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Trophic and ecological implications of the gelatinous body form in zooplankton

Kristian Michael McConville

Gelatinous zooplankton are characterised as different from other planktonic taxa due to the high
relative water content of their tissues. This thesis investigates whether elevated somatic water
content (expressed here as carbon percentage) has effects on the biology of zooplankton. My
approach was to examine this at a range of scales with a variety of approaches, ranging from
experiments on individual ephyra larvae of Aurelia aurita, through analysis of a zooplankton time
series at the Plymouth L4 station, up to a large scale meta-analysis of zooplankton growth and
body composition data. In this meta-analysis, carbon percentage varied continuously across the
range of the zooplankton, ranging from 0.01% to 19.02% of wet mass, a difference of over three
orders of magnitude. Specific growth rate (g, d-1) was negatively related to carbon percentage,
both across the full range of zooplankton species, and within the subset of taxa traditionally
classified as gelatinous. The addition of carbon percentage to models of zooplankton growth rate
based on carbon mass alone doubled explanatory power. I present an empirical equation of
maximum (food saturated) zooplankton growth that incorporates carbon mass and carbon as a
percentage of wet mass. Applying this equation to a natural assemblage near Plymouth yielded
sometimes double the secondary production, as compared to a simpler model based on
crustacean growth. Both interspecifically and intraspecifically, carbon percentage was negatively
related to carbon mass; more gelatinous taxa tended to have higher carbon masses. During the
early development of Aurelia aurita ephyrae, carbon percentage was found to decrease from
2.36% (an intermediate value between crustaceans and classical gelatinous zooplankton) down to
0.1%, the adult value for Aurelia aurita. Juvenile forms of gelatinous taxa are often poorly sampled
and their intermediate carbon percentages may help to form a continuum between those of
crustaceans and adult cnidarians and ctenophores. As ingestion in the ephyrae was related to their
diameter, models suggest that this dilution resulted in an increase in carbon-specific ingestion rate
by an estimated 28% relative to an ephyra that did not dilute through development. At the species
level, carbon percentage was negatively related to indices of temporal variation in numerical
density but not related to rate of population increase. A wide variety of zooplanktonic taxa of
different carbon percentages were found to increase in population at a rate that could be
considered as forming a bloom. Likewise many gelatinous taxa at L4 did not form blooms. Thus the
frequent reference to “jellyfish blooms” reflects, in part, the fact that unlike the other zooplankters
that regularly reach even higher carbon concentrations, gelatinous taxa are simply more noticeable
to the eye when at these concentrations. Calculating the carbon percentage of whole assemblages
could be useful for investigating the influence of environmental parameters on zooplankton. Taken
together, these results demonstrate the benefits of explicitly recognising the decoupling of
metabolic and ecological body size seen in the gelatinous zooplankton.
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CHAPTER 1 - Introduction
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1.1 - Importance of gelatinous zooplankton

Gelatinous zooplankton are a phylogenetically and functionally diverse group of aquatic

organisms, including medusae, ctenophores and tunicates. This range of taxa varies in wet mass

by over 10 orders of magnitude (Kiørboe, 2013; Uye, 2014), and demonstrates a wide range of

remarkable biological properties. Some of the fastest growing metazoans are gelatinous

zooplankton (Hopcroft et al., 1995), with among the shortest known metazoan life cycles

(completed in 6 days 15oC, Troedsson et al., 2009). Species within the group feed on organisms

ranging from bacteria (Sutherland et al., 2010) through to adult fish (Purcell, 1984). Gelatinous

zooplankton are also capable of surviving in a variety of environments ranging from oligotrophic

subtropical gyres (Acuña, 2010) to eutrophic coasts (Richardson et al., 2009), and are extremely

tolerant to hypoxia (Purcell et al., 2001; Thuesen et al., 2005).

Gelatinous zooplankton have a long evolutionary history as they appear in Vendian rocks

600 mya, well before the Cambrian explosion (Sappenfield et al., 2016) and are of interest to

evolutionary biologists in several ways. There is evidence to suggest that Phylum Ctenophora, one

of the most gelatinous groups, may be the sister taxon to all other metazoans (Dunn et al., 2015).

Another subgroup, Order Siphonophora, exhibit the greatest degree of colonial specialisation of

any animal (Dunn et al., 2005). Also, the smallest known metazoan genome is found within the

group (Seo et al., 2001). Finally, the adoption of a gelatinous body form has occurred multiple

times in evolutionary history as the trait is displayed across six phyla (Cnidaria, Ctenophora,

Chordata, Mollusca, Annelida, Chaetognatha).

Several gelatinous species have the potential to form characteristic blooms (Uye, 2008;

Canepa et al., 2014). Blooms are rapid localised increases in species biomass that have the

potential to heavily impact zooplankton communities (Lynam et al., 2005) and compete with fish

(Purcell and Arai, 2001; Haraldsson et al., 2012). Some blooms are natural and are a persistent

feature over the timescale of millions of years (Condon et al., 2012), others are the result of
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biological invasions (Finenko et al., 2006, Fuentes et al., 2010) and it has been suggested,

anthropogenically-induced ecosystem change (Purcell et al., 2007).

Gelatinous zooplankton are widely referred to as having negative impacts on marine

ecosystems, seen as a danger or nuisance, or a trophic dead end (Richardson et al., 2009). It is

true that gelatinous zooplankton can have effects on humans, particularly when blooming.

Predation by these taxa on larval fish can decrease fishery viability (Quinones et al., 2013),

potentially leading to complete fishery collapse (Oguz et al., 2008). There have also been negative

effects on aquaculture, directly by damage from water-borne nematocysts (Marcos-Lopez et al.,

2016) and indirectly by, for example, the introduction of pathogens (Delannoy et al., 2008). Some

species are hazardous to humans, with contact resulting in injury and even death (Fenner and

Hadok, 2002). Consequently, gelatinous zooplankton can have severe socioeconomic impacts,

particularly in areas that are reliant on seasonal recreational use of the coast such as the

Mediterranean and Australia (Purcell et al., 2007). Blooms of gelatinous zooplankton also result in

unexpected secondary effects such as the clogging of power plant water intakes (Lynam et al.,

2006).

Given the myriad effects of jellyfish (and in particular, blooms) on human activity, and our

increasing interaction with the marine environment, it is not surprising that research into jellyfish

blooms has increased rapidly over the last 20 years (Gibbons and Richardson, 2013). This trend

continued until recently (Figure 1.1), at a far greater rate than the mean increase in peer reviewed

zooplankton articles published each year (STM Report, 2015).
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Figure 1.1 – Number of peer reviewed articles per year returned from a Web of Science search
(accessed 26/01/17) with the following criteria: (“jellyfish” OR “gelatinous”) AND “bloom*” on the
primary y axis (shown in red) and “zooplankton” on the secondary y axis (shown in green).

While the pace of this research may be now be slowing, it has highlighted that gelatinous

zooplankton have a wide range of positive effects, both on marine ecosystems and humans. In

some systems, jellyfish are considered keystone species including Chesapeake Bay and the

Central North Pacific (Libralato et al. 2006). Blooms can influence nutrient cycling through sinking

as “jelly falls” (Sweetman et al., 2011), exporting organic matter to deeper water via their faecal

pellets (Madin, 1982) and by releasing carbon as dissolved organic matter (Hansson and Norrman,

1995). In some locations this carbon release can be significant, up to four times the annual carbon

input to the benthos (Lebrato et al., 2012).

Gelatinous taxa are also important members of marine food webs and are fed on by a wide

range of species (reviewed in Arai, 2005) including numerous fish and crustaceans (Milisenda et
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al., 2014; D’Ambra et al., 2015), and charismatic megafauna such as marine birds (Harrison, 1984)

and the leatherback turtle, Dermochelyes coriacea (Houghton et al. 2006). Some gelatinous

species (including Cyanea capillata) provide shelter for larval fish in open water, potentially

decreasing mortality of the larvae of commercially important gadoid fish (Lynam and Brierley,

2007).

Humans also use gelatinous zooplankton directly in range of ways. Rhizostomid jellyfish

are fished commercially, with approximately 425,000 tonnes harvested globally (FAO, 1999) with

some jellyfish fisheries actively enriched via stock supplementation (Dong et al. 2010). In folk

medicine, consumption of jellyfish is considered by some to be a cure for a range of conditions

including hypertension and back pain (You et al. 2007) and experimental medical procedures using

jellyfish collagen for treating arthritis and rebuilding damaged tissues have been trialled (Addad et

al., 2011).

A more balanced view of the position and function of gelatinous zooplankton in marine

ecosystems is thus developing. However, the definition of exactly what should be included within

the group remains contentious (Condon et al., 2012). The core groups of the gelatinous

zooplankton include the cnidarian medusae and ctenophores, often referred to collectively as

“jellyfish” (Pitt et al., 2013), on the basis of their comparatively similar structure and relative

phylogenetic proximity. Some authors include salps (Molina-Ramirez et al., 2015), but others

exclude them because of their herbivorous trophic mode (Larson, 1987). Other studies include

chaetognaths (Raskoff et al., 2005), heteropod and pteropod molluscs, appendicularians (Hamner

et al., 1975) and radiolarians (Harbison et al., 1977) as members of the gelatinous zooplankton.

Given the ambiguity of the term gelatinous zooplankton, the word “gelata” has been posed as an

alternative to encompass the full range of plankton with dilute bodies (Haddock, 2004).
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1.2 - Biological implications of a gelatinous body form

The one trait that unites the various gelatinous taxa is the high percentage of water in their

bodies, expressed as having carbon mass that is approximately 1% (or less) of wet mass (Kiørboe,

2013; Molina Ramirez et al., 2015). Targeted studies on the effects of having a dilute, gelatinous

body form are few, but several authors have suggested that there may be a range of potential

implications on the physiology and ecology of these animals (Hamner et al., 1975, Alldredge, 1984).

Clarke and Peck (1991) highlighted how the energetics of gelatinous zooplankton are more similar

to benthic animals than to other zooplankton, owing to low locomotory and metabolic costs (Gemell

et al., 2013), and lack of lipid stores. Alldredge and Madin (1982) suggested that pelagic tunicates

had higher clearance rates than other zooplankton potentially as a result of their dilute bodies.

Following these studies, other authors began to quantify these differences by modelling the feeding

rate increase associated with an inflated body. Acuña (2001) used filter feeding theory to show that

the salp, Pegea confoederata, would be incapable of meeting its metabolic demand in its nutrient

poor environment if its body were not dilute. Kiørboe (2011) modelled the differences in encounter

areas between a gelatinous organism (0.01 g C cm-3) and a non-gelatinous organism (0.1 g C cm-

3). The increase in carbon mass-specific feeding rate afforded by diluting the body was similar in

magnitude to the increase associated with an organism changing from passive ambush feeding to

an active foraging mode.

This central idea of increasing feeding potential from having a dilute body was later

expanded in a meta-analysis by Acuña et al. (2011). Their study compared the carbon mass-

specific and wet mass-specific respiration and clearance rates of three groups; gelatinous

zooplankton, crustacean zooplankton and fish. Gelatinous zooplankton had similar carbon mass-

specific respiration rates to fish and crustacean zooplankton. This suggested that respiration was a

function of carbon mass, and was unaffected by increasing wet mass. The wet mass-specific

feeding rates of gelatinous zooplankton were similar to those of crustaceans, suggesting that their

feeding methods were equally efficient at the same body volume. In contrast, fish use more

efficient visual foraging, resulting in higher feeding rates at the same wet mass. However, as a
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result of the low carbon percentage of gelatinous taxa, carbon mass-specific feeding rates were

similar to those of visual foraging fish. In concert, this suggests that gelatinous zooplankton have

higher scope for growth than other zooplankton, with values more similar to those of fish.

The most recent and comprehensive study of the differences between jellyfish (in their

study defined as medusae and ctenophores) and other planktonic animals was carried out by Pitt

et al. (2013). They included comparisons of growth rate, excretion rate, longevity and swimming

velocity with a similar approach to that of Acuña et al. (2011). Pitt et al. (2013) approached the

question by testing whether the carbon and wet mass-specific rates of the gelatinous taxa differed

from the non-gelatinous taxa. Pitt et al. (2011) found that carbon-specific growth rates of gelatinous

zooplankton were 2.2 times those of other zooplankton, and carbon specific ammonium excretion

rates were one tenth of those of other zooplankton.

In the above mentioned comparisons, and indeed in all studies to date investigating the

gelatinous body form, comparisons have been made between those phylogenetic groups that are

classified as gelatinous and those that are not. However, this dichotomy quickly breaks down as

intermediate gelatinous species also exist, such as chaetognaths and pelagic polychaetes

(Kiørboe, 2013). When attempting to analyse the zooplankton as a whole it could be, as I will argue

below, more appropriate to treat degree of dilution as a continuous trait, expressed as carbon

mass as a percentage of wet mass.

1.3 - Aims and layout of this thesis

The relatively few studies comparing highly gelatinous taxa with other zooplankton

demonstrate how tissue dilution can have significant effects on physiological rates such as feeding

and growth. This thesis will investigate whether adopting a continuous approach using carbon

percentage can further our understanding of how dilution affects the biology of zooplankton. A
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change in thinking from dividing plankton on the basis of gelatinous vs non-gelatinous, to a trait-

based approach which focusses on the continuous variable carbon percentage may seem trivial

but could be a major step forward in a number of ways. First, gelatinous taxa and other

zooplankton currently need to be modelled separately to incorporate the differences in vital rates

described above. This has lead to gelatinous taxa being frequently excluded from ecosystem

models, or being poorly parameterised within them (Pauly et al., 2009). If the differences between

gelatinous and other zooplankton could be related to carbon percentage as a continuous variable,

then variability in vital rates could be included intrinsically without the increase in complexity

associated with dividing the zooplankton into different groups.

Secondly, taxa with different carbon percentages are favoured under different

environmental conditions. For instance, highly gelatinous non visual predators may be more

successful in turbid (Haraldsson et al., 2012) and hypoxic conditions (Thuesen et al., 2005). A

greater understanding of how carbon percentage drives these differences will help us to predict

how planktonic systems will respond to changing environmental conditions, such as increasing

temperature and coastal eutrophication.

Furthermore, understanding carbon percentage as a trait could help us to understand the

evolution of different morphological strategies in the plankton. Seven phyla contain planktonic taxa

that could be considered gelatinous, and understanding the effects of carbon percentage could

help us to better understand why the gelatinous body form is seen in such a wide range of

zooplanktonic organisms.
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1.3.1 - Aim

The primary aim of this thesis was to address the question: how does tissue dilution affect

the biology of zooplankton?

1.3.2 - Objectives

To achieve this aim I have investigated whether the differences in growth and ingestion rate

between gelatinous and other zooplankton are a consequence of differences in carbon percentage.

A range of different approaches were used including meta-analysis, experiments and analysis of

time series data. The aim was completed through a series of sequential objectives, namely:

(I) – HOW DO WE EXPECT CARBON PERCENTAGE TO INFLUENCE ENERGY BUDGETS?

In Chapter 2, by applying established scaling theory I have explored how carbon

percentage is expected to influence the respiration, feeding and growth rates of zooplankton.

These predictions are used as support for the hypotheses advanced in the subsequent chapters.

Also within Chapter 2, the sampling protocol at the L4 sampling station is detailed to provide

background for the use of the zooplankton abundance time series in Chapters 3, 5, 6 and 7.

(I) – IS CARBON PERCENTAGE CONTINUOUS?

In Chapter 3, synchronous measurements of carbon and wet masses of a wide range of

zooplanktonic taxa were compiled from the literature. A meta-analysis of these collected data was

used to investigate the distribution of species along the axis of carbon percentage. By assessing to

what extent the carbon percentages of zooplankton form a natural division between discrete

gelatinous and non-gelatinous groups, I determined whether it was appropriate to treat carbon

percentage as a continuous trait. This meta-analysis provided information on the potential variation

in traits but the range of species analysed was not representative of the species that inhabit any

single ecosystem. For this reason, zooplankton abundance time series data from the Plymouth L4

sampling station (detailed in Chapter 2) was used to determine how biomass was distributed along

the axis of carbon percentage in a real assemblage.
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(II) – IS CARBON PERCENTAGE RELATED TO GROWTH RATE?

Chapter 3 continued by combining the carbon percentage values with a meta-analysis of

published zooplankton growth rates to determine whether carbon percentage was related to growth

rate. Carbon percentage was combined with carbon mass (alongside standardisations for food and

temperature) to provide a unified model of zooplankton growth. The data were also tested for a

relationship between carbon percentage and carbon mass, both in the meta-analysis and the real

assemblage at L4.

(III) – IS CARBON PERCENTAGE FIXED WITHIN A SPECIES?

Chapter 3 explored whether interspecific variability in carbon percentage affected the

biology of zooplankton. Chapter 4 extends the investigation to intraspecific variability using a

series of experiments on ephyra larvae of the moon jellyfish, Aurelia aurita. The carbon and wet

masses of the growing ephyrae were measured to determine whether carbon percentage varies

through early development.

(IV) – HOW DOES INTRASPECIFIC VARIATION IN CARBON PERCENTAGE AFFECT FEEDING

AND GROWTH RATES?

Following on from objective iii, Chapter 4 determined whether variability in carbon

percentage through ontogeny influences the feeding and growth rates of ephyrae. The ephyrae

were incubated in saturating food conditions, and ingestion and growth rates were measured and

related to carbon percentage and carbon mass. A simple mechanistic model was constructed to

further explore how variation in carbon percentage affects the energy budget of the ephyrae.
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(V) – DOES CARBON PERCENTAGE AFFECT THE FORMATION OF JELLYFISH BLOOMS?

Previous studies have suggested that gelatinous taxa have higher carbon specific feeding

and growth rates than other zooplankton. Chapter 5 investigated whether these organismal

differences manifest at the population level by asking whether carbon percentage is related to the

formation of rapid population increases i.e. blooms. Using zooplankton abundance from the L4

time series, Chapter 5 also determined whether carbon percentage affects variability in abundance

and population increase rate among the zooplankton.

(VI) WHAT IS THE RELATIONSHIP BETWEEN CARBON PERCENTAGE AND CARBON MASS?

A relationship between carbon mass and carbon percentage was established in Chapter 3, and

was explored in greater detail in Chapter 6. By investigating the variability in this relationship,

Chapter 6 suggested how carbon mass and carbon percentage interact to set constraints on

zooplankton body size.

(VII) WHAT DOES THIS MEAN FOR HOW WE THINK ABOUT ZOOPLANKTON AND CARBON

PERCENTAGE?

Chapter 7 summarised how the results found in the other chapters could change the way

we think about zooplankton. Additionally, Chapter 7 explored how carbon percentage might be

used in different way in future studies, for instance as a response variable for summarising

planktonic assemblages.
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CHAPTER 2 – Theoretical model of the effects of carbon

percentage and L4 sampling details
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2.1 - Introduction

Throughout this thesis I have used a theoretical model to make predictions about the

effects of carbon percentage on various aspects of zooplankton biology. In this chapter I develop

the form and explain the assumptions of this model. To test some of the predictions posed by the

model and investigate population level phenomena, the L4 time series of zooplankton abundance

has been used. The background information and sampling regime for this time series are detailed

below.

2.2 - Dilution as a continuous trait: modelling the potential effects of carbon percentage

Using the differences between gelatinous and non-gelatinous zooplankton presented in

Chapter 1 and scaling theory, it is possible to predict how carbon percentage (C% = carbon mass

as a percentage of wet mass) might affect vital rates using a simple geometric model.

The most immediate effect of variation in carbon percentage is on effective body size (i.e.

body volume). Two organisms of the same carbon mass but different carbon percentages will have

different wet masses, and therefore different effective body sizes. As body size is integral to the

biology of all organisms, hypotheses for the effects of carbon percentage will be formulated by

applying existing knowledge of how changing body size alters vital rates. The model below will

compare two organisms of the same carbon mass, C, but different wet masses, WM. For the sake

of comparison, these organisms will be referred to as gelatinous and non-gelatinous, and represent

opposite ends of the range of carbon percentage.

The non-gelatinous organism has a “normal” carbon percentage (C = 10% WM);

(eq. 1.1) WM = C / 0.1

The gelatinous organism has a lower carbon percentage (C = 0.1% WM);

(eq. 1.2) WM = C / 0.001
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As “body size” is described as the primary biological trait determining energy budgets

(Andersen et al., 2016), we can use different metrics of body size to estimate a range of energy

budget parameters for these two organisms. In the following paragraphs I have applied established

scaling theory to our current understanding of how gelatinous zooplankton differ from other

planktonic taxa (Acuña et al., 2011; Pitt et al, 2013). By combining this with a logical exploration of

whether energy budget parameters are likely to be controlled by carbon or wet mass, I have

developed a range of predictions of how carbon percentage might influence the energy budget of

zooplankton. These predictions are tested using a range of methods in subsequent chapters.

2.2.1 - Respiration

Water does not have respiratory demand (or capability) so therefore respiration can only be

a function of the organic content of the body (Acuña et al., 2011). The organic content or

metabolically active mass is represented here as carbon mass, therefore in both cases;

(eq. 1.3) Respiration rate = aCb

Respiration rate is a function of carbon mass, C, a constant, a, and the body mass scaling

exponent, b. The value of the body mass scaling exponent of metabolism, b, has been a topic of

much debate for nearly a century (Kleiber, 1932). However, as we are comparing organisms of

identical carbon mass, the values of the exponent and the coefficient do not affect the model. As

respiration is a function of carbon mass (and is not affected by wet mass, Acuña et al., 2011), the

respiration of the gelatinous and non-gelatinous organisms in the model will be equal.

2.2.2 - Ingestion rate

Ingestion rate is a complex variable that can vary widely depending on feeding mode, food

concentration, prey type and a wide range of other factors. For the sake of simplicity, it is assumed

that both organisms are neutrally buoyant, ambush feeders that do not actively forage. Following
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these assumptions, ingestion rate is a function of encounter rate, which is in turn a function of

surface area, and therefore the following equation will apply;

(eq. 1.4) Ingestion rate = x(C/C%)2/3

The constant, x, will be dependent on feeding mode and the other factors mentioned above,

and is not critical for this investigation. The scaling exponent of b = 2/3 is a consequence of

surface area scaling as length2 and volume scaling as length3.

From this point the gelatinous and non-gelatinous organisms diverge;

(eq. 1.5) Non-gelatinous feeding rate = (C/0.1)2/3 = (10C)2/3

(eq. 1.6) Gelatinous feeding rate = (C/0.001)2/3 = (1000C)2/3

Both surface area and volume are functions of wet mass, and therefore feeding rate differs

between the gelatinous and non-gelatinous organisms. It could be argued that given the wide

variety of feeding modes that exist, modelling ingestion rate using surface area is too great an

assumption. However, the purpose of this model is not to produce quantitative estimates of the

effect of carbon percentage, but to suggest the form of this relationship for testing in subsequent

chapters. In the case of feeding rate, scaling exponents of b < 0 are very rare both interspecifically

(Kiørboe and Hirst, 2014) and intraspecifically (Hirst and Forster, 2013), and b values typically vary

between 0.66 and 1. With this in mind, it is predicted that decreasing carbon percentage will

typically increase carbon-specific ingestion rate. In this model, the gelatinous organism will have

higher carbon specific ingestion rates than the non-gelatinous, with the difference between the two

depending on carbon mass and the difference in carbon percentage.
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2.2.3 - Scope for growth

Scope for growth is an estimate of the energy available for growth, it is a function of feeding

rate minus respiratory cost;

(eq. 1.7) Scope for growth = food intake – respiration loss = (C/C%)2/3 – Cb

Therefore;

(eq. 1.8) Non-gelatinous growth = (10C)2/3 – Cb

(eq. 1.9) Gelatinous growth = (1000C)2/3 – Cb

As shown above, while the carbon specific respiration rate of the gelatinous and non-

gelatinous organisms is the same, carbon specific feeding rate differs and therefore scope for

growth differs also. The scope for growth of the gelatinous organism is higher than that of the non-

gelatinous organism, with the magnitude of the difference dependent on carbon mass. Scope for

growth does not equal growth rate, but as an estimate of the resources available for growth can be

used to estimate relative growth rate.

2.3 - Introduction to the Western Channel Observatory

The Western Channel Observatory is the collective name given to a series of atmospheric,

planktonic and benthic monitoring and process stations in the shelf waters south of Plymouth

(Figure 2.1). The centrepiece stations are known as L4 (13 km SSW of Plymouth) and E1 (40 km

SSW of Plymouth) which are in water depths respectively of ~54 and 75 m. These stations have

been sampled periodically for over a century (Southward et al., 2005), but zooplankton sampling at

L4 was resumed on a weekly basis by Plymouth Marine Laboratory in March 1988. It thus provides

a particularly valuable time series and the zooplankton data set used in my study.
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Figure 2.1 – Location of the sampling stations within the Western Channel Observatory off
Plymouth, UK (http://www.westernchannelobservatory.org.uk).

Detailed study of this area of the Western English Channel began in 1888 with the

formation of the Marine Biological Association (Southward et al., 2005). Various investigations into

the area, especially with reference to herring and mackerel fisheries continued until the

establishment of profiles of chlorophyll a, salinity and temperature in 1970. In 1988, PML

established the first measurements at station L4 as a result of several concurrent research projects.

Since this time, the time series has expanded and now includes benthic survey, flow cytometry,

data buoys and a wide range of biogeochemical parameters alongside measurements of

zooplankton and phytoplankton (Smyth et al., 2015).
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The work that has been made possible as a result of the observatory has been varied and

impactful (summarised in Smyth et al., 2015). Studies from the observatory have enhanced our

knowledge of plankton ecology over the full range of biological scales, from viral interactions

(Nizzimov et al., 2015) to the effects of microplastics (Cole et al., 2015). One of the key sampling

efforts that takes place at the observatory is the L4 zooplankton time series. This provides a rich

dataset that began in 1988, and since then has expanded to weekly recordings of the abundance

of 199 taxa. As a result of this time series, there is a good understanding of zooplankton dynamics

at L4 (Eloire et al., 2010). Zooplankton abundance peaks in April and September, driven by

abundant phytoplankton and temperature. The assemblage is dominated by copepods, with seven

of the ten species with the highest average abundance at L4 belonging to this group. Diversity

varies throughout the year. In winter, most of the zooplankton sampled come from a fairly narrow

group of primarily crustacean taxa. In the summer the assemblage is much more diverse, with

abundance distributed more evenly through a wide range of taxa. Meroplanktonic larvae contribute

significantly to the assemblage at L4 at specific times of year, with cirripedes, echinoderm larvae

and bivalve larvae occurring in high numbers in spring, summer and autumn respectively. Also,

several gelatinous taxa, particularly siphonophores and ctenophores, can form the majority of the

sampled assemblage for short periods during summer.

A key strength of the L4 zooplankton time series is the weekly resolution, which has

allowed researchers to investigate the formation and timing of seasonal events (Atkinson et al.,

2015). In this thesis I have used the L4 time series in a similar manner to investigate population

level traits of zooplankton in chapters 3, 5, 6 and 7. As these data have been used in multiple

chapters, I have detailed the sampling protocol and method below to avoid repetition.

2.3.1 - L4 zooplankton time series sampling

Sampling at the L4 site consists of a pair of vertical hauls with a 200 µm WP2 zooplankton

net from 50 m to the surface (maximum depth 54m). The nets are retrieved at 20 cm s-1 and are
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immediately fixed in 4% formaldehyde solution in 0.2 µm filtered seawater (Maud et al., 2015).

Mesozooplankton from the formalin-preserved vertical net hauls are enumerated and identified by

microscopy. Two sub-samples of different size are analysed per sample. The smaller one is taken

with a Stempel pipette for the abundant taxa. Typical subsamples ranged from 1-10ml from 300 ml.

A second, larger aliquot is analysed for rarer and large taxa, typically 12.5%, 25% or 50% (Eloire et

al., 2010). Abundances across the two hauls were averaged and numbers expressed as

individuals per m3 allowing for a 95% net filtration efficiency (UNESCO, 1968). Some species are

enumerated further according to maturity stage, e.g. Calanus helgolandicus copepodites CI-CV

and Calanus helgolandicus adults. For the purposes of my analyses, these groups were combined

to yield a single value for each taxon at each time point. To estimate biomass of each zooplankton

taxon (mg C m-3) from numerical density (no. m-3), a total of 3780 individuals of the dominant taxa

from the formalin-preserved catches at L4 taken throughout 2014 and 2015 were measured. From

standard length measurements (e.g. cnidarian bell height or diameter, copepod prosome length),

length-carbon mass relationships from the literature were used to estimate carbon masses per

individual. The derived values were then averaged into seasons, namely spring (March-May),

summer (June-August), autumn (September-November) and winter (December to February) to

account for the high intraspecific variability in length observed at L4 (Atkinson et al., 2015). From

this, season-specific mean carbon masses per individual were derived, which were multiplied by

numerical densities to estimate biomass density (mg C m-3). Previously measured L4-specific

seasonal values of individual carbon biomass were used when available (e.g. Calanus

helgolandicus; Pond et al., 1996).
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CHAPTER 3 – Disentangling the counteracting effects of

water content and carbon mass on zooplankton growth

This chapter was published as the following reference and is appended at the end of this volume;
McConville, K., Atkinson, A., Fileman, E.S., Spicer, J.I. and Hirst, A.G., 2016. Disentangling
the counteracting effects of water content and carbon mass on zooplankton growth. Journal of
Plankton Research 39 246-256.
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3.1 - Introduction

Gelatinous zooplankton have been attracting increasing attention from scientists and the

popular press alike, and the current literature tends to emphasise the differences between

gelatinous taxa and other zooplankton (e.g. Richardson et al., 2009; Kiørboe et al., 2011; Gibbons

and Richardson, 2013). This chapter takes a different approach by investigating whether carbon

percentage can be treated as a continuous variable, and whether a relationship exists between

carbon percentage and growth rate. Based on a compilation of body composition data, Kiørboe

(2013) found that most zooplankton species are either gelatinous (carbon mass ~0.5% of wet

mass) or not gelatinous (5-10%), with comparatively few intermediates. Much recent research has

been directed toward comparing and contrasting gelatinous versus non-gelatinous zooplankton.

For example, compared to other planktonic animals, gelatinous zooplankton have higher carbon

mass-specific feeding rates (Hamner et al., 1975; Acuña, 2001; Acuña et al., 2011), lower

locomotion costs and higher specific growth rates (Hirst et al., 2003; Pitt et al., 2013). Indeed,

gelatinous taxa such as salps are amongst the fastest growing metazoans (Bone, 1998).

The use of a categorical approach to zooplankton body composition (i.e. gelatinous versus

non-gelatinous) contrasts with the treatment of carbon mass (Peters, 1983), which is used as a

continuous variable in many models of growth (Hansen et al., 1997; Gillooly et al., 2002; Hirst et al.

2003). However, the carbon percentage of zooplankton species also varies widely, even among

gelatinous taxa (Molina-Ramirez et al., 2015). A recent review suggested that water content was

second only to body size in determining key aspects of the biology of zooplankton (Andersen et al.,

2015b). So far, empirical models of zooplankton growth use equations that are specific to various

taxonomic groups (e.g. Hirst et al., 2003; Kiørboe and Hirst, 2014) and these equations have not

yet been unified. As carbon mass and carbon percentage are capable of varying independently, it

is important to consider them together in empirical models of zooplankton growth. Furthermore,

quantifying the relationship between growth rate and carbon percentage may help to explain how

carbon percentage functions as an evolutionary trait, and, for example, why there are gelatinous

representatives from six phyla found in the plankton.
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In this chapter, I have used both a meta-analyses approach and an in situ time series of

zooplankton abundance data from weekly sampling at the Plymouth L4 time series (detailed in

Chapter 2). The first step was to quantify the degree of variability in carbon percentage both in

“trait space” from the meta-analysis dataset and in a natural plankton assemblage, to gauge

whether it was appropriate to treat water content as a continuous variable. The second aim was to

investigate the degree of collinearity between carbon mass and carbon percentage, again both in a

meta-assemblage and in the L4 assemblage. Dependent on the outcome of these two objectives,

the third was to construct a model of zooplankton growth that combines carbon mass and carbon

percentage to provide a simplified prediction of growth for modellers and empiricists.

3.2 - Methods

3.2.1 - Carbon percentage data

Ratios of carbon mass to wet mass were combined from a series of recent compilations

(Kiørboe, 2013; Pitt et al., 2013; Molina-Ramirez et al., 2015). The amalgamated dataset with

sources is presented in Appendix I. Only concurrent measurements of carbon and wet mass of the

same individual were used to calculate carbon percentage.

The degree of tissue dilution of zooplankton taxa has been expressed previously as body

carbon content (Molina-Ramirez et al., 2015). However, to avoid confusion with carbon mass,

throughout my thesis it is referred to as “carbon percentage” (carbon mass as a percentage of wet

mass). The levels of taxonomic organisation used for comparison were selected based on

functional diversity and body form (e.g. phylum for Chaetognatha, but orders Cydippida and

Lobata).
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3.2.2 – Analysis of the zooplankton assemblage from the L4 site

The sampling, subsampling protocol and environment of the L4 time series are detailed in

section 2.3. Of the approximately 189 taxa recorded at L4, only 22 contributed more than 0.5% to

the total estimated biomass for all species. To examine how biomass was distributed across the

spectrum of carbon percentage, these taxa were assigned to log2 classes (0.1 - 0.2%, 0.2 – 0.4%,

0.4 – 0.8%, 0.8 – 1.6%, 1.6 – 3.2%, 3.2 – 6.4%, 6.4 – 12.8%, > 12.8%) using the carbon

percentage data in Appendix I. The distribution of carbon biomass in each carbon percentage

category across the seasons was then calculated.

3.2.3 - Growth rate data

Using the references from the appendices of Kiørboe and Hirst (2014) as a starting point,

zooplankton growth rate data were extracted from the original sources and augmented by

searching the literature (Appendix II). To improve comparability of source data I restricted the

meta-analysis to data from laboratory incubations with food available in high (assumed non-limiting)

concentrations. By using only data collected under these conditions I suggest that the

measurements are more directly comparable, with the observed patterns more likely to reflect the

intrinsic biology of the species than external factors.

Published growth rates are normally expressed either as increase in length or body mass

over time. When organism size was expressed as length, published length-mass regressions were

used to convert to body carbon mass (Hirst, 2012; Kiørboe and Hirst, 2014). To express growth

rates in the terms commonly used for zooplankton (as an exponential rate; see Hirst and Forster,

2013), the mass-specific growth rate, g (d-1) was determined as:

(eq. 2.1) g = (ln Mt – ln M0)/d

Mt is mass at time t, M0 is mass at the previous time point, and d is the time period between

the two measurements of mass (in days).
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Growth data were temperature-corrected to 15oC using a Q10 of 2.8 (following Hansen et al.,

1997; Kiørboe and Hirst, 2014). General Linear Models (GLMs) were constructed in R (R Core

Team, 2014) to test for relationships between growth rate, carbon percentage and carbon mass.

To determine whether there was collinearity between the predictor variables I examined the

condition indices for the variables in the model using the colldiag function in the perturb package in

R (Hendrickx, 2012). A condition index of greater than 30 is considered large (Belsley et al., 1980)

and suggests that the variable should be removed from the model.

When growth data were available for a species but carbon percentage values were not, the

latter was estimated using the mean value for the highest level of taxonomic relatedness available.

For instance, if composition values for a species were not available, then the composition values

for all other species within the genus were averaged and used as an estimate. The estimates were

typically at the genus level but no lower relatedness than family (38% estimated at family level,

primarily for copepods).

3.2.4 - Growth rate analysis

Four analyses were performed; the first two were based on mean and maximum growth

rates for all zooplankton taxa in the meta-analysis dataset, the second two as above but for the

classical gelatinous taxa only (Cnidaria, Ctenophora and Thaliacea). Maximum growth values were

defined as the highest temperature-adjusted growth rate value available for each species. Issues

of non-independence between data were avoided by using single growth rate values per species

per study. For illustrative purposes only (i.e. the plots in Figure 3.4), I adjusted all growth rates to a

fixed body carbon mass of 1mg C after correcting to 15oC. This mass correction was performed by

assuming that log10 mass-specific growth (g) scales against log10 mass with a slope of -0.25

(Brown et al., 2004).
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3.2.5 – Secondary production

The unified growth equations described in section 3.2.3 were used to simplify and improve

estimates of secondary production. Two growth models were compared to investigate the effect of

inclusion of carbon percentage on estimates of secondary production. The model of growth rate

including both carbon mass and carbon percentage developed in this chapter was compared with a

model of planktonic crustacean growth rates from Kiørboe and Hirst (2014).

3.3 - Results

3.3.1 - Variability in carbon percentage across the zooplankton

The range in body volume for two animals of equal carbon mass but at either end of the

carbon percentage spectrum is demonstrated in Figure 3.1. For the compiled dataset, the range in

carbon percentage extended over four orders of magnitude in zooplankton, from 0.01% in the

lobate ctenophore, Bathycyroe fosteri, to 19.02% in the copepod, Calanus hyperboreus (Figure 3.1,

3.2a, Appendix I).
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Figure 3.1 - Comparison of the relative carbon (black) and wet masses (grey) of Calanus
hyperboreus (left, carbon percentage = 19.02%) and Bathycyroe fosteri (right, carbon percentage =
0.01%). The relative area of each shade is scaled as volume so the silhouettes are representative
of true size.
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The intervals between adjacent ranked species were small relative to the range covered

(Figure 3.2a), suggesting that water content could be considered as a continuous variable.

Figure 3.2 - (a) Zooplankton species ranked according to their carbon percentage (CM%WM; log10
scale), each horizontal bar represents a single species. Colours indicate taxonomic groups as
detailed in the legend. (b) Zooplankton taxonomic groups ranked according to their carbon mass
(as % of wet mass; log10 scale). Boxes indicate median, lower and upper quartiles with whiskers
showing the range. (Vertical lines at 0.5 and 5 CM%WM represent the composition of the
gelatinous and non-gelatinous taxa defined by Kiørboe, 2013).
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The largest carbon percentage interval between species coincided with the shift from the

classic gelatinous taxa to other zooplankton (i.e. from Thaliacea to Chaetognatha). However, this

difference between species constituted a relatively small fraction of the total range (6.8%). In

addition, there was an overlap of classic gelatinous and non-gelatinous groups. For example, some

chaetognaths were within the traditional gelatinous range (1.27% and 1.35% for Pseudosagitta lyra

(as P. scrippsae) and Pseudosagitta (as Sagitta) gazellae respectively), whereas one tunicate had

a carbon percentage which lay within the non-gelatinous range (3.87% for Doliolum denticulatum).

This overlap of taxonomic groups was extensive across the spectrum of water content, as can be

seen by the mixing of colour across Figure 3.2a. This was particularly the case among the

Ctenophora and Thaliacea, with the range of both taxa approaching two orders of magnitude in

carbon percentage, corresponding to a 100-fold difference in body volume at the same carbon

mass.

The wide variation in body carbon percentage observed at a species level in Figure 3.2a is

also summarised at the broader taxon level in Figure 3.2b. Median values for groups loosely

cluster into gelatinous and non-gelatinous taxa following the bimodal distribution of species

suggested by Kiørboe (Kiørboe, 2013). The ranges of all adjacent taxa (excluding lobate

ctenophores) overlapped, with Thaliacea and Chaetognatha bridging the gap between the classical

gelatinous and non-gelatinous taxa. The variability within groups was greater for gelatinous taxa,

with the greatest range in the scyphomedusae, closely followed by the thaliaceans. The gelatinous

taxa sort into their respective phyla when ranked (i.e. Lobata, Nuda, Cydippida for the Ctenophora,

then Hydromedusae and Scyphomedusae for Cnidaria) suggesting that taxa within phyla are on

average more similar to each other than with other phyla. In the natural assemblage sampled at

the Plymouth L4 site (Figure 3.3) there is an alternative picture with biomass distributed bimodally

along the spectrum of carbon percentage.
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Figure 3.3 - Distribution of carbon biomass (mg C m-3) between log2 carbon percentage categories
through spring, summer, autumn and winter (2009-2015) at the L4 sampling site, Western Channel
Observatory, Plymouth. The same colour coding of taxa is used as in Figure 3.1 – see legend. * -
Biomass value for the category 0.4 – 0.8 exceeds the scale in summer (crudely estimated at 34 mg
C m-3) as a result of 7 high abundance observations of Beroe spp. (of total 318 time-points). Upper
limit of biomass scale in winter is 5 mg C m-3.

The biomass was primarily concentrated in the categories that are either highly gelatinous

(carbon mass 0.1 – 0. 8% of wet mass) or non-gelatinous (6.4 - > 12.8%). However, there is

considerable variability within the carbon percentage categories, as some gelatinous taxa are as

much as 8 times larger in wet mass for the same carbon mass as others. The biomass in the

intermediate categories (0.8 – 1.6% and 1.6 – 3.2%) was very low and below our threshold for

inclusion. This area of the spectrum is populated by thaliaceans and large rhizostomid

scyphomedusae, which are not commonly recorded at L4 and may be poorly sampled by the

0.57m mouth diameter (200µm mesh) nets used. Gelatinous taxa comprised a greater proportion

of biomass in summer than the other seasons. In winter, chaetognaths (carbon mass 3.56% of wet

mass) have similar total biomass to the dominant copepods. There is also a broad trend of

increasing carbon percentage through the year within the gelatinous taxa. In spring, the cydippids

(the most gelatinous group frequently encountered at L4) are dominant, followed by Nuda (Beroe)

in summer and finally hydromedusae and siphonophores in autumn.

3.3.2 - Relationship between carbon mass and carbon percentage

Based on the meta-analysis datasets there was a negative relationship between carbon

mass and carbon percentage (Figure 3.4).
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Figure 3.4 – Log10 carbon percentage (CM%WM) as a function of log10 carbon mass (mg) for the
meta-analysis dataset (log10 carbon percentage = - 0.17 * log10 carbon mass – 0.3, p = 0.0003, R2

= 0.12, df = 108). Taxonomic groups are coloured as indicated in the legends.

While the more gelatinous taxa tended to have higher carbon mass there was considerable

variability, with some organisms of similar carbon mass differing 100-fold in carbon percentage

(Figure 3.4). To ensure that collinearity was not influencing the growth model the condition indices

for the variables were inspected. The highest condition index observed was 3.05, lower than the

threshold of 30 suggested by Belsley et al. (1980) confirming that carbon mass and carbon

percentage can be used in combination in models of zooplankton growth.

3.3.3 - Relationship between carbon percentage and growth rate

I first conducted GLMs on the subset of data comprising the classical gelatinous taxa alone

(Table 3.1). These showed that mean growth rate declined significantly with increasing mass and
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increasing body carbon percentage. The GLMs on the whole dataset established that log10 mass-

specific mean and maximum growth rate were significantly related with both log10 carbon mass and

log10 body carbon percentage (Figure 3.5, Table 3.1). As expected, there was a negative

relationship between log10 mass-specific growth rate (g), and log10 carbon mass, in line with the

results of Kiørboe and Hirst (2014). In the analyses of all zooplankton taxa, mean and maximum

growth rate decreased with increasing carbon mass and carbon percentage.

In all analyses, the addition of body carbon percentage to models of growth based on

carbon mass alone increased the explanatory power (Table 3.2). The second order Akaike criterion,

AICc, (Burnham and Anderson, 2002) was lower in the model including water content in all

analyses, supporting the inclusion of this factor in analyses of zooplankton growth. In the maximum

analysis including all taxa, Akaike weights (ωi) were approximately 10 times higher in the models

including body carbon percentage (mass ωi = 0.08, mass + carbon percentage ωi = 0.92). This

suggests that these models performed significantly better than models based on mass alone

(Royall, 1997). A similar pattern was observed in the analysis of maximum growth rates of the

gelatinous taxa however it was not observed for mean growth rates (mass ωi = 0.02, mass + GI ωi

= 0.98).
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Figure 3.5 – Log10 specific growth rate, g (d-1) as a function of log10 carbon percentage (CM%WM).
Growth values were temperature-adjusted to 15oC then mass adjusted to 1 mg C. (a) mean mass-
specific growth rate values for each species in each study and (b) maximum specific growth rate
values for each species.
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Group Factor df p Slope Intercept Adj R2

All zooplankton Mean growth

rate,g

log10 carbon mass 58 <0.0001 -0.17 -1.12 0.43

log10 carbon percentage 0.036 -0.18

max growth rate,g log10 carbon mass 42 <0.0001 -0.16 -0.81 0.31

log10 carbon percentage 0.013 -0.16

Gelatinous

taxa only

mean growth

rate,g

log10 carbon mass 22 0.027 -0.19 -1.18 0.33

log10 carbon percentage 0.038 -0.17

max growth rate,g log10 carbon mass 13 0.011 -0.16 -1.15 0.42

log10 carbon percentage 0.018 -0.72

Table 3.1 - General linear models predicting log10 mean specific and log10maximum specific
growth rate, g (d-1), as a function of both log10 carbon mass (mg) and log10 body carbon
percentage (100*(CM/WM)). All models pertain to growth rate data that were first Q10-
adjusted to 15oC.
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Table 3.2 - Changes to measures of explanatory power of models of growth based solely on
carbon mass when body carbon percentage (C%) was added as a factor. AICc is the
corrected Akaike information criterion, Δi is the AIC difference, and ωi is the Akaike weight.
Models with Akaike weight values 10 times greater than that of the other models being
compared are considered statistically significant as optimal models (mass + GI for mean and
max all zooplankton and max gelatinous taxa only). All models pertain to growth data that
were first Q10-adjusted to T = 15oC.

