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ABSTRACT 

 

Our investigation of the taxonomy, biostratigraphy, and phylogeny of the 

microperforate Oligocene species generally included in the planktonic genus 

Streptochilus documents that biserial planktonic foraminifera occur in the upper 

Oligocene, despite previous descriptions of a global gap in occurrence of such taxa over 

that time interval. We describe a total of four distinct morphological species, namely 

Streptochilus martini (Pijpers), Streptochilus pristinum Brönnimann and Resig, 

Streptochilus rockallkiddensis Smart and Thomas, and Streptochilus tasmanensis Smart 

and Thomas n. sp. Some Recent biserial foraminifera (Streptochilus globigerus) live 

tychopelagically, i.e., the species lives in the plankton but is genetically identical to the 

neritic benthic species Bolivina variabilis. Fossil species could have had a similar 

lifestyle, from which they could have evolved into true planktonic species, implying 

polyphyletic, multiple evolution of planktonic from benthic biserial groups. It is likely, 

therefore, that the stratigraphic distribution of the genus Streptochilus represents one or 

more expatriation events from the coastal benthos to the pelagic zone, and that not all 

or no species traditionally placed in the genus Streptochilus are descended from the 

genus Chiloguembelina. The name Streptochilus has been used for species which 

morphologically cannot be distinguished from species in the benthic genus Bolivina but 

live planktonically, and the genus thus is polyphyletic. We do not have sufficient 
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information on evolutionary patterns to define clades of biserial planktonic species, and 

here propose to keep the name Streptochilus provisionally for biserial planktonic species 

until evolutionary relations have been clarified. We assign the genus to the Superfamily 

Bolivinoidea. 

 

INTRODUCTION 

 

The biserial genus Streptochilus belongs to the microperforate planktonic 

foraminifera, characterized by a non-spinose, smooth to pustulose wall with pores less than 1 

μm in diameter (e.g., Huber and others, 2006). These planktonic species are generally small 

(~ 100-150 μm), and they have been commonly overlooked in taxonomic and biostratigraphic 

studies. Traditionally, the Eocene-Recent biserial planktonic genus Streptochilus (with a 

toothplate) has been thought to have evolved from the biserial planktonic genus 

Chiloguembelina (without toothplate) in the middle Eocene (e.g. Huber and others, 2006). 

Genetic evidence, however, shows that the Recent biserial planktonic foraminiferal species 

Streptochilus globigerus belongs to the same biological species as the shelf-dwelling benthic 

foraminifera Bolivina variabilis (Darling and others, 2009). Geochemical evidence suggests 

that this species can survive, calcify and reproduce in both planktonic and benthic domains 

(the tychopelagic life habit) (Darling and others, 2009). Such tychopelagic taxa could have 

evolved into true planktonic species multiple times in the past (Leckie, 2009; Georgescu and 

others, 2011). Similarly, genetic evidence suggests that the living triserial planktonic 

foraminiferal species Gallitellia vivans did not evolve from older triserial planktonic species, 

but descended from triserial benthics in the Miocene (Ujiié and others, 2008). A recent 

supraordinal classification of the Phylum Foraminifera does not consider planktonic 

foraminifera a separate order (Pawlowski and others, 2013). 

Originally, all Streptochilus species, including the extant S. globulosus, the type 

species of the genus Streptochilus (Brönnimann and Resig, 1971; Resig and Kroopnick, 

1983; Resig, 1989, 1993) had been placed in the genus Bolivina (Order Buliminida) because 

of their strong morphological similarities, including biserial test formation and presence of a 

‘collar’ around the aperture, extending into a toothplate (Smart and Thomas, 2006, 2007). 

The chambers of most biserial planktonics tend to be more inflated than those of benthics, 

although there is considerable intraspecific and interspecific variability (e.g., Darling and 

others, 2009). 
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The biserial genus Laterostomella was originally also placed in the Buliminida by de 

Klasz and Rérat (1962). Loeblich and Tappan (1987) placed Laterostomella in the 

Chiloguembelinidae because they considered it to be a planktonic taxon, and they designated 

Streptochilus its junior synonym. However, de Klasz and others (1989) demonstrated that 

Laterostomella is in fact a benthic taxon, based on oxygen stable isotopic data, and therefore 

considered Laterostomella and Streptochilus as separate genera. Various authors (e.g. 

Brönnimann and Resig, 1971; Kennett and Srinivasan, 1983; Resig and Kroopnick, 1983; 

Poore and Gosnell, 1985; de Klasz and others, 1989; Huber and others, 2006) suggest that the 

planktonic genus Streptochilus evolved from Chiloguembelina, thus should be assigned to the 

Chiloguembelinidae. However, in view of the evidence that at least some species of 

Streptochilus, e.g., the living S. globigerus, are not descended from Chiloguembelina, the 

Family Chiloguembelinidae (Reiss, 1963) is revised to exclude them (see Chapter 17, this 

volume). 

