be obtained
from the new codes by simple modifications like shortening and puncturing codes
in Tables 8.1-8.6.
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Table 8.6: New Codes From Construction X in Fg

# b1 Gro Auxiliary | New Codes || Codes in (Grassl, )
codes
ry | ¢ Codes ri | ¢ Codes
€59 | 10 | 3 | [83,61,14]9 | 12 | 3 | [83,57,16]9 | [5,4,2]9 | [88,61,16]9 [88,61,15]9
%6s0 | 10 | 3 | [83,61,14]9 | 13 | 3 | [83,55,17]9 | [8,6,3]9 | [91,61,17]g [91,61,16]9
%661 | 15 | 3 | [83,51,19]9 | 20 | 3 | [83,46,24]9 | [9,5,5]9 | [92,51,24]9 [92,51,23]9
6s2 | 20 | 3 | [83,46,24]9 | 22 | 3 | [83,42,26]9 | [5,4,2]9 | [88,46,26]9 [88,46,25]9
663 | 20 | 3 | [83,46,24]9 | 23 | 3 | [83,40,27]9 | [8,6,3]9 | [91,46,27]9 [91,46,26]9
664 | 24 | 3 | [83,38,28]9 | 30 | 3 | [83,33,34]9 | [10,5,6]9 | [93,38,34]9 [93,38,33]9
665 | 30 | 3 | [83,33,34]9 | 32 | 3 | [83,29,36]9 | [5,4,2]y | [88,33,36]9 [88,33,35]9
%666 | 10 | 4 | [84,60,15]9 | 12 | 4 | [84,56,17]9 | [5,4,2]9 | [89,60,17]9 [89,60,16]9
€6s7 | 10 | 4 | [84,60,15]9 | 13 | 4 | [84,54,18]9 | [8,6,3]9 | [92,60,18]9 [92,60,17]9
6es | 11 | 4 | [84,58,16]9 | 14 | 4 | [84,52,19]9 | [8,6,3]9 | [92,58,19]9 [92,58,18]9
6s9 | 15 | 4 | [84,50,20]9 | 20 | 4 | [84,45,25]9 | [9,5,5]9 | [93,50,25]9 [93,50,24]9
670 | 19 | 4 | [84,46,24]9 | 23 | 4 | [84,39,28]9 | [10,7,4]9 | [94,46,28]9 [94,46,27]9
€671 | 20 | 4 | [84,45,25]9 | 22 | 4 | [84,41,27]9 | [5,4,2]9 | [89,45,27]9 [89,45,26]9
€72 | 20 | 4 | [84,45,25]9 | 23 | 4 | [84,39,28]9 | [8,6,3]9 | [92,45,28]9 [92,45,27]9
673 | 10 | 5 | [85,59,16]9 | 12 | 5 | [85,55,18]9 | [5,4,2]9 | [90,59,18]9 [90,59,17]9
674 | 10 | 5 | [85,59,16]9 | 13 | 5 | [85,53,19]9 | [8,6,3]9 | [93,59,19]9 [93,59,18]9
675 | 20 | 5 | [85,44,26]9 | 22 | 5 | [85,40,28]y | [5,4,2]9 | [90,44,28]9 [90,44,27]9
676 | 10 | 6 | [86,58,17]9 | 12 | 6 | [86,54,19]9 | [5,4,2]9 | [91,58,19]9 [91,58,18]9
€77 | 20 | 6 | [86,43,27]9 | 22 | 6 | [86,39,29]9 | [5,4,2]9 | [91,43,29]9 [91,43,28]9
63 | 10 | 7 | [87,567,18]9 | 12 | 7 | [87,53,20]9 | [5,4,2]9 | [92,57,20]9 [92,57,19]9
679 | 10 | 8 | [88,56,19]9 | 12 | 8 | [88,52,21]9 | [5,4,2]9 | [93,56,21]9 [93,56,20]9

# | g™ |m|ri|¢]| Codes %, R| | Codes 6;, | Codes in (Grassl, )
61|49 | 2 | 9|6 |I[56,30,16]7 1 | [58,31,16]; [58,31,15]

Table 8.7: New Codes 65y, in Fq
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# q" |\m|r1|¢| Codes%6 ||R|| Codes 6, | Codesin (Grassl,
6 | 64 | 2 | 10 | 4 | [69,45,15]3 1| [71,46,15]s [71,46,14]g
%3 | 64 | 2 |11 |4 |[69,43,16]ls | 1 |[71,44,16]s [71,44,15]s
64 | 64 | 2 | 19| 4|169,32,24]g | 1 |[71,33,24]s [71,33,23]s
65 64| 2|20 |4)|[69,30,25lg| 1 |[71,31,25]g [71,31,24]s
6s | 64 | 2 |10 |5 |[70,44,16]lg | 1 | [72,45,16]s [72,45,15]g
67 | 64 | 2|10 |5 |[70,44,16]ls | 2 | [74,46,16]s [74,46,15]g
6s | 64 | 2 |11 |5 |[70,42,171s | 1 |[72,43,17]s [72,43,16]s
6y | 64 | 2|19 |5 |[70,31,25]lg | 1 |[72,32,25]s [72,32,24]s
%10 | 64 | 2 |19 |5 |[70,31,25]g | 2 | [74,33,25] [74,33,24]s
611 | 64| 2 |10 |6 |[71,43,17]g | 1 |[73,44,17]g [73,44,16]s

Table 8.8: New Codes 6y, in Fg
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# qm" | m | r1| ¢ | Ecodes 6, | |R| | Ecodes 6,, || Ecodes in (Grassl,
612 | 8 |2 |11|4|[86,60,16]g| 1 |I[88,61,16]9 [88,61,15]9
63|81 |2 |12|4]|[86,58,17]g| 1 |I[88,59,17]y [88,59,16]9
614 | 81 | 2 |14 | 4 |[86,54,19]9 | 1 |[88,55,19]9 [88,55,18]9
615 | 81 | 2 |21|4][86,45,26]g| 1 |[88,46,26]9 [88,46,25]9
616 | 81 | 2 | 22 | 4 |[86,43,27]9 1 | [88,44,27]9 [88,44,26]9
67|81 |2 |31|4]1[86,32,36lg| 1 |I[88,33,36]9 [88,33,35]9
6185|812 |11|5]|[87,59,17]g | 1 |I[89,60,17]9 [89,60,16]9
619 | 81 |2 |11 |5 |[87,59,17]g | 2 |[91,61,17]g [91,61,16]9
620 | 81 | 2 |12 |5 |[87,57,18]g | 1 |[89,58,18]y [89,58,17]9
691 | 81 | 2 |12 |5 | [87,57,18]lg | 2 | [91,59,18]9 [91,59,17]y
622 | 81 | 2 | 13 | 5| [87,55,19]9 | 2 | [91,57,19]9 [91,57,18]y
o3 | 81 | 2 | 21 | 5 | [87,44,27]9 1 | [89,45,27]9 [89,45,26]9
Goa | 81 | 2 | 21 | 5 | [87,44,27]9 | 2 | [91,46,27]9 [91,46,26]9
65 | 81 | 2 | 22| 5| [87,42,28]g | 1 |[89,43,28] [89,43,27]9
696 | 81 | 2 | 22 | 5| [87,42,28]g | 2 | [91,44,28]9 [91,44,27]
697 | 81 | 2 | 11 | 6 | [88,58,18]g | 1 | [90,59,18]9 [90,59,17]9
698 | 81 | 2 | 11 | 6 | [88,58,18]g | 2 | [92,60,18]9 [92,60,17]9
629 | 81 | 2 | 12| 6 | [88,56,19]9 | 1 |[90,57,19]9 [90,57,18]9
630 | 81 | 2 | 12 | 6 | [88,56,19]9 | 2 | [92,58,19]9 [92,58,18]9
631 | 81 | 2 |21 |6 |[88,43,28]g | 1 |[90,44,28]9 [90,44,27]9
632 | 81 | 2 | 21 |6 |[88,43,28]g | 2 |[92,45,28]9 [92,45,27]9
633 | 81 | 2 | 21 | 6 | [88,43,28]g | 3 | [94,46,28]9 [94,46,27]9
634 | 81 | 2 |10 | 7 | [89,58,18]g | 1 |[91,59,18] [91,59,17]y
635 | 81 | 2 | 11 | 7 | [89,57,19]9 | 1 |[91,58,19]9 [91,58,18]9
636 | 81 | 2 | 11| 7 | [89,57,19]9 | 2 | [93,59,19]9 [93,59,18]
637 | 81 | 2 |12 |7 |[89,55,20]g | 1 |[91,56,20]9 [91,56,19]9
633 | 81 | 2 | 20 | 7 |[89,43,28]g | 1 |[91,44,28] [91,44,27]9
639 | 81 | 2 | 21| 7 |[89,42,29]9 | 1 |[91,43,29]9 [91,43,28]
640 | 81 | 2 | 10 | 8 | [90,57,19]9 | 1 | [92,58,19]9 [92,58,18]9
641 | 81 | 2 | 11| 8 |[90,56,20]9 | 1 |[92,57,20]9 [92,57,19]9
642 | 81 | 2 | 11 | 9| [91,55,21]9 1| [93,56,21]9 [93,56,20]9

Table 8.9: New Codes 65y, in Fg
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9. A SPECIAL CASE OF SHORTENING
LINEAR CODES

9.1 Introduction

The minimum distance of a linear error correcting code is an important measure of
performance of the code. Therefore it is desirable to obtain a linear code with the
maximum possible minimum distance d, given a code length n and code dimension
k. Linear codes in tables (Grassl, ) and (Schimd and Shurer, ) have the
best known minimum distance of any known codes with the same length and dimen-
sion. Many of the codes in these tables are obtained from other good codes using
well known methods of constructing new codes from existing ones. New codes can
be obtained from existing ones by examining the low weight codewords of known
optimal codes. Previous methods that have used this approach include Grassl and
White (Grassl and White, ) in which a method of puncturing codes which uses
the notion of a hitting set was presented and extending the length of codes by Kohn-
ert (Kohnert, ) using a method that solves a set of Diophantine equations. In
this Chapter a method of shortening linear codes in carefully chosen coordinates ob-
tained by examining low weight codewords is presented. It is shown that this short-
ening method produces codes with parameters [n—[,k—[,=d+0+1] when there are [
deleted coordinates for some 6. It is also shown that these / coordinates can be used
to extend the codes so that they form codes with parameters [n+ (6 +1)],k,d+6 +1].
The method is most efficient when the codes have a special structure. Recent re-
sults from Bezzateev and Shekhunova (Bezzateev and Shekhunova, ) on chains
of binary Goppa codes provides codes with such a structure. Using the relation-
ship between shortening and lengthening, four new binary codes with parameters
[243,124,33]0, [244,124,34]s, [245,124,35]9, and [246,124,36], are presented.

9.2 Background

Shortened codes are obtained by deleting information symbols of a longer codes. A
shortening method that has proved effective in producing good codes is construc-
tions Y1 (MacWilliams and Sloane, ). Construction Y1 produces a shortened
[n—-1,k—1+1,=d], code from a code € with parameters [n,k,d], length n, dimen-

sion £ and minimum distance d,defined in a finite field with cardinality q if the
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dual of ¥ has a codeword with weight /. In (Lim and Guan, ) a code short-
ening technique was presented for binary BCH codes and product codes. By dis-
carding all the minimum weight codewords of a code with parameters [n,%,d], the
authors were able to produce a shortened code with parameters [n -1,k —1,d +1],.
A code with parameters [n,k,d], punctured in s coordinates has new parameters
[n—s,k,d—s];. Grassl and White(Grassl and White, ) presented a punctur-
ing scheme which in its simplest form punctures the code in coordinates that co-
incide with only zero symbols of any minimum weight codeword thus forming an
[n—s,k,d—s+1]; code. By examining codewords of weight < d + j the authors
presented a generalised puncturing method that produced codes with parameters
[n—s,k,d—s+ jl; and as a result many new codes that have better distances than
codes in (Grassl, ) with the same code rate were presented. Kohnert (Kohnert,

) presented a code extension scheme which extends a code [n,%,d], to a code
with parameters [n +/,k,d +1],. The appended [/ coordinates are simply repeated
coordinates of the original code and coincide with at least one non-zero symbol in
any minimum weight codewords. Kohnert (Kohnert, ) suggests that the pre-
sented lengthening scheme can be seen as an inverse of the puncturing scheme by
Grassl (Grassl and White, ). In this Chapter a shortening scheme which can be
seen as a generalisation of the method in (Lim and Guan, ) is presented. This
method produces an [n—1,k—1,=d +6 +1], code from a [n,k,d], code by examining
codewords of weight up to d + 6. In addition the set of / coordinates used in this
method can be used to extend the original code to form an [n +1,k,d + 6 + 1] code.
Using this relationship and some well studied Goppa codes from (Bezzateev and

Shekhunova, ) improvements to the tables in (Grassl, ) are presented.

9.3 Code Shortening and Extension

Let € be a linear code of length n, dimension £ and minimum distance d. Let
the set {0,...,n — 1} be the coordinates of the code €. Shortening involves deleting
[ < k information coordinates from the set {0,...,n —1}. These [ < & information
coordinates correspond to any linearly independent columns of the parity check
matrix of €. To ensure that the deleted coordinates are in fact information symbols

Theorem 9.1 is employed.

9.1 Theorem (From (MacWilliams and Sloane, )). A code with minimum
distance d has every combination of d — 1 or less columns of its parity check matrix

linearly independent.

By constraining the number of deleted coordinates / such that! <k and! <d itis

ensured that these [ coordinates are information coordinates. Let ¢ € € a codeword
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of € then the support of ¢ is defined as ,
supp(e)={i:i€{0,...,n—1}|c; #0}.

Let d be the minimum distance of the code and the weight of a codeword be the

cardinality of its support,

weight(c) = |supp(c)|.
Let M < €6 be the set of minimum weight codewords
M ={ce¥ : weight(c)=d}
and W a set of sets satisfying,

W ={supp(e) : Ve € M}. (9.1)

9.1 Definition (From (Grassl and White, )). A hitting set ¢ <{0,...,n—1} of
the set W is any set such that every set w € W intersects _¢. Formally,

| Znwl=1 YweW

The hitting set _# for the set W is a set containing coordinates such that every
codeword of minimum weight in % is non-zero in at least one of the coordinates

contained in _¢.

9.3.1 Code Shortening

9.2 Theorem. If ¢ is a hitting set of the set W, shortening the code € in coordinates

specified by _# will produce a linear code with parameters [n—1,k—1,=d+ 1] where
l=|¢l,l<kandl<d.

Proof. Since every codeword of minimum weight in ¥ is non-zero in at least one
coordinate contained _# and coordinates of _# contain only information coordinates,
all the minimum weight codewords of ¢ are discarded as a result of shortening.

Thus the shortened code 65 has minimum weight = d + 1. [
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An observation from Theorem 9.2 is that all codewords (not necessarily of mini-
mum weight) that are nonzero in at least one coordinate in _# are also no longer in

the shortened code.
ifee D then c¢ %6,

This suggests that it is possible to extend the definition of the hitting set to include
codewords of ¥ with weight at most d + 6 for some 6. The sets M; are first defined

as,
M; ={c€€ : weight(c)=d + i}
and the sets M and W as,
B o
M=JM;
i=0

W = {supp(c) : Ve e M}.

Let _¢s denote the hitting set of W.

| Zsnwl=1 VYweW

9.1 Corollary (Generalized Shortening). If 75 is a hitting set of the set W, short-
ening the code € in coordinates specified by _#s; will produce a linear code with
parameters [n—1,k—-1,2d +6+ 1] where l =| Zs|, | <k and |l <d.

9.3.2 Code Extension

A code € with parameters [n,k,d] can be extended by appending [ new coordinates
so that the extended code %, has parameters [n +[,k,d + 1], if every codeword of
minimum weight d in 6 has a weight at least one in the appended / coordinates. It
is possible to extend a code in this manner by examining all codewords of minimum
weight. Let _# define the hitting set of the set W as in Section 9.3 with / = |_Z|.
By repeating the ! coordinates of ¢ contained in _¢ for every codeword of €, it is

possible to increase the minimum distance to >d + 1.

9.3 Theorem (From (Kohnert, ). If ¥ is a hitting set of the set W, extending
the code € by repeating coordinates specified by _# will produce a linear code with
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parameters [n+1,k,d + 1] where | =| Z|.

Proof. Since every codeword of minimum weight in ¥ is nonzero in at least one
coordinate in _#, repeating the / coordinates contained in _# ensures that the weight

of any of these codewords increases to at least d + 1. [

Suppose G =[g;], j =10,...,n—1]is the generator matrix of € where g; is a column
of G. A generator matrix of the extended code G, with parameters [n +1,k,d + 1]

can be formed as such,
G.=G|G where G=[g;], je ¢

and | denotes matrix concatenation. This idea was presented in (Kohnert, ) in
which the authors refer to this type of extension as an (I, 1)-extension. It is possible
to generalise this extension by examining codewords of weight up do d + 6 of the
code €. Let _#5s and W be defined as in Section 9.3.1.

9.4 Theorem. If g5 is a hitting set of the set W, extending the code € by repeating
coordinates specified by s a number of p times will produce a linear code with

parameters [n+pl,k,d + plwherel =| Zs|land 1<p<6+1

Proof. Since all codewords of € of weight w, d <w < d +  are nonzero in at least
one coordinate in _gs, repeating the / coordinates p times ensures that these code-
words have weight at least w + p. The minimum of these weights is d + p, thus the

extended code has minimum weight d + p. [

The extended code 6, has generator matrix G, as,

G. =G|G1|--- |G,
where Gi:[gj] ,i=[1,...,pland j€ %

9.2 Corollary. If a code € with parameters [n,k,d] can be shortened to a code 6
with parameters [n -1,k —1,=d + 6 + 1] with a coordinate set ¢s, then € can also
be extended to a code 6, with parameters [n+ pl,k,d + pl, 1 < p <6+ 1 using the

same coordinate set.

Equation (9.2) gives a summary of Corollary 9.2 given an [n,k,d] code and a set

Fs-
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Sh ' E di
[n—| 25,k —| Zsl,= d+6+1] L [ B, d] =22, [ 4 (5+ 1)) s, b, d +6 +1]
9.2)
TABLE I
Codes I'(LL1,G1) and I'(Lo,G1)
Codes G(x) L Length Dimension Distance
T(L1,Gy) | " 1+1 [ (Fe\FJuU{0} | 2—t+1 | 2-t-20(t-3 2t -1
T(Lg,G1) | 2 1+1 | {Fpe\F4} t2—t | 2-t-20(t-3)-1] 2t+4

Example 9.1: Consider the Hermitian code %, defined in F14 with parameters
[64,6,24]16. The code is defined with divisors D and G given as

G=mPs =11P,
D:P0+P2+“'+P63

The trace code of 6y in Fy is denoted by %;. This code has parameters [64,13,24]s

and is optimal (see tables in Grassl, ). The €, code has weight enumerator
x5 +368x%0y* + 256020 y?® + 2334232y 1 2560228 ® + 368271 y*0 + y©4.

Using a random search on the supports of the minimum weight codewords of %,
the set _#p=1{0,6,8,11,12,14,46,50,54} with |_#)| =9 was found. Note that _#, may
not be unique even for a fixed ordering of the points P;. Shortening %, in these
coordinates using Theorem 9.2 produces a code with parameters [55,4,28]s which
is also optimal. It can be observed that the shortened code has minimum distance
much greater than the lower bound which is 25 since the next available weight
(from the weight enumerator) is 28. Extending the code using Theorem 9.3 and _¢j
we obtain a [73,13,25]s code.

Example 9.2: Consider the BCH [63,18,21]s code. A random search on the sup-
ports of the codewords of this code with weights 21 and 22 produces the set

_#1 ={10,11,28,30,32, 33, 36,38,57,58,59}

with |_#1| =11. Shortening the BCH code in these coordinates produces a code with
parameters [57,7,23]s.
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Fpe I'(L1,G1) I'(L2,G1)

F16 [13,2,7]9 [12,1,12]

Fes | [57,17,15]3 | [56,16,2015
Fose | [241,124,3115 | (240,123,361
Fio24 | [993,687,63]2 | [992,686,68]9

QUi W N

Table 9.2: Codes I'(L1,G1) and I'(Lo,G1) for 2< ¢ <5

9.4 Goppa Codes

Recall the definition and description of Goppa codes from Section 3.4. A Goppa
code is called separable if its defining polynomial has distinct non-repeated roots.
Separable Goppa codes with Goppa polynomials with coefficients in the finite field
Fpe and ¢ = 2¢ are of particular interest. These codes are defined in the finite field Fo,
a subfield of F,2. In (Bezzateev and Shekhunova, ) Bezzateev and Shekhunova
present results on Goppa codes defined by Gi(x) = ™! +1 and showed that the
minimum distance of these codes is exactly d = 2¢ — 1. The dimension of these codes

was proven in (Véron, ) to be,
3
k= t2—t—2£(t——)
2

and the codes have length n = t2 —t+1. These codes have a location set L; =
{F2 \F:}U{0}. These codes are denoted as I'(L1,G1). In a separate paper (Bezza-
teev and Shekhunova, ), Bezzateev and Shekhunova showed that shortened
codes I'(Lg,G1) obtained from I'(L1,G 1) with a set Lg = {F,2 \ F;} have minimum dis-
tance d = 2t +4. These binary shortened codes have parameters [n— 1,k —1,2¢+4]s.
Table I gives the parameters of these two codes. Table 9.2 shows the parameters of
these two codes in the range 2 < ¢ <5. The codes I'(L1,G1) may be extended using
Corollary 9.2. Using this approach,

€ =T(L1,G1) G =T(Ls,G1) 6=2t+4—-(2t-1)—1=4

in addition,

Fs=I=10} 1=1

if it is assumed that the location set is ordered such that L; ={0,a1,...,a,_1} where
ao = 0. This means that shortening the codes I'(L1,G1) with minimum distance
2t — 1 in the coordinate _#4 = {0} will increase the distance of the shortened code to
2t+4. From Section 9.3.1 and Corollary 9.1 it is clear that all codewords of I'(L1,G1)
of weight w such that 2¢ — 1 < w < 2¢ + 3 are nonzero in location {0}. Consequently

the code I'(L1,G1) can be extended using Corollary 9.2 to obtain codes 6, with pa-
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0| Fp I'(L1,G1) p 6, Codes in (Grassl,
1 [14,2,8], [14,2,9],
2 [15,2,9] [15,2,10],

2| [Fig [13,2,7]9 3 [16,2,10], [16,2,10]5
4 [17,2,11]5 [17,2,11]5
5 [18,2,12], [18,2,12],
1 [58,17,16]; [58,17,18]s
2 [569,17,17] [59,17,19]

3| Fga [67,17,15], | 3 [60,17,18], [60,17,20]5
4 [61,17,19]9 [61,17,20]9
5 [62,17,20]9 [62,17,21],
1| [242,124,32], [242,124,32],
2 | [243,124,33]5 [243,124,32],

4 | Fose | [241,124,31] | 3 | [244,124,34]5 [244,124,33];
4 | [245,124,35]9 [245,124,34],
5 | [246,124,36]2 [246,124,35]9
1 | [994,687,64]9 -
2 | [995,687,65]9 -

5 | F1o24 | [993,687,63]2 | 3 | [996,687,66] -
4 | [997,687,67]5 -
5 | [998,687,68]9 -

Table 9.3: Codes 6, for 2<¢<5,1<p<5
rameters,

3
[t2—¢t+1+pl, t2—t—2€(t—§),2t—1+p]2 1<p<5

Example 9.3 (An Example in Fg4): Let ¢ =3, the code I'(L1,G1) is defined with a
Goppa polynomial with coefficients in Fg4. The Goppa code has parameters [57,17,15]o.
Examining all the codewords of this code of weight w such that 15 < w < 19 using the

), it is evident that all of these
codewords are nonzero in the location {0}. Shortening the code at location {0} pro-
duced a [56,16,20]5 code. By repeating the coordinate {0} of the code [57,17,15] up

to 5 times the minimum distances of the codes [58,17,16]s, [569,17,17]9, [60,17,18],
[61,17,19]5 and [61,17,20]5 are verified.

computer algebra system MAGMA (Bosma et al.,

Table 9.3 shows the extended codes %, obtainable from the codes I'(L1,G1) for
1< ¢ <5. The codes in bold font have better minimum distances than codes in the
tables (Grassl,
needs to find the weight distribution and an optimal hitting set (one with the least

) with the same length and dimension. To obtain good codes one

possible size). Finding the minimum distance of a code in the simplest of finite

fields F2 was shown to be an NP-hard problem in (Vardy, ). Thus computing

130



9. Shortening Linear Codes

the weight distribution of a code, a related problem, can also be considered difficult.
Furthermore, computing the hitting set was shown in (Garey and Johnson, ) to
be an NP-complete problem. For example computing the weight distribution of the
[241,124,31], code will require enumerating 2124 = 2.1268 x 1037 codewords. How-
ever there is no need to do this using Corollary 9.2 and results from (Bezzateev and
Shekhunova, ) (Bezzateev and Shekhunova, ) in order to obtain improved

codes.

