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Abstract
Species distribution modelling to support marine con-
servation planning

Charlotte Emily Marshall

This thesis explores some important practical considerations concerning the use of
species distribution models in marine conservation planning. Using geo-referenced
gorgonian distribution data, together with explanatory environmental variables,
predictive models have been used to map the spatial distribution of suitable gor-
gonian (sea fan) habitat in two study sites; Hatton Bank, in the Northeast At-
lantic, and Lyme Bay on the south coast of Devon. Generalized Linear Models
(GLMs), Generalized Additive Models (GAMs) and a Maximum Entropy (Max-
ent) model have been used to support critical investigation into important model
considerations that have received inadequate attention in the marine environ-
ment. The influence of environmental data resolution on model performance has
been explored with specific reference to available datasets in the nearshore and
offshore environments. The transferability of deep-sea models has been similarly
appraised, with recommendations as to the appropriate use of transferred models.
Investigating these practical issues will allow managers to make informed deci-
sions with respect to the best and most appropriate use of existing data. This
study has also used novel approaches and investigated their suitability for marine
conservation planning, including the use of model classification error in the spatial
prioritisation of monitoring sites, and the adaptation of an existing presence-only
modelling method to include absence data. Together, these studies contribute
both practical recommendations for marine conservation planning and novel ap-
plications within the wider species distribution modelling discipline, and consider
the implications of these developments for managers, to ensure the ongoing im-
provement and development of models to support conservation planning.
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Chapter 1

Introduction

1.1 Setting the scene

With deadlines upon governments worldwide for both regional and international

legislative commitments to conservation mandates, we are now in a position where

we must reconcile “the need to know versus the need to act” (Ardron et al. 2008).

To this effect, species distribution models (SDMs) have great potential to support

marine conservation planning.

The use of SDMs in the marine environment is a growing field, especially within

marine conservation. However, there remain several aspects of species distribution

modelling that are important to marine conservation planning that have received

little attention, especially in deep-water areas.

Increasing pressure on the marine environment has put marine planning on the

agenda in both coastal areas and on the high seas. With international require-

ments including the need to establish marine protected areas by 2012 (in line

with the Convention on Biological Diversity), a renewable energy target of 20%

of total energy generation within the EU by 2020 and a forecasted growth in

coastal tourism, the spatial consideration of activity in the marine environment

is now critical. Accordingly, marine spatial planning has been advocated at the

local initiative level through to international strategic recommendations such as

UNESCO’s Marine Spatial Planning Initiative.
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1.2. MARINE SPATIAL PLANNING

There is a recognised need, and political will, to establish a comprehensive marine

spatial planning framework and, globally, legislative commitments to the same

effect which require progress in the coming years. Within these planning frame-

works, marine protected area (MPA) networks will be used to meet conservation

targets and SDMs have the potential to make an important contribution.

Disparity in survey effort means that some areas lack detailed spatial information

about species and habitat distributions, which in turn can impede the establish-

ment of MPAs. Collection of field data can be time consuming and expensive,

especially offshore. Species distribution modelling offers a viable compromise

and makes the best use of available environmental data and species distribution

records. SDMs identify relationships between known species distribution data

and their environment. With any such relationships identified it is then possible

to make informed predictions about the distribution of suitable habitat in areas

lacking such information, providing relevant environmental data is available.

The application of these models in the marine environment to date is relatively

limited compared to terrestrial systems, where their application to conservation

management was developed, and the potential for using them to support marine

conservation planning has not been adequately addressed.

1.2 Marine spatial planning

Ehler and Douvere (2007) describe marine spatial planning as “analysing and

allocating parts of three-dimensional marine space to specific uses or non-use,

to achieve ecological, economic, and social objectives that are usually specified

through a political process”.

Marine spatial planning is a method of looking at both current and possible future

uses of a marine area and addressing them spatially in order to highlight potential
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1.2. MARINE SPATIAL PLANNING

conflicts and maximise the sustainable use of the space. Traditionally focussed on

MPAs (as a mechanism to implement them), the remit of marine spatial planning

is now the wider use of marine space (Douvere 2008). This refocus has been

necessary due to mounting pressure on the marine environment which has led

to increased conflict potential through, for example, the expansion of existing

activities and nature conservation requirements (Maes 2008). Some uses of the

marine environment are spatially and temporally demanding. Whilst this is not

a problem per se, the fact that some activities can be incompatible results in a

situation where different industries may compete for space, as was the case in

Belgium when offshore wind developers and the aggregate industry both wanted

to expand into the same area (Plasman 2008).

Certain uses can also exert pressure on the marine environment. Activities are

termed pressures when they induce change in the environment. The environmen-

tal impacts of this change can in some circumstances be adverse. Considering

commercial fishing and aquaculture as pressures, the Marine Strategy Framework

Directive (European Union 2008) identified physical damage to the seabed and

inputs of nitrogen respectively as impacts associated with these activities. Marine

spatial planning can help to balance the cumulative effects of such impacts on the

marine environment (Ehler 2008; Ardron et al. 2008). As such, marine spatial

planning becomes much more than just a tool for managing potential conflict be-

tween certain human activities but will encompass what Douvere (2008) refers to

as ‘user-environment’ conflicts; conflicts between human use (activities) and the

marine environment. ‘Non-use’ activities such as marine nature conservation are

valid competing uses of marine space (Stevens et al. 2006) and the subject of much

targeted management effort worldwide.

Marine planning can facilitate integrated, forward-thinking and consistent decision
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making (Ardron et al. 2008). Additional potential benefits include the engagement

of a wider group of stakeholders in the planning process and a better integration

of ecosystem based objectives (Degnbol and Wilson 2008; Gilliland and Laffoley

2008). However, marine spatial planning is more than simply producing maps

(Gilliland and Laffoley 2008). Products can include strategic plans or a ‘vision’

for the area in question (Douvere 2008; Maes 2008). In addition, if marine planning

systems are adaptive, as is often recommended (e.g. Ehler and Douvere 2007),

change can be incorporated into the plans in addition to feedback from evaluation

of the plans’ effectiveness (Day 2008). Hence there is also a temporal dimension

to marine planning which is why this term is often used in preference to marine

spatial planning, the latter suggesting a less temporally adaptable approach. In

this study the term marine planning is used from hereon in, except where reference

has been made to specific legislation that uses the term marine spatial planning.

The three dimensional nature of the marine environment has made the leap from

research to practical solutions more difficult (Plasman 2008) which may explain

the lag in developing and implementing marine planning systems in comparison to

terrestrial environments. However, formal recommendations regarding its imple-

mentation in international and European legislation were made in the early years

of this millennium (Vincent et al. 2004; Commission of the European Communities

2006). In 2002 at the 5th International Conference on the Protection of the North

Sea (the Bergen Declaration), Ministers recognized a need for co-operation in the

planning process among North Sea states and invited the OSPAR Commission

for the Protection of the Marine Environment of the North East Atlantic to help

further the marine planning process for the North Sea. In Europe, the Marine

Strategy Framework Directive, adopted in June 2008, sets out further commit-

ments to the ecosystem approach and sustainable use of the marine environment
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(European Union 2008).

In the United Kingdom, plan-led management of the marine environment is still

in its infancy, partly as a result of its sectoral management to date. The UK

Government’s first commitment to explore a system of marine planning was set

out in the Marine Stewardship Report Safeguarding Our Seas (Defra 2002). In

this report the Government stated that their vision of “clean, healthy, safe, pro-

ductive and biologically diverse oceans and seas” could be achieved by adopting

an ecosystem-based management approach, principles of which include the con-

servation of biological diversity and the precautionary principle. In the same year

Natural England’s (formerly English Nature) State of Nature report heralded both

the Ecosystem and Precautionary Approaches to marine management, identifying

them as fundamental pillars of marine spatial planning, and ultimately highlight-

ing a clear requirement for change. Leading from this, the Marine and Coastal

Access Bill White Paper (Defra 2007a) highlighted ‘sustainable development’ and

‘forward-thinking’ in its introduction to marine planning; themes which are mir-

rored in alternative definitions. The White Paper also set out its aim to create

the first set of marine plans within five years of the assent of the Bill. Marine

planning receives considerable attention in the Marine and Coastal Access Act

2009. This Act represents the first piece of nationwide legislation to take an

integrated approach to the spatial management of marine resources in the UK.

More recently, the Marine Policy Statement (HM Government 2011) sets out the

framework within which marine plans will be developed by the UK administra-

tions. The statement, provided for by the Marine and Coastal Access Act 2009,

commits to ensuring that marine plans will be developed to allow the management

of activities in a way that achieves sustainable development and reduces conflict.

Symes (2005) noted that marine planning was fostered by marine conservation
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1.3. MARINE PROTECTED AREAS

interests by way of implementing the ecosystem approach at sea and that this

is evident in its various definitions. Consequently, and guided by the Ecosystem

Approach, a common objective of marine planning includes the implementation of

a network of MPAs (Gilliland and Laffoley 2008). In the final conclusions of the

UNESCO International Workshop on Marine Spatial Planning (UNESCO 2006), it

was explained that protecting key ecosystem features, such as ecosystem structure

and function and habitat integrity, as a fundamental part of planning was essential

to realise ecosystem based management. Marine planning and MPAs are therefore

intrinsically linked and recommendations pertaining to MPAs are now invariably

seen nested within a wider marine planning context.

1.3 Marine protected areas

‘Marine protected area’ is an umbrella term used globally to describe an area of

the sea or coast that is protected to some degree against disturbance in order to

protect certain species, habitats and/or other important features e.g. wrecks. The

IUCN define a protected area as follows:

“an area of land and/or sea especially dedicated to the protection and maintenance

of biological diversity, and of natural and associated cultural resources, and man-

aged through legal or other effective means” (IUCN 1994)

[See Table 1.1 for IUCN protected area categories]

MPAs vary greatly in characteristics including size, name (marine park, highly

protected marine reserve, marine conservation zone etc.) and associated habi-

tat type. However, among the key features that differ are the objectives of the

protected area and the type of protection offered which are, justifiably, strongly

related.

Goals are often varied and a protected area may have more than one stated objec-
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tive although a common purpose is to reduce or prevent damage to, and destruc-

tion of, certain habitats and/or species. Other objectives include: replenishment

of fisheries stock through, for example, the protection of nursery habitat; scientific

monitoring; and public education, that is, having a protected area so that peo-

ple can actively engage with the notion of marine conservation and benefit from

knowledge of the area’s existence (IUCN 1994).

MPAs can range from sites where few restrictions are placed on the type of activity

that can occur within its boundaries to areas where all activities are excluded,

including limits on human presence (Table 1.1).

Zoning, whereby certain activities are restricted to designated areas within the

reserve, is common. The most elaborate zoning scheme can be seen within the

Great Barrier Reef Marine Park in Australia (Day 2002) but even tiny protected

areas such as Lundy Marine Nature Reserve in England (3.3 km2) and Lamlash

Bay in Scotland (9.27 km2) encompass zoned areas.

Evidence fromMPAs worldwide suggests that benefits can include increased spawn-

ing stock, biomass, size and abundance of protected animals, and habitat recovery

(Bradshaw et al. 2001; Gell and Roberts 2003). However, much of the reported

successes are based on sessile species and from marine reserves in the tropics

(Kaiser 2005). Furthermore, the designation of protected areas is often met with

much opposition and there are some reservations as to the realised benefits to

fisheries (Sale et al. 2005). MPAs, as a standalone management measure, may

offer insufficient protection and additional management measures are often recom-

mended (Allison et al. 1998). When combined with reduced fishing effort outside

the closure, for example, MPAs may provide more effective conservation of stock.

Concomitant with imminent marine planning obligations are several commit-

ments, again from international to national level, relating to MPAs. In accordance
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1.3. MARINE PROTECTED AREAS

with the World Summit on Sustainable Development, World Parks Congress and

the Convention on Biological Diversity, commitments have been made to create a

network of MPAs by 2012.

Contracting Parties to OSPAR agreed to have established an ecologically coherent

network of MPAs by 2010 and the Bergen Declaration mirrors this commitment

in the North Sea. OSPAR recognises the development of MPAs as a key process

in achieving its overarching objective to protect and conserve ecosystems and the

biological diversity of the maritime area, adopted in Annex V of the Convention

(MASH 2005).

The conservation of marine ecosystems and sustainable use of the seas are key

aims of the Marine Strategy Framework Directive (European Union 2008), within

which Member States are required to implement ‘spatial measures’ to protect bio-

diversity and therefore contribute towards meeting Good Environmental Status

(GES) in their waters by 2020 (European Union 2008). The continuing develop-

ment of the Natura 2000 ‘network’ of sites across Europe also makes a significant

contribution to Europe’s legislative commitments.

In the UK, the Working Group of the Review of Marine Nature Conservation

(Defra 2004) also endorsed the identification and establishment of an ecologically-

coherent, representative network of MPAs and Stevens et al. (2006) recommended

that policy makers start to recognise “marine nature conservation as a valid and

competing use for space and resources in UK coastal and marine areas”. Marine

Conservation Zones represent a significant element of the Marine and Coastal

Access Act 2009. The term Marine Conservation Zone (MCZ) is new to UK

legislation but in essence is an MPA which can be designated on the grounds of

conserving “marine flora or fauna, marine habitats or types of marine habitat

and/or features of geological or geomorphological interest” (Marine and Coastal
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1.3. MARINE PROTECTED AREAS

Access Act 2009). The terminology varies slightly across the UK administrations

with Highly Protected MCZs being developed in Wales and ‘Marine Protected

Areas’ as part of the Marine (Scotland) Act 2010. In Northern Ireland, they are

also termed MCZs.

The development of MPAs in line with some existing or developing management

framework has long been recommended. The IUCN, for example, recommended

that protected areas be established within a co-ordinated and holistic manage-

ment framework and that this integrated management is essential for achieving

adequate conservation of the marine environment in the face of various potentially

conflicting uses (Kelleher and Kenchington 1992).

Marine planning and marine protected areas share some keystone principles in-

cluding long term commitment, inclusion of relevant stakeholders to ensure ef-

fective outcomes from the project, and transparent aims and objectives from the

outset. But the integration of MPAs into a marine planning system will neces-

sitate more than just similarities on paper and requires both political will, the

motivation of disparate management organisations and industries etc to resolve

existing conflicts regarding conservation and, above all, effective legislation.

It is likely that, within the wider remit of marine planning, MPAs are where the

greatest potential for species distribution modelling exists. In a report by Gubbay

(2004), MPAs and marine spatial planning were identified as ‘two specific man-

agement tools’ and the ways in which protected areas could be incorporated into

a spatial plan are discussed. Whilst marine spatial planning, as Gubbay (2004)

points out, has a wider remit, the development of future MPAs in many areas

will now most likely fall into a wider spatial plan. MPAs will contribute towards

marine plans reaching their ecologically relevant objectives therefore becoming an

integral part of the evolution of ecosystem based marine planning.
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1.3. MARINE PROTECTED AREAS

Large-scale maps allow managers to visualise the spatial distribution of habitats

which in turn aids the planning of MPA networks (Mumby and Harborne 1999).

However, the designation of protected areas, especially in response to damaging

activities, is often hampered by the lack of such detailed spatial information about

species and habitats distribution, especially offshore (e.g. Davies et al. 2007;

Leathwick et al. 2008). Rodriguez et al. (2007) acknowledge limited distribution

data and access to data sets as common impediments to progress in conservation

and lack of data was cited as an explanation behind the difficulty in identifying

offshore Special Protection Areas (Johnston et al. 2002). The common disparity

between the amount and/or resolution of data between nearshore and offshore

environments needs to be addressed in the context of marine planning, specifically

regarding MPAs.

Data collection, especially of primary data on species distribution, can be time

consuming and expensive and this is particularly true in remote areas and in

deep-sea environments (Day 2008; Ardron et al. 2008; Guinan et al. 2009a). En-

vironmental data are generally easier to collect and have better coverage than bi-

ological data, and the associated difficulties and costs of subtidal survey work are

one reason preventing widespread mapping of habitats at the local scale (Stevens

and Connolly 2004). Yet comprehensive data coverage is often required so that

management decisions can be made regarding the protection of species and habi-

tats, the full extent of whose distribution is often unknown. The Marine Strategy

Framework Directive (European Union 2008), for example, requires member states

to undertake analysis of the ‘features’ and ‘characteristics’ of their marine waters

which include special habitat types and invertebrate bottom fauna.

In the absence of such data, appropriate management action may be delayed or

made in the absence of knowledge, despite recommendations that appropriate
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1.4. SPECIES DISTRIBUTION MODELLING

management action should not wait for all the answers (Day 2008).

However the timescale regarding international commitments to the conservation

of the marine environment has fostered the advocacy of maximising the use of

existing data as opposed to postponing decision making. OSPAR recommend

using biological data “to their fullest” when considering representivity for the

OSPAR MPA network and that ‘other approaches’ should be used in the absence

of detailed survey data (MASH 2005). The Ecosystem Approach report (Laffoley

et al. 2004) identified, as a priority for improving coherence in the management of

the marine environment, the use of surrogate information in the absence of detailed

biological information. The report acknowledges the costs and time constraints

involved with data collation and also the potential for using physical information

as a surrogate for biological information.

Species distribution modelling can therefore be appropriately adopted to under-

pin management decisions, especially with a conservation agenda, and has been

recommended as a potential option in cases where data coverage is incomplete

(Ardron et al. 2009).

1.4 Species distribution modelling

Species distribution models (SDMs, Elith and Graham 2009) offer great potential

for inclusion into the toolbox of today’s marine environmental manager, especially

with regard to marine conservation and planning. SDMs identify relationships be-

tween the geographical distribution of species, or communities, and characteristics

of their present environment (Guisan and Zimmerman 2000). With any such re-

lationship(s) identified, the models can then be applied to make informed predic-

tions concerning suitable habitat for the species in areas lacking distribution data,

providing that relevant environmental data is available. This is most commonly
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1.4. SPECIES DISTRIBUTION MODELLING

achieved through the combined efforts of a statistical package and Geographical

Information Systems (GIS) software, the latter of which allows for the spatial

mapping of predicted habitat suitability. These models are static and probabilis-

tic due to the fact that the results are based on a snapshot of the relationship

between the species and its environment (Guisan and Zimmerman 2000).

Species distribution modelling offers a viable compromise between the lack of

comprehensive species distribution data and the expense of collecting additional

data by maximising the potential use of existing distribution data sets. SDMs have

been successfully applied at both a local and global scale and from the deep-sea to

high mountain environments (e.g. Graf et al. 2006; Olivier and Wotherspoon 2006;

Tittensor et al. 2009; Woodby et al. 2009). The use of such models is a thriving

discipline (Rodriguez et al. 2007) with a wide remit including managing the spread

of reintroduced or invasive species (Hirzel et al. 2002; Inglis et al. 2006), identifying

areas of conservation priority (Bryan and Metaxas 2007; Pittman et al. 2007;

Gavashelishvili and Lukarevskiy 2008), or highlighting the potential influence of a

changing climate on communities (Gottfried et al. 1999; Tittensor et al. 2010). The

application of SDMs in the marine environment over the past few years has also

been varied although still relatively few in comparison with terrestrial application.

The number of spatial modelling studies in deep-sea marine ecosystems is fewer

again and Ardron et al. (2008) acknowledge that in deep-sea areas, gaps in data

availability can hinder conventional management which would suggest that there

is room for the development in application of these models in this area.

Guisan and Zimmerman’s seminal review paper on species distribution modelling

(Guisan and Zimmerman 2000) does not include marine studies in the list of

previous applications. A more recent article presents an excellent case for the use

of spatial distribution models in the conservation of biodiversity (Rodriguez et al.
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1.4. SPECIES DISTRIBUTION MODELLING

2007). However whilst this article provides good reasoning for the use of SDMs and

draws points that could be applied to a variety of scenarios, the examples given

are again all terrestrial. Table 1.2 details a variety of recent species distribution

modelling studies in the marine environment.

Concomitant with the growth in application of these models has been an increase

in the range and availability of different modelling methods, especially the de-

velopment of presence-only modelling methods including Ecological Niche Factor

Analysis (Hirzel et al. 2002) and Maximum Entropy (Phillips et al. 2006) which

have allowed the creation of predictive maps from museum collections, herbarium

data and atlases (Elith et al. 2006).

The use of pseudo-absences has also developed. Pseudo-absences are ‘absence’

records randomly generated from the background environment where distribution

is unknown. Also referred to as background samples (Ferrier et al. 2002; Elith

et al. 2006), pseudo-absences can be user-generated in cases where absence data

is unavailable so that traditional modelling methods requiring presence-absence

data including regression based analyses can be used. Essentially, models fitted

with presence-absence data have more information than presence-only models and

should therefore results in a better calibrated model (Elith and Graham 2009).

Many of the commonly used modelling packages are freely available to download,

either as part of modelling packages (e.g. Maxent, Biomapper) or as part of some

other platform such as R which is a statistical program that has several available

modelling libraries. This availability has increased the accessibility of these models

to the wider scientific community. In addition, the fact that some packages have

a user friendly front end, or ‘graphical user interface’ (GUI), means that people

not necessarily from a statistical background can produce models relatively easily.
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PLANNING

1.5 Species distribution models for use in marine conservation

planning

The application of predictive species modelling to support marine conservation

planning has not been fully addressed and there remain some, as yet, unexplored

practical considerations. Maxwell et al. (2009) refer to the usefulness of the mod-

elling approaches set out in their paper to marine planning. However the main

focus of the paper is the modelling approach adopted and although the potential

benefit of habitat suitability maps to marine planning is stated it is not discussed

in any detail.

By their very nature the outcomes of species distribution modelling studies will

provide a spatial contribution to marine planning, but they can also be used to

inform temporal aspects of marine plans, such as predicting spatial changes over

time as a species responds to climate change, and can also be used adaptively,

therefore ensuring that the application of the model is relevant through time.

The inclusion of predicted species distribution maps into marine plans has several

potential benefits, especially for those with a conservation agenda.

Firstly, and providing that access to relevant environmental variable data is not

a concern, full advantage can be taken of existing distribution data by using it to

produce maps covering the planning area in question. So instead of having pockets

of distribution data a continuous layer of (predicted) suitable habitat could be

used instead. Depending on the planning scenario it may then be possible to

protect additionally those areas that the model has highlighted as suitable for

that species, as opposed to simply protecting areas where distribution is known

to occur, especially when the layers are used in concert with other layers including

fisheries data or the locations of wrecks for example.
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The development of increasingly sophisticated decision support tools such as

Marxan (Ball and Possingham 2000), which can be used to facilitate the process

of marine protected area site selection, means that predictive species modelling

has the potential to assist in the decision making process for marine reserves.

A continuous layer / surface is entirely preferable to point data with regard to

Marxan input files (Jeff Ardron, pers. comm.) and species modelling can produce

just that.

Secondly, species distribution models can be produced relatively quickly, notwith-

standing data availability and familiarity with modelling techniques, meaning that

organizations which have been given little time to respond to, for example, a plan-

ning application can represent their interests adequately in the time available.

This is especially important for rare or scarce species for which little data may

exist.

Additionally, spatial models calibrated in one area might be used (with prudence)

to predict the distribution of suitable habitat in areas where no distribution data

exists at all but where environmental variable data is available.

Whilst it is likely that SDMs will make the most direct contribution to the devel-

opment of protected areas, it is discussed in the wider context of marine planning

because this is the direction of current and future management development both

within the UK and internationally. In other words, MPAs are no longer stand

alone management tools in many cases but will contribute to the wider objectives

of a marine plan.