A planktonic mode of life of the two living species of Streptochilus (S. globigerus 

Schwager and S. globulosus Cushman) is documented by its occurrence in plankton tows 

(Hemleben and others, 1998; Schmuker and Schiebel, 2002), by stable isotope analyses 

(Resig and Kroopnick, 1983) and Mg/Ca ratios (Darling and others, 2009). Similarly, late 

Eocene (Sexton and others, 2006) and early Miocene (Smart and Thomas, 2006) 

Streptochilus have stable isotopic signatures indicative of a planktonic mode of life. The 

oxygen isotope values are more negative, indicating high (surface) water temperatures similar 

to those in other mixed-layer dwelling planktonic foraminifera, whereas the carbon isotope 

values are also light, in some cases lighter than those of benthics in the same samples (Smart 

and Thomas, 2006). Resig and Kroopnick (1983) suggested that these carbon isotope values 

reflect a ‘deep planktonic habitat within the oxygen minimum layer’, but in such a habitat, 

the 18O values would be much more positive than observed. Smart and Thomas (2006) 

explained the light carbon isotope signature in early Miocene Streptochilus as resulting from 

rapid calcification in a region with variable upwelling conditions, as such isotope signatures 

are seen in Recent surface dwellers in regions with intermittent upwelling, e.g. monsoonal 

areas in the Arabian Sea (e.g., Kroon and Ganssen, 1989; Naidu and Niitsuma, 2004). Such a 

habitat would be in agreement with inferences that Paleogene biserial forms generally 

indicate eutrophic conditions (e.g., Hallock and others, 1991; Smart and Thomas, 2006). 

However, the extant triserial form Gallitellia vivans, living in eutrophic coastal regions, also 

has a very light carbon isotopic signature (Kimoto and others, 2009). Kimoto and others 
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(2009) attributed the negative 13C values to isotopic disequilibrium, and it is likely that the 

negative 13C values in Streptochilus are due to metabolic disequilibrium effects in small 

foraminiferal tests (see, for example, Birch and others, 2013, for a discussion of this effect). 

Streptochilus has been differentiated from Chiloguembelina by the presence of an 

internal plate connecting successive foramina which is a prominent extension of an apertural 

collar, and a smooth to granular rather than a pustulose to costate surface texture (Poore and 

Gosnell, 1985; Huber and others, 2006). Poore and Gosnell (1985) suggested that some 

species usually assigned to Chiloguembelina (e.g. Textularia martini Pijpers) should be 

included in Streptochilus because of the presence of a toothplate, as agreed by Huber and 

others (2006) and Sexton and others (2006), and here. Poore and Gosnell (1985) included 

Guembelina cubensis Palmer in Streptochilus, based on the presence of an internal plate 

connecting the foramina of all but the final one or two chambers, although they noted that the 

development of the internal plate is very variable within individual specimens and with the 

form of the aperture. Resig (1993) suggested cubensis should be included in Chiloguembelina 

due to the typically lower arched aperture and off-centred position of the internal plate. Huber 

and others (2006) also placed cubensis in Chiloguembelina, which is followed here (see 

Chapter 17, this volume). Not all Streptochilus species have a smooth surface texture, with 

living S. globigerus (= B. variabilis) showing a distinctive cancellate wall, and S. 

rockallkiddensis having a granular wall (see below). 

Streptochilus is described as having an aperture bordered by a collar. “Near the base 

of the inside margin, the collar and apertural edge are turned inward, producing a plate-like 

connection with the proximal margin of the collar of the previous aperture’’ (Brönnimann 

and Resig, 1971:1288; Smart and Thomas, 2007:84). Within the Superfamily Buliminacea, 

most genera (e.g. Bolivina) possess a toothplate, a contorted plate running from an 

intercameral foramen to an aperture, and attached to both. It has been suggested that 

Streptochilus evolved from Chiloguembelina (probably C. ototara), which does not have a 

toothplate, during the late Eocene through infolding of the inner margin of the aperture (e.g. 

Huber and others, 2006). The plate-like structure in Streptochilus has been described as not a 

true toothplate, missing its internal monolamellar part (Smart and Thomas, 2006), although it 

is often difficult to assess the exact nature of the toothplate, particularly in small species 

(Darling and others, 2009). In fact, Darling and others (2009) argue that there does not appear 

to be any real structural difference in the toothplates of Streptochilus and Bolivina, because 
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there is significantly more intrageneric, and even intraspecific variability, than intergeneric 

variability. 

Chiloguembelina fusiformis Kim is a biserial species described from the upper 

Oligocene San Gregorio Formation of Baja California, Mexico. This species is tentatively 

placed in Streptochilus, however, we have not been able to study the type material and its 

placement relative to the species described herein is uncertain. 

The stratigraphic range of Streptochilus has been recorded as middle Eocene (Zone 

E10) to Recent (Huber and others, 2006), but it was suggested (Kennett and Srinivasan, 1983; 

de Klasz and others, 1989) that there is a global stratigraphic gap in the upper Oligocene, 

from which no biserial planktonic foraminifera have been described. This gap is most likely 

due to lack of observations of the small species in this time period, and we have observed 

Streptochilus species occurring during this interval. Streptochilus rockallkiddensis was 

reported from the lower Miocene of the northeastern Atlantic Ocean, and we have now 

identified this species in the lower to upper Oligocene of the southwestern Atlantic Ocean. 

Streptochilus pristinum has been reported from the lower through middle Miocene (Resig, 

1989, 1993), and the upper Oligocene of New Zealand (Hornibrook, 1990), and we have 

observed rare occurrences of this species in the upper Oligocene of Syria (Jihar and Jazal 

boreholes, Hernitz Kučenjak and others, 2006). We report S. tasmanensis n. sp. from the 

upper Oligocene of the South Pacific Ocean. In total, we thus recognize four distinct species 

of Streptochilus in the Oligocene (S. martini, S. pristinum, S. rockallkiddensis and S. 

tasmanensis n. sp.) which apparently occur intermittently, with the intermittent ranges 

probably in part due to lack of observations of small planktonic taxa. The stratigraphic ranges 

and phylogeny of Oligocene Streptochilus are shown in text-figure 19.1. 