3.3.4 – Secondary production

The comparison between secondary production estimates based on carbon mass

and carbon percentage and carbon mass alone are shown in Figure 3.6.

Group g R2 AICc Δi ωi

Mass Mass + C% Mass Mass + C% Mass Mass + C%

All

zooplankton

Mean 0.39 0.43 18.63 16.67 2.47 0.19 0.81

max 0.22 0.31 21.99 17.57 4.42 0.076 0.92

Gelatinous

taxa only

mean 0.33 0.33 18.51 19.96 1.44 0.54 0.46

max 0.09 0.42 21.55 16.26 5.29 0.019 0.98
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Figure 3.6 – Illustrative estimates of maximum secondary production at the L4 sampling site at weekly resolution between 05/01/2009 and
15/12/2012. Growth rates were estimated on the basis of carbon mass alone (log10 carbon specific growth rate (mg C mg C-1 h-1) = - 2.82 - 0.31
log10 carbon mass(mg)) using the equation for crustaceans from Kiørboe and Hirst (2014) and carbon mass alongside carbon percentage
(log10 specific growth rate, g, ((d-1) - 0.81 - 0.16 log10 carbon mass (mg) - 0.16 log10 carbon percentage ((CM/WM)*100) using the maximum
growth rate equation for all zooplankton shown in Table 3.1. Growth rates were temperature adjusted using a Q10 of 2.8 (Hansen et al., 1997).
Secondary production for each species was estimated as the growth in carbon mass per individual, multiplied by abundance. Species
secondary production was summed across species at each time point to estimate total secondary production.

04/01/2010 06/01/2011 09/01/2012 15/12/2013



40

3.5 - Discussion

This study provides support for: body carbon percentage being a continuous trait, for a

negative relationship between body carbon percentage and growth rate, and for considerable

increases in model predictive power as a result of inclusion of this trait. Below I discuss the

implications of each of these findings in turn.

Kiørboe (2013) demonstrated that if zooplankton are arranged in a frequency distribution

based on body composition, most taxa are either gelatinous (carbon mass is ~0.5% of wet mass)

or non-gelatinous (~5-10%), with little overlap. At first glance the results would appear to contradict

this, since I found a fairly continuous distribution of carbon percentage. However, this does not

conflict with the findings of Kiørboe (2013) as while most species fall into one of these two groups,

there is considerable variability in carbon percentage within each group and there are

representatives across much of this spectrum (Figure 3.2). The distribution of zooplankton biomass

at L4 supports both of these views (Figure 3.3). Biomass is clustered at either end of the spectrum

as described previously, and this could suggest that the fitness landscape for this trait favours

extremes. However, at either end of the spectrum there is considerable variability (as noted for

medusae, ctenophores and tunicates in Molina Ramirez et al., 2015). The traditional gelatinous

group alone spans an 8-fold range in carbon percentage, with implications for growth rate. For

example, there is a trend of increasing carbon percentage among the gelatinous zooplankton

through the year, with cydippids being replaced by beroids in summer and finally by hydromedusae

and siphonophores in autumn (Hosia and Bamstedt, 2007)

In the meta-analysis compilation, the largest interval was between taxa typically considered

as gelatinous and intermediate, between the pelagic tunicate, Thalia (as Salpa) democratica (1.6

% body carbon percentage) and a chaetognath, Eukrohnia hamata (2.7 % body carbon percentage.

Molina-Ramirez et al. (2015) highlighted that considerable variation in carbon percentage existed

even within the classic gelatinous taxa (Cnidaria, Ctenophora and Tunicata). My results are in
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agreement, albeit with even higher degree of variability (350-fold). Taken together, the relatively

small interval between values for gelatinous and non-gelatinous species and the high variability

observed within the gelatinous taxa suggest that growth models can indeed incorporate carbon

percentage as a continuous trait.

When log10mass-specific growth rate was regressed against log10 body carbon percentage

as a continuous variable, a negative relationship was observed in all analyses, though the variance

was variable. The relationship had the highest adjusted R2 when calculated using mean growth

rate of all zooplankton taxa and the adjusted R2 value increased in all analyses when carbon

percentage was added. Crucially, the pattern persisted when considering the gelatinous taxa

alone (Table 3.2). The existence of the relationship among the gelatinous taxa alone is important

as this demonstrates that the relationship is not due to a categorical difference between gelatinous

organisms and non-gelatinous organisms.

One potential mechanism that could explain the relationship between body carbon

percentage and growth rate is enhanced feeding rate (Acuña et al., 2011). These authors

suggested that the large dilute bodies of gelatinous zooplankton facilitate higher carbon-specific

feeding rates than other zooplankton taxa of the same carbon mass. If this increased feeding rate

drives faster growth, then this might explain the relationship of increasing growth rate with

decreasing carbon percentage. As many gelatinous taxa are filter or ambush feeders that rely on

capture surfaces to feed, assuming that feeding rate scales with surface area, then we may expect

the scaling exponent between surface area and body carbon percentage to match the exponent for

growth rate and body carbon percentage. To investigate this, I used a simple geometric calculation.

Assuming isomorphic growth, surface area (SA) scales with body volume with a power of 0.67. By

altering carbon percentage for a fixed amount of body carbon, SA then scales with carbon

percentage with a power of -0.67. Hence, with an assumption that growth rate is a fixed proportion

of feeding rate, this would give the same slope of -0.67 for log10 mass-specific growth versus log10
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carbon percentage (Table 3.1). The exponents that I determined empirically across the various

zooplankton taxa are less steeply negative than -0.67 (at -0.18 and -0.16 for mean and maximum

respectively), i.e. with decreasing carbon percentage, organisms increase their growth rate less

rapidly than these surface considerations would predict. This could indicate a potential feeding

inefficiency associated with decreasing carbon percentage, or that factors additional to surface

area may also be important.

In common with Ikeda (2014), I found that species with larger total carbon masses also

tended to be more watery. Since high carbon masses and water content are both associated with

high growth rates, the effects of carbon mass and carbon percentage tend to counteract,

underscoring the need to include these variables together in order to better predict growth. Molina-

Ramirez et al. (2015) found a similar result for tunicates but found that body carbon percentage

was invariant with increasing mass for cnidarians and ctenophores. The authors suggested that

this might be due to differences between internal filter feeding in tunicates and external ambush or

cruise feeding in the other groups. It has been suggested that feeding modes decrease in

efficiency with increasing volume (Kiørboe et al., 2011), so high water content may help to mitigate

this decrease in efficiency and maintain relatively higher carbon specific feeding rate at large

carbon masses. This assertion is supported by the findings of Acuña et al. (2011), suggesting that

gelatinous plankton had higher carbon-specific feeding rates than other zooplankton of a similar

carbon mass.

While the increase in capture surface area and associated feeding and growth rates is one

potential advantage of the gelatinous body form, there are other implications. There are potential

negative implications such as limited swimming speed and escape responses. While medusae

have potential defences in the form of nematocysts, many gelatinous taxa such as ctenophores

and thaliaceans do not, and may have limited ability to escape from potential predators as a result

of their large dilute bodies (Acuña, et al., 2011). Understanding why some taxa are gelatinous is
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not always straightforward. The most gelatinous mollusc in this analysis is Clione limacina, a

gymnosome predator that feeds almost exclusively on Limacina helicina. Clione does not rely on

large capture surfaces or on generating a feeding current as it ambushes individual, relatively large

prey items (Lalli and Gilmer, 1989). In this case, low carbon percentage does not appear to be a

derived trait to increase body volume relative to carbon for feeding, suggesting that this may not be

the only driver of low carbon percentage in zooplankton. It has been suggested that potential other

causes include physical or ecological factors such as transparency to impair visual predation

(Hamner et al., 1975) or the efficiency of neutral buoyancy (Kiørboe, 2013). Together these factors

may help to explain why semi-gelatinous bodies are observed in at least six major planktonic phyla

(Cnidaria, Ctenophora, Chordata, Annelida, Chaetognatha, Mollusca, see Appendix I).

The newly established relationship between carbon percentage and growth rate was

applied to improve estimates of secondary production in Figure 3.6. The addition of carbon

percentage to models of secondary production had a significant effect on the outputs. Inclusion of

carbon percentage increased estimates of secondary production at all time points. This was

particularly evident in summer when a range of gelatinous and semi-gelatinous taxa co-occurred

with the crustaceans. The difference between the two estimates was negatively related to carbon

percentage (df = 158, p < 0.0001). This is logical as when the average carbon percentage is lower,

the carbon percentage term will have a greater effect on the estimate and the estimates will differ

further.

To make production estimates including the effects of carbon percentage would normally

require dividing into different groups. For instance, other studies have presented 11 different

growth equations for specific zooplankton groups (Kiørboe and Hirst, 2014). This can be useful for

modelling the growth rate of a specific taxon; however, when attempting to represent the growth of

a full zooplankton assemblage dividing into these constituent groups increases model complexity

and increases uncertainty for important groups poorly served with data, such as siphonophores,

chaetognaths and meroplanktonic larvae. Conversely, if a unified model is used that estimates
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growth for all zooplankton on the basis of mass alone, the considerable effects of carbon

percentage will be overlooked (Figure 3.6). Adding carbon percentage to the growth model thus

represents a solution; the additional trait information is now relatively easily derivable, and can be

incorporated into a single equation that substantially increases the explanatopry power of growth

rate.

3.6 - Conclusions

Body size is often described as a master-trait, and is frequently used as the sole intrinsic

variable in empirical and simulation models involving zooplankton growth (Moloney and Field, 1991;

Kiørboe and Hirst, 2014; Anderson et al., 2015a). But what do we mean by “body size”? Carbon

mass is often used as the unit for size, but both my meta-analysis and the real assemblage data

show that carbon percentage also varies greatly. It may even vary negatively with carbon mass,

levering an opposing effect on growth. I argue that as carbon mass and carbon percentage are

both intrinsic factors that influence energy budgets, then we should disentangle their separate

effects in a unified growth model. By adding carbon percentage to models of growth based on

carbon mass alone, we substantially increased their explanatory power, with smaller body masses

and lower body carbon percentages leading to higher specific growth rates. Building on the work of

previous publications (Kiørboe, 2013; Pitt et al., 2013; Molina-Ramirez et al., 2015), I provide a

carbon percentage dataset in Appendix I. By using these source data alongside carbon masses,

the maximum growth rate equation in Table 3.1 may then be used as a starting point to estimate

growth rates attainable by zooplankton.

Alongside the “size” based simplifications used for modelling, there has also been an

increase in “trait-based” modelling in which categorical variables or functional groups are allowed

to vary continuously. A purpose of this chapter is to allow carbon percentage also to be used as a

continuous trait; to facilitate its inclusion alongside carbon mass and other traits such as feeding

mode (Litchman, 2013; Andersen et al. 2015a; Hébert et al., 2017). Since I found that growth rate
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depended on carbon percentage even among the gelatinous taxa alone, I suggest that considering

and modelling carbon percentage as a continuous trait will reveal the ecological and evolutionary

factors that influence the water content of zooplankton.
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CHAPTER 4 – Intraspecific effects of variable carbon

percentage through ontogenetic development:

morphometrics, feeding and growth of Aurelia aurita

ephyrae
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4.1 - Introduction

Carbon percentage (carbon mass as a percentage of wet mass) can affect the biology of

zooplankton, even within the gelatinous taxa alone (Chapter 3). In Chapter 3, a negative

relationship was found between carbon percentage and growth rate of zooplankton, suggesting

that more gelatinous taxa have higher growth rates (as predicted in Chapter 2). The ecological

implications of this relationship are numerous, as variability in this trait occurs across different

phylogenetic scales. Carbon percentage varies over four orders of magnitude across the

zooplankton as a whole, and congeneric species can differ by as much as an order of magnitude

(Kiørboe, 2013).

Despite this interspecific variability, studies have suggested that there is limited intraspecific

variability in carbon percentage, such that species-specific values are reasonable approximations

(Kiørboe, 2013; Molina-Ramirez et al., 2015). However, these studies focussed almost exclusively

on adult zooplankton, not investigating early ontogeny. Adults of many species of zooplankton are

more ecologically and structurally different from their own larvae than from adults of other species.

For instance, scyphomedusae have a metagenetic life cycle, with separate planktonic sexual

(medusae) and benthic asexual phases (polyp) (Arai, 2012). Polyps are structurally and

ecologically distinct from medusa of the same species, and therefore might also differ in carbon

percentage. During the life cycle of most scyphozoan jellyfish, the polyps strobilate and form larval

jellyfish called ephyrae. As the ephyrae develop they gradually take on the characteristics of the

planktonic medusae stage (Arai, 2012), and therefore are might be expected to change from the

carbon percentage of the polyp to that of the medusa.

This chapter investigated whether ephyrae changed in carbon percentage through

development, and how this change influenced growth and ingestion rates. The interspecific results

in Chapter 3 suggested that taxa with larger bodies tended to be more gelatinous, so it was

predicted that carbon percentage will decrease with increasing diameter as the ephyrae develop. If
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the range of carbon percentage observed is of a similar magnitude to that of the interspecific study

(0.07 to 0.87%, Chapter 3) then growth rate may be affected.

If a relationship exists between carbon mass and carbon percentage, then demarking

between the effects of these two variables could be difficult. One way to investigate the effects is to

compare the values and exponents with studies on other zooplankton species through

development. Hirst and Forster (2013) found that the intraspecific growth rate (mg C d-1) of many

invertebrates can be described as an exponential relationship with a body mass scaling exponent

of b = 1. If the general growth exponent is approximately 1, then the exponent of the ephyrae is

expected to be greater than this as decreasing carbon percentage is expected to increase growth

rate.

In addition to investigating how variability in carbon percentage through development

affected growth rate, this chapter also aimed to understand how ingestion rate is affected.

Ingestion rate is a key metabolic factor that is expected to be influenced by carbon percentage

(Acuña et al., 2011). This study by Acuña demonstrated that the carbon specific ingestion rate of

gelatinous zooplankton is higher than that of other zooplankton as increased wet mass leads to

higher effective body volumes and therefore higher ingestion rates. However, specific feeding

modes decrease in efficiency with increasing body volume (Kiørboe, 2011). Therefore, I

hypothesised that carbon specific ingestion rates would be similar to comparable zooplankton at

low carbon masses, but would be higher at higher carbon masses. This effect could manifest as

the ephyrae in this chapter having a higher exponent for carbon mass specific ingestion than other

comparable zooplankton.

Taking these points together, carbon percentage was predicted to decrease through

ontogeny in Aurelia aurita ephyrae. This was predicted to increase the scaling exponents of carbon
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specific growth and ingestion rates of the ephyrae relative to other zooplankton. These hypotheses

were tested by incubating Aurelia aurita ephyrae and measuring diameter, carbon mass, wet mass,

growth rate and ingestion rate. These values were then compared to expected exponents from

meta-analyses and measured exponents from other experimental studies.

4.2 - Methods

This investigation comprised of 55 incubations of between three and five ephyrae (total

ephyrae = 228) between 14/10/15 and 16/12/15. The number of ephyrae incubated in each bottle

varied depending on their diameter and the availability of different size classes. The incubations

had a duration of 24h as this period was long enough to generate a significant growth signal, but

not to fully deplete the available food. These short term incubations minimised the potential for

deleterious container effects, as the organisms were kept in the bottles for 24h only, rather than

culturing them under these conditions for several weeks.

Performing the experiment in full on separate batches of relatively few ephyrae had a range

of benefits. Firstly, this design avoided the statistical and practical issues of repeatedly sampling

from a population, as all organisms were measured only before and immediately following

incubation. Any problem associated with the incubation vessel, such as contamination or loss of

sample, was more likely to be limited to a single incubation. This design also facilitated

representative sampling across the size spectrum investigated, as the ephyrae that went into each

incubation were individually selected on the basis of diameter.

4.2.1 - Experiment and measurement

Aurelia aurita polyps provided by the Marine Biology and Ecology Research Centre

(Plymouth University) were kept at 15oC in a 12 hr light/dark cycle in 0.22µm filtered sea water
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(collected from the L4 sampling site, Chapter 2). Strobilation took place naturally over several

months, with the ephyrae developing in aerated plastic buckets (vol. = 15 l) with full water changes

every two days.

For each experiment, between 22 and 25 ephyrae were selected and photographed under

low magnification (Olympus SZX16, Martin Company MDSLR, Canon EOS 550D, 13x

magnification). The inter-rhophalial diameter (IRD, distance between rhopalia (cnidarian sensory

organs found between the lappet tips) on opposite sides of the animal (Figure 4.1), was obtained

from each image using appropriate computer software (Image J). As all ephyrae were the same

distance from the lens, the number of pixels corresponded to length. A reference picture of a ruler

was taken to convert the values from pixels in mm (IRD varied between 1.2 and 9.1 mm). It was

not possible to match up the identities of the ephyrae before and after the incubation. Therefore, to

get the best possible estimates of individual growth, the ephyrae were ranked based on IRD and

organised into groups of between three and five individuals (depending on diameter). Ephyrae of a

similar diameter were pooled to decrease the standard deviation in diameter of each bottle when

measured after incubation.
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Figure 4.1 – Photomicrograph of an Aurelia aurita ephyra; the inter-rhopalial diameter is indicated
by the white line superimposed on the image (IRD = 4.8mm).

Glass bottles of either 250 or 500ml capacity (depending on the diameter of the ephyrae)

were filled with 0.22µm filtered seawater (35 psu). The volume of the incubation bottles was kept

greater than 10,000 times the volume of the ephyrae to help reduce container effects. Newly

hatched Artemia salina nauplii (Zebrafish Management Ltd, UK) were added to a concentration of

400 individuals per litre. The ephyrae were added to the bottles (with the minimum possible

airspace) then incubated on a plankton wheel rotating at 4 rpm, at 15oC in dark conditions for 24 h.

I ran controls to estimate nauplii mortality in incubations without predators and found that mortality

was minimal (98% of nauplii recovered from three incubations of 24 h).

Following the incubation, the ephyrae and remaining Artemia nauplii were collected on a 50

µm sieve. The Artemia nauplii were fixed in acid Lugol’s solution (2% w/v, to facilitate enumeration)

and counted under a dissecting microscope (Wild Heerbrugg, 2x magnification). The ephyrae were

photographed and the IRD was measured again as before. The ephyrae were transferred to

aluminium foil pieces and surface water was removed by blotting. The wet mass was determined

immediately using a microbalance (Sartorius Digital Microbalance). This immediate measurement
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of wet mass was chosen because on removal from the incubation and blotting, water was

continually lost from the ephyrae at different rates according to their volume, preventing proper

standardisation. After weighing, the samples on the foil pieces were transferred to a drying oven

(Binder Drying Oven) set at 60oC (a sufficient temperature to remove body water, Lucas et al.,

2011) and dried to constant weight (minimum 2 days). Carbon and nitrogen mass was measured

using an Eager 200 Flash Elemental Analyser 1112 Series (CHN). The CHN was calibrated using

acetanilide and all calibrations were robust (minimum R2= 0.993). The measured values

approached but never exceeded the thresholds for accurate measurement for the CHN (minimum

50 µg C).

4.2.2 - Numerical methods

As measuring carbon and wet masses required sacrificing the samples, it was not possible

to measure mass before the growth incubations. Therefore, initial carbon and wet masses (mg)

were estimated from diameter (mm) using the following conversions derived from the data:

(eq. 4.1) log10 carbon mass = 1.37 * log10 diameter - 2.09 (p<0.0001, R2 = 0.81, df = 190)

(eq. 4.2) log10 wet mass = 2.3 * log10 diameter - 0.35 (p<0.0001, R2 = 0.94, df = 190)

Growth rate (mg h-1) was defined as (masst – masst0) /t, and mass specific growth rate (mg

mg -1 h-1) as (masst – masst0)/massmean /t. Specific growth rate g (d-1) was also calculated for

comparison to other studies as (ln masst – ln masst0)/t. The number of Artemia ingested was

converted into carbon mass terms (1 Artemia nauplius = 4.64 µg C; Weltzein et al., 2000). Mass

specific ingestion rates (µg C µg-1 body C d-1) were calculated as the difference in total mass of

Artemia between the start and end of the experiment, divided by the mean estimated total mass of

ephyae between the start and end of incubation. Gross growth efficiency was calculated as the

change in mass of the ephyrae divided by the total mass of Artemia that were eaten.
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4.3 – Results

4.3.1 - Morphometrics

Carbon mass of the ephyrae ranged between 0.01 mg and 0.19 mg and wet mass between

0.6 mg and 81.9 mg. Ephyrae increased in wet mass exponentially with increasing carbon mass

(Figure 4.2), decreasing in carbon percentage from 2.36% to 0.1%. Diameter and carbon

percentage were negatively related (Figure 4.3) and there was a significant positive relationship

between carbon mass and nitrogen mass (Figure 4.4). The mean C:N mass ratio was 4.34, and

this ratio remained constant as the ephyrae grew and became more dilute.

Figure 4.2 – Wet mass (mg) as a function of carbon mass (mg) in Aurelia aurita ephyrae. Axes are
on a logarithmic scale (base 10), each point represents an individual ephyra (df = 190).
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Figure 4.3 – Carbon mass as a percentage of wet mass, as a function of diameter (mm) in Aurelia
aurita ephyrae. Axes are on a logarithmic scale (base 10), each point represents an individual
ephyra (df = 190).

Figure 4.4 – Nitrogen mass (mg) as a function of carbon mass (mg) in Aurelia aurita ephyrae. Each
point represents an individual ephyra (df = 190).
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4.3.2 – Ingestion rate

Ingestion rate varied between 4.6 and 91.5 µg C d-1 (Figure 4.5) and was positively related

to diameter (Figure 4.6). The scaling exponent for ingestion rate with increasing carbon mass was

0.6 (Figure 4.5) and with increasing wet mass was 0.33. Ingestion rate decreased with increasing

carbon percentage.

Figure 4.5 – Ingestion rate (µg C ind-1 d-1) of Aurelia aurita ephyrae as a function of carbon mass
(mg, log10y = 0.6 * log10x + 2.04, R2 = 0.58, p < 0.0001), wet mass (mg, log10y = 0.33 * log10x –
2.07, R2 = 0.4, p < 0.0001) and carbon percentage (log10y = - 0.35 * log10x + 1.12, R2 = 0.07, p =
0.047). Axes are on a logarithmic scale (base 10), each point represents an individual ephyra (df =
41).
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Figure 4.6 – Ingestion rate (ug C ind-1 d-1) as a function of diameter (mm) in Aurelia aurita ephyrae,
(df = 55).

4.3.3 - Growth rate

Growth rate varied between 0.018 mg C and -0.024 mg C d-1 (negative growth rate

accounted for 12% of the data). The carbon mass scaling exponent for carbon mass growth (mg C

h-1) was 0.5 (Figure 4.7A) and the wet mass scaling exponent for wet mass growth was 0.62

(Figure 4.7D). There was no relationship (Figure 4.7G) between carbon percentage and carbon

mass growth, however there was a positive relationship between carbon percentage and both

carbon specific growth rate (Figure 4.7H) and specific growth rate, g (Figure 4.7I). Growth

efficiency (for positive growth) varied between 0.03% and 61% with no relationship with carbon

mass (mean = 21%, p = 0.76, R2 = 0.002, df = 40).
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Figure 4.7 – Growth rate as a function of mass in Aurelia aurita ephyrae. Axes are on a logarithmic
scale (base 10), each point represents one replicate bottle (n=55); effect of carbon mass (mg) on
carbon mass growth rate (mg C h-1, A, log10y = 0.49 * log10x – 0.14, R2 = 0.2, p = 0.0028), carbon
mass specific growth rate (mg C mg C h-1, B, log10y = - 0.51 * log10x – 0.14, R2 = 0.21, p = 0.0022),
specific growth rate, g (d-1, C, log10y = - 0.36 * log10x – 1.54, R2 = 0.08, p = 0.04 ), effect of wet
mass (mg) on wet mass growth rate (mg WM h-1, D, log10y = 0.62 * log10x - 1.07, R2 = 0.46, p <
0.0001), wet mass specific growth rate (mg WM mg WM h-1, E, log10y = - 0.3 * log10x + 1.07, R2 =
0.23, p = 0.0013), specific growth rate, g (d-1, F, log10y = - 0.34 * log10x – 0.53, R2 = 0.2, p = 0.0028)
and effect of carbon percentage on carbon mass growth rate (mg C h-1, G, log10y = – 0.31* log10x -
0.9, R2 = 0.01, p = 0.23), carbon mass specific growth rate (mg C mg C h-1, H, log10y = 0.59 *
log10x + 0.7, R2 = 0.12, p = 0.02) and specific growth rate, g (d-1, I, log10y = 0.77 * log10x - 0.87, R2

= 0.21, p = 0.002).
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4.3.3 - Implications of changing carbon percentage for ingestion and growth rates

An alternative method to investigate the effects of carbon percentage is to determine how

the energy budget would differ if the ephyrae tested did not dilute though ontogeny. Using the

relationships between diameter, carbon mass and wet mass it was possible to calculate how an

average ephyra changes in morphometrics through development. The same relationships were

used to model a similar organism that increases in carbon mass over the range investigated, but

was fixed at the starting carbon percentage. By comparing these two idealised animals, it was

possible to ask how much higher in wet mass the diluting ephyra was, and how ingestion rate was

affected. The difference in wet mass between these two treatments is displayed in Figure 4.8;

Figure 4.8 – Effect of carbon mass (mg) on wet mass (mg) of Aurelia aurita ephyrae. Values are
modelled based on calculated carbon percentage across the range of diameters measured in this
study. In the gelatinous treatment, carbon percentage is allowed to vary following the relationship
shown in Figure 4.2, in the non-gelatinous treatment the carbon percentage is fixed at the starting
value.

When the theoretical carbon percentage was calculated using morphometric relationships,

the diluting ephyra had double the final wet mass at the maximum carbon mass (Figure 4.8).
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Acuña (2001) has used a similar approach to investigate how the carbon percentage of Pegea

confoederata allows this salp to feed sufficiently to survive the oligotrophic conditions they inhabit.

Assuming that wet mass was the primary factor driving ingestion, as suggested by Acuña et al.

(2011), then the morphometric model can be extended using the relationships above to predict

how ingestion rate was be affected. This is a reasonable assumption because in gelatinous

zooplankton, wet mass is the most effective proxy for physical body size (volume) i.e. the physical

space that is taken up by the animal. In the case of these ephyrae and many other gelatinous

zooplankton, feeding is a function of encounter rate, and therefore is highly dependent on body

volume. The scaling of ingestion rate in these ephyrae appears to be related to a length dimension

(linear scaling with diameter) and therefore wet mass (a direct representation of volume, L3) seems

an appropriate explanatory variable.

An alternative hypothesis for what constrains maximum ingestion rate of an animal is

focussed not on food capture, but food digestion (Wirtz, 2013). This hypothesis suggests that

digestion rate is a function of digestive surface area, and assuming that both the diluting and non-

diluting animals are geometrically similar, this too will scale with wet mass. The second assumption

of the model is that changing the carbon percentage of the ephyrae would not influence the scaling

of ingestion. It is plausible that the undiluted model ephyrae may swim faster as a result of having

higher amounts of muscular tissue relative to their total body volume. However, the results of

Acuña et al. (2011) suggested that gelatinous zooplankton have higher carbon specific feeding

rates than other more concentrated zooplankton as a direct result of their dilution, despite other

zooplankton being capable of faster swimming. Therefore, despite the simplicity, this model could

be useful in understanding how variation in carbon percentage potentially affects the ingestion of

developing ephyrae. The results of the model are shown below; the difference in wet mass

between the gelatinous and non-gelatinous treatments shown in Figure 4.8 corresponded to an

increase in ingestion of 28% (Figure 4.9).
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Figure 4.9 – Effect of carbon mass (mg) on ingestion rate (mg C h-1) of Aurelia aurita ephyrae.
Values are modelled based on the relationships between wet mass and ingestion rate shown in
Figure 4.5. In the gelatinous treatment the carbon percentage is allowed to vary in the relationship
shown in Figure 4.2, in non-gelatinous the carbon percentage is fixed at the starting value.

In addition to ingestion rate, growth rate can be estimated to develop a more

comprehensive picture of how carbon percentage is influencing the energy budget. However, while

Chapter 3 demonstrates the effect of carbon percentage on growth across species, it is not certain

that the effect is the same within species. With ingestion rate, it was assumed that it was a function

of physical body volume (and therefore wet mass or diameter) that was driving the observed

relationship (Acuña et al., 2011). This meant that carbon mass was relatively unimportant in

determining ingestion, and therefore did not have to be incorporated into the model. However, as

both the wet mass and the carbon mass are likely to be important in determining growth rate

(McConville et al., 2017), an equivalent assumption cannot be made. One way to unite composition,

ingestion rate and growth rate into a single model is to calculate growth from ingestion rate using

gross growth efficiency (Frandsen and Riisgard, 1997; Straile, 1997). Gross growth efficiency was

not related to carbon mass or carbon percentage so a single average value (21%) is a sufficient
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approximation. Taking GGE to be a constant value means that growth can be estimated based on

ingestion alone, and the model can estimate the carbon or wet mass of the two treatments over

time. Figure 4.10 shows that when the change in wet mass over time is estimated, the gelatinous

treatment reaches a disproportionately higher wet mass than would be expected based on Figure

4.8 alone. This is a result of the positive feedback interaction between progressive dilution and

ingestion rate, the dilution of the gelatinous treatment leads to higher feeding rates, which in turn

leads to faster growth rate. As a result of this positive feedback, the model quickly becomes

unrealistic beyond the range of the data observed in our experiment. In reality, the relationship

seen above could not continue past the range shown as carbon percentage of Aurelia aurita does

not dilute indefinitely, but to a minimum carbon percentage of 0.1% (Kiørboe, 2013).

Figure 4.10 – Growth in terms of daily change in wet mass (mg) of Aurelia aurita ephyrae. Values
are modelled based on the relationships between wet mass and ingestion rate observed in our
data. In the gelatinous treatment, carbon percentage is allowed to vary in the relationship
observed in our data, in non-gelatinous the carbon percentage is fixed at the starting value.
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Using the model shown in Figure 4.10, it is possible to calculate what the mass scaling

exponent for growth would be if dilution only influenced growth rate through increasing ingestion

rate. The exponent for the specific growth rate, g (d-1), generated from the model is 0.39, which is

similar to the exponent derived from measured growth rates shown above (0.36, Figure 4.7C). This

value is the result of the interaction between dilution and ingestion rate alone so it is surprising that

it is so similar to the measured exponent. This could suggest that the exponent observed for

growth rate in the experimental study is primarily determined by limitations in maximum possible

feeding rate. This could be a consequence of sub-optimal food quality, as Moller and Riisgard

(2007) found that Aurelia aurita ephyrae were capable of growing more quickly when offered the

hydromedusae, Rathkea octopunctata (even with lower prey carbon mass). The model also implies

that as the ephyrae grow and decrease in carbon percentage, feeding rate increases as growth

efficiency remains constant, leading to proportionally higher growth. Therefore wet mass would

increase exponentially through time until the adult carbon percentage was reached. This is

ecologically relevant as predation mortality in zooplankton is often related to length along the major

axis, or wet mass. Mortality due to predation is a major factor in determining recruitment of larval

zooplankton (Platt, 1985), therefore minimising the time spent at a relatively small body size can

lead to increased adult abundance. Through dilution, ephyrae grow through this vulnerable size

range faster than other zooplankton, potentially decreasing mortality.

4.4 - Discussion

This chapter is the first study, to my knowledge, to investigate the effects of intraspecific

variation in carbon percentage on the energy budget of zooplankton, although other studies have

taken growth and ingestion measurements of Aurelia aurita ephyrae (Olesen et al., 1994; Hannson,

1997; Bamstedt et al., 2001). The most directly comparable study is that of Møller and Riisgard

(2007) on Aurelia aurita, Sarsia tubulosa and Aequorea vitrina. In common with this chapter, Møller

and Riisgard (2007) measured the specific growth rate and ingestion rate of Aurelia aurita ephyrae

feeding on Artemia nauplii. As the food provided and ephyrae size range of Møller and Riisgard



64

(2007) is similar to those of this chapter, their study provide a valuable comparison with my

measurements.

The smallest epyhrae had carbon percentage of 2.3% and diluted through development to

the adult value of 0.1%. The newly strobilated ephyrae differed in carbon percentage from both

adult Aurelia aurita and the mean carbon percentage of gelatinous zooplankton as a whole (~0.5%,

Kiørboe, 2011). The smallest ephyrae were closer to the carbon percentage of chaetognaths and

other intermediately gelatinous zooplankton than other cnidarians (Kiørboe, 2013). This suggests

that the early developmental stages of gelatinous taxa represent a group of intermediately

gelatinous zooplankton that may not have been previously appreciated. In the study by Kiørboe

(2013) it was suggested that there are relatively few taxa of intermediate carbon percentage.

However, if at least some gelatinous taxa dilute through development, then a far greater number of

taxa are of intermediate carbon percentage at some point in their ontogeny. Gelatinous

zooplankton are routinely under-sampled with nets, due to their delicacy and difficulty of

identification (Raskoff et al., 2003) and larval animals are often more numerous than adults of the

same species (Cross et al., 2015). Taken together, this could suggest that a substantial fraction of

some zooplankton assemblages are of intermediate carbon percentage. In addition, the range of

carbon percentage observed also suggests that it is unreliable to use taxon-specific averages for

carbon percentage of early life stages of Aurelia aurita, and potentially other scyphomedusae.

The C:N mass ratio did not change with ontogeny (mean = 4.34) across all body sizes

suggesting that all somatic carbon was metabolically active, not being stored as lipid (Schmidt et

al., 2003). This value is similar to other non-lipid storing zooplankton (Ikeda and Takahashi, 2012;

Ikeda, 2013) and to other gelatinous zooplankton (Ikeda, 2014). This value is lower than the

Redfield ratio (Redfield, 1934), as expected for an obligate carnivore. The C:N ratio for Artemia

nauplii is approximately 3.65, lower than that of the ephyrae but is likely similar enough for

adequate nutrition (based on the fixed C:N of the ephyrae through development).
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4.4.1 - Ingestion

For an ephyra of 16.8 µg C feeding on Artemia nauplii, this chapter reported an ingestion

rate of 9.5 µg C d-1, compared to 20.2 µg C d-1 reported in Møller and Riisgard (2007). The values

observed were also lower than the ingestion rates reported for Calanus helgolandicus over a range

of carbon masses (Harris et al., 2007). The ephyrae fed at lower rates than other comparable

zooplankton, despite being offered high concentrations of food at the same temperature (400 µg C

l-1 in this study relative to 280 µg C l-1 in Harris et al., 2007). This could suggest that the incubation

vessels were deleterious to ephyra condition. There was however, limited support for deleterious

tank effects as mortality was low (mortality rate = 1.3%) and behaviour was not significantly

different post-incubation. It is unclear why the ephyrae fed at lower rates than other comparable

zooplankton, as previous studies have suggested that decreased carbon percentage increases

carbon specific feeding rate (Acuña et al., 2011).

With increasing mass, specific feeding modes are expected to become less efficient

(Kiørboe, 2011), resulting in intraspecific ingestion rates to scaling at b < 1. Ingestion rate

increased with increasing carbon mass, with a scaling exponent of 0.6 with increasing carbon

mass (Figure 4.5), and 0.33 with increasing wet mass (Figure 4.5). The carbon mass scaling

exponent of the ephyrae is very similar to that of C. helgolandicus (0.59, Harris et al., 2007). This

was unexpected as the dilution of the ephyrae was predicted to increase the ingestion rate

exponent with increasing carbon mass. As carbon mass increased, wet mass increased

disproportionately (Figure 4.2). As ingestion rate is a function of wet mass (Acuña et al., 2011), it

was expected that this dilution would increase the carbon mass scaling exponent of the ephyrae

relative to the non-diluting C. helgolandicus. As the exponent was similar, either the intraspecific

variation in carbon percentage was insufficient to reproduce the interspecific pattern identified by

Acuña et al. (2011), or other factors are more important in determining the ingestion rate of

ephyrae.
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In addition, the wet mass scaling exponent was also lower than predicted. As C.

heloglandicus does not have a gelatinous body form, it is assumed that carbon percentage

remains relatively constant through development, therefore the wet mass scaling exponent for

ingestion for C. helgolandicus should be equal to the carbon mass scaling exponent (0.59). The

exponent of 0.33 observed for the ephyrae is lower than the exponent for C. helgolandicus (0.59),

which could suggest that tissue dilution has a negative effect on feeding. However, there is an

alternative hypothesis as the specific value of the exponent (b = 0.33) suggests that feeding may

be a function of a length dimension, and not a function of wet mass (b = 1) or surface area (b =

0.67). In a study on ephyra prey capture mechanics, Sullivan et al. (1997) reported that 61% of

captures took place on the lappet tips. If prey capture is much more likely on the lappet tips than

other areas of the ephyrae, then it would follow that ingestion rate would increase at a rate similar

to the rate at which the lappet tip area increases (potentially due to nematocyst distribution or flow

regime). The lappet tips are the outermost areas of each lappet, and therefore are a proportion of

the circumference. As the lappet tips constitute a proportion of the circumference of the ephyra,

they are a length dimensions, and could be expected to scale at approximately b = 0.33 with wet

mass. If this is the case, ingestion rate is expected to increase linearly with increasing diameter, as

seen in Figure 4.6.

There was a negative relationship between carbon percentage and ingestion rate. I believe

this was driven by low carbon percentage individuals being much larger (in both carbon and wet

mass terms) and therefore having higher gross ingestion rates. This is also reflected in the

relationship between carbon percentage and specific ingestion rate (log10y = 0.56 * log10x + 2.73,

R2 = 0.33, p < 0.0001), as the relatively low carbon mass of high carbon percentage ephyrae led to

high specific ingestion rates. In this instance, the strong relationship between carbon mass and

carbon percentage (shown by proxy in Figure 4.3) render carbon percentage uninformative.
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4.4.2 - Growth

Maximum specific growth rate, g (d-1), was 0.28, comparable but higher than the values

reported by Møller and Riisgard (2007) of 0.22 and Olesen et al. (1994) of 0.2. This is likely a result

of using smaller ephyrae in our experiments than the above authors (1.2 mm compared to 3.5 mm

and 4 mm respectively), as the highest g value in this chapter was observed for the smallest

ephyrae. The growth rates of Aurelia aurita ephyrae in this study (g = 0.12) are lower than those of

C. helgolandicus of similar carbon mass (g = 0.20, Harris et al., 2007). This suggests that during

early development of gelatinous zooplankton, carbon percentage may not be as important as other

factors in determining growth rate.

A meta-analysis by Hirst and Forster (2013) on the growth scaling of a wide range of

marine invertebrates suggested that growth rate (mg C d-1) scales most commonly at or

approaching b = 1 within species. Following this, I hypothesised that the growth exponents

observed would be greater than other zooplankton species, as in my interspecific study in Chapter

2, decreasing carbon percentage led to an increase in growth rate. As increasing carbon mass led

to decreasing carbon percentage, I predicted growth rate would increase with increasing carbon

mass, and therefore expected the carbon mass scaling exponent to be greater than 1. The scaling

exponent for wet mass growth rate (mg WM d-1) was 0.62 and for carbon mass growth rate (mg

CM d-1) was 0.49, both lower than predicted. If the ephyrae were reaching maximum adult body

size at the upper range of diameter then this exponent might be expected, however this was not

the case. An alternative hypothesis for a low growth body mass scaling exponent is that the

ephyrae were becoming food limited. Møller and Riisgard (2007) found that with increasing food

concentration, ephyrae grew faster to a maximum rate at 100ug C l-1. Prior to the experiment, the

ephyrae were fed regularly and during the incubations I provided a food concentration considerably

greater than this (460 µg C l-1) minimising the chance that growth was food limited. The low

exponents could suggest that tissue dilution has an associated energetic cost, such that diluting

tissues diverts energy away from increasing in carbon mass. The relationship between carbon

percentage and growth rates mirrors that of carbon percentage and ingestion rate. Carbon mass is
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the cause of these relationships, as at high carbon percentages, growth rate (mg h-1) is low and

specific growth rate (both mg mg-1 h-1 and g d-1) are low. As with ingestion, the relationship

between carbon mass and carbon percentage means that, in this experiment, carbon percentage

provided limited information about growth.

The mean value for gross growth efficiency (ingestion/growth, GGE = 0.21) observed lies

within the range reported by Straile (1997) for a wide range of other zooplankton. This value was

also comparable to the net growth efficiencies (NGE) reported for ephyrae by Olesen et al. (1994)

0.35 and Frandsen and Riisgard (1997) of 0.37. As the NGE values from the other authors are

based on the proportion of assimilated carbon these values are expected to be higher than the

gross growth efficiency reported in this study, which is calculated from ingested carbon. Previous

studies on other gelatinous zooplankton have observed that gross growth efficiency (GGE) can

decrease or remain constant with increasing length or mass (Kremer and Reeve, 1989; Sullivan

and Gifford, 2007). It is unclear whether the lobate ctenophores in their studies were diluting over

the course of the above investigations, and whether this influenced their GGE. In my study, gross

efficiency was invariant with increasing carbon mass, despite progressive dilution. Above, it was

suggested that the low exponents for growth rate could be due to the costs of dilution. However,

there was no evidence for a relationship between wet mass and gross growth efficiency. This

suggests that the ratio between food ingested and carbon mass increase was constant, despite

wet mass increasing proportionately more in larger ephyrae. While not definitive, this could suggest

that the costs of tissue dilution are minimal and that the low exponents have some other cause.

4.5 - Conclusion

This chapter has demonstrated that carbon percentage is not fixed during the development

of Aurelia aurita.While adult A. aurita have similar carbon percentage values to those of many

other gelatinous taxa, larval ephyrae are more similar to that of chaetognaths or some tunicates.

Carbon percentage was found to vary continuously across the size range investigated, showing a
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gradual decrease from the ephyrae to the adult value. This lends further support to the notion of

substituting the current categorical view of gelatinous and non-gelatinous zooplankton with a

continuous view based expressed as carbon percentage. Given the absence of data for other

species, it is currently unclear whether this represents a general trend, and whether other

gelatinous taxa also dilute through development. If so, these larvae could constitute a considerable

fraction of the zooplankton that is intermediately gelatinous and not often sampled or considered.

This chapter suggests that biologically relevant variation in carbon percentage does occur

across ontogeny. Ingestion and growth rates in both carbon and wet mass were observed to scale

at lower exponents than those expected from general theory and observed in other zooplankton. It

is difficult to determine whether this is the result of dilution occurring in parallel with growth, and it

is possible that the scaling of growth rate may have a different exponent once the adult carbon

percentage is reached.

In the simple model presented, dilution of the magnitude observed in this chapter lead to an

increase in carbon specific feeding rate of 28% over a similar non-diluting organism. However, this

is uncertain as this difference was not found when comparing with other organisms. The interacting

effects of dilution and ingestion rate on growth suggest that through dilution ephyrae may escape

vulnerable body size classes faster than would be possible through carbon mass growth alone.

Taken in concert, these observations suggest that intraspecific variation in carbon percentage

could have functional implications and demonstrate potential evolutionary drivers for this rapid

dilution in early ontogeny.
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CHAPTER 5 – The influence of carbon percentage on

bloom formation
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5.1 - Introduction

Recent years have seen a resurgence in the study of phenology, the seasonal timing of

biological events (Edwards and Richardson, 2004; Yang and Rudolf, 2010; Anderson et al., 2012),

partially as a result of concerns over anthropogenic climate change. These changes in timing have

the potential to affect ecosystems in a number of ways, including premature spawning relative to

the timing of suitable foods (Mackas et al., 2012) and trophic mismatching (Beaugrand et al., 2003;

Atkinson et al., 2015). In order to better predict how biological communities will respond to these

changes in seasonal timing, it is important to first establish a robust understanding, terminology

and definition for seasonally recurring phenomena.

One term that is frequently used when discuss timing and seasonality in plankton

communities is “bloom”. Despite its common use, the specific meaning of the word bloom is

ambiguous. For instance, the term bloom is applied to the flowering of angiosperms and rapid

population increase of different groups within the zooplankton. Furthermore, within different

scientific communities, the term bloom is defined differently. Even within the relatively narrow field

of gelatinous zooplankton, some ambiguity remains. An important division made by Graham et al.