9.5 Alternative Method

The code extension method in Section 9.3.2 may not be the most efficient code ex-
tension method since every |_#s| increase in length increases the minimum distance
by 1. Using the ubiquitous construction X it is possible to obtain better extensions.
Construction X (Sloane et al., ) (described in Section 2.1) uses a code and its
subcode to extend the original code. It is enough to show that any shortened code is
a subcode of the original code in order to obtain codes from construction X for this

case.

9.5 Theorem. If a code € can be shortened to a code 65 in coordinates R  {0,...,n—1},
then the code 6, obtained by inserting a 0 (padding) in every deleted coordinate in

R for every codeword in 65 is a subcode of €.

The proof of the theorem is straightforward since every codeword in ¢ satis-
fies the parity check equations of the code 6,. Suppose a code € with parameters
[n,k,d] is shortened to a code ¥ using Corollary 9.1 to a code with parameters
[n—| %5,k —1 %l|,ds] where ds =d +6 +1, then a padded code 6, can be formed by
inserting zeros in every coordinate in _¢5 for every codeword in 6;. As 6, c € it
is possible to extend ¥ to a code with parameters [n +7,k,d + d] with construction
X using an auxiliary code [7, j(s,&] provided d<d s —d. For the case of the Goppa
codes in Section 9.4, it is possible to pad the codewords of I'(L2,G1) with parameters
[n—1 %s|,k =1 Zs],2t + 4]2 in the coordinate _#4 = {0} to form a code €, with param-
eters [n —| 5|+ 1,k — | Zs|,2t + 4]o. Consequently 6, < I'(L1,G1) where I'(L1,G1)
has parameters [n,k,2¢t — 1] . Using Construction X with auxiliary repetition codes
[72,1,7]g up to 1 <7 <5 will produce the codes in Table 9.3 with dimension .. The
two extension methods will produce the same results for the case when | Z5| =1
since the size is minimal. However as |_#s| increases, construction X will produce

better extensions.
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9. Shortening Linear Codes

9.6 Summary

A method of shortening linear codes whilst improving the minimum distance by
examining low weight codewords of the code is presented. The relationship be-
tween shortening and extending linear codes is examined. Using this relationship
four new binary codes from a well studied Goppa code are obtained with param-
eters [243,124,33]y, [244,124,34]s, [245,124,35], and [246,124,36],. Since short-
ened codes can be viewed as subcodes of the original code, the shortening method is

then a method of obtaining good subcodes of a linear code.
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More On Algebraic Codes
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10. ON EXTENDING BCH CODES

Wolf ( ) showed that Reed Solomon codes can be extended by adding at most two
columns to their parity check matrices. An [n,k,d]; RS code can be extended to a
singly extended RS code with parameters [n+ 1,k +1,d], code or a doubly extended
RS code with parameters [n +2,k +2,d], code. The motivation behind this Chapter
was to find out the extendability of the subfield subcodes of RS codes namely BCH
codes. It turns out that the extendability of a BCH code depends on its subcodes.
The necessary conditions under which a BCH code defined in a finite field F, with
an extension field F,» having a code length n, dimension £ and minimum distance
d is extendable to a code of length n + p(m + 1), dimension 2 and minimum distance

d + 0 for some p >1 and é > 0 are presented.

10.1 The Method

First a criterion on extending the length of any linear code ¢ by adding a single
parity check on a set of co-ordinates of € so that the minimum distance of the
code increases by 1 is established. A linear code of length n is an n-dimensional
vector space and has a set of co-ordinates {0,1,...n —1}. If the code ¢ has minimum
distance d and the set S is defined as,

S ={c:ce ¥ and weight(c)=d}

where supp and weight denote the support and weight of a codeword of € respec-

tively.

10.1 Theorem. If there exists a set of co-ordinates I < {0,1,...n — 1} of a linear code €
with length n, dimension k and minimum distance d (and thus has parameters
[n,k,d]), such that every codeword of minimum weight has weight exactly 1 in
these | co-ordinates, then by adding a single parity check on the [ co-ordinates the
code € can be extended to an [n+1,k,d + 1] code.

Proof. The proof is straight forward. Since for all the minimum weight codewords

the [ co-ordinates have only 1 co-ordinate non-zero, a parity check on only these /
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co-ordinates will also be non-zero for every codeword of minimum weight. Conse-

quently all codewords of previous weight d will have weight d + 1. [

10.2 BCH Codes

Recall the well known BCH bound (MacWilliams and Sloane, ) for cyclic codes
without proof. Let [, be a finite field and Fy» as its extension field. Let a be the

primitive element of the extension field F m

10.2 Theorem (BCH Bound from (MacWilliams and Sloane, )). A cyclic code
€ having defined with d —1 cyclically consecutive elements of a finite field Fym as

roots of the form,

{a®,a®1,... ab*??} qe Fym

has minimum distance at least d.

The BCH bound in Theorem 10.2 describes a lower bound on the weight of any
codewords ¢ € ¢. Given any codeword ¢ € ¢, the BCH bound can be used to obtain

a lower bound on the weight of c.

10.1 Corollary. Any codeword c € € having the set of cyclically consecutive elements of
finite field Fym as
{a®,a®*,..,a®"" Y qeFym

as roots has weight at least w.

Consider the parity check matrix of a Reed Solomon code with redundancy » and

length n defined in a field F,» with a as a primitive element,

1 ab (l2b .. a(n—l)b
1 b+l g20+D ... (-D+D

Hys = . . . . . (10.1)
1 ab+r a2(b+r) . a(n—l)(b‘H‘)

The RS code has a set of cyclically consecutive roots V = {a®,a®*1,..., a*"} with
cardinality r. A subfield subcode of this RS code is a BCH code restricted to F,. In
addition to the consecutive roots of the RS code, the BCH code will have additional
roots that are co-members with the consecutive roots in conjugacy classes defined by

the Frobenius automorphism. Recall the definition of a conjugacy class. A conjugacy
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class of an element f of a finite field F,~ is given as the set,

(

CB)=16,6%,67,...,69 ") BEFym (10.2)

where e is the smallest positive integer such that ﬁqe = B. The set of roots of a BCH
code are given by

R=JCp), (10.3)
BeV

the codes have redundancy |R| and dimension 2 = n —|R|. Clearly V < R and the
minimum distance of BCH codes is at least |V|+1=r+1. Often R contains one or
more roots that are cyclically consecutive to the set of roots in V. Let T'c R denote
these additional set of consecutive roots with 7 ¢ V then the minimum distance of
the BCH code is

d=|V|+|T|+1

from the BCH bound. The notations ~ and ~ are used to denote whether elements

of a set are cyclically consecutive. Thus

~A

means that all elements in a set A are cyclically consecutive and

~ A

means that not all elements in A are cyclically consecutive. Similarly these nota-
tions are used to denote whether the union of two sets has all its elements cyclically

consecutive. Thus A is consecutive to B is expressed as,

A~Bifandonlyif C=AuBand~C

Clearly if A ~B then B ~ A. Also

A~Bifandonlyif C=AuUB and~C

Let a gap root p of the sets A and B be defined as a root neither in the set A nor
in the set B but one which when included in either set makes the elements of the

two sets consecutive. Formally,

ifA~B, f¢A, f¢B
then (Au{p}) ~B
or (Bu{ph~A
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From the definition of a conjugacy class in Equation (10.2), it is possible express the
parity check matrix of the BCH code Hy.; as in Equation (10.4),

[1 ab a2b .. o—Db
1 abq a2bq . a(n—l)bq
1 ab(qul) aZb(qul) . a(n—l)qu’l
Hyoy = . . . . . (10.4)
1 ab+r a2(b+r) . a(n—l)(b+r)
1 a(b+r)q a2(b+r)q . a(n—l)(b+r)q
1 @®+@™ ™ G204r@™ L (=14

Hyy is the parity matrix obtained by restricting Hys to ;. Let
V — {ab,ab+1,...,ab+r}

be the set of consecutive roots of the RS code Cis, R the set defined in Equation
(10.3)and T<R, T g V be a set such that V ~ T'. The parameters of 6., are de-
noted as [n,k,d],. For the sake of clarity we recall from Section 3.3 some important
sets for 6,qy that will be continually referred to. The set V contains consecutive
roots of the RS code in Fym that defines 6.y in [y, the set T is obtained from el-
ements in the conjugacy classes of all the elements in V and has all its elements
consecutive to the elements in V, and finally a set D =V uUT. The BCH code 6;cx

has minimum distance d = |D|+ 1.

10.3 Single Extension

It is possible to extend the BCH code in the same manner as singly extended RS
codes (Wolf, ). Consider the parity check matrix of a singly extended BCH code
with an additional row and column as in Equation (10.5). A codeword ¢ of €y is

represented as a polynomial in a univariate polynomial ring ,

cx)=co+c X+ e, x" !

therefore a codeword € of Ggpen Will be

¢x)=c,+tecx+--+c, x" " +x"c,
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ab a2b .. qm—Db 0]
1 abd a2bae s am—Dbq 0
1 ab(qm—l) a2b(qm—1) a(n_l)qu_l 0
HEBCH = (105)
ab+r aZ(b+r) . a(n—l)(b+r) 0
1 a(b+r)q aZ(b+r)q . a(n—l)(b+r)q 0
1 @@ G204r)g™ ) L =D+
i 1 ab+r+1 a2(b+r+1) . a(n—l)(b+r+1) 1 |
with
n-1 )
c,= Y c(abtrrhy (10.6)
i=0

from the last row of the parity check matrix of Hyyoy. For the purpose of this con-
struction it is required that
a®*tleD=vVuT (10.7)

or more precisely a®*"*1 ¢ T. This is an essential requirement for Theorem 10.3.
For Theorem 10.4 the condition in 10.7 ensures that a®*"*! is a gap root of the two
sets D and P where,

PcR and ~P.

10.4 Construction
Consider a codeword of the single extended BCH code 6ypcn,

é(x)=co+cx+--+e,_ " T+x"c,

with ¢, defined in (10.6). Our construction involves restricting co-ordinates of 6yycn
in the range [0...n — 1] (i.e those that form codewords of €;:) to the subfield F,
while on the additional co-ordinate n no such restriction is applied. In this way the
symbol defined by ¢, is in F,» and is represented as an m-length vector in F,. This
is possible since F,» can be expressed as an m-dimensional vector space in [, using

a suitable map (Lidl and Niederreiter, ). The map m,, is defined as such,

. m
TTm .[qu _’I]:q

am(a’) =(a1,a9,...,am) &’ €Fgn , a; €Fy.
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which maps elements of Fy» Suppose [y1,Y2,...,Ym] forms a suitable basis of the

vector space [Fgl, then a’/ = ai1yi1+agys+---+am,Ym.- A common choice for the basis

is the normal basis.

m-1
[a,a9,...,a7 1 BeFym

which exists for any subfield of F;» (Lidl and Niederreiter, ). We define another
map 0, Let p(x) be a primitive polynomial of F,= over F,. The companion matrix

of a polynomial f(x) =ag+a1x+- - +am_12™ 1 +x™ is defined as in Subsection 2.3.3.

The map o, is given by,

. mxm
Om .":qm — IFq

Um(@)=C7,  al €Fym \{O}.
where «a is the primitive element of F,~. This map is denoted by o,
Om: I]:qm d I]:lem

In summary each symbol in F,» can be represented by a unique m x m matrix. The

parity check matrix of €y can then be expressed as,

(1) wm(@®) o @) 0,(0)]
ﬂm(l) nm(ab+1) ”m(a(n—l)(b+1)) Um(O)

Hypgen=| : : : (10.8)
ﬂm(l) ﬂm(ab+r) ﬂm(a(n—l)(b+r)) Um(O)

b+r+1)

(1) (e T (@~ DOy - (1)

10.3 Theorem (Single Extension). The minimum weight of the code ypcy is d + 1,

where d is the minimum weight of Gy

Proof. Consider again the codeword of Gypcy

n—1

é(x)=cot+cx+-te, x" T +a" > c.(ab*tHLy
i=0
n-1 .
— c(x)_xn Z Ci(ab+r+1)L
i=0
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with ¢ € €oy. Clearly the symbol,

n—-1
—c, = Z Ci(ab+r+1)L — C(ab+r+1)
1=0

is an evaluation of the codewords of €,y at the root a®*™*1, Letc € S i.e. wei ght(c)=
d then,

n-1 .
—c, = C(ab+r+1) — Z Ci(ab+r+l)l # 0
=0

b+r+l js not a root of the code Gyex

ie. ab*"*1 ¢ D. Suppose a®*"*! were a root of sy, then from the BCH bound

in Theorem 10.2 the code %,y will have minimum weight d + 1 which is not the

since from Equation 10.7 it is known that «a

case. This means that all codewords of minimum weight d in %,y are extended to
codewords of minimum weight = d + 1 in 6oy (since the symbol on the co-ordinate
n of a codeword of 6,y is mapped to an m length vector representing c,). If we
assume that ¢ € 6y is not a codeword of minimum weight i.e. weight(c)=>d+1
then,

n-1 )
c(ab+r+1) — Z Ci(ab+r+1)l — 0
i=0
for codewords ¢ which have D U {a®*"*1} as roots. From Corollary 10.1 these code-
words have weight at least d + 1 since {a®*"*1} ~ D and |[D u{a®*"*1}| = d. Therefore

the minimum weight codewords of €y consist of;

(1) Codewords ¢ € 65y that have weight d appended with an m-length vector

representing ¢, with weight exactly 1.

(2) Codewords ¢ € 6,y that have weight d + 1, a®*"*! as a root and appended

with an m-length vector representing ¢, having weight exactly zero.

The minimum weight of Gy is thus d + 1. ]

Example 10.1: Consider the code restricted to Fo from the RS code defined in [F3o
therefore m =5. The RS code has a set of defining roots

V= {1,a,a2,a3,a4,a5,a6}.

I1f ¢, maps to an m-length vector of weight greater than 1 then the codeword ¢ will have weight
>d+2.
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The conjugacy classes F39 over Fy are ,

{1}
{a, a2, a4, a8, a

3 6 12 24 17
{a®,a’,a ", a”, a '}

5 10 .20 .9 _18
{a”,a™”,a”,a”,a "}

16}

7 14 28 25 19
{a X, ,a }

11 22 13 26 21
{a ’ ’ X, }
{a157 307 29,a27,a23}

where « is the primitive element of Fgo. The set R for the BCH code is thus,

R= {1,a,a2,a4,a8,a16,a3,a6,a12,a24,a17,a5,a10,a20,a9,a18}

with |[R| =16 and T'= @. The set D is

D=vVuT=V
and |D|=17.

The BCH code has length n = ¢ — 1 =31, dimension 2 = n — |R| = 15 and minimum
distance d = |D|+ 1 = 8. The parity check matrix of €ypcy is,

[715(1) 75(1) ... w51 05(0)]

n5(1) ms(@) ... w5(a®) o5(0)
Hopon =

m5(1) 7wsa®) ... m5(a®) 05(0)

| 75(1) ms(a”) ... ms(a®h) o5(1)

which maps to
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l

111 111111111111 111 11111111100000
OO0OO0OO0OO0OO0OOO oo oo ooo oo 00000000 O0O0
ooo ooo oo oo oo oo 00000000 O0Oo0
ooo ooo oo oo oo o 0000000 O0O0Oo
ooo oo oo oo oo 00000000 O0Oo
o oo o1 10 1 oo 1101000000
o oo oo 11 1 10 0100000
100 11 OO0OO0OO0OO0OO0OO
o 10 o 1 1000O0O0O0
o 0100000

[ele]
[ele]

OHHKHHKOOFKOOOHRHHORMOHNOFHOOOKOOOHKHKHHKOOOOQ0OOHK
HOOFROORHFOFHFOORKHHOHHHHOQOOOHKKFROOKFOROKFROOO0OPC

OMNOHRKOHHHOHNKHOKROKHOOROROKROOHRKHKHOHRKHHRHOOD

H EBCH —

ooooo

HEOOHOKHOOHROHKHHOOOOKHOKHKOOKOKOO0DO

HHOOHMHHHOOOOHOHRHOHKOOOKKHORKOHR
HOOHKHHHHHOHOOROROKOHRHOOORKKEROKROO

OHHOKOHMOOHOOHHOHKOHROHOOHKOOHKHOOHKOOOKO0O0O

ORMKOOHHKHHOHOOOORORNHKHHRNOKRHKOKHKORGH
HHHHHEHOOOOHRHHHORHHOOOOROOHROKROROOHR
HFOKOHHOOOHKOKROOHKHKOORHKOOHROHRRHHKOORH

W
e}
;..
¢}
W
e}
<]
<]

HOHOOOHKOHOCOOHKOHKHOOQOOOKOO0O0O00ORKO0000OKOO0OOHK
HOMHHKHHOHNOORHHHOKOHROORHOOOKOOOKOOKHOOOOHK
COFOOHKHHHHKHOHHOHOOOHOKHHHOOROKOOOKKHOO0O

HHOHOHMHOOOOOHKOOHRHKHORHNOHRKHHOKDO

OO0O0OOKOOOOKOOOOROOOOROO00OROO0O0OKOO00OKOO0O0OR
OHOOKHHOHKHOHOOOHRHKOOOOKKOKRKRORHKHKHEHKOOO00D0DO
OOKOHHOKOHROHKHOHRHHKOOHROOHKKHHOKKOHRKKOROOOO

OMHHOHOHHORHHOOOKOOHRKHHONRKOOKOKHKHK
OHHOOHOHHHOOOHOHOHMHOOHRHKHOOQOORKOKRKOOKOCOPO

COFKHOOHROOOOOORKOORKOORKOOKHOCOKOKRKOKHK
HHOHHKONOHKHOKOOOOORHORKOOKRKKOK
HHHOOOHHKOOOHRORKOKRKOOOROOOHHKOOKHHHKHKOO
OHOHHOOOHOOKROHROOOHRKHHKHOKRHHHOOOHOHKH
OHOOOHOHOOOOKHHHHHKHHOONKNOOKNHKHOKOR
HOOOKHKHHKOOHHORHOORHOROHRNORNKHOOHRKOKNK

1
1
o
1
o
1
1
1
o
1
1000O0O0
o
o
1
1
o
1
1
1
1

H R
o
e
O
[e}e)
[=Ne]
N
[eNe]

r

and reduces to

100000000000000000000110100000101000
010000000000000000000101110000111111
001000000000000000000100011000100011
000100000000000000000100101100101111
000010000000000000000100110110101101
000001000000000000000100111011110111
000000100000000000000100111101010100
000000010000000000000010011110111011
000000001000000000000111101111110110
000000000100000000000101010111001001
HEBCH: 000000000010000000000010101011101010
000000000001000000000111110101000101
000000000000100000000011111010101000
000000000000010000000111011101111111
000000000000001000000101001110000011
000000000000000100000010100111000111
000000000000000010000001010011110010
000000000000000001000110001001011100
000000000000000000100011000100101100
000000000000000000010111000010101010
000000000000000000001101000001100101

in echelon form. The code has length n + m = 36 and dimension 2 = 15. The min-
imum distance of this code was verified using computer algebra system MAGMA
(Bosma et al., ) to be 9. This result agrees with Theorem 10.3. The code €ypcn
has parameters [36,15,9]o and is an extension of the code 6.y With parameters
[31,15,8]s.

The code Gypon is therefore an [n +m,k,d + 1], code. The necessary conditions

for which an [n+m +1,k,d +2], code can be obtained from 6y, by adding a parity
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check on the appended m length vector representing c, are now looked at. Ideally
a situation where c, is non-zero? for all the minimum weight codewords of Gy is

desirable so that Theorem 10.1 can be applied.

10.4 Theorem (Single Extension with Parity Check). The extended BCH code 6ypey
with parameters [n+m,k,d + 1], can be further extended to an [n+m +1,k,d +2],
code by adding a parity check on the appended m-length vector representing c, of

b+r+2

every codeword of Gyyey if the original BCH code 6y has a as a root.

Proof. For the sake of clarity recall from Theorem 10.3 the minimum weight

codewords of Gypey

(1) Codewords ¢ € 6oy that have weight d with an appended m-length vector

representing ¢, with weight exactly 1.

(2) Codewords ¢ € €,en that have weight d + 1, a®*"*! as a root and appended
with an m-length vector representing ¢, having weight exactly zero.

b+r+2

If 650 also contains « as a root i.e. all codewords have this root, then the

set of minimum weight codewords corresponding to (2) above that have a®*"*! as a

root will have a®*7*2

as a root also. From Corollary 10.1, these codewords will have
weight equal to d + 2 since D ~ {a®*"1, a®*"*2} and |D U {a®*"*1, @b+ 2} = d + 1.
Since 6ypon has minimum weight d + 1, all codewords of minimum weight in €ypox
will be from the set (1) above. These codewords have the appended m-length vector
representing c, having weight exactly 1. From Theorem 10.1, it is evident that €ppcn
can then be extended to an [n +m +1,k,d + 2], code by adding a single parity check

on the m-length vector. [

Example 10.2: Consider again the BCH code described in Example 10.1. We see
b+r+l — o7 and by examining the set R it can be observed that
a8 € R, thus P = {a®}. From Theorem 10.4 it should be possible to extend the code
Grupcn from a [36,15,9]s code to a [37,15,10]2 code by adding a single parity check

on the last m = 5 coordinates since D ~ {a’, a®}. The parity check matrix H is that

that the gap root is a

of the extended code 6,y With a single parity check on the m-length vector repre-

senting the last symbol,

2The corresponding m-length vector will have weight exactly 1 from Theorem 10.3.
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1000000000000000000001101000001010000
0100000000000000000001011100001111110
0010000000000000000001000110001000110
0001000000000000000001001011001011110
0000100000000000000001001101101011010
0000010000000000000001001110111101110
0000001000000000000001001111010101000
0000000100000000000000100111101110110
0000000010000000000001111011111101100
0000000001000000000001010101110010010
H= 0000000000100000000000101010111010100
0000000000010000000001111101010001010
0000000000001000000000111110101010000
0000000000000100000001110111011111110
0000000000000010000001010011100000110
0000000000000001000000101001110001110
0000000000000000100000010100111100100
0000000000000000010001100010010111000
0000000000000000001000110001001011000
0000000000000000000101110000101010100
0000000000000000000011010000011001010
0000000000000000000000000000000111111

the resulting code was verified to be a [37,15,10]2 code which coincides with the

best known code from the tables in (Grassl, ).

10.5 Theorem (Multiple Extensions). If the code 6 contains elements of the set

P :{ab+r+2,ab+r+3,.”,ab+r+5+1} , PCR , |P| :6and~P

as roots then each codeword of ¢ of 6€,c; can be extended to

éx)=clx)+x"c, +x" e, +o 4" e L
where
n—1 b 1
+r+
Cn:CnJrl:'.':Canl:_Z Cl(a " )L7
1=0

1<t<6+1and ¢ € Gy With the extended code € having length n+mt, dimension

k and minimum distance at least d +t.