In 2008, UNEP produced a step by step guide to marine spatial planning (Ehler

and Douvere 2009), targeted especially at situations where “time, finances, infor-

mation and other resources are limited”. The step-by-step guide has been adapted

here to include a similar flow chart produced by Foley et al. (2010), and modified
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Ecological: Connectivity, habitat 

diversity, key species, species diversity

Defining principles, goals and objectives e.g. conflict 

resolution, complementary  use, ecosystem function

Mapping important bio-

/ eco-logical areas

Implementing and 

enforcing the spatial 

management measures
Approving the spatial 

management plan

Identifying spatial 

conflicts , compatibilities  

and vulnerable areas

Mapping future demands 

for ocean space

Adapting the spatial 

management process

Monitoring and 

evaluating performance

Selecting a preferred 

spatial scenarios

Identifying alternative 

spatial scenarios

Spatially explicit 

decisions e.g. species & 

habitat distributions

Developing the spatial 

management plan

Mapping existing areas 

of  human activities

Specifying boundaries and 

time frames

Economic Governance Social

Principles of  ecosystem based marine spatial planning

Pre-planning, planning goals and objectives

Defining and analysing existing conditions

Defining and analysing future conditions

Preparing and improving the plan

Figure 1.1: Step by step approach to marine spatial planning highlighting (in
blue) the stages at which species distribution modelling could make
a contribution and/or are relevant to species distribution modelling.
The flowchart is an adapted amalgamation of the flowcharts in
Ehler and Douvere (2009) and Foley et al. (2010).

to highlight the aspects of the marine planning approach that species distribution

modelling could contribute to (Figure 1.1). Species distribution modelling out-

puts will support marine planning and do not represent part of the actual planning

process, although the model outputs need to be transparent enough that people

can understand the process and foster confidence in the results.

An early stage in the UNEP plan (not included in the figure) includes allocating

resources. Those responsible for the development of the marine plan may allocate

the majority of resources for stakeholder involvement, plan implementation, mon-

itoring and enforcement etc, leaving limited funds for the preliminary stages that
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would enable the collection of new data to support the mapping of species and

habitats. The inclusion of time frames in the pre-planning is similarly relevant

because limited time might preclude the potential for additional survey effort, re-

sulting in the use of existing data sets for mapping, however coarse. These factors

have implications for species distribution modelling because if only coarse resolu-

tion environmental data exists, for example, it may influence model performance.

Equally, if only presence records are available, managers may have a limited choice

of modelling methods.

1.6 Thesis aim and objectives

The aim of the present study is to determine how species distribution modelling

can best be used to support marine conservation planning based on several practi-

cal applications. The study will use different gorgonian species to trial the models

and will focus on two areas:

• Lyme Bay, a shallow bay on the south coast of England, and

• the deep-water areas of Rockall Trough and surrounding seamounts in the North-

east Atlantic.

These two areas vary both in terms of scale and, potentially, the availability of

environmental and species distribution data. To this effect, the study will address

the issue of scale in addition to identifying factors influencing the distribution of

sea fans in both areas. Objectives of the study are to:

1. identify the environmental factors primarily responsible for influencing the

distribution of gorgonians in the Lyme Bay and Rockall Trough study areas

through the use of species distribution models (Chapters 4-8);

2. critically appraise the potential for species distribution models to inform

monitoring in a marine protected area (Chapter 5);
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3. determine the effect of environmental data resolution on model performance

(Chapter 6);

4. investigate the potential transferability of species distribution models be-

tween different areas in the deep-sea (Chapter 7), and

5. compare the performance of traditional, regression based Generalized Linear

Models (GLMs) and Generalized Additive Models (GAMs) using presence-

absence gorgonian distribution data with a new-generation ‘off the shelf’

modelling package Maxent (designed for presence-only data but adapted

here to include presence-absence data) (Chapter 8).
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Chapter 2

Gorgonians

2.1 Selection of a test group of species

The aim of this thesis is to explore several practical issues related to the application

of SDMs to marine conservation planning, and it was therefore imperative to select

a test group of species that would be robust to the methodologies involved and

with respect to the data available for the study. Gorgonians were selected for a

number of reasons but principally because they are conspicuous on video transects

and therefore suitable for generating presence and absence data. In addition, due

to the long lived and fragile nature of the majority of gorgonians, they can be

indicative of the health of the wider ecosystem. Modelling the distribution of

gorgonians is therefore potentially valuable as a proxy for the distribution of

ecologically significant habitats.

2.2 Gorgonian taxonomy

Gorgonians form part of the Anthozoa: one of five classes of the phylum Cnidaria.

The Anthozoa are further subdivided into two subclasses, namely the Hexacorallia

and Octocorallia, the latter of which include more than 1400 species of gorgonians

in the order Alcyonacea (Daly et al. 2007). Classification of gorgonians remains

problematic (Daly et al. 2007). Two morphologically distinct suborders of gor-

gonians exist in the Alcyonacea (Calcaxonia and the Holaxonia) which between
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them contain the named species covered in this study (see Section 2.5).

2.3 Gorgonian ecology

2.3.1 Growth form

More commonly referred to as sea fans, gorgonians are permanently attached to

the substratum in a whip-like, branched or crustose form. Their morphology

and size are diverse (Grasshoff 1972; Mortensen and Buhl-Mortensen 2005). The

colonies are often erect and sometimes fragile whose polyps shroud an underlying

skeleton (Figure 2.1).

2.3.2 Habitat

Sea fans populate diverse habitats and have been recorded from abyssal depths

in the deep-ocean (Cairns and Bayer 2009) to chart datum (Manuel 1981) and

from cold Antarctic waters (e.g. Lopez-Gonzalez 2006) to the tropics (e.g. Her-

manlimianto and van Ofwegen 2006). The majority of deep-water gorgonians are

found between 200-1000 m (Mortensen and Buhl-Mortensen 2005).

On a smaller scale, gorgonians inhabit areas with varying levels of exposure to

waves, silt, turbidity, and water current and from substrata including bedrock

and cobbles to artificial materials including metal (Hiscock et al. 2010). Some

gorgonians can also attach to soft bottoms including some deep-sea members of

the families Isididae and Chrysogorgiidae (Buhl-Mortensen et al. 2010).

In shallow water, sea fans provide a conspicuous and often dominant member of

many reef communities (e.g. Lasker 2005). In the deep-sea, communities of sea

fans contribute to increasing habitat complexity (Watanabe et al. 2009), often

providing an oasis of heterogeneous habitat in vast sediment plains which are,

comparatively, structurally simple landscapes. Sea fans themselves can provide
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100 mm

5 mm

Figure 2.1: Drawing of the pink sea fan Eunicella verrucosa illustrating a whole
colony with retracted polyps. Insert: branch, showing polyps and
calyces. Reproduced with kind permission from the Linnean Soci-
ety. From Manuel (1981), p.51.
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habitat and protection from predators for other species in addition to the direct

(their own tissue) and indirect (trapped detritus) provision of food (Gage 1986;

Buhl-Mortensen et al. 2010). Such habitats are therefore often associated with

high species richness (Buhl-Mortensen and Mortensen 2005; Rogers et al. 2007).

2.3.3 Diet

Gorgonian diet can be varied although feeding types can be crudely split into those

species with symbiotic zooxanthellae (e.g. Eunicella singularis; Gori et al. 2007)

and azooxanthellate species (e.g. Eunicella caviolini; Weinbauer and Velimirov

1995) which include all deep-sea colonies.

Those species without symbionts rely entirely on secondary production. Gor-

gonian diets can include zooplankton (Sanchez et al. 2009), invertebrate eggs

(Coma et al. 1994), dissolved organic matter (DOM) and mucous (Coffroth 1984),

nanoeukaryotes, phytoplankton and detrital particulate organic carbon (POC)

(Ribes et al. 1999).

2.3.4 Growth

Growth rates in gorgonians are variable although many are slow growing (e.g.

3 mm per year, Primnoa resedaeformis; Mortensen and Buhl-Mortensen (2005)

and 0.24 mm per year, Primnoa pacifica; Matsumoto (2007)). Following a mass

mortality event in the Mediterranean, growth rates in Paramuricea clavata were

shown to vary depending on the size of the colony; colonies less than 5 cm in height

grew on average 1-3 cm per year during the recovery period whereas colonies over

10 cm were observed to lose over a third of their height as a result of branch

fragmentation (Cerrano et al. 2005). An inverse relationship between age and

growth rate has been reported for the deep-water gorgonian P. resedaeformis

(Mortensen and Buhl-Mortensen 2005).
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2.3.5 Reproduction

Gonochorism is the most frequently reported reproductive type in gorgonians,

including in Briareum asbestinum (Brazeau and Lasker 1990), Acanella arbuscula

(Lawson 1991), Plexaura flexuosa (Pakes and Woollacott 2008) and four Antarctic

gorgonians (Orejas et al. 2007).

Both sexual and asexual reproductive strategies can be found among the gorgoni-

ans. In some species, vegetative reproduction is dominant and modes include frag-

mentation (e.g. Plexaura kuna; Coffroth and Lasker 1998) and autotomy (Walker

and Bull 1983). In others, sexual reproduction is evident (e.g. P. clavata; Linares

et al. 2008).

Although broadcast spawning has been observed (e.g. P. flexuosa; Pakes and

Woollacott 2008), brooding appears to dominate. Brooding can be seen as anal-

ogous to broadcast spawning because egg fertilisation takes places in a parent

colony, either on the colony surface or within polyps. Internal fertilisation is com-

mon (e.g. Eunicella stricta (Theodor 1967), B. asbestinum (Brazeau and Lasker

1990) and A. arbuscula (Lawson 1991)) and both internal (e.g. E. singularis; Gori

et al. 2007) and external (e.g. P. clavata; Linares et al. 2008) brooding has been

reported.

Spawning in gorgonians is frequently reported to be limited to a discrete period

associated with increased or peak water temperature (e.g. P. clavata and E.

singularis; Gori et al. 2007) or lunar activity (e.g. B. asbestinum (Brazeau and

Lasker 1990), P. kuna (Lasker et al. 1998), and P. clavata (Linares et al. 2008)).

High variability in reproductive output between colonies has also been reported

and is frequently associated with difference in age or size (e.g. B. asbestinum

(Brazeau and Lasker 1990), P. kuna (Lasker et al. 1998) and Pseudoplexaura
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porosa (Kapela and Lasker 1999)).

Planulae have been noted to settle within the confines of parent colonies (e.g.

P. clavata; Coma et al. 1995), in the vicinity of the parent colonies (e.g. B.

asbestinum; Brazeau and Lasker 1990) or a short distance away after the planulae

have drifted as is probably the case with Eunicella verrucosa (Hiscock 2007a).

Recruitment in gorgonians is often reported to be sporadic and/or low (Yoshioka

1996; Lasker et al. 1998; Coma et al. 2006).

2.4 Factors influencing the distribution of gorgonians

Of the factors primarily responsible for the distribution of gorgonians, water move-

ment, substratum, depth and temperature are commonly listed (Barham and

Davies 1968; Stoddart 1969; Kinzie 1973; Carpine and Grasshoff 1975; Bunker

1986; Gilbert 1988; Wood 2003; Bryan and Metaxas 2007). These factors are

also important for deep-sea gorgonian distribution (Gage 1986; Genin et al. 1986;

Frederiksen et al. 1992; Rogers 1994, 1999; Mortensen and Buhl-Mortensen 2004;

Leverette and Metaxas 2005; Watanabe et al. 2009; Edinger et al. 2011).

Water motion was cited as the primary factor influencing the presence and absence

of gorgonians in an early study in the Gulf of California (Barham and Davies 1968).

Oscillatory water movement is also important for shallow water gorgonians (Kinzie

1973). The importance of water current is often attributed to its role in delivering

food to sea fans (Carpine and Grasshoff 1975) yet it has also been argued that

water movement is more essential for the removal of CO2 and sediment than for

supplying either food or oxygen to the colonies (Stoddart 1969). Colonies in areas

without significant water movement may be starved of food and subject to the

build up of silt which can lead to the death of tissue (Hiscock 2007a).

In contrast, strong currents have the potential to interfere with the dispersal and
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settlement of planulae larvae (Opresko 1973). Furthermore, sea fans may retract

their polyps when current velocity is high enough that polyps are no longer able

to retain food (Hiscock 2007a).

The availability of firm substrata has been cited as the primary factor limiting

settlement (and hence distribution) of shallow water gorgonians in the West In-

dies (Kinzie 1973). Substratum is also one of several key factors influencing the

settlement, growth and distribution of sea fans in the Mediterranean (Carpine and

Grasshoff 1975). The suitability and stability of the habitat can also be influenced

by the substrata (Grigg 1975). Some species of the deep-sea gorgonians families

Isididae and Chrysogorgiidae can attach to soft bottoms (Buhl-Mortensen et al.

2010).

Unpublished work by Yoshioka & Yoshioka (cited in Yoshioka and Yoshioka

(1989)) suggested that sediment transport was the overriding factor governing

the regional distribution of sea fans around the coasts of Puerto Rico. Due to the

delicate nature of the tissue covering the coral skeletons, coarse sediment in com-

bination with strong current flows has the potential to scour the delicate colonies

or clog the feeding apparatus. Alternatively, the newly settled gorgonian planulae

larvae could be smothered by sediment (Opresko 1973) and periodic inundation

of sand can lead to periods of elevated mortality and reduced recruitment (Grigg

1975).

Light is intrinsically linked with depth yet literature relating to light is also contra-

dictory. Too much light can lead to enhanced epiphyte growth which can smother

the gorgonians (Kinzie 1973; Hiscock 2007a), although Kinzie added that light is

important where symbionts are relevant. In addition light might directly harm

the colonies (Kinzie 1973). In contrast, Barham and Davies (1968) conclude that

gorgonians flourish in shallower water because there is no competition from large
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algae.

Stoddart (1969) suggested that the changes in temperature and light with depth

were more important in influencing the distribution of gorgonians than changes

in current. In the deep-sea, bathymetric changes can lead to distinct variations in

salinity, water temperature and dissolved oxygen (among other things) and these

changes are reflected in deep-sea faunal distribution (Gage 1986). Temperature is

known to have an important role in the reproductive cycle of gorgonians (Pakes

and Woollacott 2008) and growth rates (Matsumoto 2007). Elevated sea tem-

perature events have also been implicated in the mass mortality of gorgonians

(Cerrano et al. 2005).

The drivers mentioned thus far are entirely physical and there has been little men-

tion of chemical or biological factors in the early literature, other than indirectly

e.g. the gaseous exchange and food delivery resulting from water movement. In

relation to phytoplankton distribution however, Bryan and Metaxas (2007) found

chlorophyll a concentration in surface waters to have an influential role in the

distribution of gorgonians on the continental margins of North America.

2.5 Threats

Owing to their growth form, gorgonians are highly susceptible to damage from

physical abrasion and substratum removal resulting from a variety of activities

including benthic trawling and anchoring. The unfavourable effects of bottom

trawling on sea fans have been well documented in both shallow and deep-water

environments (Bavestrello et al. 1997; Mortensen et al. 2005).

Another recognized threat to gorgonians is disease. Necrosis, a condition in which

the polyps are sloughed off the skeleton, has been documented from gorgonians

worldwide including the Bristol and English Channels (Hiscock 2003; Hall-Spencer
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et al. 2007), the Mediterranean (Cerrano et al. 2000) and the Caribbean (Lasker

2005). During a thermal event in the Bahamas a prolonged period of high water

temperature was implicated as the driving force in the rapid demise of numerous

colonies although, unlike many other coral species (Glynn 1996), sea fan mortal-

ity during this thermal event was not associated with loss of pigmentation i.e.

bleaching (Lasker 2005). Martin et al. (2002) also pinpointed temperature in the

development of necrosis in gorgonians although the underlying causes of necrosis

remain contentious (Hall-Spencer et al. 2007).

2.6 Gorgonians used in the present study

The gorgonians used in the present study include deep and shallow water species

and are listed in Figure 2.2. Note that the figure includes only named gorgonian

species as examples; other gorgonians have been included in the study based

purely on their morphology (see Chapter 4). The shallow water species Eunicella

verrucosa is one of only two species of shallow water sea fans found in the UK.

The other, Swiftia pallida, is restricted to the northern reaches of the UK from

where it extends northwards.

Eunicella verrucosa, commonly known as the pink sea fan, is protected through

national legislation (the Wildlife and Countryside Act 1981) in addition to being

listed as vulnerable on the International Union for Conservation of Nature and

Natural Resources Red List of Threatened Species. It is a Biodiversity Action Plan

(BAP) species meaning that it is one of a collection of species and habitats that

have been identified as threatened and that therefore require targeted conservation

effort.

Within the Northeast Atlantic study area there is a greater diversity of gorgonian

species than for the UK’s shallow water. Like much of the deep-sea benthos, none
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PHYLUM 

CLASS 

SUBCLASS 

Cnidaria 

Anthozoa Cubozoa Hydrozoa Scyphozoa Staurozoa 

Hexacorallia Octocorallia 

ORDER Alcyonacea Helioporacea Pennatulacea 

SUBORDER Calcaxonia Holaxonia 

INCLUDED FAMILIES 

(of  the group Alcyoniina) 

Chrysogorgiidae 
Verrill, 1883 

Dendrobrachiidae 
Brook, 1889 

Ellisellidae 
Gray, 1859 

Ifalukellidae 
Bayer, 1955 

Isididae 
Lamouroux, 1812  
e.g. Acanella sp.  

Primnoidae 
Gray, 1857  

e.g. Callogorgia verticillata 
       Primnoa resedaeformis 

Acanthogorgiidae 
Gray, 1859 

Gorgoniidae 
 Lamouroux, 1812  

e.g. Eunicella verrucosa  

Keroeididae 
Kinoshita, 1910 

Plexauridae 
Gray, 1859 

Figure 2.2: Gorgonian classification including named gorgonian species in this
study (emboldened). Taxonomy based on Daly el al. 2007.
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of the deep-sea gorgonians used in this study are specifically protected through

legislation although ‘coral garden’ habitats, in which gorgonians are constituents,

are protected under OSPAR (OSPAR Commission 2010).

2.7 Pink sea fan (Eunicella verrucosa); ecology and factors influencing

its distribution

Eunicella verrucosa (Figure 2.3) has been recorded from southern and western

areas of Britain and Ireland to the western Mediterranean and north-west Africa

(Carpine and Grasshoff 1975; Manuel 1981; Hiscock 2007a). Importantly, the UK

represents the northern limit of its distribution and the source of almost all of the

available literature surrounding this species.

The depth range of the pink sea fan extends from low water, in the Channel

Isles (Manuel, pers. comm., cited in Bunker (1986)) to 200m water depth in the

Mediterranean (Carpine and Grasshoff 1975). In the UK, pink sea fans have been

recorded in very shallow water (less than 10 m) (Wood 2003; Doyle 2005).

Although Eunicella verrucosa is reported to be found primarily on upward fac-

ing bedrock with moderately strong current (Hiscock, 2007a), a wider range of

substratum use including cobbles, gravel and artificial substrata is also evident

(Munro 1992; Doyle 2005; Black 2007; Hiscock et al. 2010).

Literature relating to water movement and the distribution of Eunicella verrucosa

is conflicting. The pink sea fan has been recorded from very exposed sites with

strong tidal streams (Bunker 1986; Doyle 2005) to very sheltered sites with very

strong current (Doyle 2005) yet has also been reported as being rare in areas

exposed to very strong or weak tidal streams and from very wave exposed sites

(Bunker and Hiscock (1984, 1985), cited in Bunker (1986)).
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Figure 2.3: Photograph of the pink sea fan Eunicella verrucosa on bedrock with
a cotton spinner Holothuria forskali and the soft coral Alcyonium
digitatum. Photograph: Keith Hiscock, with permission.

The range of environmental conditions in which Eunicella verrucosa has been

recorded is summarized below from Hiscock (1981); Manuel (1981); Bunker (1986);

Bunker and Hiscock (1987); Doyle (2005) and K. Hiscock (pers. comm.):

•very little water movement to strong current movement;

•no silt to very silty including on very muddy boulders;

•wave sheltered to very wave exposed, and

•vertical and overhanging to horizontal.

Seawater temperature and wave and current exposure are reported as the factors

primarily responsible for the presence and survival of Eunicella in the Skomer

Marine Nature Reserve in Wales (Gilbert 1988). Bunker (1986) noted that there
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was no obvious reason why the pink sea fan was not more widely distributed

around Skomer when there was plenty of seemingly suitable habitat available.

Therefore in summary it is likely that a complex combination of variables influence

the distribution of the pink sea fan in addition to substratum, depth and water

current.

Eunicella verrucosa typically feeds on suspended material including plankton (His-

cock 2007b).

Growth rate is thought to be highly variable with annual growth ranging from

negligible to 6 cm increases in branch length reported in Lyme Bay colonies (C.

Munro, pers. comm., cited in Hiscock (2007a)).

Little is known of the reproductive traits of Eunicella verrucosa although it is

reported to be a broadcast spawner whose spawning may coincide with peak wa-

ter temperature (Munro, 2004). However no evidence was found to suggest that

a threshold water temperature triggers spawning Munro (2004). The produc-

tion and settlement of the (probably) lecithotrophic larvae are only occasionally

successful in south-west Britain (Hiscock 2007a).

Historically, divers used to collect pink sea fans as souvenirs and they were popular

in the curio trade in the late 1960s (Hiscock 2007a). Following their designation

as a protected species however, this threat is much reduced and it is likely that

the biggest threat to their numbers in the UK at present is mobile benthic fishing

gear, especially for pectinids, since their habitats can overlap (Bullimore 1985;

Devon Wildlife Trust 1993). The slow growing nature of Eunicella verrucosa, like

many other gorgonian species, combined with its sporadic recruitment, makes it

especially sensitive to this activity.
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2.8 Deep-water gorgonians; ecology and factors influencing their dis-

tribution

The 1873 HMS Challenger expedition saw the first study of deep-sea gorgonians

(Lawson 1991). Deep-sea gorgonians form part of a group of species commonly

referred to as ‘cold-water corals’ which also includes stony, black and hydro-corals

(Roberts et al. 2006). Little specific information is available concerning the ecol-

ogy of the named species in this study (Callogorgia verticillata; Figure 2.4, and

Primnoa resedaeformis; Figure 2.5) and indeed the ecology is not well described

for many deep-sea gorgonians, although the reader is referred to the more general

section on gorgonian ecology above for details on diet, reproduction and growth

rates where deep-sea examples are given.

The full extent of the distribution of C. verticillata is not known but Primnoidae

sp. have a cosmopolitan distribution (OSPAR Commission 2010). P. resedae-

formis is one of the largest deep sea gorgonians and one of the most abundant

and widely distributed in the North Atlantic (Mortensen and Buhl-Mortensen

2004; Leverette and Metaxas 2005; Buhl-Mortensen et al. 2010). In addition to

Hatton Bank and George Bligh Bank C. verticillata has also been recorded on

le Danois Bank seamount in the Bay of Biscay at depths of around 550-570 m

(Sanchez et al. 2009), on the Josefine Bank seamount to the west of Portugal, and

in the Azores (OSPAR Commission 2010).

Like the majority of coral species, deep-sea gorgonians preferentially settle on

rocky substrata. In a study on le Danois Bank a significantly higher number of

C. verticillata were recorded on rocky areas, as opposed to mixed areas of sand

and rock (Sanchez et al. 2009). The presence of rocky substrata is an important

factor governing the distribution and abundance of P. resedaeformis too, along
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Figure 2.4: The deep-sea gorgonian Callogorgia verticillata on a boulder at 550
m on southern Hatton Bank. A diverse fauna is also shown and
includes the reef forming cold water corals Lophelia pertusa and
Madrepora oculata, hydrocorals, sponges, crustaceans and echino-
derms. Photograph: Crown Copyright, 2006.

with depth, temperature and water current (Mortensen and Buhl-Mortensen 2004;

Leverette and Metaxas 2005; Watanabe et al. 2009; Edinger et al. 2011).