(2001) between true and apparent blooms, was later expanded by Lucas and Dawson (2014) into

the definition below;

“A true bloom is in part a consequence of seasonal life cycles, and consequently all metagenic
organisms have the potential to bloom pending suitable environmental conditions; thus normal
and/or abnormal seasonal biomass is directly attributable to population increase due to
reproduction and growth, sometimes enhanced by anthropogenic activity. An apparent bloom, in
contrast, is a local increase in biomass of animals associated with temporary or transient chemical
or physical phenomena (such as aggregation at fronts or local advection to a new location) or
longer term accumulation of large numbers in enclosed habitats; apparent blooms may, but do not
necessarily reflect true blooms that occurred elsewhere” (Lucas and Dawson, 2014)”

Following this definition, the one of the criterion determining whether a transient population

is a bloom is whether the species has a metagenic life cycle (undergoes an alteration of

generations between different phases in the life cycle). Such a definition is incomplete as many

gelatinous taxa that do not have metagenic lifecycles do form blooms. These include the

holoplanktonic medusa, Pelagia noctiluca (Hamner and Dawson, 2008) and the lobate ctenophore,
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Mnemiopsis leidyi (Fuentes et al., 2010). The opposite is also true. Not all metagenic taxa form

blooms, as documented in the Stauromedusae by Miranda et al. (2012). This demonstrates the

limitations of a definition of blooming based on the intrinsic qualities of the organisms it comprises.

This loose definition of blooming in gelatinous zooplankton contrasts with that used for

phytoplankton blooms, where proxies of abundance (measurements of ocean colour and other

remotely sensed data) are used to produce quantitative definitions. A population is considered to

be blooming when chlorophyll a concentration (as a proxy for biomass) is greater than an

established threshold (Racault et al., 2012). This form of definition is based on the population

dynamics of the taxa, not on an intrinsic quality of their biology. This approach is valuable as

specific aspects of blooming, such as global incidence and duration, can be quantified through the

use of numerical indices. These indices can in turn be used to ask meaningful questions of the

biology of the system, such as to how light and climatic indices influence the phenology and other

large scale patterns of bloom formation (Racault et al., 2012).

The extra information afforded by using a quantitative definition based on indices of

blooming in phytoplankton suggests that applying a similar approach to blooming in zooplankton

could further our understanding. Bloom indices for zooplankton could be valuable in a range of

different ways. For ecologists, quantitative indices for the magnitude of blooms would allow for

descriptive comparisons of blooms in different groups, or trends in blooming in a particular species

over time. Furthermore, the effects of differing degrees of blooming on food web interactions or the

productivity of an area could be investigated, leading to a deeper understanding of how blooming

impacts zooplankton systems.

Blooms of gelatinous zooplankton are also of interest to policy makers, as gelatinous

zooplankton form one of the plankton lifeform indicators as part of the Marine Strategy Framework
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Directive (MSFD) (Tett et al., 2015). In most cases, the negative interactions between gelatinous

zooplankton and humans occur primarily during blooms (Masalimoni et al, 2000), therefore

monitoring of the blooming of gelatinous zooplankton is of key importance. The creation of

numerical bloom indices could provide further information to policy makers on whether

management strategies are working effectively, on the progress of biological invasions (e.g. is a

population of an invasive species actively blooming?).

The development of quantitative bloom indices could also be useful for asking more

fundamental questions about the relationship between the gelatinous body form and blooming.

Many gelatinous zooplankton form blooms, such as Pelagia notiluca, however some do not, such

as the Stauromedusae. A range of factors contribute to bloom-like dynamics in the zooplankton

including benthic processes, such as strobilation in scyphomedusae (Uye et al., 2006), some of

which are of key importance to the populations of non-gelatinous taxa also. Despite this, the term

bloom is applied exclusively to zooplankton that are gelatinous. One aim of this study is to

investigate whether the population dynamics of gelatinous zooplankton differ quantitatively from

those of other zooplankton, and whether other taxa also form blooms. As the gelatinous

zooplankton are highly diverse in phylogeny, life history and functional ecology, the shared trait to

determine whether an organism should be included within the group is a dilute body. With this is

mind, by relating the bloom indices to carbon percentage for different species, it is possible to test

whether the population dynamics of gelatinous zooplankton differ from those of other zooplankton.

Using these relationships, it is possible to ask whether only gelatinous zooplankton form blooms, or

whether this phenomenon is more widely distributed.
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The aim of this chapter was to develop a number of indices to define blooms and determine

whether bloom formation is related to carbon percentage. The aim was completed through the

following objectives; first, to consider the population dynamics that may be characteristic of

blooming; second, to suggest ways to capture these characteristics numerically; third, to use

known bloom forming and more stable taxa to evaluate the indices; and fourth to relate the indices

to carbon percentage and carbon mass to test whether more gelatinous taxa are more predisposed

to form blooms.

5.2 - Methods

5.2.1 - Data sources

The data used in this chapter come from the L4 time series, described in detail in Chapter 2.

Taxonomic resolution of identification was increased in 2009, particularly for the hydromedusae,

and therefore only data from 2009-2015 inclusive were used in this analysis (319 time points, 638

net samples). Of the 188 taxa currently recorded, only those that had been consistently recorded

since 2009 were included (127 taxa). Eggs were not included in the analysis.

5.2.2 - Development of bloom indices

Several qualities that are associated with blooming can be visualised by comparing

changes in abundance over time for the two species, A and B, shown in Figure 5.1. Both species

have the same total abundance over the period shown, although the population dynamics of the

species differ. Species A would be described as more bloom-forming than species B, and below

this quality is explored numerically. As this stage there is no attempt to classify the model species

are gelatinous or otherwise, only to identify what numerical qualities are indicative of bloom

formation. Many metagenic gelatinous zooplankton may fit the model of species B more closely as

a result of continuous, or protracted, strobilation through the year (Houghton et al., 2007).
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Figure 5.1 – Schematic data of abundance of two species over the year to demonstrate how
blooming can be quantified on the basis of abundance over time. Note that while the schematic
shows changes over monthly timescales, the sampling at L4 is on a weekly basis, weather
permitting.

5.2.3 - Variability in abundance

Firstly, if a bloom is characterised by a period of high abundance relative to background,

then this suggests that a key feature is higher total variability in abundance (a boom or bust pattern

of abundance). The coefficient of variation is a measure of spread that can be used to compare

variability of distributions with different means.

(eq. 5.1) Coefficient of variation = standard deviation (abundance) / mean (abundance)

In Figure 5.1, the coefficient of variation is 2.16 in species A and 0.64 in species B.

Therefore, the first quality we can attribute to blooming organisms is high variability in abundance.

Variability in abundance was compared across the 2009-2015 weekly time series and interannually.
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To investigate variability across the time series the coefficient of variation of abundance was

calculated for each species. Two indices were used to estimate interannual variability; the ratio

between the maximum and minimum mean annual abundance, and the coefficient of variation of

mean annual abundances. These indices were calculated including and excluding zeroes, as the

large number of zeroes associated with species presence records tended to strongly decrease

variability in rare species. Species that have more bloom-like population dynamics will have higher

coefficients. If taxa with low carbon percentage have more bloom-like population dynamics then

carbon percentage will be negatively related to; i) coefficient of variation, ii) ratio between the

maximum and minimum mean annual abundances and iii) coefficient of variation of mean annual

abundances.

5.2.4 - Temporal heterogeneity

Furthermore, the relatively high abundances that comprise blooms often increase and

decrease rapidly; so species abundance tends to be concentrated into relatively short periods. In

Figure 5.1, 65% of the total abundance of species A is concentrated in the maximum measurement

compared to 27% in species B. Therefore, temporal heterogeneity in abundance, i.e. long periods

of low (to zero) background abundance punctuated with short periods of high abundance is

another quality associated with blooming.

Temporal heterogeneity could be considered as synonymous with temporal auto-correlation,

the probability of the abundance at sample n+1 being similar to the abundance at sample n.

However, given the patchy distribution and potential aggregation of some plankton species,

random fluctuations that do not represent meaningful increases are common. For this reason, a

temporal auto correlation function was not used as an index. Instead, temporal heterogeneity was

investigated using two indices, the number of non-zero records and the coefficient of the frequency

distribution of abundance.
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The number of non-zero records was a count of all instances that a species had greater

than zero abundance. The second index, the frequency distribution of abundance, was calculated

for data that were first normalised to the maximum abundance for each species. The normalised

data were then plotted as a histogram varying between 0 and 1 (maximum recorded abundance) in

0.01 bins. All frequency bins that had no recordings were omitted. For each species, linear models

were generated between log10 index (the value of the bin) and frequency (Figure 5.2). If taxa with

low carbon percentage have more bloom-like population dynamics then carbon percentage will be

positively related to the frequency distribution coefficient and the number of non-zero records.

dy

dx
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Figure 5.2 – Schematic example of the frequency distribution coefficient, the slope of a linear
model between abundance (as % of maximum abundance) and log10 frequency. In the actual
analysis the x axis bins were of width 1% however this number of bins could not be clearly shown.

5.2.5 - Population increase rate

Finally, taxa must be capable of high population growth rates to facilitate the rapid changes

in population abundance associated with blooms. In Figure 5.1, the maximum slope of abundance

increase is 8.5 individuals per month for species A and 3.5 individuals per month for species B.

Rate of increase was quantified using the interval between 25 and 50th cumulative percentiles and

an increase rate index that I devised. The 25th and 50th cumulative percentiles for each year were

found by determining between which time points the cumulative abundance reached 25% and 50%

of the maximum cumulative total annual abundance respectively, following the methods described

to quantify phenology by Mackas et al. (2012). The interval was then calculated as the number of

days between the 25th and 50th cumulative percentiles. This index can be heavily skewed in rare

taxa, because if a taxon is infrequently recorded it could reach the 25th cumulative percentile and

not be observed for several months before reaching the 50th. As a result these taxa would have

abnormally long intervals, falsely suggesting slow gradual population growth. To avoid this, only

taxa that were present in at least 30% of the samples (53 taxa) were included.

The increase rate index aimed to decrease the effect of patchy distributions by calculating

the rate of change of abundance over several successive increases (Figure 5.3). This index was

calculated on three point running mean data (where each data point is calculated as the mean of

itself and the two adjacent data points), with half of the minimum value for each taxon added to

avoid increases from a population of zero. The running mean was used to decrease the effects of

patchiness and variability in sampling; in particular ensuring that small random decreases did not

remove meaningful increase trends from the analysis. The increase rate index was calculated for

two, three and four successive increases as;

(eq. 5.2) increase rate = (final abundance – starting abundance) / number of weeks
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All increases were included in the analysis, even if multiple increases were present across

overlapping subsets of the same range of data. For each species the mean, median and maximum

increase was calculated for two, three and four successive increases. If taxa with low carbon

percentage have more bloom-like population dynamics then carbon percentage will be negatively

related to the interval between the 25th and 50th cumulative percentiles and positively related to the

increase rate index.

Figure 5.3 – Schematic example of the increase rate index, calculated for four increases as (n+4 -
n) / 4. The points on the black line are data, the red line shows the range over which the increase
rate for four successive increases is calculated. The green lines show two valid two step increases
across four successive points.

5.2.6 - Testing bloom index performance

To determine the efficacy of the bloom indices, species that are known to form blooms

should be compared with those that are known for having a stable population. Pleurobrachia pileus

is a generalist zooplanktivore that spawns continuously throughout the year when food is sufficient

(Fraser, 1970). This species is capable of paedogenesis, reproduction before reaching the adult

n+4
n+3

n+2

n+1

n



81

life form. In the case of Pleurobrachia spp., reproduction can begin when the larvae reach

diameters of only 0.4mm (Jaspers et al., 2012). These characteristics give Pleurobrachia pileus the

potential for explosive population growth so this species was used as the example of a blooming

species at L4. The efficacy of the bloom indices were tested by comparing the values for the bloom

indices of Pleurobrachia pileus with another zooplanktonic taxon that shows a more stable

population. Oithona similis is a cyclopoid copepod known to have relatively low rates of ingestion,

growth, reproduction and mortality, to the extent that some authors have suggested this taxon may

help stabilize plankton communities (Paffenhöfer, 1993). The contrast between the population

dynamics of these species is demonstrated in Figure 5.4. The abundance of Pleurobrachia pileus

is more densely concentrated into short sporadic periods, suggesting higher variability in

abundance, population increase rate and temporal heterogeneity. These taxa were also selected

for comparison as they are both relatively abundant at L4, an important quality for this assessment

as some of the indices developed may be skewed by low abundance.

Figure 5.4 – Abundance of Oithona similis (red) and Pleurobrachia pileus (blue) as a percentage of
the total abundance of each species between 2009 and 2015.
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The secondary aim of this chapter was to investigate whether our varios indicators of

bloom-like tendencies differed between gelatinous and non-gelatinous zooplankton. The outputs

from each of these indices were used as dependent variables in general linear models based on

the explanatory variables, carbon percentage and carbon mass. Carbon percentage of each taxon

was estimated using the table of carbon percentage presented in Appendix I, and carbon mass

following the methods also described in Chapter 2.

5.3 - Results

Species at L4 showed a range of patterns of abundance over time, with some species

occurring only as short term blooms (e.g. Evadne spp.) and others occurring consistently

throughout the year (e.g. Oithona spp.). In the case of blooming taxa, these blooms occurred at

roughly similar times each year (e.g. Pleurobrachia pileus) or were more randomly distributed (e.g.

Goniopsyllus clausi). Beroe spp. was the dominant taxa on the basis of biomass, however due to

low number of recordings (present in nine samples) and potential overestimation due to

fragmentation of the gelatinous body, it was omitted from these analyses. The taxa included vary

widely in life history, biomass and total abundance. The full list of values of each index for each

taxon is shown in Appendix III. The values for the chosen comparison species, Pleurobrachia

pileus and Oithona similis are shown in Table 5.1. The values for the full list of species were

combined with the estimates of carbon percentage, and used to create the General Linear Models

(GLMs) shown in Table 5.2.
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Table 5.1 – Comparison of the values of blooms indices for Pleurobrachia pileus and Oithona
similis. CV= coefficient of variation, CV NO 0 = coefficient of variation (no zeroes), Interval = the
average interval between 25th and 50th cumulative percentile of annual total abundance, 2, 3, and
4 inc = maximum value for the increase rate index over 2, 3 and 4 weeks respectively, Interann CV
= coefficient of variation of annual mean abundances, Non-0 = number of non-zero records, FDC =
frequency distribution coefficient. Expected refers to whether the index value was predicted to be
higher in P. pileus or O. similis, and actual refers to whether the index value was higher in P. pileus
or O. similis.

CV CV NO 0 Interval 2 inc 3 inc 4 inc Interann CV Non-0 FDC

P. pileus 3.19 1.85 14.00 249 731 758 0.63 126.00 -13.98

O. similis 1.09 1.09 46.71 7.84 11.4 17.3 0.34 318.00 -3.29

Expected P>O P>O O>P P>O P>O P>O P>O O>P P>O

Actual P>O P>O O>P P>O P>O P>O P>O O>P P>O
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Table 5.2 – Outputs of GLMs investigating the relationships between carbon percentage (C%),
carbon mass (CM) and bloom indices. “No 0” indicates that records of abundance = 0 were
excluded from the analysis as large numbers of abundance = 0 records can influence the
calculation of some indices.

Index df p (C%) p (CM) Adj R2 slope C% slope CM

coeff of variation 124 0.067 0.84 0.011 -0.18 0.0009

coeff of variation (no 0) 114 0.21 0.99 0 -0.02 -0.000007

2 inc mean 109 0.066 0.51 0.02 -6.5 -0.1

2 inc median 109 0.15 0.84 0.002 -2.43 -0.01

2 inc max 109 0.19 0.58 0.001 -109 -1.9

3 inc mean 91 0.19 0.54 0.002 -19.3 -0.34

3 inc median 91 0.53 0.56 0 -0.91 -0.03

3 inc max 91 0.2 0.55 0.001 -213 -3.8

4 inc mean 68 0.16 0.63 0.006 -167 -4.2

4 inc median 68 0.52 0.48 0 -6.8 -0.55

4 inc max 68 0.15 0.6 0.01 -1047 -27.9

interannual (CV) 124 0.11 0.97 0.005 -0.024 -0.00002

interannual (min/max) 110 0.46 0.31 0 -1.23 -0.07

interannual (min/max, no 0) 110 0.07 0.86 0.01 -5.06 -0.02

interval (25-50) 44 0.34 0.4 0 0.93 -0.05

non-zero records 124 0.00098 0.39 0.07 6.5 -0.07

freq analysis 77 0.0005 0.13 0.14 0.61 -0.01
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Figure 5.5 – Relationships between carbon percentage, carbon mass and bloom indices for
zooplankton taxa at the L4 sampling site. A - coefficient of variation in abundance of zooplankton at
L4 as a function of log10 carbon percentage (df = 124, p = 0.013, adj R2 = 0.033, coefficient of
variation = - 0.12 * log10 carbon percentage + 0.8), B – log10 interannual variability (maximum
annual abundance / minimum annual abundance) as a function of log10 carbon percentage (df = 80,
p = 0.07, adj R2 = 0.01, log10 interannual variability = - 5.06 * log10 carbon percentage + 68.3), C –
log10 number of non-zero abundance records as a function of log10 carbon percentage (df = 124, p
= 0.001, adj R2 = 0.07, number of non-zero records = 6.52 * carbon percentage – 58.1), D –
coefficient of linear models between abundance and frequency as a function of log10 carbon
percentage (df = 77, p = 0.0005, adj R2 = 0.14, frequency distribution coefficient = 0.61 * carbon
percentage - 20.1), E – log10 maximum increase rate index across four successive increases as a
function of log10 carbon percentage (no statistically significant relationship detected), F – log10
maximum increase rate index across four successive increases as a function of log10 carbon mass
(df = 68, p = 0.0002, adj R2 = 0.16, log10 maximum increase rate index = - 0.46 * carbon
percentage + 1.62).

5.3.1 – Variability

5.3.1.1 – Testing of variability indices

P. pileus had higher values than O. similis for all three indices of population variability;

coefficient of variation, ratio between the maximum and minimum mean annual abundances and

coefficient of variation of mean annual abundances. This suggests that these indices could be

effective for quantifying the variability associated with blooming in zooplankton.

5.3.1.2 – Effect of carbon percentage on variability indices

There was limited support for a relationship between carbon percentage and variability in

abundance, but no relationship with carbon mass. No effect of either carbon mass or carbon

percentage was observed on coefficient of variation at p<0.05. The full analysis including all data

(Figure 5.5A, p = 0.067) and the analysis omitting zeroes and meroplanktonic taxa (p = 0.07) were

approaching 5% significance levels. In both analyses, the slope with increasing carbon percentage

was negative, offering limited support that more gelatinous taxa tend to be more variable at L4.

There was a marginally significant (0.07) negative effect of carbon percentage on interannual

variability (max / min annual abundance), potentially suggesting that gelatinous taxa may be more
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variable than less gelatinous taxa (Figure 5.5B). However, the R2 values for the relationships

between variability and carbon mass and carbon percentage were very low, suggesting that other

factors were more important in determining variability at L4.

5.3.2 - Temporal heterogeneity

5.3.2.1 – Testing of temporal heterogeneity indices

O. similis had higher values than P. pileus for the indices of temporal heterogeneity;

number of non-zero records and frequency distribution coefficient. This follows the predictions

made in the methods, suggesting that the indices used were capable of detecting the differences in

temporal heterogeneity between the two species, and may be more widely applicable.

5.3.2.2 – Effect of carbon percentage on temporal heterogeneity indices

There was strong support for a relationship between temporal heterogeneity in abundance

and carbon percentage, but no relationship with carbon mass. There was a highly significant

positive relationship between carbon percentage and number of non-zero records, more gelatinous

taxa were less frequently recorded at L4 (Figure 5.5C). Similarly, a highly significant positive

relationship was observed between carbon percentage and the frequency distribution coefficient

(Figure 5.5D), which suggests that the abundance of gelatinous taxa was more heterogeneously

distributed through time than other taxa.

5.3.3 - Population increase rate

5.3.3.1 – Testing of population increase rate indices

As predicted, the increase rate index of Pleurobrachia pileus was higher and the interval

between the 25th and 50th cumulative percentiles was shorter than that of O. similis. These indices
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were capable of detecting the differences in the relative increase rates of these species, and may

be effective more widely.

5.3.3.2 – Effect of carbon percentage on population increase rate indices

There was no significant relationship between increase rate indices and carbon percentage,

but there was a significant negative relationship between carbon mass and increase rate (Figure

5.5E, F). The mean, median and maximum increase rates were calculated for two, three and four

successive increases. To ensure that the transformation used on the data was not influencing the

result a sensitivity analysis was performed. The original transformation, adding half the minimum

abundance for each species, was substituted to adding 1 to abundance. No versions of the

analysis could detect any significant relationship between increase rate and carbon percentage. In

addition, the 25th – 50th cumulative interval was not affected either by carbon percentage or carbon

mass.

5.4 – Discussion

5.4.1 – Variability in abundance

5.4.1.1 – Are the variability-based bloom indices effective?

The indices tested for variability in abundance were coefficient of variation, ratio between

the maximum and minimum mean annual abundances and coefficient of variation of mean annual

abundances. For these indices, P. pileus had higher values than O. similis as predicted. All of

these indices were based on ratios and therefore scale to allow the comparison of taxa with

different mean abundances. This is useful as many taxa are rare and therefore their mean

abundance is lower than that of other more common species. It is worth noting that the coefficient

of variation was calculated excluding zeros, the value for P. pileus decreased but the value for O.

similis was relatively unchanged. This was the result of the high number of zero abundance
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records in P. pileus relative to O. similis increasing variance. This difference was used in both the

indices of temporal heterogeneity as another way to categorise bloom-like population dynamics.

The indices based on interannual variability need several years of data to be useful, however the

coefficient of variation could be used with potentially any period of repeated records. Its strength as

an index will increase with additional records and should preferentially include at least one year to

cover the full seasonal cycle.

5.4.1.2 – The relationship between carbon percentage and variability in abundance

There was limited evidence, both from the coefficient of variation and interannual variability,

that more gelatinous taxa might be more variable in abundance at L4. One potential reason for this

could be the influence of life history. Many gelatinous taxa have benthic stages such as polyps or

hydroids (25 of 32 of taxa with carbon percentage <1%). The influence of a metagenic lifecycle

with benthic polyps was highlighted in the bloom definition. Biomass is accumulated in the benthic

stages of these organisms, and the release of planktonic larvae can increase populations faster

than would be expected based on the existing planktonic population (Purcell et al., 2007). This

benthic dependency is also observed in many of the less gelatinous taxa. However, the influence

of benthic stages seem unlikely to be the primary cause of greater variation in abundance, as the

average coefficient of variation of gelatinous taxa with benthic stages and without benthic stages

was very similar (1.75 and 1.80 respectively). If the relationship between coefficient of variation

and carbon percentage was driven by recruitment from the benthic stages of gelatinous

zooplankton then a negative relationship between increase rate and carbon percentage would be

expected; this is not observed.
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5.4.2 - Temporal heterogeneity

5.4.2.1 – Are the temporal heterogeneity based bloom indices effective?

The indices used to investigate temporal heterogeneity were the number of non-zero

records and the frequency distribution coefficient. For both indices, O. similis had higher values

than P. pileus, as predicted. These indices are useful tools for comparing different species as they

do not require the same amount of data as the others. It is possible to compare taxa with less than

one year of data, and generate a more meaningful index than some of the others presented.

However, these indices are potentially less effective than the others for use with rare species. For

instance, the number of non-zero records in a taxon could be low as a result of only encountering

that taxa during a short bloom. Alternatively, a low number of non-zero records could indicate that

as a result of rarity, the species was recorded relatively few times over the course of the sampling

period. This drawback, while lessened by normalisation, is also present in the frequency

distribution coefficient. For this reason, I recommend that these indices are only used with

relatively abundant taxa.

5.4.2.2 – Discussing the relationship between carbon percentage and temporal heterogeneity

There was a strong positive relationship between carbon percentage and number of non-

zero records; taxa with higher carbon percentage were recorded more frequently. However, this

index tends to be heavily skewed in species that form aggregations, as the probability of recording

a specific taxon is affected by their distribution. To remedy this the frequency distribution analysis

was also performed, with similar results. The frequency distribution of more gelatinous taxa tended

to be steeper, implying the abundance of these species was concentrated into shorter periods,

seen as spikes in the abundance profiles. This finding follows the predicted pattern, as gelatinous

species are normally considered to be ephemeral (at least in their medusa phase) and exploit

temporally and spatially patchy good conditions (Lucas and Dawson, 2014). For instance, many

cnidarians and ctenophores have a generalist diet, allowing them to survive in a range of

environments where food is both patchy and not diverse (Richardson et al., 2009). This contrasts
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with several copepod taxa such as Calanus helgolandicus and Oithona spp., which are noted for

their relatively consistent abundance (and therefore shallow frequency distribution) throughout the

year (Maud et al., 2015; Atkinson et al., 2015).

5.4.3 - Population increase rate

5.4.3.1 – Are the population increase based bloom indices effective?

Generating estimates of population increase rate using time series data is difficult because

increases in recorded abundance are not necessarily representative of increases in abundance, it

could be due to patchiness or active aggregation. The two indices used for population increase

were the interval between the 25th and 50th cumulative percentiles and the increase rate index. The

interval was shorter for P. pileus than O. similis as predicted. This was due to the abundance of P.

pileus being concentrated into a shorter period than O. similis. The index was effective in these two

taxa however it is highly sensitive to the annual total abundance, and for that reason this index

should not be used with very rare taxa.

The increase rate index was devised as a way to estimate increase rate without being as

sensitive to patchiness. The increase rate of P. pileus was expected to be higher than that of O.

similis, with the difference increasing with the number of successive increases investigated. This

was observed in the data, suggesting that this index may be an effective way of comparing relative

abundance increase. There are however still potential issues with this method, such as consistent

advection into sample area. This index is also highly sensitive to starting abundance, as it is based

on the ratio between starting and finishing abundances, not the number of individuals increased

per time point. Finally, this approach is somewhat reliant on a good time series, as the more

reliable three and four successive increase indices need consistent present records, and several

sets of successive increase are required to form reasonable comparisons.
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5.4.3.2 – Discussing the relationship between carbon percentage and increase rate

One of the identified prerequisites for bloom formation was rapid increase in population

(section 5.2.5). Therefore, if bloom-like dynamics are observed in gelatinous zooplankton but no

other taxa then we might expect there to a negative relationship between carbon percentage and

increase rate. While carbon mass was observed to have a strong negative effect on increase rate

(Fig 5.9) consistent with higher growth rates and shorter generation times of smaller animals

(Pianka, 1970), there was no relationship found between increase rate and carbon percentage.

The highest population increase rates were observed in taxa with high reproductive outputs that

did not reproduce sexually as planktonic adults e.g. the planktonic protist, Noctiluca scintillans. The

cladocerans, Evadne spp. and Podon spp., were also within the top 5% of maximum population

increase rates. These taxa are also capable of asexual reproduction through parthenogenesis

(Mullin and Onbe, 1992; Kim and Onbe, 1989), and therefore are expected to have massive

population increase potential relative to other metazoans. The other taxa that had high increase

rates were meroplanktonic taxa, especially rhizocephalan nauplii. This is a result of these larvae

being generated and released from adults on the seabed, and therefore not relying solely on the

planktonic population to increase abundance. The only taxon that was holoplanktonic and was

within the top 10 increase rates observed was Appendicularia, most likely Oikopleura dioica,

known to have short generations times (Hopcroft and Roff, 1995) and extremely efficient feeding

(King and Azam, 1980). Overall, increase rate appeared to be more a function of reproductive

strategy, for example pulsed reproduction from the seabed controlling planktonic population

increases, rather than carbon percentage.

5.4.4 – Are taxa with higher carbon percentages also blooming?

Taxa that are more gelatinous may be more variable in abundance and have shorter

periods of significant presence in the zooplankton, but there was no evidence that these had a

faster rate of population increase. Based on these observations, are taxa with lower carbon
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percentage blooming at the L4 site, and would other zooplankton also be considered to be forming

blooms?

Figure 5.6 shows that, relative to Calanus helgolandicus, Pleurobrachia pileus could be

considered a blooming species. This is reflected in the values of the blooming indices, P. pileus

has a steeper frequency distribution, higher coefficient of variation, higher interannual variability

and higher maximum increase rate than Calanus helgolandicus (Appendix III).

Figure 5.6 – Three-point running mean abundance of Calanus helgolandicus and Pleurobrachia
pileus at the L4 site between 05/01/2009 and 15/12/2015, normalised to the maximum abundance
for each species.

However, if P. pileus is compared to another calanoid copepod, Temora longicornis, we find

that T. longicornis has a shallower frequency distribution (i.e. less temporally patchy) but has

double the maximum increase rate. Does having a higher maximum increase rate than P. pileus

qualify T. longicornis as a blooming species? Alternatively, is it not to be classified as forming a

bloom as the abundance is more homogenously distributed through the year?
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In Figure 5.7, Temora longicornis is compared to a siphonophore classically considered to

form blooms, Muggiaea atlantica (Blackett et al., 2015). It is clear that these species have similar

population dynamics, despite being at opposite ends of the carbon percentage spectrum. These

examples demonstrate that the qualities I have defined as being associated with blooming do not

always co-occur, and make generalisations difficult. Is it the variability in abundance, temporal

patchiness, high population growth potential or all of these that define a species as “blooming”?

Figure 5.7 - Three-point running mean abundance of Temora longicornis and Muggiaea atlantica at
the L4 site between 05/01/2009 and 15/12/2015, normalised to the maximum abundance for each
species.

Based on these comparisons, it is unclear what demarks “blooms” of gelatinous

zooplankton from transient high populations of non-gelatinous taxa. It is clear, however, that low

carbon percentage is not a requirement for rapid increases in population. So why are blooms

prevalent across such a diverse range of organisms?

The most significant relationship between carbon percentage and a bloom index was with

temporal heterogeneity. The abundance of more gelatinous taxa was concentrated into shorter

periods during the year. Conversely, the abundance of higher carbon percentage taxa was more

06/01/201104/01/2010 09/01/2012 15/12/201509/01/2013 14/01/2014 05/01/201509/01/2012
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equally distributed through the year, and therefore may be expected to have lower biomass

maxima. In fact, when ranked according to maximum estimated carbon biomass, the highest

ranking taxa were copepods or other crustaceans (Figure 5.8).

Figure 5.8 – Ranked maximum recorded carbon biomasses (highest weekly value, mg C m-3) for
zooplankton taxa at L4 between 2009 and 2015. This plot excludes Beroe spp., due to
fragmentation and uncertainty over linear dimensions, precluding a robust biomass estimate.

Despite the more sporadic nature of the gelatinous taxa, crustaceans had the highest

maximum taxon-specific carbon biomass. However, if the species are ranked in terms of maximum

wet mass, 9 of the highest 10 are gelatinous taxa (the other is cirripede nauplii), with the highest

recorded wet mass in Pleurobrachia pileus. Despite the maximum carbon biomass of P. pileus

being only 16% than that of C. helgolandicus, the maximum recorded wet biomass of P. pileus was

still 18 times greater (Figure 5.9). This highlights the importance of considering both the carbon

and wet masses of zooplankton, as these two measures of body size offer different stories

regarding the relative importance of taxa at L4.
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Figure 5.9 – Ranked maximum recorded wet biomasses (highest weekly value, mg C m-3) for
zooplankton taxa at L4 between 2009 and 2015.

This comparison suggests an alternative hypothesis as to why blooming is described as

such a characteristic feature across the gelatinous zooplankton. When a gelatinous species

reaches moderate carbon biomass, they occupy a comparatively high volume as a result of their

low carbon percentage. They are more noticeable than the same carbon mass of a more

concentrated taxon such as copepods simply because they are large and take up more space

(Figure 5.10).
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Figure 5.10 – Two dimensional representation of one litre of sea water showing the volume
occupied by a – Pleurobrachia pileus and b – Calanus helgolandicus during their respective wet
biomass maxima shown in Figure 5.8. Despite the greater visibility of the Pleurobrachia pileus, the
corresponding carbon mass of Calanus helgolandicus in panel b is six times greater than that of
Pleurobrachia pileus in panel a.

This form of visual sampling bias is amplified by physical aggregation in coastal areas. The

UK media declared 2015 the “year of the jelly” as a result of mass strandings (especially of the

large rhizostomid, Rhizostoma octopus) around the country (BBC News, 2015). These media

reports were supported by ecological surveys in the south west of England (Hiscock and Earll,

2015). However, despite the relatively high reported populations, 2015 was unremarkable with

respect to gelatinous populations at L4. The sampling regime at L4 is not designed to catch large

gelatinous taxa however during this period additional zooplankton sampling was performed as part

of the Marine Ecosystems Research Program (Hiscock and Earll, 2015). This sampling involved

using a 1m2 net to sample a total of 55,000m3 of seawater across day and night cycles, throughout

the year. Large gelatinous zooplankton were observed in inshore areas however very few were

caught across the entire sampling period (1 adult Chrysaora hysoscella), despite the sampling

closely adhering to established guidelines for catching these taxa (Raskoff, 2003). This

demonstrates the stipulation made by Lucas and Dawson (2014) in the first definition given, that

ba



99

not all high populations represent true blooms. It is also worth noting that most gelatinous taxa are

not large, and that many small gelatinous do not form blooms following their definition.

This discussion is not intended to trivialise blooms, as the ecological and biogeochemical

implications of bloom events are clearly significant. This discussion intends instead to address the

extent to which low carbon percentage drives our interpretation of jellyfish blooms. When we

encounter a jellyfish bloom it is often interpreted as an extraordinary concentration of biomass of a

particular organism, but interpreting a bloom as a normal concentration of an extraordinary animal

may be more appropriate.
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CHAPTER 6 – Body size as a function of carbon mass and

carbon percentage
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6.1 - Introduction

Despite body size influencing all aspects of an organism’s biology, it is an ambiguous term.

Body size refers not to a single quality but to a range of variables that are related to different

aspects of the physiology and ecology an organism. As a result of this, for information on the body

size of an organism to be informative, it must be an appropriate measure for the question being

investigated. For instance, when relating metabolic rate to body size, carbon or nitrogen mass is

often most appropriate and the latter has been used widely (Brown et al., 2005, Kiorboe and Hirst,

2014). For investigating trends in metabolism, if we instead choose length as our measure of body

size, we would find that organisms with highly elongated bodies might skew the relationship. We

might expect the 40m long (but 3cm wide) siphonophore, Praya dubia to have a higher metabolic

rate than that of a 25m long blue whale, despite the whale being many times greater in mass.

Conversely, when considering whether a prey item is capable of being eaten by a gape-limited

predator, length along the longest dimension will be of paramount importance, especially for taxa

with long spines such as Porcellana platycheles larvae.

If all organisms were the same shape and composition then different measures would not

be so necessary, however massive variation exists both inter and intraspecifically. While the

variability between carbon mass and length as a result of shape change is readily accepted and

even applied (Hirst et al., 2014), the variability between carbon mass and wet mass observed in

zooplankton has not been considered in detail. This variability was summarised in the negative

relationship between carbon mass and carbon percentage presented in chapter 3, and is explored

in greater detail below.

As carbon mass and carbon percentage have different effects on organismal biology,

investigating how taxa are distributed in this trait space might help to shed light on how the body

size of plankton influences their biology and evolution. The aim of this chapter is to investigate the
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form and implications of the relationship between carbon mass and carbon percentage through the

following objectives;

- Determine the relationship between carbon mass and carbon percentage using the meta-

analysis and L4 datasets.

- Investigate the spread around this relationship, focussing on the areas of trait space that

are not populated with taxa.

- Discuss other taxa that are not gelatinous but show analogous decoupling between

metabolic and ecological body size (i.e. pseudo-gelatinous taxa)

- Investigate how biomass is distributed in this trait space in a real assemblage using the L4

dataset

6.2 - What is the relationship between carbon percentage and carbon mass, and why is it
important?

In Chapter 3, I found a negative relationship between carbon mass and carbon percentage

(Figure 3.4). The only other study that has investigated this relationship is by Molina-Ramirez et al.

(2015) exploring the relationship between carbon mass and wet mass of a range highly gelatinous

taxa (cnidarians, ctenophores, salps and doliolids). These authors separated the taxa on the basis

of feeding mode; carbon percentage decreased with increasing carbon mass in filter feeders (salps

and doliolids), while in carnivores (cnidarians and ctenophores) carbon percentage was constant.

The results in Chapter 3 followed the pattern of decreasing carbon percentage observed for the

salps and doliolids in the study by Molina-Ramirez et al. (2015). However, in my study, carbon

percentage decreased with increasing carbon mass across all taxa, regardless of feeding mode.

This difference could be the result of including the full range of zooplankton in Chapter 3, in

contrast to just highly gelatinous taxa in the study by Molina- Ramirez et al. (2015).

In the study by Molina-Ramirez et al. (2015), the linear relationships between carbon mass

and wet mass were used to derive single values of carbon percentage for ctenophores (0.23% ±
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0.14%) and cnidarians (1.77% ± 2.44%). In the meta-analysis presented in Chapter 3, carbon

percentage within the cnidarians alone ranged from 0.02 and 2.22%, corresponding to a 110-fold

difference in wet mass at equivalent carbon mass. While attributing a single value to a wide range

of species can provide some simplification, it could lead to large errors. For instance, the range of

carbon percentage seen in the cnidarians alone in Chapter 2 could correspond to a doubling in

growth rate at the same carbon mass.

In the study by Molina-Ramirez et al. (2015), whether carbon percentage decreased with

increasing carbon mass across species was dependent on feeding mode. Carnivores (defined as

cnidarians and ctenophores) were found to have a fixed carbon percentage of 1.77% ± 2.44% at all

carbon masses. Chapter 4 investigated the carbon percentage of Aurelia aurita throughout early

development. On the basis of the findings of Molina-Ramirez et al. (2015) the carbon percentage of

Aurelia aurita should not vary with carbon mass as it is a carnivore. However in chapter 3, it was

observed that Aurelia aurita ephyrae diluted carbon centrations from 2.3% to 0.1% through

ontogeny. This could be a result of Chapter 4 investigating intraspecific variability and the previous

study by Molina Ramirez et al. (2015), interspecific variability. However, if the feeding mode

hypothesis advanced by Molina-Ramirez et al. (2015) is correct then it should not matter whether

the variation in carbon mass is interspecific or intraspecific. An alternative cause could be that the

studies are investigating different scales, Chapter 4 investigated between 0.01 and 0.2 mg C in

contrast to the range of between 0.01 and 100000 mg C in Molina Ramirez et al. (2015). Leaving

aside contrasts with previous studies, Chapter 4 is the first investigation of how the carbon and wet

masses interact to determine feeding and growth during development.

6.3 - Carbon percentage – carbon mass trait space

Figure 6.1 shows the relationship between carbon mass and carbon percentage and

demonstrates the distribution of species in this trait space. Inspection of this figure shows that

there are areas of trait space which appear to be without species. Throughout the thesis I have
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discussed the potential benefits of viewing carbon percentage as a continuous trait. In this plot

there is an interval between those taxa classically considered gelatinous and those not. However,

this junction constitutes a tiny fraction of the range, between Clione limacina (2.49%) and Sagitta

spp. (3.54%). Other open areas of the figure could either represent gaps in available data or

indicate potential limits or boundaries in the trait space.

Figure 6.1 – “Trait-space” plot showing Log10 carbon percentage of zooplankton ((carbon mass /
wet mass)*100) as a function of log10 carbon mass (mg) as compiled from literature sources (see
Appendix I), df = 106, p = 0.0003, R2 = 0.12, log10 carbon percentage = 0.30 – 0.1672 log10 carbon
mass. Vacant areas of trait space (colour shaded areas a,b,c) are described in the text below.

a

bc
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6.3.1 - Area a: high carbon mass and high carbon percentage

The first area of empty trait space highlighted in Figure 6.1 (region a marked in red)

indicates an absence of data for taxa with more than 5% carbon that exceed ~250 mg carbon. This

maximum carbon mass is seen in adult Euphausia superba (approximately 65 mm maximum

length: Atkinson et al., 2006), that are one of the largest epipelagic crustaceans. There are clearly

pelagic, carbon-rich taxa with higher carbon masses, from fish to whales, but this body mass very

roughly marks the transition from crustaceans to these nektonic life forms. This could be a result of

the scope for growth scaling discussed above but there are alternative hypotheses, in particular

buoyancy and oxygen requirement (Alexander, 1990; Verberk and Atkinson, 2013).

Large, high carbon percentage animals require supplementary methods to regulate

buoyancy, such as constant swimming in krill (Kils, 1981). These methods, whether based on

motion or regulation of a swim bladder carry an associated cost that could further favour the scope

for growth of more gelatinous taxa at high carbon masses. In the case of highly gelatinous taxa, a

much greater percentage of the body is sea water, and therefore the energetic cost of buoyancy

regulation (sometimes through the exclusion of sulphate ions, Bidigare and Biggs, 1980) at a given

body size is likely to be much lower than that of a high carbon percentage organism.

Oxygen transfer is another factor that could restrict the evolution of large, high carbon

percentage zooplankton. Respiration rate is a function of carbon mass, so the respiratory

requirement of high carbon mass animals is high (despite carbon specific respiration rate typically

decreasing with increasing carbon mass (Kleiber, 1932; Brown et al. 2004; Glazier, 2006)). To be

larger, organisms have had to develop means to increases the rate of oxygen transfer to meet the

increased total respiratory requirement associated with large body size. All of these methods,

including convolution of the body surface or a full respiratory systems increase the rate of oxygen

transfer to exceed the rate that would be possible through passive diffusion across the body

surface alone. The methods used to facilitate oxygen transfer depend on the taxon, however using
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a simple geometric model it is possible to model the effect of variation in carbon percentage on

tissue oxygen availability in a similar manner to feeding rate. Oxygen transfer is a function of

surface area which is dependent on wet mass. Therefore, an organism with a lower carbon

percentage will have a higher surface area to carbon mass ratio than a geometrically similar

organism with higher carbon percentage. This suggests that decreasing carbon percentage

increases carbon specific oxygen availability, potentially alleviating an oxygen limitation boundary.

This is a considerable oversimplification, as organisms rarely grow isometrically (with considerable

implication to metabolic scaling (Glazier et al., 2015)) and not all organisms are identical in shape.

Furthermore, the most gelatinous taxa (cnidarians and ctenophores) maintain low core body

oxygen percentage, such that diffusion gradients into the surface tissues are greater, and oxygen

transfers through the tissues at a greater rate (Thuesen et al., 2005).

Irrespective of how carbon percentage affects respiratory requirements, the resilience of

low carbon percentage taxa to hypoxia is well documented (Purcell et al., 2001; Decker et al., 2004;

Thuesen et al., 2005; Elliot et al., 2012). Even allowing for morphological differences, it is clear that

reduced carbon percentage has the potential to reduce the effects of oxygen limitation in both the

context of hypoxic environments and determining maximum body size.

6.3.2 - Area b: high carbon mass and low carbon percentage

The organisms with the highest carbon masses are between 1.2% and 0.28% carbon, not

at the minimum carbon percentage of approximately 0.05%, thus leaving area b blank (Figure 6.1,

region b marked in green). It is possible that taxa that have lower carbon percentage cannot have

carbon masses this high due to their physical fragility. While I cannot present conclusive data, taxa

with lower carbon percentage tend to have particularly diaphanous bodies even for gelatinous taxa.

Among the least gelatinous scyphomedusae are the rhizostomids with carbon percentage of up to

1.21%. These taxa are well known for their comparative rigidity, supporting their shape outside of
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water, sporting common names such as the cannonball jellyfish and forming the basis of jellyfish

fisheries (Brotz et al., 2016). In contrast, the lowest carbon percentages are observed in the lobate

ctenophores, in particular the mesopelagic Bathycyroe fosteri. The bodies of these taxa are very

fragile and readily fragment under minor physical stress (pers. obs.). However, large lobate

ctenophores do exist, such as Leucothea pulchra (Matsumoto, 1988), capable of reaching lengths

of 25 cm. This could suggest that the gap in the trait space may be in part due to inadequate

sampling techniques for large, highly gelatinous taxa. The use of methods that involve minimal

changes in water pressure or physical disturbance, such as those used with remotely operated

vehicles might help to populate this area of trait space.