Proof. 1tis assumed as before that each c;, j = n is restricted to Fy» and maps to an
m-length vector in F,. Henceforth each c;, j = n is referred as c, since they are all
equal. Every codeword ¢ € 6, has the elements of P as roots, thus any codeword of

b+r+1 95 a root will have the set DU({a®*"*1}UP) as a set of consecutive

6scn having a
roots. From Corollary 10.1 this codeword will have weight at least d + 5 + 1 since

ID U ({a®* "1y U P)| = d + &, therefore all codewords of €y of weight w such that
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d <w =<d +6 cannot have ¢, equal to zero. Thus for 1 <¢ <6 each ¢, is an m-length
vector having weight exactly 1 and 6y has minimum weight codewords of weight
d +t consisting of minimum weight codewords of 6, of weight d appended with
t m-length vectors each representing ¢, with weight exactly 1. Thus ¢ has weight
d+t. Ift=06+1, the minimum weight codewords of 6,y consists of codewords of
@ With weight d + 6 + 1 having roots D U ({a®*"*1} U P) and appended with & + 1
m-length vectors representing c, each all zero, and minimum weight codewords of
6rcn appended with 6 + 1 m-length vectors representing ¢, with weight exactly 1.
Thus ¢ has weight d +6 + 1. For £ > 6 + 1 no improvement on the minimum distance
is possible since codewords with roots D U({a®*"*1}UP) cannot be extended because

b+r+1

they have «a as a root. Therefore given any ¢ in the range 1 <¢ < + 1 the code

%6rpon has minimum weight at least d + ¢. ]

Example 10.3: Using the BCH code in Example 10.1, it can be observed that the
set R contains the set P = {a®,a?,a'°} and D ({a’}uP). Thus é = |P| = 3. Theo-
rem 10.5 says it is possible to obtain codes [36,15,9]c if t =1, [41,15,10]5 if t =2,
[46,15,11]c if ¢ = 3 and [51,15,12] if t = 4. Since the ¢ = 1 coincides with Example

10.1, codes for ¢t = 2 are constructed. If ¢ = 2, the parity check matrix of Gypcy is

given by, _ “
n5(1) 7w5(1) ... 7w5(1)  05(0) o05(0)
m5(1)  ws(@) ... 7wsa®®) 05(0) 05(0)
HEBCH:
m5(1) msa®) ... 7m5(a@®®) 050) 05(0)
m5(1) ws@”) ... msa®) o5(1) o5(0)
75(1) 75(@”) ... ;5@ 0500) 05(D)]

this code was verified to be a [41,15,10]5 code. If t =3 , Hypoy 1

(75(1) 751 ... 75(1)  05(0) 05(0) 05(0)]
n5(1) ws(@) ... 75a®%) 050) 05(0) o5(0)
Heouw = [715(1) 715(a®) ... 75(a?®) 05(0) 05(0) 05(0)
n5(1) msa’) ... wsa?t) o5(1) 0500) 05(0)
n5(1) msa’) ... ws@®t) 05(0) o5(1) 05(0)
_ﬂs(l) ns(a”) ... ms5(a®) o5(0) 05(0) 05(1)‘
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this is a [46,15,11]5 code. Finally if £ =4,

(15(1) 75(1) ... 7w5(1) 05(0) 0500) 050) 05(0)]
n5(1) ws(@) ... 75a®?) 0500) 0500) 05(0) 05(0)
g m5(1) m5(a®) ... m5(a®®) 05(0) 05(0) 050) 050)
T a5 15 L ms@®®) 05D 05(0) 050) 05(0)
n5(1) msa’) ... ws(a@®t) 05(0) o5(1) 050) 05(0)
n5(1) ms(a?) ... ws(a®?) o5(0) 05(0) o5(1) 05(0)
_715(1) ns@”) ... ms(a@®?) o5(0) 05(0) o05(0) 05(1)‘

which results in a [51,15,12]5 code.

In Theorem 10.4, a®*"*1 is a gap root of the sets D and P = {a®*"*2}. Cases

b+r+1

where a is a gap root to sets D and P with |P| =1 are now treated.

10.6 Theorem (Multiple Extensions with Parity Checks). If the code 6, contains

elements of the set

P :{ab+r+2,ab+r+3,.”,ab+r+§+1} , PCR , IPI :6and~P

as roots then each codeword of ¢ of €y can be extended to

n+1 xn+t—1

éx)=clx)+x"c, +x" e, ++ Chitn
where
n—1 b e
+r+
C,=Chy1 =" =Cpiy1= — Z c(a”),
i=0

1<t <6 and € € Gypey With the extended code € having length n+mt+1, dimension
k and minimum distance at least min{d +t+1,d + 6 + 1} by adding [ single parity

checks on any of the m-length vectors representing c,,j = n.

Proof. From the proof of Theorem 10.5, it can be observed that for 1 <¢ < § all
minimum weight codewords of 6y have m-length vectors representing c;, j = n
each with weight exactly 1. Thus by Theorem 10.1 each c;, j = n is a candidate
for extension by adding a single parity check on any ! m-length vectors. It can
also be observed that no extensions are possible for codewords with weight d +6+1
with roots D U({a®*"*1} U P), therefore the maximum possible minimum distance of
any extension of the code 6,y with Theorem 10.6 is d + 6 + 1. Thus the minimum

distance of the code is min{d +6+1,d +t+1}. [
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Example 10.4: Using the sets R,D and P of BCH code in Example 10.3, ¢ =3 and
[ = 3 are chosen. For ¢ = 3 from Example 10.3 a [46,15,9]s code is obtained which is
then extended by adding / = 3 single parity checks to each c;, j = n. H is the parity

check matrix of the extended code obtained from %, using Theorem 10.6

1000000000000000000001101000001000000000001000000
0100000000000000000001011100001000000000000000001
0010000000000000000001000110001000000000000011000
0001000000000000000001001011001000000000001111000
0000100000000000000001001101101000000000001101000
0000010000000000000001001110111000000000001000001
0000001000000000000001001111010000000000001011001
0000000100000000000000100111101000000000000100001
0000000010000000000001111011111000000000001001001
0000000001000000000001010101110000000000001001000
0000000000100000000000101010111000000000001010000
0000000000010000000001111101010000000000000101000
0000000000001000000000111110101000000000001000000
0000000000000100000001110111011000000000000000001
0000000000000010000001010011100000000000000011000
0000000000000001000000101001110000000000000111000
H 0000000000000000100000010100111000000000001101001
0000000000000000010001100010010000000000000011001
0000000000000000001000110001001000000000001100000
0000000000000000000101110000101000000000001010000
0000000000000000000011010000011000000000000101000
0000000000000000000000000000000100000000001111001
0000000000000000000000000000000010000000001000000
0000000000000000000000000000000001000000000100000
0000000000000000000000000000000000100000000010000
0000000000000000000000000000000000010000000001000
0000000000000000000000000000000000001000001111001
0000000000000000000000000000000000000100001000000
0000000000000000000000000000000000000010000100000
0000000000000000000000000000000000000001000010000
0000000000000000000000000000000000000000100001000
0000000000000000000000000000000000000000011111001
0000000000000000000000000000000000000000000000101
0000000000000000000000000000000000000000000000011

in echelon form. The code has parameters [49,15,12]s.

Example 10.5: Consider the code restricted to F4 from the RS code defined in [Fgq
with m = 3. The RS code has a set of defining roots

V={a":ke[41 .. 62]}
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The conjugacy classes Fgq over F4 are ,

{1},

4 16
{a,a”, a"}

2 8 32
{a®,a”, a7},

3 12 48
{a®,a %, a™"}

5 20 17
{a’,a””,a '}

6 24 33
{a”,a”*, a°}

7 28 _49
{a’,a”", a™"}

9 36 18
{a?,a”®,a "}

10 40 34
{Gf ,a ,a },

50}

)

K
K
K
K
>

{all,a44,a

>

13 52 19
{a™,a”%, a™}

14 56 35
{a ’a ’a }’

51}

K

{a15,a60,a

K

{a?1},

22 25 37
{a®, a®,a”"}

{0523,0529,05

>

53}

2
26 41 38
{a®®,a™", a°"},

27 45 54
{(X ,a , },

30 57 39
{a°”,a”',a"}

K

31 61 _55
{a°",a’", a°}

K

{a*?},

{ a43 a46

> >

Gf58}

where a is the primitive element of Fg4. The set R for the BCH code is thus,

R = {a3,a7,a11,a12,a13,a14,a15,a19,a23,a26,a27,a28,a29,

a:30,a:31,a:35,a38,a39,a41,a42,a:43,a44,a45,a46,a47,a48,

49 a50 a51 a,52 a,53 a54 a55 a56 a,57 a,58 a,59 a60 a61 a,62}

a K K b b 2 2 K b b b 2 2 b

with |[R| =40 and T'= @. The set D is

D=vVuT=V
and |D| = 22.

The BCH code has length n = ¢™ —1 =63, dimension 2 =n — |R| = 23 and minimum
distance d = |D|+ 1 = 23. By studying R it is clear that a* is a gap root of the sets
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D and P = {a?8,a%%). The parity check matrix of €ppey is,

[ 713(1) 73a®?) ... ms(@) 030) ... 03(0)]

m3(1) ma@®) ... ms(a?) o3(0) ... 03(0)
Hypen =

m3(1) m(ath) n3(a??) 03(0) ... o3(0)

L7T3(1) m3(at®) ... w3(a?®) o31) ... 03(0)‘

which is a [66,23,24]4 code. Applying Theorem 10.6 a [67,23,25]4 code is obtained

which corresponds to the best known code from the tables in (Grassl, ).

10.5 Observations

If it is assumed that an overall parity check is included for each m extended sym-

bols, this method can be seen as extending a BCH code with parameters [n,k,d],

[n,k,dly — [n+t(m+1),k,min(d +6 +1,d +2t)]

where 6 = |P| and ¢ = 1. Clearly the minimum distance of the extended code is
upper bounded by the d + 6 + 1 which is the minimum distance of the subcode of the
original [n,k,d],; code with parameters [n,k —m,d +6 + 1],. A well known method
that extends a code based on the parameters of its subcode is Construction X (Sloane
et al., ) (see also Theorem 2.1). Construction X extends a code [n,k,d], with a
subcode [n,k—m,d +6+1], to form a code with parameters [n+7,k, min(d+6+1,d+
s)]l; using an auxiliary code [7i,m,s];. A best known code is usually chosen as the
auxiliary code. Codes obtainable from the two constructions are now compared. For
an extended code [n+t(m+1),k,min(d+06+1,d +2t)] obtained from extending BCH
codes, it is assumed that § is arbitrarily large. The best known auxiliary code for
construction X with length ¢#(m + 1) and dimension m is obtained from the database
in MAGMA (Bosma et al., ). Thus by comparing 2¢ and s the possible increase
in distance from the two different methods for extended codes of the same length
can be seen. Figures 10.1-10.4 show the extensions possible from the previously
presented method of extending BCH codes and construction X for codes in different
fields. The plots show the effect of m and g on the two extension methods. When
m and q are small the two methods are similar as the length of the extended code
increases. When m is small and q is large, construction X produces codes with much
better parameters. This is because the auxiliary codes used in construction X get
better as the field size increases. When ¢ is small and m is large construction X
produces much better codes as the length of the extended code increases. When q is

large and m is small, the two methods seem to produce codes with similar distances
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Fig. 10.2: BCH extension compared with Construction X in F3 for different m

151



Chapter 10: Extending BCH Codes

Increase in distance

Increase in distance

Increase in distance

Increase in distance

m=2,q=4

25 H

LA LA L LS L LASL.JLL AL L L I
BCH extension —+— :

Construction X

Increase in length

m=5,q=4

LS L L LN AL L L
BCH extension —+— :

Construction X

5 10 15 20 25 30
Increase in length

Increase in distance

Increase in distance

m=3,q=4

LA LA L LA LA ML L B
BCH extension —+— :

Construction X

Increase in length

m=8,q=4

LIS L L L. AL L B
BCH extension —+— :

Construction X

Increase in length

Fig. 10.3: BCH extension compared with Construction X in F4 for different m

m=2,0=8

25 H

LN L L L L S L LY L
BCH extension —+— :

Construction X

5 10 15 20 25 30
Increase in length

25 |

m=5,0=8
L L R e
BCH extension —— ‘ 3
Construction X —— ¢~ i 3

Increase in length

Increase in distance

Increase in distance

m=3,q=8

LN L L L L. S L L L
BCH extension —+— :

Construction X

5 10 15 20 25 30
Increase in length

m=8,0=8
L e L
BCH extension —— ‘ 3
Construction X —— ¢~ e 3

15 20
Increase in length

Fig. 10.4: BCH extension compared with Construction X in Fg for different m
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when the difference between the length of the extended code and the original code
is small. In the figures the difference in distance between the original code and
the extended codes is allowed to go up to 30. In practice this difference is quite
small as was seen in previous examples and the extended codes have lengths not
much longer than the original codes. In summary when m is small this method
of extending BCH codes produces similar results with construction X provided ¢ is

relatively small as well.

10.6 Summary

It was shown that it is possible to extend BCH codes by adding in some cases more
than two columns to their parity check matrices whereas with RS codes it is only
possible to add at most two columns. The extension method was shown to be as
good as construction X in producing codes in some cases however as the field size
increases the efficacy of the method deteriorates in comparison to construction X.
The method has provided insight into the extendability of BCH codes. It has also
provided insight into the inner workings of the method of extending Goppa codes in
Chapter 8.
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11. IMPROVED CODES FROM GOPPA
CODES 11

11.1 Introduction

In this chapter an alternative construction to the codes to the extended Goppa codes
in Chapter 8 is given. Recall that the extended Goppa codes in Chapter 8 can be
seen as extended BCH codes. The main advantage of the construction presented
here to that in Chapter 8 is that it is possible extend non narrow-sense BCH codes.
A drawback however is that for the codes in Chapter 8 with parameters [n,%,d],
the codes using the construction in this chapter will produce [n -1,k —1,d], codes.
In other words codes presented in this Chapter are shortened when compared with
codes from Chapter 8. This is because the codes in Chapter 8 use the concept of a
modified Goppa code. It is not known at present if this concept can be applied to the
construction in this Chapter. The method presented here can be used for any BCH
code (not just narrow sense BCH codes) thus providing better flexibility. The codes
in the strict sense are not Goppa codes but alternant codes (a super-class of Goppa

codes).

11.2 Goppa Codes

Recall the definition and description of Goppa codes from Section 3.4 and Sec-
tion 8.2. In this chapter we assume the coordinate set L is indexed such that
L ={aq,...,a,} and codewords of the Goppa code are indexed ¢ = (c1,...,¢,). The
code defined in F,» which contains all the codewords of a Goppa code is a gener-
alised Reed Solomon code and is maximum distance separable (MacWilliams and
Sloane, ). The parity check matrix of a Goppa code, which by definition is re-
stricted to [y, can be expressed with elements from F, . It is possible to represent
F,m as an m-dimensional vector space with elements from [, using a suitable basis.

Let n,, define the map,

. m
TTm -IFq’" —>|Fq

Tm(P)=lai,as,...,an]l PEFm , a;€ly,.
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Suppose [y1,Y2;.--,Ym] forms a suitable basis of the vector space Fy', then f=a1y1+

agy2+:+amYm- A common choice for the basis is the normal basis,
m-1
[B,87,....,87 1 BeFym

which exists for any subfield of Fy= (Lidl and Niederreiter, ). Given a parity

check matrix defined in Fym,

(11 his ... hin]

ho1 has ... ha,
H =

hr,l hr,2 hr,n

it is possible to replace each £; ; in H with an m-tuple column vector [A; j 1,h; j2,..., hi’j’m]T
. Finally performing row reductions on the mr x n matrix obtains a parity check ma-
trix in [, (MacWilliams and Sloane, ). The new matrix is a parity check matrix

of the Goppa code in .

11.3 Construction
11.3.1 Preliminary: Cauchy and Vandermonde Matrices

Reed Solomon codes are maximum distance separable (MDS) codes and have the
maximum achievable minimum distance. Their generator and parity check matri-
ces are defined by a Vandermonde matrix. The parity check matrix of an RS code of
length n = |F, — 1|, dimension £ and minimum distance d defined in a finite field [,

with a as a primitive element is given by,

1 ab o2b . o (n-1b
1 gb+l g 2(0+D . qn=DO+D
Hys = (11.1)
1 @bkl g2otnhoD) L -Dben-k-1) |

for some integer . The parity check matrix of a doubly extended Reed Solomon
(RS) code was shown by Wolf (1969) and Kasami et al (1966) to be

[ 1 ab aZb . a(n—l)b 1 0
1 ab*1 q2b+1) . qM—DO+1) 0 0

Hons = | | . . , . . (11.2)
1 ab+n—k—1 a2(b+n—k—1) a(n—l)(b+n—k—1) 0 1
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Doubly extended RS codes have length n + 2, dimension % + 2 and distance d. Wolf
(Wolf, ) proved the minimum distance of the codes defined by Hys have dis-
tance d by showing that each d — 1 x d — 1 determinant of the matrix is non-zero.
This follows from the definition of minimum distance; all d — 1 x d — 1 submatrices
of a parity check matrix of a code with minimum distance d must have a nonzero
determinant. The determinant of any d — 1 x d — 1 submatrix of the Vandermonde

matrix Hyg (Wolf, ) is given by,

abi1 b2 qbid-1
a0+ q+Di2 ... qb+Dja-1
det ) ) ) (11.3)
qbtn—k-1(1)  btn—k-1)js . . b+n—k-1)ji-1
1 1 - 1

) ) ) a]l a]Q cee a{jdfl
— gbUrtie+=+ja-1 Jet (11.4)

adlt a2 ... gld-1

for any columns ji,jo,...,/4-1. The determinant in 11.3 is called a Vandermonde
determinant and is known to have a nonzero determinant for any columns j1,jo,...,j4-1-
If Hyps in 11.2 is considered, any d —1 xd —1 determinant of the matrix with columns
J1,J2,-++,Jd—1 from the submatrix Hys of H,zs is nonzero. There is also a need to
cater for determinants that include the appended columns to prove the minimum
distance of the code defined by H,s. Consider the determinant that includes the

first appended column of H g in j1,jo,...,/4—1 chosen columns,

abi1 b2 abid-2 1
a1 q+Di2 ... q0+Dja-2 0

det _ _ ‘ ‘ (11.5)
qotn=k-DG1) Gb+n-k-1)jz2 ... Hb+n-k-Dja2

expanding about the appended column gives Equation 11.5 as,

Qb1 L qb+Djas

=1-det

qotn=k=-DG1) ... b+n-k-1)js-2

The determinant in 11.5 reduces to a d —2 x d — 2 determinant of a Vandermonde

matrix and is therefore nonzero. This proves that adding the appended column to
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H ;s does not decrease the minimum distance from d. Similarly the determinant

which includes the second appended column in H ¢ reduces to,

abt abid-2

det : : (11.6)

qlotn=k=2G1) ... b+n—k-2)ja2

which is also a Vandermonde determinant and is nonzero. Any d —1 xd — 1 deter-

minant that contains both of the appended columns will also result in,

QB+ B+ Djas

det : : (11.7)

qlotn=k=2G1) ... b+n—k-2)ja2

after expansion about either of the appended columns. This is also a Vandermonde
determinant and is nonzero. Thus every d —1 xd — 1 determinant of Hy;s is nonzero
and the doubly extended RS code has distance d. Notice however that any d — 1 x

d —1 determinant of the matrix in 11.8,

[ 1 (Xb (X2b . a(n—l)b 0
1 (Xb+1 a2(b+1) . a(n—l)(b+1) 1
HE = . . . . . (11.8)
- 1 ab+n—k—1 a2(b+n—k—1) . a(n—l)(b+n—k—1) 0

which includes the appended column is as in 11.9,

abi abrz abid-2 0
a1 ao+ 2 e ab+Did-2 1

det . ' . . (11.9)
a(b+n—k—1)(j1) a(b+n—k—1)j2 a(b+n—k—1)jd,2 0

The determinant in 11.9 after expansion about the appended column reduces to;

abjl e abjd*Z
a0+2)j1 a0+2ja-2
det ) ) (11.10)
q@+tn—k-2G1) ... b+n—k-2)jg_s

which is not a Vandermonde determinant! therefore is not guaranteed to be nonzero.

Appending columns with a 1 in any position except the first and the last, with 0’s

ISince the row with powers b + 1 is excluded thus upsetting the sequence b;, i €[0..n —k —1].
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elsewhere will result in determinants that are not guaranteed to be nonzero. This
completes Wolf’s (Wolf, ) observation. In summary, only the two columns that
were appended in 11.2 will guarantee an MDS code from a Vandermonde matrix the
only known exception (MacWilliams and Sloane, ) being the case where there
are 3 rows which allows appending a 3 x 3 identity matrix?.

From the previous discussion it can be observed that a Vandermonde matrix has
the property that any square submatrix is non-singular (has a nonzero determi-
nant). Another matrix that shares this property with the Vandermonde matrix is
the Cauchy matrix (MacWilliams and Sloane, ). A Cauchy matrix in a finite
field F, is formed from two mutually disjoint sets {a1,as,...,a;} and {1, B2,..., B}

and is given by

1 1 1
a1-p1 ai1—P2 a1—p;
1 1 1
Ho=|%F ok ah (11.11)
1 1 1
La,—f1  a,—P2 ar—p; 1

such that r+/ <|F,|, «;,B; €F, and {a1,ag,...,a}N{f1,B2,...,6:} = . The codes
defined by H. are also MDS. Appending a column to H in the same manner as
singly extended RS codes results in a parity check matrix of an extended Cauchy
code with d =r +1 of the form,

1 1. 1 1]
a1—-p1 a1—-Pe a1—pi
1 1 ... 1 _ 9
HEC _ azjﬁl 062jﬁ2 “2._ﬁl . (11.12)
1 1 1
L a,—f1 ar—pPe ar—pi 0“

A d—-1xd -1 determinant of H,, with any columns ji,jo,...,jq4—2 and the appended
column is given by 11.13,

1 1 1 1
(Xl—ﬁjl al_ﬁjz al_ﬁjd,z
1 1 1 0
det| P @ Pn @2 Pia-s (11.13)
1 1 1 0
ar—PBj;  ar—Pjg ar—Pj;_q
which reduces to 11.14,
1 1 1
ag—Pj;  as—Pj, a2—=Pj;_o
det| : : : (11.14)
1 1 1
ar—ﬁjl ar_ﬁjg ar_ﬁjd_Q

2Codes from this construction are called triply extended RS codes.
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after expansion about the appended column. Clearly the determinant in 11.14 is a
Cauchy determinant formed from the sets {ag,...,a,;} N{B1,B2,...,B;} and is there-
fore nonzero. It is also clear that any appended column with a single nonzero entry
on any row of H,, will also result in a Cauchy determinant. This is because there
is no criterion for ordering of the elements of the two defining sets of the Cauchy
matrix i.e. any set of mutually distinct elements will suffice. It is possible append
any column with a single nonzero entry to H;. and obtain a Cauchy determinant.
In general it is possible to add an identity matrix to the parity check of a Cauchy
code and still have minimum distance d = r+ 1. This may appear as a disadvantage
for Vandermonde codes when the two codes are compared. However it has to be
taken into account that Cauchy codes defined by H, are always in shortened form
since the set {1, Be,...,;} which determines the length of the Cauchy code cannot
contain any members of the set {a1,aq,...,a,}. Appending an identity matrix to H,
will make up for the difference in length between the two types of codes. In effect,
in terms of code length there is nothing to choose from between the Vandermonde
codes and the extended Cauchy codes. In the next section this key difference is

taken advantage of so as to extend Goppa codes and obtain new codes.

11.3.2 Construction of Extended Length Goppa Codes
The Goppa polynomial of the form,

G(x) = x"1(x — Bo)x — B3)---(x — Br) (11.15)

is used, with ¢ distinct roots and the set,
L={Fm\{B1,...,Be}

which is an instance of the Goppa polynomial from Equation (8.4) in Section 8.2
with r, =1 when p > 1 and with f; = 0. From Equation (8.2) in Section 8.2 the
parity check matrix of the I['(L,G) code defined by G(x) is,

1 1 1
a1 ag an
a? a’ a?
H,, :
1 1 1
. [Hr pes U ¥
H = = 1 2 n (11.16)
: 1 _1 ... _1
: Pe—a1  Pa—as Bo—an
1 1 1
H’”éa B3—a1  Pz—aq Bs—an
1 1 . 1
| Br—a1 Pr—az Br—ay |
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It is clear from Equation (11.16) and Theorem 3.2 that H, , the parity check matrix
corresponding to the factor of the Goppa polynomial x"! from Equation (11.15), is
a parity check matrix of a BCH code. The method used to obtain new codes in this
thesis involves extending the length of the code by adding columns to the parity
check matrix H of the code I'(L,@). The matrix H is partitioned into two; the parity
check matrix of a BCH code defined by x"! and a Cauchy matrix. The Cauchy matrix
with ¢—1 rows is the parity check matrix corresponding to all distinct factors of G(x)

excluding x"1.

1 1 1

i 1 L oo 0
1 1 1

= 2 @ 00 --- 0
0}1 0}1 0}1 00 -0

H,=| “ 2 , (11.17)

Prai P 0 Pean 10 0
1 1 1

Ps—a1 Ps—az  Ps-an 01 0
1 1 1
e Fem P 00 --- 1‘

The parity check matrix Hy of the lengthened code is given by (11.17). An all-
zeros matrix is appended to H,, while an identity matrix is appended to the Cauchy
matrix. In order to represent the matrix Hy, with elements from the subfield F,
the map 7, is applied to elements of the sub-matrix H of H, while the 0’s in the
appended columns map to m x m zero matrices and the 1’s map to m x m identity
matrices. Each extended symbol of a codeword of 6, in F,» corresponding to an
appended column is therefore an alphabet in F,n expanded?® to an m-tuple in Fq. It

is clear that the codes defined by Hy have parameters,

Length,n = ILI +m(f-1)
Dimension, 2 =n—(mri+m(¢ —1)) (11.18)

2|I;|—mr1

11.1 Theorem. The minimum distance d of the lengthened Goppa code denoted by €y
with a parity check matrix Hy is d = deg(G(x)) + 1.

Proof. In order to obtain a lower bound on the minimum distance of the code € it
is enough to show that minimum distance of the code defined by Hy in the parent
field* Fgm isd = deg(G(x)) + 1. This means that the appended columns in Hy do not

3This is referred to in literature as subfield image expansion.
4Since all subfield subcodes of %, have distance at least deg(G(x)) +1.
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deteriorate the minimum distance of the code such that it is less than the distance
of the code defined by H.