Deep-sea gorgonians can be found in ‘coral gardens’; a highly biodiverse OSPAR

habitat which can include a variety of species in addition to gorgonians including

hard corals (Scleractinia), black corals (Antipatharia) and leather corals (Alcy-

onacea) (OSPAR Commission 2010). The extent of coral gardens in the Northeast

Atlantic is presently unknown (OSPAR Commission 2010) although gorgonian

dominated coral gardens were first recorded in UK waters in 2010 (Long et al.

2010). Deep-water gorgonians can provide habitat for numerous species and P.
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Figure 2.5: Primnoa resedaeformis at 830 m on southern Hatton Bank sur-
rounded by a matrix of coral rubble and diverse associated epifauna.
Photograph: Crown Copyright, 2006.

resedaeformis can host a rich, suspension feeder-dominated epifauna in addition

to providing shelter for fish species, including commercial species such as rockfish

(Buhl-Mortensen et al. 2010).

Both C. verticillata and P. resedaeformis can be described as ‘bushy’ gorgoni-

ans. The size and abundance of P. resedaeformis colonies can respectively exceed

1 m and 120 colonies per 100 m2 (Mortensen and Buhl-Mortensen 2004; Buhl-

Mortensen and Mortensen 2005; Watanabe et al. 2009).

The reproductive ecology for deep-water gorgonians is unknown for many species

but seasonality has been recorded even though they are not subject to temperature
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or light cues like their shallow water counterparts. In the deep-water gorgonian

A. arbuscula, Lawson (1991) observed internal fertilisation (in October) followed

by a six month period of brooding prior to the release of planula larvae. Lawson

(1991) proposed that fluxes of surface derived organic matter provided the cue

for reproduction in this species, as is the case for many deep-sea species (George

and Menzies 1967, 1968; Tyler 1988; Tyler et al. 1990; Gage and Tyler 1991).

Mercier and Hamel (2011) studied the reproductive ecology of three deep-water

octocorals from the Atlantic coast of Canada, including P. resedaeformis and the

following summary is from their study: P. resedaeformis is a broadcast spawner

and fertilisation occurs externally. An extended or continual period of oogenesis

is likely. Based on the sampling regime in the study, no evidence of periodicity

was found. An inverse relationship between depth and fecundity was found, with

a potential colony fecundity of 100,000-250,000 oocytes reported, based on polyp

density and for a colony of ∼ 30 cm and depending on depth.

Deep-water gorgonians are increasingly subject to threats from mobile benthic

fishing gear as the development of technology permits fishing at greater depths

(Davies et al. 2007; Hall-Spencer et al. 2007). The impact of benthic trawling

on deep-water coral habitats (Rogers 1999) has resulted in the closure of several

areas to fishing, including in the Northeast Atlantic.

2.9 Suitability of corals for species distribution modelling

The strength of predictive species distribution models lies in the relationship be-

tween the distribution of the target species and its environment and for this reason

sessile species are especially desirable because it is possible to pinpoint their distri-

bution at specific locations and, as a result, marry this distribution with relevant

(and available) environmental data.
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Among sessile marine fauna, corals represent a valid study group for several rea-

sons. Many species are protected and often the subject of targeted surveys thereby

boosting the distribution data set. Furthermore, some corals are considered to be

indicative of the health and biodiversity of a wider ecosystem because the pres-

ence of long-lived and fragile epifauna suggests that the habitat is stable and has

seen little natural or anthropogenically driven physical disturbance. Many coral

species are unmistakable and this bestows confidence in their distribution (pres-

ence and absence) records and facilitates detection and identification by divers

and video surveys alike. This is especially true of gorgonians which are often

erect and conspicuous making them ideal to study within the context of species

distribution modelling. Many gorgonians are slow growing, especially deep-sea

species, and threats to fragile coral communities make them a worthy focus.
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Chapter 3

Study sites

3.1 Selection of sites

The selection of sites was determined by the aim of this study, namely to inves-

tigate key issues surrounding the use of species distribution models to support

marine conservation planning. Lyme Bay, on the south coast of England, and

the Rockall Trough and surrounding seamounts in the Northeast Atlantic were

selected on the basis that they have divergent needs and challenges regarding the

implementation of marine planning and marine protected areas. The selection of

these two sites has allowed for the investigation of the potential influences that

differences in, for example, data availability, current protection, accessibility, pres-

sures and management may have on both the model outputs themselves and/or

the future application of species distribution models to conservation management

in each area. Interestingly, the areas surrounding the Rockall Trough are among

the world’s best studied deep-sea areas (Howell et al. 2010), and Lyme Bay has

similar claims in respect to nearshore environments in the UK (Stevens et al.

2006). That gorgonians are a conservation target in both areas further supports

the selection of these corals to demonstrate the use of species distribution models

for use in marine conservation.
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3.2 Lyme Bay

3.2.1 Physical environment

Lyme Bay encompasses the area from Start Point in south Devon to Portland Bill

in Dorset, and covers an area of approximately 2500 km2 (Figure 3.1).

Voluntary closures

Lyme Bay closed area

Special Areas of  Conservation

Exe 

Estuary

Berry Head

Brixham

Portland

Bill

Lyme Bay and Torbay SAC

Start Point

Lyme Bay and Torbay SAC

Chesil Beach and 

The Fleet SAC

Lyme Regis

LG

SL

The Exeters20m

30m

50m

Figure 3.1: The extent of the study site is delimited by the Bay’s closing line.
The ports of Brixham and Lyme Regis are highlighted. The Lyme
Bay statutory closed area is shown as the large boxed area in the
north of the Bay. The four smaller shaded boxes highlight the four
voluntary areas initially proposed by Defra, including Sawtooth
Ledges (SL) and Lane’s Ground (LG). The Jurassic coast runs from
the Exe eastwards to Portland Bill (and extends eastwards beyond
the study site).

Lyme Bay represents a physically diverse environment with a wide range of sub-

strata from rocky reefs and cobbles to sand and mud. The water deepens gradually
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from the shore and much of the water around the closing line exceeds 50 m. Sites

within the bay range from very wave sheltered to wave exposed sites and cur-

rent flow also varies, with speeds exceeding 90 cm s−1 recorded off Portland Bill

(Nunny 1995a). Portland Bill is also associated with a marginal front which curves

and extends south westerly from the Bill and which is associated with increased

chlorophyll a concentration (Pingree et al. 1983). Lyme Bay has relatively turbid

water and stratification is also evident at times (Pingree et al. 1983).

3.2.2 Ecology

The rocky and mudstone reef areas in the north of the bay provide a structurally

complex environment with numerous microhabitats for species including rare or

protected species such as the sunset cup coral Leptopsammia pruvoti and the pink

sea fan Eunicella verrucosa (Hiscock 2007b). The reefs also support structurally

important species including branching sponges (e.g. Axinella sp.) and ross ‘coral’

Pentapora foliacea. A recent report on UK marine biodiversity hotspots (Hiscock

and Breckels 2007) identified areas of Lyme Bay as a hotspot for species richness

and ‘Nationally Important Marine Features species richness’ (Vincent et al. 2004).

3.2.3 Management issues

The varied and biologically diverse underwater landscape has supported a pro-

ductive fishing industry for generations and it is this industry that now provides

a key focus of current management effort within the bay.

The reefs of Lyme Bay have attracted divers, anglers and fishermen for years but

it was the Devon Wildlife Trust dives in 1991, 1992 and 1998 that publicised not

only the diversity of the reef habitats and communities but also their vulnerability

to scallop dredging (Devon Wildlife Trust 2007). The movement of the heavy

scallop dredges across reef systems have the potential to damage both the reef
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communities themselves and the abiotic reef habitat, such as the soft mudstone

reefs of Lyme Bay. Dredging for scallops was implicated in the almost total

destruction of The Exeters, a reef area in the north of the bay, following the

1992 survey which failed to locate any of the Exeters reef features previously

described (Devon Wildlife Trust 2007). In 2001 Devon Wildlife Trust and local

scallop fishermen agreed to close voluntarily two areas to scallop dredging. These

closures, centred on Lane’s Ground and Sawtooth Ledges (Figure 3.1), resulted

from mounting concern regarding the state of various reef areas in the bay and

their associated communities following observations made by divers, including

those on Devon Wildlife Trust dive surveys.

In response to socioeconomic drivers, principally the market value of scallops, the

voluntary agreements supporting the two closed areas started to deteriorate in

2005 (Devon Wildlife Trust 2007) and the following year Devon Wildlife Trust

requested that Natural England apply for a ministerial stop order to close 60

square miles of reef area in the northern part of the bay.

Defra responded by announcing a voluntary 12 square mile closure of four reef

areas (Figure 3.1) that had been agreed with the South West Inshore Scallopers

Association (Devon Wildlife Trust 2007). Devon Wildlife Trust threatened to take

the Government to judicial review over this decision, citing major misconceptions

surrounding data interpretation as reasoning behind the decision. In response, a

Partial Regulatory Impact Assessment and Consultation was released by Defra

on “measures to protect biodiversity in Lyme Bay from the impact of fishing with

dredges and other towed gear” (Defra 2007b).

Results of this public consultation showed an overwhelming support for the statu-

tory closure of 60 square miles of reef area and, in July 2008, Defra closed this

area (approximately 8% of the bay) to scallop dredging and other mobile fishing
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gear (Defra 2008) (Figure 3.1). This closure is the first and so far only one within

the UK set up explicitly for the purpose of biodiversity conservation, and was

established to protect high diversity rocky reef assemblages from the effects of

such fishing. The closure is in direct line with the aims of OSPAR to “protect,

conserve and restore species, habitats and ecological processes which are adversely

affected as a result of human activities” and “prevent degradation of and damage

to species, habitats and ecological processes, following the precautionary princi-

ple”.

Ongoing management within the Bay includes enforcement of the closed area

restrictions and an ongoing benthic recovery monitoring programme that formed

part of a wider three year Defra funded monitoring program Lyme Bay - a case-

study: measuring recovery of benthic species; assessing potential “spillover” effects

and socio-economic changes with the closure of 60 square nautical miles to scallop

dredging. The monitoring project originally finished in March 2011 although the

project has received some continuation funding.

Results from the comprehensive monitoring programme are diverse, but initial

results from the socio-economic assessment include that: the impact of the closure

on fishermen was dependent on gear type and area in the Bay; an increased

conflict between static and mobile gear fishers was observed outside the closure;

an increase in diving and angling activity in the two years following the closure

was observed at several sites; dive businesses were generally unaffected by the

closure, and that some mobile gear damage to previously good dive sites has been

observed outside the closure (Mangi et al. 2011a,b).

The preliminary ecological results suggest some benthic recovery, albeit with lots

of variation in the results (Attrill et al. 2011). For example, two years after the

closure, assemblages in newly closed sites (previously fished) were significantly
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different from assemblages in some of the control sites that remain open to fishing.

In addition, differences in assemblage structure between the newly closed sites

and sites previously unfished by mobile gear under voluntary agreement (and

still unfished) have decreased over time, suggesting that their overall similarity is

increasing. A significant increase in the number of scallops in the new closure by

2010 was also observed (Attrill et al. 2011).

Consent for a lease underpinning the pilot development of an offshore mussel farm

in Lyme Bay was recently granted (September 2010) to Offshore Shellfish Ltd by

The Crown Estate and will require spatial consideration in light of commercial

fishing and recreation activities within the Bay, adding complexity to its manage-

ment.

Lyme Bay supports a diverse recreation industry, including diving, angling and

wildlife watching (Rees et al. 2010). Earlier activities within Lyme Bay included

exploratory drilling for oil and gas in the mid 1990s, Lyme Bay being licensed

for hydrocarbons exploration (Nunny 1995b), and ship to ship oil transfer, with

western parts of Lyme Bay providing a sheltered anchoring point from prevailing

weather (Anon 1994). Such ship to ship transfer is now subject to regulation in

the form of The Merchant Shipping (Ship-to-Ship Transfers) Regulations 2010

(Department for Transport 2010).

3.2.4 Designations

The Jurassic Coast, part of which extends from the mouth of the Exe to Portland

Bill, forms a natural World Heritage Site; a World Heritage Coast. Chesil Beach

and The Fleet, and the Exe Estuary are designated Ramsar Convention sites (an

international designation) and Special Protection Areas (a European designation).

There are more than 20 Sites of Special Scientific Interest (SSSI) along the coast
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of the bay and further designations include an Area of Special Protection (AoSP)

at Berry Head and three Areas of Outstanding Natural Beauty (AONB); South

Devon, East Devon and Dorset. Sensitive Marine Areas (SMAs), a non-statutory

designation, cover a large proportion of Lyme Bay’s coast and were identified by

Natural England (formerly English Nature) for notable marine flora and fauna

communities or sites which provide ecological support to adjacent sites protected

by statute (Barne et al. 1996a,b).

Two years after the statutory closure of the northern reefs previously mentioned,

parts of northern and eastern Lyme Bay, including the closed area, were submitted

to Europe as a Candidate Special Area of Conservation (cSAC) in August 2010.

This area, together with an area around Torbay in west Lyme Bay, make up the

Lyme Bay and Torbay cSAC (Figure 3.1). Bedrock and stony reef habitats were

included as conservation objectives in this submission. More recently (September

2011), eight sites within Lyme Bay have been recommended as part of the wider

MCZ network, including three estuaries and two reference areas.

3.3 Rockall Trough and surrounding seamounts

3.3.1 Physical Environment

The Rockall Trough is a large area of the Northeast Atlantic deep-ocean just west

of the continental shelf of Ireland and the United Kingdom (Figure 3.2). It is

bordered on the west by Rockall Bank and, to the north, by the Wyville-Thomson

ridge. The Rockall Trough gradually deepens with distance south, reaching its

deepest (∼4000 m) at its mouth (Ellett et al. 1986; Bett 2000).

The Rockall Trough offers a diverse range of habitats from abyssal plains to steep

sided canyons and gullies and a wide range of substrata including gravel, bedrock

and boulders (Bett 2000). In addition, layers of phytodetrital material several
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centimetres thick derived from seasonal fluxes have been reported from the area

(Bett 2001), resulting from the rapid settlement of surface-water derived primary

production (Billett et al. 1983; Lampitt 1985). In excess of 800 seamounts have

been recorded in the North Atlantic (Epp and Smoot 1989), including Rosemary

Bank, George Bligh Bank and Anton Dohrn (Figure 3.2).

HB 

GB 

AD 

WTR 

NWRocB 

RosB 

SB 

DM 

ERoc 

Figure 3.2: The Northeast Atlantic. Candidate Special Areas of Conservation
(SACs) are shaded in dark blue and include, from left to right, the
North West Rockall Bank (NWRocB), Stanton Banks (SB), Darwin
Mounds (DM) and Wyville Thomson Ridge (WTR). Possible SACs
are shaded in light blue and include, from left to right, Hatton Bank
(HB), East Rockall (ERoc) and Anton Dohrn (AD). George Bligh
Bank (GB) and Rosemary Bank (RosB) are also labelled. The UK
Continental Shelf limit is marked by the bold line. Bathymetry is
from The General Bathymetric Chart of the Oceans (GEBCO).

Rockall Trough and much of the Northeast Atlantic is bathymetrically and hy-

drographically complex with features operating at a variety of scales. The trough

48



3.3. ROCKALL TROUGH AND SURROUNDING SEAMOUNTS

is characterised by two principal water masses: the Eastern North Atlantic Water

(ENAW), which extends from the surface to about 1200 m depth, and the cooler

Labrador Sea Water (LSW) beneath it (Ellett et al. 1986; Holliday et al. 2000).

Hatton Bank, upon which several of the chapters in this study focus, is an elongate,

relatively shallow bathymetric high located to the west of the Rockall Bank and

the Rockall Trough in the Northeast Atlantic (Figure 3.2). The Bank is ∼450

km in length and is orientated approximately southwest-northeast to the south of

59◦N changing to a more west-east orientation north of 59◦N. The Bank descends

>2500 m below sea level into the Iceland Basin to the west and >1100 m below sea

level into the Hatton Basin, sometimes referred to as the Hatton-Rockall Basin,

to the east. At its shallowest its summit lies at ∼480m water depth.

3.3.2 Ecology

The ecology of the Northeast Atlantic is varied and diverse yet many ecologically

significant deep-sea habitats were largely unknown until the 21st century includ-

ing the Darwin Mounds. These mounds, a series of low lying hummocks on the

sea floor, are presumed to be carbonate mounds and were only discovered in 1998

(Bett 2000). Interest surrounding the mounds lies principally in their associated

epifauna which includes the structurally complex cold-water coral Lophelia per-

tusa. Lophelia pertusa is a reef forming stony coral which is found elsewhere in

the Rockall Trough and is widely distributed in the Northeast Atlantic (Wilson

1979). Lophelia and other cold-water corals provide a structurally complex habi-

tat, often in relatively simple (structurally speaking) surrounding environments,

and accordingly are associated with biodiverse communities (Roberts et al. 2006).

Apart from stony corals, black, hard, bamboo and leather corals are all found

within the Northeast Atlantic. Combined, these species can form coral gardens
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(OSPAR Commission 2010). The first record of gorgonian dominated coral gar-

dens from UK waters was recently documented on the Anton Dohrn seamount

(Long et al. 2010). The diverse benthic assemblages found in the study area have

recently been described by Howell et al. (2010) as part of the development of a

biological classification system to aid in habitat mapping efforts.

Several well described phenomena exist within deep-sea ecology including season-

ality in the reproduction of some deep-sea species which is linked to the periodic,

seasonal pulses of phytodetritus to the sea floor as previously mentioned (Tyler

et al. 1990). The distribution of fauna has also been linked to depth via other phys-

ical and hydrographic parameters such as seasonal and permanent thermoclines,

the depth of the extent of mixing of water masses, sediment type, phytodetrital

food supply and currents (Rowe and Menzies 1969; Haedrich et al. 1975; Rex 1981;

Gage 1986).

Depth related faunal patterns include changes in abundance with depth, reduc-

tions in diversity, distinct depth zones for certain species and bathymetric zones

of pronounced change in the fauna (Rowe and Menzies 1969; Sanders and Hessler

1969; Haedrich et al. 1975; Carney et al. 1983; Gage 1986; Howell et al. 2002). Rex

(1981), for example, described the continental shelf-slope boundary as an area of

pronounced change in the fauna with peaks in the abundance of polychaete and

fish species. Zonation in deep-ocean fauna has been described as a ‘non-repeating

sequential change with depth’ (Carney et al. 1983). For the most part, the deep-

water distribution records in this study are at mid-slope depths, in a transitional

zone above the permanent thermocline (Rowe and Menzies 1969; Haedrich et al.

1975; Howell et al. 2002).

In addition to physical factors associated with depth, several hydrographic phe-

nomena influence the distribution of fauna within the area including boundaries
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between different water masses, where temperature and salinity differences can

occur, and current acceleration, such as that associated with the summits of

seamounts (Gage 1986; Genin et al. 1986; Frederiksen et al. 1992). Higher cur-

rents have been recorded off coral mounds on the Rockall Bank with respect to

surrounding gullies and plains (Duineveld et al. 2007). Seamounts and their ef-

fect on local and regional hydrography have been implicated in the dominance of

suspension feeders on seamount summits because the increased currents serve to

increase food availability (Genin et al. 1986; Rogers 1999).

With respect to the ecology of gorgonians and other suspension feeders, the avail-

ability of firm substrata and a strong current that help clear sediment and waste

and deliver food, and in some cases the availability of phytodetrital material, all

serve to influence the distribution of those fauna (Rowe and Menzies 1969; Rogers

1999; Bryan and Metaxas 2007). The number of suspension feeders decreases in

the deep-sea, at the same time as an increase in the dominance of deposit feeders

is observed, as a result of several factors in addition to availability of suitable

substrata, including phytoplankton availability (Carney et al. 1983).

In addition to sessile benthos, the Northeast Atlantic supports a diverse demersal

and pelagic fauna, including several important commercial species such as haddock

and blue whiting.

3.3.3 Management issues

Investigative dredging in the Rockall Trough started in the late 19th century on

HMS Porcupine although it was to be a century later before commercial trawl-

ing began (Gordon 2003). Bottom-trawling was found to be causing irreversible

damage to fragile temperate coral communities and reefal substrata (Hall-Spencer

et al. 2002).
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Bottom trawling and long-lining are principle management concerns in the Hat-

ton Bank area, with both activities known to have damaged vulnerable marine

ecosystem (VME) indicators including fragile sponges and gorgonians (Benn et al.

2010; ICES 2011; Durán Muñoz et al. 2011). For example, Figure 3.3 illustrates

the spatial distribution of fishing effort by the Spanish trawl fleet on Hatton Bank

from 1996-2006 (ICES 2007).

Figure 3.3: Spatial distribution of bottom trawling on Hatton Bank, based on
observed Spanish trawling effort 1996-2006. The NEAFC closure
is hatched in red. An area recommended for closure to protect
sensitive habitats of cold-water coral is also shown. Map taken
from the 2007 Working Group on Deep-water Ecology report (ICES
2007), p19. Used with the kind permission of the International
Council for the Exploration of the Sea.

In 2007, the North East Atlantic Fisheries Commission (NEAFC) and Directorate-

General for Maritime Affairs and Fisheries (DG MARE) closed four areas within
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the Rockall and Hatton Bank area to bottom contact trawling, explicitly to protect

deep-coral habitats (NEAFC 2007). The ICES Joint Working Group on Deep-

water Ecology (WGDEC) has recently (March 2011) recommended revisions to

the boundary of the Northwest Rockall closure based on new data for cold-water

VMEs (ICES 2011). WGDEC also put forward a proposal for a fisheries closure

on Anton Dohrn seamount, based on recent survey work (the Joint Nature Con-

servation Committee 2009 Offshore Natura survey) and predictive modelling (K.

Howell and J. Davies, unpublished) which suggests that the steep slopes of the

seamount might be especially important for VMEs (ICES 2011).

Concern about the impact of human activities on vulnerable marine ecosystems,

including cold water habitats and seamounts, has repeatedly been raised in United

Nations General Assembly resolutions on the Oceans and the Law of the Sea,

emphasizing the importance of implementing the precautionary approach and

Part XII of the United Nations Convention of the Law of the Sea (UNCLOS), the

latter of which calls for the protection of the marine environments from physical

degradation.

Emerging threats to deep-sea ecosystems, including habitat forming ecosystems

(as summarised by Davies et al. (2007), Benn et al. (2010) and Buhl-Mortensen

et al. (2010)) include fisheries, oil and gas, carbon capture and storage, mining,

waste disposal, petroleum exploration and ocean acidification. The OSPAR mar-

itime area of the Northeast Atlantic is considered one of the most heavily impacted

by human activities (Benn et al. 2010). Rockall, in August 2008, became the cen-

tre of an international struggle for sovereignty, seeing Denmark (for the Faroe

Islands), Iceland, Ireland and the United Kingdom lay claim to the Rockall area

in the hope of securing offshore oil and gas reserves. Whatever the outcome, this

has potentially far reaching consequences for spatial planning in the area.
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3.3.4 Designations

The coral communities found on the Darwin Mounds led to their designation as

the UK’s first offshore MPA. Deep-sea coral environments have been linked to

increased fish catches, when compared to non-coral habitats (Husebø et al. 2000),

and it was ultimately the impacts of commercial fishing that led to the protection

of the Darwin Mounds.