6.3.3 - Area c: low carbon mass and low carbon percentage

Finally, the lower left quadrant (Figure 6.1, region c in blue) is sparsely populated,

indicating that there are relatively few taxa with both very low carbon percentage and carbon

masses. This could indicate a lower limit, such that for a given carbon mass there is a minimum

possible carbon percentage. In Chapter 3 we saw that ephyrae dilute from 2.3% carbon to 0.1% as

they increase from 0.01 mg C to 0.17 mg, fitting within this potential boundary. This absence of

taxa could also represent a potential sampling bias caused by the use of nets, or inappropriate

mesh sizes (Raskoff et al., 2003). Several studies using a range of in-situ, visual sampling

techniques have demonstrated the serial underestimation of small gelatinous taxa caused by net

sampling (Luo et al., 2014; Cross et al., 2015)

6.4 - Pseudo gelatinous taxa

Data for pseudo gelatinous taxa seem to counter the trends documented in this thesis.

Pseudo gelatinous taxa are defined here as any organism that artificially increases its effective

body volume without directly increasing the wet mass of the body. There is a range of such

organisms in the plankton, in particular appendicularians and thecosome pteropods. Both groups

(from different phyla) use external mucosal structures for feeding, increasing their feeding potential.
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A terrestrial analogue is the use of web by a spider to catch food. In all instances the animals

increase their effective influence on the environment without increasing their carbon mass and

therefore respiratory requirements. However, the creation and processing of these external

structures is likely costly, contrasting with the seemingly low cost of reducing carbon percentage.

A conceptual difficulty here lies in what is defined as the carbon and wet masses of the

organism. An appendicularian is wholly dependent on the mucosal house for feeding so completely

excluding the house from measurements of mass is not representative of the organism as whole.

However, the house is not attached to the animal and is not living. Likewise, it seems incorrect to

calculate carbon specific feeding rate including the carbon that makes up the house, as it is not

metabolically active. This is analogous to issues over whether to include storage lipid in estimates

of carbon specific metabolic rate (Vidal and Whitledge, 1982). However if wet mass specific

feeding rate is calculated on the basis of the animal alone, the result will be anomalous and not

reflect the trophic strategy or morphology of the animal. This difficulty was also highlighted in a

further contrast between this thesis and the study of Molina Ramirez et al. (2015). In their study,

cnidarians included the cystonect siphonophore Physalia physalis and the chondrophore Velella

velella. While these taxa belong to different groups in the Phylum Cnidaria, they are functionally

united by the presence of a rigid float (similar to cartilage) that maintains their position in the

neuston. This float is largely metabolic inactive (Larimer and Ashby, 1962) and is not involved in

prey capture, therefore including the metabolically inactive float in calculations of carbon mass of

the animal is analogous to examples described above. If we include the float in our estimate of

carbon mass and make the implicit assumption that carbon mass is indicative of the amount of

metabolically active tissue, then we could run into errors. This also explains why Physalia physalis

had a carbon percentage that was significantly greater than that of any other cnidarian (9.02%,

Molina-Ramirez et al., 2015). There are examples where including and excluding both internal and

external structures can be unrepresentative of carbon or wet mass, so a more subtle form of

definition may be needed. One example could be the separation between structure and reserve

advanced by the dynamic energy budget model (Kooijman, 2010; Sousa et al., 2010). While for
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many organisms, whole body measurements of carbon and wet mass will be most appropriate, the

exceptions will often demonstrate interesting evolutionary strategies such as those detailed above.

6.5 - Carbon mass and carbon percentage at the L4 study site

The figure and discussion above indicate the potential trait space of carbon mass and

carbon percentage. Therefore, it could be instructive to compare how this potential trait space

corresponds to a real assemblage. For this, individual carbon mass, carbon percentage and taxon

biomass were calculated for each taxon at the L4 sampling site (Figure 6.2).
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Figure 6.2 – Distribution of mean zooplankton biomass across axes of log10 carbon percentage and

log10 individual carbon mass (a) or log10 individual wet mass (b) at the L4 sampling site between

1988 and 2016. Mean biomass (mg C m-3 for panel a and mg WM m-3 for panel b) for each species

was obtained by averaging across all sampling time points. Larger bubbles indicate higher mean

taxon biomass. Carbon masses were measured and carbon percentages were assigned as

described in Chapter 5.

Firstly, the trait distribution at L4 follows that defined in Figure 3.4 with carbon mass

increasing with decreasing carbon percentage. The majority of the carbon mass at L4 is found

between 6.4 and 12.6% carbon, including the majority of the calanoid copepods. Within this carbon

percentage range, between 1 and 10 µg C is particularly biomass laden, including Acartia clausi,

Centropages spp and Para/Clauso/Cteno/Pseudocalanus.

The distribution of mean wet mass across a trait space of wet mass and carbon percentage

is shown in Figure 6.2b. Beroe spp. were omitted due to potential identification and recording

issues. This distribution differs from that of Figure 6.2a, with mean wet mass more evenly

distributed across the range. There is less biomass in the intermediate gelatinous range (0.8% < x

< 6.4%) despite this range including ecologically important taxa such as chaetognaths. Greater

mean wet mass is observed towards to the more gelatinous end of the spectrum, as moderate

carbon masses in this area correspond to disproportionately high wet masses. The greatest mean

carbon mass was found in an intermediate carbon mass bracket (<10 mg C), but the greatest

mean wet mass was found in the maximum wet mass bracket (>100000 mg WM). This suggests

that when gelatinous taxa dominate in wet mass terms it is because of relatively fewer larger

individuals, rather than many small individuals. When the community is assessed in carbon mass

terms (6.2a) the crustacean taxa are dominant but in wet mass terms (6.2b) the more gelatinous

taxa are more significant, following the pattern seen in Chapter 5. The direct effect of carbon
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percentage on feeding and growth rates and the radical difference between zooplankton

assemblages viewed from carbon and wet mass terms highlights the importance of carbon

percentage to understanding plankton biology.

6.6 - Conclusion

This chapter has demonstrated that the relationship between carbon mass and carbon

percentage can suggest how different constraints shape zooplanktonic taxa. A whole range of

different parameters can influence the size of organisms, including buoyancy and oxygen

availability. The adoption of a more gelatinous body may increase the maximum carbon mass

possible for an organism to live a planktonic lifestyle. More gelatinous taxa are closer to seawater

in density and therefore potentially expend less energy on buoyancy regulation than denser

organisms. Similarly, organisms with a more gelatinous body will have lower respiratory demands

at the same wet mass, potentially allowing them to survive areas of lower oxygen concentration.

While these examples are tied specifically to the environment experienced by zooplankton, the

variability seen here has wider analogous significance. More generally, variation in the relationship

between carbon and wet mass represents a decoupling between metabolic and physiological body

size. This decoupling occurs in a wide variety of organisms from all environments, including

spiders. When the decoupling between metabolic and physiological body size is appreciated,

ecosystems can be viewed through either lens, highlighting the importance of using the appropriate

index of body size for the question being investigated.
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CHAPTER 7 – Concluding discussion
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7.1 - Introduction

This thesis has examined the merit of using carbon percentage as a trait for understanding

different aspects of zooplankton biology, over a range of scales and using different approaches

involving experiments, time series analysis and meta-analysis. This chapter begins by

summarising the results of Chapters 2, 3 and 4 to detail our current understanding of how carbon

percentage affects vital rates. From there the population level implications of carbon percentage

are discussed, alongside how the trait can be integrated into ecological models. Finally, an

example from the L4 time series will be used to demonstrate how carbon percentage can be used

as an ecological indicator in further work.

7.2 - Carbon percentage as a predictor variable for biological rates

To establish any relationships between carbon percentage and biological rates, I first

needed to determine whether treating carbon percentage as a continuous variable reflects this trait

in natural systems. This was investigated in Chapter 3 by plotting the carbon percentage of a wide

range of zooplankton species. The distribution of species across this spectrum was not

homogenous but was sufficient to allow carbon percentage to be treated as a continuous variable,

and so carbon percentage was used as a predictor variable throughout the thesis. While a central

gap between thaliaceans and chaetognaths did exist (Kiørboe, 2013), this gap was small

compared to the full range, or even the variability within the Cnidaria alone. This variation is

significant as the range of carbon percentage within classical gelatinous taxa alone (cnidarians,

ctenophores and tunicates) was sufficient to have on effect on growth rate (Figure 3.5).

The key processes that determine organismal energy budgets are respiration, feeding,

assimilation and growth. As described in the introduction, Acuña et al. (2011) demonstrated that

respiration was dependent on carbon mass, and therefore is not directly affected by carbon
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percentage. As a result, this thesis has focussed at an organismal level on feeding and growth

rates.

7.2.1 - Feeding rates

Feeding was investigated in Chapter 4 by incubating Aurelia aurita ephyrae in saturating

concentrations of Artemia nauplii. Ingestion rate was related to bell diameter, potentially as a result

of prey capture being focussed on the lappet tips (Sullivan et al., 1997). As the ephyrae increased

in carbon mass they decreased in carbon percentage. In the model, this dilution increased

diameter, and therefore increase in feeding rate over time, faster than would have been possible if

the ephyrae did not dilute during development. The increase in diameter associated with the

dilution was equivalent to a 28% increase in feeding rate at the same carbon mass (Chapter 4).

Only a single species was investigated in Chapter 4, so the effect of carbon percentage on

feeding across different species might be different. The effect of carbon percentage on feeding rate

across zooplankton species was not directly investigated although inferences can be made using

the results of Chapter 4. Specific feeding methods tend to decrease in efficiency with increasing

body volume (Kiørboe, 2011). This suggests that wet mass- specific feeding rate will tend to

decrease with the increasing wet mass, whether the mass was produced maintaining the same

carbon percentage or by dilution. Therefore, carbon percentage will have no effect on wet mass

specific feeding rate.

However, the situation is reversed for carbon mass. If an organism increases in wet mass

by dilution while keeping carbon mass constant, it will experience a higher carbon specific feeding

rate than an organism that does not exhibit this increase. This is a result of the organism

increasing in wet mass (and therefore feeding rate) without increasing in carbon mass, leading to a

greater amount of food per unit carbon of the organism. A higher carbon-specific feeding rate
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means a greater scope for growth, potentially increasing fitness. Scope for growth is an estimate of

metabolic profit, calculated as carbon ingested minus respiratory costs. As ingestion rate is

function of wet mass and respiration rate is a function of carbon mass, scope for growth will be

highly dependent on the interaction of carbon and wet mass, here expressed as carbon

percentage.

7.2.2 - Growth rates

The effect of carbon percentage on growth rate was investigated across species in Chapter

3 and within a single species in Chapter 4. The effect of carbon percentage on intraspecific growth

rate was unclear (Chapter 4). As carbon mass and carbon percentage were highly correlated it

was not possible to distinguish between the effects of these two variables. It was observed that the

wet mass scaling exponent for growth in the ephyrae in Chapter 3 (b = 0.62) was lower than that of

many crustacean zooplankton based on intraspecific studies (b = 1, Hirst and Forster, 2013), so it

is possible the process of dilution has an associated cost.

The effect of carbon percentage on growth rate between species was more pronounced

than within species (Chapter 3). For maximum and mean growth rates, decreasing carbon

percentage had a positive effect on growth rate. Across the range of zooplankton in the meta-

analysis in Chapter 3, the effect of carbon percentage and carbon mass on growth was of a similar

magnitude. Thus a change in carbon percentage of two orders of magnitude (e.g. from 15% in

Calanus helgolandicus to 0.1% in Aurelia aurita) has an equivalent effect on growth rate to a

decrease by two orders of magnitude in carbon mass. This increase in growth rate associated with

decreasing carbon percentage could be the result of increased carbon specific feeding rate, as

modelled mechanistically in Chapter 4.
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One of the key results in Chapter 3 was a growth equation unifying the effects of carbon

mass and carbon percentage. The strength of a unified growth equation is that it allows all

zooplankton to be modelled with a single equation, without overlooking the effects of variation of

carbon percentage on growth. Additionally, this approach can provide coverage for groups for

which empirical growth data may not be available. It is far more straightforward to obtain the

carbon and wet masses of an organism than to measure growth rate, so for rare species this could

represent an effective approximation. Carbon mass is a necessity to predict any vital rate but in

cases where wet mass is not easily quantified, the carbon percentage of a wide range of

zooplankton taxa are provided in Appendix I. It should be noted however that food availability and

temperature also influence growth rate, and the growth rate equation provided represents

maximum food saturated growth rate at 15oC.

7.3 - Population dynamics

The combined effects of carbon mass and carbon percentage on population level

processes were tested in Chapter 5. Gelatinous zooplankton are well known for forming blooms

and one aim here was to determine to what extent the organismal level traits described in other

chapters drove bloom formation. It was predicted that the increase in feeding and growth rates

described in the preceding chapters might increase the population growth potential of gelatinous

zooplankton, translating to higher maximum population increase rate and variability. However,

interpreting the data is not straightforward. Variability in abundance was inversely related to carbon

percentage, such that more gelatinous taxa tended to be more variable across a range of time

scales. However, there was no relationship between carbon percentage and population increase

rate. This suggests that despite the apparent energy budget benefits of lowered carbon percentage,

other process such as low carbon mass, parthenogenesis and benthic resting stages were also

important in determining population increase rate and likely bloom formation. In fact, the maximum

rate of carbon biomass increase of some copepod taxa (such as Temora longicornis) exceeded

that of the more gelatinous taxa. Indeed, most gelatinous taxa are small and do not form blooms.
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However, the maximum wet biomass (mg WM m-3) was much higher in in more gelatinous taxa,

resulting in highly visible populations over a short period. This could help to explain why rapid

population increases in gelatinous zooplankton are considered significant and termed blooms,

while increases in carbon mass of equal magnitude in less gelatinous taxa are not. It is worthy of

note that many of the bloom forming gelatinous zooplankton that are of anthropogenic importance,

such as Pelagia noctiluca and Mnemiopsis leidyi, are not recorded at L4. It is possible that these

larger animals, and others such as the very large rhizostomids, rely on the scope for growth

advantage described in the preceding chapters to maintain rapid growth at such large carbon

masses.

7.4 - Addition of carbon percentage to trait based models

Despite the demonstrated significance of highly gelatinous taxa in planktonic ecosystems,

carbon percentage is rarely considered in models of zooplankton ecology and was not mentioned

in a recent review of zooplankton traits (Hébert et al., 2017). Tellingly, gelatinous zooplankton are

often omitted from plankton or ecosystem models, possibly as a result of the differences between

vital rates of highly gelatinous and less gelatinous taxa (Zhao et al., 2008; Everett et al., 2017;

Kenitz et al., 2017). While the impact of highly gelatinous taxa varies between systems, omitting

these taxa will reduce the utility of these ecosystem models. For instance, highly gelatinous taxa

constitute the majority of the wet biomass at L4, as shown in Figure 6.3b.

The approach adopted in this thesis offers an alternative, substituting the dichotomy of

cnidarians, ctenophores and salps vs all other zooplankton with a more quantitative description

based on body composition (and the associated effects). This approach to dealing with the effects

of carbon percentage is similar to how other traits have been integrated into trait based modelling.

Instead of classifying species on the basis of phylogeny, taxa are classified on their functional

characteristics, and scored on the basis of these traits. One example is mixotrophy. Many protists

are to some extent mixotrophic, so using a categorical approach of phototroph or heterotroph
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overlooks useful variation (Flynn and Mitra, 2009; Flynn et al., 2012). By quantifying the extent of

mixotrophy for a given group, the benefits and trade-offss can also be modelled in quantitative way.

A similar approach can be used with carbon percentage, but it is easier to measure and

quantify, especially when compared to some other routinely used zooplankton traits, such as

feeding mode. Alongside ease of use, carbon percentage has been demonstrated to have effects

of a similar magnitude to that of carbon mass (Chapter 2), the fundamental biological trait

(Andersen, 2016). The traits of body mass and biovolume are considered independently in a recent

review (Hébert et al., 2017), ignoring the importance of carbon percentage as an integrator of

these multiple measures of size. Carbon mass (or more generally body size) is the primary trait

used in many models, and indeed, some models focus on size alone. In size based models, the

effects of low carbon percentage may cause highly gelatinous taxa to behave differently than other

less gelatinous zooplankton, and may require them to be treated separately if considered at all.

This causes increased model complexity but can be mitigated by the addition of carbon percentage

as a trait. Carbon percentage summarises the decoupling between wet mass and carbon mass

seen in the plankton, and unites it along a single axis. Values for this variable can be obtained

through measurement, or by consulting Appendix I of this thesis. Indeed, many particle analysers

or automated approaches to zooplankton enumeration use volume or equivalent spherical

diameter, which can be taken as an effective approximation of wet mass for most zooplankton.

This complements the information necessary to estimate vital rates of zooplankton without having

to separate taxa on the basis of phylogeny.

7.5 - Carbon percentage as an ecological indicator

In the preceding chapters, carbon percentage has been used on a species or individual

basis to ask questions about energy budgets and development. However, carbon percentage can

also be used as a descriptive index, at different organisational levels. In a similar way to size
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spectra, uniting individual traits into a single expression can give useful information about the

assemblage as a whole.

For instance, it is generally accepted that gelatinous taxa are more common during the

summer months, reflected in the abundance of media coverage regarding jellyfish strandings

through the summer months (BBC News, 2016a; 2016b). By using carbon percentage to calculate

the wet mass of each zooplankter, summing them and dividing the sum carbon mass by this

number, it is possible to estimate the carbon percentage of the assemblage as a whole. Using this

single value, we can investigate the ratio of highly gelatinous taxa relative to other zooplankton

through the year, and determine whether gelatinous taxa are more numerous in summer (Figure

5.4).

Figure 7.1 – Monthly average assemblage carbon percentage at the L4 sampling site between
1988 and 2016. Assemblage carbon percentage was calculated as the sum of abundance of each
taxon multiplied by their carbon mass, divided by the sum of the abundance of each taxon
multiplied by their wet mass. Assemblage carbon percentage at each time point was sorted by
month, and then averaged.
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According to this index, assemblage carbon percentage is both lowest and most variable in

autumn at L4. This index can be used at different temporal scales to ask different questions, for

instance, when applied to the full L4 time series between 1988 and 2016, there is a trend of

decreasing assemblage carbon percentage over time (Figure 7.2). Further analysis suggests that

this is the result of assemblage carbon percentage decreasing in autumn (Figure 7.3).

Figure 7.2 – Assemblage carbon percentage (averaged by year) at the L4 sampling site recorded
weekly between 1988 and 2016. Carbon percentages assigned as described in Chapter 4, df = 28,
p = 0.0037, R2 = 0.26, carbon percentage = - 0.0615 year + 129.68. Ctenophores were omitted
due to potential preservation and recording issues.
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Figure 7.3 – Trends in assemblage carbon percentage at the L4 sampling site between 1988 and
2016 in different seasons (winter = Jan, Feb, Mar, spring = Apr, May, Jun, summer = July, Aug,
Sep, autumn = Oct, Nov, Dec). Spring carbon percentage = - 0.0457 year + 100.21, p = 0.052, R2

= 0.13. Summer carbon percentage = - 0.0615 year + 128.3, p = 0.104, R2 = 0.095. Autumn carbon
percentage = - 0.0971 year + 199.2, p = 0.007, R2 = 0.24. Winter carbon percentage = 0.0275 year
+ 62.422, p = 0.33, R2 = 0.036. As above, ctenophores were omitted due to potential identification
and recording issues.

This plot shows that the trend of decreasing carbon percentage with time is strongest

during autumn. This could help to explain why autumn was also the most variable season in the

above plot of assemblage carbon percentage as a function of month. The intention is not to make

compelling evidence that gelatinous zooplankton are increasing at L4, but rather demonstrate that

carbon percentage can be a valuable way to summarise a zooplankton assemblage. Used in this

way, carbon percentage could be used as a monitoring tool as an alternative to the currently used

Marine Strategy Framework Directive (MSFD) lifeforms approach (Tett et al., 2015) to investigate

the effects of fishing pressure, climate change and increased coastal development on zooplankton

assemblages. While all indices have positive and negative qualities, assemblage carbon

percentage could be particularly useful for comparing across multiple time series where different

species are recorded.
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7.6 - Closing remarks

Size is seen as the “master” trait because it determines such a wide variety of factors

associated with organismal biology (Andersen, 2016). All physiological and ecological processes

are in some way related to the size of the organism. For most organisms, different metrics of body

size are broadly interchangeable. However; the seemingly exceptional characteristics of highly

gelatinous zooplankton demonstrate that body size is a complex trait that is routinely oversimplified.

Examination of the differences between highly gelatinous taxa and other zooplankton helped to

show that different metrics of body size refer to different characteristics. Carbon mass represents

metabolic body size, the amount of an organism that is actively involved in physiological processes

such as respiration and excretion. Wet mass represents the effective influence of an organism, the

amount of the surrounding environment that interacts with the organism at a given time. Wet mass

also dictates the size of an organism relative to other organisms, a critical factor in determining

food webs. Viewed this way, wet mass can be considered as an “ecological body size”.

The unique physical characteristics of the marine environment allow zooplankton to

decouple these two metrics of body size, such that a single size metric is insufficient to fully define

the range of characteristics commonly associated with body size. This decoupling allows

organisms to adopt combinations of metabolic and ecological body size that otherwise would not

be possible. This can have profound effects on organismal energy budgets and even population

dynamics.

While previous studies have categorically separated jellyfish from other zooplankton, this

thesis has endeavoured to show that the difference is a quantitative one based on these different

metrics of body size. Furthermore, this thesis has demonstrated some of the ways that this can

impact organismal energy budgets irrespective of phylogenetic affiliation, and has provided

reasons why a lowered carbon percentage is seen in such a wide range of phyla. This approach of

adopting carbon percentage as continuous trait to describe the decoupling of metabolic and
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ecological body size can form a significant step toward a comprehensive picture of how taxa

function and interact in the plankton. Using this information, we can better understand the

differences and similarities between zooplanktonic taxa, and better predict how they might respond

to our changing oceans.



128

References

Acuña, J.L. (2001) Pelagic tunicates: Why gelatinous? American Naturalist 158 100-106.

Acuña, J.L., Lopez-Urrutia, A. and Colin, S. (2011) Faking giants: The evolution of high prey

clearance rates in jellyfishes. Science 333 1627-1629.

Addad, S., Exposito, J. Y., Faye, C., Ricard-Blum, S., and Lethias, C. (2011) Isolation,

characterization and biological evaluation of jellyfish collagen for use in biomedical

applications. Marine Drugs 9 967-983.

Alexander, R.M. (1990) Size, speed and buoyancy adaptations in aquatic animals. American

Zoologist 30 189-196.

Alldredge, A.L. (1984) The quantitative significance of gelatinous zooplankton as pelagic

consumers. In Flows of energy and materials in marine ecosystems (pp. 407-433). Springer US.

Alldredge, A.L. and Madin, L.P. (1982) Pelagic tunicates: unique herbivores in the marine plankton.

Bioscience 32 655-663.

Andersen, K. H., Berge, T., Gonçalves, R.J., Hartvig, M., Heuschele, J., Hylander, S. and Olsson,

K. (2016) Characteristic sizes of life in the oceans, from bacteria to whales. Annual Review of

Marine Science 8 217-241.

Andersen, K.H, Aksnes, D.L., Berge, T., Fiksen, Ø., and Visser, A. (2015a) Modelling emergent

trophic strategies in plankton. Journal of Plankton Research 37 862-868.



129

Andersen, K.H., Berge, T., Goncalves, R.J., Hartvig, M., Heuschele, J., Hylander, S., Jacobsen,

N.S., Lindemann, C. et al. (2015b) Characteristic sizes of life in the oceans, from bacteria to

whales. Annual Review of Marine Science 8 3.1-3.25.

Anderson, J.T., Inouye, D.W., McKinney, A.M., Colautti, R.I. and Mitchell-Olds, T. (2012)

Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in

response to climate change. Proceedings of the Royal Society of London B: Biological Sciences,

p.rspb20121051.

Arai, M.N., (2012) A functional biology of Scyphozoa. Springer Science & Business Media.

Atkinson, A., Shreeve, R.S., Hirst, A.G., Rothery, P., Tarling, G.A., Pond, D.W., Korb, R.E., Murphy,

E.J., et al. (2006) Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models

based on food, temperature, body length, sex and maturity stage. Limnology and Oceanography

51 973-987.

Båmstedt, U., Wild, B. and Martinussen, M. (2001) Significance of food type for growth of ephyrae

Aurelia aurita (Scyphozoa). Marine Biology 139 641-650.

BBC News (2015) Jellyfish at record high, says Marine Conservation Society. [ONLINE] Available

at: http://www.bbc.co.uk/news/uk-england-devon-33988083. [Accessed 27 April 2017].

BBC News (2016a) Stinging jellyfish spotted on Scots beach. [ONLINE] Available at:

http://www.bbc.co.uk/news/uk-scotland-36916594. [Accessed 11 April 2017]

BBC News (2016b) Thousands of jellyfish wash up on Cornish beach. [ONLINE] Available at:

http://www.bbc.co.uk/news/uk-england-cornwall-36793950. [Accessed 11 April 2017]

http://www.bbc.co.uk/news/uk-england-devon-33988083
http://www.bbc.co.uk/news/uk-scotland-36916594
http://www.bbc.co.uk/news/uk-england-cornwall-36793950


130

Belsley, D., Kuh, E. and Welsch, R. (1980) Regression diagnostics. Wiley.

Bidigare, R.R. and Biggs, D.C. (1980) The role of sulfate exclusion in buoyancy maintenance by

siphonophores and other oceanic gelatinous zooplankton. Comparative Biochemistry and

Physiology 66A 467-471.

Blackett, M., Lucas, C.H., Harmer, R.A. and Licandro, P. (2015). Population ecology of Muggiaea

atlantica (Cnidaria, Siphonophora) in the Western English Channel. Marine Ecology Progress

Series 535 129-144.

Bone, Q. (ed.) (1998) The biology of pelagic tunicates. Oxford University Press, Oxford.

Brotz, L. and Pauly, D. (2016) Studying jellyfish fisheries: toward accurate national catch reports

and appropriate methods for stock assessments. Jellyfish: Ecology, Distribution Patterns and

Human Interactions. Nova Publishers, Hauppauge, NY.

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a metabolic

theory of ecology. Ecology 85 1771-1789.

Burnham, K.P. and Anderson, D.R. (2002) Model selection and multimodel inference: A practical

information-theoretic approach. Springer, New York.

Canepa, A., Fuentes, V., Sabatés, A., Piraino, S., Boero, F. and Gili, J.M. (2014) Pelagia noctiluca

in the Mediterranean Sea. In Jellyfish blooms (pp. 237-266). Springer Netherlands.

Clarke, A. and Peck, L.S. (1991) The physiology of polar marine zooplankton. Polar Research 10

355-370.



131

Clarke, A., Holmes, L.J. and Gore, D.J. (1992) Proximate and elemental composition of gelatinous

zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155

55-68.

Cole, M., Lindeque, P.K., Fileman, E., Halsband, C. and Galloway, T. (2015) The impact of

microplastics on feeding, function and fecundity in the copepod Calanus helgolandicus.

Environmental Science & Technology 49 1130-1137.

Condon, R.H, Duarte, C.M., Pitt, K.A., Robinson, K.L., Lucas, C.H., Sutherland, K.R., Mianzan,

H.W., Bogeberg, M. et al. (2013) Recurrent jellyfish blooms are a consequence of global

oscillations. Proceedings of the National Academy of Sciences U.S.A. 110 1000-1005.

Condon, R.H., Graham, W.M., Duarte, C.M., Pitt, K.A., Lucas, C.H., Haddock, S.H., Sutherland,

K.R., Robinson, K.L., Dawson, M.N., Decker, M.B. and Mills, C.E. (2012) Questioning the rise of

gelatinous zooplankton in the world's oceans. BioScience 62 160-169.

Cross, J., Nimmo-Smith, W.A.M., Hosegood, P.J. and Torres, R. (2015) The role of advection in

the distribution of plankton populations at a moored 1-D coastal observatory. Progress in

Oceanography 137 342-359.

D’Ambra, I., Graham, W.M., Carmichael, R.H. and Hernandez, F.J. (2015) Fish rely on scyphozoan

hosts as a primary food source: evidence from stable isotope analysis. Marine Biology 162 247-

252.

Decker, M.B., Breitburg, D.L. and Purcell, J.E. (2004) Effects of low dissolved oxygen on

zooplankton predation by the ctenophore Mnemiopsis leidyi. Marine Ecology Progress Series 280

163-172.



132

Delannoy, C.M., Houghton, J.D. Fleming, N.E., and Ferguson, H.W. (2011). Mauve Stingers

(Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum.

Aquaculture 311 255-257.

Dong, J., Jiang, L.X., Tan, K. F., Liu, H.Y., Purcell, J. E., Li, P. J., and Ye, C.C. (2009) Stock

enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a

review. Hydrobiologia 616 113-118.

Dong, Z., Liu, D. and Keesing, J.K. (2010) Jellyfish blooms in China: dominant species, causes

and consequences. Marine Pollution Bulletin 60 954-963.

Doyle, T. K., De Haas, H., Cotton, D., Dorschel, B., Cummins, V., Houghton, J. D., and Hays, G.C.

(2008). Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters.

Journal of Plankton Research 30 963-968.

Duarte, C. M., Pitt, K. A., Lucas, C. H., Purcell, J. E., Uye, S. I., Robinson, K., and Madin, L. (2013)

Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and the Environment 11

91-97.

Dunn, C.W., Leys, S.P. and Haddock, S.H. (2015) The hidden biology of sponges and ctenophores.

Trends in Ecology & Evolution 30 282-291.

Dunn, C.W., Pugh, P.R. and Haddock, S.H. (2005) Molecular phylogenetics of the siphonophora

(Cnidaria), with implications for the evolution of functional specialization. Systematic Biology 54

916-935.

Edwards, M. and Richardson, A.J. (2004) Impact of climate change on marine pelagic phenology

and trophic mismatch. Nature 430 881.



133

Elliott, D.T., Pierson, J.J. and Roman, M.R. (2012) Relationship between environmental conditions

and zooplankton community structure during summer hypoxia in the northern Gulf of Mexico.

Journal of Plankton Research 34 602-613.

Eloire, D., Somerfield, P.J., Conway, D.V.P., Halsband-Lenk, C., Harris, R. and Bonnet, D. (2010)

Temporal variability and community composition of zooplankton at station L4 in the Western

Channel: 20 years of sampling. Journal of Plankton Research 32 657–679.

Everett, J.D., Baird, M.E., Buchanan, P., Bulman, C., Davies, C., Downie, R., Griffiths, C.,

Heneghan, R., Kloser, R., Laiolo, L. and Lara Lopez, A. (2017) Modelling what we sample and

sampling what we model: challenges for zooplankton model assessment. Frontiers in Marine

Science 4 77.

FAO (1999) Fisheries, Aquaculture Information, Statistics Service FishStatPlus.

Fenner, P.J. and Hadok, J.C. (2002) Fatal envenomation by jellyfish causing Irukandji syndrome.

Medical Journal of Australia 177 362-363.

Finenko, G.A., Kideys, A.E., Anninsky, B.E., Shiganova, T.A., Roohi, A., Tabari, M.R., Rostami, H.

and Bagheri, S. (2006) Invasive ctenophore Mnemiopsis leidyi in the Caspian Sea: feeding,

respiration, reproduction and predatory impact on the zooplankton community. Marine Ecology

Progress Series 314 171-185.

Flynn, K.J. and Mitra, A. (2009) Building the “perfect beast”: modelling mixotrophic plankton.

Journal of Plankton Research 31 965-992.



134

Flynn, K.J., Stoecker, D.K., Mitra, A., Raven, J.A., Glibert, P.M., Hansen, P.J., Granéli, E. and

Burkholder, J.M. (2012) Misuse of the phytoplankton–zooplankton dichotomy: the need to assign

organisms as mixotrophs within plankton functional types. Journal of Plankton Research 35 3-11.

Fosså, J.H. (1992). Mass occurrence of Periphylla periphylla (Scyphozoa, Coronatae) in a

Norwegian fjord. Sarsia 77 237-251.

Fossette, S., Gleiss, A.C., Chalumeau, J., Bastian, T., Armstrong, C.D., Vandenabeele, S.,

Karpytchev, M. and Hays, G.C. (2015) Current-oriented swimming by jellyfish and its role in bloom

maintenance. Current Biology 25 342-347.

Frandsen, K. and Riisgard, H. (1997) Size dependent respiration and growth of jellyfish, Aurelia

aurita. Sarsia 82 307-312.

Frandsen, K.T. and Riisgård, H.U., (1997) Size dependent respiration and growth of jellyfish,

Aurelia aurita. Sarsia 82 307-312.

Fraser, J.H. (1970) The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. ICES

Journal of Marine Science 33149-168.

Fuentes, V.L., Angel, D.L., Bayha, K.M., Atienza, D., Edelist, D., Bordehore, C., Gili, J.M. and

Purcell, J.E. (2010) Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean

Sea in 2009. Hydrobiologia 645 23-37.

Fuentes, V.L., Angel, D.L., Bayha, K.M., Atienza, D., Edelist, D., Bordehore, C., and Purcell, J.E.

(2010) Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean Sea in 2009.

Hydrobiologia 645 23-37.



135

Gemmell, B.J., Costello, J.H., Colin, S.P. Stewart, C.J., Dabiri, J.O.,Tafti, D. and Priya, S. (2013)

Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans.

Proceedings of the National Academy of Sciences USA 110 17904-17909.

Gibbons, M.J. and Richardson, A.J. (2013) Beyond the jellyfish joyride and global oscillations:

advancing jellyfish research. Journal of Plankton Research 35 929-938.

Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. and Charnov, E.L. (2002) Effects of size and

temperature on metabolic rate. Science 293 2248-2251.

Glazier, D.S. (2006) The 3/4-power law is not universal: evolution of isometric, ontogenetic

metabolic scaling in pelagic animals. BioScience 56 325-332.

Glazier, D.S., Hirst, A.G. and Atkinson, D. (2015) Shape shifting predicts ontogenetic changes in

metabolic scaling in diverse aquatic invertebrates. Proceedings of the Royal Society of London B:

Biological Sciences 282 20142302.

Graham, W. M., Pagès, F. and Hamner, W. M. (2001) A physical context for gelatinous

zooplankton aggregations: a review. Hydrobiologia 451 199-212.

Haddock, S. H. (2004) A golden age of gelata: past and future research on planktonic ctenophores

and cnidarians. Coelenterate Biology, Springer, Dordrecht.

Hamner, W.M. and Dawson, M.N., (2009) A review and synthesis on the systematics and evolution

of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616

161-191.



136

Hamner, W.M., Madin, L.P., Alldredge, A.L., Gilmer, R.W. and Hamner, P.P. (1975) Underwater

observations of gelatinous zooplankton: sampling problems, feeding biology, and behaviour.

Limnology and Oceanography 20 907-917.

Hansen, P.J., Bjørnsen, P.K., and Hansen, B.W. (1997) Zooplankton grazing and growth: scaling

within the 2–2000 μm body size range. Limnology and Oceanography 42 687-704.

Hansson, L.J. (1997) Effect of temperature on growth rate of Aurelia aurita (Cnidaria, Scyphozoa)

from Gullmarsfjorden, Sweden. Marine Ecology Progress Series 161 145-153.

Hansson, L.J. and Norrman, B. (1995) Release of dissolved organic carbon (DOC) by the

scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic

bacteria. Marine Biology 121 527-532.

Haraldsson, M., Tönnesson, K., Tiselius, P., Thingstad, T.F. and Aksnes, D.L. (2012) Relationship

between fish and jellyfish as a function of eutrophication and water clarity. Marine Ecology

Progress Series 471 73-85.

Harbison, G.R. (1992) The gelatinous inhabitants of the ocean interior. Oceanus 35 18-23.

Harbison, G.R., Biggs, D.C. and Madin, L.P. (1977). The associations of Amphipoda Hyperiidea

with gelatinous zooplankton—II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep Sea

Research 24 465-488.

Harris, R. (2010) The L4 time series: the first 20 years. Journal of Plankton Research 32 577–583.



137

Harris, R.P., Irigoien, X., Head, R.N., Rey, C., Hygum, B.H., Hansen, B.W., Niehoff, B., Meyer-

Harms, B. and Carlotti, F., (2000) Feeding, growth and reproduction in the genus Calanus. ICES

Journal of Marine Science 57 1708-1726.

Harrison, N.M. (1984) Predation on jellyfish and their associates by seabirds. Limnology and

Oceanography 29 1335-1337.

Hébert, M-P., Beisner, B. E. and Maranger, R. (2017) Linking zooplankton community structure to

ecosystem functioning: towards an effect-trait framework. Journal of Plankton Research 39 3-12

Hendrickx, J. (2012). perturb: Tools for evaluating collinearity. R package version 2.05.

http://CRAN.R-project.org/package=perturb

Hirst, A.G. (2012) Intra-specific scaling of mass to length in pelagic animals: ontogenetic shape

change and its implications. Limnology and Oceanography 57 1579-1590.

Hirst, A.G. and Forster, J. (2013) When growth models are not universal: evidence from marine

invertebrates. Proceedings of the Royal Society of London B: Biological Sciences 280 20131546.

Hirst, A.G., Roff, J.C. and Lampitt, R.S. (2003) A synthesis of growth rates in marine epipelagic

invertebrate zooplankton. Advances in Marine Biology 44 1-142.

Hiscock, K., Earll, B. (2015) South West Marine Ecosystems in 2015. [ONLINE] Available at:

http://swmecosystems.co.uk/wp-content/uploads/2017/03/SWME-2015-

collated_reports_FINAL_December.doc [Accessed 12 May 2017]

Hopcroft, R.R. and Roff, J.C. (1995) Zooplankton growth rates: extraordinary production by the

larvacean Oikopleura dioica in tropical waters. Journal of Plankton Research 17 205-220.

http://cran.r-project.org/package=perturb
http://swmecosystems.co.uk/wp-content/uploads/2017/03/SWME-2015-collated_reports_FINAL_December.doc
http://swmecosystems.co.uk/wp-content/uploads/2017/03/SWME-2015-collated_reports_FINAL_December.doc


138

Hopcroft, R.R., and Roff, J.C., (1995). Zooplankton growth rates: extraordinary production by the

larvacean Oikopleura dioica in tropical waters. Journal of Plankton Research 17 205-220.

Hosia, A., and Båmstedt, U. (2007). Seasonal changes in the gelatinous zooplankton community

and hydromedusa abundances in Korsfjord and Fanafjord, Western Norway. Marine Ecology

Progress Series 351 113-127.

Houghton, J.D., Doyle, T.K., Wilson, M.W., Davenport, J. and Hays, G.C. (2006) Jellyfish

aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology

87 1967-1972.

Ikeda, T. (2013) Synthesis towards a global-bathymetric model of metabolism and chemical

composition of mysid crustaceans. Journal of Experimental Marine Biology and Ecology 445 79-87.

Ikeda, T. (2014) Synthesis toward a global model of metabolism and chemical composition of

medusae and ctenophores. Journal of Experimental Marine Biology and Ecology 456 50-64.

Ikeda, T. and Takahashi, T. (2012) Synthesis towards a global-bathymetric model of metabolism

and chemical composition of marine pelagic chaetognaths. Journal of Experimental Marine Biology

and Ecology 424 78-88.

Jaspers, C., Haraldsson, M., Bolte, S., Reusch, T.B., Thygesen, U.H. and Kiørboe, T. (2012)

Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea.

Biology Letters p.rsbl20120163.

Kawahara, M., Ohtsu, K. and Uye, S.I. (2013) Bloom or non-bloom in the giant jellyfish

Nemopilema nomurai (Scyphozoa: Rhizostomeae): roles of dormant podocysts. Journal of

Plankton Research 35 213-217.



139

Kawahara, M., Uye, S.I., Ohtsu, K. and Iizumi, H. (2006) Unusual population explosion of the giant

jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology

Progress Series 307 161-173.

Kenitz, K.M., Visser, A.W., Mariani, P. and Andersen, K.H. (2017) Seasonal succession in

zooplankton feeding traits reveals trophic trait coupling. Limnology and Oceanography DOI:

10.1002/lno.10494

Kils, U. (1981) The swimming behavior, swimming performance and energy balance of Antarctic

krill, Euphausia superba (No. 3). SCAR and SCOR, Scott Polar Research Institute.

Kim, S. W., and Onbé, T. (1989). Observations on the biology of the marine cladoceran Podon

schmackeri. Journal of Crustacean Biology 9 54-59.

King, K.R., Hollibaugh, J.T., and Azam, F. (1980). Predator-prey interactions between the

larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Marine Biology 56

49-57.

Kiørboe, T. (2011) How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews

86 311-339.

Kiørboe, T. (2013) Zooplankton body composition. Limnology and Oceanography 58 1843-1850.

Kiørboe, T. and Hirst, A.G. (2014) Shifts in mass scaling of respiration, feeding, and growth rates

across life-form transitions in marine pelagic organisms. The American Naturalist 183 118-130.

Kleiber, M. (1932) Body size and metabolism. Hilgardia 6 315-332



140

Kooijman, S.A.L.M. (2010) Dynamic energy budget theory for metabolic organisation. Cambridge

University Press, Cambridge.

Kremer, P. and Reeve, M. (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to

variable food supply. II Carbon budgets and growth model. Journal of Plankton Research 11 553-

574.

Lalli, C.M. and Gilmer, R.W. (1989) Pelagic snails: the biology of holoplanktonic gastropod

mollusks. Stanford University Press.

Larimer, J.L. and Ashby, E.A. (1962) Float gases, gas secretion and tissue respiration in the

Portuguese man‐of‐war, Physalia. Journal of Cellular Physiology 60 41-47.

Larson, R.J. (1987) Respiration and carbon turnover rates of medusae from the NE Pacific.

Comparative Biochemistry and Physiology Part A: Physiology 87 93-100.

Lebrato, M., Pitt, K.A., Sweetman, A.K., Jones, D.O., Cartes, J.E., Oschlies, A., Condon, R.H.,

Molinero, J.C., Adler, L., Gaillard, C. and Lloris, D. (2012) Jelly-falls historic and recent

observations: a review to drive future research directions. Hydrobiologia 690 227-245.

Libralato, S., Christensen, V. and Pauly, D. (2006) A method for identifying keystone species in

food web models. Ecological Modelling 195 153-171.

Licandro, P., Conway, D.V.P., Yahia, M.D., De Puelles, M.F., Gasparini, S., Hecq, J.H. and Kirby,

R.R. (2010). A blooming jellyfish in the northeast Atlantic and Mediterranean. Biology Letters

rsbl20100150.



141

Litchman, E., Ohman, M.D. and Kiørboe, T. (2013) Trait-based approaches to zooplankton

communities. Journal of Plankton Research 35 473-484.

Little, W.S. and Copley, N.J. (2003) Silhouette DIGITIZER Version 1.0 Users Guide. Woods Hole

Technical Report.

Lucas C.H. and Dawson M.N. (2014) What are jellyfishes and thaliaceans and why do they bloom?

In: Pitt, K.A. and Lucas, C.H. (eds) Jellyfish blooms (p 9−44). Springer, Dordrecht.

Lucas, C.H., Pitt, K.A., Purcell, J.E., Lebrato, M. and Condon, R.H. (2011) What's in a jellyfish?

Proximate and elemental composition and biometric relationships for use in biogeochemical

studies. Ecology 92 1704-1704.

Luo, J.Y., Grassian, B., Tang, D., Irisson, J.O., Greer, A.T., Guigand, C.M., McClatchie, S. and

Cowen, R.K. (2014) Environmental drivers of the fine-scale distribution of a gelatinous zooplankton

community across a mesoscale front. Marine Ecology Progress Series 510 129-149.

Lynam, C.P. and Brierley, A.S. (2007) Enhanced survival of 0-group gadoid fish under jellyfish

umbrellas. Marine Biology 150 1397-1401.

Lynam, C.P., Gibbons, M.J., Axelsen, B.E., Sparks, C.A., Coetzee, J., Heywood, B.G. and Brierley,

A.S. (2006) Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16 492.

Lynam, C.P., Heath, M.R., Hay, S.J. and Brierley, A.S. (2005) Evidence for impacts by jellyfish on

North Sea herring recruitment. Marine Ecology Progress Series 298 157-167.

Mackas, D.L., Greve, W., Edwards, M., Chiba, S., Tadokoro, K., Eloire, D., Mazzocchi, M.G.,

Batten, S., Richardson, A.J., Johnson, C. and Head, E. (2012) Changing zooplankton seasonality



142

in a changing ocean: comparing time series of zooplankton phenology. Progress in Oceanography

97 31-62.

Mackas, D.L., Greve, W., Edwards, M., Chiba, S., Tadokoro, K., Eloire, D. and Head, E. (2012)

Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton

phenology. Progress in Oceanography 97 31-62.

Madin, L.P. (1982) Production, composition and sedimentation of salp fecal pellets in oceanic

waters. Marine Biology 67 39-45.