 

 

SYSTEMATIC TAXONOMY 

 

Order FORAMINIFERIDA Eichwald, 1830 

Superfamily BOLIVINOIDEA Glaessner, 1937 

Family BOLIVINIDAE Glaessner, 1937 

 

Genus Streptochilus Brönnimann and Resig, 1971, emended Smart and Thomas, 2007 
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TYPE SPECIES.— Bolivina tokelauae Boersma, 1969 (in Kierstead and others, 1969; = 

Bolivina globulosa Cushman, 1933, according to Resig and Kroopnick, 1983). 

 

DISTINGUISHING FEATURES.— “Test biserial, may become staggered uniserial, 

sometimes twisted; wall calcareous, perforate; aperture a high arch, eccentric in position, 

extending from the base of the last chamber onto the apertural face. On the outside margin, a 

collar borders the aperture. Near the base of the inside margin, the collar and apertural edge 

are turned inward, producing a plate-like connection with the proximal margin of the collar of 

the previous aperture. Aperture may be obscured by a thickening of the wall including the rim 

of the aperture. The length of the test varies between 75 and 300 µm” (Smart and Thomas, 

2007:84). Smart and Thomas (2007) emended the description of Streptochilus to include the 

morphological features of the early Miocene species, S. rockallkiddensis, which has a test that 

may become staggered uniserial, and the aperture may be obscured by a thickening of the 

wall including the rim of the aperture. 

 

DISCUSSION.— See Huber and others (2006), Smart and Thomas (2007) and Darling and 

others (2009). 

 

PHYLOGENETIC RELATIONSHIPS.— It is possible that the distribution of Streptochilus 

spp. represents one or more expatriation events from the coastal benthos to the pelagic zone 

(Darling and others, 2009), in addition to lack of observation of these small taxa, explaining 

its intermittent temporal distribution in the fossil record. Furthermore, it is likely that either 

no or not all species traditionally placed in the genus Streptochilus are descended from the 

genus Chiloguembelina. The name Streptochilus is used for planktonic species which 

morphologically cannot be distinguished from species in the benthic genus Bolivina. The 

genus, therefore, is polyphyletic, including potentially different clades. At present, however, 

we do not have enough information on evolutionary patterns to identify clades of biserial 

planktonic species, and it is proposed, therefore, that the name Streptochilus be retained 

provisionally until evolutionary relations are understood. 

 

STRATIGRAPHIC RANGE.— Middle Eocene (Zone E10) to Recent; intermittent. 

Streptochilus martini has been suggested as the earliest species (Huber and others, 2006), and 

Recent species include S. globigerus and S. globulosus. 
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GEOGRAPHIC DISTRIBUTION.— Global in low and high latitudes in northern and 

southern hemispheres. 

 

Streptochilus martini (Pijpers, 1933) 

 

PLATE 19.1, FIGURES 1-17 

 

 

Textularia martini Pijpers, 1933:57, figs. 6-10 [upper Eocene, Bonaire, Dutch West Indies]. 

Guembelina mauriciana Howe and Roberts in Howe, 1939:62, pl. 8: figs. 9-11 [Eocene Cook 

Mountain Fm., Louisiana]. 

Guembelina martini (Pijpers).—Drooger, 1953:100, pl. 1: figs. 2, text-fig. 4 [upper Eocene, 

Curacao and Bonaire]. 

Guembelina tenuis Todd, 1957:303, pl. 65: fig. 31a,b [upper Eocene, Saipan, Mariana 

Islands]. 

Chiloguembelina martini (Pijpers).—Beckmann, 1957:89, pl. 21: text-fig. 14 (9-11, 14-18, 

20-23) [Eocene, upper Lizard Springs, Navet, and San Fernando Fms., Trinidad].—Hartono, 

1969:157, pl. 20: fig. 1 [upper Eocene, Nanggulan, central Java].—Warraich and Ogasawara, 

2001:13, figs. 3(1-2) [middle Eocene, Zones P12-P14, Sulaiman Range, Pakistan]. 

Guembelina goodwini Cushman and Jarvis, in Cushman, 1933:69, pl. 7: figs. 15-16 [upper 

Eocene, Trinidad]. 

Chiloguembelina goodwini (Cushman and Jarvis).—Warraich and Ogasawara, 2001:11-13, 

figs. 3 (9-10) [middle-upper Eocene, Sulaiman Range, Pakistan]. 

Guembelina venezuelana Nuttall, 1935:126, pl. 15: figs. 2-4 [upper Eocene, Bolivar District, 

Venezuela]. 

Chiloguembelina victoriana Beckman, 1957, pl. 21: figs. 19, 20, text-fig. 15 (46-48) [upper 

Eocene, San Fernando, Trinidad].—Warraich and Ogasawara, 2001:13-15, figs. 3 (3-4) 

[middle Eocene, Zone P12, Sulaiman Range, Pakistan]. 

Chiloguembelina woodi Samanta, 1973:432, pl. 15: figs. 15-16 [middle Eocene, Zone P12, 

Sulaiman Range, Pakistan].—Warraich and Ogasawara, 2001:15, figs. 3 (11-12) [middle 

Eocene, Zones P12-P14, Sulaiman Range, Pakistan]. 

Streptochilus martini (Pijpers).—Poore and Gosnell, 1985, pl. 1: figs. 1-7 [upper Eocene, 

DSDP 522-37-CC, South Atlantic].—Resig, 1993, pl. 1: figs. 11-12, 14-16, 18 [upper 

Eocene, Zone P17, ODP Hole 807C, Ontong-Java Plateau].—Huber and others, 2006, pl. 
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16.3, figs. 1-2 (holotype of Chiloguembelina victoriana Beckman, 1957), pl. 16.3, figs. 3, 6 

[upper Eocene, Atlantic City Borehole, New Jersey, ODP Hole 150X], pl. 16.3, figs. 4, 5 

[middle Eocene Zone P9, Aragon Fm., Tampico, Mexico], pl. 16.3, figs. 7, 8 [upper Eocene 

Zone P15, lower Kitunda slopes, Lindi, Tanzania].—Pearson and Wade, 2015, fig. 30 (4-6) 

[upper Eocene Zone E15/16, Tanzania]. 