Consideration for a precautionary approach in the Common Fisheries Policy, in

addition to the inclusion of emergency measures, allowed the initial protection

of the Darwin Mounds which was effected in August 2003 (De Santo and Jones

2007). The closure was made permanent in March 2004 and in August 2008 the

Darwin Mounds was recommended as a candidate SAC.

Several other UK offshore areas have been submitted as candidate SACs (in two

tranches). The first tranche, submitted alongside the Darwin Mounds, include the

Stanton Banks (Figure 3.2). The second and most recent tranche, submitted in

August 2010, includes North West Rockall Bank and the Wyville Thomson Ridge.

In addition, Hatton Bank was formally recommended as a draft SAC (dSAC) in

February 2009. However, the NEAFC and EU closures remain the dominant

spatial management measure in the Rockall and Hatton area.

3.4 Suitability of selected study sites

Lyme Bay and the Rockall Trough and surrounding seamounts are suitable sites in

which to investigate the use of species distribution models to support marine con-

servation planning because they offer divergent case studies yet are underpinned

by some similarities in conservation and management effort (Table 3.1).

Lyme Bay is very accessible and has a diverse and well documented management
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history that has been brought to public attention through the campaigning efforts

of several Non-Governmental Organisations, in addition to a government-led pub-

lic consultation. Following the designation of the closed area in 2008, a large part

of Lyme Bay is also a candidate SAC meaning that monitoring and continued

conservation effort will be required by statute.

Areas of the Northeast Atlantic covered in this study include (proposed) SACs also

but aside from the fact that they are geographically inaccessible to most people,

not to mention psychologically inaccessible, the management of these high seas

areas will require international agreement as opposed to national legislation and

local byelaws. This is of course relevant to modelling because it will be necessary

to identify the endpoint application of the models. Will the model outputs be

used to give weight to existing conservation measures and inform monitoring, for

example, or will the model outputs be used to inform new designations?

The selection of a large, offshore, deep-sea area in addition to a (relatively) small

inshore site has allowed for the issue of scale and data availability to be addressed

within the context of modelling and planning. Whilst this facet of species dis-

tribution modelling has been well explored in a terrestrial context (Scott et al.

2002), it has not been adequately addressed within the remit of marine conserva-

tion planning. In this context scale relates to data availability, both in terms of

type of data and the quantity and quality, and data resolution between inshore

and offshore areas and the potential for disparity between the two. Generally

speaking, offshore data is frequently of a coarser resolution, if available at all.
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3.4. SUITABILITY OF SELECTED STUDY SITES

Physical differences between the sites are also important. For example, the huge

difference in depth will have implications for the relevance of difference environ-

mental predictors which again links back to data requirements. Furthermore, data

sources will vary between the study areas (volunteer dive survey data versus off-

shore video survey data for example) and this may in turn result in differences in

data quality, data availability and, crucially, the spatial coverage of relevant data

sets.

The pressures that exist in inshore and offshore environments can vary enormously.

Inshore areas can have a relatively higher direct anthropogenic pressure than

offshore which not only determines the type of data input required for spatial

planning but also influences data availability. For example, coastal areas may

benefit from ad hoc survey data whereas this is unlikely in offshore areas where

data collection is invariably associated with high cost and considerable logistical

consideration.

Nearshore environments and areas in the high seas will both require the coordina-

tion of marine plans in the future and it is essential to be aware of and understand

any differences that may exist in the application of species distribution models in

these areas so that future data collection may be targeted accordingly.
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Chapter 4

General methodology

4.1 Methodology overview

This methodology chapter outlines the general methodological approach adopted

throughout the course of the study. Broadly split into two halves, the first covering

data and the second focusing on species distribution models, the chapter aims to

avoid repetition among the four subsequent data chapters. The flowchart overleaf

(Figure 4.1) forms the basis of the structure within this chapter, which includes

details on topics from the source of distribution and environmental data, data

acquisition and data preparation to the modelling methods adopted (including

model choice) and the assessment of model performance. Methodological detail

in this chapter is restricted to the methodology that applies to all four analysis

chapters; method details specific to certain data chapters are provided in the

relevant section of those chapters. With the assistance of Figure 4.1 this chapter

runs in a logical progression through the various stages undertaken as part of this

study and justifies the choices made with regards to data and model selection.

4.2 Video data

Due to the difficulty associated with sampling underwater environments, especially

in the deep-sea, remote sampling techniques are often adopted for survey work.

Traditional techniques such as grab sampling are not always possible due to the
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Figure 4.1: Flow diagram summarising species distribution model procedure
undertaken. The majority of the individual steps in the Maxent
modelling process have not been listed because the program per-
forms them automatically.
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nature of the substrata or because of the damaging impact this type of sampling

might have on fragile benthic structures such as biogenic reefs. Dive surveys have

many associated safety issues, are expensive and depth limited. Video surveys are

now a popular, cost-effective method for marine habitat mapping and survey work

(Stevens and Connolly 2005). In the deep-sea especially, video survey is of critical

importance for informing conservation planning and management (Howell et al.

2010; Schlacher et al. 2010). Not only is video a non destructive form of surveying

but it allows the distribution of sessile species to be analysed in the context of

their specific habitat (Wilson et al. 2007) which may change along the course of

the video transect; information which could be lost if the species were collected

by trawling. In addition, video survey essentially provides a continuous sample

along the length of the transect, therefore providing a larger spatial coverage than

point sampling might.

However video surveys come with their own set of limitations regarding biological

surveying, the main one being that the presence of the majority of infauna can-

not be ascertained unless, for example, a diagnostic burrow or cast is observed.

Furthermore, positive identification can often only be confirmed from physical

samples. In addition, the quality of the stills or video footage can sometimes

prevent the accurate identification of some species. However, the offshore study

areas in this project are deep enough that remote video is the only viable option

for survey.

With few exceptions (Woodby et al. 2009) species distribution modelling studies

in the deep-sea have traditionally focused on presence-only modelling approaches

(Bryan and Metaxas 2007; Guinan et al. 2009b; Tittensor et al. 2009) so in order

to use the presence-absence algorithms adopted in this study it was imperative to

select fauna that would be readily identified on video because presence-absence
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4.3. GORGONIAN DISTRIBUTION DATA

models rely on accurate presence and absence data. Species that are hard to spot

such e.g. those that prefer the undersides of boulders, would be entirely unsuitable

for generating presence-absence data from video transects. Uncertain absences can

be dealt with by replacing absence records with pseudo absences (Gibson et al.

2007) but the selection of gorgonians as a test group was made in order that

we may have confidence in the designation of absence records. Gorgonians lend

themselves well to observation in video and stills photography and are usually

conspicuous. Gorgonian distribution data was obtained from video footage in

both study areas.

4.3 Gorgonian distribution data

4.3.1 Lyme Bay Eunicella verrucosa distribution records

Owing partly to its status as a protected species, the pink sea fan has been the

subject of several targeted surveys. Distribution data were collected from several

different sources, totalling over 220 records (including Black 2007; Munro 2007;

Stevens et al. 2007).

In an attempt to reduce the potential variability of data quality from different

sources, only data collected during two video survey programs were used to con-

struct the models (see Black (2007) and Stevens et al. (2007) for details of video

methodology), reducing the number of pink sea fan records for use in the models

by over 60%. The first survey, undertaken by the Devon Biodiversity Records

Centre, comprised nine separate survey dates from December 2006 to June 2007

and targeted the reef areas in the northern part of the Bay. Here, 2-5 minute

videos of seabed communities were taken at 125 sites whilst allowing the boat to

drift (Black 2007). The University of Plymouth carried out the second survey,

targeting soft sediment areas in the rest of the bay (Stevens et al. 2007).
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4.3. GORGONIAN DISTRIBUTION DATA

The Lyme Bay video data was appealing for two reasons. Firstly, all of the data

had been collected in 2006 or later. Given the scallop dredging activity in the area

up to the time of the closure (see section 3.2.3) and the potential damage caused

to the reef community as a result, older E. verrucosa distribution records are more

likely to be unrepresentative of recent conditions. Secondly, the majority of video

data included a description of the site and could therefore be cross referenced (see

Appendix B for details) with the Devon Wildlife Trust substratum layer (currently

the best available substratum data for Lyme Bay), discarding records inconsistent

with the substratum map. Despite comprising short transects, the video data were

available as single points. The pink sea fan records that were used in the model

building process are illustrated in Figure 4.2.

Figure 4.2: Dots represent Eunicella verrucosa presence-absence records used
in the study. The Lyme Bay statutory closed area is the boxed area
adjacent to Lyme Regis.
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4.3. GORGONIAN DISTRIBUTION DATA

4.3.2 Hatton Bank gorgonian distribution records

Gorgonian distribution records for the Northeast Atlantic study site were obtained

from the 2005 and 2006 Strategic Environmental Assessment (SEA) survey pro-

grams (Narayanaswamy et al. 2006; Howell et al. 2007) (Figure 4.3). In 2005 and

2006 large areas of the summit of Hatton Bank were surveyed using multibeam

echosounder and video groundtruthing as part of the UK’s SEA process (Jacobs

2006; Jacobs and Howell 2007; Stewart and Davies 2007). Collection of biological

(video) data and medium resolution multibeam echosounder data (200m grids)

were undertaken over a one month period (August-September) in 2005 using the

commercial research vessel S/V Kommandor Jack. Further collection of biologi-

cal (video) data and high resolution multibeam echosounder data (25m and 50m

grids) were undertaken over a two month period (August - October) in 2006 us-

ing the commercial research vessel M/V Franklin. Video sampling stations were

selected during operations using multibeam bathymetry and backscatter data.

Video tows were selected to cover a range of geomorphology, substratum type and

water depths. For full details of sampling strategy and details of the multibeam

echosounder systems used see Howell et al. (2010, 2011).

A video log recorded for each transect was continually georeferenced by way of

an Ultra Short Base Line (USBL) beacon attached to a drop frame, allowing the

location of each species observation to be matched with a geographic reference

point throughout. In addition to the (colour) video camera, the Seatronics drop

frame was also equipped with a stills camera and sensors for depth, salinity and

temperature (see Howell et al. (2010) for further details of the camera system and

methodology). The videos were subsequently analysed and the presence of all

taxa clearly visible on the video footage recorded in an Access database.
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4.3. GORGONIAN DISTRIBUTION DATA

Figure 4.3: Video transect locations on Hatton Bank. Circles represent tran-
sects where high resolution gridded environmental data was avail-
able (see Chapter 6). Medium resolution environmental data was
available for transects represented by the triangles. Low resolution
environmental data was available for all transects. Bathymetry is
from The General Bathymetric Chart of the Oceans (GEBCO).
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Note that the video analysis was carried out by a consortium of scientists, includ-

ing the author, as opposed to a single observer.

Due to the difficulty of identifying gorgonians to species level from towed video,

a generic grouping of ‘gorgonian’ was used, with multiple species included in

the grouping. This method was also adopted by Woodby et al. (2009); another

modelling study using deep-water gorgonians. Absence data used in the model

were any species observations that were not gorgonians. Sections of the video log

where no species observations were documented were not used to infer absence,

since this could have resulted from the camera being too far above the seabed at

the time, for example. Gorgonian presence and absence data was extracted from

the video logs and used to generate shapefiles in ArcGIS 9.2.

4.4 Environmental data

The environmental variables selected for use in the models were based on the avail-

able literature concerning factors which influence the distribution of gorgonians,

but their inclusion in the model building was ultimately subject to availability.

Table 4.1 lists the environmental variables used in the study along with their

source and range of values across the study areas. All environmental data were

prepared for use in the models using ArcGIS (ver. 9.2).

For both Lyme Bay and the Hatton Bank area, different resolutions of environ-

mental data were available and were used to investigate the influence of resolution

on model performance. However, the data referred to in this general methodology

(in Table 4.1 for example) are the highest resolution data used for the majority

of chapters; other (lower resolution) environmental data is detailed in Chapter 6.
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4.4. ENVIRONMENTAL DATA

4.4.1 Lyme Bay

The environmental data for Lyme Bay was obtained from various sources and,

apart from the remotely sensed data from NEODAAS for which a peer-reviewed

application is required, the layers are readily available.

The remotely sensed data, namely sea surface temperature (SST), suspended par-

ticulate matter (SPM) and chlorophyll a concentration (Chl. a), were obtained

at a cell resolution of 1.1 x 1.1 km. The Geographic Co-ordinate System (GCS)

of the remotely sensed data (based on the Clarke 1866 datum) was incompatible

with the rest of the Lyme Bay data and no direct transformation was available.

The GCS was subsequently removed from the remotely sensed data and it was

manually georeferenced according to the Lyme Bay coast. Weekly composites of

the three remotely sensed variables were used to calculate annual minimum, mean

and maximum values for each grid square for the period July 2007 to June 2008

using the ‘mosaic’ tool in ArcGIS. However due to the fact that clouds can cre-

ate ‘blank’ values within the composite, the mean and minimum figures obtained

through this method are only an approximation of the true values. The minimum,

mean and maximum values were modelled individually.

SeaZone gridded bathymetry data was available through the EDINA Marine

Digimap service at a resolution of 0.0017 degrees. Modelled current data were

downloaded as a polygon, with a resolution of 1.8 km.
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In addition to the individual variables listed in Table 4.1, the interaction between

water current and maximum suspended particulate matter concentration (here-

after referred to as the scour proxy) was investigated in order to represent the

scouring potential of sediment-laden fast-flowing water. Data was also available

for peak neap current speed although this was strongly correlated with spring

currents. To avoid collinearity in the model, spring current was favoured because

these stronger currents might be more influential in terms of preventing planulae

larvae settlement or interfering with feeding potential of the colonies, for example.

The substratum layer is a composite derived from acoustic swath mapping, grab

and drop video samples (pers. comm., Gavin Black, formerly Devon Wildlife Trust

/ Devon Biodiversity Records Centre). The majority of the underlying acoustic

data was from a 1984 single beam survey with full sidescan sonar coverage. Survey

line spacing was 62.5 m and 125 m in water depth of less than and deeper than 40

m respectively (pers. comm., Paul Hart, UK Hydrographic Office). Although the

substratum layer used in the Lyme Bay models is based on the Devon Wildlife

Trust / Devon Biodiversity Records Centre biotope map, substrata were merged

into three classes (sediment, mixed and rock), in agreement with Black (2007), in

order to increase the numbers of distribution records in each class (Table 4.2).

Table 4.2: Lyme Bay substratum layer classification.

New substratum class Original Lyme Bay substratum layer classes included

Rock Rock; rock and mixed

Mixed substrata Mixed; mud and sand and mixed

Soft sediment Mud; mud and sand; sand; gravel
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4.4. ENVIRONMENTAL DATA

4.4.2 Hatton Bank

Much of the Hatton Bank environmental data is derived from multibeam data.

Depth data was derived from multibeam bathymetry grids at 25m and 50m reso-

lution. Lower resolution data were available for other areas of Hatton Bank (see

Chapter 6 for further details).

Depth per se has no direct influence on the distribution of deep-sea benthos but

correlated parameters often do, including temperature and pressure (Howell et al.

2002; Harris and Whiteway 2009; Buhl-Mortensen et al. 2010; Howell et al. 2010).

With depth more easily measured, it is more widely used in modelling studies.

The real-time temperature and salinity data recorded with the species’ observa-

tions on Hatton Bank were highly correlated with depth. Although tempera-

ture is known to influence deep-sea gorgonian distribution (Mortensen and Buhl-

Mortensen 2004), depth was chosen for inclusion in the modelling over temper-

ature and salinity for the simple reason that as far as predicting into new areas

is concerned, depth layers are far more likely to be available than temperature

and salinity which would most likely have to be interpolated from point data.

Additionally, temperature and salinity varied little over the observed distribution

records. In conclusion, although salinity and temperature data were available for

many of the transects, they are not considered further. Remotely sensed variables

such as chlorophyll and nutrients were not included in the deep water models

principally because given the water depth at the Hatton Bank study site and the

indirect nature of the link between surface derived parameters and deep water gor-

gonian distribution, terrain variables were considered much more relevant given

their relationship to water current speeds and therefore food supply and substrate

type, both are which are important to gorgonian distribution. In addition, these

remotely sensed parameters are often only available at very coarse resolutions,
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4.5. MODEL CHOICE

e.g. 1 degree and thus would reduce the overall resolution of the model. Table 4.1

provides further details about the data range of environmental variables across

the study site.

4.5 Model choice

Numerous options exist for the species distribution modeller, both in terms of

model choice and in subsequent options within the various modelling programs

(Guisan and Zimmerman 2000; Elith et al. 2006). With regard to available data,

the type of environmental data (predictor variables) and distribution data (re-

sponse variable) are influential to model choice. In this study, a combination of

categorical and continuous predictor variables, in addition to the availability of

presence and absence (binomial) data influenced model choice and the fact that

non-linear relationships existed between response and explanatory variables was

also important. This considered, several options were available (see Table 4.3,

adapted from Guisan and Zimmerman (2000); Elith et al. (2006); Wisz et al.

(2008)).

One prerequisite of model choice was that the model(s) should be freely available

and therefore accessible to anyone wishing to undertake exploratory predictive

modelling, for example conservation managers in developing countries or NGOs

who may not necessarily have access to the expensive licensed software available

at many universities and scientific institutions.

4.5.1 Generalized Linear Models and Generalized Additive Models

Generalized Linear Models (GLMs, McCullagh and Nelder, 1989) and Gener-

alized Additive Models (GAMs, Hastie and Tibshirani, 1990) were selected for

use throughout this study because they are well established within the species

distribution modelling literature, often outperforming several of the methods in

71



4.5. MODEL CHOICE

Table 4.3: Some of the modelling options available for presence-absence (PA)
and presence-only (PO) data (from Guisan & Zimmerman (2000),
Elith et al. (2006) and Wisz et al. (2008)).

Statistical  

approach 

Possible modelling 

technique 

Prediction  

type 

Distribution  

data 

Bayesian Bayes formula Probability 
Presence-absence 

Classification Classification Tree Class 

Environmental 

Envelopes 

Convex Hull e.g. 

HABITAT 

Degree of  

confidence 

Regression Generalized Additive 

Model (GAM) 

Probability 

Generalized Linear 

Model (GLM) 

MARS 

Regression Tree 

Environmental 

Envelopes 
Boxcar e.g. BIOCLIM 

Degree of  

confidence 

Presence-only 

Point-to-point metrics 

e.g. DOMAIN 

Ecological Nice Factor 

Analysis (ENFA) 

Range of  habitat 

suitability 

Maximum Entropy MAXENT Probability 

Rule set from 

genetic algorithm  
GARP 

Incremental 

range 

Table 4.3 (Guisan and Zimmerman 2000; Elith et al. 2006; Redfern et al. 2006;

Meynard and Quinn 2007; Guisan et al. 2007). These regression based models

relax the strict linearity assumptions associated with other linear models allow-

ing non-linear relationships between the response and explanatory variables to
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be modelled (Wood 2006a). GAMs in particular, are useful for exploring these

non-linear relationships (Austin 2007), and are often chosen to supplement GLMs

for this reason.

Both GLMs and GAMs allow a variety of response variable distributions to be

modelled including poisson and binomial, the latter of which is applicable to

presence-absence data. The use of a link function ensures that predictions are

bounded within a certain range. In the case of a binomial error distribution, for

example, the use of a logit link ensures probability estimates of between 0 and 1.

Whereas GLMs are defined by linear predictors, GAMs use non-parametric smooth-

ing functions to model the relationship between response and explanatory vari-

ables. Smoothers are applied independently to each explanatory variable with the

response being calculated additively (Guisan and Zimmerman 2000). Due to this

additive approach, the outputs of GLMs can be easier to understand (Redfern

et al. 2006).

4.5.2 Maxent

Maximum entropy (Maxent; Phillips et al. (2006)) is a machine-learning niche

based model designed for presence-only data, and is used in the final chapter.

The strong performance of Maxent compared to other methods including BIO-

CLIM, ENFA and GARP (Phillips et al. 2006; Pearson et al. 2007; Elith and

Graham 2009; Wisz et al. 2008; Tittensor et al. 2009) has led to its popularity

among modellers over recent years and is the reason it is selected for use in this

study. Combined with ease of use, Maxent is an attractive option for novice and

experienced modellers alike.

The Maxent algorithm converges to the most uniform probability distribution

across the study area given the constraints dictated by a sample of this target
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probability distribution; the presence records and their associated environmental

variables. More specifically, the expected value of explanatory variables across

the study area should be close to the average observed value for that covariate in

the presence data (Phillips et al. 2006). Like GLMs and GAMs, Maxent is able to

explore both continuous and categorical variables. Some theoretical similarities

exist between Maxent and GLMs and GAMs, with regularization in a Maxent

model with a threshold having a comparable effect to smoothing in a GAM with

a logit link (Phillips et al. 2006). Maxent also uses an exponential distribution

but, unlike GLMs and GAMs in which a link function can be used to constrain

the predictions, Maxent’s unbound probabilities can lead to high predictions for

variables outside the study range (Phillips et al. 2006).

4.6 Model units

4.6.1 The intersect approach

Data for the individual environmental variables used in modelling studies com-

monly come from different sources and often have varying levels of resolution.

Standardizing the data layers to ensure they have the same cell size, as is required

by some modelling programs including Maxent, could result in the loss of resolu-

tion from one or more layers. To prevent this, an intersect approach was adopted

which preserves data integrity and resolution as far as possible, where environ-

mental data was collated from different sources and at different resolutions, and

maintains ecologically relevant shapes and boundaries. The intersect approach

allowed the relationships between the distribution data and environmental data

to be investigated at the highest resolution available.

The units for the model were created by intersecting each of the environmental

variable layers to give a single unique polygon layer. Raster layers had first to
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be converted into polygon layers. Layers can only be intersected if they overlap.

During the intersect process, a new polygon is created wherever a polygon from one

input layer is intersected by the boundary of a polygon from another layer. The

resulting layer therefore matches the combined polygon boundaries of all input

layers and contains data from all layers attached to each polygon (see Figure 4.4).

The intersect method resulted in unequally sized model units for both study sites

which, whilst unsuitable for an effort-specific response variable such as abundance,

is acceptable for a binomial response.

4.6.2 Gridded data for Maxent

As previously mentioned, Maxent requires that environmental variables are pre-

sented as gridded (raster) layers covering the same spatial extent and with iden-

tically sized and positioned cells. Polygon layers were gridded to an appropriate

resolution, details of which are provided in Chapter 8.

4.6.3 Sample data

Distribution data were reduced to one record per intersected polygon, that is,

a presence or absence record (Elith et al. 2006; Graf et al. 2006; Pearson et al.

2007). If a gorgonian was recorded at any place in that polygon, it was assigned

a ‘presence’.

4.7 Practical modelling

4.7.1 Generalized Linear Models and Generalized Additive Models

All GLMs and GAMs were built in R 2.10.0 (R Development Core Team 2009),

the latter using the mgcv package (version 1.5-6; Wood 2006b).

Prior to model fitting, pairwise comparisons of all of the predictors were made by

building a matrix of scatter plots along with values of absolute correlations.
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Bedrock with 

carbonate veneer

Gravelly sand

Sand

Sandy gravel

860 m

850 m

840 m

830 m

Figure 4.4: ArcGIS screenshots demonstrating the intersect tool, using the Hat-
ton Bank substratum polygon layer (top) and converted gridded
bathymetry data (middle) to illustrate the process. The final frame
is the resulting intersect polygon, containing the information from
both intersected layers.
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Where an environmental variable had a Pearson correlation coefficient of 0.7 or

above with another variable (Muller et al. 2009) only the environmental variable

with the lower UBRE score was included in the stepwise model building process.