Recall that a linear code has minimum distance d if any d — 1 or less columns of
its parity check matrix are linearly independent. Alternatively, a code has distance
d if any d — 1 x d — 1 sub-matrix formed from its parity check matrix has a non-
zero determinant. Consider Equation (11.17), any d — 1 x d — 1 matrix (with d =
deg(G(x)) + 1) formed from the matrix H, that does not include any of the appended
columns is a sub-matrix of H (a Vandermonde matrix) and hence has a non-zero
determinant. Any d — 1 xd — 1 sub-matrix of Hy which includes a single appended
column having a 1 on a row of H, corresponding to a root f, of G(x) for any u>1
and zeros elsewhere will have a d —2 x d —2 determinant after expansion about the
appended column in question. This d —2 x d — 2 determinant is formed from the
columns of a parity check matrix of a Goppa code defined with a Goppa polynomial
with all the roots of G(x) except B, and hence has distance d —1. The d -2 xd -2
determinant is therefore non-zero. Similarly any d —1 x d — 1 sub-matrix of Hy that
includes any two of the appended columns having 1’s in rows corresponding to roots
By and By of G(x) with v, > 1 and zeros elsewhere has a d — 3 x d — 3 determinant
after expansion about the columns in question. This determinant is formed from
the columns of a Goppa code with a defining polynomial having all the roots of G(x)
except f, and f,. The code has distance d —2 therefore the d —3 x d —3 determinant
is non-zero. Applying this reasoning successively until all £ — 1 appended columns
in (11.17) are considered, it can be concluded that any d —1 x d — 1 columns of the
matrix Hy defined in Fyn» are linearly independent hence the code 6, defined in F,
has distance d = deg(G(x)) +1.

The approach used in the proof of Theorem 11.1 is similar to the one used by
Wolf in (Wolf, ) to determine the minimum distance of doubly-extended Reed
Solomon codes. It is known from (MacWilliams and Sloane, ) that Vander-
monde and Cauchy matrices both have the property that any square sub-matrix is
non-singular. The proof relies on the observation that a Cauchy matrix with r rows
may have an r x r identity matrix appended to it and still retain the property that
any r x r sub-matrix is non-singular. This is not possible with Vandermonde matri-
ces as at most two columns can be appended (as is the case with doubly extended

Reed Solomon codes) whilst retaining this property.

11.3.3 Codes with Better Dimensions

From (11.18) it can be observed that the exact dimension of the codes %6, depends on
the dimension of the BCH code defined by x"!. The dimension of a BCH code can be
completely determined by examining its defining roots. A parity check matrix of a
BCH code defined as a Goppa code with polynomial x"! is given (11.19). By observ-

ing (11.19) it is possible to see that if a is a primitive element of F,m, the defining
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roots of the BCH in [, consist of the elements of the set A = (09”72 1”3 . q9""17m1}

and all their conjugates.

a(lq -2) a(zq -2) aglq -2)
a(lq -3) a(zq -3) aglq -3)

H, = , , , , (11.19)
a(lq -1-r1) a(2q -1-ry) aglq -1-r1)

Recall the definition of a conjugacy class. A conjugacy class of an element S of a

finite field F,» is given as the set,

(e-1)
} ﬁ € ":qm

C(B)=1B,%, % ,...., p°
where e is the smallest positive integer such that ﬁqe = B. The set of roots of a BCH

code are given by

R=JC®),

PeA

the codes have redundancy |R| and dimension 2 =n — |R]|.

To obtain the best possible dimension it is desirable the BCH code defined by
(11.19) to be narrow sense. Narrow sense BCH codes tend to have the cardinality
|R| to be comparatively small when |A| = ry is also small. It is possible to shift the
roots of the sub-matrix H,, in H from (11.16) so that the BCH code is narrow sense.

We can accomplish this by multiplying H with a matrix M.

'aI(qm_l_rl) 0 0
0 a;(qm_l_rl) 0
M=
0 0 . a;(qm_l_rl)
H=HxM (11.20)
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and (r1-1) (r1-1) (r1-1)
ri—1 ri—1 ri—
al a2 an
(r1-2) (ri-2) (ri-2)
1 1 1
= a;(qm—l—rl) a;(qm—l—rﬂ a;(qm—l—r1) (11.21)
Ba—a1 B2-as B2—an
a;(qm—l—rl) a;(qm—l—rﬂ a;(qm—l—rl)
Bs—ai1 Bs—ag Bs—an
a;(qm—l—rl) a;(qm—l—rﬂ a;(qm—l—rl)
Be—a1 Be—ag Be—an

11.2 Theorem. The code defined by H restricted to Fq has minimum distance d =
deg(G(x))+1.

Proof. Recall the definition of generalised Reed Solomon (GRS) codes from (MacWilliams
and Sloane, ). A GRS code, denoted by GRS (a, V), consists of all the vectors,

(v1F(a1),veF(ag),...,v, F(ay)))

where a = (a1, ag,...,a,) consists of distinct elements of Fym, a template v =(v1,vg,...,v,)
consists of arbitrary elements from F,» none of which is zero and F(x) is a polyno-
mial of degree at most £ — 1. Also from (MacWilliams and Sloane, ) it is known
that Goppa codes defined by some G(x) of degree r and the set L = {a1,aq,...,a,}

are subfield subcodes of GRS,,_,(a,v) with 2 =n —r and,

G(a;)

Vi=—=——, i=1,...,n. (11.22)
[1(@i—a;)
J#i
Again from (MacWilliams and Sloane, ) it is observed that dual code of a

GRS, (a,v) code is also a GRS code of the form GRS,,_.(a,¥v) for some template
v. Clearly the code defined by H in Fqm is a GRS code of the form GRS,,_ s ¢wy (@, uv)

where v is defined as in (11.22) and

a=(a; Y, 0, Y a0,
Since the code defined by H in [, is a subfield subcode it has minimum distance at
least that of the code defined in Fym. GRS codes are maximum distance separable
and in this case the code defined in F,;~ has distance deg(G(x)) + 1, therefore its
subfield subcode has distance d = deg(G(x)) + 1. [
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Codes defined by H in Fq, denoted by %,, have a better dimension but the same
minimum distance was the code defined by H. It is possible to add columns to
the parity-check matrix of the code defined by H in F, in the same manner as in
(11.17). Equation (11.27) shows the parity check matrix of the lengthened code. As
with codes defined by Hy the length, dimension and minimum distance of the codes

are,

Length,n = IL|+m(¢-1)
Dimension, k& = \L| - mri (11.23)
Distance,d = deg(G(x)) + 1

a:(lrl_l) A Y | RO |

a(1r1—2) e @ 0 L0

1 1 0 ... 0

H, = (11.24)
al(qm_l—rl) N ar_l(qm_l—rl) 1 0
B2—a1 B2—an e

ai(qm_l—rl) N ar_l(qm_l—rl) 0 1
Be—ax Be—an A

It is straight forward to show that codes defined by H, have distance at least
deg(G(x)) + 1 by using the same reasoning as in Theorem 11.1.

11.3.4 An Example

As an illustration of the construction, a polynomial G(x) = x%(x + 1) with coefficients
from [Fg is used to define an extended Goppa code in [Fo. The finite field [Fg is defined
with the primitive polynomial s® + s+ 1 and has « as a primitive element. The set

L corresponding to G(x) is then given by,

For this example clearly ¢ =2, r1 =2, |L| = 6 and m = 3. To make the BCH part of

H narrow sense it is multiplied with the matrix M,
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(a2 0 0 0 0 O]

0 a* 0 0 0 O

0 0 a® 0 0 o0
M =

0 0 0 a 0 0

0 0 0 0 a° 0

0 0 0 0 0 a°

and this results in the matrix H,

H=HxM=|1 1 1 1 1 1

H, is then expressed in F; as,

(001011000
101110000
010111000
111111000

H,=|0 0000000 O
00000O0O0OO
111111100
011101010
111010001

The matrix H, is the parity check matrix of the extended length Goppa code and
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after row reductions the code has parameters [9,2,5]o.

(1 00000001
0100000T10
001000001
H,=(0 00100011
0000100171
0000O0T10T10
000000100

It can be observed that the minimum distance of the code is one more than the
lower bound i.e. deg(G(x)) +1 =4. Results on codes obtained from the construction
method are presented. These codes have minimum distances better than the codes
in (Grassl, ) with same length and rate. They are derived from Goppa codes
defined by the polynomial in (11.15). Goppa polynomials with coefficients in Fym of

the form,

G(x)=x"" ﬁ(x -ah)
i=0
where «a is the primitive element of F;» are used. Tables 11.1 - 11.3 give a summary
of the results of new codes in Fy, Fg and F9 which are subfield subcodes of codes
defined in F49, Fg4 , and [Fg; respectively. The codes are represented in the form
[n,k,d],. The dimensions of the codes are confirmed by expressing their parity
check matrices in reduced echelon form. It is worth noting that some of the codes
in Tables 11.1 - 11.3 can be obtained from other codes in the tables by shortening in
one or more positions. For example %637 can be obtained from %33 by shortening in

one position.

O# | g™ |\ m|ri| /¥ Codes Codes in (Grassl, )
61149 | 2 | 2|5 | [62,41,7] [62,41,6];
G| 49 | 2 | 9|6 |[53,29,15]; [63,29,14]
Table 11.1: New Codes in [y
# | q™ | m | r ¢ Codes Codes in (Grassl, )
63 | 64 | 2 1| 91[71,54,10]g [71,54,9]s
6y | 64 | 2 1|12 |[74,51,13]s [74,51,12]g
65 | 64 | 2 1|13 |[75,50,14]g [75,50,13]s
s | 64 | 2 |10 | 6 |[68,42,16]g [68,42,15]g
67164 | 2|10 7|1[69,41,17]g [69,41,16]s
s | 64 | 2 | 11| 6 [68,40,17]g [68,40,16]s

Table 11.2: New Codes in [Fg
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# q" |\m | ri| ¢ Codes Codes in (Grassl,
69 | 81 | 2 1| 6| [85,74,7]9 [85,74,6]9
€10 | 81 | 2 2| 6| [85,72,8]g [85,72,7]9
611 | 81 | 2 3| 6| [85,70,9]9 [85,70,8]9
612 | 81 | 2 4| 6 |[85,68,10] [85,69,9]9
13|81 | 2|11 6 |[85,57,17]9 [85,57,16]9
14| 81| 2|12 6 |[85,55,18] [85,55,17]9
%15 | 81| 2|21 6 |[85,42,27] [85,42,26]9
16| 81| 2 | 22| 6 |[85,40,28] [85,40,27]9
€17 | 81 | 2 1| 7 [86,73,8]9 [86,73,7]9
615 | 81 | 2 21 7| [86,71,9]9 [86,71,8]9
619 | 81 | 2 3| 71186,69,10]g [86,69,9]9
690 | 81 | 2 | 11| 7 |[86,56,18] [86,56,17]9
601 | 81 | 2 | 12| 7 |1[86,54,19] [86,54,18]9
690 | 81 | 2 | 21| 7 |[86,41,28] [86,41,27]9
o3 | 81 | 2 2| 8|[87,70,10]9 [87,70,9]9
694 | 81 | 2 | 11| 8 |[87,55,19] [87,55,18]9
695 | 81 | 2 1| 9[88,71,10]9 [88,71,9]9
696 | 81 | 2 21 9|1[88,69,11] [88,69,10]9
697 | 81 | 2 |10 | 9 |[88,55,19] [88,55,18]9
Gos | 81 | 2 | 11| 9 | [88,54,20] [88,54,19]9
o9 | 81 | 2 1|10 |[89,70,11]9 [89,70,10]9
€30 | 81 | 2 1| 11 | [90,69,12]9 [90,69,11]9
€51 | 81 | 2 | 1|12]191,68,13]9 [91,68, 121,
€32 | 81 | 2 | 2121 191,66,14]9 [91,66, 1319
€33 | 81 | 2 1|13 |[92,67,14]9 [92,67,13]9
€34 | 81 | 2 2|13 | [92,65,15]9 [92,65,14]
€35 | 81 | 2 1| 15 | [94,65,16]9 [94,65,15]9
€36 | 81 | 2 2115 | [94,63,17]9 [94,63,16]9
€37 | 81 | 2 2113 | [92,65,15]9 [92,65,14]
€35 | 81 | 2 1| 14 | [93,66,15]9 [93,66,14]9
€39 | 81 | 2 1| 15 | [94,65,16]9 [94,65,15]
6o | 81 | 2 2115 | [94,63,17]9 [94,63,16]9

Table 11.3: New Codes in [Fg
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11.3.5 Adding One More Column

It is possible to add a single column to the parity-check matrix H, in the same

manner as singly extended Reed Solomon codes (Wollf, ). A parity-check matrix
H,,
[ 1 1
0 o . 00 0
1 1
0 e 00 --- 0
1 L ... L 00 -0
H,= “ “ (11.25)
0 Pr-a1 T Pran 1o -0
1 1
0 Ps—a1 " PBs-an 01 0
1 1
_0 Bo—a1 T Pran 00 - 14

is formed which leads to the next theorem.

11.3 Theorem. The linear code 6, defined by the parity-check matrix H, in F, has

Length=n+1
Dimension =k +1

Distance=d

where 6y is a code of length n, dimension k and distance d defined by the parity-
check matrix Hy from (11.17).

Proof. Asin Theorem 11.1 it is sufficient to prove that appending the column does
not cause the distance of %, to be less than that of 6,. The length and dimension
of the codes %, are 1 more than that of %6, since the parity check matrix H, has an
additional column.

Since Hy has already been established in Theorem 11.1 to have all d — 1 columns
linearly independent and thus %, has minimum distance d = deg(G(x))+1, the case
where d — 1 random chosen columns of H, include the new appended column is
considered. The determinant of a d —1 xd —1 submatrix of H; that includes the new
appended column can be found by expanding about the column in question. This
d —1xd —1 determinant of H, which includes the appended column will have a 1
on a row of H; corresponding to the defining root of the BCH code a’! i.e. the last
row of the Vandermonde matrix defined by x"! and is zero elsewhere thus forming a
d -2 xd —2 determinant. This d —2 x d —2 determinant is formed from the columns

of a parity check matrix of a Goppa code defined with a Goppa polynomial defined
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by
17— Bo)---(x - Br) (11.26)

and hence has a non-zero determinant. All d —1 xd — 1 determinants of H, are

non-zero, therefore 6, defined in [F;, has minimum distance d > deg(G(x)) + 1. [

Every % is a code shortened from %, in one coordinate. It is possible to shift the
roots of the BCH part of the matrix H, in the same way as (11.20) so that better

dimensions are obtained by multiplying H, with a matrix M,

[1 0 0 0
0 a9 0 0
~(g"™~1-r1)
M=|0 0 ay? ! 0
0 0 0 a9y

corresponding to a template,

—(q"-1- (g™ -1- —(q™-1-
v= {Lal(q r1),a2(q rl),m,an(q r1)}

so that H, = H, x M which results in,

(0 oV . gD o L o]
0 " ... a? 0 ... 0
0
1 1 1 0 ... 0
H,= (11.27)
-(¢Mm-1-ry) —(g™-1-r7)
a a,
0 1ﬁ2—061 Ba—an 1 0
-(¢Mm-1-ry) —(g™-1-r1)
a a,
>0 e v e 0 1‘

It is clear that one can easily choose the template v so that the BCH code is defined
with any set of roots. Let %, denote the code defined by H,. Clearly, Theorem 11.3
describes the parameters of %,. New codes obtained from this construction of the
form %, are now given. Tables 11.4 - 11.6 give new codes of the form %,. As with
codes obtained previously the dimension of each of the codes is confirmed using row
reductions while their minimum distances are obtained from the bound in Theorem
11.3.
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# | q" |\ m | r1| /¢ Codes Codes in (Grassl,
641 | 49 | 2 25| [63,42,7]7 [63,42,6];
6s0 | 49 | 2 91| 5][53,31,14] [563,31,13]
643 | 49 | 2 | 17 | 5| [63,20,22]7 [53,20,21];
Guq | 49 | 2 1|6 | [54,43,7] [564,43,6];
G5 | 49 | 2 9|6 |[54,30,15] [564,30,14]

Table 11.4: New Codes 6, in [Fq
# Q" |\m | ri| ¢ Codes Codes in (Grassl,
G615 | 64 | 2 | 10| 5| [68,44,15]g [68,44,14]g
647 | 64 | 2 | 12| 5 |[68,40,17]g [68,40,16]s
618 | 64 | 2 |19 | 5 |[68,31,24]g [68,31,23]s
619 | 64 | 2 | 20| 5 |[68,29,25]g [68,29,24]g
650 | 64 | 2 | 10| 6 | [68,43,16] [68,43,15]s
651 | 64 | 2 19| 6 |1[69,30,25]g [69,30,24]g
650 | 64 | 2 | 10| 7 |[70,42,17]g [70,42,16]5
653 | 64 | 2 |10 | 8 |[71,41,18]g [71,41,17]g
654 | 64 | 2 1| 9]|1[72,55,10]g [72,55,10]g
655 | 64 | 2 1|12 |[75,52,13]g [75,53,12]g
s | 64 | 2 1| 13| [76,51,14]s [76,51,13]s

Table 11.5: New Codes 6, in Fg

# q" 'm | ri| /¢ Codes Codes in (Grassl,
657 | 81 | 2 |11 | 5 |[85,59,16] [85,59,15]9
658 | 81 | 2 | 21| 5 |[85,44,26] [85,44,25]
659 | 81 | 2 | 31| 5 |[85,31,36]9 [85,31,35]9
660 | 81 | 2 1| 6| [86,75,7]9 [86,75,6]9
%61 | 81 | 2|11 | 6 |[86,58,17]9 [86,58,16]9
b2 | 81 | 2 | 21| 6 |[86,43,27]9 [86,43,26]9
663 | 81 | 2 1| 7| [87,74,8]9 [87,74,7]9
664 | 81 | 2 | 11| 7 |[87,57,18]9 [87,57,17]9
be5 | 81 | 2 | 21| 7 |[87,42,28] [87,42,27]
6es | 81 | 2 1| 8| [88,73,9]9 [88,73,8]9
%7 | 81 | 2 | 11| 8 |[88,56,19] [88,56,18]9
bes | 81 | 2 | 21| 8 |[88,41,29] [88,41,28]9
669 | 81 | 2 1| 91[89,72,10]9 [89,72,9]9
60| 8 | 2|11 9 |1[89,55,20] [89,55,19]
61| 81 | 2 1|10 |[90,71,11]9 [90,71,10]9
€12 | 81 | 2 | 1| 11]191,70,12]9 [91,70,11]9
€3 | 81 | 2 | 1]12]192,69,13]9 [92,69, 12],
674 | 81 | 2 1|13 |[93,68,14]9 [93,68,13]9
65| 81 | 2 1| 14 | [94,67,15]9 [94,67,14]9
€6 | 81 | 2 1| 15| [95,66,16]9 [95,66,15]9
€77 | 81 | 2 1| 16 | [96,65,17]9 [96,65,16]9

Table 11.6: New Codes €, in Fq
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11.4 Nested Structure and Construction X

It is possible to form a chain of nested codes from this construction. A linear code
%1 is a subcode of a linear code %6, if all the codewords of %67 are contained in 6.
Suppose these codes have parity check matrices H; and Hy respectively, then the

vector space defined by H; contains the vector space defined by Ho.

cglccgz LffH2 CHl

The difference between the dimensions of a code and its subcode is called co-dimension.

11.4 Theorem. Any extended Goppa code I'(L,G1) defined by a Goppa polynomial,
G1(x) = 2°(x — B2)(x — B3) -+~ (x — Br)

is a subcode (of co-dimension t—s) of the Goppa code T(L,Gs) defined by the Goppa
polynomial,

Go(x) = x'(x — Bo)(x — B3) - (x — Br)

provided t <s and p; € Fym.

Proof. Implied in Theorem 11.4, Gl and Gg must have exactly the same roots not
necessarily with the same multiplicity. If H,, is parity check matrix of the extended
Goppa code defined by G and H,, is the parity check matrix of the extended Goppa
code defined by G, then from Equation 11.17 it is clear that,

H, cH,,

thus €6y, € 6y,. m

11.1 Corollary. Any code Céyl derived from a Goppa code with polynomial G1 is subcode
of the code Céyz derived from a Goppa code with polynomial G provided both codes

are defined with the same template v = (v1,v9,...,Uy).

Clearly if codes Céyl and Céyz have different templates then the codewords of %Yl
will not satisfy the parity check equations of Céyz. Corollary 11.1 leads to a well
known method of extending linear codes, Construction X as presented in Theorem

2.1. Tables 11.7 - 11.9 give new codes obtained from construction X with complete
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information on the codes %5, their corresponding subcodes %7 and auxiliary codes.

The template v is fixed for codes 47 and 6> such that,

m m m
v:{al(q 2),a2(q 2 La Y
# 6y 61 Auxiliary codes | New Codes || Codes in (Grassl,
ri| ¢ Codes ri| ¢ Codes
61| 9 | 5|[54,31,14]7 | 11 | 5 | [58,28,16]; [4,3,2]7 [58,31,16] [53,31,15];
Table 11.7: New Codes From Construction X in [Fy
# ) 61 Auxiliary codes | New Codes || Codes in (Grassl,
ri | ¢ Codes ri | ¢ Codes
€19 | 10 | 4 | [66,44,14]5 | 12 | 4 | [66,40,16]s [5,4,2]s [71,44,16]s [71,44,15]5
%so | 11 | 4 | [66,42,15]15 | 13 | 4 | [66,38,17]s [5,4,2]s [71,42,171s [71,42,16]s
651 | 10 | 4 | [66,44,14]g | 12 | 4 | [66,40,16]g [5,4,2]g [71,44,16]g [71,44,15]g
652 | 19 | 4 | [66,31,23]g | 21 | 4 | [66,27,25]g [5,4,2]s [71,31,25]g [71,31,24]g
Table 11.8: New Codes From Construction X in [Fg
# 6o 61 Auxiliary codes | New Codes || Codes in (Grassl,
ri| ¢ Codes ri| ¢ Codes
Css | 11 | 4 | [83,59,1519 | 13 | 4 | [83,55,171 (5,4,2], [88,59,1719 (88,59, 161y
Gss | 11 | 4 | [83,59,15]9 | 14 | 4 | [83,53, 18], [8,6,31y [91,59, 181y [91,59,1719
Ces | 12 | 4 | [83,57,1619 | 14 | 4 | [83,53,18], (5,4,2], [88,57,1819 [88,57,1719
6g6 | 12 | 4 | [83,57,16]9 | 15 | 4 | [83,51,19]9 [8,6,3]9 [91,57,19]9 [91,57,18]9
6s7 | 13 | 4 | [83,55,17]y | 15 | 4 | [83,51,19], (5, 4,21 (88,55, 1919 (88,55, 181y
Ggs | 21 | 4 | [83,44,25]9 | 23 | 4 | [83,40,27]9g [5,4,2]9 [88,44,27]9 [88,44,26]9
g9 | 21 | 4 | [83,44,25]9 | 24 | 4 | [83,38,28]9 [8,6,3]9 [91,44,28]9 [91,44,27]9
6o | 22 | 4 | [83,42,26]9 | 24 | 4 | [83,38,28]9 [5,4,2]9 [88,42,28]9y [88,42,271]9y
691 | 11 | 5 | [84,58,16]9 | 13 | 5 | [84,54,18]9 [5,4,2]9 [89,58,18]9 [89,58,17]9
692 | 11 | 5 | [84,58,16]9 | 14 | 5 | [84,52,19]9 [8,6,3]9 [92,58,19]9y [92,58,18]gy
Cos | 12 | 5 | [84,56,17]9 | 14 | 5 | [84,52,19], (5,4,2], (89,56, 191y (89,56, 181y
694 | 21 | 5| [84,43,26]9 | 23 | 5 | [84,39,28]9 [5,4,2]9 [89,43,28]9 [89,43,27]9
o5 | 11 | 6 | [85,57,1719 | 13 | 6 | [85,53,19], (5,4,2], [90,57,1919 [90,57, 181y
Cos | 11 | 7 | [86,56,181y | 13 | 7 | [86,52,20], (5,4,2], [91,56,2019 [91,56, 191y

Table 11.9: New Codes From Construction X in [Fg

11.5 Summary

An alternative construction of extended Goppa codes is given. The first construction
) and thus
produces longer codes than the method in this Chapter. The method presented in
this Chapter utilises the fact that Goppa codes defined in the parent field are GRS

codes. Since the codes are extensions of BCH codes, one can choose a template that

in Chapter 8 uses the concept of a modified Goppa code (Goppa,

extends any type of BCH code. Both methods are generalisations of Construction P

by Sugiyama et al. ( ).
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12. SUMMARY AND FUTURE
RESEARCH

12.1 Summary and Contributions

Research has focused mainly on finding improved algebraic codes with better prop-
erties than any known codes. Two important classes of codes invented by V.D Goppa
namely Goppa codes and AG codes feature prominently. AG codes were studied in-
depth and their advantages and benefits in comparison to some best known codes
are investigated. Decoding performance of AG and nonbinary BCH codes is com-
pared in the AWGN using soft and hard decision decoding and erasure channels
using maximum likelihood decoding. The BMSA decoding was presented for the
bounded distance decoding of AG codes while the classic BMA was presented for
BCH codes for transmission in the AWGN channel. Symbol based ordered relia-
bility decoding was carried out for soft decision decoding in the AWGN channel for
both AG and BCH codes. Finally maximum-likelihood erasure decoding (in-place)
is presented for decoding these codes in the erasure channel. Soft and hard decision
performance in the AWGN channel shows that the codes have similar performance.
In the erasure channel AG codes show superior performance at low probabilities
of erasure, an indication of a more favourable low weight distribution. Research
naturally lead to finding improved codes from AG codes. A construction of gener-
alised AG codes that utilised places of degree larger than one and a concatenation
concept was presented. Using this method 237 codes in the finite field Fig from
four curves with better minimum distances than any known codes were presented.
Many improvements on constructible codes were also presented. The search for new
codes was then extended to Goppa codes. A construction of extended binary Goppa
codes was generalised to nonbinary codes. The concept of an extended Goppa code
was used to obtain improved codes. In total 48 new codes in finite fields F7, [Fg
and Fg were presented directly from this method. Using construction X, 30 further
improvements were also obtained. More improvements are also possible from sim-
ple modifications of the obtained codes. Finally an alternative method of obtaining
these codes is given. A method of shortening linear codes whilst increasing the min-
imum distance is analysed and generalised. The method works by examining the

low weight codewords of a code. A link between this shortening method and meth-
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ods of extending codes was presented. Codes with a special structure from Goppa
codes are used to obtain 4 new binary codes. A method of extending BCH codes was
then presented. The method is shown to be as good as an optimal method of con-
structing codes; construction X, in cases when the field size is small. The method
provides an insight into extending algebraic codes and can be used to obtain best

known codes. The major contributions are summarised below,

* Algebraic geometry codes are studied in great detail with special attention
given to their construction and decoding. The practical performance of these
codes is evaluated and compared with previously known codes in different

communication channels.