 

DESCRIPTION 

Type of wall: Microperforate, although low latitude forms may have 

macroperforations (e.g. Pearson and Wade, 2015), smooth to finely pustulose. 

Test morphology: “Test elongate, somewhat compressed, sometimes slightly twisted, 

gradually to moderately tapering, peripheral margin subrounded; chambers biserial, 

increasing gradually in size, sutures flush to slightly depressed and oblique in first two to 

three pairs of chambers, later more strongly depressed and nearly horizontal; aperture a 

semicircular arch with a thin lip that projects on one side more than the other and an internal 

toothplate that connects foramina of successive chambers” (Huber and others, 2006:477). 

Size: Syntype length 0.246 mm, width 0.185 mm, thickness 0.110 mm (Plate 19.1, 

Figs. 1-2; Pijpers, 1933, fig. 6). 

 

DISTINGUISHING FEATURES.— Distinguished from Chiloguembelina ototara and C. 

crinita by the more compressed and tapering test, smoother test surface, and presence of a 

toothplate. Streptochilus martini differs from S. pristinum and S. rockallkiddensis by its more 

gradual to moderate tapering of the test. It differs from S. rockallkiddensis by the lack of 

granular surface ornamentation, and differs from S. tasmanensis n. sp. by the lack of surface 

circular pore mounds. 

 

DISCUSSION.— Apparently, Pijpers (1933) did not designate a holotype of Textularia 

martini (= S. martini). SEM images of one of the type specimens (syntypes) of S. martini 

taken from Pijpers’ collection (Pijpers, 1933, fig. 6) are shown in Plate 19.1 (Figs. 1-2), but 

unfortunately the specimen has a broken-off final chamber and the aperture cannot be seen 

clearly. Pijpers (1933) describes the aperture as: “elongate, occasionally slightly curved, at 

the inner margin of the last formed chamber and perpendicular to that margin”. Huber and 

others (2006) argued that the Eocene species C. victoriana Beckmann and S. martini should 

be included within the same species because of the considerable overlap in test elongation 

and degree of chamber appression. Due to priority, C. victoriana was considered a junior 
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synonym of S. martini (Huber and others, 2006). Eocene Chiloguembelina woodi Samanta 

was distinguished from S. martini by having more globular chambers and a broader, sub-

circular, symmetrical aperture (Samanta, 1973). Without detailed information on how these 

features vary in populations of S. martini, Huber and others (2006) united these taxa.  

 

PHYLOGENETIC RELATIONSHIPS.— Huber and others (2006) suggested that S. martini 

was probably derived from Chiloguembelina crinita during the middle Eocene, but evolution 

of Streptochilus spp. may have been polyphyletic, from multiple benthic biserial groups. It is 

likely that the distribution of Streptochilus spp., including S. martini, represents a series of 

excursions of expatriated tychopelagic individuals into the planktic domain (Darling and 

others, 2009), explaining the intermittent temporal distribution of Streptochilus in the fossil 

record. 

 

TYPE LEVEL.— Upper Eocene, Bonaire, Caribbean Netherlands (formerly Dutch West 

Indies). 

 

STRATIGRAPHIC RANGE.— Middle Eocene Zone E10 (Huber and others, 2006) to lower 

Oligocene Zone O2 (Adriatic Sea). Resig (1993) reported the HO of S. martini at the 

Eocene/Oligocene boundary at ODP Site 807 (Ontong Java Plateau), although the LO was 

not recovered. 

 

GEOGRAPHIC DISTRIBUTION.— Cosmopolitan. 

 

STABLE ISOTOPE PALEOBIOLOGY.— Late middle Eocene 18O and 13C values of S. 

martini from the NW Atlantic Ocean (ODP Site 1052) suggest it was a thermocline dweller 

(Sexton and others, 2006). 

 

REPOSITORY.— Department of Earth Sciences, University of Utrecht, The Netherlands. 

 

 

 

Streptochilus pristinum Brönnimann and Resig, 1971 
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PLATE 19.1, FIGURES 18-32 

 

 

Streptochilus pristinum Brönnimann and Resig, 1971:1289, pl. 51: fig. 4 [middle Miocene 

Zone N13, DSDP Hole 62.1, Eauripik Rise, western equatorial Pacific Ocean].—Jenkins 

and Srinivasan, 1986, pl. 5: fig. 10 [upper Oligocene, DSDP Hole 593A, Challenger 

Plateau, southwest Pacific Ocean].—Spezzaferri, 1994, pl. 29: fig. 6 [lower Miocene 

Zone M1a, DSDP Hole 354, Ceara Rise, equatorial Atlantic Ocean].—Spezzaferri, 1994, 

pl. 29: figs. 7a,b [lower Miocene Zone M1a, DSDP Hole 593, Challenger Plateau, 

southwest Pacific Ocean].—Hernitz Kučenjak and others, 2006, pl. 5: fig. 10 [upper 

Oligocene, Zone O6, Sample Jihar-5 well, Syria].—Beldean and others, 2010: fig. 2 

[lower Miocene, Transylvanian Basin].—Beldean and others, 2013, pl. 1: figs. 1-6 [lower 

Miocene, Transylvanian Basin]. 

 

DESCRIPTION 

Type of wall: Microperforate, smooth. 