The presence-absence of gorgonians were modelled as binomial GLMs and GAMs

with a logit link function. Logistic GAMs were applied individually to each en-

vironmental variable. GAMs have the potential to overfit, especially with small

data sets (Bradshaw et al. 2004; Gibson et al. 2007) and two steps were taken to

combat this. Firstly, the default dimension (effectively the maximum number of

degrees of freedom for a given smooth) was reduced from 10 to 4 as has been done

in other spatial modelling studies using GAMs (Randin et al. 2006; Meynard and

Quinn 2007; Embling et al. 2010). It is unlikely that any of the environmental

variables investigated in this study would warrant a higher number of degrees

of freedom. Secondly, in order to prevent potential overfitting to the data, the

default value for the number of degrees of freedom estimated for each smoothing

term in the GCV (generalized cross validation) score (default = 1) was rejected

in favour of 1.4 (Kim and Gu 2004; Wood 2006a).

Variables with outliers were modelled with and without outliers to see if the

outliers had any effect on the significance of the model terms.

A forward stepwise selection was carried out, using only the significant variables,

ensuring that with each addition, model fit improved and the terms remained

significant. The best (and therefore final) model was defined as the model with

the lowest UBRE (Un-Biased Risk Estimator) score. The UBRE score provides

an indication of model fit which also penalises for the number of variables (Wood

2006a). If the final model contained more than one variable, it was also compared

to the simpler model using a chi-square test on model deviance and only retained

if significantly better.
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Variables which the GAM identified as significant but which were modelled as

having a linear relationship with the response variable were subsequently modelled

using a GLM. For univariate categorical models where only one level was found

to be significantly different from zero, the model was compared to a null model

using the chi-square test as above and only retained if the model containing the

categorical variable was significantly better.

4.7.2 Maxent

Maxent was implemented using version 3.3.3 which is freely available from

http://www.cs.princeton.edu/ schapire/maxent. Maxent’s default settings for the

regularization multiplier (1) and and convergence threshold (105) were accepted

(Phillips et al. 2009). A logistic output was selected in order to facilitate compar-

ison of Maxent and regression based model outputs.

4.8 Threshold definition

A threshold is required in order to transform the results of species distribution

modelling from probability to presence or absence, that is, to dichotomise the

predictions (Liu et al. 2005). Liu et al. (2005) recommended using an equal

number of presence and absence records in the build data in order to counteract

potential problems of using threshold sensitive performance indicators, or indeed

the comparison of models with varying thresholds. The consequence of this is

potential loss of valuable information, especially in small data sets where evening

out the build data might result in the loss of a significant proportion of the overall

data, as would be the case with the Lyme Bay data set. A prevalence approach

proposed by Cramer (2003) was adopted:

Threshold = number of presence records
total number of distribution records
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Sensitivity and specificity (two of the performance indicators used in the present

study; see next section) were reported to be relatively insensitive to the proportion

of prevalence data in the model-building data when Cramer’s threshold was used

(Liu et al. 2005). Note however that additional threshold definitions have been

used in Chapters 7 and 8, details of which are provided in the relevant chapters.

4.9 Assessing model performance

The adoption of species distribution model outputs in conservation management

lies in their ability to accurately predict the distribution of the species in question

and managers will seek models that can demonstrate excellent performance in

this respect. The three performance indicators outlined in Table 4.4 were selected

because they offer a transparent and logical assessment of model performance.

The Correct Classification Rate (CCR; Fielding and Bell 1997) provides a measure

of the overall predictive power of the model. Sensitivity was selected because it

penalises for false absences which are ‘costly’ when trying to conserve a species

(Fielding and Bell 1997). Equally, specificity is important because if a model

performs poorly in terms of false positives, this can have negative financial and

time implications for designing monitoring and survey programs (Fielding and

Bell 1997).

Table 4.4: Calculation of threshold dependent performance indicators, from
Fielding and Bell (1997). True positive (TP); true negative (TN);
false negative (FN); false positive (FP); total number of samples (n).
Scores range from 0 to 1, with 1 being the highest possible score.

Performance indicator Method of calculation

Correct Classification Rate (CCR) T P +T N
n

Sensitivity T P
T P +F N

Specificity T N
F P +T N
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In addition to these three threshold-dependent performance indicators, area un-

der the curve (AUC) scores were also calculated. Despite some criticism (Lobo

et al. 2008), the AUC remains a popular metric for model performance because

it assesses performance over all possible threshold values therefore removing the

need to specify a threshold, which can be subjective. AUC scores are calculated

from Receiver Operating Characteristic (ROC) plots where sensitivity is plotted

against 1-specificity. The closer the curve to the top left corner (zero error),

the higher the area under the curve. The AUC is measuring the model’s ability

to distinguish a presence record from an absence record. A score of 1 indicates

that the model has perfect discrimination, whereas 0.5 indicates that the model

is predicting no better than at random. A widely accepted system of scoring

for the AUC (though with varying terminology) dictates that scores above 0.7,

0.8 and 0.9 are, respectively, acceptable, excellent and outstanding (Mingyanga

et al. 2008). This terminology has been adopted for all the performance indica-

tor scores in this study. Lobo et al (2008) recommend the additional use of the

sensitivity and specificity as performance indicators which has been done in this

study. One of the criticisms of Lobo et al. (2008) is that commission and omission

errors (i.e. false positives and false negatives respectively) are weighted equally

in the AUC metric. Whilst for some applications of spatial modelling this might

be inappropriate, the potential contribution of SDMs to both future survey effort

and conservation planning dictate that prediction errors associated with model

outputs from this study should be weighted exactly so.

The performance of the models was assessed using a number of approaches.

Firstly, the fitted values for the final model (using all the data) were compared to

the observed values. Secondly, a threefold cross validation determined the robust-

ness of the model. The full data set was randomly subdivided into thirds with

80



4.10. MODEL PREDICTIONS

the presence-absence ratio between the three groups of data equal, notwithstand-

ing an odd number of distribution records. The entire model fitting process was

repeated with each combination of two thirds of the data (hereafter referred to as

‘training’ data), culminating in the production of a new ‘build’ model. Predictions

based on the final model derived from the training data were then tested on the

remaining third (test data).

Repeated internal resampling was used to generate confidence intervals for the

four performance indicators. Here, two thirds of the data were randomly selected

without replacement and fitted to the final model. Predictions were made on the

remaining data. This was repeated to a total of 1000 iterations for GLMs / GAMs

and 100 times for Maxent, the difference in number being as a result of processing

time and memory requirements. Where comparisons between the performance of

different models were being made, Wilcoxon rank sum W tests (a non-parametric

equivalent to independent samples t-tests; Dytham (1999)) were used to identify

significance differences.

Lastly, the predictions of the final model were assessed using independent data

where available (detailed in the relevant chapters).

4.10 Model predictions

Predicted habitat suitability layers were produced for each model. The Maxent

package produces the predicted layers as standard as part of the output file. For

the GLMs and GAMs, environmental layers were presented to the model as ‘new

data’ on which predictions were made based on the final fitted model. Predicted

layers were subsequently examined in ArcGIS with respect to, for example, test

data, fishing effort and/or relevant spatial management measures.
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Chapter 5

Using species distribution modelling and

spatial fisheries data to inform moni-

toring of benthic recovery in a marine

protected area
Long term monitoring is a key element of the management of marine pro-

tected areas yet it can be costly, often requiring the optimisation of monitoring

site selection. This chapter investigates the potential application of species

distribution modelling to prioritise selection of areas for monitoring of benthic

recovery in a marine protected area, using the statutory closed area in Lyme

Bay as a case study. The closed area was established principally to protect

rocky reefs and their associated epifauna from the effects of benthic trawl-

ing. The pink sea fan (Eunicella verrucosa) can be a dominant member of

rocky reefs in this area and is highly sensitive to mobile benthic gear. Using

E. verrucosa presence and absence records, in combination with data for en-

vironmental variables known to influence gorgonian distribution, a combined

GLM and GAM approach was used to predict gorgonian distribution across

Lyme Bay. The final model explained more than 50% deviance and performed

well under different performance indicators in internal validation although had

a mixed performance when applied to independent test data. Data on the spa-
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tial distribution of fishing effort prior to the closure were superimposed on the

predictions. Areas with a high probability of sea fan presence that were associ-

ated with false positives in addition to past fishing activity were recommended

for inclusion in future long-term monitoring programs of benthic recovery since

it is possible that these areas were disturbed by fishing activity prior to the clo-

sure. This chapter presents a proof of concept for the application of species

distribution modelling to monitoring efforts in marine protected areas.

5.1 Monitoring recovery within marine protected areas

Advocated from local initiatives through to international strategic recommenda-

tions, the use of marine protected areas (MPAs) as a tool for protecting areas

of the marine environment is now recognised as having an integral role in the

sustainable use of marine ecosystems, with legislative commitments to the same

effect. While much attention has been focussed on the initial selection of appropri-

ate sites for MPA designation, and on the configuration of networks of protected

areas, there has also been considerable progress in the development of monitoring

strategies for such areas, including the identification of appropriate indicators,

and evaluation of the effectiveness of the management strategies (Pomeroy et al.

2005; Day 2008; Jackson et al. 2008).

Monitoring is commonly a legal requirement associated with the designation of

protected areas (e.g. Special Areas of Conservation, designated under the EU

Habitats Directive, require six yearly monitoring), and is critical in determining

how well a marine protected area is fulfilling its conservation goals (Gerber et al.

2007). For example appropriate monitoring can facilitate the assessment of recov-

ery from anthropogenic impacts on a site. Long-term monitoring also increases

the understanding of the ecosystem in question (Stein and Cadien 2009), thereby

influencing the protection and monitoring of similar ecosystems in other areas.
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However, the knowledge gained from protected area monitoring programmes, with

respect to the objectives of the protected area, depends critically on the correct

selection of monitoring sites. Monitoring can also be prohibitively expensive and

there is a trade off between the cost of monitoring and potential improvements

in management resulting from the knowledge gained (Gerber et al. 2005; Bax-

ter and Possingham 2011). Yet improved knowledge is an essential component

of the adaptive management cycle and resources are always limited. Therefore

the use of optimisation techniques in conservation planning is crucial (Moilanen

et al. 2009) and, to this effect, a method of optimising appropriate monitoring

site selection is required in order to achieve cost effective monitoring. Rodriguez

et al. (2007) identified the potential for species distribution modelling to support

the identification of areas for future sampling, including monitoring for changes

in population numbers. The spatial nature of the outcomes of species distribu-

tion modelling aids its application in spatially driven management measures. Any

protected area planning requires a habitat map as a starting point (Stevens 2005)

and, in turn, any monitoring program requires a spatial framework within which

the target species can be incorporated. To this effect it could be possible to use

species distribution modelling to provide the spatial framework for a monitoring

program by way of stratifying and optimising the design of survey programs to

maximise cost-effectiveness. Simply put, species distribution modelling has po-

tential as a decision support tool in the identification of appropriate monitoring

sites.

The application of species distribution modelling to conservation in recent years

has been varied. However, predictive modelling studies informing the current

and future management of existing marine protected areas (e.g. Panigada et al.

2008; Bailey and Thompson 2009) are rare, especially for sessile species. More
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specifically, it is a method that has yet to be applied in the context of monitoring

within a protected area although Carlson et al. (2007) applied a GLM to assess the

recovery of a mobile species, the smalltooth sawfish, in the Everglades National

Park. SDMs have not yet been applied to benthic recovery though it has obvious

potential in this field.

5.1.1 Case study area: Lyme Bay

Following the 2008 Lyme Bay closure, the UK Government’s Department for Envi-

ronment, Food and Rural Affairs (Defra) funded a three year project investigating

the ecological and economic implications of the closed area. Two elements of the

three year project, were the identification of indicator species and the subsequent

development of a long-term monitoring program designed to assess benthic recov-

ery (Jackson et al. 2008; Stevens et al. 2008; Attrill et al. 2011). The benthic and

socio-economic elements have both received an additional year of funding from

Defra. Natural England has also agreed to extend the benthic monitoring for a

further year.

The pink sea fan makes a suitable indicator species for long-term monitoring of

the recovery of the Lyme Bay closed area by representing species with a low recov-

erability, low survivability and a low reproductive rate (Hiscock 2007b; Jackson

et al. 2008; Attrill et al. 2011). Being an erect and slow-growing member of the

reef epifauna, Eunicella verrucosa is also vulnerable to mobile benthic fishing gear.

Benthic dredging for pectinids, up to the time of closure, had previously disturbed

areas of seabed which might otherwise have been suitable for the pink sea fan.

Scallop dredging has often been associated with negative impacts on epifauna

and benthic habitats (e.g. Lart et al. 1993; Freese et al. 1999; Collie et al. 2000;

Blyth et al. 2004) and has been cited as a limiting factor on the abundance of the

E. verrucosa, ross coral (Pentapora fascialis) and dead man’s fingers (Alcyonium
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digitatum) in Lyme Bay (Hiddink et al. 2007).

The aim of this chapter is to demonstrate the potential application of species

distribution modelling to the development of a long-term monitoring programme.

Using the Lyme Bay closed area as an example, the specific aim was to identify

sites for inclusion in future programmes of long-term monitoring of benthic recov-

ery following protection from mobile gear using predictive distribution modelling

of E. verrucosa coupled with available data on historic fishing activity.

5.2 Methods

GLMs and GAMs were used to explore the influence of environmental variables

on pink sea fan distribution in Lyme Bay, the methodology for which has been

outlined in Chapter 4 and is summarised below.

5.2.1 Environmental variables

The environmental variables selected for inclusion in the model are detailed in

Table 4.1. The units for the model were created by intersecting each of the

twelve layers (i.e. substratum, depth, current and the annual minimum, mean

and maximum values for SST, SPM and Chl. a) to give a single unique polygon

layer.

5.2.2 Eunicella verrucosa distribution data

Only data collected during video surveys (Black 2007; Stevens et al. 2007) were

used to construct the models. In total, 86 pink sea fan records were used in the

model building process, of which 34 are presence records (Figure 4.1).

5.2.3 Logistic models

A forward stepwise selection was carried out, using only the significant variables,

and the final model was defined as the model with the lowest UBRE score. Vari-
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ables which the GAM identified as significant but which were modelled as having

a linear relationship with the response variable were subsequently modelled using

a GLM.

Maps of predicted pink sea fan distribution based on the model predictions were

produced in ArcGIS.

5.2.4 Assessing model performance

The performance of the models was assessed using a number of approaches (de-

tailed in section 4.9), including the calculation of threshold dependent and thresh-

old independent performance indicators based on predictions made by the full data

set, ‘build’ data sets (a randomly selected sample of two thirds of the full dataset)

and repeated internal resampling. In addition, independent test data was available

to test the predictive power of the Lyme Bay model, derived from video transects

from the first year (2008) of the Lyme Bay monitoring program. The monitoring

data set provided 70 test data points (28 presence, 42 absence).

5.2.5 Fishing activity

The fisheries data was provided by the Devon Sea Fisheries Committee (regional

sea fisheries managers) and detailed the distribution of scallop dredging activity

for the years 2005-2007 based on patrol boat records.

Scallop dredgers working close to reef margins may only fish for 275m or so before

turning around and reworking an area (skipper John Walker, pers. comm.). In

an attempt to display the potential footprint of scallop dredging activity (East-

wood et al. 2007; Stelzenmuller et al. 2008), 275m circular buffers were added to

the point data for scallop dredging activity in order to avoid overestimating the

potential footprint of the scalloping activity. However, the average vessel working

in the area will fish for the twelve hours permitted by the byelaw and with up to
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twelve dredges (Devon Sea Fisheries Committee, pers. comm.) and so in reality

it is likely that the spatial footprint of scallop dredging will be greater.

Data on the spatial distribution of scallop dredging activity was superimposed onto

the binary presence-absence map of predicted E. verrucosa distribution in order

to identify areas that had a high probability of sea fan presence, as determined

by the model, but which were associated with absence records and past fishing

activity.

5.3 Results

5.3.1 Significant variables

Several environmental predictors were identified as having a significant relation-

ship with the distribution of the pink sea fan in Lyme Bay and the structure of

the final models for the full data set and build data sets is detailed in Table 5.1.

Three of the final models were constructed as GLMs because they contained only

categorical variables, therefore dismissing the need for smoothing terms.

Using the full data set, univariate models identified substratum, current, minimum

SST, minimum SPM, mean Chl. a and the scour proxy (spring peak current ve-

locity:maximum suspended particulate matter) as significant variables although

substratum alone was selected by the GLM in the final model. Therefore the pre-

dicted map of distribution aligns exactly with the original map of substrata within

the Bay (Figures 5.1 and 5.2), with ‘rock and mixed substrata’ areas associated

with high probability of pink sea fan presence (0.76). No distribution records were

available on the few ‘rock’ areas of the original substratum map although given

that ‘rock and mixed’ areas are associated with a high probability of pink sea fan

presence it is likely that the ‘rock’ areas will be at least as suitable and these ar-

eas are therefore hatched. The probability of presence on mixed and sedimentary
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ground fell below the threshold (at 0.22 and 3.18−09 respectively).

Table 5.1: Final models for the full data set and three ‘build’ data sets. Scores
for the performance indicators are listed in addition to the adjusted
R-squared which indicates the proportion of variance explained by
the model terms. PA: presence-absence. For the internal resampling,
the mean values and upper and lower 95% confidence limits are
shown for each performance indicator.

Data set All data 

(final model) 

Build 1 Build 2 Build 3 Internal 

resampling 

Final model PA~ 

substratum 

PA~ 

substratum 

PA~  

s(current, k=4) 

PA~ 

substratum 

Final model 

formula  

CCR 0.86 0.93 0.71 0.79 0.86 ± 0.004 

Sensitivity 0.94 0.91 0.91 1.00 0.94 ± 0.004 

Specificity 0.81 0.94 0.59 0.67 0.80 ± 0.006 

AUC 0.89 0.97 0.82 0.83 0.89 ± 0.003 

Threshold 0.4 0.39 0.40 0.39 Variable 

n 86 57 58 56 57 

Adjusted  

R-squared 
0.506 0.422 0.266 0.585 Variable 

Significance of  

terms 

p=0.00603  

(rock) 

p=0.0219 

(rock) 
p=0.0246 

p=0.0115 

(rock) 
Variable 

5.3.2 Model performance

Based on the selected performance indicators the final model performed well based

on internal validation, as did the build models, illustrating mostly high levels of

overall predictive accuracy, sensitivity and specificity (Table 5.1).

The final model for Build 2 included current, as a smooth, and did not perform

as well as the other models. However, predictions were also made using a GLM

constructed with the substratum data from Build 2 despite substratum not be-

ing a significant variable for this build. These predictions performed excellently
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Figure 5.1: Map of Lyme Bay indicating areas (shaded) with a high probability
of Eunicella verrucosa presence. These areas represent the ‘rock
and mixed’ substrata areas in Lyme Bay according to the Devon
Wildlife Trust biotope map. The hatched areas are ‘rock’ areas
which, whilst not represented by any distribution data in the model
building data, are likely to be as least as suitable as the ‘rock and
mixed’ substrata.

(producing an AUC, CCR, sensitivity and specificity of 0.89, 0.86, 0.91 and 0.82

respectively).

The fact that similar significant terms were selected across the final and build

models suggests that the final model is robust.

When presented with the independent data set, the final model was found to

be highly sensitive, achieving a score of 0.86, but performed poorly in terms of

specificity (0.38) which reduced its overall CCR to 0.57. The AUC score based on

test data predictions was 0.61. Of the 70 independent test points, 27 were wrongly

commissioned i.e. false positives. False positives are absence records located in

areas predicted to be suitable for the species or community in question.
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Figure 5.2: Close up of the Lyme Bay closed area. Eunicella verrucosa presence
records and absence records used in the model building are mapped.
The shaded areas are predicted to be suitable habitat for pink sea
fans based on the univariate GLM with substratum. The hatched
areas are also likely to be suitable.

5.3.3 Effect of fishing activity and prioritisation of future monitoring sites

Almost one third of the false positives in Lyme Bay were associated with past

scallop dredging activity, nine of which are in the closed area (Figure 5.3).

Of those nine, seven are outside four small areas previously closed voluntarily to

scallop dredging before the designation of the larger statutory closure and would

not have been afforded this temporary protection. These four voluntary closures,

established in 2006, included two earlier voluntary closures (Lane’s Ground and

Sawtooth Ledges, Figure 5.3) set up in 2001. These two elements (false positive

and historical fishing activity) support the selection and prioritisation of those

areas for inclusion in future monitoring of benthic recovery now that the area is

closed.
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Figure 5.3: Distribution of fishing pressure (buffered point data) in 2005-2007
within the now closed area based on the potential ‘footprint’ of
scallop dredging. The hatched boxed areas represent previous vol-
untary closed areas (from left to right; Beer Home Ground, Lane’s
Ground, East Tennants and Sawtooth Ledges). False positives are
mapped. The stars represent false positives that coincide spatially
with past scallop dredging activity.

5.4 Discussion

5.4.1 Significant variables

The fact that substratum alone was selected by the GLM in the final model for

the full data set and that areas of rocky substrata are associated with a high

probability of presence of E. verrucosa are, arguably, predictable outcomes given

the importance of substratum to sessile species.

The individual logistic models constructed for E. verrucosa in Lyme Bay using

the full data set identified substratum, current, minimum SST, minimum SPM,
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mean Chl. a and the scour proxy (spring peak current velocity:maximum sus-

pended particulate matter) as significant predictors of its distribution. This is in

agreement with those factors commonly reported to be primarily responsible for

the distribution of gorgonians on a local scale which include water movement, sed-

iment transport and substratum (Barham and Davies 1968; Kinzie 1973; Opresko

1973; Carpine and Grasshoff 1975; Hiddink et al. 2007; Hiscock 2007a), and Bryan

and Metaxas (2007) found chlorophyll a concentration to have an influential role

in the distribution of gorgonians on the continental margins of North America.

Water temperature is known to be important in gorgonian reproductive biology yet

the significance of minimum SST in this study is less clear. Given that minimum

SST is highly correlated with depth it is possible that this variable is simply

reflecting the lack of pink sea fan observations at depth (with increasing depth

generally associated with softer sediments in Lyme Bay).

5.4.2 Fishing activity and monitoring site prioritisation

The use of fishing effort data can enhance practical aspects of marine management,

including monitoring survey design (Stelzenmuller et al. 2008), and is especially

useful if linked to the recovery rates of benthic communities (Eastwood et al. 2007).

Spatial data for bottom trawling has recently combined with spatial predictions

of deep-sea stony coral distribution in order to identify areas of vulnerability to

this activity (Clark and Tittensor 2010).

The results indicated that there were areas within the closure that were suitable

for E. verrucosa but at which this species was not found, potentially as a result

of pre-closure fishing activity. By mapping the model predictions and combining

them with spatial fisheries data nine false positives (over one third of the false

positives within the closed area) associated with past scallop dredging activity
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have been identified, five of which are part of the existing monitoring program,

and are recommended for inclusion into future monitoring program design.

Species distribution models have recently been used to optimise survey strategies

and site identification for monitoring the establishment of invasive species (Baxter

and Possingham 2011; Gormley et al. 2011). Here, false positives have been used

to optimise site identification for the long term monitoring of benthic recovery

because it is possible that these areas were disturbed by fishing activity prior to

the closure and may now be recolonised by the pink sea fan over time.

Pearson et al. (2007) argue that false positives are not necessarily failures of the

model because absences at a site may arise from a variety of different reasons.

In other words, absences arising from historical influences can compromise the

predictive power of models (Hirzel et al. 2001).