Marcos-López, M., Mitchell, S.O. and Rodger, H.D (2016) Pathology and mortality associated with

the mauve stinger jellyfish Pelagia noctiluca in farmed Atlantic salmon Salmo salar L. Journal of

Fish Diseases 39 111-115.

Matsumoto, G.I. (1988) A new species of lobate ctenophore, Leucothea pulchra sp. nov., from the

California Bight. Journal of Plankton Research 10 301-311.

Maud, J.L., Atkinson, A., Hirst, A.G., Lindeque, P.K., Widdicombe, C.E., Harmer, R.A., McEvoy, A.

and Cummings, D.G. (2015) How does Calanus helgolandicus maintain its population in a

changing climate? Analysis of a 25-year time series from the English Channel. Progress in

Oceanography 137 513-523.

Milisenda, G., Rosa, S., Fuentes, V.L., Boero, F., Guglielmo, L., Purcell, J.E. and Piraino, S. (2014).

Jellyfish as prey: frequency of predation and selective foraging of Boops boops (Vertebrata,

Actinopterygii) on the mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa). PLoS One 9

e94600.



143

Miranda, L.S., Morandini, A.C. and Marques, A.C. (2012) Do Staurozoa bloom? A review of

stauromedusan population biology. Hydrobiologia 690 57-67.

Molina-Ramirez, A., Caceres, C., Romero-Romero, S., Bueno, J., Ignacio Gonzalez-Gordillo, J.,

Irigoien, X., Sostres, J., Bode, A., et al. (2015) Functional differences in the allometry of the water,

carbon and nitrogen content of gelatinous organisms. Journal of Plankton Research. 35 989-1000.

Møller, L.F. and Riisgård, H.U. (2007) Feeding, bioenergetics and growth in the common jellyfish

Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Marine Ecology

Progress Series 346 167-177.

Moloney, C.L. and Field, J.G. (1991) The size-based dynamics of plankton food webs. I. A

simulation model of carbon and nitrogen flows. Journal of Plankton Research 13 1003-1038.

Mullin, M.M., and Onbé, T. (1992). Diel reproduction and vertical distributions of the marine

cladocerans, Evadne tergestina and Penilia avirostris, in contrasting coastal environments. Journal

of Plankton Research 14 41-59.

Nissimov, J.I., Napier, J.A., Allen, M.J., Kimmance, S.A. (2015) Intragenus competition between

coccolithoviruses: an insight on how a select few can come to dominate many. Environmental

Microbiology 18 133-145. 10.1111/1462-2920.12902

Oguz, T., Fach, B. and Salihoglu, B. (2008) Invasion dynamics of the alien ctenophore Mnemiopsis

leidyi and its impact on anchovy collapse in the Black Sea. Journal of Plankton Research 30 1385-

1397.

Olesen, N., Frandsen, K. and Riisgard, H.U., (1994) Population dynamics, growth and energetics

of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series. 105 9-18.



144

Pauly, D., Graham, W., Libralato, S., Morissette, L., and Palomares, M. D. (2009) Jellyfish in

ecosystems, online databases, and ecosystem models. Hydrobiologia 616 67-85.

Peters, R.H., (ed.) (1983) The ecological implications of body size. Cambridge University Press,

Cambridge.

Pianka, E.R (1970) On r-and K-selection. The American Naturalist 104 592-597.

Pitt, K.A., Duarte, C.M., Lucas, C.H., Sutherland, K.R., Condon, R.H., Mianzan, H., Purcell, J.E.,

Robinson, K.L., et al. (2013) Jellyfish body plans provide allometric advantages beyond low carbon

percentage. PLoS One 8 e72683.

Platt, T., (1985) Structure of the marine ecosystem: its allometric basis. Canadian Bulletin of

Fisheries and Aquatic Sciences 213 55-64.

Pond, D.W., Harris, R.P., Head, R.N. and Harbour, D. (1996) Environmental and nutritional factors

determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in

coastal waters off Plymouth, U.K. Marine Ecology Progress Series 143 45-63.

Purcell, J.E. (1984) Predation on fish larvae by Physalia physalis, the Portuguese man of war.

Marine Ecology Progress Series 19 189-191.

Purcell, J.E. (2012) Jellyfish and Ctenophora blooms coincide with human proliferations and

environmental perturbations. Annual Review of Marine Science 4 209-235

Purcell, J.E. and Arai, M.N. (2001) Interactions of pelagic cnidarians and ctenophores with fish: a

review. Hydrobiologia 451 27-44.



145

Purcell, J.E., Breitburg, D.L., Decker, M.B., Graham, W.M., Youngbluth, M.J. and Raskoff, K.A.,

(2001) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review.

Coastal and Estuarine Studies 58 77-100.

Purcell, J.E., Uye, S.I. and Lo, W.T. (2007) Anthropogenic causes of jellyfish blooms and their

direct consequences for humans: a review. Marine Ecology Progress Series 350 153-174.

Quiñones, J., Monroy, A., Acha, E.M. and Mianzan, H. (2013) Jellyfish bycatch diminishes profit in

an anchovy fishery off Peru. Fisheries Research 139 47-50.

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Racault, M.F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. and Platt, T., (2012) Phytoplankton

phenology in the global ocean. Ecological Indicators 14 152-163.

Raskoff, K.A., Purcell, J.E. and Hopcroft, R.R. (2005) Gelatinous zooplankton of the Arctic Ocean:

in situ observations under the ice. Polar Biology 28 207-217.

Raskoff, K.A., Sommer, F.A., Hamner, W.M. and Cross, K.M. (2003) Collection and culture

techniques for gelatinous zooplankton. The Biological Bulletin 204 68-80.

Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to

the composition of plankton (pp. 176-92). University Press of Liverpool, Liverpool.

Richardson, A.J., Bakun, A., Hays, G.C. and Gibbons, M.J. (2009) The jellyfish joyride: causes,

consequences and management responses to a more gelatinous future. Trends in Ecology &

Evolution 24 312-322.

http://www.r-project.org/


146

Roberts, R.J. (2001) Miscellaneous non-infectious diseases. Fish Pathology (pp. 367–379), WB

Saunders, London.

Royall, R.M. (1997) Statistical evidence: a likelihood paradigm. New York, NY: Chapman and Hall.

Sappenfield, A.D., Tarhan, L.G. and Droser, M.L. (2016) Earth's oldest jellyfish strandings: a

unique taphonomic window or just another day at the beach? Geological Magazine 2016 1-16.

Schmidt, K., Atkinson, A., Stübing, D., McClelland, J.W., Montoya, J.P. and Voss, M., (2003)

Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a

stable isotope approach. Limnology and Oceanography 48 277-289.

Seo, H.C., Kube, M., Edvardsen, R.B., Jensen, M.F., Beck, A., Spriet, E., Gorsky, G., Thompson,

E.M., Lehrach, H., Reinhardt, R. and Chourrout, D. (2001) Miniature genome in the marine

chordate Oikopleura dioica. Science 294 2506-2506.

Shiganova, T.A. and Bulgakova, Y.V. (2000) Effects of gelatinous plankton on Black Sea and Sea

of Azov fish and their food resources. ICES Journal of Marine Science 57 641-648.

Smyth, T., Atkinson, A., Widdicombe, S., Frost, M., Allen, I., Fishwick, J., Quieros, A., Sims, D. and

Barange, M. (2015) The Western Channel. Progress in Oceanography 137 335-341

Sousa, T., Domingos, T., Poggiale, J.C. and Kooijman, S.A.L.M., (2010) Dynamic energy budget

theory restores coherence in biology. Philosophical Transactions of the Royal Society of Biology B

365 3413-3428.

Southward, A.J., Langmead, O., Hardman-Mountford, N.J., Aiken, J., Boalch, G.T., Dando, P.R.,

Genner, M.J., Joint, I., Kendall, M.A., Halliday, N.C., Harris, R.P., Leaper, R., Mieszkowska, N.,



147

Pingree, R.D., Richardson, A.J., Sims, D.W., Smith, T., Walne, A.W. and Hawkins, S.J. (2005)

Long-term oceanographic and ecological research in the western English Channel. Advances in

Marine Biology 47 1-105.

Straile, D. (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their

dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology

and Oceanography 42 1375-1385.

Straile, D., (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their

dependence on food concentration, predator‐prey weight ratio, and taxonomic group. Limnology

and Oceanography 42 1375-1385.

Sullivan, B.K., Suchman, C.L. and Costello, J.H. (1997) Mechanics of prey selection by ephyrae of

the scyphomedusa Aurelia aurita. Marine Biology 130 213-222.

Sullivan, L.J. and Gifford, D.J. (2007) Growth and feeding rates of the newly hatched ctenophore

Mnemiopsis leidyi. Journal of Plankton Research 29 949-965.

Sutherland, K.L., Madin, L.P. and Stocker, R. (2010) Filtration of submicrometer particles by

pelagic tunicates. Proceedings of the National Academy of Sciences USA 107 15129-15134.

Sweetman, A.K. and Chapman, A. (2011) First observations of jelly-falls at the seafloor in a deep-

sea fjord. Deep Sea Research Part I: Oceanographic Research Papers, 58 1206-1211.

Tett, P. (2015) Guide to the PLANKTON INDEX method and software, v. 3.01.



148

Thuesen, E.V., Rutherford, L.D., Brommer, P.L., Garrison, K., Gutowska, M.A. and Towanda, T.

(2005) Intragel oxygen promotes hypoxia tolerance of scyphomedusae. Journal of Experimental

Biology 208 2475-2482.

Troedsson, C., Bouquet, J.M., Aksnes, D.L. and Thompson, E.M. (2002) Resource allocation

between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows

opportunistic response to nutritional variation. Marine Ecology Progress Series 243 83-91.

UNESCO (1968) Zooplankton sampling. Monographs on Oceanographic Methodology, Paris.

Uye, S.I. (2008) Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries

sustainability of the East Asian Marginal Seas. Plankton and Benthos Research 3 125-131.

Uye, S.I. (2014) The giant jellyfish Nemopilema nomurai in East Asian marginal seas. In Jellyfish

Blooms (pp. 185-205) ed. Pitt, K.A, Lucas, C.H., Springer, Netherlands.

Verberk, W.C. and Atkinson, D. (2013) Why polar gigantism and Palaeozoic gigantism are not

equivalent: effects of oxygen and temperature on the body size of ectotherms. Functional Ecology

27 1275-1285.

Vidal, J. and Whitledge, T.E. (1982) Rates of metabolism of planktonic crustaceans as related to

body weight and temperature of habitat. Journal of Plankton Research 4 77-84.

Weltzein, F.A., Hemre, G.I., Evjemo, J.O., Olsen, Y. and Fyhn, H.J. (2000) β-Hydroxybutyrate in

developing nauplii of brine shrimp (Artemia franciscana K.) under feeding and non-feeding

conditions. Comparative Biochemistry and Physiology 125B 63-69



149

Wirtz, K. (2012) Who is eating whom? Morphology and feeding type determine the size relation

between planktonic predators and their ideal prey. Marine Ecology Progress Series 445 1-12

Yang, L.H. and Rudolf, V.H.W. (2010) Phenology, ontogeny and the effects of climate change on

the timing of species interactions. Ecology Letters 13 1-10.

You, K., Ma, C., Gao, H., Li, F., Zhang, M., Qiu, Y., and Wang, B. (2007) Research on the jellyfish

(Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: current

status. Aquaculture International 15 479-488.

Zhao, J., Ramin, M., Cheng, V. and Arhonditsis, G.B. (2008) Plankton community patterns across

a trophic gradient: the role of zooplankton functional groups. Ecological Modelling 213 417-436.



150

Appendix I – Carbon percentage

Compilation of published values for carbon percentage (C%) values of zooplanktonic taxa.

Group Species C% Compilation Reference
Amphipoda Cyphocaris challengeri 10.14 Kiorboe, 2013 18
Amphipoda Parathemisto japonica 8.87 Kiorboe, 2013 18
Amphipoda Parathemisto libellula 6.75 Kiorboe, 2013 9
Amphipoda Platyscelus serratulus 9.47 Kiorboe, 2013 18
Amphipoda Primno abyssalis female 7.16 Kiorboe, 2013 8
Amphipoda Themisto japonica female 8.11 Kiorboe, 2013 8
Anthoathecata Cladonema californicum 0.81 Kiorboe, 2013 14
Anthoathecata Euphysa tentaculata 0.32 Pitt et al. 2013 15
Anthoathecata Rathkea octopunctata 1.38 Pitt et al. 2013 15
Anthoathecata Sarsia princeps 0.37 Pitt et al. 2013 15
Anthoathecata Sarsia princeps 0.16 Kiorboe, 2013 13
Anthoathecata Stomotoca atra 0.41 Kiorboe, 2013 13
Beroid Beroe ovata 0.16 Pitt et al. 2013 7
Beroid Beroe sp. 0.23 Kiorboe, 2013 7
Beroid Beroe sp. 0.21 Pitt et al. 2013 7
Calanoida Calanus acutus 6.85 Kiorboe, 2013 3
Calanoida Calanus cristatus 10.14 Kiorboe, 2013 18
Calanoida Calanus finmarchicus 14.73 Kiorboe, 2013 9
Calanoida Calanus glacialis female 11.77 Kiorboe, 2013 9
Calanoida Calanus hyperboreus 19.02 Kiorboe, 2013 9
Calanoida Calanus pacificus 12.40 Kiorboe, 2013 18
Calanoida Calanus plumchrus 17.25 Kiorboe, 2013 18
Calanoida Calanus propinquus 12.92 Kiorboe, 2013 3
Calanoida Candacia aetiopica 6.67 Kiorboe, 2013 18
Calanoida Candacia columbiae 6.16 Kiorboe, 2013 18
Calanoida Disseta palumbi 4.70 Kiorboe, 2013 18
Calanoida Eucalanus bungii 5.99 Kiorboe, 2013 18
Calanoida Euchirella rostromagna 7.01 Kiorboe, 2013 3
Calanoida Gaetanus tenuispinus 5.56 Kiorboe, 2013 3
Calanoida Labidocera acutifrons 5.20 Kiorboe, 2013 18
Calanoida Metridia longa female 10.77 Kiorboe, 2013 9
Calanoida Metridia okhotensis 11.91 Kiorboe, 2013 18
Calanoida Paraeuchaeta birostrata 10.80 Kiorboe, 2013 18
Calanoida Pleuromamma xiphias 5.80 Kiorboe, 2013 18
Calanoida Pontellina plumata 6.65 Kiorboe, 2013 18
Calanoida Rhincalanus nasutus 7.03 Kiorboe, 2013 18
Cephalopoda Psychroteuthis sp. 13.41 Kiorboe, 2013 7
Chaetognatha Aidanosagitta neglecta 2.79 Kiorboe, 2013 10

Chaetognatha
Caecosagitta
macrocephala 5.97 Kiorboe, 2013 10

Chaetognatha Eukrohnia bathypelagica 2.94 Kiorboe, 2013 10
Chaetognatha Eukrohnia fowleri 4.19 Kiorboe, 2013 10
Chaetognatha Eukrohnia hamata 2.69 Kiorboe, 2013 3
Chaetognatha Parasagitta elegans 4.46 Kiorboe, 2013 10
Chaetognatha Pseudosagitta scrippsae 1.28 Kiorboe, 2013 10
Chaetognatha Sagitta elegans 4.07 Kiorboe, 2013 9
Chaetognatha Sagitta gazellae 1.35 Kiorboe, 2013 3
Chaetognatha Sagitta marri 3.72 Kiorboe, 2013 3
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Chaetognatha Sagitta nagae 5.03 Kiorboe, 2013 18
Chaetognatha Solidosagitta zetesios 4.19 Kiorboe, 2013 10
Coronatae Atolla wyvillei 0.77 Pitt et al. 2013 2
Coronatae Periphylla periphylla 0.64 Pitt et al. 2013 24
Cydippid Agmayeria tortugensis 0.94 Pitt et al. 2013 1
Cydippid Callianira antarctica 0.36 Kiorboe, 2013 14
Cydippid Mertensia sp. 0.46 Kiorboe, 2013 7
Cydippid Pleurobrachia pileus 0.15 Kiorboe, 2013 14
Cydippid Pleurobrachia sp. 0.18 Kiorboe, 2013 14
Decapoda Chorismus antarcticus 10.66 Kiorboe, 2013 7
Decapoda Lucifer reynaudii 5.48 Kiorboe, 2013 18
Euphausiacea Euphausia crystallorophias 8.80 Kiorboe, 2013 7
Euphausiacea Euphausia pacifica 8.96 Kiorboe, 2013 18
Euphausiacea Euphausia superba 11.38 Kiorboe, 2013 7
Euphausiacea Tessarabrachion oculatus 10.07 Kiorboe, 2013 18
Euphausiacea Thysanoessa inermis 17.87 Kiorboe, 2013 9
Gymnosomata Clione limacina 1.36 Kiorboe, 2013 9
Leptothecata Eutonina indicans 0.34 Kiorboe, 2013 13
Leptothecata Mitrocoma cellularia 0.10 Kiorboe, 2013 9
Leptothecata Phialidium gregarium 0.37 Kiorboe, 2013 13
Leptothecata Phialidium lomae 0.25 Kiorboe, 2013 13
Leptothecata Phialidium sp. 1.07 Pitt et al. 2013 16
Lobata Bathocyroe fosteri 0.01 Pitt et al. 2013 1
Lobata Bolinopsis infundibulum 0.07 Kiorboe, 2013 14
Lobata Eurhamphaea vexilligera 0.03 Pitt et al. 2013 12
Lobata Mnemiopsis leidyi 0.06 Pitt et al. 2013 11
Lobata Mnemiopsis mccradyi 0.08 Pitt et al. 2013 20
Lobata Ocryopsis maculata 0.09 Pitt et al. 2013 12
Lobata Ocyropsis spp. 0.05 Pitt et al. 2013 12
Mysidacea Antarctomysis maxima 10.46 Kiorboe, 2013 7

Mysidacea
Meterythrops
microphthalma 7.88 Kiorboe, 2013 8

Mysidacea Siriella aequiremis 7.92 Kiorboe, 2013 18
Narcomedusae Aeginura grimaldii 0.30 Pitt et al. 2013 1

Narcomedusae Pegantha sp. 0.44
Molina-Ramirez et al.,
2015 17

Narcomedusae Solmissus incisus 0.06 Pitt et al. 2013 1
Ostracoda Conchoecia antipoda 4.76 Kiorboe, 2013 3
Polychaeta Tomopteris carpenteri 5.34 Kiorboe, 2013 3
Polychaeta Vanadis antarctica 5.11 Kiorboe, 2013 3
Rhizostomae Catostylus mosaicus 1.17 Kiorboe, 2013 19
Rhizostomae Cotylorhiza tuberculata 0.55 Pitt et al. 2013 14
Rhizostomae Mastigias papua 0.67 Kiorboe, 2013 22
Rhizostomae Nemopilema nomurai 0.55 Kiorboe, 2013 23
Rhizostomae Rhizostoma octopus 0.35 Pitt et al. 2013 14
Rhizostomae Rhizostoma pulmo 0.98 Kiorboe, 2013 14
Rhizostomae Rhopilema esculentum 1.21 Kiorboe, 2013 23
Rhizostomae Rhopilema hispidum 0.76 Pitt et al. 2013 23
Scyphomedusae Chrysaora hysocella 0.18 Pitt et al. 2013 14
Semaeostomae Aurelia aurita 0.10 Pitt et al. 2013 15
Semaeostomae Chrysaora fuscescens 0.28 Pitt et al. 2013 21
Semaeostomae Chrysaora hysoscella 0.18 Kiorboe, 2013 14
Semaeostomae Chrysaora quinquecirrha 0.48 Kiorboe, 2013 14
Semaeostomae Cyanea capillata 0.45 Kiorboe, 2013 13
Semaeostomae Pelagia noctiluca 0.35 Kiorboe, 2013 14
Semaeostomae Poralia rufescens 0.02 Kiorboe, 2013 1
Siphonophora Abyla sp. 0.51 Molina-Ramirez et al., 17
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2015
Siphonophora Abylopsis tetragona 0.42 Pitt et al. 2013 14

Siphonophora Apolemia sp. 1.56
Molina-Ramirez et al.,
2015 17

Siphonophora Athorybia sp. 0.16
Molina-Ramirez et al.,
2015 17

Siphonophora Calycopsis borchgrevinki 0.50 Pitt et al. 2013 2
Siphonophora Diphyes antarctica 0.45 Kiorboe, 2013 7
Siphonophora Muggiaea atlantica 0.44 Kiorboe, 2013 14
Siphonophora Prayidae sp. 1.32 Pitt et al. 2013 17
Siphonophora Sphaeronectes gracilis 0.56 Kiorboe, 2013 14
Thaliacea Cyclosalpa affinis 0.10 Kiorboe, 2013 13
Thaliacea Doliolum denticulatum 3.87 Kiorboe, 2013 14

Thaliacea Iasis zonaria 1.61
Molina-Ramirez et al.,
2015 17

Thaliacea Ihlea racovitzai 0.88
Molina-Ramirez et al.,
2015 17

Thaliacea Pegea confederata 1.15
Molina-Ramirez et al.,
2015 17

Thaliacea Pyrosoma atlanticum 1.43 Kiorboe, 2013 14
Thaliacea Salpa cylindrica 0.56 Kiorboe, 2013 14
Thaliacea Salpa democratica 1.59 Kiorboe, 2013 5
Thaliacea Salpa fusiformis 0.44 Kiorboe, 2013 14
Thaliacea Salpa maxima 1.42 Kiorboe, 2013 14

Thaliacea
Salpa thompsoni
aggregate 0.19 Kiorboe, 2013 4

Thaliacea Salpa thompsoni solitary 0.18 Kiorboe, 2013 6
Thaliacea Thalia democratica 0.87 Kiorboe, 2013 14
Thaliacea Thalia rhomboides 1.48 Pitt et al. 2013 17
Thaliacea Thethys vagina 0.45 Pitt et al. 2013 17
Thecosomata Clio pyramidata 6.31 Kiorboe, 2013 18
Thecosomata Limacina helicina 8.23 Kiorboe, 2013 9
Thecosomata Limacina inflata 6.18 Kiorboe, 2013 18
Trachymedusae Aglantha digitale 0.52 Kiorboe, 2013 15
Trachymedusae Botrynema brucei 0.24 Pitt et al. 2013 2
Trachymedusae Colobonema sericeum 0.81 Pitt et al. 2013 1
Trachymedusae Eperetmus typus 0.34 Pitt et al. 2013 13
Trachymedusae Gonionemus vertens 0.63 Kiorboe, 2013 13

References

1. Bailey, T.G., Youngbluth, M.J. and Owen, G.P. (1995) Chemical composition and
metabolic rates of gelatinous zooplankton from midwater and benthic boundary
layer environments off Cape Hatteras, North Carolina, USA. Marine Ecology
Progress Series 122 121-134.

2. Clarke, A., Holmes, L.J. and Gore, D.J. (1992) Proximate and elemental
composition of gelatinous zooplankton from the Southern Ocean. Journal of
Experimental Marine Biology and Ecology 155 5-68.

3. Donnelly, J., Torres, J.T., Hopkins, T.L. and Lancraft, T.M. (1994) Chemical
composition of Antarctic zooplankton during austral fall and winter. Polar Biology
14 171–183.

4. Doyle, T. K., Houghton, J. D. R. McDevitt, R. Davenport and J. Hays, G. C. (2007)
The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-
composition. Journal of Experimental Marine Biology and Ecology 343 239–252.

5. Heron, A. C., McWilliam, P. S. and Pont, G. D. (1988) Length-weight relation in the
salp Thalia democratica and potential of salps as a source of food. Marine Ecology
Progress Series 42 125–132.



153

6. Iguchi, N. and Ikeda, T. (2004) Metabolism and elemental composition of
aggregate and solitary forms of Salpa thompsoni (Tunicata: Thaliacea) in waters off
the Antarctic Peninsula during austral summer 1999. Journal of Plankton Research
26 1025–1037.

7. Ikeda, T. and Bruce, B. (1986) Metabolic activity and elemental composition of krill
and other zooplankton from Prydz Bay, Antarctica, during early summer
(November–December). Marine Biology 92 545–555.

8. Ikeda, T. and Hirakawa, K. (1998) Metabolism and body composition of
zooplankton from the mesopelagic zone of southern Japan Sea. Plankton Biology
and Ecology 45 31–44.

9. Ikeda, T. and Skjoldal, H.R. (1989) Metabolism and elemental composition of
zooplankton from the Barents Sea during early arctic summer. Marine Biology 100
173–183.

10. Ikeda, T. and Takahashi, T. (2012) Synthesis towards a global-bathymetric model
of metabolism and chemical composition of marine pelagic chaetognaths. Journal
of Experimental Marine Biology and Ecology 424 78–88.

11. Kremer, P. (1975) Excretion and body composition of the ctenophore Mnemiopsis
leidyi (A. Agassiz): comparisons and consequences. 10th European Symposium on
Marine Biology 2 351-362.

12. Kremer, P., Canino, M.F. and Gilmer, R.W. (1986) Metabolism of epipelagic
tropical ctenophores. Marine Biology 90 403-412.

13. Larson, R. J. (1986) Water content, organic content, and carbon and nitrogen
composition of medusa from the Northeast Pacific. Journal of Experimental Marine
Biology and Ecology 99 107–120.

14. Lucas, C. H., K. A. Pitt, J. E. Purcell, M. Lebrato and Condon, R.H. (2011) What’s
in a jellyfish? Proximate and elemental composition and biometric relationships for
use in biogeochemical studies. Ecology 92 1704.

15. Matsakis, S. and Conover, R.J. (1991) Abundance and feeding of medusae and
their potential impact as predators on other zooplankton in Bedford Basin (Nova
Scotia, Canada) during Spring. Canadian Journal of Fisheries and Aquatic
Sciences 48 1419-1430.

16. Matsakis, S. and Nival, P. (1989) Elemental composition and food intake of
Phialidium hydromedusae in the laboratory. Journal of Experimental Marine Biology
and Ecology 130 277-290.

17. Molina-Ramirez et al. (2015) Functional differences in allometry of the water,
carbon and nitrogen content of gelatinous organisms. Journal of Plankton
Research 37 989-1000.

18. Omori, M. (1969) Weight and chemical composition of some important oceanic
zooplankton in the North Pacific. Marine Biology 3 4–10.

19. Pitt unpubl.
20. Reeve, M.R. and Baker, L.D. (1975) Production of two planktonic carnivores

(chaetognath and ctenophore) in South Florida inshore waters. Fisheries Bulletin
73 238-248.

21. Shenker, J.M. (1985) Carbon content of the neritic scyphomedusa Chrysaora
fuscescens. Journal of Plankton Research 7 169-173

22. Uye in Lucas et al. (2011) What's in a jellyfish? Proximate and elementary
compositions and biometric relationships for use in biogeochemical studies.
Ecology 92 1704.

23. Uye unpubl.
24. Youngbluth, M.J., Båmstedt, U. (2001) Distribution, abundance, behaviour and

metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a
Norwegian fjord. Hydrobiologia 451 321-333



154



155

Appendix II – Growth rates

Compilation of published zooplanktonic growth rates. C% = carbon percentage, Temp = temperature, g = specific growth rate, Temp g = g adjusted to
15oC using a Q10 of 2.8, Mass g = specific growth rate adjusted to a carbon mass of 1 mg C. Temperature and mass adjustments as detailed in
Chapter 2.

Record Phylum Group Species Source C%
Mass (mg
C)

Temp
(C) g (d-1)

Temp g (d-
1)

1 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.80E-04 21 0.25 1.35E-01
2 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 4.53E-03 21 0.25 1.35E-01
3 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.33E-02 21 0.25 1.35E-01
4 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 3.20E-02 21 0.25 1.35E-01
5 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 5.93E-02 21 0.25 1.35E-01
6 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.79E-02 21 0.25 1.35E-01
7 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.57E-01 21 0.08 4.47E-02
8 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 2.38E-01 21 0.04 2.37E-02
9 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.80E-04 26 0.35 1.13E-01
10 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 4.53E-03 26 0.35 1.13E-01
11 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.33E-02 26 0.35 1.13E-01
12 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 3.20E-02 26 0.35 1.13E-01
13 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 5.93E-02 26 0.35 1.13E-01
14 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.79E-02 26 0.35 1.13E-01
15 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.57E-01 26 0.07 2.38E-02
16 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 2.38E-01 26 0.01 2.26E-03
17 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.80E-04 31 0.41 7.89E-02
18 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 4.53E-03 31 0.41 7.89E-02
19 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.33E-02 31 0.41 7.89E-02
20 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 3.20E-02 31 0.41 7.89E-02
21 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 5.93E-02 31 0.41 7.89E-02
22 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 9.79E-02 31 0.11 2.12E-02
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23 Chaetognatha Chaetognatha Sagitta hispida 41 3.54 1.57E-01 31 0.04 7.89E-03
24 Chaetognatha Chaetognatha Sagitta hispida 43 3.54 2.78E-02 16 0.08 7.13E-02
25 Chaetognatha Chaetognatha Sagitta hispida 43 3.54 1.30E-02 21 0.12 6.63E-02
26 Chaetognatha Chaetognatha Sagitta hispida 43 3.54 3.68E-02 21 0.14 7.28E-02
27 Chaetognatha Chaetognatha Sagitta hispida 43 3.54 3.81E-02 26 0.00 6.44E-04
28 Chaetognatha Chaetognatha Sagitta hispida 43 3.54 3.35E-02 26 0.12 3.80E-02
29 Crustacea Copepoda Acartia clausi 29 11.89 1.32E-04 15 0.25 2.48E-01
30 Crustacea Copepoda Acartia clausi 29 11.89 1.13E-03 15 0.31 3.08E-01
31 Crustacea Copepoda Acartia tonsa 4 11.89 2.10E-04 17 0.45 3.66E-01
32 Crustacea Copepoda Acartia tranteri 27 11.89 6.00E-04 12.2 0.13 1.79E-01
33 Crustacea Copepoda Acartia tranteri 27 11.89 6.00E-04 15.8 0.21 1.90E-01
34 Crustacea Copepoda Acartia tranteri 27 11.89 6.00E-04 20.8 0.31 1.68E-01
35 Crustacea Copepoda Calanus chilensis 13 12.96 3.99E-03 13 0.14 1.70E-01
36 Crustacea Copepoda Calanus chilensis 13 12.96 3.99E-03 18 0.16 1.16E-01
37 Crustacea Copepoda Calanus finmarchicus 6 14.73 4.70E-04 8 0.25 5.16E-01
38 Crustacea Copepoda Calanus finmarchicus 6 14.73 2.55E-02 8 0.20 4.07E-01
39 Crustacea Copepoda Calanus glacialis 12 12.96 6.56E-02 10 0.05 7.70E-02
40 Crustacea Copepoda Calanus glacialis 12 12.96 5.94E-02 3 0.05 1.82E-01
41 Crustacea Copepoda Calanus helgolandicus 38 19.02 6.69E-04 15 0.41 4.10E-01
42 Crustacea Copepoda Calanus helgolandicus 38 19.02 2.50E-03 15 0.41 4.10E-01
43 Crustacea Copepoda Calanus helgolandicus 38 19.02 1.46E-02 15 0.33 3.30E-01
44 Crustacea Copepoda Calanus helgolandicus 38 19.02 1.56E-02 15 0.20 1.95E-01
45 Crustacea Copepoda Calanus helgolandicus 38 19.02 3.29E-02 15 0.20 2.00E-01
46 Crustacea Copepoda Calanus marshallae 40 12.96 4.00E-04 10 0.05 8.37E-02
47 Crustacea Copepoda Calanus marshallae 40 12.96 8.00E-03 10 0.18 2.95E-01
48 Crustacea Copepoda Calanus marshallae 40 12.96 1.00E-01 10 0.02 4.02E-02
49 Crustacea Copepoda Calanus pacificus 50 17.25 3.60E-03 15.5 0.41 3.92E-01
50 Crustacea Copepoda Calanus pacificus 50 17.25 8.80E-03 15.5 0.35 3.37E-01
51 Crustacea Copepoda Calanus pacificus 50 17.25 2.40E-02 15.5 0.28 2.63E-01
52 Crustacea Copepoda Calanus pacificus 50 17.25 5.60E-02 15.5 0.15 1.41E-01
53 Crustacea Copepoda Calanus pacificus 50 17.25 3.60E-03 12 0.33 4.55E-01
54 Crustacea Copepoda Calanus pacificus 50 17.25 8.80E-03 12 0.29 3.97E-01
55 Crustacea Copepoda Calanus pacificus 50 17.25 2.40E-02 12 0.22 2.99E-01
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56 Crustacea Copepoda Calanus pacificus 50 17.25 5.60E-02 12 0.13 1.78E-01
57 Crustacea Copepoda Calanus pacificus 50 17.25 3.60E-03 8 0.19 3.86E-01
58 Crustacea Copepoda Calanus pacificus 50 17.25 8.80E-03 8 0.17 3.51E-01
59 Crustacea Copepoda Calanus pacificus 50 17.25 2.40E-02 8 0.16 3.37E-01
60 Crustacea Copepoda Calanus pacificus 50 17.25 5.60E-02 8 0.12 2.43E-01
61 Crustacea Copepoda Calanus sinicus 49 12.96 4.47E-04 10.3 0.22 3.50E-01
62 Crustacea Copepoda Calanus sinicus 49 12.96 4.47E-04 13 0.31 3.76E-01
63 Crustacea Copepoda Calanus sinicus 49 12.96 4.47E-04 15 0.38 3.80E-01
64 Crustacea Copepoda Calanus sinicus 49 12.96 4.47E-04 17.5 0.48 3.72E-01
65 Crustacea Copepoda Calanus sinicus 49 12.96 4.47E-04 20.2 0.60 3.51E-01
66 Crustacea Copepoda Calanus sinicus 49 12.96 1.98E-03 10.3 0.54 8.81E-01
67 Crustacea Copepoda Calanus sinicus 49 12.96 1.98E-03 13 0.74 9.07E-01
68 Crustacea Copepoda Calanus sinicus 49 12.96 1.98E-03 15 0.89 8.92E-01
69 Crustacea Copepoda Calanus sinicus 49 12.96 1.98E-03 17.5 1.10 8.50E-01
70 Crustacea Copepoda Calanus sinicus 49 12.96 1.98E-03 20.2 1.33 7.77E-01
71 Crustacea Copepoda Calanus sinicus 49 12.96 7.75E-03 10.3 0.31 5.01E-01
72 Crustacea Copepoda Calanus sinicus 49 12.96 7.75E-03 13 0.38 4.72E-01
73 Crustacea Copepoda Calanus sinicus 49 12.96 7.75E-03 15 0.44 4.39E-01
74 Crustacea Copepoda Calanus sinicus 49 12.96 7.75E-03 17.5 0.51 3.93E-01
75 Crustacea Copepoda Calanus sinicus 49 12.96 7.75E-03 20.2 0.58 3.41E-01
76 Crustacea Copepoda Calanus sinicus 49 12.96 3.00E-02 10.3 0.09 1.41E-01
77 Crustacea Copepoda Calanus sinicus 49 12.96 3.00E-02 13 0.12 1.41E-01
78 Crustacea Copepoda Calanus sinicus 49 12.96 3.00E-02 15 0.14 1.37E-01
79 Crustacea Copepoda Calanus sinicus 49 12.96 3.00E-02 17.5 0.17 1.28E-01
80 Crustacea Copepoda Calanus sinicus 49 12.96 3.00E-02 20.2 0.20 1.17E-01
81 Crustacea Copepoda Centropages hamatus 15 11.89 1.79E-04 17 0.26 2.15E-01
82 Crustacea Copepoda Centropages hamatus 15 11.89 1.55E-03 17 0.29 2.34E-01
83 Crustacea Copepoda Centropages hamatus 29 11.89 1.79E-04 15 0.28 2.82E-01
84 Crustacea Copepoda Centropages hamatus 29 11.89 2.06E-03 15 0.34 3.35E-01
85 Crustacea Copepoda Centropages typicus 15 11.89 1.79E-04 17 0.35 2.81E-01
86 Crustacea Copepoda Centropages typicus 15 11.89 1.66E-03 17 0.38 3.06E-01
87 Crustacea Copepoda Eurytemora affinis 19 11.89 3.76E-04 5.5 0.06 1.57E-01
88 Crustacea Copepoda Eurytemora affinis 19 11.89 3.61E-04 10 0.13 2.16E-01
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89 Crustacea Copepoda Eurytemora affinis 19 11.89 3.47E-04 15 0.25 2.53E-01
90 Crustacea Copepoda Eurytemora affinis 19 11.89 2.95E-04 20 0.28 1.66E-01
91 Crustacea Copepoda Eurytemora affinis 19 11.89 2.70E-04 25 0.36 1.29E-01
92 Crustacea Copepoda Eurytemora herdmani 12 11.89 1.09E-03 10 0.21 3.50E-01
93 Crustacea Copepoda Eurytemora herdmani 12 11.89 2.96E-03 3 0.06 1.89E-01
94 Crustacea Copepoda Eurytemora herdmani 12 11.89 7.47E-04 3 0.09 3.10E-01
95 Crustacea Copepoda Labidocera euchaeta 47 5.2 5.00E-04 15 0.11 1.07E-01
96 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.60E-03 15 0.18 1.76E-01
97 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.32E-02 15 0.11 1.14E-01
98 Crustacea Copepoda Labidocera euchaeta 47 5.2 2.00E-03 15 0.22 2.18E-01
99 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.08E-02 15 0.10 1.03E-01
100 Crustacea Copepoda Labidocera euchaeta 47 5.2 5.00E-04 20 0.16 9.62E-02
101 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.60E-03 20 0.30 1.77E-01
102 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.32E-02 20 0.18 1.06E-01
103 Crustacea Copepoda Labidocera euchaeta 47 5.2 2.00E-03 20 0.34 2.03E-01
104 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.08E-02 20 0.17 9.98E-02
105 Crustacea Copepoda Labidocera euchaeta 47 5.2 5.00E-04 25 0.26 9.11E-02
106 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.60E-03 25 0.40 1.43E-01
107 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.32E-02 25 0.25 9.00E-02
108 Crustacea Copepoda Labidocera euchaeta 47 5.2 2.00E-03 25 0.52 1.86E-01
109 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.08E-02 25 0.22 7.93E-02
110 Crustacea Copepoda Labidocera euchaeta 47 5.2 5.00E-04 30 0.35 7.51E-02
111 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.60E-03 30 0.52 1.11E-01
112 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.32E-02 30 0.20 4.27E-02
113 Crustacea Copepoda Labidocera euchaeta 47 5.2 2.00E-03 30 0.75 1.61E-01
114 Crustacea Copepoda Labidocera euchaeta 47 5.2 1.08E-02 30 0.15 3.24E-02
115 Crustacea Copepoda Oithona similis 46 8.90E-05 15 0.20 2.00E-01
116 Crustacea Copepoda Oithona similis 46 5.00E-04 15 0.07 7.40E-02
117 Crustacea Copepoda Oncaea mediterranea 39 2.19E-04 20 0.26 1.55E-01
118 Crustacea Copepoda Paracalanus sp. 49 11.89 4.60E-05 10.3 0.12 1.87E-01
119 Crustacea Copepoda Paracalanus sp. 49 11.89 4.60E-05 13 0.15 1.88E-01
120 Crustacea Copepoda Paracalanus sp. 49 11.89 4.60E-05 15 0.18 1.84E-01
121 Crustacea Copepoda Paracalanus sp. 49 11.89 4.60E-05 17.5 0.23 1.74E-01
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122 Crustacea Copepoda Paracalanus sp. 49 11.89 4.60E-05 20 0.27 1.60E-01
123 Crustacea Copepoda Paracalanus sp. 49 11.89 6.32E-04 10.3 0.24 3.88E-01
124 Crustacea Copepoda Paracalanus sp. 49 11.89 6.32E-04 13 0.32 3.96E-01
125 Crustacea Copepoda Paracalanus sp. 49 11.89 6.32E-04 15 0.39 3.88E-01
126 Crustacea Copepoda Paracalanus sp. 49 11.89 6.32E-04 17.5 0.48 3.70E-01
127 Crustacea Copepoda Paracalanus sp. 49 11.89 6.32E-04 20 0.57 3.42E-01

128 Crustacea Copepoda
Pseudocalanus
elongatus 18 11.89 2.00E-04 12.5 0.18 2.33E-01

129 Crustacea Copepoda
Pseudocalanus
elongatus 18 11.89 4.80E-04 12.5 0.38 4.92E-01

130 Crustacea Copepoda
Pseudocalanus
elongatus 18 11.89 4.00E-03 12.5 0.19 2.46E-01

131 Crustacea Copepoda Pseudocalanus sp. 50 11.89 6.00E-04 15.5 0.25 2.39E-01
132 Crustacea Copepoda Pseudocalanus sp. 50 11.89 1.20E-03 15.5 0.25 2.34E-01
133 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.00E-03 15.5 0.23 2.17E-01
134 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.80E-03 15.5 0.20 1.91E-01
135 Crustacea Copepoda Pseudocalanus sp. 50 11.89 6.00E-04 12 0.23 3.07E-01
136 Crustacea Copepoda Pseudocalanus sp. 50 11.89 1.20E-03 12 0.22 2.93E-01
137 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.00E-03 12 0.21 2.82E-01
138 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.80E-03 12 0.20 2.71E-01
139 Crustacea Copepoda Pseudocalanus sp. 50 11.89 6.00E-04 8 0.16 3.20E-01
140 Crustacea Copepoda Pseudocalanus sp. 50 11.89 1.20E-03 8 0.16 3.19E-01
141 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.00E-03 8 0.15 3.14E-01
142 Crustacea Copepoda Pseudocalanus sp. 50 11.89 2.80E-03 8 0.15 3.02E-01
143 Crustacea Copepoda Pseudocalanus sp. 50 11.89 4.00E-03 8 0.13 2.73E-01
144 Crustacea Copepoda Pseudocalanus sp. 29 11.89 2.99E-04 15 0.15 1.50E-01
145 Crustacea Copepoda Pseudocalanus sp. 29 11.89 2.15E-03 15 0.20 1.95E-01