Test morphology: Test biserial, early portion of test with straight lateral profile and no 

chamber inflation, followed by slight inflation of the later chambers, becoming gradually 

tapered, usually 5-8 pairs of chambers; sutures straight to slightly curved and depressed; 

aperture a narrow high arch with a rim/collar at the outer margin and the opposite margin 

turned in to form a ramp to the collar of the previous aperture. 

Size: Holotype length 0.180 mm, width 0.076 mm; length range 0.125-0.250 mm, 

maximum width 0.100 mm. 

 

DISTINGUISHING FEATURES.— Distinguished from other species of the genus by the 

“straight lateral profile of the early portion of the test followed by the tendency toward 

inflation of the later chambers” (Brönnimann and Resig, 1971:1289). Streptochilus pristinum 

is distinguished from Chiloguembelina ototara by the more compressed test, smoother test 

surface, and presence of a toothplate. Streptochilus pristinum differs from S. martini and S. 

tasmanensis n. sp. by its straight lateral profile of the initial part of the test, followed by 

inflation of later chambers. It differs from S. rockallkiddensis by the lack of granular surface 

ornamentation, and differs from S. tasmanensis n. sp. by the lack of surface circular pore 

mounds. 
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DISCUSSION.— de Klasz and others (1989) called it, incorrectly, S. pristinus. The name 

Streptochilus is derived from streptos, Greek () for ‘twisted’ and cheilos (), 

Greek for ‘lip’ (Brönnimann and Resig, 1971), with the latter word neuter, thus requiring 

pristinum as specific name. 

 

PHYLOGENETIC RELATIONSHIPS.— Resig (1993) suggested that the evolution of S. 

pristinum occurred before the mid late Oligocene, either from C. cubensis or from an 

undiscovered ancestral Eocene Streptochilus. Resig (1993) commented that the appearance of 

S. pristinum in the late Oligocene of New Zealand (Hornibrook, 1990), as compared with the 

low-latitude occurrence at ODP Site 807 (Ontong Java Plateau), implies that the evolution of 

S. pristinum may have occurred in mid-latitudes rather than the tropics. However, some 

Recent biserial foraminifera are able to live tychopelagically, suggesting a similar lifestyle 

for species in the past, and suggesting potential polyphyletic evolution of planktonic from 

benthic biserial groups (Darling and others, 2009). The distribution of S. pristinum might, 

therefore, signify multiple excursions of tychopelegic individuals from the coastal benthos to 

the pelagic zone (Darling and others, 2009), and its ancestor is unknown.  

 

TYPE LEVEL.— Middle Miocene (Zone N13), DSDP Hole 62.1/34/2, 109-111 cm, Eauripik 

Ridge, western equatorial Pacific Ocean. 

 

STRATIGRAPHIC RANGE.— Upper Oligocene (Zone O6) (Syria) to Upper Miocene (Zone 

M13a) (Ontong Java Plateau, Resig, 1993), intermittent.  

 

GEOGRAPHIC DISTRIBUTION.— The distribution during the Oligocene is unknown as it 

is very rare; known from Syria and New Zealand. 

 

STABLE ISOTOPE PALEOBIOLOGY.— No data available. 

 

REPOSITORY.— Holotype (USNM 688752) deposited at the Smithsonian Museum of 

Natural History, Washington, D.C. 

 

Streptochilus rockallkiddensis Smart and Thomas, 2007 
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PLATE 19.2, FIGURES 1-15 

 

Bolivina sp. Smart and Murray, 1994:141, fig. 2: no. 1 [lower Miocene Zone ~M3, DSDP 

Hole 563/11/5, 19-21 cm, west flank of Mid Atlantic Ridge, North Atlantic Ocean].—

Smart and Ramsay, 1995:736, fig. 2 [lower Miocene Zone ~M3, DSDP Hole 563, west 

flank of Mid Atlantic Ridge, North Atlantic Ocean]. 

Bolivina sp. 9. Poag and Low, 1985:502, pl. 1: figs. 16-18 [upper Oligocene Zone O5 to late 

Pliocene Zone PL6, DSDP Holes 548 and 548A, Goban Spur, northeastern Atlantic 

Ocean]. 

Streptochilus rockallkiddensis Smart and Thomas, 2007:84-86, pl. 1: figs. 1a,b (holotype), pl. 

1, figs. 2-13; pl. 2-5 (paratypes) [lower Miocene Zones ~M3 to M4a, northeastern 

Atlantic Ocean, DSDP Hole 608]. 

 

DESCRIPTION 

Type of wall: Microperforate, surface ornamentation varies from smooth to finely 

granular to coarsely granular. 

Test morphology: Test biserial, shape variable, commonly elongate, parallel-sided and 

rectilinear, occasionally flared, in some elongate specimens the later formed part of the test 

may narrow towards the apertural end, rarely twisted; laterally slightly compressed, periphery 

rounded and non-lobulate to lobulate; chambers increase regularly in size as added, slightly 

wider than high, initial chambers small and commonly obscured by granular surface 

ornamentation, number of pairs of chambers varies from 5-8 or more; sutures slightly curved 

and depressed; aperture low-arch shaped, offset to one side of test, with an internal plate 

formed by the infolding and downward extension of one margin of the rimmed aperture; no 

obvious differences between micro- and megalospheric specimens. In early Miocene 

specimens, the test is biserial and may become staggered uniserial in some elongate 

specimens, with final chamber often having a thickened rim (Smart and Thomas, 2007:84). 

Size: Holotype length 0.225 mm, width 0.075 µm; length range 0.130-0.260 mm, 

width range 0.070-0.100 mm, thickness range 0.060-0.070 mm. 