The effects of scallop dredging and other forms of mobile benthic fishing on ben-

thic communities is well documented and include: significantly reduced benthic

biodiversity compared to static gear only areas (Blyth et al. 2004); significant loss

of fragile epifauna (Freese et al. 1999); reduced structural diversity resulting from

the loss of emergent epifauna (Collie et al. 2000), and the disruption of habitats

and substrata (e.g. (Devon Wildlife Trust 1993; Hall-Spencer and Moore 2000).

Devon Wildlife Trust (1993) also reported a marked reduction in fragile epifauna

in an area fished by scallop dredgers compared to an unfished control site in Lyme

Bay. Where the fishing activity also removes the substratum, as has been the case

on mudstone reef areas in Lyme Bay, extended periods of recovery may be needed

for ecological functioning (Bevilacqua et al. 2006).

However, the majority (roughly two thirds) of false positives within the closed area

do not coincide spatially with the fisheries data presented here, so alternative ex-

planations for non-occurrence must be sought. It is possible that these areas were
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worked by scallop dredgers in years outside those covered by the data, although

such a dramatic spatial shift in focus of fishing effort is unlikely. Nevertheless,

given the slow recovery of the pink sea fan, areas fished ten years ago could exert

an influence on the present day distribution of the species. It is also possible

that the estimate of the spatial footprint of scalloping is an underestimate that

does not accurately reflect the true spatial pattern of fishing effort. Increasing the

buffer to 500m, for example, means that two thirds of the false positives coincide

with the buffered scalloping activity.

After comparing the environmental variables for the absence records in and outside

the buffers, the average values are similar for all parameters. It is likely that

factors outside the scope of the data available over the entire study area influence

distribution here. Many of these absence records are all in the north east of

the closed area with a long south west fetch. Anecdotal information from local

fishers suggests that after conditions of sustained strong south westerly winds,

and particularly when seasonal algal blooms occur, turbidity and sedimentation

rates in this area are high, possibly making them less suitable for E. verrucosa.

It is also possible that the current Lyme Bay substratum map, which is itself inter-

preted from different data sources, does not adequately reflect the heterogeneity

of the reef area. It is important to remember that predicted species distribution

maps are not only subject to error within the predictive model but also underlying

error in the maps of environmental variables used in the prediction.

Biological interactions such as competition and predation have not been consid-

ered and are frequently omitted from species distribution models (Guisan and

Thuiller 2005; Austin 2007). However competition is not thought to have a sig-

nificant influence on the distribution of gorgonians (Yoshioka and Yoshioka 1989;

Mortensen and Buhl-Mortensen 2004; Watanabe et al. 2009).
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5.4.3 Overall model performance

In the absence of any GLM/GAM studies concerning gorgonians or other corals

that have used the same performance metrics as those presented in this chap-

ter, the performance of models for other marine species has been selected for

comparison. Willems et al. (2008) reported a CCR, specificity, sensitivity and

AUC of 78%, 77%, 81.1% and 82.5% respectively using a GLM in their study

of the tubicolous polychaete Lanice conchilega. An earlier study that developed

a GLM for snow petrel nests in Antarctica reported scores of 76%, 73.8% and

77.2% for the same indicators respectively, excluding the AUC, and an overall

accuracy of 69% based on test data (Olivier and Wotherspoon 2006). Based on

a presence-only modelling approach (Maxent, see Chapter 8), Tittensor et al.

(2009) obtained an average AUC score of 0.88 (based on 10-fold cross validation)

for their global model of stony coral distribution on seamounts. More recently,

Howell et al. (2011) obtained an average AUC score of 0.8 (also based on 10-fold

cross validation) and sensitivity and specificity scores of 0.72 and 0.82 respectively

for their model of Lophelia pertusa distribution on Hatton Bank and George Bligh

Bank. An average sensitivity-specificity approaching 90% and an AUC of 0.89,

as obtained in this study for the full model based on internal validation, compare

favourably. However, the model performed poorly in terms of overall predictive

accuracy based on independent test data, the main reason for which was the high

number of false positives. Nevertheless, this needs to be taken into consideration

when applying the model to conservation management within the Bay.

5.4.4 Monitoring implications

Long-term monitoring in the marine environment is costly, and there is strong

pressure to demonstrate that limited resources are used in the most cost-effective

manner. ‘Rationalising’ (i.e. reducing) the number of sites to the highest value
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locations, while keeping the survey design intact, is often required (Day 2008).

Effective monitoring programmes should link changes in ecosystem health to

changes in environmental conditions (Cooper et al. 2009). In the current Lyme

Bay monitoring programme, long lived species are included in a suite of indicators

designed to assess the effects of the closure to mobile benthic gear on the benthic

reef ecosystem. By focusing on ‘potential distribution’ of the pink sea fan, that

is, unoccupied sites in (predicted) suitable habitat (Gormley et al. 2011), this

chapter demonstrates a method that allows the optimisation of monitoring sites

through the identification of false presences that takes into account the ecosystem

health (using pink sea fan as an indicator) and environmental conditions (past

fishing activity).

The development of Marine Conservation Zones (MCZs) around the UK coast,

and indeed the designation of growing numbers of MPAs worldwide will increase

the requirement for monitoring programmes and the concept developed in this

paper can contribute to the growing evidence base upon which future monitoring

programmes can be designed.

Of course, there are many other factors that need to be taken into account when

designing monitoring programmes including the identification of appropriate in-

dicators and reference areas where appropriate, and consideration of the spatial

distribution of past and current activity which is relevant to the objectives of the

closure, all of which have been taken into account in the current monitoring pro-

gramme design (Stevens et al. 2008). Additional optimisation of long-term moni-

toring programs could be achieved by combining the results of similar modelling

studies with other management tools such as the decision framework developed

by Gerber et al. (2007) which would determine the number of years monitoring

required to document marine reserve effects.
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Reviewing the results of monitoring programs can inform future management and

the fundamental importance of adaptive management in the marine environment

is widely recognised (Salafski et al. 2001; Pomeroy et al. 2005; Day 2008; Stein and

Cadien 2009). In the spirit of adaptive management, species distribution mod-

elling offers great potential for inclusion in marine planning. It provides managers

with a mechanism to maximise their available information and the ability to up-

date their contribution simply as new and improved data becomes available.

As a greater number of spatial plans are formally adopted, and the number of

protected areas in our seas increases, the available funding for subsequent moni-

toring programs may have to be scaled down accordingly. Bearing this in mind,

this study provides a proof of concept for the use of species distribution models

to assist in the prioritisation of monitoring sites and thus to add to a growing

number of useful tools available to today’s marine environmental manager.
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Chapter 6

The influence of environmental data

resolution on model performance
Species distribution models can provide a constructive antidote to the dispar-

ity in survey effort in marine systems. Concomitant to this inequality in survey

effort comes high variability in the resolution of available environmental data

and hence the availability of high resolution data for use in predictive spatial

models. Many terrestrial studies have reported that data resolution can influ-

ence the accuracy of model predictions yet comparative studies in the marine

environment are rare, especially in deep-sea areas. This chapter investigates

the effect of using marine environmental data at different resolutions on the

performance of predictive models. Using both study sites, different levels of

environmental data resolution were used to construct three logistic models for

Hatton Bank and two for Lyme Bay. The overall trend was toward model per-

formance increasing with environmental data resolution, with significant differ-

ences in performance found between the different resolution models in both

study sites. The reduction in predictive performance has implications for man-

agement and the wider implications of these results are discussed, together

with recommendations for dealing with different levels of data resolution, call-

ing upon terrestrial research on this topic.
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6.1. SPECIES DISTRIBUTION MODELS AND ENVIRONMENTAL DATA
RESOLUTION

6.1 Species distribution models and environmental data resolution

With deadlines upon governments worldwide for both regional and international

legislative commitments to conservation mandates (including OSPAR, relevant to

the Northeast Atlantic, and the World Summit on Sustainable Development), we

are now in a position where we must reconcile “the need to know versus the need

to act” (Ardron et al. 2008). To this effect, species distribution models have great

potential to support marine conservation planning.

One aspect of habitat modelling that has not been adequately addressed in the

marine environment is that of the spatial resolution of environmental data used

to fit the models.

Data initiatives such as the Ocean Biogeographic Information System (OBIS)

and the Marine Environmental Data and Information Network (MEDIN) have

developed in response to the often fragmented nature of marine environmental

data holdings and have worked to increase the availability of marine environmental

data to end-users. However the resolution of data within such databases continues

to be problematic, with data of various resolutions available. High resolution (10’s

of metres) data availability is sparse with only limited coverage.

Studies in the terrestrial environment have shown that model performance can

vary as a result of a change in environmental data resolution, with both improve-

ment, deterioration and little change in predictive accuracy and/or model gain

reported in various studies as a result of decreasing resolution (Ferrier and Wat-

son 1997; Tobalske 2002; Graf et al. 2006; Bryan and Metaxas 2007; Guisan et al.

2007) and that this, in turn, can influence management implications.

This chapter addresses the current knowledge and aims to determine the effect of

marine environmental data resolution on habitat models from both inshore and

102



6.2. METHODS

offshore sites in terms of model accuracy and efficiency, that is, the total area

of suitable habitat in relation to the percentage of the target species within it.

Predictive accuracy and ecological insight are compared between the models and

implications for conservation management discussed. Ultimately, the appropriate

resolution for spatial analysis depends on the management objectives for which

the model is being developed (Trani 2002). To this effect, this chapter also ex-

amines whether the resolution of environmental data available in the study areas

is relevant to the spatial management of the area and if the model outputs can

provide meaningful input to conservation management.

6.2 Methods

6.2.1 Environmental data

6.2.1.1 Hatton Bank

Data layers of depth, substratum and geomorphology were produced for use in

modelling at the following cell sizes: high resolution (up to 50m), medium resolu-

tion (200m), and low resolution (mixed but a maximum of approximately 750m

(0.0083◦ or 30 arc seconds)).

The high resolution depth layer was derived from multibeam bathymetry grids

at 25m and 50m resolution. The high and medium resolution gridded data were

not available for the whole Bank (Figure 6.1). For the medium resolution data

this meant that only a small number of transects were available for inclusion

in the models. Therefore the medium resolution depth layer was derived from

multibeam bathymetry grids at 200m cell size located on the central summit of

the bank, and the 50 and 25m grids used in the high resolution model regridded,

or ‘downscaled’, to 200m so that medium resolution data was available for the

whole Bank. The low resolution depth layer (30 second grid) was taken from
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the General Bathymetric Chart of the Oceans (GEBCO; IOC, IHO and BODC

(2003)) and was available for the whole Bank.

200m resolution data

25/50m resolution data

Mixed resolution, 

coarse interpretation 

data

Figure 6.1: Availability of the high (HHRM), medium (HMRM) and low
(HLRM) resolution environmental data on Hatton Bank. The
boxed area represents the area covered by Figure 6.2 opposite.

Rescaling environmental data for use in spatial models, such as been done here,

has been shown to have little impact on the performance of some species distri-

bution models although this response was method dependent, that is, robustness

to rescaling varied with different algorithms (Yesson and Tittensor, submitted).

Davies and Guinotte (2011) have recently resampled low resolution environmental

data at a finer resolution in order to improve a global model of habitat-forming

cold-water coral habitat suitability.
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Coarse sediment 

Mixed sediment 

Rock 

Sand and muddy  

sand 

Gravel 

Gravelly sand 

Rock 

Sandy gravel 

(a) Low resolution substratum data layer, Hatton Bank 

(b) High resolution substratum data layer, Hatton 

Bank 

Figure 6.2: This close up of an area on Hatton Bank illustrates the difference
in detail between the low resolution (a) and high resolution (b,
superimposed on the low resolution) substratum layers. Much of
the detail, both in terms of spatial extent and substratum type, is
lost in the low resolution interpretation.
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The substratum and geomorphology layers for both the high and medium resolu-

tion models were interpreted by colleagues at the British Geological Survey (BGS)

using the aforementioned multibeam bathymetry and backscatter intensity grids

(see Howell et al. (2011) for full details of multibeam echosounder acquisition

and interpretation). Low resolution substratum and geomorphology layers were

interpreted by colleagues at the National Oceanography Centre, Southampton

(Jacobs and Porritt 2009), using data derived from the aforementioned multi-

beam echosounder surveys together with additional un-ground truthed multibeam

echosounder data at 200m resolution from the north west flank of Hatton Bank,

and the GLORIA long range, low resolution side scan sonar system, for which

data were available over the whole bank. The GLORIA system’s footprint varies

between 175-675 metres and penetrates the top 5-10 metres of seabed. These low

resolution data layers are therefore of mixed resolution which, whilst including

both the high and medium resolution data, represent a coarse interpretation over-

all (Figure 6.2). All environmental data were prepared for use in the models using

ArcGIS (ver. 9.2).

The respective models, will be referred to throughout as ‘high’ (HHRM i.e. Hatton

high resolution model), ‘medium’ (HMRM) and ‘low’ (HLRM) resolution respec-

tively.

Substratum and geomorphology were modelled as categorical variables. Depth

was modelled as both a continuous and categorical variable, the latter using Jenks

natural breaks (in ArcGIS) to define the categories (Day et al. 2008). As with

the reclassification of the Lyme Bay DWT substrata (Table 4.2), the medium

resolution geomorphology layer was also reclassified into fewer categories in order

to increase the number of distribution records in each of the categories (Table

6.1).
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Table 6.1: Hatton Bank medium resolution geomorphology and Lyme Bay low
resolution substratum classifications

New geomorphology class Original (Jacobs and Porritt 2009) Hatton Bank
200m resolution geomorphology classes included

Relatively flat seabed Relatively flat seabed

Elongate feature Escarpment; flank

Complex erosion feature Furrow; iceberg plough mark; scour

Positive topographic feature Pinnacle mound; ridge; ridge crest

New substratum class Original Lyme Bay UKSeaMap seabed landscape
classes included

Rock Rock

Mixed Mixed sediment

Sediment Coarse sediment; mud and sandy mud;
sand and muddy sand

6.2.1.2 Lyme Bay

Unlike Hatton Bank, where data for several predictors was available at different

resolutions, the majority of variables were the same between the low and high

resolution Lyme Bay models (LLRM and LHRM respectively) with the exception

of substratum and depth. Here, the DWT biotope map represents the high res-

olution substratum data. This layer is also a mixed resolution layer interpreted

from different sources (see Chapter 4 for details). The ‘low’ resolution layer is

represented by the UKSeaMap 2010 substratum layer which includes seabed sub-

strata (see Connor et al. (2006) for comprehensive methodology for the UKSeaMap

project). Each grid cell was 0.02 decimal degrees (approximately 3.17 km2). The

UKSeaMap categories were modelled using their original categories and also as

a reclassified version in order to increase the number of records in each category

(Table 6.1). The low resolution depth layer was downloaded as a polygon, with a

resolution of 1.8 km, from the Atlas of UK Marine Renewable Energy Resources.
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6.2.2 Distribution data

Video transects, and the distribution data subsequently obtained from them, rep-

resent very high resolution data because they can offer continual observation of

the seafloor over a certain distance. The use of video data to investigate the ef-

fects of environmental data resolution in species distribution models is especially

interesting because the resolution of the video data can be severely limited by

the resolution of the environmental data. For example, if reducing video transect

derived species observations to one presence or absence record per grid cell then

the number of species observations over 25m gridded acoustic data will be much

higher than the number of observations for a 100m grid, as illustrated in Figure

6.3. Gorgonian distribution data was obtained from video footage in both study

areas, the methodology for which has been outlined in Chapter 4.

Guisan et al. (2007) observed that at coarser environmental data resolution, po-

tentially more distribution data are available because distribution data with a

lower georeferencing accuracy might ‘fit in’ to the larger cell size. However, the

methodology adopted for this study (i.e. reducing video data to one presence-

absence record per intersect polygon) means that the exact opposite is true and

that with larger cell size a smaller number of records are available for use in

the model. In addition, the ratio of presence to absence points in the dataset

(prevalence) changes at different cell sizes.

6.2.3 Modelling approach

The modelling approach adopted follows that outlined in Chapter 4. However, as

differences in sample size and prevalence can influence model performance (Bryan

and Metaxas 2007; Guisan et al. 2007; Pearson et al. 2007) internal resampling

was repeated, standardising for the size and prevalence of the calibration dataset.
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25m grid 50m grid 100m grid

Transect derived species observations: gorgonian presence         gorgonian absence

Decreasing resolution of  environmental data 

Figure 6.3: Diagram demonstrating the influence of gridded environmental
data on the number of species observations (red dots representing
presence records; black dots representing absence records) derived
from video transect data. As resolution decreases (and cell size in-
creases), the greater the reduction of observations across that cell.

The large difference in sample size between the different Hatton Bank models

(n=120, 204 and 936 for the HLRM, HMRM and HHRM respectively) has the

potential to influence the relative performance of the models and mask any true

influence of data resolution. Given that the lower resolution dataset had the

smallest number of presence records (Table 6.2), the size of the calibration dataset

was set accordingly. Based on these criteria, resampling was performed with

34 presence (two thirds of the number of presence records in the low resolution

dataset) and 34 absence records, repeatedly and randomly selected from each of

the three data sets.
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The same standardisation was carried out for the Lyme Bay data (using 22 pres-

ence and 22 absence records) although there was only a small difference in the

number of records between the two models.

The final models were, however, built and mapped using the full data set because

this is the reality of constructing models at different resolutions, where coarser

resolution models will always have comparatively fewer data points.

Only three presence-absence records were represented in the HLRM mud and

sandy mud substratum category. This caused problems for the automated random

resampling because often, none of the three records were selected in the build data,

meaning that no predictions could be made on those records in the test data. To

prevent this problem, the resampling code was adjusted so that two of these three

records were always in the build data. Whilst this removes the random element of

the selection process, it was considered preferable to removing the three records

from the resampling entirely.

As with Chapter 5, independent test data were available as an additional assess-

ment of model performance for the Lyme Bay models.

6.3 Results

6.3.1 Significant variables

The structure of the final models for both study sites is outlined in Table 6.2 along

with performance indicator scores obtained from the repeated internal resampling.

6.3.1.1 Hatton Bank models

Substratum was found to be the most influential variable in all three models. In

each case, the probability of gorgonian presence increased with the hardening of

substrata as illustrated by the high resolution model (Figure 6.4).
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Geomorphology was found to have a significant influence on gorgonian distribution

in both the HHRM and HMRM with positive and elongate topographic features

respectively associated with the highest probabilities of occurrence. Figure 6.5

illustrates the increasing proportion of presence records with increasing relief for

the HMRM. Erosion features (features that have negative relief with respect to the

surrounding seafloor) had the most negative influence on gorgonian distribution

in both models, followed by relatively flat areas of seabed. The HMRM using the

reclassified geomorphology, although not significantly different from the original

classification geomorphology univariate model, was found to be the best model

when combined with substratum.

Depth was also found to be significant in all models. Following stepwise selection

the categorical depth variable was included with substratum in the final HLRM

and HHRM, explaining a significantly higher proportion of deviance than sub-

stratum alone (Anova, p=0.009 and p=<0.001 respectively). Depth categories 2

(592-675m; HLRM) and 4 (777.93-874.40m; HHRM) had the highest proportion

of presence records. In all Hatton models, probability of occurrence decreased

below ∼700-800m depth and for the HHRM and HMRM this decline was steep.

The build models for each of the Hatton Bank models all contained variables

included in the final model built using all the data suggesting that these models

are robust.
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I

Increasing probability

Figure 6.4: Probability of gorgonian occurrence with error bars, on a logistic
scale, at each level of the categorical substratum variable for the
HHRM. Sand (S), gravelly sand (gS), sandy gravel (sG), gravel
(G), rock (R) and rock with a carbonate veneer (Rc). Photographs
illustrate changes in substratum.
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Figure 6.5: Design plot for the HMRM geomorphology model. The vertical
axis shows the mean value per level of the categorical variable. The
higher the value, the greater the proportion of presence records in
that level.

6.3.1.2 Lyme Bay models

Unlike the LHRM, where substratum explained 51.8% and was highly significant,

the UK SeaMap substratum layer was not found to be significant in explaining

the presence of pink sea fans in Lyme Bay.

Current explained ∼29% deviance in the Lyme Bay models with probability of

occurrence unlikely when spring peak current velocity exceeds approximately 0.4

m s −1 (Figure 6.7). Current was the sole variable in the final LLRM.

Probability of occurrence had an inverse relationship with minimum SST (LLRM

and LHRM) and minimum SPM (LHRM). A humped relationship was observed
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Figure 6.6: Generalized additive model illustrating the relationship between
current speed and pink sea fan distribution based on the low resolu-
tion Lyme Bay model. Degrees of freedom for the smooth included
in y axis label. X axis rug denotes observations.

between mean Chl. a (LHRM) with probability of occurrence highest at ∼2 mg

m−3.

For Lyme Bay, two of the three build models for the LLRM and LHRM had the

same structure as the final models with all the data.

6.3.2 Model performance

6.3.2.1 Hatton Bank model

Significant differences were found for all four performance indicators after running

Wilcoxon rank sum W tests (Appendix C). The HHRM consistently outperformed
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the other models for each indicator, with mean values near or exceeding 0.8 (Figure

6.7, Table 6.2).

  CCR     Sensitivity Specificity    AUC 

0.9 

0.8 

0.7 

0.6 

S
c
o

re
 

(a) Full data set 

(b) Standardised data set 0.9 

0.8 

0.7 

0.6 

HLRM 

 

HMRM 

 

HHRM

 

  

Figure 6.7: Mean scores ± 95% confidence limits for (a) the full data set and
(b) the standardised data set Hatton Bank models. Correct Clas-
sification Rate (CCR); Area under the curve (AUC).
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The HMRM has the poorest performance of the three models for each indicator.

The relative performance of the models remained the same after the resampling

had been standardised, providing confidence that sample size and threshold are

having no significant effect on the relative performance of the models.

In addition to differences in mean performance indicator score, standard deviation

consistently decreased with increasing resolution for each of the four performance

indicators with only one exception (standard deviation for sensitivity was lower

for the HLRM than for the HMRM).

6.3.2.2 Lyme Bay model

The Lyme Bay model constructed with the DWT substratum layer significantly

outperformed the lower resolution model for all four performance indicators based

on Wilcoxon rank sum W tests (Appendix D, Figure 6.8). As with the Hatton

Bank models, these highly significant differences remained when the data was

standardised.

6.3.3 Spatial outputs

Due to the difficulties of presenting meaningful maps at such large scales, a binary

map has been produced for four of the five final models (the LHRM map was

presented in the previous chapter) in accordance with the respective prediction

thresholds (Figures 6.9 - 6.12). Similar maps colour coded to a range of values

on the logistic probability scale were visually inadequate given the size permitted

by this format and fine scale detail was lost from the higher resolution Hatton

Bank maps. Instead, Figure 6.12 illustrates how predictions differ across the

three different resolution models on an area of the central Hatton Bank.

Using all gorgonian records available in the distribution data, binary maps of habi-

tat suitability for the HLRM, HMRM and HHRM respectively contained 91.4%,
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90.8% and 91.4% of gorgonians in above-threshold areas, which can be considered

highly successful. For Lyme Bay, the percentage of gorgonian records located

within predicted suitable areas (including the independent test data), was 83% in

the low resolution model and 92% in the high resolution model.

Figure 6.8: Boxplots illustrating the distribution of performance indicator
scores between Lyme Bay models. The whiskers indicate the lowest
and highest data still within 1.5 interquartile range of the lower and
upper quartiles. LHRM data shown in red.
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Figure 6.9: Binary map of pink sea fan distribution in Lyme Bay, according
to a GAM fitted with the smoothed term current (LLRM). Areas
predicted to be suitable for the pink sea fan are shaded in red. Light
blue areas considered unsuitable, or at least, below the probability
threshold of 0.39.
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6.4 Discussion

6.4.1 Significant environmental variables

The importance of the various environmental predictors selected by the Lyme Bay

models has been discussed previously (see section 5.4.1 for further explanation).