¢ Furthermore many new codes that have better minimum distance than the
best known codes with the same length and dimension are presented from a

generalised construction of algebraic geometry codes.

* A construction of binary extended Goppa codes is generalised to codes with
nonbinary alphabets and as a result many new codes are found. This con-
struction is shown as an efficient way to extend another well known class of

algebraic codes, BCH codes.

¢ A generic method of shortening codes whilst increasing the minimum distance
is generalised. An analysis of this method reveals a close relationship with
methods of extending codes. Some new codes from Goppa codes are found by

exploiting this relationship.

* Finally an extension method for BCH codes is presented and this method is

shown be as good as a well known method of code extension in certain cases.

12.2 Future Research Directions

Xing’s generalised construction of algebraic geometry codes holds promise of pro-
ducing new codes. However this hinges on finding constructible curves with many
places of small degree and small genera. Further contributions to the tables in
(Schimd and Shurer, ) from generalised AG codes are possible for larger fields
if one scours the literature for constructible curves with good genera. The exten-
sion method for Goppa which is a generalisation of construction P for nonbinary
codes can be extended to other alternant codes like Srivastava codes. A thorough
search may well reveal some new codes. An extensive search of the database of best
known codes in MAGMA for improved codes from shortening can be carried out if
sufficient computational resources are available . If best known codes by shorten-

ing are found it may be useful not to rely on the lower bound (as the distance may

1The MAGMA software used in this research was issued under a student license and as such has
limited memory capacity.
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be larger) on minimum distance of codes produced by shortening instead one can
find the minimum distance by brute force. In a more general context, a method of
constructing algebraic codes with bad dual codes is an appealing area of research.
These type of codes can be used to construct good LDPC codes as not much is known

on the structural properties of LDPC codes aside from their sparseness.
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13. APPENDIX

13.1 Construction P For Binary Goppa Codes From (Sugiyama
et al., )

Let G(x) be a polynomial of degree 2¢ with coefficients from Fe= such that the fac-

torisation over Fom[x] is given by

S0 s

G = []x-B% T[] (gul)’, (13.1)
u=1 u=so+1

where f,, u =1,...,s¢ are distinct elements of Fom; b, u =1,...,s are even integers;

and s satisfies 0 < sg < t¢. In addition, for u =sy+1,...,s the roots of the irreducible

factors g,(x) are not in Fom. Let L ={a;,...,a,} denote the elements of Fo= that are

not roots of the Goppa polynomial G(x). The parity check matrix of the code ép is

given by
Hy 0 0 0
H H 0 --- 0
Hy 0 H; 0
Hprai=|Hsy, O O - Hpf. (13.2)
0 H; 0 0
0 0 Hjy 0
0 0O O Hy

Here Hj is the parity check matrix of the Goppa code defined by the polynomial

S0 S
[[G=puymxCem T (guan® ™.
u=1

u=so+1
The matrices H,, u =1,...,so are single-row matrices of the form

- 1 1 U S
Hu - [(ﬁu_al)bu_l (ﬁu_QZ)bu_l (ﬁu_an)bu_l ’
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the matrix Hy is a single row matrix of the form

where a is a primitive element of Fom, and finally the matrix H; is a row matrix of

length m + 1 of the form,
H;=|11 - 1 1|.

The code 6p has length n = 2™ + ms(, redundancy n — k < mt + sy, and distance

d =2t +1 (Sugiyama et al., ). See Chapters 8 and 11.
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AG algebraic geometry. 6-8, 45, 85, 175

AWGN additive white Gaussian noise. 4, 8, 10, 11, 26, 61, 175

BCH Bose Chaudhari Hocquenghem. 6, 10, 35

BEC binary erasure channel. 26

BMA Berlekamp Massey algorithm. 8, 10, 61, 175

BMSA Berlekamp Massey Sakata algorithm. 8, 10, 61, 62, 85, 175

BSC binary symmetric channel. 26

CPU central processing unit. 30

DMC discrete memoryless channel. 25

GRS generalised Reed Solomon. 36, 43

LDPC low density parity check. 7, 8, 177

MDS maximum distance separable. 36

RAM random access memory. 30

RS Reed Solomon. 6, 10, 35, 61
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Performance Comparison between Hermitian codef
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Abstract—We explore the benefits of implementing Hermitian code that have alphabets in a smaller field. In this aspect, AG
codes over moderate lengths and compare the hard decisioncodes and BCH codes are similar. In comparing AG and BCH
decoding performance in the additive white Gaussian noise .q4eg shortening of BCH codes may be necessary so that

(AWGN) channel and performance in the erasure channel of - . X
Hermitian codes with shortened non-binary Bose Hocquenghe the codes have equivalent lengths without loss in perfooman

Chaudhuri (BCH) codes. We implement the Berlekamp-Massey-

Sakata (BMSA) decoding and Berlekamp-Massey (BMA) decod-

ing for the hard decision Hermitian and BCH codes respectivly,

maximum likelihood erasure decoding and ordered reliabilty soft

decision decoding for both. II. CONSTRUCTION

I. INTRODUCTION A. Hermitian Codes

In order to meet channel capacity, as Shannon postulatedMost constructions of AG codes are algebraic and require
we are interested in finding long error correction codes with certain knowledge of algebraic geometry. Blahut [4] pro-
large minimum distances. A large effort in research has bepased an encoding method that uses the Fourier transform
dedicated to finding algebraic codes with good properties defined in finite fields and the resulting codes are called
and efficient decoding algorithms. Reed Solomon (RS) codegicylic Hermitian codes. We use this construction to prese
are a product of this research and have over the yearsystematic encoding that will be useful in both deterngnin
found numerous applications the most noteworthy being théfie minimum distance of the codes and for erasure decoding.
implementation in satellite systems and the compact disd@$e construction utilizes a two dimensional Fourier transf
These codes are defined with non-binary alphabets and hawel a twist on the points of the defining curve so that the
the maximum achievable minimum distance for codes of theipints lie on straight lines. The Hermitian polynomial oeer
lengths.The only caveat is that an RS code has length limitieite field - is defined on the affine plane by,
to the size of the finite field in which it is defined.

Algebraic geometry (AG) codes are codes derived from F(z,y) = 29 +y7 —y. 1)
curves. They were first introduced by Goppa [1] in 1981 and

subsequent work by Tsfasman et al [2] proved that a family @he Hermitian curve is defined as the poinfs =
these codes have performance better than previously knoffw, 5)|F(w,3) = 0}. A twist on the curve repositions these
bounds. In particular a new bound called the Tsfasman Vladutints to lie on a straight line and importantly thevalues
Zink (TVZ) surpasses the better known Gilbert Varshamare members of aonjugacy classn the fieldF .. The twist
bound in the asymptotic performance of the these codesquestion is done by replacingin (1) with 291y so that
when the finite field in which they are defined is of the forrthe twisted polynomial becomes

F,. andg¢® > 49. The implication of this result is that these

new codes are guaranteed better performance than previousl F(z. y) = a9t f a9yt — 2y, 2)
known codes as their length increases infinitely. A type of

AG codes, Hermitian codes, have good properties and a@econjugacy class of a finite fieldf,» = IF 2, is represented
seen to be future replacements to RS codes. by the order of its first member(an element with the smallest
Performance comparison of AG codes and RS codes drder) and ifw is the primitive element in the field,~ is given
previous literature [3] compare these two types of codes in (7). The values of for all points of the twisted curve
defined in the same finite field and having similar ratesow lie in the conjugacy class = 1. This property allows
but the codes have unequal lengths since RS codes areth® two dimensional inverse Fourier transform to be used
definition shorter. Sub-field sub-codes of RS codes (namafficiently to represent hermitian codes as shortened codes
BCH codes) contain all those codewords of an original R$ the bicyclic plane. The hermitian code is given by the

)
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concatenatiotco|c1|.....|¢g—1], B. BCH Codes

BCH codes can be seen as subfield subcodes of RS codes .
A BCH code can created by first creating an RS code of the
G | (3 same length in a specified finite field and removing codewords
that do not have all their elements in a chosen smaller field.
By choosing a set ofi — k (cyclically) consecutive elements
of finite field as roots of a generator polynomial, we define an
The matrixA = [w”]i = [0,1,..,¢q—1],j = [1,2,4,..,]]] such RS code of lengti, message length and minimum distance

1 To

Cq—1 Tq—1

that d. To define a BCH code from the RS code we form a union
1 1 1 of all the conjugacy classewhich any of the selected roots
w w? wh of the RS code are co-members and use the union as a set of
A= (4)  roots for the generator polynomial of the BCH code. We are

then concerned with two fields, the larger fiég- in which
the RS code is defined and a smaller fi€lg- which is its
wherej is an order of a member of a conjugacy class witubfield (in which the BCH code is defined). We are also only
s =1 andl is the largest order in the conjugacy class. gadipncerned with the case when both fields have characteristic
r; in (3) an RS codeword of length, = ¢> — 1 and with 2 i.ep = 2. anj_ugacy clas_ses are partitions of the larger
redundancyN, — k;. Each RS codeword; has spectrum field F, into distinct sets with the property that each set
g - H . - ) S )
R; with N, — K; cyclic consecutive vector positions equal t§ONtains roots of an irreducible polynomial in the fidlgh. A
zero. To specify the positions that are equal to zero we (ERNIUgACY class of a finite fieldl, with p a prime number is
the definition of the hermitian code that says its spectrum higPresented by its first member (an element with the smallest
the all positionsj + k < J for any chosen integef within order) and ifw is the primitive element in the field,~ is

wi—1 2= o yle-1)

the rangey—1 < J < | 7= | and apply a shift correspondinggiven as the set,
to the twist on the hermitian curve. Therefore edthhas all (", wpr<,n,4>s} @)

positionsk = (¢+1)j + k equal to zero provided satisfies

the previous condition. Sincg is now defined by specifying wherem is the smallest positive integer so thetmss =
the positions of zeros iRk;, it can then be represented bys mod p™ — 1. The finite fieldF,- is a subfield off,~» when
a generator matridG;. Then the transpose of the generator dividesm [6]. The choice of primitive polynomial irF,,-

matrix of the hermitian code is given by, that preserves the mathematical properties of the elements
" F,m is also crucial. To define a BCH cod®'’, K, D],» we
Go Onpicy oo Onpig s first define the conjugacy classes of a subfiglg from a
O, Ko GT coe Ok, field F,» such that(p™ — 1) > n. Now we choose a union

T — T/
Gupr =W * . . . ®) of conjugacy classes such that the unioni$édtas cardinality
0~ 0 ar N — K. Let r denote the number of cyclically consecutive
mrifo Tk e a1 elements in/ such thato’! = o’~! - o then the BCH bound

where [6] asserts that,

W=A4"1Q) Iy ®) D-l=r

Therefore the BCH code is iV, N —|U|,r+ 1) code. BCH

codes do not meet the Singleton bound and have a Singleton

Befect ofs. In this aspect BCH codes are similar to AG codes.

For the BCH code we choose to define the codesfin
I ) P and take the subfield,s and codewords lying therein. We

N, - ala o 1)) with messrage lengt’ = ,ZFO K has also need codes of the same rate as the hermitian code. The

minimum distancel = N — K —g+1 wherey is the genus of pormitian code has redundangy — K = 15 we can easily

the defining curve. These codes are Goppa residue codes se this number of roots for the generator polynomial of

can also be constructed from affine hermitian codes definﬂag BCH code. The first 8 conjugacy classes will suffice
algebraically in [5] by shortening the code at co-ordinates ' '

the codeword corresponding to points on the hermitian curve

having a zero in eithex or y axis.The generator matrix can {1} {w,w0)  {w?w??}  {w? Wi}

also be represented in systematic form by row reductions; ho 4 64 5 80 6 96 7112

ever if column interchanges are necessary affected posiiio {wh o) {w?, W™} {w?, W™} {wl W)

the codewords need to be arranged back to the original ordére union of these classes has eight consecutive finite field
before syndrome computation. We create a generator maglements and the BCH code generated by a polynomial with
of the [60,45, 10]16 ([n, k, d] ;2 form) hermitian code using the the union as roots will have designel,;, = 8 +1 = 9.
procedure above withl = 5. This will produce 255,240, 9]15 code. However the symbol

Q represents the kronecker tensor products an identity
matrix, the superscripT’) is the transpose operator and th
sub-matrix0,, x, denotes an all zero submatrix of sizg
by K;. An epicylic Hermitian code defined ifi,- has length
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TABLE | N
EPICYLIC HERMITIAN CODES
q n k 4 01k g o
4| 60| 50 | 5 x
4] 60 | 45 [ 10 5 =
4] 60| 40 | 15 s ool 4
8 | 504 | 432 | 45 £
z e
TABLE Il g oo o
BCH cODES & e
] n k| nnort | Fshore | d 0000 : : 4
4| 255 | 245 | 60 50 | 6 BCHE0S A FER —i—
4| 255 | 240 | 60 5 |9 HER(aD de.10) Thearelcal FER 5
4 255 235 60 40 11 19'050 1 013 017 02 0.23
Probability of channel erasure
8 | 4096 | 4024 | 504 432 | 37
Fig. 2. Hermitian [60,45,10] vs BCH[60,45,9] in the erasaf@nnel
107 ¢ T BCH(60,45,9) FER —+—
Rkt HER (60,45,10) FER ---x---
- Uncoded FER ---%
o \\ = of the [60,45,9]:6 BCH code. The general procedure used
: for hard decision decoding both codes is explained in here in
5 kN e detail. The symbols of each codeword is representea by 4
5 10? = bits using the basis defined by the primitive polynomial used
£ e to obtain the fieldF,«. The binary bits are then modulated
£l ; - ] using t_)lnary phase shlft_key_lng (BPSK) in which the mapping
H o from bits to real values is given bt] — [—1] and[0] — [1].
a B . .
s The modulated sequence is passed through a simulated AWGN
0L \ . =l  channel with variance? and mean. = 0. The ratio of energy
per bit to the noise spectral densify},/N, is specified in
decibels dB and the mapping to the channel variance is given
s
oy 4 6 8 10 12 by,
Eb/No (dB)
) 1
Fig. 1. Hermitian [60,45,10] vs BCH[60,45,9] over AWGN cimah 0 =T B
2. &+ - rate

o

elements of the codewords in the new code are stilFin The sequence output from the channel is then demodulated
but are isomorphic t&,: and a choice of a defining primitive using BPSK demodulation so that if the sequence is of length
polynomial for the fieldF,s that preserves this isomorphisn? and is denoted by then, a new binary sequeneeis

is 2* + 2 +1 = 0. The elements of the two fields that
are present in the codewords symbols can now be mapped 1 ifv<0
one to one. Finally the code is shortened by deletl®g w; = { o
information symbols to[60,45,9]6. Table Il shows some 0 ifv;20
similar BCH codes shortened to have equal lengths and rates

as the Hermitian codes in table I. The sequence is then partitioned intd/m parts ofm bits
each and each part is mapped to field symbols using a basis
Il RESULTS defined by the primitive polynomial used obtain the field. To
A. AWGN Channel with Hard Decision Decoding test for a errors is a syndrome test is carried out to check

The BMSA is presented in [7] [8] [9] is an algorithm forfor the presence of errors. If errors are found thg received
generating a set of minimal polynomials that are generatgi@duence is passed to the appropriate hard decision decoder
of a locator ideal for the errors in a received codeword. It ihich attempts to correct the errors. The entire process is
a two dimensional extension of the BMA and can be uségPe€ated a number of times for ead,/N, value until
together with majority voting of missing syndrome ebmemgjfﬂmen_t symbol errors are encountered and the probgbilit
introduced for the BMSA in [8] to correct the hermitian code8f €rror is then computed.
up to the designed distance. We implement the BMSA for the1) Results:The result in figure 1 show that the performance
hard decision decoding of thg0,45,10],s hermitian code of the two codes is similar in the AWGN channel using their
and the well known BMA [10] for the hard decision decodindrame error rates (FER). This is expected because the error
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Require: H, ¢y, s, ..., c.=€rasure positions
1: for i : e do
2:  Choose co-ordinat#l; ., of the H matrix
it Hi., =0and3H., #0V k> ithen
Interchange row with row k of H
else if H; ., =0 and3H ., # 0V k > i then
Exit {erasures cannot be solved
end if
Perform gaussian elimination on the rowsHfso that
all positionsHy, ., =0V k > i
9: end for
10: Use reducedd to solve for the erasures

can be seen from the actual performance of the codes that the
hermitian codes have a performance that surpasses the BCH
codes. In the region where the probability of channel eeasur

low i.e. just aroung = 0.1 we can see that the performances
of the two codes are similar since the number of erasures
are likely to be below the erasure correction capabilityhef t
codes. However at a very large probability of erasure (above
p = 0.2') the average number of erasures exceeds the error
correction capability of both codes and thus their perfarces

are similar. In the region between the two points the heamiti
code has better performance than the BCH code.

O N aR®

C. AWGN Channel with Soft Decision Decoding

We are also interested in the performance of these codes
under soft decision decoding. We implement an ordered

Fig. 3. Maximum Likehood Erasure Decoding

correction capability of the two codes is the same, reliability decoding introduced in [14] on both codes. The

dymin — 1 procedure involves ordering a received sequence in order
t= {TJ of decreasing reliability, deleting th&” — K least reliable

101 positions and re-encoding. A second stage of the procedure

tHER = {_J =4 involves reprocessing a term used to describe systematic

2 subtractions of possible error vectors to the ordered semue

trom = {EJ —4 and subsequent re-encoding until a codeword with a suitable

2 distance from the recieved sequnce is obtained. The proeedu

It is also worth noting that the BCH codes are decoded i described using only binary codes, for our purposes we are
the field Fy56 since they do not contain any meaningful rootéiterested in non-binary codes.
in the fieldF ¢ (and will not satisfy the syndrome equations)Ordered reliability of decoding of non-binary codes is ulyua

. . o . done using the binary image expansion of the codes however

B. Erasure Channel with Maximum Likelihood decoding e choose to implement the decoding using a symbol based

The codewords from both codes are passed through @sproach. Codewords are first mapped to binary using a
erasure channel with a given probability of symbol erasursuitable basis. In this way each symbol is mapped into an
Using respective parity check matrices, the erasures are c@ bit binary block to form a binary vectob with length
rected up to the error correcting capability of the code. M N. This vector is modulated using BPSK and transmitted
code with minimum distanceé is guaranteed to corredt— 1  through an AWGN channel with varianeé and the received
erasures but will also correct some patterns of erasurds witctor is a real valued vectar also of lengthmN. Since
size greater than/ — 1 [11] [12]. The erasure correctioneach block represents a symbol, we choose a representative
procedure in algorithm 3 is one presented in [11] [13] in wahicreliability value within each block to represent each syimbo
the coordinates of the columns of parity check matrix thathe logical choice of a representative reliability valueoise
correspond to the erased bits are first tested for solwalifit
in many cases all the erasures are corrected. In simuldiing t
erasure channel we specify the channel erasure probapility e BT
and a real valued uniform random generator producing values | . Uncoded FER ---x
within the ranged < z < 1 simulates the randomness in the 10‘?\\ B
channel. The codeword symbols are erased when the randoml
generated value falls within the rangel —p < 2 < 1 and
left are unaltered otherwise. The corrupted codewordsheme t
decoded with algorithm 3 which tests for solvability . If the
erasures can be corrected the solution to the homogeneo
equations is determined otherwise the corrupted codewor
is left unaltered. For each chosen channel probabjlitye
repeat the procedure until sufficient erasures are unsairdd
compute the frame erasure rate.

1) Results:The performance of hermitian and BCH codes
is compared in figure 2 . In computing the theoretical erasure * - 3 4 5 6 7 8 9
performance of the codes we assume that the codes have EiNo (69)
a binomial distribution. This is because of the difficultyy 4 Hermitian[60, 45, 10]16 vs BCH([60, 45, 9]16 in AWGN using order
associated with finding the weight distribution of theseett 2 soft decision
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with the smallest reliability value within a block since ékes V. CONCLUSION

a single bit to be in error in order for the entire symbol to \ye show the performance between AG codes and non-
also be in error. Using BPSK demodulation we form a symbgjnary BCH codes in both the AWGN and erasure channels.
vector from v of length V. We then order according to the oyr results show that thg0, 45, 10] Hermitian code shows
reliability of each symbol to forn¥, and order the columns of gjmjjar performance with thd60,45,9] BCH code in the

the generator matrix of the code in the same way to f6f.  AWGN channel with hard decision decoding but the Hermitian
We also order then blocks ofv according to reliability of each qge out performs the BCH code in the erasure channel and
block to form,. We then express;, in reduced gaussian pas improved performance in the AWGN with ordered relia-
form to a new matrixG;,, and apply any column interchangesjjity soft decision decoding. Our results also apply toraffi
incurred from the matrix reduction on the vecty to form  permitian codes since epicylic codes are simply shortened
7,. Phasei reprocessing involves subtracting allpossible ffine codes and BCH codes can be shortened to any length.

combinations of errors ta, and after each subtraction the
result hagn — k) least reliable elements are discarded and re-
encoding is carried out with’; . Order! entails reprocessing [1]
from phase; = 0 to ¢ = [. Order! reprocessing involves,

. 2]
—~ (K )
o (g—-1)
(1)
vector subtractions in a field of size of
[4]

D. Results

Figure 4 shows the performance of the two codes usin@
ordered reliability decoding with order 2 reprocessingrfr
the figure the performance of the hermitian code surpasses th
BCH in particular for energy per bit to noise spectral dgnsit [©
ratio within the range 3-5 dB the hermitiai60, 45, 10]:6
code corrects more errors than the BQ#0, 45, 9], code.
Moreover there is a slight improvement in performance beyon
5 dB.