146 Crustacea Copepoda
Pseudodiaptomus
marinus 48 11.89 1.36E-04 20 0.23 1.38E-01

147 Crustacea Copepoda
Pseudodiaptomus
marinus 48 11.89 1.35E-03 20 0.36 2.12E-01

148 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 6.6 0.10 2.47E-01
149 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 10 0.18 3.08E-01
150 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 15 0.34 3.36E-01
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151 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 20 0.52 3.13E-01
152 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 22 0.61 2.96E-01
153 Crustacea Copepoda Sinocalanus tenellus 28 11.89 9.90E-05 28 0.89 2.34E-01
154 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 6.6 0.10 2.40E-01
155 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 10 0.20 3.33E-01
156 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 15 0.40 4.03E-01
157 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 20 0.68 4.06E-01
158 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 22 0.81 3.94E-01
159 Crustacea Copepoda Sinocalanus tenellus 28 11.89 1.13E-03 28 1.28 3.35E-01
160 Crustacea Copepoda Temora longicornis 29 11.89 1.79E-04 15 0.26 2.57E-01
161 Crustacea Copepoda Temora longicornis 29 11.89 1.68E-03 15 0.34 3.38E-01
162 Crustacea Copepoda Temora longicornis 18 11.89 1.30E-04 12.5 0.21 2.72E-01
163 Crustacea Copepoda Temora longicornis 18 11.89 1.80E-03 12.5 0.34 4.40E-01
164 Crustacea Copepoda Temora longicornis 18 11.89 8.00E-03 12.5 0.31 4.01E-01
165 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-02 8 0.13 2.69E-01
166 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-02 8 0.13 2.57E-01
167 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-02 8 0.12 2.45E-01
168 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E-01 8 0.11 2.28E-01
169 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-01 8 0.11 2.16E-01
170 Crustacea Crustacea Calliopius laeviusculus 10 8.42 2.00E-01 8 0.10 2.08E-01
171 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-01 8 0.10 1.95E-01
172 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-01 8 0.09 1.75E-01
173 Crustacea Crustacea Calliopius laeviusculus 10 8.42 7.50E-01 8 0.08 1.54E-01
174 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E+00 8 0.07 1.38E-01
175 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-02 12 0.19 2.63E-01
176 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-02 12 0.18 2.45E-01
177 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-02 12 0.17 2.33E-01
178 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E-01 12 0.15 2.10E-01
179 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-01 12 0.15 1.97E-01
180 Crustacea Crustacea Calliopius laeviusculus 10 8.42 2.00E-01 12 0.14 1.87E-01
181 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-01 12 0.13 1.70E-01
182 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-01 12 0.11 1.47E-01
183 Crustacea Crustacea Calliopius laeviusculus 10 8.42 7.50E-01 12 0.09 1.25E-01
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184 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E+00 12 0.08 1.08E-01
185 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-02 15 0.25 2.47E-01
186 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-02 15 0.23 2.31E-01
187 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-02 15 0.22 2.22E-01
188 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E-01 15 0.21 2.07E-01
189 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.50E-01 15 0.20 1.97E-01
190 Crustacea Crustacea Calliopius laeviusculus 10 8.42 2.00E-01 15 0.19 1.88E-01
191 Crustacea Crustacea Calliopius laeviusculus 10 8.42 3.00E-01 15 0.17 1.74E-01
192 Crustacea Crustacea Calliopius laeviusculus 10 8.42 5.00E-01 15 0.15 1.52E-01
193 Crustacea Crustacea Calliopius laeviusculus 10 8.42 7.50E-01 15 0.13 1.29E-01
194 Crustacea Crustacea Calliopius laeviusculus 10 8.42 1.00E+00 15 0.11 1.09E-01
195 Crustacea Crustacea Euphausia pacifica 45 8.4 2.80E-03 8 0.10 2.04E-01
196 Crustacea Crustacea Euphausia pacifica 45 8.4 1.11E-02 8 0.11 2.32E-01
197 Crustacea Crustacea Euphausia pacifica 45 8.4 3.39E-02 8 0.04 8.22E-02
198 Crustacea Crustacea Euphausia pacifica 45 8.4 1.24E-01 8 0.02 4.93E-02
199 Crustacea Crustacea Euphausia pacifica 45 8.4 1.99E-01 8 0.02 4.11E-02
200 Crustacea Crustacea Euphausia pacifica 45 8.4 4.17E-01 8 0.02 3.08E-02
201 Crustacea Crustacea Euphausia pacifica 45 8.4 2.78E-03 12 0.08 1.13E-01
202 Crustacea Crustacea Euphausia pacifica 45 8.4 8.83E-03 12 0.15 2.04E-01
203 Crustacea Crustacea Euphausia pacifica 45 8.4 3.32E-02 12 0.07 8.99E-02
204 Crustacea Crustacea Euphausia pacifica 45 8.4 1.37E-01 12 0.04 5.31E-02
205 Crustacea Crustacea Euphausia pacifica 45 8.4 2.25E-01 12 0.03 4.36E-02
206 Crustacea Crustacea Euphausia pacifica 45 8.4 4.92E-01 12 0.02 3.27E-02
207 Crustacea Crustacea Euphausia pacifica 33 8.4 2.51E-01 10 0.02 3.35E-02
208 Crustacea Crustacea Euphausia pacifica 33 8.4 2.52E-01 10 0.02 3.18E-02
209 Crustacea Crustacea Euphausia pacifica 33 8.4 3.64E-01 10 0.02 2.68E-02
210 Crustacea Crustacea Euphausia pacifica 33 8.4 7.96E-01 10 0.01 1.34E-02
211 Crustacea Crustacea Euphausia pacifica 33 8.4 4.38E-01 10 0.01 1.34E-02
212 Crustacea Crustacea Euphausia pacifica 33 8.4 6.56E-01 10 0.01 8.37E-03
213 Crustacea Crustacea Euphausia pacifica 33 8.4 8.91E-01 10 0.01 1.17E-02
214 Crustacea Crustacea Euphausia pacifica 33 8.4 7.35E-01 10 0.00 6.69E-03
215 Crustacea Crustacea Euphausia pacifica 33 8.4 7.51E-01 10 0.00 5.02E-03
216 Crustacea Crustacea Euphausia superba 21 10.4 1.52E+01 0.75 0.01 3.69E-02
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217 Crustacea Crustacea Euphausia superba 21 10.4 2.48E+01 0.75 0.01 2.91E-02
218 Crustacea Crustacea Euphausia superba 21 10.4 3.63E+01 0.75 0.01 2.78E-02
219 Crustacea Crustacea Euphausia superba 21 10.4 3.59E+01 0.75 0.00 2.13E-02
220 Crustacea Crustacea Euphausia superba 21 10.4 4.82E+01 0.75 0.00 2.04E-02
221 Crustacea Crustacea Euphausia superba 21 10.4 2.62E+01 0.75 0.00 1.82E-02
222 Crustacea Crustacea Euphausia superba 21 10.4 5.16E+01 0.75 0.00 1.69E-02
223 Crustacea Crustacea Euphausia superba 21 10.4 5.15E+01 0.75 0.00 1.47E-02
224 Crustacea Crustacea Euphausia superba 21 10.4 6.45E+01 0.75 0.00 1.17E-02
225 Crustacea Crustacea Euphausia superba 21 10.4 6.08E+01 0.75 0.00 8.67E-03
226 Crustacea Crustacea Euphausia superba 5 10.4 2.02E+01 2 0.01 2.52E-02
227 Crustacea Crustacea Euphausia superba 5 10.4 1.87E+01 2 0.01 3.51E-02
228 Crustacea Crustacea Euphausia superba 5 10.4 2.06E+01 2 0.01 2.40E-02
229 Crustacea Crustacea Homarus americanus 34 8.07 4.03E-01 22 0.20 9.73E-02
230 Crustacea Crustacea Homarus americanus 34 8.07 5.82E-01 22 0.11 5.45E-02
231 Crustacea Crustacea Homarus americanus 34 8.07 7.34E-01 22 0.13 6.37E-02
232 Crustacea Crustacea Homarus americanus 34 8.07 8.42E-01 22 0.07 3.45E-02
233 Crustacea Crustacea Homarus americanus 34 8.07 9.57E-01 22 0.04 1.85E-02
234 Crustacea Crustacea Homarus americanus 34 8.07 1.64E+00 22 0.12 5.89E-02
235 Crustacea Crustacea Hyas araneus 1 8.07 4.19E-02 12 0.10 1.36E-01
236 Crustacea Crustacea Hyas araneus 1 8.07 9.18E-02 12 0.06 8.44E-02
237 Crustacea Crustacea Hyas araneus 1 8.07 1.66E-01 12 0.06 8.44E-02
238 Crustacea Crustacea Hyas araneus 1 8.07 2.17E-01 12 0.02 2.18E-02
239 Crustacea Crustacea Hyas coarctatus 23 8.07 1.78E-02 12 0.22 3.04E-01
240 Crustacea Crustacea Hyas coarctatus 23 8.07 2.44E-02 12 0.09 1.28E-01
241 Crustacea Crustacea Hyas coarctatus 23 8.07 2.92E-02 12 0.09 1.17E-01
242 Crustacea Crustacea Hyas coarctatus 23 8.07 3.46E-02 12 0.09 1.16E-01
243 Crustacea Crustacea Hyas coarctatus 23 8.07 3.87E-02 12 0.03 3.54E-02
244 Crustacea Crustacea Hyas coarctatus 23 8.07 4.15E-02 12 0.05 6.13E-02
245 Crustacea Crustacea Hyas coarctatus 23 8.07 5.32E-02 12 0.13 1.74E-01
246 Crustacea Crustacea Hyas coarctatus 23 8.07 6.72E-02 12 0.11 1.44E-01
247 Crustacea Crustacea Hyas coarctatus 23 8.07 8.01E-02 12 0.07 9.40E-02
248 Crustacea Crustacea Hyas coarctatus 23 8.07 9.14E-02 12 0.06 8.58E-02
249 Crustacea Crustacea Hyas coarctatus 23 8.07 1.01E-01 12 0.04 4.90E-02
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250 Crustacea Crustacea Hyas coarctatus 23 8.07 1.06E-01 12 0.01 1.77E-02
251 Crustacea Crustacea Hyas coarctatus 23 8.07 1.12E-01 12 0.07 9.53E-02
252 Crustacea Crustacea Hyas coarctatus 23 8.07 1.34E-01 12 0.11 1.50E-01
253 Crustacea Crustacea Hyas coarctatus 23 8.07 1.56E-01 12 0.04 5.58E-02
254 Crustacea Crustacea Hyas coarctatus 23 8.07 1.57E-01 12 0.05 6.67E-02
255 Crustacea Crustacea Hyas coarctatus 23 8.07 1.69E-01 12 0.03 3.95E-02
256 Crustacea Crustacea Hyas coarctatus 23 8.07 1.35E-01 12 0.12 1.57E-01

257 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 4.51E-02 17 0.07 5.86E-02

258 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 1.53E-01 17 0.03 2.12E-02

259 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.40E-01 17 0.01 8.14E-03

260 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.89E-01 17 0.01 4.07E-03

261 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 3.24E-01 17 0.00 3.26E-03

262 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 3.50E-01 17 0.00 1.63E-03

263 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 3.63E-01 17 0.00 8.14E-04

264 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 4.11E-02 17 0.06 5.21E-02

265 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 1.23E-01 17 0.02 1.95E-02

266 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 1.87E-01 17 0.01 8.14E-03

267 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.25E-01 17 0.01 4.07E-03

268 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.48E-01 17 0.00 2.44E-03

269 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.62E-01 17 0.00 8.14E-04

270 Crustacea Crustacea
Metamysidopsis
elongata 7 9.78 2.69E-01 17 0.00 8.14E-04

271 Crustacea Crustacea Themisto japonica 22 8.91 6.04E-03 1 0.06 2.46E-01
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272 Crustacea Crustacea Themisto japonica 22 8.91 1.29E-02 1 0.04 1.87E-01
273 Crustacea Crustacea Themisto japonica 22 8.91 2.43E-02 1 0.04 1.49E-01
274 Crustacea Crustacea Themisto japonica 22 8.91 4.22E-02 1 0.03 1.21E-01
275 Crustacea Crustacea Themisto japonica 22 8.91 6.94E-02 1 0.02 1.01E-01
276 Crustacea Crustacea Themisto japonica 22 8.91 1.09E-01 1 0.02 8.45E-02
277 Crustacea Crustacea Themisto japonica 22 8.91 1.67E-01 1 0.02 7.19E-02
278 Crustacea Crustacea Themisto japonica 22 8.91 2.50E-01 1 0.01 6.09E-02
279 Crustacea Crustacea Themisto japonica 22 8.91 3.68E-01 1 0.01 5.20E-02
280 Crustacea Crustacea Themisto japonica 22 8.91 5.36E-01 1 0.01 4.44E-02
281 Crustacea Crustacea Themisto japonica 22 8.91 7.78E-01 1 0.01 3.76E-02
282 Crustacea Crustacea Themisto japonica 22 8.91 6.04E-03 7 0.12 2.82E-01
283 Crustacea Crustacea Themisto japonica 22 8.91 1.29E-02 7 0.09 2.15E-01
284 Crustacea Crustacea Themisto japonica 22 8.91 2.43E-02 7 0.08 1.71E-01
285 Crustacea Crustacea Themisto japonica 22 8.91 4.22E-02 7 0.06 1.39E-01
286 Crustacea Crustacea Themisto japonica 22 8.91 6.94E-02 7 0.05 1.16E-01
287 Crustacea Crustacea Themisto japonica 22 8.91 1.09E-01 7 0.04 9.71E-02
288 Crustacea Crustacea Themisto japonica 22 8.91 1.67E-01 7 0.04 8.91E-02
289 Crustacea Crustacea Themisto japonica 22 8.91 2.50E-01 7 0.03 7.00E-02
290 Crustacea Crustacea Themisto japonica 22 8.91 3.68E-01 7 0.03 5.97E-02
291 Crustacea Crustacea Themisto japonica 22 8.91 5.36E-01 7 0.02 5.08E-02
292 Crustacea Crustacea Themisto japonica 22 8.91 7.78E-01 7 0.02 4.31E-02
293 Crustacea Crustacea Themisto japonica 22 8.91 6.04E-03 15 0.24 2.37E-01
294 Crustacea Crustacea Themisto japonica 22 8.91 1.29E-02 15 0.18 1.80E-01
295 Crustacea Crustacea Themisto japonica 22 8.91 2.43E-02 15 0.14 1.44E-01
296 Crustacea Crustacea Themisto japonica 22 8.91 4.22E-02 15 0.12 1.17E-01
297 Crustacea Crustacea Themisto japonica 22 8.91 6.94E-02 15 0.10 9.71E-02
298 Crustacea Crustacea Themisto japonica 22 8.91 1.09E-01 15 0.08 8.16E-02
299 Crustacea Crustacea Themisto japonica 22 8.91 1.67E-01 15 0.07 6.91E-02
300 Crustacea Crustacea Themisto japonica 22 8.91 2.50E-01 15 0.06 5.87E-02
301 Crustacea Crustacea Themisto japonica 22 8.91 3.68E-01 15 0.05 5.00E-02
302 Crustacea Crustacea Themisto japonica 22 8.91 5.36E-01 15 0.04 4.26E-02
303 Crustacea Crustacea Themisto japonica 22 8.91 7.78E-01 15 0.04 3.61E-02
304 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 5.57E-04 20 0.75 4.47E-01
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305 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.04E-02 20 0.98 5.88E-01
306 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 8.20E-02 20 0.30 1.81E-01
307 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.81E-01 20 0.09 5.14E-02
308 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 3.04E-01 20 0.10 6.09E-02
309 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 4.83E-01 20 0.03 1.77E-02
310 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 7.21E-01 20 0.09 5.40E-02
311 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.01E+00 20 0.01 4.29E-03
312 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 4.95E-05 13 0.01 1.22E-02
313 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 7.18E-05 13 0.27 3.27E-01
314 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 2.92E-04 13 0.42 5.14E-01
315 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.73E-03 13 0.54 6.68E-01
316 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 9.64E-03 13 0.49 6.00E-01
317 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 6.73E-02 13 0.71 8.73E-01
318 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 2.22E-01 13 0.06 7.41E-02
319 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 3.52E-01 13 0.07 8.38E-02
320 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 4.80E-01 13 0.03 3.42E-02
321 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 7.17E-01 13 0.07 9.07E-02
322 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 3.35E-05 13 0.22 2.69E-01
323 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.45E-04 13 0.65 8.00E-01
324 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 1.01E-03 13 0.65 8.02E-01
325 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 6.84E-03 13 0.42 5.17E-01
326 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 4.99E-02 13 0.36 4.47E-01
327 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 2.15E-01 13 0.13 1.54E-01
328 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 3.79E-01 13 0.07 7.99E-02
329 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 5.11E-01 13 0.09 1.14E-01
330 Ctenophora Cydippida Pleurobrachia bachei 42 0.15 6.54E-01 13 0.01 1.75E-02
331 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.53E-02 14.2 0.33 3.54E-01
332 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.43E-01 14.2 0.22 2.42E-01
333 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 4.47E-01 14.2 0.12 1.35E-01
334 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 8.75E-01 14.2 0.04 4.43E-02
335 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.52E+00 14.2 0.05 5.37E-02
336 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 2.16E+00 14.2 0.02 2.66E-02
337 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 3.33E-02 14.2 0.11 1.24E-01
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338 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.30E-01 14.2 0.22 2.38E-01
339 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 5.11E-01 14.2 0.15 1.59E-01
340 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.16E+00 14.2 0.06 6.74E-02
341 Ctenophora Cydippida Pleurobrachia bachei 20 0.15 1.66E+00 14.2 0.02 2.58E-02
342 Chordata Doliolida Dolioletta gegenbauri 16 0.3 5.00E-03 16.5 0.08 7.25E-02
343 Chordata Doliolida Dolioletta gegenbauri 16 0.3 1.50E-02 16.5 0.26 2.19E-01
344 Chordata Doliolida Dolioletta gegenbauri 16 0.3 3.50E-02 16.5 0.30 2.55E-01
345 Chordata Doliolida Dolioletta gegenbauri 16 0.3 5.00E-03 20 0.70 4.17E-01
346 Chordata Doliolida Dolioletta gegenbauri 16 0.3 1.50E-02 20 0.51 3.05E-01
347 Chordata Doliolida Dolioletta gegenbauri 16 0.3 3.50E-02 20 0.33 1.98E-01
348 Chordata Doliolida Dolioletta gegenbauri 16 0.3 5.00E-03 23.5 0.56 2.33E-01
349 Chordata Doliolida Dolioletta gegenbauri 16 0.3 1.50E-02 23.5 0.49 2.03E-01
350 Chordata Doliolida Dolioletta gegenbauri 16 0.3 3.50E-02 23.5 0.27 1.13E-01
351 Chordata Doliolida Dolioletta gegenbauri 16 0.3 5.00E-03 26.5 0.69 2.11E-01
352 Chordata Doliolida Dolioletta gegenbauri 16 0.3 1.50E-02 26.5 0.60 1.83E-01
353 Chordata Doliolida Dolioletta gegenbauri 16 0.3 3.50E-02 26.5 0.47 1.43E-01
354 Chordata Doliolida Dolioletta gegenbauri 11 0.3 3.52E-03 20 0.09 5.41E-02
355 Chordata Doliolida Dolioletta gegenbauri 11 0.3 3.83E-03 20 0.08 4.89E-02
356 Chordata Doliolida Dolioletta gegenbauri 11 0.3 4.45E-03 20 0.22 1.29E-01
357 Chordata Doliolida Dolioletta gegenbauri 11 0.3 5.59E-03 20 0.24 1.44E-01
358 Chordata Doliolida Dolioletta gegenbauri 11 0.3 6.88E-03 20 0.17 1.03E-01
359 Chordata Doliolida Dolioletta gegenbauri 11 0.3 8.31E-03 20 0.21 1.24E-01
360 Chordata Doliolida Dolioletta gegenbauri 11 0.3 1.02E-02 20 0.20 1.19E-01
361 Chordata Doliolida Dolioletta gegenbauri 11 0.3 1.25E-02 20 0.21 1.24E-01
362 Chordata Doliolida Dolioletta gegenbauri 11 0.3 1.68E-02 20 0.08 4.64E-02
363 Chordata Doliolida Dolioletta gegenbauri 11 0.3 2.15E-02 20 0.10 6.18E-02
364 Cnidaria Hydromedusae Aequorea victoria 2 0.75 1.38E+00 11.6 0.11 1.54E-01
365 Cnidaria Hydromedusae Aequorea victoria 2 0.75 2.81E+00 11.6 0.09 1.33E-01
366 Cnidaria Hydromedusae Aequorea victoria 2 0.75 5.58E+00 11.6 0.10 1.45E-01
367 Cnidaria Hydromedusae Aequorea victoria 2 0.75 1.04E+01 11.6 0.08 1.09E-01
368 Cnidaria Hydromedusae Aequorea victoria 2 0.75 1.66E+01 11.6 0.06 7.96E-02
369 Cnidaria Hydromedusae Aequorea victoria 2 0.75 2.39E+01 11.6 0.05 6.77E-02
370 Cnidaria Hydromedusae Aequorea victoria 2 0.75 3.04E+01 11.6 0.02 2.90E-02
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371 Cnidaria Hydromedusae Aequorea victoria 2 0.75 3.38E+01 11.6 0.01 1.42E-02
372 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 1.68E-01 15 0.17 1.69E-01
373 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 7.97E-01 15 0.10 9.94E-02
374 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 7.97E-01 15 0.06 5.59E-02
375 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 1.68E+00 15 0.05 5.00E-02
376 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 2.42E+00 15 0.05 5.00E-02
377 Cnidaria Hydromedusae Aequorea vitrina 35 0.75 5.15E+00 15 0.06 6.00E-02
378 Cnidaria Hydromedusae Cladonema californicum 8 0.81 5.22E-03 18 0.35 2.56E-01
379 Cnidaria Hydromedusae Cladonema californicum 8 0.81 1.88E-02 18 0.24 1.73E-01
380 Cnidaria Hydromedusae Cladonema californicum 8 0.81 5.15E-02 18 0.12 8.86E-02
381 Cnidaria Hydromedusae Cladonema californicum 8 0.81 1.12E-01 18 0.12 8.53E-02
382 Cnidaria Hydromedusae Cladonema californicum 8 0.81 1.83E-01 18 0.05 3.52E-02
383 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 4.74E-02 12 0.29 3.92E-01
384 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 1.10E-01 12 0.15 2.05E-01
385 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 1.69E-01 12 0.12 1.66E-01
386 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 2.23E-01 12 0.08 1.08E-01
387 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 2.45E-01 12 0.08 1.08E-01
388 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 3.65E-01 12 0.07 1.01E-01
389 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 3.80E-01 12 0.04 6.01E-02
390 Cnidaria Hydromedusae Sarsia tubulosa 9 0.25 6.52E-01 12 0.04 5.02E-02
391 Ctenophora Lobata Bolinopsis mikado 24 0.07 3.96E+00 24 0.17 6.92E-02
392 Ctenophora Lobata Bolinopsis mikado 24 0.07 9.89E+00 24 1.41 5.58E-01
393 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.56E+01 24 1.39 5.50E-01
394 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.53E+01 24 0.58 2.29E-01
395 Ctenophora Lobata Bolinopsis mikado 24 0.07 3.56E+01 24 0.27 1.06E-01
396 Ctenophora Lobata Bolinopsis mikado 24 0.07 6.20E+01 24 0.16 6.39E-02
397 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.05E+02 24 0.35 1.40E-01
398 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.44E+02 24 0.36 1.41E-01
399 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.70E+02 24 0.75 2.96E-01
400 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.26E+02 24 0.17 6.79E-02
401 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.75E+02 24 0.15 6.11E-02
402 Ctenophora Lobata Bolinopsis mikado 24 0.07 3.07E+02 24 0.09 3.72E-02
403 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.68E+00 17 0.58 4.70E-01
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404 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.23E+00 17 0.07 5.94E-02
405 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.61E+00 17 0.29 2.33E-01
406 Ctenophora Lobata Bolinopsis mikado 24 0.07 3.62E+00 17 0.18 1.45E-01
407 Ctenophora Lobata Bolinopsis mikado 24 0.07 7.38E+00 17 0.00 1.16E-07
408 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.01E+01 17 0.63 5.10E-01
409 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.61E+01 17 0.33 2.68E-01
410 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.03E+01 17 0.16 1.29E-01
411 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.37E+01 17 0.16 1.29E-01
412 Ctenophora Lobata Bolinopsis mikado 24 0.07 3.11E+01 17 0.43 3.51E-01
413 Ctenophora Lobata Bolinopsis mikado 24 0.07 4.19E+01 17 0.21 1.69E-01
414 Ctenophora Lobata Bolinopsis mikado 24 0.07 5.81E+01 17 0.42 3.45E-01
415 Ctenophora Lobata Bolinopsis mikado 24 0.07 7.51E+01 17 0.08 6.58E-02
416 Ctenophora Lobata Bolinopsis mikado 24 0.07 8.89E+01 17 0.30 2.41E-01
417 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.13E+02 17 0.24 1.94E-01
418 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.45E+02 17 0.23 1.89E-01
419 Ctenophora Lobata Bolinopsis mikado 24 0.07 1.86E+02 17 0.23 1.88E-01
420 Ctenophora Lobata Bolinopsis mikado 24 0.07 2.31E+02 17 0.21 1.72E-01
421 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 1.86E-01 25.4 0.31 1.05E-01
422 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 2.42E-01 25.4 0.43 1.47E-01
423 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 2.98E-01 25.4 0.17 5.81E-02
424 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 4.80E-01 25.4 1.96 6.72E-01
425 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 7.36E-01 25.4 0.03 1.03E-02
426 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 7.59E-01 25.4 0.04 1.41E-02
427 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 8.41E-01 25.4 0.05 1.78E-02
428 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 1.07E+00 25.4 0.16 5.57E-02
429 Ctenophora Lobata Mnemiopsis leidyi 17 0.1 1.60E+00 25.4 0.11 3.93E-02
430 Ctenophora Lobata Mnemiopsis leidyi 44 0.1 1.10E-02 26 0.68 2.19E-01
431 Ctenophora Lobata Mnemiopsis leidyi 44 0.1 1.10E-02 26 0.92 2.96E-01
432 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.21E-03 26 0.50 1.60E-01
433 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.20E-02 26 0.73 2.37E-01
434 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.83E-02 26 0.72 2.32E-01
435 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 9.57E-02 26 0.54 1.75E-01
436 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.44E-01 26 0.14 4.54E-02
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437 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 8.38E-01 26 0.33 1.06E-01
438 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.28E+00 26 0.48 1.53E-01
439 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.54E+00 26 0.24 7.59E-02
440 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.51E+00 26 0.11 3.55E-02
441 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.21E+00 26 0.06 1.88E-02
442 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.98E+00 26 0.37 1.21E-01
443 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 6.96E+00 26 0.09 2.94E-02
444 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 8.13E+00 26 0.04 1.45E-02
445 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 9.61E+00 26 0.09 3.02E-02
446 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 9.74E+00 26 0.16 5.30E-02
447 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.26E+01 26 0.08 2.58E-02
448 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.91E+01 26 0.09 2.87E-02
449 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 7.52E-03 31 0.66 1.27E-01
450 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.59E-02 31 0.44 8.38E-02
451 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 5.49E-02 31 1.35 2.60E-01
452 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.63E-01 31 0.49 9.46E-02
453 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.81E-01 31 0.24 4.54E-02
454 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 8.82E-01 31 0.23 4.36E-02
455 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.39E+00 31 0.24 4.54E-02
456 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.87E+00 31 0.31 5.91E-02
457 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.93E+00 31 0.20 3.83E-02
458 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.52E-03 21 0.33 1.78E-01
459 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.89E-03 21 1.45 7.83E-01
460 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 9.87E-03 21 0.38 2.08E-01
461 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.76E-02 21 0.38 2.04E-01
462 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.99E-02 21 1.09 5.90E-01
463 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.53E-02 21 0.93 4.99E-01
464 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 7.69E-02 21 0.21 1.14E-01
465 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.94E-01 21 0.35 1.91E-01
466 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.67E-01 21 0.15 7.91E-02
467 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.06E-01 21 0.07 3.79E-02
468 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 6.14E-01 21 0.24 1.32E-01
469 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.19E+00 21 0.29 1.56E-01
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470 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.73E+00 21 0.10 5.53E-02
471 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.07E+00 21 0.21 1.11E-01
472 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 2.64E+00 21 0.48 2.56E-01
473 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 3.38E+00 21 0.07 3.68E-02
474 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 4.55E+00 21 0.24 1.27E-01
475 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 6.87E+00 21 0.07 3.74E-02
476 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 9.74E+00 21 0.14 7.73E-02
477 Ctenophora Lobata Mnemiopsis mccradyi 41 0.085 1.21E+01 21 0.06 3.44E-02
478 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 1.57E-01 26 0.78 2.52E-01
479 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 3.27E-01 26 0.64 2.08E-01
480 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 5.99E-01 26 0.40 1.29E-01
481 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 4.13E-01 26 0.38 1.24E-01
482 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 2.56E+00 26 0.53 1.69E-01
483 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 1.82E+00 26 0.34 1.08E-01
484 Ctenophora Lobata Mnemiopsis mccradyi 30 0.085 3.69E+00 21 0.24 1.29E-01
485 Ctenophora Nuda Beroe ovata 26 0.16 8.16E+01 26 0.21 6.68E-02
486 Ctenophora Nuda Beroe ovata 26 0.16 9.05E+01 26 0.00 2.64E-08
487 Ctenophora Nuda Beroe ovata 26 0.16 9.65E+01 26 0.13 4.11E-02
488 Ctenophora Nuda Beroe ovata 26 0.16 1.13E+02 26 0.18 5.87E-02
489 Ctenophora Nuda Beroe ovata 26 0.16 1.31E+02 26 0.12 3.79E-02
490 Ctenophora Nuda Beroe ovata 26 0.16 1.47E+02 26 0.11 3.61E-02
491 Ctenophora Nuda Beroe ovata 26 0.16 1.64E+02 26 0.11 3.44E-02
492 Ctenophora Nuda Beroe ovata 26 0.16 1.77E+02 26 0.05 1.59E-02
493 Ctenophora Nuda Beroe ovata 26 0.16 1.82E+02 26 0.00 9.11E-04
494 Ctenophora Nuda Beroe ovata 26 0.16 1.91E+02 26 0.10 3.12E-02
495 Ctenophora Nuda Beroe ovata 26 0.16 5.25E+01 26 0.19 5.98E-02
496 Ctenophora Nuda Beroe ovata 26 0.16 5.50E+01 26 0.09 3.01E-02
497 Ctenophora Nuda Beroe ovata 26 0.16 6.97E+01 26 0.38 1.23E-01
498 Ctenophora Nuda Beroe ovata 26 0.16 1.02E+02 26 0.38 1.21E-01
499 Ctenophora Nuda Beroe ovata 26 0.16 1.27E+02 26 0.06 1.96E-02
500 Ctenophora Nuda Beroe ovata 26 0.16 1.34E+02 26 0.06 1.85E-02
501 Ctenophora Nuda Beroe ovata 26 0.16 1.38E+02 26 0.00 1.64E-09
502 Ctenophora Nuda Beroe ovata 26 0.16 5.35E+01 26 0.00 7.48E-08
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503 Ctenophora Nuda Beroe ovata 26 0.16 5.35E+01 26 0.00 6.73E-08
504 Ctenophora Nuda Beroe ovata 26 0.16 5.82E+01 26 0.17 5.40E-02
505 Ctenophora Nuda Beroe ovata 26 0.16 5.60E+01 26 0.09 2.95E-02
506 Ctenophora Nuda Beroe ovata 26 0.16 6.57E+01 26 0.23 7.29E-02
507 Ctenophora Nuda Beroe ovata 26 0.16 7.88E+01 26 0.14 4.41E-02
508 Ctenophora Nuda Beroe ovata 26 0.16 8.43E+01 26 0.00 1.61E-08
509 Ctenophora Nuda Beroe ovata 26 0.16 8.71E+01 26 0.06 2.09E-02
510 Ctenophora Nuda Beroe ovata 26 0.16 9.30E+01 26 0.07 2.13E-02
511 Ctenophora Nuda Beroe ovata 26 0.16 9.97E+01 26 0.07 2.32E-02
512 Chordata Salpida Thalia democratica 11 0.87 6.29E-03 20 0.34 2.01E-01
513 Chordata Salpida Thalia democratica 11 0.87 8.04E-03 20 0.16 9.28E-02
514 Chordata Salpida Thalia democratica 11 0.87 1.01E-02 20 0.31 1.86E-01
515 Chordata Salpida Thalia democratica 11 0.87 1.32E-02 20 0.22 1.31E-01
516 Chordata Salpida Thalia democratica 11 0.87 1.53E-02 20 0.06 3.86E-02
517 Chordata Salpida Thalia democratica 11 0.87 1.60E-02 20 0.03 1.54E-02
518 Chordata Salpida Thalia democratica 11 0.87 3.53E-03 20 0.04 2.31E-02
519 Chordata Salpida Thalia democratica 11 0.87 3.68E-03 20 0.04 2.57E-02
520 Chordata Salpida Thalia democratica 11 0.87 4.15E-03 20 0.20 1.19E-01
521 Chordata Salpida Thalia democratica 11 0.87 5.02E-03 20 0.18 1.08E-01
522 Chordata Salpida Thalia democratica 11 0.87 5.86E-03 20 0.13 7.73E-02
523 Chordata Salpida Thalia democratica 11 0.87 6.73E-03 20 0.15 8.76E-02
524 Cnidaria Scyphomedusae Aurelia aurita 36 0.2 1.99E-02 15 0.25 2.51E-01
525 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 1.24E-03 6 0.24 5.98E-01
526 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 1.99E-03 9.5 0.20 3.58E-01
527 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 3.03E-03 12 0.32 4.32E-01
528 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 1.77E-03 15 0.25 2.48E-01
529 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 4.79E-03 18 0.39 2.88E-01
530 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 1.48E-03 15 0.25 2.54E-01
531 Cnidaria Scyphomedusae Aurelia aurita 3 0.2 4.65E-03 18 0.41 2.97E-01
532 Cnidaria Scyphomedusae Aurelia aurita 14 0.2 3.82E-02 15 0.24 2.38E-01
533 Cnidaria Scyphomedusae Aurelia aurita 14 0.2 3.84E-02 15 0.21 2.08E-01
534 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 9.78E-03 10 0.07 1.12E-01
535 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 1.22E-02 12 0.10 1.35E-01
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536 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 2.07E-02 15 0.17 1.74E-01
537 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 2.48E-02 17 0.20 1.63E-01
538 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 3.29E-02 21 0.24 1.30E-01
539 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 2.66E-02 22.5 0.21 9.69E-02
540 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 2.07E-02 24.5 0.17 6.53E-02
541 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 1.08E-02 26 0.08 2.63E-02
542 Cnidaria Scyphomedusae Aurelia labiata 51 0.2 1.17E-02 28 0.09 2.42E-02
543 Cnidaria Scyphomedusae Chrysaora quinquecirrha 37 0.53 9.32E-03 23 0.74 3.25E-01
544 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 2.39E+00 27.5 0.09 2.57E-02
545 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 6.39E+00 27.5 0.04 1.06E-02
546 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 1.06E+01 27.5 0.05 1.41E-02
547 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 1.50E+01 27.5 0.01 2.78E-03
548 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 1.72E+01 27.5 0.01 2.92E-03
549 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 1.93E+01 27.5 0.00 1.31E-03
550 Cnidaria Scyphomedusae Chrysaora quinquecirrha 31 0.53 2.02E+01 27.5 0.00 8.51E-04
551 Cnidaria Scyphomedusae Nemopilema nomurai 25 0.55 1.08E+01 25 0.07 2.63E-02
552 Cnidaria Scyphomedusae Nemopilema nomurai 25 0.55 2.17E+01 25 0.05 1.87E-02
553 Cnidaria Scyphomedusae Nemopilema nomurai 25 0.55 4.74E+01 25 0.09 3.21E-02
554 Cnidaria Scyphomedusae Nemopilema nomurai 25 0.55 1.10E+02 25 0.06 2.25E-02
555 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 1.95E-01 27.5 0.08 2.34E-02
556 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 2.80E-01 27.5 0.02 5.32E-03
557 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 1.85E-01 27.5 0.09 2.41E-02
558 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 1.33E-01 27.5 0.10 2.82E-02
559 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 2.21E-01 27.5 0.04 1.19E-02
560 Cnidaria Scyphomedusae Pelagia noctiluca 32 0.35 1.40E-01 27.5 0.06 1.60E-02

Record Mass g (d-1) Food offered
1 2.38E-02 Fed so that no more than 50% of copepod prey were removed
2 3.50E-02 Fed so that no more than 50% of copepod prey were removed
3 4.57E-02 Fed so that no more than 50% of copepod prey were removed
4 5.70E-02 Fed so that no more than 50% of copepod prey were removed
5 6.65E-02 Fed so that no more than 50% of copepod prey were removed
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6 7.54E-02 Fed so that no more than 50% of copepod prey were removed
7 2.82E-02 Fed so that no more than 50% of copepod prey were removed
8 1.66E-02 Fed so that no more than 50% of copepod prey were removed
9 2.00E-02 Fed so that no more than 50% of copepod prey were removed
10 2.93E-02 Fed so that no more than 50% of copepod prey were removed
11 3.83E-02 Fed so that no more than 50% of copepod prey were removed
12 4.77E-02 Fed so that no more than 50% of copepod prey were removed
13 5.56E-02 Fed so that no more than 50% of copepod prey were removed
14 6.31E-02 Fed so that no more than 50% of copepod prey were removed
15 1.50E-02 Fed so that no more than 50% of copepod prey were removed
16 1.58E-03 Fed so that no more than 50% of copepod prey were removed
17 1.40E-02 Fed so that no more than 50% of copepod prey were removed
18 2.05E-02 Fed so that no more than 50% of copepod prey were removed
19 2.68E-02 Fed so that no more than 50% of copepod prey were removed
20 3.34E-02 Fed so that no more than 50% of copepod prey were removed
21 3.90E-02 Fed so that no more than 50% of copepod prey were removed
22 1.18E-02 Fed so that no more than 50% of copepod prey were removed
23 4.97E-03 Fed so that no more than 50% of copepod prey were removed
24 2.91E-02 Recently hatched Artemia added daily
25 2.24E-02 Recently hatched Artemia added daily
26 3.19E-02 Recently hatched Artemia added daily
27 2.85E-04 Recently hatched Artemia added daily
28 1.63E-02 Recently hatched Artemia added daily
29 2.66E-02 Laboratory high food (see Hirst & Bunker 2002)
30 5.65E-02 Laboratory high food (see Hirst & Bunker 2002)
31 4.41E-02 Laboratory high food (see Hirst & Bunker 2002)
32 2.80E-02 Laboratory high food (see Hirst & Bunker 2002)
33 2.97E-02 Laboratory high food (see Hirst & Bunker 2002)
34 2.64E-02 Laboratory high food (see Hirst & Bunker 2002)
35 4.26E-02 Laboratory high food (see Hirst & Bunker 2002)
36 2.92E-02 Laboratory high food (see Hirst & Bunker 2002)
37 7.60E-02 Laboratory high food (see Hirst & Bunker 2002)
38 1.63E-01 Laboratory high food (see Hirst & Bunker 2002)
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39 3.90E-02 Laboratory high food (see Hirst & Bunker 2002)
40 9.00E-02 Laboratory high food (see Hirst & Bunker 2002)
41 6.59E-02 Laboratory high food (see Hirst & Bunker 2002)
42 9.17E-02 Laboratory high food (see Hirst & Bunker 2002)
43 1.15E-01 Laboratory high food (see Hirst & Bunker 2002)
44 6.89E-02 Laboratory high food (see Hirst & Bunker 2002)
45 8.52E-02 Laboratory high food (see Hirst & Bunker 2002)
46 1.18E-02 Laboratory high food (see Hirst & Bunker 2002)
47 8.81E-02 Laboratory high food (see Hirst & Bunker 2002)
48 2.26E-02 Laboratory high food (see Hirst & Bunker 2002)
49 9.60E-02 Laboratory high food (see Hirst & Bunker 2002)
50 1.03E-01 Laboratory high food (see Hirst & Bunker 2002)
51 1.04E-01 Laboratory high food (see Hirst & Bunker 2002)
52 6.86E-02 Laboratory high food (see Hirst & Bunker 2002)
53 1.11E-01 Laboratory high food (see Hirst & Bunker 2002)
54 1.22E-01 Laboratory high food (see Hirst & Bunker 2002)
55 1.18E-01 Laboratory high food (see Hirst & Bunker 2002)
56 8.67E-02 Laboratory high food (see Hirst & Bunker 2002)
57 9.46E-02 Laboratory high food (see Hirst & Bunker 2002)
58 1.08E-01 Laboratory high food (see Hirst & Bunker 2002)
59 1.33E-01 Laboratory high food (see Hirst & Bunker 2002)
60 1.18E-01 Laboratory high food (see Hirst & Bunker 2002)
61 5.10E-02 Laboratory high food (see Hirst & Bunker 2002)
62 5.47E-02 Laboratory high food (see Hirst & Bunker 2002)
63 5.53E-02 Laboratory high food (see Hirst & Bunker 2002)
64 5.41E-02 Laboratory high food (see Hirst & Bunker 2002)
65 5.11E-02 Laboratory high food (see Hirst & Bunker 2002)
66 1.86E-01 Laboratory high food (see Hirst & Bunker 2002)
67 1.91E-01 Laboratory high food (see Hirst & Bunker 2002)
68 1.88E-01 Laboratory high food (see Hirst & Bunker 2002)
69 1.79E-01 Laboratory high food (see Hirst & Bunker 2002)
70 1.64E-01 Laboratory high food (see Hirst & Bunker 2002)
71 1.49E-01 Laboratory high food (see Hirst & Bunker 2002)
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72 1.40E-01 Laboratory high food (see Hirst & Bunker 2002)
73 1.30E-01 Laboratory high food (see Hirst & Bunker 2002)
74 1.17E-01 Laboratory high food (see Hirst & Bunker 2002)
75 1.01E-01 Laboratory high food (see Hirst & Bunker 2002)
76 5.87E-02 Laboratory high food (see Hirst & Bunker 2002)
77 5.88E-02 Laboratory high food (see Hirst & Bunker 2002)
78 5.70E-02 Laboratory high food (see Hirst & Bunker 2002)
79 5.34E-02 Laboratory high food (see Hirst & Bunker 2002)
80 4.85E-02 Laboratory high food (see Hirst & Bunker 2002)
81 2.49E-02 Laboratory high food (see Hirst & Bunker 2002)
82 4.65E-02 Laboratory high food (see Hirst & Bunker 2002)
83 3.26E-02 Laboratory high food (see Hirst & Bunker 2002)
84 7.13E-02 Laboratory high food (see Hirst & Bunker 2002)
85 3.25E-02 Laboratory high food (see Hirst & Bunker 2002)
86 6.18E-02 Laboratory high food (see Hirst & Bunker 2002)
87 2.18E-02 Laboratory high food (see Hirst & Bunker 2002)
88 2.98E-02 Laboratory high food (see Hirst & Bunker 2002)
89 3.45E-02 Laboratory high food (see Hirst & Bunker 2002)
90 2.18E-02 Laboratory high food (see Hirst & Bunker 2002)
91 1.66E-02 Laboratory high food (see Hirst & Bunker 2002)
92 6.35E-02 Laboratory high food (see Hirst & Bunker 2002)
93 4.41E-02 Laboratory high food (see Hirst & Bunker 2002)
94 5.12E-02 Laboratory high food (see Hirst & Bunker 2002)
95 1.60E-02 Laboratory high food (see Hirst & Bunker 2002)
96 3.52E-02 Laboratory high food (see Hirst & Bunker 2002)
97 3.86E-02 Laboratory high food (see Hirst & Bunker 2002)
98 4.61E-02 Laboratory high food (see Hirst & Bunker 2002)
99 3.32E-02 Laboratory high food (see Hirst & Bunker 2002)
100 1.44E-02 Laboratory high food (see Hirst & Bunker 2002)
101 3.55E-02 Laboratory high food (see Hirst & Bunker 2002)
102 3.61E-02 Laboratory high food (see Hirst & Bunker 2002)
103 4.30E-02 Laboratory high food (see Hirst & Bunker 2002)
104 3.22E-02 Laboratory high food (see Hirst & Bunker 2002)
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105 1.36E-02 Laboratory high food (see Hirst & Bunker 2002)
106 2.86E-02 Laboratory high food (see Hirst & Bunker 2002)
107 3.05E-02 Laboratory high food (see Hirst & Bunker 2002)
108 3.93E-02 Laboratory high food (see Hirst & Bunker 2002)
109 2.56E-02 Laboratory high food (see Hirst & Bunker 2002)
110 1.12E-02 Laboratory high food (see Hirst & Bunker 2002)
111 2.21E-02 Laboratory high food (see Hirst & Bunker 2002)
112 1.45E-02 Laboratory high food (see Hirst & Bunker 2002)
113 3.39E-02 Laboratory high food (see Hirst & Bunker 2002)
114 1.05E-02 Laboratory high food (see Hirst & Bunker 2002)
115 1.94E-02 Laboratory high food (see Hirst & Bunker 2002)
116 1.11E-02 Laboratory high food (see Hirst & Bunker 2002)
117 1.89E-02 Laboratory high food (see Hirst & Bunker 2002)
118 1.54E-02 Laboratory high food (see Hirst & Bunker 2002)
119 1.55E-02 Laboratory high food (see Hirst & Bunker 2002)
120 1.52E-02 Laboratory high food (see Hirst & Bunker 2002)
121 1.43E-02 Laboratory high food (see Hirst & Bunker 2002)
122 1.32E-02 Laboratory high food (see Hirst & Bunker 2002)
123 6.15E-02 Laboratory high food (see Hirst & Bunker 2002)
124 6.27E-02 Laboratory high food (see Hirst & Bunker 2002)
125 6.15E-02 Laboratory high food (see Hirst & Bunker 2002)
126 5.86E-02 Laboratory high food (see Hirst & Bunker 2002)
127 5.43E-02 Laboratory high food (see Hirst & Bunker 2002)
128 2.77E-02 Laboratory high food (see Hirst & Bunker 2002)
129 7.28E-02 Laboratory high food (see Hirst & Bunker 2002)
130 6.18E-02 Laboratory high food (see Hirst & Bunker 2002)
131 3.74E-02 Laboratory high food (see Hirst & Bunker 2002)
132 4.35E-02 Laboratory high food (see Hirst & Bunker 2002)
133 4.58E-02 Laboratory high food (see Hirst & Bunker 2002)
134 4.40E-02 Laboratory high food (see Hirst & Bunker 2002)
135 4.80E-02 Laboratory high food (see Hirst & Bunker 2002)
136 5.46E-02 Laboratory high food (see Hirst & Bunker 2002)
137 5.96E-02 Laboratory high food (see Hirst & Bunker 2002)
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138 6.22E-02 Laboratory high food (see Hirst & Bunker 2002)
139 5.00E-02 Laboratory high food (see Hirst & Bunker 2002)
140 5.93E-02 Laboratory high food (see Hirst & Bunker 2002)
141 6.63E-02 Laboratory high food (see Hirst & Bunker 2002)
142 6.94E-02 Laboratory high food (see Hirst & Bunker 2002)
143 6.87E-02 Laboratory high food (see Hirst & Bunker 2002)
144 1.97E-02 Laboratory high food (see Hirst & Bunker 2002)
145 4.20E-02 Laboratory high food (see Hirst & Bunker 2002)
146 1.49E-02 Laboratory high food (see Hirst & Bunker 2002)
147 4.06E-02 Laboratory high food (see Hirst & Bunker 2002)
148 2.46E-02 Laboratory high food (see Hirst & Bunker 2002)
149 3.07E-02 Laboratory high food (see Hirst & Bunker 2002)
150 3.35E-02 Laboratory high food (see Hirst & Bunker 2002)
151 3.12E-02 Laboratory high food (see Hirst & Bunker 2002)
152 2.95E-02 Laboratory high food (see Hirst & Bunker 2002)
153 2.33E-02 Laboratory high food (see Hirst & Bunker 2002)
154 4.40E-02 Laboratory high food (see Hirst & Bunker 2002)
155 6.11E-02 Laboratory high food (see Hirst & Bunker 2002)
156 7.40E-02 Laboratory high food (see Hirst & Bunker 2002)
157 7.46E-02 Laboratory high food (see Hirst & Bunker 2002)
158 7.24E-02 Laboratory high food (see Hirst & Bunker 2002)
159 6.14E-02 Laboratory high food (see Hirst & Bunker 2002)
160 2.97E-02 Laboratory high food (see Hirst & Bunker 2002)
161 6.84E-02 Laboratory high food (see Hirst & Bunker 2002)
162 2.90E-02 Laboratory high food (see Hirst & Bunker 2002)
163 9.06E-02 Laboratory high food (see Hirst & Bunker 2002)
164 1.20E-01 Laboratory high food (see Hirst & Bunker 2002)
165 9.43E-02 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
166 1.07E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
167 1.16E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
168 1.28E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
169 1.34E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
170 1.39E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet



178

171 1.45E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
172 1.47E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
173 1.43E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
174 1.38E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
175 9.20E-02 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
176 1.02E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
177 1.10E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
178 1.18E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
179 1.23E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
180 1.25E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
181 1.26E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
182 1.24E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
183 1.17E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
184 1.08E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
185 8.64E-02 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
186 9.61E-02 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
187 1.05E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
188 1.16E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
189 1.23E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
190 1.26E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
191 1.29E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
192 1.28E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
193 1.20E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
194 1.09E-01 Fed Coscinodiscus until 200-300ugC in size, then fed Calanus, this reflects natural shift in diet
195 4.68E-02 Maintained on excess food
196 7.53E-02 Maintained on excess food
197 3.53E-02 Maintained on excess food
198 2.93E-02 Maintained on excess food
199 2.74E-02 Maintained on excess food
200 2.48E-02 Maintained on excess food
201 2.60E-02 Maintained on excess food
202 6.26E-02 Maintained on excess food
203 3.84E-02 Maintained on excess food
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204 3.23E-02 Maintained on excess food
205 3.00E-02 Maintained on excess food
206 2.74E-02 Maintained on excess food
207 2.37E-02 Supplied with a surplus of Artemia nauplii as food.
208 2.25E-02 Supplied with a surplus of Artemia nauplii as food.
209 2.08E-02 Supplied with a surplus of Artemia nauplii as food.
210 1.26E-02 Supplied with a surplus of Artemia nauplii as food.
211 1.09E-02 Supplied with a surplus of Artemia nauplii as food.
212 7.53E-03 Supplied with a surplus of Artemia nauplii as food.
213 1.14E-02 Supplied with a surplus of Artemia nauplii as food.
214 6.20E-03 Supplied with a surplus of Artemia nauplii as food.
215 4.67E-03 Supplied with a surplus of Artemia nauplii as food.
216 7.28E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
217 6.48E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
218 6.81E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
219 5.20E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
220 5.37E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
221 4.12E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
222 4.53E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
223 3.95E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
224 3.32E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
225 2.42E-02 Phaeodactylum tricornutum fed once weekly 10^5 cells/ml
226 5.33E-02 Laboratory high food
227 7.30E-02 Laboratory high food
228 5.12E-02 Laboratory high food
229 7.75E-02 Laboratory high food
230 4.76E-02 Laboratory high food
231 5.90E-02 Laboratory high food
232 3.31E-02 Laboratory high food
233 1.83E-02 Laboratory high food
234 6.66E-02 Laboratory high food
235 6.16E-02 Laboratory high food
236 4.65E-02 Laboratory high food
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237 5.39E-02 Laboratory high food
238 1.49E-02 Laboratory high food
239 1.11E-01 Laboratory high food
240 5.06E-02 Laboratory high food
241 4.84E-02 Laboratory high food
242 4.99E-02 Laboratory high food
243 1.57E-02 Laboratory high food
244 2.77E-02 Laboratory high food
245 8.37E-02 Laboratory high food
246 7.35E-02 Laboratory high food
247 5.00E-02 Laboratory high food
248 4.72E-02 Laboratory high food
249 2.76E-02 Laboratory high food
250 1.01E-02 Laboratory high food
251 5.52E-02 Laboratory high food
252 9.07E-02 Laboratory high food
253 3.51E-02 Laboratory high food
254 4.20E-02 Laboratory high food
255 2.53E-02 Laboratory high food
256 9.49E-02 Laboratory high food
257 2.70E-02 Laboratory high food
258 1.32E-02 Laboratory high food
259 5.69E-03 Laboratory high food
260 2.98E-03 Laboratory high food
261 2.46E-03 Laboratory high food
262 1.25E-03 Laboratory high food
263 6.32E-04 Laboratory high food
264 2.35E-02 Laboratory high food
265 1.16E-02 Laboratory high food
266 5.35E-03 Laboratory high food
267 2.80E-03 Laboratory high food
268 1.72E-03 Laboratory high food
269 5.82E-04 Laboratory high food
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270 5.86E-04 Laboratory high food
271 6.85E-02 Artemia nauplii with supplementary frozen zoop to excess
272 6.29E-02 Artemia nauplii with supplementary frozen zoop to excess
273 5.89E-02 Artemia nauplii with supplementary frozen zoop to excess
274 5.50E-02 Artemia nauplii with supplementary frozen zoop to excess
275 5.18E-02 Artemia nauplii with supplementary frozen zoop to excess
276 4.86E-02 Artemia nauplii with supplementary frozen zoop to excess
277 4.60E-02 Artemia nauplii with supplementary frozen zoop to excess
278 4.30E-02 Artemia nauplii with supplementary frozen zoop to excess
279 4.05E-02 Artemia nauplii with supplementary frozen zoop to excess
280 3.80E-02 Artemia nauplii with supplementary frozen zoop to excess
281 3.53E-02 Artemia nauplii with supplementary frozen zoop to excess
282 7.86E-02 Artemia nauplii with supplementary frozen zoop to excess
283 7.23E-02 Artemia nauplii with supplementary frozen zoop to excess
284 6.76E-02 Artemia nauplii with supplementary frozen zoop to excess
285 6.31E-02 Artemia nauplii with supplementary frozen zoop to excess
286 5.94E-02 Artemia nauplii with supplementary frozen zoop to excess
287 5.58E-02 Artemia nauplii with supplementary frozen zoop to excess
288 5.70E-02 Artemia nauplii with supplementary frozen zoop to excess
289 4.95E-02 Artemia nauplii with supplementary frozen zoop to excess
290 4.65E-02 Artemia nauplii with supplementary frozen zoop to excess
291 4.35E-02 Artemia nauplii with supplementary frozen zoop to excess
292 4.05E-02 Artemia nauplii with supplementary frozen zoop to excess
293 6.60E-02 Artemia nauplii with supplementary frozen zoop to excess
294 6.07E-02 Artemia nauplii with supplementary frozen zoop to excess
295 5.67E-02 Artemia nauplii with supplementary frozen zoop to excess
296 5.30E-02 Artemia nauplii with supplementary frozen zoop to excess
297 4.98E-02 Artemia nauplii with supplementary frozen zoop to excess
298 4.69E-02 Artemia nauplii with supplementary frozen zoop to excess
299 4.42E-02 Artemia nauplii with supplementary frozen zoop to excess
300 4.15E-02 Artemia nauplii with supplementary frozen zoop to excess
301 3.89E-02 Artemia nauplii with supplementary frozen zoop to excess
302 3.65E-02 Artemia nauplii with supplementary frozen zoop to excess
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303 3.39E-02 Artemia nauplii with supplementary frozen zoop to excess
304 6.86E-02 Natural assemblage but concentration unknown
305 1.88E-01 Natural assemblage but concentration unknown
306 9.71E-02 Natural assemblage but concentration unknown
307 3.35E-02 Natural assemblage but concentration unknown
308 4.52E-02 Natural assemblage but concentration unknown
309 1.48E-02 Natural assemblage but concentration unknown
310 4.97E-02 Natural assemblage but concentration unknown
311 4.31E-03 Natural assemblage but concentration unknown
312 1.03E-03 Natural assemblage but concentration unknown
313 3.01E-02 Natural assemblage but concentration unknown
314 6.72E-02 Natural assemblage but concentration unknown
315 1.36E-01 Natural assemblage but concentration unknown
316 1.88E-01 Natural assemblage but concentration unknown
317 4.45E-01 Natural assemblage but concentration unknown
318 5.08E-02 Natural assemblage but concentration unknown
319 6.45E-02 Natural assemblage but concentration unknown
320 2.85E-02 Natural assemblage but concentration unknown
321 8.35E-02 Natural assemblage but concentration unknown
322 2.04E-02 Natural assemblage but concentration unknown
323 8.77E-02 Natural assemblage but concentration unknown
324 1.43E-01 Natural assemblage but concentration unknown
325 1.49E-01 Natural assemblage but concentration unknown
326 2.11E-01 Natural assemblage but concentration unknown
327 1.05E-01 Natural assemblage but concentration unknown
328 6.27E-02 Natural assemblage but concentration unknown
329 9.65E-02 Natural assemblage but concentration unknown
330 1.58E-02 Natural assemblage but concentration unknown
331 1.25E-01 Deep tank, natural assemblage but concentration not givwn
332 1.49E-01 Deep tank, natural assemblage but concentration not givwn
333 1.10E-01 Deep tank, natural assemblage but concentration not givwn
334 4.28E-02 Deep tank, natural assemblage but concentration not givwn
335 5.95E-02 Deep tank, natural assemblage but concentration not givwn
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336 3.23E-02 Deep tank, natural assemblage but concentration not givwn
337 5.31E-02 Deep tank, natural assemblage but concentration not givwn
338 1.43E-01 Deep tank, natural assemblage but concentration not givwn
339 1.35E-01 Deep tank, natural assemblage but concentration not givwn
340 7.00E-02 Deep tank, natural assemblage but concentration not givwn
341 2.93E-02 Deep tank, natural assemblage but concentration not givwn
342 1.93E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
343 7.65E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
344 1.10E-01 Rhodomonas and Thalassiosira (no more then 30% removed)
345 1.11E-01 Rhodomonas and Thalassiosira (no more then 30% removed)
346 1.07E-01 Rhodomonas and Thalassiosira (no more then 30% removed)
347 8.56E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
348 6.19E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
349 7.10E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
350 4.89E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
351 5.60E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
352 6.42E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
353 6.20E-02 Rhodomonas and Thalassiosira (no more then 30% removed)
354 1.32E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-13
355 1.22E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-14
356 3.33E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-15
357 3.95E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-16
358 2.97E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-17
359 3.74E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-18
360 3.77E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-19
361 4.13E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-20
362 1.67E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-21
363 2.37E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-22
364 1.67E-01 "Mixed diet"" - included gelatinous prey
365 1.72E-01 "Mixed diet"" - included gelatinous prey
366 2.23E-01 "Mixed diet"" - included gelatinous prey
367 1.96E-01 "Mixed diet"" - included gelatinous prey
368 1.61E-01 "Mixed diet"" - included gelatinous prey
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369 1.50E-01 "Mixed diet"" - included gelatinous prey
370 6.81E-02 "Mixed diet"" - included gelatinous prey
371 3.42E-02 "Mixed diet"" - included gelatinous prey
372 1.08E-01
373 9.39E-02
374 5.28E-02
375 5.69E-02
376 6.24E-02
377 9.04E-02
378 6.88E-02 Artemia nauplii in excess
379 6.41E-02 Artemia nauplii in excess
380 4.22E-02 Artemia nauplii in excess
381 4.93E-02 Artemia nauplii in excess
382 2.30E-02 Artemia nauplii in excess
383 1.83E-01 Fresh copepods to excess
384 1.18E-01 Fresh copepods to excess
385 1.07E-01 Fresh copepods to excess
386 7.44E-02 Fresh copepods to excess
387 7.60E-02 Fresh copepods to excess
388 7.87E-02 Fresh copepods to excess
389 4.72E-02 Fresh copepods to excess
390 4.51E-02 Fresh copepods to excess
391 9.77E-02 100 Acartia l-1
392 9.90E-01 100 Acartia l-1
393 1.09E+00 100 Acartia l-1
394 5.13E-01 100 Acartia l-1
395 2.59E-01 100 Acartia l-1
396 1.79E-01 100 Acartia l-1
397 4.48E-01 100 Acartia l-1
398 4.89E-01 100 Acartia l-1
399 1.07E+00 100 Acartia l-1
400 2.63E-01 100 Acartia l-1
401 2.49E-01 100 Acartia l-1
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402 1.56E-01 100 Acartia l-1
403 5.35E-01 101 Acartia l-1
404 7.26E-02 102 Acartia l-1
405 2.97E-01 103 Acartia l-1
406 2.00E-01 104 Acartia l-1
407 1.91E-07 105 Acartia l-1
408 9.09E-01 106 Acartia l-1
409 5.37E-01 107 Acartia l-1
410 2.74E-01 108 Acartia l-1
411 2.86E-01 109 Acartia l-1
412 8.30E-01 110 Acartia l-1
413 4.31E-01 111 Acartia l-1
414 9.53E-01 112 Acartia l-1
415 1.94E-01 113 Acartia l-1
416 7.41E-01 114 Acartia l-1
417 6.33E-01 115 Acartia l-1
418 6.58E-01 116 Acartia l-1
419 6.96E-01 117 Acartia l-1
420 6.69E-01 118 Acartia l-1
421 6.88E-02
422 1.03E-01
423 4.29E-02
424 5.60E-01
425 9.51E-03
426 1.31E-02
427 1.70E-02
428 5.66E-02
429 4.42E-02
430 7.10E-02
431 9.60E-02
432 4.07E-02 Acartia/Paracalanus so that conc never dropped below 50%
433 9.12E-02 Acartia/Paracalanus so that conc never dropped below 50%
434 1.09E-01 Acartia/Paracalanus so that conc never dropped below 50%
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435 9.73E-02 Acartia/Paracalanus so that conc never dropped below 50%
436 3.47E-02 Acartia/Paracalanus so that conc never dropped below 50%
437 1.01E-01 Acartia/Paracalanus so that conc never dropped below 50%
438 1.63E-01 Acartia/Paracalanus so that conc never dropped below 50%
439 8.45E-02 Acartia/Paracalanus so that conc never dropped below 50%
440 4.47E-02 Acartia/Paracalanus so that conc never dropped below 50%
441 2.52E-02 Acartia/Paracalanus so that conc never dropped below 50%
442 1.80E-01 Acartia/Paracalanus so that conc never dropped below 50%
443 4.77E-02 Acartia/Paracalanus so that conc never dropped below 50%
444 2.45E-02 Acartia/Paracalanus so that conc never dropped below 50%
445 5.32E-02 Acartia/Paracalanus so that conc never dropped below 50%
446 9.36E-02 Acartia/Paracalanus so that conc never dropped below 50%
447 4.86E-02 Acartia/Paracalanus so that conc never dropped below 50%
448 5.99E-02 Acartia/Paracalanus so that conc never dropped below 50%
449 3.73E-02 Acartia/Paracalanus so that conc never dropped below 50%
450 3.65E-02 Acartia/Paracalanus so that conc never dropped below 50%
451 1.26E-01 Acartia/Paracalanus so that conc never dropped below 50%
452 6.01E-02 Acartia/Paracalanus so that conc never dropped below 50%
453 3.78E-02 Acartia/Paracalanus so that conc never dropped below 50%
454 4.22E-02 Acartia/Paracalanus so that conc never dropped below 50%
455 4.92E-02 Acartia/Paracalanus so that conc never dropped below 50%
456 6.91E-02 Acartia/Paracalanus so that conc never dropped below 50%
457 5.01E-02 Acartia/Paracalanus so that conc never dropped below 50%
458 3.52E-02 Acartia/Paracalanus so that conc never dropped below 50%
459 1.96E-01 Acartia/Paracalanus so that conc never dropped below 50%
460 6.54E-02 Acartia/Paracalanus so that conc never dropped below 50%
461 7.44E-02 Acartia/Paracalanus so that conc never dropped below 50%
462 2.45E-01 Acartia/Paracalanus so that conc never dropped below 50%
463 2.30E-01 Acartia/Paracalanus so that conc never dropped below 50%
464 6.01E-02 Acartia/Paracalanus so that conc never dropped below 50%
465 1.41E-01 Acartia/Paracalanus so that conc never dropped below 50%
466 6.15E-02 Acartia/Paracalanus so that conc never dropped below 50%
467 3.02E-02 Acartia/Paracalanus so that conc never dropped below 50%
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468 1.16E-01 Acartia/Paracalanus so that conc never dropped below 50%
469 1.62E-01 Acartia/Paracalanus so that conc never dropped below 50%
470 6.34E-02 Acartia/Paracalanus so that conc never dropped below 50%
471 1.33E-01 Acartia/Paracalanus so that conc never dropped below 50%
472 3.27E-01 Acartia/Paracalanus so that conc never dropped below 50%
473 4.99E-02 Acartia/Paracalanus so that conc never dropped below 50%
474 1.85E-01 Acartia/Paracalanus so that conc never dropped below 50%
475 6.05E-02 Acartia/Paracalanus so that conc never dropped below 50%
476 1.37E-01 Acartia/Paracalanus so that conc never dropped below 50%
477 6.42E-02 Acartia/Paracalanus so that conc never dropped below 50%
478 1.58E-01 200 copepods l-1
479 1.57E-01 200 copepods l-1
480 1.14E-01 200 copepods l-1
481 9.92E-02 200 copepods l-1
482 2.14E-01 200 copepods l-1
483 1.26E-01 200 copepods l-1
484 1.78E-01 Acartia so that conc never dropped below 50%
485 2.01E-01 1 Mnemiopsis l-1 (not satiated)
486 8.14E-08 1 Mnemiopsis l-1 (not satiated)
487 1.29E-01 1 Mnemiopsis l-1 (not satiated)
488 1.91E-01 1 Mnemiopsis l-1 (not satiated)
489 1.28E-01 1 Mnemiopsis l-1 (not satiated)
490 1.26E-01 1 Mnemiopsis l-1 (not satiated)
491 1.23E-01 1 Mnemiopsis l-1 (not satiated)
492 5.80E-02 1 Mnemiopsis l-1 (not satiated)
493 3.34E-03 1 Mnemiopsis l-1 (not satiated)
494 1.16E-01 1 Mnemiopsis l-1 (not satiated)
495 1.61E-01 1 Mnemiopsis l-1 (not satiated)
496 8.19E-02 1 Mnemiopsis l-1 (not satiated)
497 3.55E-01 1 Mnemiopsis l-1 (not satiated)
498 3.85E-01 1 Mnemiopsis l-1 (not satiated)
499 6.57E-02 1 Mnemiopsis l-1 (not satiated)
500 6.29E-02 1 Mnemiopsis l-1 (not satiated)
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501 5.63E-09 1 Mnemiopsis l-1 (not satiated)
502 2.02E-07 1 Mnemiopsis l-1 (not satiated)
503 1.82E-07 1 Mnemiopsis l-1 (not satiated)
504 1.49E-01 1 Mnemiopsis l-1 (not satiated)
505 8.08E-02 1 Mnemiopsis l-1 (not satiated)
506 2.08E-01 1 Mnemiopsis l-1 (not satiated)
507 1.31E-01 1 Mnemiopsis l-1 (not satiated)
508 4.88E-08 1 Mnemiopsis l-1 (not satiated)
509 6.38E-02 1 Mnemiopsis l-1 (not satiated)
510 6.63E-02 1 Mnemiopsis l-1 (not satiated)
511 7.34E-02 1 Mnemiopsis l-1 (not satiated)
512 5.66E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-1
513 2.78E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-2
514 5.89E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-3
515 4.46E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-4
516 1.36E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-5
517 5.47E-03 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-6
518 5.64E-03 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-7
519 6.33E-03 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-8
520 3.01E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-9
521 2.88E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-10
522 2.14E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-11
523 2.51E-02 0.2-0.6 Isochrysis and 0.1-0.3 Peridinium l-12
524 9.41E-02 Rotifers = 6166 l-1
525 1.12E-01 >150 Artemia l-1 (saturated)
526 7.56E-02 >150 Artemia l-1 (saturated)
527 1.01E-01 >150 Artemia l-1 (saturated)
528 5.09E-02 >150 Artemia l-1 (saturated)
529 7.58E-02 >150 Artemia l-1 (saturated)
530 4.98E-02 Artemia in excess
531 7.77E-02 Artemia in excess
532 1.05E-01 Non-limiting Brachionus
533 9.21E-02 Non-limiting Brachionus
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534 3.52E-02 Selco enriched Artemia to excess
535 4.48E-02 Selco enriched Artemia to excess
536 6.58E-02 Selco enriched Artemia to excess
537 6.46E-02 Selco enriched Artemia to excess
538 5.52E-02 Selco enriched Artemia to excess
539 3.91E-02 Selco enriched Artemia to excess
540 2.48E-02 Selco enriched Artemia to excess
541 8.48E-03 Selco enriched Artemia to excess
542 7.96E-03 Selco enriched Artemia to excess
543 1.01E-01 4500 rotifers 150 mnemiopsis (l-1)
544 3.20E-02 Excess Cassipoeia pieces
545 1.68E-02 Excess Cassipoeia pieces
546 2.55E-02 Excess Cassipoeia pieces
547 5.48E-03 Excess Cassipoeia pieces
548 5.95E-03 Excess Cassipoeia pieces
549 2.75E-03 Excess Cassipoeia pieces
550 1.80E-03 Excess Cassipoeia pieces
551 4.78E-02 Artemia, no detail on concentration
552 4.03E-02 Artemia, no detail on concentration
553 8.42E-02 Artemia, no detail on concentration
554 7.29E-02 Artemia, no detail on concentration
555 1.55E-02 Pieces of Cassiopeia
556 3.87E-03 Pieces of Cassiopeia
557 1.58E-02 Pieces of Cassiopeia
558 1.70E-02 Pieces of Cassiopeia
559 8.18E-03 Pieces of Cassiopeia
560 9.81E-03 Pieces of Cassiopeia

Record Notes
1 Used average value for genus Sagitta from Kiorboe composition
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2 Used average value for genus Sagitta from Kiorboe composition
3 Used average value for genus Sagitta from Kiorboe composition
4 Used average value for genus Sagitta from Kiorboe composition
5 Used average value for genus Sagitta from Kiorboe composition
6 Used average value for genus Sagitta from Kiorboe composition
7 Used average value for genus Sagitta from Kiorboe composition
8 Used average value for genus Sagitta from Kiorboe composition
9 Used average value for genus Sagitta from Kiorboe composition
10 Used average value for genus Sagitta from Kiorboe composition
11 Used average value for genus Sagitta from Kiorboe composition
12 Used average value for genus Sagitta from Kiorboe composition
13 Used average value for genus Sagitta from Kiorboe composition
14 Used average value for genus Sagitta from Kiorboe composition
15 Used average value for genus Sagitta from Kiorboe composition
16 Used average value for genus Sagitta from Kiorboe composition
17 Used average value for genus Sagitta from Kiorboe composition
18 Used average value for genus Sagitta from Kiorboe composition
19 Used average value for genus Sagitta from Kiorboe composition
20 Used average value for genus Sagitta from Kiorboe composition
21 Used average value for genus Sagitta from Kiorboe composition
22 Used average value for genus Sagitta from Kiorboe composition
23 Used average value for genus Sagitta from Kiorboe composition
24 Used average value for genus Sagitta from Kiorboe composition
25 Used average value for genus Sagitta from Kiorboe composition
26 Used average value for genus Sagitta from Kiorboe composition
27 Used average value for genus Sagitta from Kiorboe composition
28 Used average value for genus Sagitta from Kiorboe composition
29 Nauplii, calanoid cvol
30 Copepodites, calanoid cvol
31 All, calanoid cvol
32 Copepepodite, calanoid cvol
33 Copepepodite, calanoid cvol
34 Copepepodite, calanoid cvol
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35 Copepodites, calanus cvol
36 Copepodites, calanus cvol
37 Nauplii
38 Copepodites
39 CIII-Adult, calanus cvol
40 CIII-Adult, calanus cvol
41 Nauplii
42 Copepodite
43 Copepodite
44 Copepodite
45 Copepodite
46 egg-NIV, calanus cvol
47 NV-CV, calanus cvol
48 CV-Female, calanus cvol
49 Copepodite
50 Copepodite
51 Copepodite
52 Copepodite
53 Copepodite
54 Copepodite
55 Copepodite
56 Copepodite
57 Copepodite
58 Copepodite
59 Copepodite
60 Copepodite
61 Nauplii, calanus cvol
62 Nauplii, calanus cvol
63 Nauplii, calanus cvol
64 Nauplii, calanus cvol
65 Nauplii, calanus cvol
66 CI and CII, calanus cvol
67 CI and CII, calanus cvol
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68 CI and CII, calanus cvol
69 CI and CII, calanus cvol
70 CI and CII, calanus cvol
71 CIII and CIV, calanus cvol
72 CIII and CIV, calanus cvol
73 CIII and CIV, calanus cvol
74 CIII and CIV, calanus cvol
75 CIII and CIV, calanus cvol
76 CV, calanus cvol
77 CV, calanus cvol
78 CV, calanus cvol
79 CV, calanus cvol
80 CV, calanus cvol
81 Nauplii, calanoid cvol
82 Copepodites, calanoid cvol
83 Nauplii, calanoid cvol
84 Copepodites, calanoid cvol
85 Nauplii, calanoid cvol
86 Copepodites, calanoid cvol
87 All, calanoid cvol
88 All, calanoid cvol
89 All, calanoid cvol
90 All, calanoid cvol
91 All, calanoid cvol
92 CI-Adult, calanoid cvol
93 CI-Adult, calanoid cvol
94 CI-Adult, calanoid cvol
95 Copepodite, used Labidocera acutifrons cvol
96 Copepodite, used Labidocera acutifrons cvol
97 Copepodite, used Labidocera acutifrons cvol
98 Copepodite, used Labidocera acutifrons cvol
99 Copepodite, used Labidocera acutifrons cvol
100 Copepodite, used Labidocera acutifrons cvol
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101 Copepodite, used Labidocera acutifrons cvol
102 Copepodite, used Labidocera acutifrons cvol
103 Copepodite, used Labidocera acutifrons cvol
104 Copepodite, used Labidocera acutifrons cvol
105 Copepodite, used Labidocera acutifrons cvol
106 Copepodite, used Labidocera acutifrons cvol
107 Copepodite, used Labidocera acutifrons cvol
108 Copepodite, used Labidocera acutifrons cvol
109 Copepodite, used Labidocera acutifrons cvol
110 Copepodite, used Labidocera acutifrons cvol
111 Copepodite, used Labidocera acutifrons cvol
112 Copepodite, used Labidocera acutifrons cvol
113 Copepodite, used Labidocera acutifrons cvol
114 Copepodite, used Labidocera acutifrons cvol
115 All
116 All
117 Copepodite
118 Nauplii, calanoid cvol
119 Nauplii, calanoid cvol
120 Nauplii, calanoid cvol
121 Nauplii, calanoid cvol
122 Nauplii, calanoid cvol
123 Copepodite, calanoid value
124 Copepodite, calanoid value
125 Copepodite, calanoid value
126 Copepodite, calanoid value
127 Copepodite, calanoid value
128 Nauplii, calanoid cvol
129 Copepodite, calanoid cvol
130 Copepodite, calanoid cvol
131 ?, calanoid cvol
132 ?, calanoid cvol
133 ?, calanoid cvol
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134 ?, calanoid cvol
135 ?, calanoid cvol
136 ?, calanoid cvol
137 ?, calanoid cvol
138 ?, calanoid cvol
139 ?, calanoid cvol
140 ?, calanoid cvol
141 ?, calanoid cvol
142 ?, calanoid cvol
143 ?, calanoid cvol
144 Nauplii, calanoid cvol
145 Copepodite, calanoid cvol
146 Nauplii, calanoid cvol
147 Copepodite, calanoid cvol
148 Nauplii
149 Nauplii, calanoid value
150 Nauplii, calanoid value
151 Nauplii, calanoid value
152 Nauplii, calanoid value
153 Nauplii, calanoid value
154 Nauplii, calanoid value
155 Nauplii, calanoid value
156 Nauplii, calanoid value
157 Nauplii, calanoid value
158 Nauplii, calanoid value
159 Nauplii, calanoid value
160 Nauplii, calanoid cvol
161 Copepodites, calanoid cvol
162 Nauplii, calanoid cvol
163 CI-CIII/IV, calanoid cvol
164 CIII/IV-Adult, calanoid cvol

165
Used average value forfamily Amphipoda from Kiorboe
composition
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166
Used average value forfamily Amphipoda from Kiorboe
composition

167
Used average value forfamily Amphipoda from Kiorboe
composition

168
Used average value forfamily Amphipoda from Kiorboe
composition

169
Used average value forfamily Amphipoda from Kiorboe
composition

170
Used average value forfamily Amphipoda from Kiorboe
composition

171
Used average value forfamily Amphipoda from Kiorboe
composition

172
Used average value forfamily Amphipoda from Kiorboe
composition

173
Used average value forfamily Amphipoda from Kiorboe
composition

174
Used average value forfamily Amphipoda from Kiorboe
composition

175
Used average value forfamily Amphipoda from Kiorboe
composition

176
Used average value forfamily Amphipoda from Kiorboe
composition

177
Used average value forfamily Amphipoda from Kiorboe
composition

178
Used average value forfamily Amphipoda from Kiorboe
composition

179
Used average value forfamily Amphipoda from Kiorboe
composition

180
Used average value forfamily Amphipoda from Kiorboe
composition

181
Used average value forfamily Amphipoda from Kiorboe
composition

182
Used average value forfamily Amphipoda from Kiorboe
composition

183
Used average value forfamily Amphipoda from Kiorboe
composition

184 Used average value forfamily Amphipoda from Kiorboe
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composition

185
Used average value forfamily Amphipoda from Kiorboe
composition

186
Used average value forfamily Amphipoda from Kiorboe
composition

187
Used average value forfamily Amphipoda from Kiorboe
composition

188
Used average value forfamily Amphipoda from Kiorboe
composition

189
Used average value forfamily Amphipoda from Kiorboe
composition

190
Used average value forfamily Amphipoda from Kiorboe
composition

191
Used average value forfamily Amphipoda from Kiorboe
composition

192
Used average value forfamily Amphipoda from Kiorboe
composition

193
Used average value forfamily Amphipoda from Kiorboe
composition

194
Used average value forfamily Amphipoda from Kiorboe
composition

195
Units of mass in carbon, mass and growth calculated from Table
2

196
Units of mass in carbon, mass and growth calculated from Table
2

197
Units of mass in carbon, mass and growth calculated from Table
2

198
Units of mass in carbon, mass and growth calculated from Table
2

199
Units of mass in carbon, mass and growth calculated from Table
2

200
Units of mass in carbon, mass and growth calculated from Table
2

201
Units of mass in carbon, mass and growth calculated from Table
2

202
Units of mass in carbon, mass and growth calculated from Table
2
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203
Units of mass in carbon, mass and growth calculated from Table
2

204
Units of mass in carbon, mass and growth calculated from Table
2

205
Units of mass in carbon, mass and growth calculated from Table
2

206
Units of mass in carbon, mass and growth calculated from Table
2

207
208
209
210
211
212
213
214
215
216 Data digitized from their Figure 3.
217 Data digitized from their Figure 3.
218 Data digitized from their Figure 3.
219 Data digitized from their Figure 3.
220 Data digitized from their Figure 3.
221 Data digitized from their Figure 3.
222 Data digitized from their Figure 3.
223 Data digitized from their Figure 3.
224 Data digitized from their Figure 3.
225 Data digitized from their Figure 3.
226
227
228
229 Decapod value
230 Decapod value
231 Decapod value
232 Decapod value
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233 Decapod value
234 Decapod value
235 Decapod value
236 Decapod value
237 Decapod value
238 Decapod value
239 Decapod value
240 Decapod value
241 Decapod value
242 Decapod value
243 Decapod value
244 Decapod value
245 Decapod value
246 Decapod value
247 Decapod value
248 Decapod value
249 Decapod value
250 Decapod value
251 Decapod value
252 Decapod value
253 Decapod value
254 Decapod value
255 Decapod value
256 Decapod value
257 Euphausid value
258 Euphausid value
259 Euphausid value
260 Euphausid value
261 Euphausid value
262 Euphausid value
263 Euphausid value
264 Euphausid value
265 Euphausid value
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266 Euphausid value
267 Euphausid value
268 Euphausid value
269 Euphausid value
270 Euphausid value
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
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299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
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332
333
334
335
336
337
338
339
340
341
342 Used Larson 86 cvol value for thaliaceans
343 Used Larson 86 cvol value for thaliaceans
344 Used Larson 86 cvol value for thaliaceans
345 Used Larson 86 cvol value for thaliaceans
346 Used Larson 86 cvol value for thaliaceans
347 Used Larson 86 cvol value for thaliaceans
348 Used Larson 86 cvol value for thaliaceans
349 Used Larson 86 cvol value for thaliaceans
350 Used Larson 86 cvol value for thaliaceans
351 Used Larson 86 cvol value for thaliaceans
352 Used Larson 86 cvol value for thaliaceans
353 Used Larson 86 cvol value for thaliaceans

354
Used value for thaliaceans from Larson 86 no reliable doliolid
value

355
Used value for thaliaceans from Larson 86 no reliable doliolid
value

356
Used value for thaliaceans from Larson 86 no reliable doliolid
value

357
Used value for thaliaceans from Larson 86 no reliable doliolid
value

358
Used value for thaliaceans from Larson 86 no reliable doliolid
value

359
Used value for thaliaceans from Larson 86 no reliable doliolid
value
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360
Used value for thaliaceans from Larson 86 no reliable doliolid
value

361
Used value for thaliaceans from Larson 86 no reliable doliolid
value

362
Used value for thaliaceans from Larson 86 no reliable doliolid
value

363
Used value for thaliaceans from Larson 86 no reliable doliolid
value

364 AFDW =23%DW Larson 1986, CW=16% DW Kiorboe 2013
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
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390
391 CW=1.5%DW, used length-mass regression from this study
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
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423
424
425
426
427
428
429
430 Shiganova (unpublished) in Purcell et al. Hydrobiologia 2001
431 Shiganova (unpublished) in Purcell et al. Hydrobiologia 2002
432 Used paper value C=10.3% DW
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
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456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484 Used C=5.64%DW Kiorboe composition average
485 Used C=0.17% value for beroe ovata in kiorboe composition
486 Used C=0.17% value for beroe ovata in kiorboe composition
487 Used C=0.17% value for beroe ovata in kiorboe composition
488 Used C=0.17% value for beroe ovata in kiorboe composition
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489 Used C=0.17% value for beroe ovata in kiorboe composition
490 Used C=0.17% value for beroe ovata in kiorboe composition
491 Used C=0.17% value for beroe ovata in kiorboe composition
492 Used C=0.17% value for beroe ovata in kiorboe composition
493 Used C=0.17% value for beroe ovata in kiorboe composition
494 Used C=0.17% value for beroe ovata in kiorboe composition
495 Used C=0.17% value for beroe ovata in kiorboe composition
496 Used C=0.17% value for beroe ovata in kiorboe composition
497 Used C=0.17% value for beroe ovata in kiorboe composition
498 Used C=0.17% value for beroe ovata in kiorboe composition
499 Used C=0.17% value for beroe ovata in kiorboe composition
500 Used C=0.17% value for beroe ovata in kiorboe composition
501 Used C=0.17% value for beroe ovata in kiorboe composition
502 Used C=0.17% value for beroe ovata in kiorboe composition
503 Used C=0.17% value for beroe ovata in kiorboe composition
504 Used C=0.17% value for beroe ovata in kiorboe composition
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
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522
523
524 1mg DW = 0.071 mg CW, incubated for 10 days
525 1 mg DW = 0.0071 mg CW Schneider
526
527
528
529
530
531
532 Used average C (% of DW) = 5.39% from Kiorboe Composition
533 Used average C (% of DW) = 5.39% from Kiorboe Composition
534 Converted using diameter to C (mg) in Olesen Purcell Stoecker
535 Converted using diameter to C (mg) in Olesen Purcell Stoecker
536 Converted using diameter to C (mg) in Olesen Purcell Stoecker
537 Converted using diameter to C (mg) in Olesen Purcell Stoecker
538 Converted using diameter to C (mg) in Olesen Purcell Stoecker
539 Converted using diameter to C (mg) in Olesen Purcell Stoecker
540 Converted using diameter to C (mg) in Olesen Purcell Stoecker
541 Converted using diameter to C (mg) in Olesen Purcell Stoecker
542 Converted using diameter to C (mg) in Olesen Purcell Stoecker
543 c converted from diameter C = 0.000215 Diam ^2.903
544
545
546
547
548
549
550
551 Used value from Pitt el a. 2013, c=0.55%WW, mean temperature
552
553
554
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555
556
557
558
559
560
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Appendix III – L4 measurements and indices

Measurements and bloom indices for the zooplanktonic taxa sampled at the L4 study site. Coeffvar
= coefficient of variation in abundance, Coeffvar NO 0 = coefficient of variation in abundance of all
non-zero records, Interval = the number of days between the 25th and 50th cumulative percentiles
of abundance, 2 INC MAX = maximum value for increase rate index over two successive increases
(on 3 point running mean data, index detailed in Chapter 4), 3 INC MAX = maximum value for
increase rate index over three successive increases (on 3 point running mean data, index detailed
in Chapter 4), 4 INC MAX = maximum value for increase rate index over two successive increases
(on 3 point running mean data, index detailed in Chapter 4), Interannual var = coefficient of
variation of mean annual abundance, Interannual var AA = maximum annual abundance /
minimum (non-zero) abundance, Non-zero records = total number of records of non-zero
abundance, FDC = frequency distribution coefficient (calculated as described in Chapter 4).