The role of substratum as a dominant influence on gorgonian (Mortensen and

Buhl-Mortensen 2004; Watanabe et al. 2009; Edinger et al. 2011) and other deep-

sea coral distribution, is well documented (Rogers 1999; Bett 2001; Dolan et al.

2008; Durán Muñoz et al. 2009) and the importance of hard substrata availability

to gorgonian distribution is evident in each of the Hatton Bank models. Based on

the logistic model outputs, probability of occurrence centres solely on rocky areas

in the HLRM. In the HMRM and HHRM, occurrence is predicted to occur not

only on rocky areas but also some gravel areas and, in the case of the HMRM,

some sandy gravel areas. The highest predicted probabilities are reserved for

rocky areas alone. Yet the availability of rocky substrata, including cobbles and

boulders, does not on its own predetermine gorgonian occurrence, as demonstrated

by Mortensen and Buhl-Mortensen (2004) and Watanabe et al. (2009) who found

many unoccupied boulders and cobbles. Significant negative associations between

sand and gorgonians have been reported for deep-sea gorgonians off Nova Scotia

(Watanabe et al. 2009) which also support the results presented here.

Geomorphological features have been linked to differences in faunal composition,

including the distribution of deep-sea gorgonians (Mortensen and Buhl-Mortensen

2004; Edinger et al. 2011), and the preference of corals for topographic highs is

often reported (Genin et al. 1986; Rogers 1999; Duineveld et al. 2007; Dolan et al.

2008; Guinan et al. 2009b; Durán Muñoz et al. 2009) in addition to reduced abun-

dance or occurrence in bathymetric depressions (Guinan et al. 2009a). Therefore
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6.4. DISCUSSION

it is not surprising that positive features were associated with the highest proba-

bilities for the HMRM and HHRM. The two geomorphological layers in the HLRM

were not found to be significant although this may be explained by the distribu-

tion of records among different levels of the two categorical variables representing

geomorphology.

Assessing the contribution of depth is more problematic. Closer inspection of the

depth category in the HHRM reveals that the levels associated with increased

probability of occurrence (levels 2 and 4) have respectively the third and first

highest percentage of rocky records (taking rock and rock with carbonate veneer

together) out of the five levels (Table 6.3). A similar pattern was found for the

HLRM. This could reflect sample effort. In the HMRM probability of occurrence

showed a marked decrease below ∼800m depth although again this pattern could

be related to substratum because 18% of records shallower than 800m were rock

whereas rock represented only 8% of records deeper than 800m. However, depth

and substratum had a very low correlation across all three models.

Although Mortensen and Buhl-Mortensen (2004) and Watanabe et al. (2009)

found depth to have an influence on deep-sea gorgonian distribution in the North-

east Channel (Atlantic Canada), this was thought to be as a result of factors that

co-vary with depth (temperature for example) rather than depth per se. Depth

was included in two thirds of the final models for a presence-only (Ecological

Niche Factor Analysis; ENFA) modelling study of deep-water gorgonians (Bryan

and Metaxas 2007).

The three Hatton Bank models explained, at most, just over a third of the vari-

ance within the data and it is possible that factors operating at smaller scales than

captured by even the highest resolution are exerting an influence on gorgonian dis-

tribution. A single cobble is sufficient to support a gorgonian colony (Mortensen
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Table 6.3: Representation of different substrata within each depth class for the
Hatton high resolution model. The highest (dark shading) and low-
est (no shading) percentages for each substratum level are high-
lighted. The categories ‘rock’ and ‘rock with a carbonate veneer’ are
considered together. Depth categories are arranged in descending
order of probability. The table illustrates a shift from the highest
proportion of rocky substrata in the depth categories with the high-
est probability of occurrence through to highest proportion of soft
substrata in depth categories considered unsuitable for gorgonians.

Depth 

category 

(depth in 

metres) 

Percentage of  records within respective depth category  

Rock and rock 

with carbonate 

veneer  

Gravel Sandy gravel Gravelly sand Sand 
Total number 

of  records 

1 (495-583) 19.3 2.3 28.1 46.2 4.1 171 

2 (583-671) 14.4 29.9 35.9 17.4 2.4 167 

3 (671-778) 4.9 7.6 39.6 27.8 20.1 144 

4 (778-874) 21.2 3.3 20.8 16.7 38.0 245 

5 (874-952) 3.4 2.9 15.8 36.8 41.1 209 

Total 

number of  

records 

123 79 249 266 219 936 

and Buhl-Mortensen 2004) and gorgonians ostensibly on sandy substrata might

in fact be on small cobbles within the sand habitat. As previously mentioned in

Chapter 5, biological interactions including predation and inter-specific competi-

tion are not captured by these static models although they may exert considerable

influence on the patterns of gorgonian distribution observed. In addition, human

activities including bottom fishing can profoundly impact benthic communities

and this is especially true of fragile epifauna. The effects of bottom trawling on
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deep-sea fauna are well documented and because of the slow growing nature and

unknown recoverability of many deep sea corals it may be that areas previously

suitable for supporting gorgonian colonies may never recover from previous fishing

effort (Rogers 1999; Mortensen et al. 2005; Wheeler et al. 2005a,b; Davies et al.

2007; Rogers et al. 2007). [See also section 5.4.2].

6.4.2 The influence of environmental data resolution of model performance

Studies concerning the effects of data resolution on the performance of species

distribution models commonly select arbitrary resolutions at which to test the

model (e.g. Trani 2002; Bryan and Metaxas 2007; Guisan et al. 2007; Guinan et al.

2009b) or, at least, do not make explicit the link between the selected resolution

and relevance to management. In this chapter, environmental data resolutions

have been chosen based on the fact that these data are directly applicable to

management and spatial planning because they are the data that are currently

available to support management in each area.

In Lyme Bay, the model built with the Devon Wildlife Trust substratum data

consistently outperformed the model built using UKSeamap substratum data,

supporting the notion that higher resolution data leads to improved model per-

formance (Ferrier and Watson 1997; Guisan et al. 2007). The HHRM model also

consistently outperformed the HLRM and HMRM across the four performance

metrics based on internal validation and achieved excellent average performance

indicator scores.

The poor performance of HMRM with respect to HLRM is harder to explain,

especially because the HLRM outperformed it on all four performance indicators.

However, another deep-water gorgonian predictive modelling study reported that

the mean value of seascape factors in the ENFA analysis varied less between the
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results of models built with medium (5km grid) and low resolution (9km grid)

data than between models built with medium and high resolution data (1km

grid) (Bryan and Metaxas 2007).

With respect to data quality, the HHRM data came from a system that had been

calibrated to work to a maximum of 1000m and is therefore potentially better

quality than the HMRM data which came from a system calibrated to work over

a large depth range. The HLRM data has multiple sources and so is of variable

quality.

Figure 6.13 reveals that the interquartile range for the HMRM often extends to

lower scores for the lower and upper quartiles, when compared to the HLRM.

Looking at the 100 lowest scoring models for each of the four performance indi-

cators reveals that almost half of these (n=49) were common to three or more

of the performance indicators in the HLRM. The same inspection of the HMRM

data revealed that less than one third (n=32) were similar across three or more

of the indicators. So differences in model performance can neither be attributed

to differences in the random selection of the data or a particular combination of

variables contributing to the lowest scores.

The relative performance of the HLRM and HMRM contradicts the results ob-

tained in some studies. Bryan and Metaxas (2007) reported little change in model

performance after changing the resolution of different layers. However this may be

a result of the authors simply interpolating one data set at different resolutions,

as opposed to comparing different data layers entirely. One possibility for the

improved performance of the HLRM with respect to the HMRM is the generalisa-

tion of the input layers. Guisan et al. (2007) have suggested that coarsening data

causes the merging of conditions that might not actually occur together, simply

nearby, and that the unique detail of those individual locations might be lost as
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Figure 6.13: Boxplots illustrating the distribution of performance indicator
scores between models. The whiskers indicate the lowest and high-
est data still within 1.5 interquartile range of the lower and upper
quartiles. HLRM, no shading; HMRM, dark shading; HHRM,
light shading. Correct Classification Rate (CCR); Area under the
curve (AUC).

a result. However, for sessile species this might actually serve to improve model

performance on face value. The merging of data into coarser units might lead

to the right combination of suitable conditions within a cell despite these con-

ditions not actually strictly overlapping spatially (Guisan and Thuiller 2005, see

Figure 6.14 for explanation). This could ultimately result in an overestimation of

model performance and potential problems if the model outputs were being used

to target future survey effort.

Crucially, it is the highest resolution data in both the Hatton Bank and Lyme Bay
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Figure 6.14: Illustration of potential consequence of merging / averaging spatial
data with respect to species distribution modelling. On the left,
the illustration shows a gorgonian record located within an area
of sandy, relatively flat seabed between two bedrock outcrops. On
the right, the data has been rescaled according to the maximum
area of features in the cell, the result being that the data presented
to the model is now a gorgonian record on a rocky pinnacle, as
opposed to on sandy flat seabed.

study sites that performed significantly better than the other(s) and it is important

to discuss the implications of this for conservation planning and management in

each area.

6.4.3 Management implications

Although the influence of environmental data resolution on predictive power has

been the focus of a number of studies, as previously discussed, little attention has

been given to the subsequent connotations for management. Specifically, critical

appraisal of any spatial differences in model output from the different resolution
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models (total area of predicted suitable habitat for example) appears to be entirely

lacking.

Using the binary mapped output for all three Hatton models, more than 90%

of known gorgonian records were included in ‘suitable’ (above-threshold) areas.

The total above-threshold area for the HLRM and HMRM (223.8 and 271.7 km 2

respectively) is a much larger area than that of the HHRM (113.8 km 2).

Efficiency, defined as the total area required for maximum protection of gorgonians

(cf. conservation effort; Schlacher et al. 2010), is illustrated for the Lyme Bay and

Hatton Bank models in Figure 6.15. Mirroring the relative performance of the

models, it is the HHRM that is the most efficient, followed by the HLRM and

HMRM on Hatton Bank and the high resolution model that is more efficient than

the low resolution model in Lyme Bay. The Lyme Bay high resolution model is

almost three times as efficient as the low resolution model with a total above-

threshold area of 177 km2. In addition 92% pink sea fans records were included in

this above threshold area whereas only 83% were included in the above threshold

area of the low resolution model, and at a spatial cost of 552.8 km2. In other words,

the highest resolution model includes a higher percentage of gorgonians at lower

spatial cost. Cost efficiency in a conservation context is an important concept

because it is more likely to be defensible in areas with high competition for space

(Wilson et al. 2009), where managers may have to exclude or restrict the spatial

extent of certain activities and will therefore be looking for the most efficient

solutions. Furthermore, where percentage targets are included as a conservation

objective or management target, for example aiming to protect 25% of suitable

gorgonian habitat, then these figures will be significant.

The detailed maps in Figure 6.16 also illustrate the concept of efficiency. The

maps illustrate the differences in total area of predicted suitable habitat between
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the HLRM and HHRM on a small area at the southern end of Hatton Bank where

each model protected 100% of gorgonians.

The cost of survey work also warrants consideration and links back to differences

in model performance as a result of resolution. The use of coarse resolution data

was a criticism of an early deep-sea modelling study because of its inability to

accurately resolve the true nature of the habitat (Etnoyer and Morgan 2007) so it is

important that the means justify the end, especially when conflicting results have

been reported with respect to resolution of data. Does the gain in model efficiency

and performance justify the additional expense of collecting new higher resolution

data? Muller et al. (2009), in their study on the Hazel Grouse Bonasa bonasia,

found that although collecting high resolution field survey data took significantly

longer, data derived from aerial photographs only slightly underperformed the

model built with the finer data, therefore calling into question the justification for

the additional expense associated with field survey data.

Given the high cost of collecting additional data offshore, and the fact that the

deep sea is generally managed at a coarse scale (ICES statistical rectangle; Figure

6.17), consideration should be given to the resolution of acoustic data needed to

produce predictive maps. In Lyme Bay, where spatial competition is arguably

much higher and the costs of collecting data comparatively cheaper, that justifi-

cation is simpler. Indeed in Lyme Bay, a new high resolution acoustic survey has

recently been completed and it will be interesting to see how this influences the

performance of subsequent models once the data are available.

The overall predictive power of the models in this chapter and their ability to

discriminate between presence and absence records was at worst acceptable and,

in some circumstances, excellent suggesting that use of any of the data resolutions

would be appropriate for conservation management in data limited situations.
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Figure 6.16: Spatial comparison of the efficiency of the HLRM and HHRM
outputs for south Hatton Bank. Gorgonian records are marked
by the dots. Blue areas indicate areas below the predicted proba-
bility threshold. Predicted probability values above the threshold,
denoted by the warm colours, are detailed in the legend.
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The lower resolution models often achieved excellent scores yet with spatially

inefficient predictions. Therefore, based on the comparative performance of the

models within both study areas, and when spatial efficiency was also considered,

it was the high resolution models that consistently performed best. In addition

some habitats of conservation concern, such as coral covered carbonate mounds,

are small scale features that could only be detected and therefore mapped, with

high resolution acoustic survey data.

It is prudent to be aware of the differences in model performance, and hence

management and conservation gain, that can result from using data at different

resolutions so that there is an impetus to adopt adaptive management principles.

Adaptive management recommends a cyclical approach to management whereby

experience learned along the way can feed back into the management system so

that management can improve as it evolves (Salafski et al. 2001; Day 2008). Tak-

ing this principle into consideration, managers who are using predictive model

outputs such as predictive maps should update the models and predicted layers

if new and improved data becomes available. This is especially true for those

variables found to have a significant influence on the distribution of the target

species because it may lead to increased predictive accuracy and, ultimately, gain

for management through e.g. more accurately targeted survey effort and/or in-

creased conservation gain through more accurate spatial protection measures. In

other words, existing data layers allow us to move forward with species distri-

bution modelling but it is imperative to revisit and improve the models when

possible.
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Figure 6.17: Map of ICES rectangles. Map courtesy of the Technical University
of Denmark, National Institute of Aquatic Resources (DTU Aqua)
from www.ices.dk
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Chapter 7

Predicting outside the box; the use of

proxy areas in species distribution mod-

elling
Impending deadlines for biodiversity conservation targets and emerging policy

on marine spatial planning dictate that information on the distribution of marine

species and habitats is of utmost priority. The expense of survey work in the

marine environment, and the vastness of open ocean areas, has meant that

biological data is unavailable for many deep-sea areas. It is possible to ‘trans-

fer’ the predictions made by models calibrated using data from one area onto

another, providing that data for the relevant environmental predictors are avail-

able. However, the transferability of such models has received relatively little

attention in the marine environment and it is not known if this provides useful

results. This chapter investigates how well models built using data from one

area predict the distribution of species in other areas with similar environmen-

tal characteristics, and builds upon the issue of data resolution, as discussed

in the previous chapter, to determine if the resolution of environmental data

used to build the model influences the model’s transferability. Binomial Gen-

eralized Linear Models calibrated with Hatton Bank data for each of the three

levels of environmental data resolution were transferred to George Bligh Bank.

Rosemary Bank was an additional test site for the low resolution model. Based
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on a suite of performance indicators, none of the models transferred well and,

in the majority of cases, achieved a much lower score for each of the per-

formance indicators than in the area the model was calibrated. The medium

resolution model transferred best overall (with respect to performance indica-

tors), in direct contrast to its performance in the previous chapter. However,

the transferred models still provided useful information about the test sites and

their potential contribution to management is discussed.

7.1 Model transferability

Most species distribution modelling studies predict the location of suitable habitat

within and around the distribution records used to build the models (Randin et al.

2006; Zanini et al. 2009). Put simply, the spatial habitat models fill in spatial

knowledge gaps in a particular area. Less common is the application of models

to new areas outside that of model calibration (Graf et al. 2006; Strauss and

Biedermann 2007; Olivier and Wotherspoon 2008; Sundblad et al. 2009). The

potential for models to be used in this way has positive implications for several

facets of marine environmental management including guiding future survey effort,

identifying areas that are potentially vulnerable to the establishment of invasive

species and investigating how populations might respond to climate change.

The transferability or ‘transposition’ (synonymously referred to as ‘generalisabil-

ity’ or ‘generality’ in the literature) of models refers to their ability to be calibrated

in one context and successfully applied in another (Phillips 2008). Or in other

words, a transfer from the area on which the model was based to a new but related

environment. Despite the obvious potential benefit of models with high levels of

generality in the marine environment, this subject has received little attention,

especially in deep-sea areas where survey work is, comparatively, much more ex-

pensive. Yet because the deep ocean is less variable than shallower water areas
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over larger spatial scales the ability to transfer models would be particularly use-

ful and seems likely to be applicable. Recent searches for generality studies of

species distribution models in the marine environment revealed only a handful of

examples (e.g. Jensen et al. (2005); Pittman et al. (2007)), none of which were

in deep-water areas. The research in this chapter is therefore not only novel but

crucial in determining the potential for the wider applicability of deep-sea models.

Transferability studies can broadly be split into those studies assessing temporal

transferability (Jensen et al. 2005), that is, using a model calibrated with data

from one time period to predict the presence or abundance of the species in an-

other, and those assessing geographical or spatial transferability (Graf et al. 2006;

Randin et al. 2006; Pittman et al. 2007; Olivier and Wotherspoon 2008; Bamford

et al. 2009). Studies addressing both temporal and spatial transferability (Strauss

and Biedermann 2007; Sundblad et al. 2009) appear to be less common.

One of the challenges in transferring models from one time or space is that response

curves generated from the calibration data are frequently “incomplete descriptions

of the responses of species to environmental predictors” (Thuiller et al. 2004).

Hence, this realised niche is a truncated picture of the potential species range and

this restriction will be passed onto the new data which may well extend beyond

this range. Using data from different regions to calibrate the model is one way

to improve transferability and combat the fact that dominant landscape features

from certain areas can stunt the potential transferability of models between areas

(Graf et al. 2006; Bamford et al. 2009).

Scale has also been implicated in differences in predictive performance with respect

to generality. A study on snow petrel (Pagodroma nivea) nests in East Antarctica

reported that the predictive performance of models calibrated with habitat scale

data generalized better than those fitted with nest-scale characteristics (Olivier
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and Wotherspoon 2008). After demonstrating the significant influence of environ-

mental data resolution on model performance in the previous chapter a logical

progression is to investigate its influence on model generality.

This chapter therefore aims to answer two questions:

(1) How well do models calibrated in a discrete area of the deep Northeast Atlantic

(Hatton Bank) transpose into other geographically independent areas?

(2) Is model transferability influenced by the resolution of environmental data used

in model calibration? In other words, are models based on fine resolution data

better able to predict species distribution in other areas or is coarser resolution

data a better approximation to other environments?

The final Hatton Bank models for the three different resolution data sets from the

previous chapter have been used to investigate the influence of scale on transfer-

ability.

7.2 Methods

7.2.1 Calibration site

Hatton Bank was selected as the calibration site (the site from which data is used

to fit the models) due to the high number of transects and associated distribution

records available on the Bank and also due to the availability of three different

resolutions of environmental data, as discussed in the previous chapter. The

Hatton Bank low, medium and high resolution habitat models are respectively

referred to as the HLRM, HMRM and HHRM.

7.2.2 Test sites

Notwithstanding data availability, the main requirement for a suitable test site

was that the environmental data should be within a similar range to that of the
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calibration site. Predicting outside the range of environmental data that the

model was calibrated in (known as ‘extrapolation’) has not been investigated in

this study, one of the main reasons for which is the significance of categorical

variables in the final models, which are not suitable for extrapolation in the same

way that continuous variables are.

Rosemary Bank and George Bligh Bank (Figures 7.1 and 7.2), the test sites, were

selected based on the above criteria. Both sites are east of Hatton Bank. Based on

the shortest distance between distribution records at each of the sites, the Hatton

Bank site was 38 km and 253 km from the George Bligh and Rosemary Bank test

sites respectively. George Bligh and Rosemary Banks are 162 km apart.

The following summary information about the test sites is taken entirely from Ja-

cobs (2006). Survey work undertaken during Strategic Environmental Assessment

7 (offshore areas to the west of Scotland) revealed that both test sites have inter-

esting geomorphological features including iceberg plough marks, ridge and trough

couplets and channels (George Bligh), and ridges and parasitic cones (Rosemary

Bank). Both Rosemary and George Bligh are moated, the base of the deeper parts

of Rosemary Bank’s moat lying at over 2300 m depth. The summit of Hatton,

George Bligh and Rosemary Banks lie at around 500 m water depth but some of

the parasitic cones on Rosemary rise up to exceed the average summit depth by

more than 150 m. See Jacobs (2006) for a comprehensive description of geomor-

phological features at the test sites and at several other areas in and around the

Rockall Trough.

As a result of the incomplete coverage of high and medium resolution data (Table

7.1) in the Northeast Atlantic, only the George Bligh Bank was suitable to test

the transferability of all three resolution models whereas Rosemary Bank was only

a test site for the HLRM.
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Although some transferability studies have calibrated models at two or more sites

and then tested the successful application of the models on each of the other sites,

this was not possible in this study due to lack of available data. For example, only

a small number of records were available at the test sites, especially in comparison

with the Hatton site, meaning that building a new model was not appropriate.

Indeed, exploratory modelling with the low resolution data at one test site (based

on a sample size of 24) revealed no significant predictors based on GAMs fitted

to each of the environmental predictors.

Figure 7.1: Three dimensional view of Hatton Bank, George Bligh Bank and
Rosemary Bank and their location in relation to the UK continental
shelf.

Having two test sites (George Bligh Bank and Rosemary Bank) for the low reso-

lution data meant that it was possible to build new models with the Hatton data

plus one of the test sites (referred to as ‘combination’ models from hereafter) and

test the transferability on the remaining test site in order to investigate whether

fitting models with data from more than one region improved the predictive per-

formance in others, as suggested by Bamford et al. (2009) and Graf et al. (2006).
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To achieve this, models were constructed following the methodology outlined in

Chapter 4.

The two combination models were as follows:

(1) a combined Hatton / George Bligh model, tested on Rosemary Bank, and

(2) a combined Hatton / Rosemary model, tested on George Bligh Bank.

No variables were found to be significant in the Hatton Bank / George Bligh Bank

combination model and this model has not been developed any further.

Table 7.1: Availability of various resolution environmental data across Hatton,
George Bligh and Rosemary Banks.

7.2.3 Data preparation

Environmental layers for the test sites were intersected as previously done for

Hatton Bank (Chapter 4). To reduce variability in performance assessment, the

video transect data from the test sites were also reduced to one presence or absence

record per intersect polygon. The intersect polygon’s attribute table was exported

from ArcGIS and added as ‘new data’ into R. Predictions onto the new data were

made from each of the three different resolution models. Model predictions were
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mapped in ArcGIS and compared to transect derived presence-absence data in

the test areas.

Unpredictable effects may arise as a result of extrapolation (Thuiller et al 2004)

and several new ‘levels’ (categories within a categorical variable) were found in

the low resolution model test sites including muddy sand and sandy mud from the

substratum variable. For that reason, predictions have only been made in areas

within the range of calibration data, setting other probabilities to zero (Thuiller

et al. 2004; Guisan and Thuiller 2005; Gray et al. 2008). As a result, some of the

available transect data at the test sites were not used.

7.2.4 Appraisal of transferability

Randin et al. (2006) stipulated three conditions that had to be met for a model

to be considered transferable. Firstly, internal validation in each region has to

be comparable. Secondly, a model fitted with data from one region must have

a comparable performance when projected into a new region and lastly, spatial

predictions on the training data and test data have to match within both regions.