 

DISTINGUISHING FEATURES.— Distinguished by commonly elongate rectilinear shape, 

occasionally flared, laterally slightly compressed, surface ornamentation varying from 

smooth to granular. Streptochilus rockallkiddensis is distinguished from Chiloguembelina 

ototara by the more compressed, commonly elongate rectilinear test, tendency to become 
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uniserial in some elongate specimens, common granular surface ornamentation, and presence 

of a toothplate. Streptochilus rockallkiddensis differs from S. martini, S. pristinum and S. 

tasmanensis n. sp. by its more elongate rectilinear shape which becomes occasionally 

staggered uniserial, and by its surface ornamentation which is often granular. 

 

DISCUSSION.— Streptochilus rockallkiddensis was called Bolivina spathulata (Williamson) 

by Thomas (1986, 1987), but it was not illustrated. Smart and Thomas (2007:84) noted that 

early Miocene forms were typically small, elongate, laterally slightly compressed, biserial 

becoming staggered uniserial, commonly rectilinear and often narrower towards apertural 

end, aperture with thickened rim and often obscured, surface ornamentation varying from 

smooth to granular. 

 

PHYLOGENETIC RELATIONSHIPS.— It has been shown that some Recent biserial 

foraminifera are able to live tychopelagically implying a similar lifestyle for fossil species, 

suggesting polyphyletic evolution of planktonic from benthic biserial groups (Darling and 

others, 2009). The stratigraphic distribution of S. rockallkiddensis may represent numerous 

excursions of expatriated tychopelgic individuals from the coastal benthos to the pelagic zone 

(Darling and others, 2009), and its ancestor is unknown. 

 

TYPE LEVEL.— Lower Miocene (Zones ~M4a/M4b), DSDP Hole 608/37X/4, 38-40 cm, 

King’s Trough, northeastern Atlantic Ocean. 

 

STRATIGRAPHIC RANGE.— Lower Oligocene Zone O2/O3 (DSDP Site 516, South 

Atlantic) to upper Pliocene Zone PL6 (DSDP Site 610, North Atlantic, Thomas, 1987), 

intermittent.  

 

GEOGRAPHIC DISTRIBUTION.— Known from the North and South Atlantic Ocean 

(Goban Spur, DSDP Site 548 and Rio Grande Rise, DSDP Hole 516F).  

 

STABLE ISOTOPE PALEOBIOLOGY.— The 18O values of lower Miocene S. 

rockallkiddensis from Site 608 overlap with those of surface dwelling planktonic 

foraminifera in the same samples, indicating a mixed-layer habitat, and 13C values are 

lighter than the values for other planktonics, and overlap with, or are lighter than, those of 
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benthics in the same samples (Smart and Thomas, 2006). The light carbon isotope values 

were explained as resulting from rapid calcification in a region with variable upwelling 

conditions (Smart and Thomas, 2006). 

 

REPOSITORY.— Holotype (BM(NH) PF 67972) deposited at the Natural History Museum, 

London. 

 

 

Streptochilus tasmanensis Smart and Thomas new species 

 

PLATE 19.2, FIGURES 16-31 

PLATE 19.3, FIGURES 1-26 

 

DESCRIPTION 

Type of wall: Microperforate, surface scattered with circular pore mounds. 

Test morphology: Test small, biserial, elongate, increasing regularly in size, often 

narrowing towards apertural end, occasionally flared, rarely twisted, occasionally slightly 

curved; laterally compressed, periphery broadly rounded and lobulate; usually 5-8 pairs of 

chambers, rarely more, slightly inflated, wider than high, increasing gradually in size as 

added; sutures slightly curved and depressed; aperture high-arch shaped, offset slightly to one 

side of test, extending from the base of the last chamber onto apertural face, bordered by a 

thickened rim/collar along the top and outer side of the arch, the opposite side is turned 

inward to a plate connecting with the top of the collar and the in-turned portion of the 

preceding foramen; no obvious differences between micro- and megalospheric specimens. 

Size: Holotype length 0.195 mm, width 0.104 mm; length range 0.100-0.318 mm 

(mean 0.156 mm, St. Dev. 0.033, n = 207), width range 0.072-0.135 mm (mean 0.090 µm, St. 

Dev. 0.011, n = 207), thickness range 0.041-0.067 mm (mean 0.054 mm, St. Dev. 0.007, n = 

42). 

 

ETYMOLOGY.— Named after the area where it has been found, i.e. South Tasman Rise, off 

Tasmania (ODP Site 1170). 

 

DISTINGUISHING FEATURES.— Distinguished by often becoming narrower towards 

apertural end, occasionally flared, laterally compressed, surface ornamentation with scattered 
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circular pore mounds. According to the terminology of Georgescu and others (2011), S. 

tasmanensis n. sp. displays scattered incipient to well-developed pore mounds (2.8-3.7 µm) 

with circular pores (0.8-1.8 µm). Streptochilus tasmanensis n. sp. is distinguished from 

Chiloguembelina ototara by the more compressed test, surface ornamentation of scattered 

pore mounds, and presence of a toothplate. Streptochilus tasmanensis n. sp. differs from S. 

martini, S. pristinum and S. rockallkiddensis by surface ornamentation of scattered pore 

mounds. It differs from S. martini and S. pristinum by the narrowing of the test towards the 

apertural end. 

 

DISCUSSION.— Similar to the Miocene S. mascarenensis Smart and Thomas, but S. 

tasmanensis n. sp. does not become parallel-sided, has less curved sutures and has pore 

mounds. 

 

PHYLOGENETIC RELATIONSHIPS.— It has been shown that some Recent biserial 

foraminifera are able to live tychopelagically implying a similar lifestyle for fossil species 

and polyphyletic evolution of planktonic from benthic biserial groups (Darling and others, 

2009). It is likely that the distribution of S. tasmanensis n. sp. represents a separate 

expatriation event from the coastal benthos to the pelagic zone (Darling and others, 2009). 