[

[8

IV. DISCUSSION

Hermitian codes have been shown to be asymptotically good
codes when their field sizg > 49 and are guaranteed to )
have performance than previously known codes [15]. However
our results show that even at a field size below the criterid]
the chosen hermitian code has improved performance over g
BCH code of the same length and rate in the erasure channel
and using soft decision decoding in the AWGN channel. The
performance of any designed AG code will be better than[1a2]
BCH code with the same length, code rate and defined in the)
same field if,

g>9 [14]
whereg is the genus of the curve that defines the AG code
and ¢ is the singleton defect of the BCH code. For a fixefs)
field g is fixed for an AG code whereas increases as the
code rate decreases for the BCH code. An implication of this
observation is that BCH codes tend to be better than AG
codes at very high rates and have deteriorating performance
when the message length increases. A closer look at thestable
I and Il will show that the[60, 50, 5]16 hermitian code has
inferior performance than thgg0, 50, 6], BCH code since it
has a smaller minimum distance. However we are restricted
in our choice of BCH codes with better parameters than AG
codes since they are too few of them for every field size and
AG codes overwhelmingly have better performance than BCH
codes over a range of different rates.
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Abstract—Algebraic geometry codes or Goppa codes are de- 1)} U {(av : 1 : 0)} U {(1 : 0 : 0)} : o, 8 € F,}. Given
fined with places of degree one. In constructing generalised 3 homogeneous polynomidl(z,y, z), a curve X’ defined in
algebraic geometry codes places of higher degree are used.this lP’z(]F,I) is a set of distinct poin’tslf(P c IP’z(IFq) : F(P) = 0}.

paper we present4l new codes overF;s which improve on the R . . .
best known codes of the same length and rate. The constructio We are only interested in the case wheteis irreducible

method uses places of small degree with a technique origitpl @nd is non-singular in order to obtain AG codes. [fgt be
published over 10 years ago for the construction of generaled an extension of the fiel&,, the Frobenius automorphism is
algebraic geometry codes. given as

I. INTRODUCTION Gg0 i Fye = Fye

In coding theory, it is desirable to obtain an error corragti oq.(B) = B¢ BEF,.
code with the maximum possible minimum distantegiven
a code lengthn and code dimensiok. Algebraic geometry
(AG) codes have good properties and some families of these bgel(w:y:2) = (a:y7: 29
codes have been shown to be asymptotically superior as they
exceed the well-known Gilbert Vashamov bound [1] wheA place of degreé [12] is a set off points of a curve defined in
the defining finite fieldF, has sizeq > 49 with ¢ always a the extension field . denoted by{ Py, P1...., P—1} where
square. A closer look at tables of best known codes in [2] agdchP; = ¢ ,(F%). Places of degree one are called rational
[3] shows that algebraic geometry codes feature as the bpkces. An example of a place of degree two is a pair of
known linear codes for an appreciable range of code lengtp@ints { P, 1} such that?, = (z,y) has coordinates i
for different field sizes;. Algebraic geometry codes are code@nd P1 = ¢,2(FP) = (29, y?).
derived from curves and were first discovered by Goppa [4fe will now describe two maps that are useful in the Xetg
in 1981. Goppa’s description uses rational places of theecur@l construction of generalised AG codes. We observe lihat
to define these codes. Rational places are called placegsog subfield ofF ;. for all £ > 2. It is then possible to map
degree one. A generalised construction of algebraic gegmel,« to an(-dimensional vector space with elements fréip
codes was presented by Xirg al in [5] [6] and Ozbudaket using a suitable basis. We define the mapping,
al in [7]. An extension of the method which utilises places
of higher degrees as well as a concatenation concept was . ) )
introduced in [8]. This method was shown in [9] [10] [11] me(Bj) =lcl &...c]] Bj€Fy . ¢ €Fy
to be effective in constructing codes that are better than ’t%

best known codes and many codes were presented for fi Qtépposehwz -~ forms a suitable basis of the vector space

B: =y + Ay + -+ Ay, Fi )
fields up toFy. In this paper we present several new code[si’réh?:sfifm a;%;ioazixz -:na ;c;ri]’yéd'i:rlnn:rgoﬁ;urz:zs’; R
over finite field Fis. These codes represent improvemeng p N . 9 X p g
~Jpace inf, to ann-dimensional code space,

and its action on a projective poit : y : z) in Fy is

Wg:Fqi*)]F(l;

on minimum distance compared to some previously b

known codes. We first give a description of the codes and an oy FL— F"
. . . . . 4 q q

exposition of the construction in the Section Il. Finally we

present our results in Section IlI.

with ¢ < n.
We now give a description of generalised AG codes as
Il. CONSTRUCTION presented in [8] [10] [11]. LetF' = F(z,y,z) be a homo-

A two dimensional affine spack?(F,) is given by the set geneous polynomial defined i,. Let g be the genus of
of points {(a, 3) : o, 8 € F,} while its projective closure the curveX'/F, corresponding to the polynomidl. Also let
P2(FF,) is given by the set of equivalence point§(c : 3 :  Pi, Ps,..., P ber distinct places oft /F, andk; = deg(P;)

y
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TABLE |

(deg is degree of).W is a divisor of the curvet/F, such POLYNOMIALS IN Fig
that W = P, + P, + --- + P, and G a divisor so that
supp(W) N supp(G) = @. More specificallyG = m(Q — R) [Fi=a"20 +o z124+ x4 y™ |
wheredeg(Q) = deg(R) + 1. Associated with the divisa is [ 2=’ +y'z+yz |
a Riemann-Roch spacg(G) with m = deg(G)) an integer, TABLE Il
m > 0 . From the Riemann-Roch theorem we know that the PROPERTIES OFY; /F16
dimension of£(G) is given byl(G) and
F(z,y,2) | Genus| A; | As As As Reference
UG)zm—g+1 B2 10 | 83 | 60 | 1320 | 16140 [15]
with equality whenm > 2g — 1. Also associated with each B 5 65 1 0 [ 1600 | 15600
P; is ag-ary codeC; with parametersn;, k; = deg(P;), d;], TABLE Ill
with the restriction thatl; < k;. We denote{f1, fo,.., fi : BESTCONSTRUCTIBLECODES FROMAX’
fi € L(G)} as a set ofk linearly independent elements of — - R .
H i odes ¢ Range escription
L(G) that_ form a basis. We can create a generator matrix fo 83,k,d>72— k16 | 8<k<52 | C(k;[83,0,0,0]) [ 45
a generalised AG code as such, $9,k,d > 76 —Klig | 9<k <54 | C(k;(83,2,0,0) | 46
04,k,d > 79 — ki | 10 <k <57 | C(k;[83,2,1,0)) | 48
Ty oy (T (FL(P)) ovve T (e, (F1(P)) 92,%,d > 78 — ki | 9 <k <57 | C(k;[83,3,0,0]) | 49
" Ohyny (Tky (f2(P1))) e Ok (Th, (F2(Pr))) 98,k,d>82—klis | 1T <k <59 | C(k;[83,5,0,0)) [ 49
. . : TABLE IV
Fhy iy (Thy (FR(P1))) v e (T (1 (Pr))) BEST CONSTRUCTIBLECODES FROMA?
where f;(P;) is an evaluation of a polynomial and basis — - Sesa .
: s ; : ) odes ¢ Range escription
elemeptfl ata pomt_P,, T, IS a mapping fron¥, 2 toF, and o F ST s | 1T <k <50 | OO (65,000 |10
Okin; 1S the enf:odlng of a message vectorH ' toa codg 70,k d > 68 — k|16 | 11 <k <48 | C(k;[65,0,0,2)) | 38
vector inFy+. It is desirable to choose the maximum possible [ [77.%.d > 67 — &1 0,1,1) | 42
minimum distance for all codeS; so thatd; = k;. The same 75,k,d > 66 — k|16 2,0) [ 43
code is used in the map,, ,,, for all points of the same degree
k; i.e. the codeC; has parameters;, j,d;], for a place of NEW CODES FROMA,
degreej. Let A; be an integer denoting the number of places
of degreej and B; be an integer such that< B; < A;. If t [ Codes [k Range [ Description [ #

is the maximum degree of any plagewe choose to use in the L[[70:-F-d=63 —* [ 10<k <50 [ C(R:[65.0.1,0) [ 41
construction, then the generalised AG code is represested a

C(k;t; By, Ba, ..., By;dy,da, ... dy). Let [n, k, d], represent
a linear code iri¥, with lengthn, dimensionk and minimum
distanced, then a generalised AG code is given by th
parameters [8],

we shorten the representation

C(kit; B, Bo, ..., Biydy,do, ..., dy) = C(k: By, Bo, ..., By).

E=1G)>m—g+1 Tables Ill-1V give codes obtained from the two curves associ
; - . ated with the two polynomial$; for 1 <i < 2 that improve
n= Z"i — Z Bjn; on the best constructi_ble codes in the tables in_[3]. Table V
=1 = gives new codes that improve on both constructible and non-

) . constructible codes in [3]. It is also worth noting that cede
d> Zdi —g—k+1l= ZBidi —g—k+L of the form C'(k; N, 0,0, 0) are simply Goppa codes (defined
o with only rational points). The symbol # in the Tables IlI-
IV denotes the number of new codes from each generalised
. ) . AG code C(k; By, Bs,...,B;) . The tables in [14] contain
We use two polynomials and their associated curves {@ires known to have the most number of rational points for
obtain codes irfF15 better than the best known codes in [3], given genus. OveF, the curve with the highest number
The two polynomials are given in Table | while Table Il givesg points with genusg = 12 from [14] has 88 rational
a summary of the properties of their associated curves (Wigints, was constructed using class field theory and is not
t = 4). The number of places of degrge4;, is determined yefined by an explicit polynomial. On the other hand the curve
by computer algebra systeMAGMA [13]. The best known y, /g - ohtained by Kummer covering of the projective line
linear codes from [3] oveFs with j = d; for 1 <j <4 are jy[15] hasA, = 83 rational points and genug = 12 and
1,116 [3,2,2]16 [5,3,3l16  [7,4,4]16 is explicitly prgsented. Codes_ from this curve represeet th
best constructive codes ity with code lengttg83. The curve
X»/Fy6 is defined by the well-known Hermitian polynomial.
Table VI gives the new codes obtained fro¥h. The codes
[d1,ds,ds,ds] = [1,2,3,4] have lengthV, dimensionK and minimum distancé®. D,,

i=1 j=1
Ill. RESULTS

which correspond t@”;, Cy, C3 and C, respectively. Since
t = 4 for all the codes in this paper and
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TABLE VI
NEW CODES INF16

[1]
N[ K| D] Dn
70 | 10 | 53 || 52
70 | 11 | 52 || 51 2]
70 | 12 | 51 || 50
70 | 13 | 50 || 49
70 | 14 | 49 || 48 3]
70 | 15 | 48 || 47
70 | 16 | 47 || 46
70 | 17 | 46 || 45 [4]
70 | 18 | 45 || 44
70 | 19 | 44 |[ 43 [5]
70 | 20 | 43 || 42
70 | 21 | 42 || 41
70 [ 22 [ 41 ]| 40 ]
70 | 23 | 40 || 39
70 | 24 | 30 || 38 "
70 | 25 | 38 || 37
70 | 26 | 37 || 36 8]
70 | 27 | 36 || 35
70 | 28 | 35 || 34
70 | 29 | 34 || 33 o
70 | 30 | 33 || 32
70 | 31 | 32 || 31
70 | 32 | 31 30 [10]
70 | 33 | 30 || 29
70 | 34 | 20 || 28
70 | 35 | 28 || 27 [11]
70 | 36 | 27 || 26
70 | 37 | 26 || 25
70 [ 38 [ 25 |[ 24 [12]
70 | 39 | 24 || 23
70 | 40 | 23 || 22 [13]
70 | 41 | 22 || 21
70 | 42 | 21 20 [14]
70 | 43 | 20 || 19
70 [ 44 [ 19 [ 18 [18]
70 | 45 | 18 || 17
70 | 46 | 17 || 16
70 | 47 | 16 || 15
70 | 48 | 15 || 14
70 | 49 | 14 || 13
70 | 50 | 13 || 12

is the lower bound on the minimum distance of codes from
[3] with the same length and dimension as the constructed
generalised AG codes.

IV. CONCLUSION

We have presentedl new codes and00 improvements
on constructible codes iff,s over the codes in [3]. The
construction method yields many good codes as shown here,
as long as curves with many places of small degree are
used, however traditional search for good codes has focused
primarily on finding rational curves with many points. In erd
to obtain more codes from generalised AG codes, curves with
small genera and many places of small degree need to be
found.
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Improvements On Codes in Non Binary Fields
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Abstract—We present’5 codes over finite field ;s which improve an extension of the fiel&,, the Frobenius automorphism is
on the best known codes of the same length and rate. Thess cqgigen as
are generalised algebraic geometry codes constructed fisiation
fields with many places of small degree with a technique oaidy Ogp:Fge = Fpe
presented over 10 years ago. bqe(B) = B B ey

and its action on a projective poifit : y : z) in Fge is

. INTRODUCTION Gou((@y:2) = (399" : 29).
In 1981, Goppa [1] introduced a family of codes withy place of degreé [13] is a set of points of a curve defined in
very good properties using principles from algebraic getoyne the extension field?,. denoted by{ Py, Py,..., Pp_1} where

These codes were later shown to include a class of asyreachp, = ¢ (Po). Places of degree one are called rational
totically good codes in [2] that beat the Gilber-Varshamoylaces. An example of a place of degree two is a pair of
bound for all fields with sizes both square and greater @bints{P,, P,} such thatP, = (,y) has coordinates i
equal to49. A closer look at a record of best known codegnd p, = baa(Po) = (27, y7).

in [3] [4] will show that algebraic geometry codes featurgve will now describe two maps that are useful in the Xatg
prominently for different field sizes. Goppa’s construtioa| construction of generalised AG codes. We observe Fjat
(AG) utilises rational places or places of degree one amgla subfield ofF,. for all £ > 2. It is then possible to map
these codes are called rational Goppa codes. The notiongof to an ¢- dimensional vector space with elements fréip
constructing generalised AG codes from places of hlghggmg a suitable basis. We define the mapping,

degree was first introduced in [5] [6] and [7]. In order to

obtain good long codes from algebraic geometry codes Xing By > F )
et al [8] presented a construction of generalised AG codes m(3;) = [d c’ ¢l BjeFqy, c e€F,
which uses places of higher degree as well as a concatena

concept and subsequent papers [9] [10] [11] presented co%;a
that improved the tables in [3].

In a previous paper [12] the authors presented codes tl §é
improve the tables in [4]. In this paper we present many goo
codes in the field,s that improve the tables in [4]. The next Ofm : JFﬁ — ]F';
section in this paper gives a brief summary of the conswucti

in [8] of generalised AG codes. Section Ill illustrates an

example of the construction and section IV gives the ma Yﬁ'th <. - .
results of the paper. We now give a description of generalised AG codes as pre-

sented in [8] [11] [9]. LetF = F(z,y, z) be a homogeneous
polynomial defined inF,. Let g be the genus of curve.
Il. CONSTRUCTION Also let P, Ps,..., P, be r distinct places ofF/F, and
ki = deg(P;) (deg is degree of).W is a divisor of F//F,
such that = P, + P, + --- + P. and G a divisor so that
supp(W) N supp(G) = @. More specificallyG = m(Q — R)
wheredeg(Q) = deg(R)+ 1. Associated with the divisa is
a Riemann-Roch spacg(G) with m = deg(G)) an integer,
m > 0 . From the Riemann-Roch theorem we know that the
dimension of£(G) is given byl(G) and

poS€y172 - . . ve] forms a suitable basis of the vector space
theng; = dwl + cy2 + -+ + ¢y, Finally we useoy,,
present an encoding map from @dimensional message
ce inF, to ann-dimensional code space,

A two dimensional affine spack?(F,) is given by the set
of points {(«,8) : a, 3 € F,} while its projective closure
P2(F,) is given by the set of equivalence point§(c : 3 :
DU{(e:1:0}U{(1:0:0)}:«apf e F,}. Given
a homogeneous polynomiél(z,y, z), a curveX’ defined in
P%(F,) is a set of distinct point§ P € P*(F,) : F(P) = 0}.
We are only interested in the case wheYeis irreducible
and is non-singular in order to obtain AG codes. gt be (G)>m—g+1
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TABLE |
PLACES OF X' /Fo

TABLE Il
POLYNOMIALS IN Fig

I deg(P,) [F=2+ 2D t a1 + ay® + wly® +u?
(0:1:0) 1
E? . 8 : B } TABLE Ill
a - T - ) T PROPERTIES OFY /F16
[ 1:1), (a2 1: D} 2
- - P— F(z,y,z) | Genus| A [ Ay [ As [ A4 [ Reference|
: 1:1), Tacl 2 ‘ Y
{aat1:D)(0®ia: 1)} [ F [ 4 [2%5] 0 [ 90416920 | [i6] |

with equality whenm > 2¢g — 1. Also associated with each
P; is ag-ary codeC; with parametersn;, k; = deg(P;), di],
vy|th the restriction thatd; .g k,-.Wfa denote{ f1, fo, ... fx : f= (x7 + b +x>/(110 +at )y
fi € L(G)} as a set ofk linearly independent elements of 10, 9.4 .70 6. 5. 0 4
L(G) that form a basis. We can create a generator matrix for (@ 4o+ Trtai+ot D/@@® +a" +1)
a generalised AG code as such, fo=@t+a"+at + 2 + 2+ 1) /(@0 + 2t + 1)y

+ @+t +22)/(@0 2t + 1)

Oky gy (Try (f1(P1)))
Ty g (Tey (f2(P1)))

Ty yng (Thy (f1(Pr)))
Ty yn (Thy (f2(Pr)))

For the mapry, ,,, we use codes; a|l,1,1], cyclic code

: : for places of degree 1 an@, a3, 2, 2], cyclic code for places
Ty ny (Thy (Fi(P1))) ey (T (fie (Pr))) of degree2. For the mapr, which applies to places of degree
where f,(P,) is an evaluation of a polynomial and basig¢ We Use a polynomial basjg:, .| = [1,a]. We use only the
elementf; at a pointP;, 7, is a mapping fronF, , to F, and first point in the placeP; for deg(P;) :_2 in the evaluat_lon
ok, ., is the encoding of a message vectorfifi to a code of f; and f, at P,,_. The generator mat_rlM of the resulting
vector inF+. It is desirable to choose the maximum possibl?; 2. 6]z generalised AG code ovét; is,
minimum distance for all codeS; so thatd; = k;. The same

M=

code is used in the map,, ,,, for all points of the same degree M= 1101011011
k; i.e. the codeC; has parameterg:;, j,d;|, for a place of 0011110101
degreej. Let A; be an integer denoting the number of places

of degreej and B; be an integer such that< B; < A;. If ¢

is the maximum degree of any plaggwe choose to use in the IV. RESULTS

construction, then the generalised AG code is represested a . . . .
C(k:t; By, Bs By:dy.dy dy). Let [n, k, d], represent We use a polynomial and its associated curve to obtain
a linear code iff, with lengthn, dimensionk and minimum codes inFF¢ better than the best known codes in [4]. The

distanced, then a generalised AG code is given by tholynomial is given in Table Il while Table Ill gives a
parameters [8] summary of the properties of its curve (with= 4). The

number of places of degrge A;, is determined by computer
algebra systenMAGMA [14]. The best known linear codes
from [4] overFi with j =d; for 1 < j < 4 are

k=G >m—-g+1
T t

n= Zn, = Z Bjn;
i=1 j=1

s t
A=Y di—g—k+1=> Bjdj—g—k+1L
i=1 j=1

(1,116 [3,2,2li6 [5,3,316  [7,4,4]16
which correspond t@”;, Cs, C3 and Cy respectively. Since

t = 4 for all the codes in this paper and

Let F(z,y,2) = 2° +zyz + 222 + 322 [8] be a polynomial
in Fo. The curveX'/F, has genug = 1 and A; = 4 places
of degreel and A, = 2 places of degre@. Table | gives
the places oft'/F, up to degree2. The fieldF,: is defined
by a primitive polynomials? + s + 1 with « as its primitive

EXAMPLE [d1,ds,ds,ds] = [1,2,3,4]

we shorten the representation

C(k;t; By, B, ..., By;dy,da, ..., dy) = C(k; By, B, ..., By).

element. We also choose poins= (1:a®+a”:1) as a
place of degred and@ = (1:b* + b+ : 1) is a place of
degreeb while a andb are primitive elements df,: (defined
by the polynomials* + s3 + s + s + 1) and Fys (defined

Riemann-Roch spacé(2D) with D =@ — R andm = 2 is
obtained with computer algebra softwav@GMA [14] as,

Tables IV give new codes obtained from the curve associated
with the polynomialF'. The symbol # in the Table IV denotes
the number of new codes from each generalised AG code
C(k; B1, B, ...,B;) and in total the codes represenb

by the polynomials® + s* + 1) respectively. The basis of theimprovements to the table in [4]. The tables in [15] contain

curves known to have the most number of rational points for
a given genus.
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TABLE IV
CODES FROMX /F16

[1]
Code K Range Description #
232, K,190 — K| | 102> K > 129 | C(K;[225,0,0,1]) | 28 2]
230, K, 189 — K| | 100 > K > 129 | C(K;[225,0,1,0]) | 30
235, K,192 — K| | 105 > K > 121 | C(K;|[225,0,2,0]) | 17
[3]
V. CONCLUSION [4]

We have presented codes of length€32, 230 and 235
that improve on the tables in [4] using a construction ofs]
generalised AG codes in the finite fielll,;. We use the
construction in [8] and [11] using two curves with places ofg
degree up tod. In order to obtain many more good codes
using this construction, good curves with many places oﬂlsmam
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New Binary Codes From Extended Goppa Codes
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Abstract. An efficient construction of extended length Goppa codes is
presented. The construction yields four new binary codes [153, 71, 25],
[151, 70, 25], [160,70,27], and [158,69,27]. The minimum distances are
larger than those of the best previously known linear codes of the same
length and dimension.

Keywords: Goppa codes, BCH codes

1 Introduction

In [2] and [3] Goppa introduced a class of linear codes commonly referred to
as Goppa codes or I'(L,G) codes. These codes form an important subclass of
alternant codes and meet the Gilbert-Varshamov bound. The I'(L,G) codes
have good properties and some of these codes have the best known minimum
distance of any known linear codes with the same length and dimension. The
codes are mainly defined over the finite field F, and are sub-field sub-codes of
generalised Reed Solomon codes defined in an extension field of F,. Goppa in a
subsequent paper [4] showed several methods of extending the length of I'(L, G)
codes. Similarly, Sugiyama et al. [7] presented codes derived from I'(L, G) codes
by extending their length and produced some good codes as a result.

In this paper, we present an efficient construction of extended length Goppa
codes which can be seen both as an extension of Construction P from [7] and
as an efficient method of extending BCH codes. In particular, we found four
new binary codes with parameters, [153,71,25], [151,70,25], [160, 70, 27] and
[158, 69, 27], improving the lower-bounds in [5].

The paper is organised as follows. In Section 2, we give a general description
of Goppa codes, and in Section 3, we describe our construction method in detail.
Section 4 shows how the four new codes are constructed.

2 Goppa Codes

A binary I'(L,G) code is defined by a set L C Fam and a polynomial G(z)
with coefficients from Fom, where Fom is a finite extension of the field Fy. The
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set L = {aq,a2,...,a,} with cardinality n contains all elements of Fom that
are not roots of the Goppa polynomial G(z). A codeword (cq, ¢z, ... cy), where
¢; € Fy, is a codeword of a Goppa code defined by the set L and the polynomial
G(z) if it satisfies

z": - il -=0 mod G(z) (1)
i=1"

If r is the degree of the polynomial G(z), the Goppa code has length n = |L|,
dimension & > n — mr, and distance d > r + 1. The parity check matrix of a
Goppa code is given by

11 ... _1
G(a1) G(az) G(an)
) Qy ., _Op
G(a1) G(az) Glan)
(12 sz az
H = | Glay) Glaz) " Glam)
af ap ap
G(a1) Glaz2) " Glan)

3 Construction

Before presenting our construction, we recall Construction P from [7]. Let G(z)
be a polynomial of degree 2¢ with coefficients from Fom such that the factorisation
over Fom[z] is given by

S0 s

Ga)=[@-8)" TI (gule)™, @)

u=1 u=so+1
where 8, u = 1,...,so are distinct elements of Fom; b,, u = 1,...,s are even
integers; and sg satisfies 0 < s¢ < ¢. In addition, for u = so + 1,..., s the roots
of the irreducible factors g, (x) are not in Fom. Let L = {a,..., oy} denote the
elements of Fom that are not roots of the Goppa polynomial G(z). The parity
check matrix of the code Cp is given by

Ho 0 0 --- 0
H, H 0 --- 0
Hy, 0 Hr--- 0

Hppo) = |Hse 0 0 - Hp|. (3)
0 Hy 0 - 0
0 0 Hyj--- 0

L0 0 0 --- Hy]
Here Hj is the parity check matrix of the Goppa code defined by the polynomial

S0

[T =yt I (guta)™ "

u=1 u=so+1
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The matrices H,, u =1,..., s are single-row matrices of the form
1 1 1
7, = [(au—an'WI (Bu—az)Pu=T """ (ssu—a.,)brl] )

the matrix H; is a single row matrix of the form
Hy = [104--- amt 0],

where « is a primitive element of Fom, and finally the matrix H; is a row matrix
of length m + 1 of the form,

Hy=[11---11].

The code Cp has length n = 2" +ms, redundancy n—k < mt—+sg, and distance
d>2t+1][7.

Consider an instance of this construction with a Goppa polynomial of the
form

S0
G@) =[-8 (4)
u=1
with roots exclusively in Fom. Let b, = 2 for u > 2, s = 59 and $; = 0, then
G(x) becomes

S0

G(a) =" (= — 8 (5)

u=2

The Goppa polynomial in (5) has degree 2t = by +2(sp — 1). The corresponding
matrix Ho is the parity check matrix of a BCH code [6, Ch. 12. §3, Problem (6)]
defined by the Goppa polynomial 21 =3 . Associated with the Goppa polynomial
G(x) is the location set L = {ov, ..., an} with a; € Fom, a; # o, and G(ag) # 0
for all 4.