Record Name Group
Carbon
percentage

1 Noctiluca scintillans Protist 0.54
2 Foraminifera Protist 0.54
3 Acantharia Protist 0.54
4 Tintinnida Protist 0.54
5 Pleurobrachia pileus Ctenophora 0.15
6 Solmaris corona (Narcomedusae) Hydromedusae 0.49
7 Aglantha digitale Hydromedusae 0.37
8 Liriope tetraphylla Hydromedusae 0.49
9 Hydromedusae unidentified Hydromedusae 0.49
10 Actinula larvae Hydromedusae 2
11 Amphinema spp Hydromedusae 0.49
12 Bougainvillia muscus Hydromedusae 0.49
13 Clytia hemisphaerica Hydromedusae 0.31
14 Corymorpha nutans Hydromedusae 0.49
15 Coryne prolifer Hydromedusae 0.49
16 Cosmetira pilosella Hydromedusae 0.49
17 Eirene viridula Hydromedusae 0.49
18 Eutima gracilis Hydromedusae 0.49
19 Hydractinia borealis Hydromedusae 0.49
20 Leukartiara octona Hydromedusae 0.49
21 Lizzia blondina Hydromedusae 0.49
22 Lovenella clausa Hydromedusae 0.49
23 Mitrocomella brownei Hydromedusae 0.49
24 Obelia spp. Hydromedusae 0.49
25 Phialella quadrata Hydromedusae 0.31
26 Podocoryne hartlaubi Hydromedusae 0.49
27 Rathkea octopunctata Hydromedusae 0.49
28 Sarsia prolifera Hydromedusae 0.49
29 Sarsia spp. Hydromedusae 0.49
30 Turritopsis nutricula Hydromedusae 0.49
31 Zanclea costata Hydromedusae 0.49
32 Muggiaea kochi (polygastric) Siphonophora 0.44
33 Muggiaea atlantica (polygastric) Siphonophora 0.44
34 Muggiaea sp. (eudoxid) Siphonophora 0.44
35 Siphonophore unidentified Siphonophora 0.44
36 Nanomia cara (nectophore) Siphonophora 0.44
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37 Agalma elegans (nectophore) Siphonophora 0.44
38 Anemone larvae Scyphomedusae 4
39 Planula larvae Scyphomedusae 2
40 Polyp scyphomedusae 2
41 Aurelia aurita ephyrae Scyphomedusae 1
42 Scyphozoan ephyrae Scyphomedusae 1
43 Chaetognath unidentified Chaetognatha 3.5
44 Parasagitta elegans Chaetognatha 3.5
45 Parasagitta setosa Chaetognatha 3.5
46 Nematoda Worms 5
47 Flatworm larvae (Platyhelminth) Worms 5
48 Polychaete larvae unidentified Worms 5
49 Tomopteris helgolandica Worms 5
50 Phoronida actinotroch larvae Worms 7
51 Nemertea pilidium larvae Worms 5
52 Gastropod larvae Molluscs 7
53 Limacina retroversa Molluscs 7
54 Bivalvia Molluscs 7
55 Lamellaria echinospira larvae Molluscs 7
56 Gymnosome larvae Molluscs 7
57 Clione Molluscs 1.36
58 Cephalopoda larvae Molluscs 9.3
59 Echinoderm larvae unidentified Echinoderms 7
60 Ophiopluteus larvae Echinoderms 7
61 Ophiuroid juvenile Echinoderms 7
62 Echinopluteus larvae Echinoderms 7
63 Echinoid Juvenile (Sea urchin larvae) Echinoderms 7
64 Asterioid bipinnaria/brachiolaria Echinoderms 7
65 Asteroid juvenile Echinoderms 7
66 Luidia sp. larvae Echinoderms 7
67 Auricularia larvae (Holothuria) Echinoderms 7
68 Doliolaria larvae (Holothuria) Echinoderms 7
69 Tornaria larvae (Hemichordata) Chordata 7
70 Branchiostoma (Cephalochordata) Chordata 7
71 Ascidian tadpole Chordata 7
72 Doliolida Chordata 3.8
73 Appendicularia Chordata 9.3
74 Fish larvae Chordata 9.3
75 Cirripede nauplii Crustacean (other) 10
76 Rhizocephalan nauplii Crustacean (other) 10
77 Cirripede cyprid Crustacean (other) 10
78 Evadne spp. Crustacean (other) 10
79 Podon spp. Crustacean (other) 10
80 Penilia avirostris Crustacean (other) 10
81 Isopoda Crustacean (other) 10
82 Gammariida Crustacean (other) 10
83 Hyperiida Crustacean (other) 12
84 Caprellida Crustacean (other) 10
85 Tanaid Crustacean (other) 10
86 Cumacea Crustacean (other) 10
87 Mysida Crustacean (other) 10
88 Euphausiid Crustacean (other) 12
89 Decapod larvae unidentified Crustacean (other) 10
90 Brachyuran larvae Crustacean (other) 10
91 Porcellanid larvae Crustacean (other) 10
92 Metridia lucens Copepoda 11.38
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93 Acartia Copepoda 11.38
94 Candacia armata Copepoda 11.38
95 Centropages chierchiae Copepoda 11.38
96 Centropages hamatus Copepoda 11.38
97 Centropages typicus Copepoda 11.38
98 Isias clavipes Copepoda 11.38
99 Anomalocera patersoni Copepoda 11.38
100 Parapontella brevicornis Copepoda 11.38
101 Labidocera wollastoni Copepoda 11.38
102 Temora longicornis Copepoda 11.38
103 Calanoides carinatus Copepoda 15.18
104 Calanus helgolandicus Copepoda 15.18
105 Calanus finmarchicus female Copepoda 15.18
106 Calocalanus spp. Copepoda 11.38
107 Para/Pseudo/Cteno/Clausocalanus Copepoda 11.38
108 Clausocalanus spp. Copepoda 11.38
109 Ctenocalanus vanus Copepoda 11.38
110 Paracalanus parvus Copepoda 11.38
111 Pseudocalanus elongatus Copepoda 11.38
112 Subeucalanus spp. Copepoda 11.38
113 Microcalanus spp. Copepoda 11.38
114 Diaixis hibernica Copepoda 11.38
115 Paraeuchaeta hebes Copepoda 11.38
116 Scolecithricella spp. Copepoda 11.38
117 Oithona spp. Copepoda 11.38
118 Oncaea spp. Copepoda 11.38
119 Ditrichocorycaeus anglicus Copepoda 11.38
120 Microsetella sp Copepoda 11.38
121 Euterpina acutifrons Copepoda 11.38
122 Goniopsyllus clausi Copepoda 11.38
123 Harpacticoid unidentified Copepoda 11.38
124 Siphonostomatoida Copepoda 11.38
125 Copepod nauplii Copepoda 11.38
126 Bryozoa cyphonautes larvae Other 7
127 Acarid mites Other 10

Record
Carbon
mass Coeffvar Coeffvar NO 0 Interval 2 inc MAX

1 0.44 4.171974 2.5775506 42411.66683
2 0.25 17.860571
3 0.04 8.855122 2.7682652 87.666667
4 0.01 16.510876 1.5321988 17.666667
5 154.39 3.189028 1.8510907 14 249.000001
6 0.34 4.404215 1.6373121 1227.666671
7 18.58 6.887805 3.0713492 327.666668
8 4.18 3.089988 2.0979639 21.42857143 1007.000004
9 17.63 3.968731 2.0684167 50.42857143 406.333335
10 110 17.640141 1.699987 161.666666
11 18.03 6.824537 1.6370514 94.333334
12 11.29 9.993486 1.8319611 81
13 8.08 2.952828 2.0690174 62.85714286 47.181818
14 21.03 4.194894 0.8066907 21.666667
15 0.76 5.944168 0.7182102 3.666667
16 223.99 10.573023 2.2246001 211.666667
17 10.18 17.860571
18 0.77 7.560033 2.1030846 16.789474
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19 11.29 14.297603 2.1740191 89
20 393.8 4.383941 0.893259 10.333333
21 0.5 6.789789 3.6427184 20.85714286 5041.000019
22 21.73 4.134109 0.6992341 11.666667
23 14.21 5.889583 0.4995272 3
24 4.02 2.760604 2.4556441 55.57142857 1319.431378
25 3.12 4.794177 53.571429
26 0.17 17.860571 2.0392153 1.666667
27 6.48 9.170453 1.789565
28 71.25 9.815297 0.9950881 6.041667
29 71.25 8.682225 1.9931368 15.666667
30 11.29 17.860571
31 4.71 12.256083 2.0345388 44.333333
32 16.74 9.583955 2.7182056 34 373.000001
33 16.74 2.460584 1.9783334 35 207.666667
34 3.6 2.303288 1.9559388 2109.000008
35 3.97 4.949632 1.7904418 321.000001
36 3.97 3.742768 1.6696326 131.666667
37 3.97 7.18343 1.3186719 26.333333
38 10.55 3.854738 1.7613834 771.000003
39 14.8 7.179445 1.1827307 961.000004
40 45 10.903852 2.3885276 83.666667
41 45 17.860571
42 45 14.717303 0.8485281
43 6.31 1.403587 1.3495304 50.85714286 41.285714
44 46.73 2.7476 1.916103 108.7142857 429.000002
45 46.73 1.611533 1.4612694 119.7142857 265.000001
46 0.31 10.574026 1.1568369
47 0.34 11.753077 3.8257343 462.333335
48 11.17 10.903852 2.3885276 36.57142857 83.666667
49 182 5.630048 3.1014167 15.57142857 55.666667
50 0.25 3.256658 1.537281 23.545455
51 1.59 4.10931 1.7514912 41.57142857 158.333334
52 0.46 6.375057 5.5803652 156.333334
53 0.46 3.331886 2.6556524 57.42857143 301.000001
54 0.45 1.436457 1.3033944 95.71428571 72.333334
55 0.34 4.92513 2.0092546 114.333334
56 0.73 8.057498 2.3149905 229.380953
57 4.12 9.139916 1.1280879 42.333333
58 228 17.860571 1.666667
59 0.16 4.634608 1.4628677 101.75
60 0.16 6.140067 4.0658623 27 701.000003
61 0.16 4.730977 2.0433127 563.666669
62 0.16 3.32345 1.6936747 16 2201.000008
63 0.16 6.450789 1.0338538 23.666667
64 0.16 3.613308 1.3566719 275.999999
65 0.16 7.065047 1.4613795 3.909091
66 0.16 6.770815 2.0243472 234.333334
67 0.16 4.065341 1.5782107 185.666666
68 0.16 8.434577 2.5327689 67
69 19.6 7.892154 3.0443973 850.999998
70 8.6 5.792242 0.9422565 17
71 6.16 17.369242 2.15915 401.000001
72 2.03 4.739835 1.9560143 1966.333341
73 4.28 1.537644 1.4603445 57.14285714 104.2
74 339.29 2.098018 1.9170105 37.14285714 24.282051
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75 1.98 4.579803 4.0292531 12.85714286 701.000003
76 0.37 14.292203 1.8489279
77 2.14 4.696775 2.8158759 10.71428571 8526.333363
78 3.43 3.382658 2.3428862 32.42857143 2481.00001
79 2.36 2.052913 1.4466116 36.71428571 138.333333
80 3.43 17.860571 1.666667
81 195.75 3.333518 1.6547725 80.28571429 106.333334
82 195.75 2.656163 2.0328107 41.57142857 117
83 167 6.996976 2.8629756 91.666667
84 195.75 12.90581 1.2080386 11.666667
85 195.75 17.860571
86 69 16.258654 1.7575758
87 975 4.577201 1.7607552 14.333333
88 133.65 3.450565 2.1729471 18.85714286 126.333334
89 30.72 1.629231 1.5684107 43.42857143 13
90 30.72 1.497185 1.476708 50.14285714 12.712329
91 30.72 2.322197 1.6099894 32.85714286 29.8
92 12.74 3.321743 1.9220118 14.14285714 137.000001
93 2.49 2.349384 2.2245388 39.71428571 281.000001
94 20.91 3.104156 2.0607579 86 181.000001
95 19.06 14.331414 0.7614996
96 19.06 5.561603 1.7801309 21.857143
97 15.4 2.890649 2.7559331 28.85714286 331.666668
98 2.76 5.344397 1.5467939 219.666667
99 2.76 10.866217 1.5031076 11.666667
100 7.01 6.99981 0.3307189 3
101 53.5 17.860571 62.28571429
102 7.55 2.119822 2.0497456 1057.000004
103 44.22 8.224284 1.023159 24.6
104 42.35 1.670697 1.6706968 65.57142857 16.171084
105 47.89 4.714121 1.7246577 15.666667
106 2.29 15.993421 1.0999439
107 1.54 1.315622 1.315622 82 14.575221
108 6.64 3.325223 2.1817144 87.71428571 286.333334
109 5.87 2.083482 1.1608711 73.42857143 701.000003
110 3.17 6.99981 0.3307189 56.57142857 3
111 3.17 1.341953 1.3155453 51.14285714 29.236842
112 54.21 4.11747 2.0921082 97
113 0.87 10.782835 1.1994204 21.24
114 5.51 16.777951 1.2374369 11
115 66.49 3.556195 1.6816812 337.000001
116 4.1 17.860571
117 0.41 1.089001 1.0858509 46.71428571 7.837209
118 0.98 1.613525 1.5199187 71.28571429 63
119 3.66 1.768006 1.6509142 51.28571429 375.999999
120 3.56 6.692259 1.6384913 14.333333
121 3.56 1.366294 1.1869189 117.7142857 801.000003
122 3.56 2.238328 1.3320598 64.71428571 506.333335
123 3.56 3.756278 1.365538 571.000002
124 0.14 12.609458 0
125 0.72 1.628826 1.5273696 201.000001
126 0.97 1.42818 1.2879819 68.14285714 153.666667
127 0.47 12.123126 1.0643611 11
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Record 3 inc MAX 4 inc MAX Interannual var
Interannual var
AA

1 67931.66693 221521.00 1.197800523 235.351583
2 2.645751311
3 1304.333333 124.69 1.692990629 137.4311384
4 18.333333 2.645751311
5 731.666669 758.33 0.632815527 12.89166659
6 1521.000006 3022.33 1.343504023 381.8462129
7 439.857143 1467.67 1.772786536 267.5052631
8 1179.000005 1377.00 0.61664527 14.63555242
9 636.333336 389.00 0.76561442 6.823317132
10 2.645751311 15.53762882
11 1.871530874 4.166425539
12 1.26696303
13 85 47.32 0.702682833
14 11.666667 9.00 0.487445695 4.000000119
15 1.128825412 6.66628306
16 245.000001 2.190864247 4.997709324
17 2.645751311 8.049599855
18 3.909091 1.039771976 3.899999459
19 2.28455065 4.997710065
20 15.666667 1.149662305 5
21 5861.000023 4337.00 1.469140288
22 6.333333 0.707775743 4.923114116
23 1.251338288 3.333146973
24 1597.862751 111.00 0.73875917 6.298973579
25 13.666667 0.942455389 5.293462411
26 2.645751311 1.936822713
27 1.219272535 1.142857155
28 12.083333 1.777876273 11.11122428
29 6.333333 1.30638698 4.648160119
30 2.645751311
31 8.333333 2.270802917 4.507949938
32 387.666668 37.00 1.355018083 2.203111447
33 1223.000005 1403.00 0.685976545 7.24637316
34 3559.000013 18351.00 0.622069907
35 401.000002 1.767824508 5
36 235.666668 249.00 0.933177166 13.79999858
37 1.518136742 20.20873382
38 971.000004 902.33 0.80513235 21.75128201
39 2.40927212 17.64898206
40 2.068845611 5.665553045
41 2.645751311 2.658699432
42 2.094437077 2.606553408
43 96.333333 58.41 0.131062308 9.949063805
44 221.666668 271.67 0.873124481 16.15278478
45 297.000001 734.33 0.353985824 24.18603282
46 1.342390363 11.71590909
47 465.000002 1.951507706 10.04020767
48 0.428037042 21.08075293
49 159.285714 371.67 1.045566084 2.926564475
50 101.666667 122.33 0.571681717 5.742616037
51 621.000002 701.00 0.661065634 2.944231517
52 415.666668 1209.00 2.15986147 6.46694215
53 701.000003 719.67 0.637756578 269.7577917
54 132.333334 176.33 0.215971578 4.61823558
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55 154.333334 43.86 0.94562015 1.976279701
56 241.380953 29.67 1.469339385 5.537295379
57 1.727061094 5.841471518
58 2.645751311 3.305790961
59 112.416667 4.64 2.582212863
60 2021.000008 6303.67 1.053038265 618.3367806
61 670.333336 687.67 1.160855301 8.598580599
62 2521.00001 3381.00 0.915622438 19.22967798
63 35 1.42899961 9.081148564
64 106.333333 44.14 0.719575144 2.911637361
65 8.6 1.377809967 4.523431768
66 102.333334 1.563750096 16.84278448
67 585.666665 875.67 1.1415365 7.499989214
68 49.666667 1.025011182 13.0047598
69 1030.999998 1042.33 1.527925435 16.93091105
70 49 0.610192331 47.06390978
71 403.666668 2.640686296 2.999999599
72 3113.000012 4597.67 1.3996171 1.644736836
73 188.200001 330.60 0.363941173 133.5749809
74 38.454545 46.33 0.421293056 5.142847001
75 13101.00005 26981.00 0.602509684 3.737190083
76 2.051572365 8.300605732
77 14606.33339 21881.00 0.850668453 5.104702918
78 4081.000016 18301.00 0.640109035 25.45945346
79 1065.800001 2283.86 0.537020784 11.35858932
80 2.645751311 32.32427864
81 111.666667 49.00 0.762889842
82 166.333334 120.33 0.635019291 8.491017962
83 94.333334 235.67 1.45905139 12.87591234
84 1.88199441 6.494166335
85 2.645751311 2.285731221
86 2.367518179
87 14.333333 0.827103573 3.333147039
88 69 186.33 0.865134318 5.280464218
89 17 39.67 0.802014403 4.763098968
90 14.849315 22.09 0.468155434 7.540609136
91 62.2 80.67 0.417992341 3.482439423
92 40.927273 49.35 1.570258221 4.227289286
93 303.666668 712.33 0.790190752 33.78412574
94 786.333336 870.33 0.846674108 9.278400569
95 2.024991782 10.72193877
96 17.444444 27.71 1.171729103 2.999827466
97 353.000001 1467.67 0.654579773 15.99188262
98 346.333335 1.973716057 30.20536748
99 1.577211521 15.68300324
100 3.666667 1.280868845 3.333146973
101 2.645751311 4.997709324
102 1094.333337 1545.00 0.778891048
103 41 58.33 1.717676693 16.46710047
104 23.383275 32.78 0.42218097 1.2
105 27.333333 109.67 1.713457518 15.80955341
106 2.320954819 7.673825162
107 19.376471 36.98 0.213032056 1.250002032
108 786.333336 1681.00 0.959181594 14.06914708
109 901.000003 1101.00 0.702884342 133.5315301
110 3.666667 0.371596529 14.90185281
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111 41.542105 54.43 0.539600293 11.76892589
112 118.333334 398.33 0.993302517 88.75273615
113 48.12 2.645751311 13.0972122
114 2.458245055
115 577.000002 749.00 1.120719055 1.500083808
116 2.645751311 20.03348211
117 11.395604 17.32 0.342792255
118 237 711.00 0.487441022 2.771407849
119 429.333332 525.03 0.424060291 15.79168284
120 11.666667 1.124904322 125.443284
121 1301.000005 1741.00 0.373084371 2.999999596
122 606.333336 46.49 0.540092065 17.43498633
123 791.000003 821.00 1.233749709 7.546675038
124 2.645751311 18.53092005
125 670.215689 2316.29 0.322903333
126 210.800001 450.80 0.349566403 17.69982439
127 2.574682241 2.380956585

Record
Non-zero
records FDC

1 132 -19.91
2 1
3 34 -23.94
4 3
5 126 -13.98
6 57 -17.04
7 68 -20.69
8 163 -14.24
9 100 -20.58
10 3
11 24
12 13
13 173 -16.57
14 28 -34.34
15 13
16 16
17 1
18 29 -23.98
19 8
20 28 -27.34
21 96 -24.10
22 26 -43.24
23 11
24 260 -12.57
25 68 -21.90
26 1
27 15
28 6
29 20
30 1
31 10
32 28 -27.80
33 222 -11.05
34 244 -11.93
35 52 -18.64
36 80 -16.66
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37 16
38 82 -17.33
39 14
40 17
41 1
42 2
43 303 -6.09
44 174 -12.77
45 278 -10.62
46 6
47 35 -29.28
48 17
49 103 -20.70
50 92 -12.36
51 72 -23.42
52 246 -21.86
53 212 -17.77
54 281 -6.18
55 63 -19.92
56 30 -26.69
57 8
58 1
59 44 -15.49
60 144 -23.31
61 70 -23.47
62 102 -13.66
63 15
64 64 -17.61
65 19
66 34 -23.64
67 63 -18.73
68 32 -32.16
69 51 -26.48
70 17
71 5
72 65 -18.99
73 297 -8.64
74 276 -16.08
75 250 -18.43
76 6
77 123 -15.35
78 166 -15.44
79 189 -9.64
80 1
81 98 -19.72
82 203 -13.91
83 58 -24.33
84 4
85 1
86 4
87 59 -22.05
88 141 -18.19
89 302 -7.96
90 313 -7.93
91 179 -13.16
92 124 -15.61
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93 291 -11.97
94 157 -13.77
95 2
96 41 -22.65
97 293 -18.00
98 36 -22.48
99 8
100 7
101 1
102 302 -9.73
103 9
104 319 -11.34
105 54 -18.81
106 2
107 319 -6.86
108 152 -17.75
109 140 -12.32
110 7
111 311 -5.84
112 95 -17.26
113 6
114 2
115 89 -14.88
116 1
117 318 -3.29
118 293 -8.57
119 288 -10.08
120 25
121 268 -6.49
122 147 -12.49
123 60 -20.06
124 2
125 291 -9.20
126 279 -7.33
127 4



223

Appendix IV – Published work

Permission to reproduce this article has been granted by Oxford University Press



Journal of

Plankton Research plankt.oxfordjournals.org

J. Plankton Res. (2016) 00(00): 1–11. doi:10.1093/plankt/fbw094

Disentangling the counteracting effects
of water content and carbon mass
on zooplankton growth

KRISTIAN MCCONVILLE1,2*, ANGUS ATKINSON1, ELAINE S. FILEMAN1, JOHN I. SPICER2 AND ANDREW G. HIRST3,4


PLYMOUTH MARINE LABORATORY, PROSPECT PLACE, PLYMOUTH PL DH, UNITED KINGDOM, MARINE BIOLOGY & ECOLOGY RESEARCH CENTRE, SCHOOL OF

MARINE SCIENCE & ENGINEERING, PLYMOUTH UNIVERSITY, DRAKE’S CIRCUS, PLYMOUTH PL AA, UNITED KINGDOM, SCHOOL OF BIOLOGICAL AND

CHEMICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON, MILE END ROAD, LONDON E NS, UNITED KINGDOM AND

CENTRE FOR OCEAN LIFE, NATIONAL

INSTITUTE FOR AQUATIC RESOURCES, TECHNICAL UNIVERSITY OF DENMARK, KAVALERGARDEN , CHARLOTTENLUND , DENMARK

*CORRESPONDING AUTHOR: krm@pml.ac.uk

Received February 26, 2016; editorial decision November 30, 2016; accepted December 12, 2016

Corresponding editor: Marja Koski

Zooplankton vary widely in carbon percentage (carbon mass as a percentage of wet mass), but are often described
as either gelatinous or non-gelatinous. Here we update datasets of carbon percentage and growth rate to investigate
whether carbon percentage is a continuous trait, and whether its inclusion improves zooplankton growth models.
We found that carbon percentage is continuous, but that species are not distributed homogenously along this axis.
To assess variability of this trait in situ, we investigated the distribution of biomass across the range of carbon per-
centage for a zooplankton time series at station L4 off Plymouth, UK. This showed separate biomass peaks for gel-
atinous and crustacean taxa, however, carbon percentage varied 8-fold within the gelatinous group. Species with
high carbon mass had lower carbon percentage, allowing separation of the counteracting effects of these two vari-
ables on growth rate. Specific growth rates, g (d−1) were negatively related to carbon percentage and carbon mass,
even in the gelatinous taxa alone, suggesting that the trend is not driven by a categorical difference between these
groups. The addition of carbon percentage doubled the explanatory power of growth models based on mass alone,
demonstrating the benefits of considering carbon percentage as a continuous trait.

KEYWORDS: water content; zooplankton; gelatinous; carbon percentage; growth

INTRODUCTION

Gelatinous zooplankton are a phylogenetically broad and
ecologically important group of taxa found throughout

the world’s oceans. Their prey range from bacteria to fish
(Sutherland et al., 2010) and they exhibit an equally
diverse range of life history strategies and body composi-
tions. The high water content characteristic of this group
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can be expressed as carbon percentage (carbon mass as
% of wet mass), with some taxa having carbon mass as
low as 0.01% of their wet mass (Clarke et al., 1992;
Harbison, 1992; Lucas et al., 2011; Kiørboe, 2013).

Interest in gelatinous zooplankton is linked to a
growing appreciation of their impact on pelagic ecosys-
tems and human activities (Richardson et al., 2009;
Purcell, 2012, Gibbons and Richardson, 2013). For
example, the introduction of the ctenophore, Mnemiopsis

leidyi to the Black Sea has had considerable financial
implications for fisheries in the area (Shiganova and
Bulgakova, 2000). Research on gelatinous zooplankton
has grown apace with basic ecological interest in the
physiology, trophic ecology and bloom dynamics of this
group (Møller and Riisgård, 2007; Condon et al., 2013;
Gemmell et al., 2013).

Based on a compilation of zooplankton body compos-
ition, Kiørboe (2013) found that most zooplankton spe-
cies are either gelatinous (~0.5%) or non-gelatinous
(5–10%), with comparatively few intermediates. Indeed,
much research has been directed toward comparing
and contrasting gelatinous versus non-gelatinous zoo-
plankton. For example, compared to other planktonic
animals, gelatinous zooplankton have higher carbon
mass-specific feeding rates (Hamner et al., 1975; Acuña,
2001; Acuña et al., 2011), lower locomotion costs and
higher specific growth rates (Hirst et al., 2003; Pitt et al.,
2013). Indeed, gelatinous taxa such as salps are amongst
the fastest growing metazoans (Bone, 1998).

The use of a categorical approach to zooplankton body
composition (i.e. gelatinous versus non-gelatinous) con-
trasts with the treatment of carbon mass (Peters, 1983),
which is used as a continuous variable in many models of
growth (Hansen et al., 1997; Gillooly et al., 2002, Hirst
et al. 2003). However, the carbon percentage of zooplank-
ton species also varies widely, even among gelatinous taxa
(Molina-Ramirez et al. 2015). A recent review suggested
that water content was second only to body size in deter-
mining key aspects of the biology of zooplankton
(Andersen et al., 2015b). So far, empirical models of zoo-
plankton growth use equations that are specific to various
taxonomic groups (Hirst et al. 2003; Kiørboe and Hirst,
2014) and these equations have not yet been unified. As
carbon mass and carbon percentage are both variable
traits, it is important to consider them together in empir-
ical models of zooplankton growth. Furthermore, quanti-
fying the relationship between growth rate and carbon
percentage may help to explain how carbon percentage
functions as an evolutionary trait, and, e.g. why there are
gelatinous representatives from six phyla found in the
plankton.

In this study we have used both a meta-analyses
approach and an in situ time series of zooplankton from

weekly sampling at the Plymouth L4 time series (Smyth
et al. 2015). We had three objectives. The first was to
quantify the degree of variability in carbon percentage
both in ‘trait space’ from the meta-analysis dataset and
in a natural plankton assemblage, to gauge whether it
was appropriate to treat water content as a continuous
variable. The second aim was to investigate the degree
of collinearity between carbon mass and carbon per-
centage, again both in a meta-assemblage and in the
L4 assemblage. Dependent on the outcome of these
two objectives, the third aim was to construct a simple
empirical model of zooplankton growth that combines
carbon mass and carbon percentage.

METHOD

Carbon percentage data

Ratios of wet mass to carbon mass were combined from
a series of recent compilations (Kiørboe, 2013; Pitt et al.,
2013; Molina-Ramirez et al., 2015). The amalgamated
dataset with their sources is presented in Supplementary
Information 1 online. Only concurrent measurements of
carbon and wet mass of the same individual were used
to calculate carbon percentage.
The degree of tissue dilution of zooplankton taxa has

been expressed previously as body carbon content
(Molina-Ramirez et al., 2015). However, to avoid confu-
sion with carbon mass, throughout this article it is
referred to as ‘carbon percentage’ (carbon mass as a
percentage of wet mass). For our comparisons the levels of
taxonomic organization were selected based on functional
diversity and body form (e.g. phylum for Chaetognatha,
but orders Cydippida and Lobata).

In situ analysis

To investigate how species biomass was distributed
along the spectrum of carbon percentage an in situ

community, the L4 zooplankton time series (Western
Channel Observatory, Plymouth) was used. The L4
sampling site is approximately 15 km south–west of
Plymouth and undergoes seasonal stratification (Harris,
2010). Sampling at the L4 site consists of a pair of ver-
tical hauls with a 200 µm WP-2 zooplankton net from
50 m to the surface (maximum depth 54 m). The nets
are retrieved at 20 cm s−1 and are immediately fixed in
4% formaldehyde solution (Maud et al., 2015). The
zooplankton are then subsampled, counted and identi-
fied (Eloire et al. 2010). This zooplankton abundance
times series has high resolution both temporally
(weekly sampling) and taxonomically, with many taxa
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consistently identified to species level since 2009. To
determine zooplankton biomass, a total of 3780 indivi-
duals from the formalin-preserved catches at L4 taken
throughout 2014 and 2015 were measured. From stand-
ard length measurements (e.g. cnidarian bell height or
diameter, copepod prosome length), length-carbon mass
relationships from the literature were used to estimate
carbon mass per individual. These length measurements
were then aggregated into seasons, namely spring (March–
May), summer (June–August), autumn (September–
November) and winter (December–February) to account
for the high intraspecific variability in length observed at
L4 (Atkinson et al., 2015). This allowed us to derive
season-specific mean carbon masses per individual, which
were multiplied by numerical densities to estimate biomass
density (mgCm−3). Previously measured, L4-specific sea-
sonal values of individual carbon biomass were used,
when available (e.g. Calanus helgolandicus; Pond et al. 1996).
Of the approximately 189 taxa recorded at L4, only

22 contributed more than 0.5% to the total biomass for
all species. To examine how biomass was distributed
across the spectrum of carbon percentage, these taxa were
assigned to log2 classes (0.1–0.2%, 0.2–0.4%, 0.4–0.8%,
0.8–1.6%, 1.6–3.2%, 3.2–6.4%, 6.4–12.8%, >12.8%)
using the carbon percentage data in Supplementary
Information 1 online. The distribution of carbon biomass
in each carbon percentage category across the seasons
was then calculated.

Growth rate data

Using the references from the appendices of Kiørboe
and Hirst (2014) as a starting point, zooplankton growth
rate data were extracted from the original sources and
augmented by searching the literature. All growth rate
data used here are in Supplementary Information 2
online.
To improve comparability of source data we re-

stricted the meta-analysis to data from laboratory
incubations with food available in high (assumed non-
limiting) concentrations. By using only data collected
under these conditions we suggest that the measure-
ments are more directly comparable, with the observed
patterns more likely to reflect the intrinsic biology of the
species than external factors.
Published growth rates are normally expressed either

as increase in length or body mass over time. When
organism size was expressed as length, published length-
mass regressions were used to convert to body carbon
mass (Hirst, 2012; Kiørboe and Hirst, 2014). To
express growth rates in the terms commonly used for

zooplankton (as an exponential rate; see Hirst and
Forster 2013), the mass-specific growth rate, g (d−1) was
determined as follows:

= ( – )g M M dln ln /t 0

where Mt is mass at time, t, M0 is mass at the previous
time point, and d is the time period between the two
measurements of mass (in days).

Growth data were temperature-corrected to 15°C
using a Q10 of 2.8 (following Hansen et al., 1997;
Kiørboe and Hirst, 2014). General linear models
(GLMs) were constructed in R (R Core Team, 2014) to
determine the relationships between growth rate, carbon
percentage and carbon mass. To determine whether
there was collinearity between the predictor variables
we examined the condition indices for the variables in
the model using the colldiag function in the perturb pack-
age in R (Hendrickx, 2012). A condition index of greater
than 30 is considered large (Belsley et al., 1980) and sug-
gests that the variable should be removed from the
model.

When growth data were available for a species but
carbon percentage values were not, the latter was esti-
mated using the mean value for the highest level of
taxonomic relatedness available. For instance, if com-
position values for a species were not available, then the
composition values for all other species within the genus
were averaged and used as an estimate. The estimates
were typically at the genus level but no lower relatedness
than family (38% estimated at family level, primarily for
copepods).

Growth rate analysis

Four analyses were performed; the first two were based
on mean and maximum growth rates for all zooplank-
ton taxa in the dataset, the second two as above but for
the classical gelatinous taxa only (Cnidaria, Ctenophora
and Thaliacea). Maximum growth values were defined
as the highest temperature-adjusted growth rate value
available for each species. Issues of non-independence
between data were avoided by using single growth
rate values per species per study. For illustrative pur-
poses only (i.e. the plots in Fig. 4), we adjusted all
growth rates to a fixed body carbon mass of 1 mg C
after correcting to 15°C. This mass correction was
performed assuming log10 mass-specific growth (g)
scales against log10 mass with a slope of −0.25
(Brown et al. 2004).
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RESULTS

Variability in carbon percentage across
the zooplankton

The range in body volume for two animals of equal
carbon mass but at either end of the carbon percent-
age spectrum is show in Fig. 1. For the compiled data-
set, the range in carbon percentage extended over
four orders of magnitude, from 0.01% in the lobate
ctenophore, Bathycyroe fosteri, to 19.02% in the cope-
pod, Calanus hyperboreus (Figs 1 and 2a, Supplementary
Information 1 online). The intervals between adjacent
ranked species were small relative to the range cov-
ered (Fig. 2a), suggesting that water content could be
considered as a continuous variable. The largest inter-
val between species coincided with the shift from the
classic gelatinous taxa to other zooplankton (i.e. from
Thaliacea to Chaetognatha). However, this difference
between species constituted a relatively small fraction
of the total range (6.8%). In addition, there was over-
lap of classic gelatinous and non-gelatinous groups.
For example, some chaetognaths were within the
traditional gelatinous range (1.27 and 1.35% for
Pseudosagitta lyra (as P. scrippsae) and Pseudosagitta (as
Sagitta) gazellae respectively), whereas one tunicate had
a carbon percentage which lay within the non-
gelatinous range (3.87% for Doliolum denticulatum). This
overlap of taxonomic groups was extensive across the
spectrum of water content, as can be seen by the mix-
ing of colour across Fig. 2. This was particularly the
case among the Ctenophora and Thaliacea with the
range of both taxa approaching two orders of magni-
tude in carbon percentage.

The wide variation in body carbon percentage
observed at a species level in Fig. 1a is also summarized

at the broader taxon level in Fig. 2b. Median values for
groups do loosely cluster into gelatinous and non-
gelatinous taxa following the bimodal distribution of
species suggested by Kiørboe (2013). The ranges of all
adjacent taxa (excluding lobate ctenophores) over-
lapped, with Thaliacea and Chaetognatha bridging the
gap between the classical gelatinous and non-gelatinous
taxa. The variability within groups was greater for gelat-
inous taxa, with the greatest range in the scyphomedu-
sae, closely followed by the thaliaceans. The gelatinous
taxa sort into their respective phyla when ranked (i.e.
Lobata, Nuda, Cydippida for the Ctenophora, then
Hydromedusae and Scyphomedusae for Cnidaria) sug-
gesting that taxa within phyla are on average more simi-
lar to each other than with other phyla.
In the natural assemblage sampled at the Plymouth

L4 site (Figure 3) we have an alternative picture, namely
how biomass is distributed along this spectrum of car-
bon percentage. At L4, biomass is distributed bimodally.
The biomass is primarily concentrated in the categories
that are either highly gelatinous (carbon mass 0.1–0.8%
of wet mass) or non-gelatinous (6.4–>12.8%) However,
there is considerable variability within the carbon per-
centage categories, as some gelatinous taxa are as much
as 8 times larger in wet mass for the same carbon mass
as others. The biomass in the intermediate categories
(0.8–1.6 and 1.6–3.2%) was very low and below our
threshold for inclusion. This area of the spectrum is
populated by thaliaceans and large rhizostome scypho-
medusae, which are either not commonly recorded at
L4 (thaliaceans) or are rarely or poorly sampled by the
0.57 cm diameter nets used. Gelatinous taxa comprise a
greater proportion of biomass in summer than the other
seasons. In winter, chaetognaths (3.56%) have similar
total biomass to the dominant copepods. There is also a
broad trend of increasing carbon percentage through
the year within the gelatinous taxa. In spring, the cydip-
pids (the most gelatinous group frequently encountered
at L4) are dominant, followed by Nuda (Beroe) in sum-
mer and finally hydromedusae and siphonophores in
autumn.

Relationship between carbon mass and
carbon percentage

There were negative relationships between carbon mass
and carbon percentage, both in the meta-dataset
(Fig. 4a) and in the in situ dataset (Fig.4b). While the
more gelatinous taxa tended to have higher carbon
mass there was considerable variability, with some
organisms of similar carbon mass differing 100-fold in
carbon percentage (Fig. 4). To ensure that collinearity
was not influencing the growth model the condition

Wet mass

Carbon mass

Fig. 1. Comparison of the relative carbon (black) and wet masses
(grey) of Calanus hyperboreus (left, carbon percentage = 19.02%) and
Bathycyroe fosteri (right, carbon percentage = 0.01%). The relative area
of each shade is scaled as volume so the silhouettes are representative
of true size.
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indices for the variables were inspected. The highest
condition index observed was 3.05, lower than the
threshold of 30 suggested by Belsley et al. (1980) con-
firming that carbon mass and carbon percentage can be
used in combination in models of zooplankton growth.
As gelatinous and small organisms tend to grow fastest,
the tendency for more gelatinous taxa to have higher
carbon mass underlines the need to include both as cov-
ariates in our growth model.

Relationship between carbon percentage
and growth rate

We first conducted GLMs on the subset of data com-
prising the classical gelatinous taxa alone. These showed
that mean growth rate declined with increasing mass
and increasing body carbon percentage. The GLMs on
the whole dataset established that log10 mass-specific
mean and maximum growth rate was significantly cor-
related with both log10 carbon mass and log10 body

Fig. 2. (a) Zooplankton species ranked according to their carbon percentage (CM%WM; log10 scale), each horizontal bar represents a single
species. Colours indicate taxonomic groups as detailed in the legend. (b) Zooplankton taxonomic groups ranked according to their carbon mass
(as % of wet mass; log10 scale). Boxes indicate median, lower and upper quartiles with whiskers showing the range. (Vertical lines at 0.5 and 5
CM%WM represent the composition of the gelatinous and non-gelatinous taxa defined by Kiørboe (2013).).
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carbon percentage (Fig. 5 and Table I). As expected,
there was a negative relationship between log10 mass-
specific growth rate (g), and log10 carbon mass, consist-
ent with the results of Kiørboe and Hirst (2014). In the
analyses of all zooplankton taxa, mean and maximum
growth rate decreased with increasing carbon mass and
carbon percentage.
In all analyses, the addition of body carbon percent-

age to models of growth based on carbon mass alone
increased the explanatory power (Table II). The second
order Akaike criterion, AICc, (Burnham and Anderson,
2002) was lower in the model including water content in
all analyses, supporting the inclusion of this factor in
analyses of zooplankton growth. In the maximum ana-
lysis including all taxa, Akaike weights (ωi) were approxi-
mately 10 times higher in the models including body
carbon percentage (mass ωi = 0.08, mass + carbon per-
centage ωi = 0.92). This suggests that these models were
significantly better than models based on mass alone
(Royall, 1997). A similar pattern was observed in the

analysis of maximum growth rates of the gelatinous taxa
however it was not observed for mean growth rates
(mass ωi = 0.02, mass + GI ωi = 0.98).

DISCUSSION

Our study provides strong support for body carbon per-
centage being a continuous trait, for a negative relation-
ship between body carbon percentage and growth rate,
and for considerable increases in model predictive
power as a result of inclusion of this trait for zooplank-
ton. Below we discuss the implications of each of these
findings in turn.

Kiørboe (2013) demonstrated that if zooplankton are
arranged in a frequency distribution based on body com-
position, that most taxa are either gelatinous (carbon
mass is ~0.5% of wet mass) or non-gelatinous (~5–10%),
with little overlap. Our study would appear to contra-
dict this, since we found a fairly continuous distribution
of carbon percentage. However, this does not conflict
with the findings of Kiørboe (2013), since in that study it
was emphasized that most taxa are either highly gelatin-
ous or non-gelatinous. Rather, we highlight that, while
most species fall into one of these two groups, there is
considerable variability in carbon percentage within
each group and there are representatives across much of
this spectrum. The distribution of zooplankton biomass
at L4 supports both of these views. Biomass is clustered
at either end of the spectrum as described previously,
and this could suggest that the fitness landscape for this
trait favours extremes. However, at either end of the
spectrum there is considerable variability. The trad-
itional gelatinous group alone spans an 8-fold range in
carbon percentage, with implications for growth rate.
For example, there is a trend of increasing carbon per-
centage among the gelatinous zooplankton through the
year, with cydippids being replaced by beroids in sum-
mer and finally by hydromedusae and siphonophores in
autumn.

In the meta-analysis compilation, the largest interval
occurs between taxa typically considered as gelatinous
and intermediate, between the pelagic tunicate, Thalia
(as Salpa) democratica (1.6% body carbon percentage) and
a chaetognath, Eukrohnia hamata (2.7 % body carbon
percentage). Molina-Ramirez et al. (2015) stressed that
considerable variation in carbon percentage existed
even within the classic gelatinous taxa (Cnidaria,
Ctenophora and Tunicata). Our results are in agree-
ment, albeit with even higher degree of variability (at
350-fold). Taken together, the relatively small interval
between values for gelatinous and non-gelatinous species
and the high variability observed within the gelatinous
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Fig. 4. Carbon percentage (CM%WM) as a function of carbon mass
(mg) for the meta-analysis dataset (A, log carbon percentage = −0.26 *
log carbon mass −0.18, P = 0.0001, R2 = 0.21, df = 60) and the L4
assemblage (B, log carbon percentage = −0.34* log carbon mass −1.1,
P = 0.0026, R2 = 0.3429, df = 20). Taxonomic groups coloured as
indicated in the legends.
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taxa suggest that growth models can indeed incorporate
carbon percentage as a continuous trait.

When log10 mass-specific growth rate was regressed
against log10 body carbon percentage as a continuous
variable, a negative relationship was observed. Crucially,
the pattern persisted when considering the gelatinous
taxa alone (Table II). The existence of the relationship
among the gelatinous taxa alone, is important as this
demonstrates that the relationship is not due to a

categorical difference between gelatinous organisms and
non-gelatinous organisms.
One potential mechanism that could explain the rela-

tionship between body carbon percentage and growth
rate is enhanced feeding rate (Acuña et al., 2011). These
authors suggested that the large dilute bodies of gelatin-
ous zooplankton facilitate higher carbon-specific feeding
rates than other zooplankton taxa of the same carbon
mass. If this increased feeding rate drives faster growth,

Fig. 5. Specific growth rate, g (d−1) as a function of body carbon percentage (CM%WM). Growth values were temperature-adjusted to 15°C,
mass adjusted to 1 mg C and then averaged for each species in each study. (a) Mean mass-specific growth rate values for each species in each
study and (b) maximum specific growth rate values for each species.

Table I: General linear models predicting log10 mean specific and log10 maximum specific growth rate,
g (d−1), as a function of both log10 carbon mass (mg) and log10 body carbon percentage (100*(CM/WM))

Group Factor df P Slope Intercept Adj R2

All zooplankton Mean growth rate, g log10 carbon mass 58 <0.0001 −0.17 −1.12 0.43
log10 carbon percentage 0.036 −0.18

Max growth rate, g log10 carbon mass 42 <0.0001 −0.16 −0.81 0.31
log10 carbon percentage 0.013 −0.16

Gelatinous taxa only Mean growth rate, g log10 carbon mass 22 0.027 −0.19 −1.18 0.33
log10 carbon percentage 0.038 −0.17

Max growth rate, g log10 carbon mass 13 0.011 −0.16 −1.15 0.42
log10 carbon percentage 0.018 −0.72

All models pertain to growth rate data that were first Q10-adjusted to 15°C.
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then this might explain the relationship of increasing
growth rate with decreasing carbon percentage (Fig. 2).
As many gelatinous taxa are filter or ambush feeders
that rely on capture surfaces to feed, assuming that feed-
ing rate scales with surface area, then we may expect
the scaling exponent between surface area and body
carbon percentage to match the exponent for growth
rate and body carbon percentage. To investigate this we
used a simple geometric calculation. Assuming iso-
morphic growth, surface area (SA) scales with body vol-
ume with a power of 0.67. By altering degree of
gelatinousness for a fixed amount of body carbon, SA
then scales with carbon percentage with a power of
−0.67. Hence, with an assumption that growth rate is a
fixed proportion of feeding rate, this would give the
same slope of −0.67 for log10 mass-specific growth ver-
sus log10 carbon percentage (Fig. 2). The exponents that
we determined empirically across the various zooplank-
ton taxa are less steeply negative than −0.67 (at −0.18
and −0.16 for mean and maximum respectively), i.e.
increasingly gelatinous organisms increase their growth
rate less rapidly than these surface considerations would
predict. This could indicate a potential feeding inefficiency
associated with decreasing carbon percentage or that fac-
tors additional to surface area may also be important.
In common with Ikeda (2014), we found that species

with larger total carbon mass also tended to be more
watery. Furthermore, as the larger organisms are typic-
ally more watery the effects of carbon mass and carbon
percentage tend to counteract, underscoring the need to
include these variables together in order to better pre-
dict growth. Molina-Ramirez et al. (2015) found a simi-
lar result for tunicates but found that body carbon
percentage was invariant with increasing mass for cni-
darians and ctenophores. The authors suggested that
this might be due to differences between internal filter
feeding in tunicates and external ambush or cruise feed-
ing in the other groups. It has been suggested that feed-
ing modes decrease in efficiency with increasing size

(Kiørboe, 2011), so high water content may help to miti-
gate this decrease in efficiency and maintain relatively
higher carbon-specific feeding rate at large carbon
masses. This is supported by the findings of Acuña et al.

(2011), suggesting that gelatinous plankton had higher
carbon-specific feeding rates than other zooplankton of
a similar carbon mass. Together with higher growth
rates, these factors could help to explain how gelatinous
zooplankton are capable of forming such high localized
increases in species biomass (blooms).

While the increase in capture surface area and asso-
ciated feeding and growth rates is one potential advan-
tage of the gelatinous body form, there are other
implications. There are potential negative implications
also, especially with regard to limited swimming speed
and escape responses. While medusae have potential
defences in the form of nematocysts, many gelatinous
taxa such as ctenophores do not, and may have limited
ability to escape from potential predators as a result of
their large dilute bodies (Acuña et al. 2011). Understanding
why some taxa are gelatinous is not always straightfor-
ward. The most gelatinous mollusc in this analysis is
Clione limacina, a gymnosome predator that feeds on
almost exclusively on Limacina helicina. Clione does not
rely on large capture surfaces or on generating a feeding
current as it ambushes individual, relatively large
prey items. In this case, water content does not appear
to be a derived trait to increase body volume relative
to carbon for feeding, suggesting that this may not
be the only driver of high water content in zooplankton.
It has been suggested that potential other causes
include physical or ecological factors such as transpar-
ency to impair visual predation (Hamner et al., 1975) or
the efficiency of neutral buoyancy (Kiørboe, 2013).
Together these factors may help to explain why semi-
gelatinous bodies are observed in at least six major
planktonic phyla (Cnidaria, Ctenophora, Chordata,
Annelida, Chaetognatha, Mollusca, see Supplementary
Information 1).

Table II: Changes to measures of explanatory power of models of growth based solely on carbon mass
when body carbon percentage (CC) was added as a factor

Group g

R2 AICc

Δi

ωi

Mass Mass + CC Mass Mass + CC Mass Mass + CC

All zooplankton Mean 0.39 0.43 18.63 16.67 2.47 0.19 0.81
max 0.22 0.31 21.99 17.57 4.42 0.076 0.92

Gelatinous taxa only mean 0.33 0.33 18.51 19.96 1.44 0.54 0.46
max 0.09 0.42 21.55 16.26 5.29 0.019 0.98

AICc is the corrected Akaike information criterion, Δi is the AIC difference, and ωi is the Akaike weight. Models with Akaike weight values 10 times
greater than that of the other models being compared are considered statistically significant as optimal models (mass + GI for mean and max all zoo-
plankton and max gelatinous taxa only). All models pertain to growth data that were first Q10-adjusted to T = 15°C.
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CONCLUSIONS

Body size is often described as a master-trait, and is fre-
quently used as the sole intrinsic variable in empirical
and simulation models involving zooplankton growth
(Kiørboe and Hirst, 2014; Andersen et al., 2015a). But
what do we mean by ‘body size’? Carbon mass is often
used as the unit for size, but both our meta-analysis and
the real assemblage data show that carbon percentage
also varies greatly. It may even vary negatively with car-
bon mass, levering an opposing effect on growth. We
argue that carbon mass and carbon percentage are both
key traits, both are intrinsic to the zooplankton and
since they are possible to estimate, then we should disen-
tangle their separate effects in a unified growth model.
By including carbon percentage in models of growth
based on carbon mass alone, we substantially increased
their explanatory power, with smaller body masses and
lower body carbon percentages leading to higher specific
growth rates. Building on the work of previous publica-
tions (Kiørboe, 2013; Pitt et al., 2013; Molina-Ramirez
et al., 2015) we provide a carbon percentage dataset in
Supplementary Table 1. By using these source data along-
side carbon mass, the maximum growth rate equation in
Table 1 may then be used as a starting point to estimate
growth rates attainable by zooplankton.

Alongside the ‘size’ based simplifications used for
modelling, there has also been an increase in ‘trait-
based’ modelling in which categorical variables or
functional groups are allowed to vary continuously. A
purpose of this article is to allow water content also to
be used as a continuous trait; to facilitate its inclusion
alongside carbon mass and other traits such as feeding
mode (Litchman et al., 2013; Andersen et al. 2015a;
Hérbert et al., 2016). Since we found that growth rate
depended on carbon percentage even among the gelat-
inous taxa alone, we hope that considering and model-
ling water content as a continuous trait will reveal the
ecological and evolutionary factors that influence the
water content of zooplankton.

SUPPLEMENTARY DATA

Supplementary data can be found online at
Plankton Research journal.
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