 

STRATIGRAPHIC RANGE.— Upper Oligocene Zone O7 to lower Miocene (Zone M1) 

(ODP Hole 1170A), pending further investigations. 

 

TYPE LEVEL.— Upper Oligocene Zone O7, ODP Hole 1170A/43X/3, 56-57 cm, South 

Tasman Rise, off Tasmania. 

 

GEOGRAPHIC DISTRIBUTION.— Currently only known from South Tasman Rise, off 

Tasmania (ODP Site 1170). 

 

STABLE ISOTOPE PALEOBIOLOGY.— Late Oligocene 18O values of S. tasmanensis n. 

sp. from Site 1170 (samples ODP 1170A/43X/3, 56-57 cm and ODP 1170A/43X/5, 57-58 

cm) overlap with those of surface dwelling planktonic foraminifera (“Globigerina” cf. 

bulloides) indicating high (surface) water temperatures (text-figure 19.2), and are lighter than 

those of benthic foraminifera (Cibicidoides kullenbergi, Oridorsalis umbonatus and Bolivina 
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huneri). 13C values of S. tasmanensis n. sp. are lighter than the values for other planktonics, 

and overlap with, or are heavier than, those of benthics in the same samples.  

 

REPOSITORY.— Holotype (NHMUK PM PF 71098) deposited at the Natural History 

Museum, London. 
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FIGURE CAPTIONS 

 

FIGURE 19.1 (a) Stratigraphic ranges, and (b) phylogeny of Oligocene species of 

Streptochilus discussed in this chapter. Shaded vertical lines in (b) represent multiple 

expatriation events from the coastal benthos to the pelagic zone. Horizontal dashed lines in 

(b) represent first expatriation events from the coastal benthos to the pelagic zone. BKSA, 

1995 = Berggren and others, 1995; K&S, 1983 = Kennett and Srinivasan, 1983; WPBP, 2011 

= Wade and others, 2011. 
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FIGURE 19. 2 Oxygen and carbon isotope values (‰) of late Oligocene Streptochilus 

tasmanensis n. sp., Dentoglobigerina venezuelana, “Globigerina” cf. bulloides, Cibicidoides 

kullenbergi, Oridorsalis umbonatus and Bolivina huneri for samples ODP Hole 

1170A/43X/3, 56-57 cm (solid black circles) and ODP Hole 1170A/43X/5, 57-58 cm (open 

black circles).  
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TABLE CAPTIONS 

 

Table 19.1 Oxygen and carbon isotope values (‰) of Oligocene Streptochilus tasmanensis n. 

sp., “Globigerina” cf. bulloides, Dentoglobigerina venezuelana, Cibicidoides kullenbergi, 

Oridorsalis umbonatus and Bolivina huneri for samples ODP Hole 1170A/43X/3, 56-57 cm 

and ODP Hole 1170A/43X/5, 57-58 cm. Isotope data are reported with reference to the 

international standard vPDB and the precision is better than ±0.06 ‰ for 13C and ±0.08 ‰ 

for  18O. The isotope data are not corrected for disequilibrium. 

 

Species Sample Zone Size 

fraction 

Number 

of 

specimens 

analyzed 

18O 13C 

Bolivina huneri ODP Hole 1170A/43X/3, 

56-57 cm 

O7 >63 µm 22 2.06 0.70 

Cibicidoides 

kullenbergi 

ODP Hole 1170A/43X/5, 

57-58 cm 

O7 >150 µm 14 1.88 1.06 

Dentoglobigerina 

venezuelana 

ODP Hole 1170A/43X/3, 

56-57 cm 

O7 250-355 

µm 

12 1.27 1.81 

Dentoglobigerina 

venezuelana 

ODP Hole 1170A/43X/5, 

57-58 cm 

O7 250-355 

µm 

14 1.82 1.50 

“Globigerina” cf. 

bulloides 

ODP Hole 1170A/43X/3, 

56-57 cm 

O7 250-355 

µm 

20 1.16 2.16 

“Globigerina” cf. 

bulloides 

ODP Hole 1170A/43X/5, 

57-58 cm 

O7 250-355 

µm 

9 1.48 1.55 

Oridorsalis 

umbonatus 

ODP Hole 1170A/43X/3, 

56-57 cm 

O7 >63 µm 7 1.87 0.01 

Streptochilus 

tasmanensis n. 

sp. 

ODP Hole 1170A/43X/3, 

56-57 cm 

O7 >63 µm 150 1.45 1.03 

Streptochilus 

tasmanensis n. 

sp. 

ODP Hole 1170A/43X/5, 

57-58 cm 

O7 >63 µm 150 1.50 0.97 
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PLATE DESCRIPTIONS 

 

Plate 19.1, 1-17, Streptochilus martini (Pijpers, 1933); 18-32, Streptochilus pristinum 

Brönnimann and Resig, 1971. 

 

1-17, Streptochilus martini; 1-3, (same specimen, Textularia martini Pijpers, 1933, syntype, 

SEM image of Pijpers, 1933, fig. 6 (final chamber broken), upper Eocene, Sample well near 

Porta Spaño, ~15 m deep, northwestern part of the Columbia Plantation, Bonaire, Caribbean 

Netherlands (formerly Dutch West Indies)); 4-5, (same specimen), (Chiloguembelina 

victoriana Beckmann, 1957, holotype, USNM P5789), Zone E15/16, Sample San Fernando 

Fm, Trinidad (Huber and others, 2006, pl. 16.3, figs. 1-2); 6-7, (same specimen), Zone O2, 

Sample Istra more-3 well, 1200 m, Adriatic Sea; 8-9, (same specimen), Eocene/Oligocene 

boundary, Sample Istra more-3 well, 1295 m, Adriatic Sea; 10, Eocene/Oligocene boundary, 

Sample Istra more-3 well, 1295 m, Adriatic Sea; 11, Eocene/Oligocene boundary, Sample 

Istra more-4 well, 1385 m, Adriatic Sea; 12, Zone O1, Sample Jazal-3 borehole, 600-610 m, 

Syria; 13; 14-15, (same specimen); 16-17, (same specimen, broken), Eocene/Oligocene 

boundary, Sample Jazal-3 borehole, 630-640 m, Syria. 