Theorem 1. The code Cp defined with a Goppa polynomial G(zx) as in (5) has
parameters

length: n < 2™ 4+ mso,
redundancy: n—k < m(by — 3) + mso + so,
distance: d>2t+1.

Proof. The upper bounds on the length and redundancy of the code Cp can
be obtained easily from the parity check matrix Hp. The lower bound on the
minimum distance of the code Cp follows from the proof of Theorem 7 in [7].

Now consider an enlarged location set L given by

L=RUL with RC{a":G(a')=0,a' € Fam \{0}},
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i.e., L contains a subset of the nonzero roots of G(x). If 8, € R for some u the
corresponding row matrix H, would have an undefined entry /iuiﬁu which we
replace by zero. In Construction P, each coordinate corresponding to 5, € R
is deleted from all parity check equations of Hpy, g). Replacing ﬁ by zero
removes the coordinates only for the affected parity check equations Hy,, 5, € R
by multiplying these coordinates by zero. We form a parity check matrix with

the set L and G(z) as

Ho 0 0 --- 0O
H, Hf 0 - 0
Hy 0 Hp- 0
HP[L.G] =|Hy, 0 O --- H;p (6)
0 H; 0 --- 0
0 0 Hy--- 0
L0 0 0 --- Hyj

where the row matrices Hy and H; are as previously defined. We call the code
defined by the parity check matrix HP[i G) an intermediate code which we also
denote by Cp,.

Theorem 2. If the location set L of the code Cp is enlarged by a set R =
{Bay.... 01} with 2 <1 < so and undefined entries of the intermediate parity
check matriz are replaced by zero, the intermediate binary code Cp, has minimum
distance d > dp — 2|R|, where dp is the minimum distance of Cp. Furthermore
all codewords of weight w such that dp — 2|R| < w < dp are nonzero in at least
one of the coordinates corresponding to R.
Proof. From the proof of Theorem 1, we know that any v rows H, of the par-
ity check matrix of Cp contribute 2v to the distance dp of the code. Consider
a nonzero codeword of the intermediate code that is zero in the coordinates
specified by R in the intermediate parity check. Deleting those coordinates we
obtain a codeword of the original code Cp of weight at least dp. If a codeword is
nonzero in at least one coordinate corresponding to R, the corresponding rows
of the intermediate parity check matrix that have an undefined entry replaced
by zero are not guaranteed to contribute to their minimum weight. There are
|R| such rows, hence the minimum weight is at least dp — 2|R|.

The lower bound dp—2|R| on the minimum distance of the intermediate code
is not tight, and in practice the minimum distance is not much less than dp for a
given set R. In summary, we use a specific Goppa polynomial G(z) and the set L
to construct an intermediate code Cp, using a modified version of Construction P.
These codes Cp, have minimum distance worse than the minimum distance of Cp.
Using Theorem 2 and by examining low weight codewords of the intermediate
code we are able to extend the intermediate code Cp, by applying additional
parity checks on the coordinates to form a modified code Cp,, with a minimum
distance dp.
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4 Results

We use a Goppa polynomial with coefficients from the finite field Fy7 defined as

‘
G(z) = 2% H(I —a')?,

=0

with m =7, by = 20 and sy = £ + 2 where « is a primitive element of Fam. The
set L associated with G(z) is L = For \ ({0}U{ai: i =0,...,¢}) and B, = a2
for w > 2. For a chosen set R C {a': i =0,...,¢} and an enlarged location set
L = RU L we form the modified codes Cp,, with length n < 2™ + mso + 2|R|
and redundancy n — k < m(by — 3) + mso + so + | R| as follows.

Let Hg,, By € R be the row matrix with \f/| columns having an entry 1 in the
coordinate corresponding to 3, and zero entries elsewhere. In Table 1 we present
four binary codes Cp,, with minimum distances better than the codes with the
same length and dimension in [5]. The parity check matrices of these codes are
given below in equations (7)—(8). The minimum distances of these codes were
verified using the general algorithm of the computer algebra system MAGMA [1].
The dimensions of the codes are obtained by expressing their respective parity
check matrices in reduced echelon form.

Table 1. New binary codes with m = 7 and b1 = 20

# S0 R n k d
Cy 3 {a '} 153 71 25
Ca 3 {a'} 151 70 25
Cs 4 {al,az} 160 70 27
Cy 4 {a?} 158 69 27
Hy 0 0 000 Hy 0 0 00
Hy H 0 000
H, H 0 00
Hy, 0 H 000
Hy, 0 H 00
Hy 0 0 H;/00 o o 0 H 0
He,=| 0 Hy 0 0 00| He, = 03 7 o 010 (7)
Hyo 0 H; 0 00 J
0 0 Hy 00
Hy 0 0 H;00
Hyo, 0 0 H; 0
Hy 0 0 010 Hi0 0 01
|[Hoo 0 0 0 01] o
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Hy 0 0 0 0 OO r g
0 Hy 0 0 0 00
Hy Hr 0 0 0 00
Hy H- 0 0 0 0
Hy, 0 H 0 0 00
Hy, 0 H 0 0 0
H; 0 O H;y 0 00
H; 0 O H;r 00
Hy 0 0 0 H;00 H 0 0 0 Hb 0
He,=| 0 H; 0 0 0 00| He=|"" ! (8)
0 H; 0 0 00
0 0 H; 0 000
0 0 Hy 0 00
H, 0 0 Hy 0 00
0 0 0 Hy 00
Hy> 0 0 0 H;00
Hye» 0 0 0 H;O0
Hys, 0O 0 0 010 H 0 0 0 01
Hy> 0 0 0 001 Lo -

5 Conclusion

We have presented a method of extending Goppa codes and produced four new
binary codes as result. This method is an extension of Construction P for binary
Goppa codes. The length of Goppa codes defined with roots in the coefficient field
of the Goppa polynomial is by definition smaller than the cardinality of the field.
Our construction method remedies this disadvantage by enlarging the location
set of these shortened codes and avoids the penalty of a deteriorated minimum
distance in a novel way. A tighter lower bound on the minimum distance and
further insight into the structure of low weight codewords of intermediate codes
used in the construction may lead to further new results as the difficulty in
verifying the minimum distance of longer codes using exhaustive search can be
avoided.
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A Generalised Construction and Improvements Of
Nonbinary Codes From Goppa Codes

M. Tomlinson, M. Jibril, C. Tjhai, S. Bezzateev, M. GrasshdaM. Z. Ahmed

Abstract—We present an efficient construction of extended II. PRELIMINARIES
length Goppa codes. Using this construction we obtaind4
new nonbinary codes with better minimum distance than the A. Goppa Codes

previously known codes with the same length and dimension. . . ~
The construction is formed from the observation that certan A F(L‘G)_wde |s_d_ef|ned by a sdt C Fyn and_a po!yrjo
Goppa codes can be seen as extended BCH codes. mial G(z) with coefficients fromF,~, whereF,~ is a finite
extension of the field?,. The setL = {ap,a1,...,0n_1}

with cardinality n contains all elements oF,~ that are
not roots of the Goppa polynomial7(z). A codeword

(co,c1,. .. cn—1) With elements fron¥, is a word of a Goppa

Index Terms—Goppa, BCH, Reed Solomon, Error correction

I. INTRODUCTION code defined by the sef and the polynomialG(z) if it
satisfies
oppa introduced a class of linear codes in [1] and n-l ¢
[2], commonly referred to a&oppa codesr I'(L, G) > pa—— 0 mod G(x). 1)
codes. These codes form an important subclass of alternant i=0

codes and meet the famous Gilbert-Varshamov bolil, G)  If r is the degree of the polynomial(z) € Fym|z] the
codes have good properties and some of these codes haygmeters of the Goppa code are:
the best known minimum distance of any known codes with

the same length and rate. The codes are mainly defined in length: o= L],
a finite field F, and are sub-field sub-codes of generalised redundancy: n —k < mr,
distance: d>r+1.

Reed Solomon codes defined in an extension fieldFaf
Goppa in a subsequent paper [3] showed several methodsAgbarity check matrix of a Goppa code is given by
extending the length of (L, G) codes. Similarly Sugiyama

et al. [4] presented binary codes derived frdML, ) codes m #&1) m
by extending their length and produced some good codes as a ey iiRecTy) i comry
result. In this paper we present the construction of exténde a2 _ad o2,

nonbinary Goppa codes and some improved codes that have H = | Glao) Gla) Glan-1)

better minimum distance than the best known codes in the

tables from [5] with the same length and dimension. This - oy o
construction is a generalisation of the method in [4] forapin % % G?an,:l)
Goppa codes.

Section 1l gives a brief background on Goppa codes aifd designing Goppa COFIES, it is usually desirable to obtain
a definition that suits the purposes of this paper. Sectibn fiodes as long as possible and hence the Goppa polynomial
gives a generalisation of Construction P [4] for binary codé?(«) is commonly chosen to have no roots in the figld.,
and establishes the parameters of nonbinary codes obtailfedhich case the length of the code is equal to the size of
therefrom. Section IV shows that certain extended Gopf field i.e.n = ¢™. For our purposes we are interested in
Codes can be seen as BCH codes and an instance of @PPa codes whose polynomial has roots in the figjd.
construction from Section |11 with which we are able to praise AN interesting relationship between the parity check matri
improved codes. And finally, section VI gives a summary §f a Goppa code (defined with a polynomial with roots in its

the new codes found using the construction method. coefficient field) and the Cauchy matrix was presented in [4]
and more explicitly in [6].

M. Tomlinson, M. Jibril, C. Tjhai, M. Z. Ahmed are with the Smi Theorem 1 (Froni6, Appendix): A T'(L,G) defined by a
of Computing and Mathematics, University Of Plymouth, ditKing- ¢
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cen fiha} @plymouth.ac.uk. polynomial G(z) H(z B,)"™ with each 3, distinct,
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markus.grassl@nus.edu.sg
S. Bezzateev is with the Department of Information Systents Security, n-l o
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Russia, e-mail: bsv@aanet.ru s (ﬁu - az)‘7

=0 forj=1,...,rp,p=1,...,¢L
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The parity check matrix of the code can be expressed as parity check matrix in (3). A codeword of an extended and
modified Goppa code is then of the form

H,,
n—1
H= H."z , Ce:<C()-,CL,~~-,Cn—1-,*ZCL>-
: i=0
Hy, If ¢, = =31 ¢; = 0, thenc is a codeword of the modified
h Goppa code of Theorem 2 and its weight is at least 2.
where Otherwise,c,, # 0 and hence
1 1 . 1
(3”;(1“) (B,qm) (/?,rfwl) wgt(ce) = wgt(c) +1>r+2.
H, = (Bu . o) (B . 1) . (8 . 1) L -
N N ' N In the literature, these extended and modified Goppa codes ar
Br=ao)™  Bup=an ™ " Bp=an_1)" simply called extended Goppa codes [7].

This code with symbols ifF, and defining setl, = Fm \ 1. CODE CONSTRUCTION

{Bi,..., B¢} = {ao,...,an_1} has parameters
The construction presented below is a generalisation of
length: n=IL|, Construction P in [4] from binary to nonbinary codes.
redundancy: n—k <m (Zizl 7",1), We start with extended and modified Goppa codes defined
distance: d> Zfl:l L in the previouse section and a Goppa polynomial with roots

exclusively inF,». Consider the Goppa polynomial

B. Modified Goppa Codes

In [2], Goppa defined modified Goppa codes. He showed
that adding a row of alll’s to the parity check matrix of ¢ . o
a Goppa code increases both the minimum distance and efegreer = 3, _, 7, with distinct rootsg, € F,» and

I3
Ga) =[G~ B @
=1

redundancy by one. r, > 0. The codeg’, are defined via with parity check matrix
Theorem 2 (Fronf2, Theorem 3} A modified Goppa code 1..1.1.0 0 - 0
C with the parity check matrix H,, 0 H 0 -+ 0
HP = . . : : .. : (5)
_ 11...1 ' o o
H= i H., 0 0 0 --- H

. . . The firstg™ — £ + 1 columns of H, contain the parity check
where I is the parity check matrix of d'(L,&) code mayix 7, of the extended and modified Goppa code given in
with a Goppa polynomialz(z) with degreer defined with (3) \yhere the matricegl,, are defined in (2). For each of

coefficients ink,, has parameters the matricest,.,, we add an, x m matrix H,, of the form
length: n=|L|, 90 0 - 0
redundancy: n —k < mr+1, L
distance: d>r+2. o= . :

The use of modified Goppa codes is most effective when the 00 02 e 0 1

codes have symbols in the fiell, for which ¢ # 2. It is 1 a o - «

possible to extend a modified Goppa code by adding a parifyere . is a primitive element of the fiel&,~. Clearly the
check on the row with all’s *

codeC, has length and redundancy

i - [11-»»1 1} @) length: n=q¢"—L+ml+1,

e H ol" redundancy: n —k < mr + 1.

To obtain a lower bound on the minimum distance of the
codesCs, we can basically follow the logic and presentation
length: n' =|L|+1, of the proof of Theorent in [4].
redundancy: n' —k < mr + 1.

This extended and modified Goppa code has parameters

Theorem 4:The minimum distance of the cod& is lower
Theorem 3:The minimum distance of an extended and modyounded byd > r + 2.

ified Goppa code defined with a polynomi@(x) of degree Proof: Let ¢ = (cp,ci,...,c¢) be a codeword of,,
r is lower bounded byl > r + 2. where

Proof: Letc = (¢, c1, . .., ¢,—1) be anon-zero codeword
of the Goppa cod€ defined byG(z) of degreer and the co = (a1, a2, ..., agn_¢, agm —¢41)
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is a codeword of a modified and extended Goppa ¢hdegith
Goppa polynomial given in equation (4), argl € Fy* for

1< < (. If at least one of these vectoes for 1 < ;< / is 1 1 N
non-zero, ther, must be non-zero as well since the columns = = o
of the submatriced/,, are linearly independent ové,. 1 1 1
. 11...1 ag aj an

Therefore, assume that is non-zero. Furthermore, I&f, . . .
and U, be the sets of integeys such thatc,, 1 > 1 is zero H, :
or non-zero, respectively. For € Uy, by definitonc, #0, H=| H, | = 011 011 O% @
andc, has weight at least. Hence the weight o is lower : v i ht
bounded bywgt(co) + [Uy- H Faloo  Paron A=

In order to obtain a bound on the weight af first note " Ba=ao  Pa—en Ba=an—1
thatc, # 0 implies that the partity check given by the last : : . :
row of H, in H, does not hold forcy, but the other parity S 1
check equations are fulfilled. Heneg is a codeword of the Lhemao  feman Be—an—14
extended and modified Goppa code with Goppa polynomiaéupposeCU = (a1,as,...,agm_¢) is @ codeword of the

Goppa codel'(L,z" ') with L = {8 € Fym: G(B) #
0} corresponding to a shortened BCH cbdeith roots

A _ 2 \ru—1 A :
G(z) = H (@ = Bu)™ H (z = Bu)™. {a~1,...,a7*1} in Fm. As noted at the end of the
pEUN nelz previous section, we can represent C, in the form
c=(a,...,agm_g,agm_¢41,€1,C2,...,Cp),

The degree ofGi(z) is » — |U,|, and hence by Theorem 3
wgt(cg) > r — |Uy| + 2. In summary we getwgt(c) >
wet(co) + [Un] > r +2. = wherea; € F, andc,, € F,m. We have

gt

An alternative view of the code§; is that each codeword
o . Qgm g1 = — Z a;,
¢ = (cp,c1,...,¢¢) € Co consists of a vector, over the -
field F,, while c,, 1 < p < ¢ are elements of the extension qt":z
field IF,» which are mapped te» symbols inF, using a basis _ —r
(1, .., 0™ty G == Z @i
y &y ’ i=1
gt

a;

Z B — i

i=1

and c, = — for pu > 1.

IV. Cp AS EXTENDED BCH CODES Hence the code§, defined withG(x) in (6) can be seen

as extending the BCH cod& L, 2™ ~'). Supposegch is the
redundancy of the BCH cod&(L, z"1 ') then the parameters
The code<’; can be seen as extended BCH codes in whiglf the codeC, defined by the Goppa polynomial in equation
case a better lower bound on the dimension of the codes %8 are
be obtained. Consider the special case of a Goppa polynomial
in (4) with r, > 1 andr, =1for2<pu<¢, ie., length: n=|L|+ml+1,
redundancy: n —k < ml+ rgcy + 1,
distance: d>r+0+1=r+2.
£
G)= (- 8)" [[(@— B ®)

=2 A. Example

We use as an illustration of the construction a polynomial

Theorem 5 (sef7, Ch. 12.53, Problem (6)); A Goppa code C(#) =2°(z +1)(z +a)(x +o?) with coefficients frontF,
(L, G) defined with the polynomiali(z) = (x — 8)", § € to define an extended Goppa codeFin The finite fieldFy6

F,», and the sef = F,.. \ {3} corresponds to a BCH code'S defined with the primitive polynomial* + s + 1 and has

d(qefined inF. with Iengzhn _ g — 1. « as a primitive element. The sétcorresponding t@7(z) is
! then given by

For simplicity we choos@ = 0. Then the BCH cod& (L, =) )

has consecutive rootsa,a2,...,a""} in Fym. If we L=Fis\{0,1,a,0”},  |L|=12.

choosefs; = 0 in equation (6), the parity check matrix of

the modifjed Goppa code defined with_ thg polynomial in (6) 17his shortened BCH code has= ¢™ — £, n — k < m(r — 1), and

and location sef. = {ag, o1,...,a,—1} is given by d>r
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From (7) the parity matri¥f of the modified Goppa code over NEW cggi‘é IOVER]F7

Fi6 is given as

# | qm | m | | €| D(Lamt CodesCp Codes in [5]
1111111 ) 1( 1 1; 11 Cci| 49 | 2 | 93| [46,33,97 | [53,33,13]7 || [53,33,12]7
a? ol a¥a? ¥ a’ af o® o' a’al Co | 49 | 2 | 17 | 3 | [46,22,17])7 | [53,22,21]7 || [53,22,20]7
i o’ o o® o ol a'a'?al?af ab ot a? Cs | 49 [ 2 [ o4 @5.32,9 | 54,3214 || [54,32,13)
Tlal a%ad a? afaldad® al®adatalal? |’ Cy | 49 | 2 |17 | 4 | [45,21,17)7 | [54,21,22)7 || [54,21,21]7
ab a® aBat ala® a'2a” o a?adad Cs | 49 | 2 1]5 [44,44,1]7 [55,44,7]7 [55, 44, 6]7
W 0 atal?a? 0 ot ol abaf ol a2 Co | 49 | 2 | 9|5 | [44,31,97 | [55,31,15]7 || [55,31,14]7
- I ) ) Cr | 49 | 2 1| 9| [40,40,1)7 | [59,40,11]7 || [59,40,10]7
C, is defined by the parity check matrix, overF,, given by
TABLE II
[1111111111111000000007 New CobesCr oveErTs
10 wwwwlwlww0000000000 % T [m ] ¢]0Len )| Codestr Codes in [5]
Wwlwlwwldlwl1000000000 Cs | 64 | 2 | 10| 3| [61,46,10]5 | [68,46,14]s || [68,46,13]s
WEIww0wlow01lw010000000 Co | 64 | 2 | 19| 3| [61,33,19]s | [68,33,23]s || [68,33,22s
Www0BloE01wl1 1001000000 Cio | 64 | 2 |28 | 3| [61,22,28s | [68,22,32]s || [68,22,31]s
e |l 05wwdl 55wlwl 000100000 Ci | 64 | 2 | 10| 4| [60,4510]s | [69,45,15]s || [69,45, 14]s
P www wwwlw ’ Cio | 64 | 2 | 19| 4| [60,32,19]s | [69,32,24]s || [69,32,23]s
1w0lwwl0wlww000010000 Cis | 64 | 2 [ 10| 5[ [59,44,10)s | [70,44,16]5 || [70,44,15]s
0111 0wl wwwwwO00001000 Ciy | 64 | 2 | 19| 5| [59,31,19]5 | [70,31,25]s || [70,31,24]s
wWOlwll0Twwlmwl1 000000100 Cis | 64 | 2 |19 6 | [58,30,19]s | [71,30,26]s [71,30,25]s
wwTlwl 100T0w000000010 Cig | 64 | 2 [ 10| 7| [57,42,10]s | [72,42,18]s || [72,42,17]s
- - Cip | 64 | 2 | 1| 10| [54,54,1s | [75,54,12]s || [75,54,11]s
w0 www00w1000000000001 | Cis | 64 | 2 | 1| 11| [53,53,1]s | [76,53,13]s || [76,53,12]s
wherew is a primitive element oF ;. The parity check matrix _ €0 | 64 | 2 | 1] 12| [52.52.1]s | [77.52, 14)s || [77,52,13]s
of C, in reduced echelon form is thus Cpo | 64 | 2 | 1]18) [BL,5L1)s | [78,51,15]s || [78,51, 14]s
[10000000000wW0 1wl 1wl wm]
01000000000wl110wW0wlwl
00100000000wwwl0wl0ww 1...1 1 .0 0 --- 0
000100000000 w0 wwwww0 1 H,, 0o 0 0 -+ 0
00001000000wwwllwlwlw H, = Hy 0 ho O --- 0 | 8)
Hy=10000010000001 000wl Twm
00000010000wW00wlwwl ww ’ o
H[,Q 0 0 0 - h272
0000000100010000010 ww
0000000010050 1 55Tw0 w0 The submatriced?;, 0 <i < ¢ —2 arel x ¢" — ( rows of
the form
00000000010wwwl wwllOw
0000000000100 wwhwiww | Hi= o= wiw z#i—e ==t

Sincedeg G(z) = 5, m = 2, { = 4 and|L| = 12, the code has Where « is a primitive element of the field?, and the

parameter$21, 10, 7],. The minimum weight of the code wasSubmatrices:;, 0 <7 < ¢ —2 arel x m rows of the form

confirmed by direct computation using Magma [8]. Observe

that the code’, is an extension of the shortened BCH code

(12,10, 2]4 defined with Goppa polynomial and the set..  Opserve from equations (5) and (8) that is simply a
shortened form o€, and has parameters,

hi = [1 a o 04""1} .

V. NESTEDSTRUCTURE OFCODESC, length: n=|Ll+m(—-1)+1,
redundancy: n —k < ml+ rgcu + 1,

Consider the cod€, defined with the Goppa polynomial distance: d>r +0+1=1r+2.

Glz) — 2™ = ; Supposey, is defined withG/(z) = z¢ I‘L o i) andCe,
@) == 70(‘@ - is defined withG(z) = 2 [[, (a: —a') W|th a< b then
and the parity check matrix Cro C Caa
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5
TABLE Il TABLE IV
NEW CODESCp OVERFg NEwW CoDESFROM CONSTRUCTIONX IN Fg

# qm | m | m ¢ | T(L,am 1) Codes in [5] # Cra Cra Au&(lhary New Codes || Codes in [5]
Ca1 81 2 11 3 [78,61,11]9 [85,61,14]9 e Codes e Codes
Co2 | 81 2|14 3 | [78,55,14) (85,55, 17]o Csa | 9 | 3| [66.46,13)s | 11 | 3 | [66.42,15)s | [5.4.2)s | [71,46.15]5 || [71,46,14]s
Cas | 81 2|15 3 | [78,53,15) 85,53, 189 Css | 9 | 3 (66,46,13]s | 12 | 3 | [66,40,16)s | [8,6,3)s | [74,46,16]s | [74,46,15]s
Caa 81 2 21 3 (78,46, 21]o 85,46, 24]9 10 | 3 | [66,44,14]s | 12 | 3 | [66,40,16]s | [5,4,2]s | [71,44,16]s || [71,44,15]s
Cos | 81 | 2 |22 | 3 | [78,44,22)¢ 85,44, 25]9 13| 3| 16,3817 | 18 | 3 | [66,33,22]s 75,38,22]5 || [75,38,21s
Cos | 81 | 2 |23 | 3| [78,42,23]y [85, 42, 26]9 Cs | 18 | 3| [66,33.22]5 | 20 | 3 | [66,29,24]s 71,33, [71,33,23)s
Co7r | 81 2 | 24 3 | [78,40,24]9 [85, 40, 27]9 Csr | 18 | 3| [66,33,22)s | 21 | 3 | [66,27,25]s | [8,6,3]s | [74,33,25]s || [74,33,24)s
Cog | 81 2 | 31 3 | [78,33,31]¢ [85,33,34]9 Css | 19| 3| [66,31,23)s | 21 | 3 | [66,27,25]s | [5,4,2]s | [71,31,25]s | [71,31,24)s
Cag 81 2 32 3 | [78,31,32]¢ [85, 31, 35]9 Coo | 9 | 4| [67,45,14)s | 11 | 4 | [67,41,16]s | [5,4,2]s | [72,45,16]s || [72,45,15]s
Cs0 81 2 41 3 [78,22,41]¢ (85,22, 44]9 Coo | 10 | 4 | [67.43,15]s | 12 | 4 | [67,39,17]s | [5,4,2]s | [72,43,17]s || [72,43,16]s
Ca1 81 2 11 4 (77,60, 11]9 (86,60, 15]9 Cor | 13 | 4| [67,37,18]s | 18 | 4 | [67,32,23]s | [9,5,5]s | [76,37,23]s || [76,37,22]s
Cs2 81 9 31 4| [77.32,31]¢ 86,32, 35]9 Cop | 18 | 4 | [67.32,23)s | 20 | 4 | [67,28,25)s | [5,4,2]s | [72,32,25]s || [72,32,24)s
Cas 81 9 1 5 76,76, 1] 87,76, 7)o 87,76, 6o Cos | 9 | 5| [68.44,15)s | 11 | 5 | [68,40,17)s | [5,4,2]s | [73,44,17]s || [73.44,16]s
Ca | 81 | 2 [ 10| 5| (76,509,110 | [87,59,17)9 || (87,59, 16]s
Css | 81 | 2 | 31| 5| [76,31,31]g | [87,31,37]9 || [87,31,36]9 i . . .