 

18-32, Streptochilus pristinum; 18-19, (holotype, USNM 688752), Zones ~M9b-M10, 

Sample DSDP Hole 62.1/34/2, 109-111 cm, Eauripik Ridge, southwestern Pacific Ocean; 20-

23, (topotype, USNM 688753B), Zones ~M9b-M10, Sample DSDP Hole 62.1/34/2, 109-111 

cm, Eauripik Ridge, southwestern Pacific Ocean; 24; 25-26, (same specimen, broken), Zones 

~M9b-M10, Sample DSDP Hole 62.1/34/2, 109-111 cm, Eauripik Ridge, southwestern 

Pacific Ocean; 27-28, (same specimen), Zone O6, Sample Jihar-5 well, 160-170 m, Syria 

(Hernitz Kučenjak and others, 2006, pl. 5, fig. 10); 29-30, (same specimen), Zone O6, 

Sample Jazal-2 well, Syria; 31-32, (same specimen), Zone O6, Sample Jihar-9 well, 310-

320m, Syria. Scale bars: 1-2, 4-6, 9, 10-12, 17, 18-21, 24-25, 28-29, 32 = 50 µm, 3, 7-8, 15-

16, 22-23, 26-27, 30-31 = 10 µm. 

 

 

Plate 19.2, 1-15, Streptochilus rockallkiddensis Smart and Thomas, 2007; 16-31, 

Streptochilus tasmanensis Smart and Thomas n. sp. 
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1-15, Streptochilus rockallkiddensis; 1-2, (holotype, BM(NH) PF 67972), Zones ~M4a/M4b, 

Sample DSDP Hole 608/37X/4, 38-40 cm, King’s Trough, northeastern Atlantic Ocean 

(Smart and Thomas, 2007, pl. 1, figs. 1a-b); 3-4, (same specimen); 5-6, (same specimen); 7-8, 

(same specimen); 9; 10-11, (same specimen), Zone O6/O7, Sample DSDP Hole 516F/7/2, 50-

52 cm, Rio Grande Rise, southwestern Atlantic Ocean; 12-13, (same specimen, broken); 14-

15, (same specimen, broken), Zone O6/O7, Sample DSDP Hole 516F/8/1, 100-101 cm, Rio 

Grande Rise, southwestern Atlantic Ocean. 

 

16-31, Streptochilus tasmanensis Smart and Thomas n. sp., Zone O7, Sample ODP Hole 

1170A/43X/3, 56-57 cm, South Tasman Rise, off Tasmania, 16-18, (holotype, NHMUK PM 

PF 71098); 19-21, (paratype, NHMUK PM PF 71099); 22-23 (paratype, NHMUK PM PF 

71100); 24-25, (paratype, NHMUK PM PF 71101), 26-27, (paratype, NHMUK PM PF 

71102); 28-29, (paratype, NHMUK PM PF 71103); 30-31, (paratype, NHMUK PM PF 

71104). Scale bars: 1, 4-5, 8-10, 13-14, 16, 19, 22, 24, 27-28, 31 = 50 µm, 2-3, 6-7, 11-12, 

15, 17-18, 20, 23, 25-26, 29-30 = 10 µm, 21 = 5 µm. 

 

 

Plate 19.3 Streptochilus tasmanensis Smart and Thomas n. sp. 

 

1-24 (paratypes), Zone O7, Sample ODP Hole 1170A/43X/3, 56-57 cm, South Tasman Rise, 

off Tasmania; 1, (paratype, NHMUK PM PF 71105); 2, (paratype, NHMUK PM PF 71106); 

3, (paratype, NHMUK PM PF 71107); 4, (paratype, NHMUK PM PF 71108); 5, (paratype, 

NHMUK PM PF 71109); 6, (paratype, NHMUK PM PF 71110); 7, (paratype, NHMUK PM 

PF 71111); 8, (paratype, NHMUK PM PF 71112); 9, (paratype, NHMUK PM PF 71113); 10, 

(paratype, NHMUK PM PF 71114); 11, (paratype, NHMUK PM PF 71115); 12, (paratype, 

NHMUK PM PF 71116); 13, (paratype, NHMUK PM PF 71117); 14-16, (paratype, NHMUK 

PM PF 71118); 17-18, (paratype, NHMUK PM PF 71119); 19-20, (paratype, NHMUK PM 

PF 71120); 21-22, (paratype, NHMUK PM PF 71121, broken); 23-24 (paratype, NHMUK 

PM PF 71122, broken); 25, (broken), Zone O7, Sample ODP Hole 1170A/43X/5, 57-58 cm, 

South Tasman Rise, off Tasmania; 26 (polished), Zone O7, Sample ODP Hole 1170A/43X/3, 

56-57 cm, South Tasman Rise, off Tasmania. Scale bars: 1-14, 17, 20-21, 24-26 = 50 µm, 15-

16, 18-19, 22-23 = 10 µm.  
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PLATE 19.1 
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PLATE 19.2 
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PLATE 19.3 

 

 

 