- - - the codes with the same length and dimension in [5]. The
Css | 81 | 2 1| 6| [75,75,1]9 | [88,75,8]9 (88,75, 7)o X . X

- - - - codes are represented in the fofmk,d],. The dimensions
Car | 81 | 2 [ 21 | 6| [75,43,21)0 | [88,43,28)9 || [88,43,27] X ’ ; )
of the codes in Tables I-IIl are obtained by expressing their

Css | 81 | 2| 1| 7| [74,74,1s | [89,74,9]0 89,74, 89 : X . .
c o o T 1220 o 1228 respective parity check matrices in reduced echelon form.
C” PR R B [7?; 7?; 1]9 [90’73‘10]9 [90‘ 73’ 9]9 In addition to the codes in Tables I-lll many codes that
0 [_" Ao | 190,73, 1010 || 90,73, 5l improve the tables in [5] can be obtained by shortening
Cu | 81| 2] 9] 8] [13,579% | [58,5718] || 88,5717 gpg puncturing codes in Tables I-lll. Further extensiores ar
Coo | 81| 2 |19 8| (73,4219 | [8,42,28 || [38.42.2T  pogsiphle when we consider good subcodes of codes obtained
Cag | 81| 2| 1] 9] [2721 | 91,7211 || 91,7210 py this construction . Using Construction X [9] we are able
Cas | 81 | 2| 9| 9] [72569 | [89.56,19 || [89.56.18)s g obtain44 improvements to the tables in [5] for the fields
Cas | 81 | 2| 1|10 | [71,71,1)9 | [92,71,12]0 || [92,71,11]9 Fg andFy.
Cis | 81 | 2| 4|10 | [71,65,4]9 | (92,65, 159 || (92,65, 14]9
Car | 81 | 2| 1|11 | [70,70,1]9 | [93,70,13] || [93,70,12]o VIl. CONCLUSION
C. 81 2 1 12 69, 69, 1]9 94, 69, 14]g 94, 69, 13]g .. -
C“‘ TR ETRED [69 p 4]’ [94 ;3' 1"]’ [04 p 16]’ We have presented an efficient method of obtaining good
2 [“' lo | 4, "]" 01,6316 codes from Goppa codes and produédchew codes defined
Coo | 8L |2 | 1|14 ] [6T.6T.0 | 96,6716 || [96.67.155  oyerp. Fy andFy in the process. A well known construction
Co | 81 ] 2] V|15 ] [66661s | 97,6617 || O7.66.16l0  for pinary codes was generalised to nonbinary codes. In

addition we use the concept of extended and modified Goppa
) . codes to improve codes obtainable from this constructign. B
Awell known_code extension method that utilises nested cog%Wing BCH codes as Goppa codes this construction can
is presented in Theorem 6. be seen as an effective method of extending nonbinary BCH
Theorem 6 (Construction X [9])if a linear codeC;, with codes.
parametersn, k1,d1], has a subcod€, with parameters

[n2, ka2, d2]q, thenC; is extendable to a code with parame- REFERENCES
ters [ny + n, ki, min{d; + 6,dz}], using an auxiliary code [1] V. D. Goppa, “A new class of linear correcting codeBfobl. Peredachi
[n, k1 — k2,04 Inf., vol. 6, 1970.
[2] —, “ A Rational Representation of Codes a(f, g)-Codes,” Probl.
Peredachi Inf, vol. 7, 1971.
[8] ——, “Codes Constructed on the Base(df, g)-Codes,"Probl. Peredachi
VI. RESULTS Inf., vol. 8, 1972.

In this section we present results on codes obtained frdfh Y- Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekaayther
results on Goppa codes and their applications to constgicfficient

our construction method. We use Goppa p0|yn°m'als with binary codes,1EEE Transactions on Information Theomwol. 22, no. 5,
coefficients inF,~ of the form Sep. 1976.

[5] M. Grassl, “Bounds on the minimum distance of linear coded quantum

codes,” Online available at http://www.codetables.de)72Gaccessed on

), 21/01/2011.

[6] K. Tzeng and K. Zimmermann, “On extending Goppa codes yic
i o . codes,”|EEE Transactions on Information Theoryol. 21, no. 6, Nov.
wherea is a primitive element of ;. The Goppa polynomial 1975.
hasdeg G(z) =r =17, + ¢ — 1. Hence from Theorem 4 the[7] F. J. Macwilliams and N. J. A. Sloang@he Theory of Error-Correcting

- . Codes Amsterdam: North Holland, 1983.
codesC, have minimum distance > r; + ¢ + 1. The codes [8] W. Bosma, C. J., and P. C., “The MAGMA algebra system I: Tiser

presented in Tables |-l have minimum distances betten tha language,”J. Symbolic Compuytvol. 24, pp. 235-265, 1997.

-2
G(z) =™ H(T -«
i=0
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[9]

TABLE V
NEw CODESFROM CONSTRUCTIONX IN Fg

# Cr Cro Auxiliary | New Codes || Codes in [5]
codes

K Codes | ri | ¢ Codes

Cor |10 |3 | [83,61,14)0 | 12 | 3 | [83,57,16]0 | [5.4,2l0 | [88,61,16]o || [88,61,15]

Cos | 10 | 3 | [83,61,14) | 13 [83,55,17)0 | [8,6,3)0 | [9,61,17]9 || [91,61,16)9

Cos | 11| 3 | [83,59,15)0 | 13 | 3 | [83,55,17) | [5,4,2]o | [38,59,17)o || [88,59,16)

Cor | 11| 3 | [83,59,15]p | 14 | 3 [8.6.3]0 | [91,59,18]o || [91,59,17)¢

Cos | 12| 3| [83,57.16g | 15 | 3 | [83,51,1910 | [8,6.3]p | [91,57,19] | [91,57,18]y

Coo | 13 | 3| 83,55.17)0 | 15 | 3 | [83,51,10)0 | [5.4.2)0 | [88,55,10]0

88,55, 18]9

Cro | 15 | 3 | [83,51,19]0 | 20 | 3 | [83,46,24) | [9,5,5]0 | [92,51,24)9 | [92,51,23)9

Cn |20 | 3| (8346,240 | 22 | 3 | [(83,42,26]0 | [5,4.2] | [88,46,26] || [88,46,25]

Cr2 | 20 | 3 | [83,46,24]g | 23 | 3 | [83,40,27]9 | [8,6,3]g | [91,46,27]y || [91,46,26]y

Crs |21 |3 | (83,4425 | 23 | 3 | [83,40,27)0 | [5,4,2l0 | [88,44,27)0 || [88,44,2

Cra |21 | 3| [83,44,25]0 | 24 | 3 | [83,38,28)0 | [8,6,3)0 | [91,44,28]0 || [91,44,27]o

Crs | 24 | 3 | (83,38,28]o | 30 | 3 | [33,33,34) | [10,5,6]0 | [93,38,34)o || [93,38,33)0

Cre | 30 | 3 | [83

32 | 3| [83,20.360 | [5.4.2] | [88,33,36]y || [38.33,35]9

Crr |10 | 4| [84,60.150 | 12 | 4 | [84,56,17]0 | [5,4.2]0 | [89,60,17] || (89,60, 16l

10 | 4 | [84,60,15]9 | 13 | 4 | [84,54,18]s | [8,6,3]0 | [92,60,18]o || [92,60,17]s

1| 4| 81,58.06)0 | 13 | 4 | [84,54,18]0 | [5,4,2]0 | 80,58, 18]o || [89.58,17]

Cso | 11| 4| (3458160 | 14 | 4 | (84,5219 | [8,6.3] | [92,58,19]0 || (92,58, 18]

Cy | 15 | 4 | [84,50,20]9 | 20 | 4 | [84,45,25]9 | [9,5,5]0 | [93,50,25]0 || [93,50,24]g

Cs2 | 19 | 4 | [84,46,24]g | 23 | 4 | [34,39,28]o | [10,7.4]p | [94,46,28]o || [94,46,27)0

Cs |20 | 4| [84,45,25)0 | 22 | 4 | [84,41,27)0 | [5.4,2l0 | [80.45,27)0 || [89.45,26]o

Csa | 20 | 4| [84,45,25]0 | 23 | 4 | [34,39,28)9 | [8,6,3]0 | [92,45,28]o | [92,45,27)0

Css | 21 | 4 | [84,43,26]¢

4| [34,4

,28] | [5,4,2]0 | [89,43,28]o || [89,43,27)9

Css | 10 | 5 | [85,59.160 | 12 | 5 | [85,55,180 | [5,4.2]0 18] || (90,59, 17]

Csr |10 | 5 | [85,59,16)0 | 13 | 5 | [85,53.10]0 | 8,630 . 19]o || [93,59,18]

Css | 11| 5| [85,57.17)0 | 13 | 5 | (85,5319 | [5.4.2)s 19]o || [90,57,18]

Cso | 20 | 5 | [85,44,26)0 | 22 | 5 | [85,40,280 | [5,4.2]o | [90,44,28] | [90,44,27]o

Cop | 10 | 6 | [86,58,17]g | 12 | 6 | [36,54,19] | [5,4,2l | [91,58,19]0 || [91,58, 18]y

Cor | 11| 6 | [86,56,18]g | 13 | 6 | [36.52,20]9 | [5,4,2l | [91,56,20]o || [91,56,19)0

Cor | 20 | 6| [86,43.27)0 | 22 | 6 | (86,390,200 | [5.4.2)0 | [91,43,20]0

91,

Cos | 10 | 7 | [87,57,18)9 | 12 | 7 | [87,53,20) | [5,4,2]0 | [92,57,20]0 | [92,57,19)0

Cor | 10 | 8 | [88,56,19]¢ | 12 | 8 | [88,52,21] | [5,4,2]9 | [93,56,21]o | [93,56,20)9

N. Sloane, S. Reddy, and C.-L. Chen, “New binary codd&EE
Transactions on Information Theqryol. 18, no. 4, pp. 503-510, Jul.
1972.
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Some New Codes From Binary Goppa
Codes And A Case Of Shortening
Linear Codes

M. Jibril, S. Bezzateev, M. Tomlinson, C.J. Tjhai and M. Ahmed

Abstract
Goppa codes have some of the largest minimum distances
possible for linear codes. We give the constraints of some bi-
nary Goppa codes in which we obtain four new binary codes
with parameters better than any codes known to date. We also
present necessary conditions for which a code obtained by a
shortening a longer code will have a better minimum distance

than the original code.

1 Introduction

Goppa introduced in [5] and [6], a class of linear codes commonly referred to as
Goppa codes or T'(L,G) codes. These codes have found extensive use in cryp-
tography and have good distance properties. In [1] Bezzateev and Shekhunova
present results on chains of Goppa codes and showed the relationships between
some of these codes. Given in [9] and [12] are tables of the linear codes hav-
ing the best minimum distances of all known codes with a given length and
dimension. In this paper we use the relationship of two of the Goppa codes

presented in [1] and a method of code extension to produce 4 binary codes with
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parameters! (243,124, 33]s, (244,124, 34]5, (245,124, 35]5 and [246, 124, 36], bet-
ter than the codes in [9] with the same lengths and dimensions. We also give
necessary conditions under which a code shortened from a longer code can have

a minimum distance greater than the original code.

2 Extending Goppa Codes

A T(L,G) code is defined by the location set L C GF(2™) and a Goppa poly-
nomial G(z) with coefficients from GF(2™), where GF(2™) is a finite extension
of the field GF(2). The set L = {ag, a1,...,a,—1} with cardinality n contains
all elements of GF(2™) that are not roots of the polynomial G(z). A codeword
(co,c1,-..,Cn—1) with elements from GF(2) is a word of a Goppa code defined

by the set L and the polynomial G(x) if it satisfies,

n—1

Z “_—y mod G(z) (1)

T —
i=0 !

If r is the degree of the polynomial G(z) then parameters of the Goppa code

are,

Length, n = |L|
Dimension, k > n — mr

Distance,d > r + 1

lparameters are in the [n,k,d],; form where n is the length, k is the dimension, d is the
minimum distance and ¢ is the field size of the code.
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One form of a parity check matrix of a Goppa code [11] is given by,

_1 1 P S
G(ao) G(a1) Glan—1)
ag o3} Qn—1
G(ag) G(an) G(an—1)
H= |08 ot oo, @)
Glao)  Glan) Glan—1)
G(ao) G(a1) G(an-1)

A Goppa code is called separable if its defining polynomial has distinct non-
repeated roots. Binary separable Goppa codes a much better lower bound on
their distance, d > 2r + 1 [11].

In [1] a chain of Goppa codes is described. We use the same notation to describe

a chain of Goppa codes,
IO =T =300y =Ts=Ts=T7. (3)

We are interested in the relationship between two of the codes in the chain I'}

and T’y which can be summarised from (3) as,
Iicry

ie. T is a subset or subcode of I'y. Codes I'f are defined by the Goppa
polynomial G (x) = 2!~'+1 and the location set L} = {GF(t?)\GF(t)}, t = 2".

The codes have parameters [1, 15],

Length, nj =t> —t
L, 3
Dimension, ki =t —t—20(t— 7))~ 1 (4)

Distance, dj =2t +4. (Theorems 2,34 from [1])

The codes I'; on the other hand are defined by the same Goppa polynomial

Gi(z) = 2t~ +1 but with a location set L; = {GF(¢?)\ GF(¢)} U{0} and have
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Table 1: Codes I'y and I'j for 2 < ¢ <5
GF(2) T, T;
GF(16) [13,2,7]> [12,1,12]»
GF(64) [57,17,15]2 [56, 16, 20]2
GF(256) | [241,124,31], | [240, 123, 36]>

GF(1024) | [993,687,63]> | 992,686, 68]2

Tt | Wl |

parameters [1, 2, 15],

Length, ny =t —t+1
o s 3
Dimension, ky =% —t—20(t— 3 (5)

Distance, dy =2t —1. (from [2])

Table 1 shows the parameters of these two codes in the range 2 < ¢ < 5.
Construction X is a well known method of extending a linear code by using a

good subcode of a code, see [11, 13].

Theorem 1 (Construction X ): If a linear code C; with parameters [ni, k1, d1)
has a subcode Cy with parameters [ng, ko, do], then C; is extendable to a code
with parameters [n; + n, k1, min{d; + 4, d>}] using an auxiliary code with pa-

rameters [n, ky — ks, d].

Consider such a linear code C; with parameters [ny, k1, d1] and generator matrix

G which can be represented as,

where G is the generator matrix of a subcode Co with parameters [no, ko, da).
Suppose the auxiliary code Cs with parameters [n,k; — k2, 0] has generator

matrix Gg, then the generator matrix [7] of a code obtained from construction
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X using these three codes has generator matrix,

G- Gy, 0

G G3
We apply construction X to the two Goppa codes by setting Cy = I'1, Co =T’}
and for the auxiliary code C3 we use a repetition code with parameters [n, 1, n]

(since ky — kT = 1). In this way we are able to produce some good codes.

2.1 Example

Let £ = 3, the code T'; is defined with a Goppa polynomial G (z) = 7 + 1 and
location set L1 = {GF(64) \ GF(8)} U {0}. This Goppa code has parameters
[57,17,15] from equation (5).

The Goppa code T is defined with the same polynomial Gy (z) = 27+ 1 and
location set L1 = {GF(64) \ GF(8)} and has parameters [56, 16,20]5 from (4).
Using construction X from Theorem 1 with 'y, I'f (padded with zero at location
{0}) and auxiliary repetition codes [n, 1,n] with 1 < n < 5 we obtain codes with

parameters [58,17,16]s, [59,17,17]s, [60,17,18]s, [61,17,19]2 and [62, 17, 20]5.

2.2 Results

Table 2 shows the codes C obtainable using construction X with the Goppa codes
Ty, I'f and an [n, 1,n] repetition code for the range 2 < ¢ < 5 and 1 < n < 5.
The minimum distance of the codes is given by min{d; + n,d;}. The codes in
bold font have better minimum distances than currently known codes given in
the tables [9] with the same length and dimension. This extension is shown to
produce best known codes with codes having a similar structure as I'y and I'}

in the Appendix.
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Table 2: Codes C for2 </¢<5,1<n<5H

(] GF(£?) T n C Codes in [9]
1 [14,2,8)2 [14,2,9
2 (15,2, 15,2, 10]

2| GF@6) [13,2,7, [3 16,2, 10] 16,2, 10]
1 17,2, 11), 17,2,11);
5 18,2,12), 18,2,12);
T [58,17,16] 58,17, 18]
2 [ (59,17, 17 59,17,19]

3| GF(64) | [p7,17,152 [3 | [60,17,18) 60,17,20]
I [61,17,19] 61,17, 20,
51 [62,17,20] 62,17,21]»
1| [242,124,32, | [242,124,32]2
2 | [243,124,33]5 | [243,124,32),

4| GF(256) | [241,124,31), [ 3 | [244,124, 34], | [244, 124, 33)2
1| 245,124,355 | [245, 124, 34],
5 | (246,124, 36]2 | 246,124, 35)
1 994, 687, 64]2 -
2 995, 687, 65)2 -

5 | GF(1024) | [993,687.63]> [ 3 | (996, 687, 60]2 =
4 997,687,672 -
5 998, 687, 682

3 A Method Of Shortening

Let C be a linear code of length n, dimension k& and minimum distance d. Let
the set {0,...,n — 1} be the coordinates of the code C. Shortening involves
deleting ! < k information coordinates from the set {0,...,n —1}. These | < k
information coordinates correspond to any linearly independent columns of the
parity check matrix of C. To ensure that the deleted coordinates are in fact

information symbols Theorem 2 is employed.
Theorem 2: Provided | < d any of the coordinates may be deleted.

Proof. From [11], a code with minimum distance d has every combination of
d — 1 or less columns of its parity check matrix linearly independent. As [ < d,
if the deleted coordinates are not linearly independent then d < I, which is a

contradiction.

It is worth noting that the code I'f is actually shortened from the code I'; by

removing the column of the parity check matrix of I'; at the location {0} i.e.
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the column (from equation (2))

1 1
«; 0
ol = |0
i 0

where o; = 0. Thus shortening I'y in coordinate {0} increases the minimum
distance from 2t—1 to 2¢t+4. It is clear to see that from [2] we have the minimum
distance d; = 2¢—1. From Theorems 3,2, 1 in [1] we have d} = 2¢t+4 . And from
Section IV [1] we obtain that the code I'} is a subcode of the code I'y by reducing
a zero component. Therefore shortening I'; in a single coordinate produces I'}
and increases the distance by 5. This observation leads to a special case of
shortening linear codes. Grassl and White [8] presented a puncturing scheme
which in its simplest form punctures the code in coordinates that coincide with
only zero symbols of any minimum weight codeword. By examining codewords
of weight < d 4 j the authors presented a generalised puncturing method that
produced codes with parameters [n — s,k,d — s + j] and as a result many new
codes that have better distances than codes in [9] with the same code rate were
presented. The puncturing scheme used the notion of a hitting set. We use this
notion to describe a method of shortening linear codes.

Let ¢ € C be a codeword of C then the support of c is defined as ,

supp (¢) ={i:i€{0,...,n—1} given that ¢; # 0}.

Let d be the minimum distance of the code and the weight of a codeword be

the cardinality of its support,

weight(c) = |supp(c)|.
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Let M C C be the set of minimum weight codewords

M = {c € C : weight(c) =d}

and W a set of sets satisfying,

W = {supp(c) : for allc e M}. (6)

Definition ( from [8]): A hitting set J C {0,...,n — 1} of the set W is any set

such that every set w € W intersects J. Formally,

[T Nw|>1 for allw e W

The hitting set J for the set W is a set containing coordinates such that every
codeword of minimum weight in C is non-zero in at least one of the coordinates

contained in 7.

3.1 Code Shortening

Theorem 3: If J is a hitting set of the set W, shortening the code C in coordi-
nates specified by J will produce a linear code with parameters [n — I,k —[,>

d+1] where I = ||, l < k and | < d.

Proof. Since every codeword of minimum weight in C is non-zero in at least
one coordinate contained J and coordinates of J contain only information
coordinates, all the minimum weight codewords of C are discarded as a result

of shortening. Thus the shortened code Cs has minimum weight > d + 1.

An observation from Theorem 3 is that all codewords (not necessarily of mini-
mum weight) that are nonzero in at least one coordinate in J are also no longer

in the shortened code. Let D be the set of all codewords that are nonzero in
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the coordinates contained in J then,
ifceD then c¢Cs McCDCC

This suggests that we can extend the definition of the hitting set to include
codewords of C with weight at most d + 0 for some 6. We first define the sets

M; as,
M; ={ceC : weight(c) =d+1i}

and the sets M and W as,

8
UM

=0

M

W = {supp(c) : for allc e M}.

‘We define Js as the hitting set of w.

[TsNw| >1 for allw e W

Corollary 4 (Generalized Shortening): If Js is a hitting set of the set W, short-
ening the code C in coordinates specified by J5 will produce a linear code with

parameters [n — [,k —1,> d+ 6+ 1] where [ = | 75|, | < k and | < d.

More can be said about the minimum distance of the shortened codes Cy if the
weight distribution of the original code C is known. Suppose A,, denotes the
number of codewords in C with weight w then the weight distribution of the

code C can be represented as,

[Ag, Ay, Ay
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with the total number of codewords equal to ZS Ay. In some cases A, = 0
forw=1[d+1,...,d+~] for some integer v > 1 i.e. there are no codewords of
weight w in the range d + 1 < w < d 4 ~. In which case the minimum distance
of the shortened code Cs will be the next available weight d++1. An instance
of Corollary 4 when § = 0 was first presented as a shortening method in [10].
Using Corollary 4 we can describe the shortening of the Goppa code I'y that

results in I']. For the code I'; suppose «; =0, a;; € Ly then,

Ju = {i} [T =1 d=4

since all codewords of weight s such that d; < s < d; + 4 are nonzero in

coordinate {i}, thus shortening in coordinate {i} results in the code I'j.

Ezample: Consider the BCH [63,18,21]5 code. A random search on the supports

of the codewords of this code with weights 21 and 22 produces the set

J1 = {10,11,28,30, 32, 33, 36, 38, 57, 58, 59}

with | 71| = 11. Shortening the BCH code in these coordinates produces a code

with parameters [57, 7, 23],.

4 Conclusion

We have presented four new binary codes with better minimum distances than
any known codes with the same length and rate by extending a well studied class
of Goppa codes using construction X. We also presented a shortening method
that produces shortened codes with better minimum distances than the original
code. This shortening method can be seen as a generalisation of the method
presented in [10]. Connections between the generalised shortening method and

the Goppa codes used in the extension are made.

10
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Appendix

Aside from the codes I'y and I'f we can also use this extension method with

codes T; and T} both defined with Goppa polynomial

Gi(z) = Gi(z)(z — ) = (' + 1)(x — )’  with i even

and G4 () = 0 with location sets L, and L} respectively. T, has parameters,

Length, n=1#>—t+1
. . 2 3 i
Dimension, k>t —t—20(t— 3) ™ (7

Distance, d =2t —1+1

12
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while f;z has parameters,
Length, n =1 —t

Dimension, k > 1% —t — 2¢ (tfg) —-m—1 (8)

Distance, d = 2t + 4 + 1.

For example for ¢ = 2%,i = 2 we obtain 6f(£) = (2P +1)(z+1)? and ff is
[241, 116, 33]3 code, f:z is [240, 115, 38]5 code. And therefore by X construction
using a [5,1,5] auxiliary code we obtain a [246,116, 38| code which has the
same parameters as the best known code in [9].

In addition we can also use this approach to extend nonbinary Goppa codes
(labelled cumulative-separable) from [16]. For example for ternary Goppa codes
fi, fil with ¢ = 32,4 = 1 and Goppa polynomial 6}(1) = (2® - 1)3(z +2) we
obtain [73, 16, 32]3 and [72,15, 343 codes respectively. And by construction X

we have [74,16, 34]3 code (with the same parameters as in [9]).
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