Due to the small number of records in each of the test sites (<56), new models

have not been built for the test sites and as such it was only possible to assess the

second of these criteria; comparable performance. In other words, predictions in

the test sites must achieve similar scores for each of the performance indicators.

The same performance indicators have been used as for previous data chapters,

namely a combination of threshold-dependent (sensitivity, specificity and CCR)

and threshold-independent (AUC) metrics. Threshold independent metrics are

commonly recommended with some studies using these exclusively (Thuiller et al.

2004; Jensen et al. 2005; Strauss and Biedermann 2007; Bamford et al. 2009).

However on face value AUC scores can appear to be comparable, even in cases
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where the type of prediction error can vary considerably so it is important to look

at the shape of the Receiver Operating Characteristic (ROC) curves in addition

to the area underneath them (Pearce and Ferrier 2000).

For example, comparable AUC scores were produced for two different algorithms

in an assessment of transferability of North American bird models, yet Maxent was

highly specific and the Genetic Algorithm for Rule-set Prediction model (GARP)

was highly sensitive (Peterson et al. 2007). In other words, the ‘success’ of the

transferred models was arguably different, depending on the purpose of the trans-

fer, yet the comparable AUC scores gave the impression that the models performed

equally well. See Figure 7.3 as an example.

Figure 7.3: Receiver Operating Characteristic (ROC) plots illustrating how two
plots with different shaped curves and, hence, different prediction
errors, can have identical scores for the area under the curve (AUC,
shaded).

The use of a training data derived (TDD, Table 7.2) threshold, as used in previous

chapters, may be unsuitable when assessing model transferability to a new area

because nothing is known (as far as the model is concerned) about the species’
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prevalence (Fielding and Bell 1997; Strauss and Biedermann 2007).

Strauss and Biedermann (2007) proposed a different method of threshold defini-

tion for assessing model transfer which uses the prevalence at the test site (%)

to define the percentage of top predicted probabilities as presence. For example,

a species found in one quarter of surveyed plots at the test site would result in

25% of surveyed plots with the top predicted probabilities defined as presence.

However, the application of their method appears to be slightly counterintuitive

because if knowledge already exists about the presence or absence of a species

at the test site, as is required by this method, then there is less need to transfer

model predictions into this area when simply building a new model might provide

a more accurate output.

Table 7.2: Overview of George Bligh Bank and Rosemary Bank test site pa-
rameters. Number of transects refers to the total number of video
transects undertaken at the test site. The number in brackets refers
to the number of transects for which predictions are possible and
from which the performance indicators scores were calculated.
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Instead, a threshold that aims to equalise sensitivity and specificity scores (referred

to as sens=spec from hereafter) was adopted using the PresenceAbsence R library

(Freeman and Moisen 2008). This is an appropriate choice because the transferred

model results could just as easily be used to target future survey effort as for

conservation effort and therefore commission and omission errors should be equally

weighted. The sens=spec method has been adopted as a secondary method of

threshold definition in this chapter in the interest of comparison with the TDD

threshold.

7.3 Results

7.3.1 Performance of transferred models

Table 7.3 lists the scores for each of the performance indicators for the calibration

sites and test sites. Transferred models did not perform as well as the calibration

site model in 28 out of 35 cases (five transfers, seven comparisons). It is to

be expected that the model does better at predicting data with which it was

calibrated than on independent test data, but the scores were on average 31%

lower for the test data.

With regard to the Hatton Bank / Rosemary Bank combination model, the three-

fold cross validation proved to be quite variable, suggesting that the model may

not be robust. However, predictions were made in order to compare the perfor-

mance with models built using just one calibration site.

7.3.2 Performance metrics

The threshold-dependent metrics demonstrated variability between model and

threshold definition method. Correct Classification Rate (CCR) and specificity

were poor for all transferred models regardless of threshold, with the exception
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of the HLRM George Bligh transfer which demonstrated perfect specificity using

the TDD threshold.

Based on sensitivity, the TDDmethod resulted in better scores than the sens=spec

threshold in two out of five cases (with two tied scores). Specificity, in contrast,

was better using sens=spec (again with two tied scores). However, where the

sens=spec score was higher than the TDD score, the sens=spec score was still

unacceptable. Where the TDD score was higher, the score was outstanding (>0.9).

Regardless of threshold definition method, the transferred models achieved a

higher sensitivity score than specificity score in all but two cases. Average sensitiv-

ity scores based on the TDD method were 0.654, compared to 0.501 for sens=spec.

The average specificity score for TDD was also higher than sens=spec, at 0.451

and 0.426 respectively.

The combination model transferred better to George Bligh than the HLRM in

six out of seven scores, despite the generally low scores the combination model

obtained based on its own observed data.

Scores for the sole threshold independent metric (AUC) were all lower than the cal-

ibration site scores, with the exception of the combined Hatton/Rosemary model.

This model and the medium resolution transfer achieved AUC scores of >0.7.

The ROC curves in Figure 7.4 illustrate the varying performance among the dif-

ferent gorgonian distribution models. Plots a, b and c have a greater area under

the curve than any of the remaining plots, as is confirmed by the AUC scores in

Table 7.3. The shapes of these three curves is also similar, suggesting that neither

one of the three different resolution models is performing especially differently

with regard to sensitivity versus specificity at different thresholds.
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Table 7.3: Comparative performance of calibration site and test site (trans-
ferred model) performance based on threshold-dependent and in-
dependent performance indicators. The results based on the TDD
and sens=spec methods are presented for comparison. ↑ ↓ arrows
indicate improvement / deterioration of score following transfer.

Model AUC 

TDD threshold sens=spec threshold 

CCR SENS SPEC CCR SENS SPEC 

Hatton (high res.) 0.901 0.826 0.829 0.825 0.826 0.829 0.825 

Hatton (high res.)→ 

George Bligh Bank 
0.453 0.291 0.533 0.200 0.291 0.533 0.200 

Hatton (medium res.) 0.785 0.735 0.780 0.717 0.730 0.746 0.724 

Hatton (medium res.)→ 

George Bligh Bank 
0.729 0.643 0.958 0.406 0.696 0.750 0.656 

Hatton (low res.) 0.820 0.775 0.765 0.783 0.775 0.765 0.783 

Hatton (low res.)→ 

George Bligh Bank 
0.500 0.385 0.111 1.000 0.462 0.556 0.250 

Hatton (low res.) 0.820 0.775 0.765 0.783 0.775 0.765 0.783 

Hatton (low res.)→ 

Rosemary Bank 
0.400 0.500 1.000 0.400 0.333 0.000 0.400 

Hatton / Rosemary 

combined model 
0.647 0.584 0.793 0.451 0.611 0.569 0.637 

Hatton / Rosemary 

combined model→ 

George Bligh Bank 

0.771 0.538 0.667 0.250 0.647 0.667 0.625 
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Figure 7.4: Receiver Operating Characteristic (ROC) plots for the Hatton
Bank gorgonian distribution models and Rosemary and George
Bligh Bank test site models. The 45◦ line starting at the origin
represents chance performance and an area under the curve (AUC)
score of 0.5. Plots a, b and c are ROC plots based on the high,
medium and low resolution model calibration data respectively.
Plot d illustrates the performance of the combined Hatton Bank
and Rosemary Bank model. Plots e - h illustrate how performance
changes when predictions are transposed onto another area.
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Of the test site ROC plots, the medium resolution transfer (f ) shows the greatest

similarity to its parent plot. The medium resolution transfer also had the high-

est range of prediction values at the test site (n=12) which was at least three

times higher than any of the other test sites based on both single and combined

calibration site models.

Three of the plots in Figure 7.4 show deviation below the line of chance per-

formance (0.5) suggesting very low predictive ability. Looking at the HHRM →

George Bligh Bank ROC plot (e), for example, it is evident that above thresholds

of 0.4, with the exception of a threshold of 1 which would assign all plots pres-

ence and therefore risk maximum false negativity, hardly any gain in sensitivity is

observed whilst the number of false positives increases. The HLRM → Rosemary

Bank ROC plot (g, dashed line) illustrates a highly dichotomised performance,

with no true positives observed until a threshold of almost 0.6 is set.

7.3.3 Influence of data resolution

A ranking system was used as a simple way of illustrating how data resolution

influenced the performance of the transferred gorgonian distribution models (Table

7.4). Based purely on the single calibration site models, and where the scores for

the two low resolution test sites were averaged, the medium resolution model

achieved the highest score in six out of seven cases. The low resolution model

ranked second overall and the high resolution model ranked the lowest, displaying

the lowest scores in five out of seven cases.

7.3.4 Spatial outputs

The following series of maps represent the spatial outputs from this transferabil-

ity study (Figures 7.5, 7.7 and 7.9). Substrata maps for the George Bligh and

Rosemary study sites are also included (Figures 7.6, 7.8 and 7.9) to illustrate
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Table 7.4: Ranking of threshold dependent and threshold independent perfor-
mance indicators based on the three different data resolution models.
The ranked performance for the HLRM is based on its average per-
formance at the Rosemary and George Bligh Bank test sites. Rank
1 indicates the best performance. There were no ties in the ranking.

how the predictions of gorgonian distribution are linked to substratum; the most

influential variable for all three calibration models.

A visual comparison between Figures 7.5 and 7.6, 7.7 and 7.8, and the two maps

in 7.9 highlights several ‘blank’ areas in which predictions were not made as a

result of the environmental variables lying outside the range of the training data.
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Predicted probability 

(logistic scale)

0-0.1

0.1-0.2

0.2-0.3

0.3-0.4

0.5-0.6

0.6-0.7

0.7-0.8

0.8-0.9

Figure 7.5: Spatial predictions of gorgonian distribution for the George Bligh
Bank test site based on the transferred low resolution Hatton Bank
model, containing categorical depth and substratum predictors.
‘Blank’ areas indicate areas in which the depth and/or substra-
tum data were outside the range of the training data and in which
predictions have not been made.
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Coarse sediment

Mixed sediment

Mud and sandy mud

Rock

Sand and muddy sand

Figure 7.6: Low resolution substratum layer for George Bligh Bank test site.
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Coarse sediment

Mixed sediment

Mud and sandy mud

Rock

Sand and muddy sand

Predicted probability (logistic scale)

0-0.1

0.1-0.2

0.2-0.3

0.3-0.4

0.4-0.5

0.5-0.6

0.6-0.7

0.7-0.8

(a)

(b)

Figure 7.9: (a) Low resolution substratum layer for the Rosemary Bank test site
and (b) spatial predictions of gorgonian distribution based on the
transferred low resolution Hatton Bank model, containing substra-
tum and depth predictors. ‘Blank’ areas indicate areas in which
the depth and/or substratum data were outside the range of the
training data and in which predictions have not been made.
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7.4 Discussion

7.4.1 Performance of transferred models

Many reasons exist for differences in model performance with regard to the trans-

ferability of models in space and time, and a wide variation in observed perfor-

mance has been reported including success, failure, asymmetric performance be-

tween sites and test site results outperforming calibration site predictions (Randin

et al. 2006; Strauss and Biedermann 2007; Olivier and Wotherspoon 2008). Trans-

ferring models for eurytopic species, that is, those species that are able to with-

stand a wide range of environmental conditions, may be less successful than

those species exhibiting a strong relationship with their habitat (Brotons et al.

2004; Strauss and Biedermann 2007). The influence of environmental variables

on species distribution can vary across and between regions thus influencing a

model’s potential transferability to a different area (Randin et al. 2006; Zanini

et al. 2009). In addition, the use of direct versus indirect variables (Guisan and

Zimmerman 2000) may affect the predictive performance of a model in a different

area. Models based on direct predictors should have a higher transferabilty since

the influence of a direct predictor is expected to remain relatively constant over

space and time (Graf et al. 2006; Randin et al. 2006; Strauss and Biedermann

2007; Gray et al. 2008; Sundblad et al. 2009). The choice of algorithm has also

been cited as a reason underlying differences in transferability (Jensen et al. 2005;

Randin et al. 2006).

Despite some high scores in the performance indicators for the transferred models

they did not transfer well overall and only the medium resolution model transfer

achieved more than one acceptable score for the performance metrics. Based on

the criteria set out in the methodology, that models should have comparable scores
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based on observed calibration site and test site data, it is apparent that model

transfer was unsuccessful in all cases when the full suite of performance indicators

is considered. Other studies have reported similar poor levels of transferability.

Based on the criteria Randin et al. (2006) proposed for transferability, more than

half of the transferred models in their study failed. Variable transferability perfor-

mance was reported by Bamford et al. (2009) who added that ‘models of species

distribution are not transferable between regions’.

However, the results in this chapter compare poorly with several transferability

studies, such as Jensen et al. (2005) whose temporal model transfers had an over-

all average AUC score of at least 0.7. Graf et al. (2006) reported AUC scores

of 0.9 or above for transferred models in their study and Strauss and Bieder-

mann (2007) found that the majority of models successfully transfered in time

and space, achieving performances significantly better than those one would ex-

pect by chance. A study on Caribbean reef fish reported overall accuracies of

between 67.6-70.5% for predictions into new areas with AUC values exceeding 0.9

at one of the test sites (Pittman et al. 2007). In assessing performance of trans-

posed models of snow petrel nests in the Antarctic, overall performance based on

sensitivity and specificity scores from several different models ranged from 0.59

to 0.91 (Olivier and Wotherspoon 2008). Sundblad et al. (2009) reported good to

outstanding AUC scores (0.75-0.93) in their transposed models for fish larvae in

the Baltic Sea. With considerable success in transferred models in other studies,

explanation must be sought for the lack of successful transfer in this study.

One potential reason for the poor transferability is the small number of test records

and transects which will have represented only a small range of the training data

(Table 7.2).

A problem that may be relevant to this study in particular is that due to the fact
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that the final training data models contained only categorical variables, it had the

potential to limit the spatial extent of predictions. When predicting into a new

area a model is faced with three possible outcomes;

(1) a category level in the training data is found in the test data, making prediction

possible;

(2) a new category level is encountered in the test data that is not found in the

training data making predictions impossible, and

(3) a category level contained in the training data is not located in the test site.

It is the third outcome that has the potential to influence the performance of

transfered models, especially in cases where that particular level is having a highly

significant influence on the species in question. In the high resolution model, for

example, half of the substratum categories, including the category that had the

most significant positive effect on the occurrence of gorgonians on Hatton Bank

(rock with a carbonate veneer) and the category that had the most negative

influence on gorgonian occurrence (sand), were not observed in the test points.

This no doubt has implications for the predictive power of the model because only

those categories that have a (relatively) weaker relationship with the gorgonians

according to the Hatton Bank model are transferred. Test sites should ideally

have the same full range of values as the training data (Strauss and Biedermann

2007) and the fact that in some cases the test sites in this study did not has

undoubtedly influenced model performance.

Spatial differences in environmental parameters not included in these models may

also go some way toward explaining the poor transferability. Both test sites show

evidence of strong current influence (Jacobs 2006) and it may be that Hatton

Bank experiences a different current regime, which could influence the provision

of food and the settlement of larvae, for example, and ultimately influence habitat

161



7.4. DISCUSSION

suitability. Slope orientation (aspect), which may serve as a very general proxy

for hydrodynamic processes e.g. local currents (Dolan et al. 2008) and which has

also been shown to influence the distribution of deep-sea corals (Guinan et al.

2009a,b), may also be an influential factor in gorgonian distribution. If aspect

was strongly correlated to one of the important modelled variables in the Hatton

Bank model, for example, then the relationship of that variable to gorgonian

distribution might not transfer as well to the test site if aspect had a different

influence at the test site. Equally, evidence of trawling activity on Hatton and

George Bligh Banks (Jacobs 2006) might have influenced their suitability and it

is possible that gorgonians might once have existed at sites which may now be

physically and biologically altered.

Of course, one thing that is not included in the models are biotic interactions.

As has been mentioned previously, biological interactions, and factors other than

abiotic influence on the species distributions, are not captured by the model and

this will influence the ability of the model to predict into new areas (Thuiller et al.

2004; Randin et al. 2006; Sundblad et al. 2009).

Some studies have suggested that models calibrated with data from more than

one region tend to perform better than those models calibrated using just one

calibration site (Graf et al. 2006; Bamford et al. 2009), and this is generally

supported by the results in this chapter; the combined Hatton Bank and Rosemary

Bank model obtained better scores for the AUC, CCR and sensitivity following

transfer to George Bligh than the single site (Hatton Bank) low resolution transfer,

regardless of threshold. However, given the variability in the cross-validation for

the combination model, this result should be treated with caution.

Differences in model parameters are also relevant to the observed transfer failure.

In all apart from the high resolution model transfer, the prevalence at the test
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site was considerably different to that at the fit site (Table 7.1) and both under-

and overestimation in test areas have been reported as a result of changes in

prevalence with respect to the training data (Pearce and Ferrier 2000; Strauss

and Biedermann 2007).

With regards to threshold, there did not appear to be an overall ‘winner’ between

the two different methods selected because although the sens=spec threshold re-

sulted in better scores than the TDD threshold in the majority of cases (where

scores were not tied), the TDD threshold led to, on average, higher average scores

for sensitivity and specificity. In terms of conservation, it would be tempting to

select the most sensitive method and in this respect the TDD threshold definition

method achieved the best results.

Based on the mixed results obtained here it would therefore seem prudent to ad-

vocate the use of threshold independent metrics exclusively when assessing model

transfer. Nevertheless, the fact that AUC scores were generally much lower for

transferred models compared to the calibration model (with the exception of the

medium resolution transfer and combined model transfer) suggests that it is not

merely the choice of threshold that is influencing transferability success.

Yet aside from the fact the the performance indicator scores suggest unsuccessful

transfer of the models, it is important to examine the spatial outputs of the

transfer. As previously explained, there are few areas of very high predicted

probability of gorgonian presence due to the fact that not all categorical levels were

found in the test sites. Yet by examining the areas with the highest probabilities,

relative to other areas in the test site, those areas are exactly the areas one

might expect to be suitable gorgonian habitat; rocky slopes and escarpments, for

example. So the transferred models may provide useful information with regard

to the relative suitability of sites in a test area if nothing else is known about it.
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7.4.2 Influence of data resolution

Tables 7.3 and 7.4 suggest that on face value the medium resolution data Hatton

Bank model performed better than the other resolution model transfers but it is

important to take into account the fact the medium resolution model not only

had the highest number of test records available (just) but also that every geo-

morphology and substratum category in the training data was found in the test

data whereas both the low and high resolution models were incomplete in this

respect.

This is an interesting result when the results of the previous chapter are considered

yet this agrees with the study by Olivier and Wotherspoon (2008) who reported

that habitat-scale models transferred better than nest-scale models. Olivier and

Wotherspoon (2008) cited high variability at the small (nest) scale between differ-

ent areas as a reason behind the more successful transfer of coarse scale models.

In this study it is more likely that the high resolution substratum layer fails to

capture the occurrence of cobbles and boulders at the fringes of bedrocks areas

but upon which gorgonians are found. As with other deep-water corals such as

Lophelia pertusa (Guinan et al. 2009a), gorgonians can often be found on solitary

boulders and drop stones in soft sediment areas (Mortensen and Buhl-Mortensen

2004; Wheeler et al. 2005b). One quarter of all deep-sea gorgonians observed off

Nova Scotia were found on solitary stones (Watanabe et al. 2009) highlighting the

difficulty of capturing this kind of spatial distribution even with high resolution

data. Randin et al. (2006) question the ability of 25m resolution data to capture

processes which may have influenced the transferability of the plant models in

their study. The problem of using coarse resolution substratum data to identify

patterns in deep-sea gorgonian distribution has been acknowledged (Bryan and

Metaxas 2006) and Figure 7.9 illustrates the inability of even high resolution
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substratum data to capture some substratum driven gorgonian distribution by

focusing on a transect illustrating a number of ‘false negative’ gorgonian records

which are outside the boundary of the rock polygon. While the medium resolution

model may also be subject to this error, the coarser resolution of acoustic data

will result in larger buffer zones around areas of bedrock habitat leading to the

inclusion of ‘fringe’ records. Similarly the low resolution model results in greater

buffers around rock areas but clearly here they are too great and lead to increased

error.

Without a greater number of test sites, or at least a higher number of records

within a test site, it is difficult to define the extent to which data resolution is

influencing the transferability of the models in this study but it certainly appears

to do so to some extent. Alternatively, substratum and geomorphology (the en-

vironmental predictors included in the Hatton medium resolution model) are a

more transferable combination than substratum and depth.

7.4.3 Implications for conservation planning

Ferrier and Watson (1997) urged caution when transferring models to other ar-

eas due to potential differences in data quality and this again links back to the

availability of high resolution environmental data, especially for predictors such

as substratum which appear to be indispensable for deep-sea gorgonian models.

As it happens, the high resolution data model in this chapter was outperformed

by both the medium (200m) and low (mixed) resolution data. The implication

of this in terms of conservation management is that it may be inappropriate to

transfer models built with high resolution data in deep-sea areas, for conservation

planning, future survey targeting, or other purpose. Whilst the medium and com-

bination low resolution model transfers demonstrated encouraging performance

(based on the AUC and, for the medium resolution model, sensitivity), until it
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ROCK

GRAVELLY SAND

Other species

Gorgonian

Figure 7.10: Video still from a George Bligh transect and the corresponding
substratum layer and transect map highlighting the presence of
gorgonians and other species. The screen shot from the video
transect shows that one such gorgonian is in fact on a large drop
stone (surrounded by a bed of gravelly sand). Small scale detail
such as this is almost impossible to incorporate into even fine scale
acoustic data such as this and explains some of the model error
for transferred models.
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is possible to build a wider collection of calibration and test sites to facilitate

multi-directional model testing and with much higher sample sizes, model trans-

fers should only be performed with extreme caution and only in an exploratory

capacity. For example, they may be used to highlight areas of relative habitat

suitability to inform future survey. Once again, the principle of adaptive man-

agement should be applied, and new data added to the models as and when it

becomes available to try and improve transferability.

However these results are only based on the application of one modelling method

in one or two other areas and using one group of species. As more distribution

data becomes available for other areas in the Northeast Atlantic it will be possible

to test the transferability on larger sample sizes and with a wider range of different

species of conservation concern. This may serve to increase the confidence in the

use of these models not only in deep-sea environments but to support conservation

planning elsewhere.
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Chapter 8

A comparison of performance between

modelling approaches
The development of presence-only modelling techniques over recent years,

including the Ecological Niche Factor Analysis (ENFA) and Maximum Entropy

(Maxent), has led to numerous comparisons between presence only modelling

methods and models requiring absence data, through the use of pseudo-

absences. Maxent is proving extremely popular, both as a result of its excel-

lent performance compared to other algorithms and ease of use. This chap-

ter takes a novel approach and builds Maxent models using presence and

absence data and compares its performance to that of a Generalized Linear

Model, using Hatton Bank as the study site. Two Maxent models were built;

one in which all of the environmental variables were used, and one using only

those environmental variables included in the final GLM (substratum and geo-

morphology). Though differences in the relative importance of the explanatory

variables exist, the spatial predictions of the three models are very similar. De-

spite being applied as a pseudo presence-absence model, the Maxent model

built with all the variables significantly outperforms the GLM based on the AUC.

However, the relative performance of the models based on threshold-specific

indicators is dependent on threshold choice, although the GLM generally out-

performs the Maxent models. The superior performance of the full Maxent

model compared to the reduced Maxent model suggests that Maxent may
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overfit to the data. Being a novel method, caveats and recommendations for

future research are discussed.

8.1 Presence-only and presence-absence models

A comparison of the performance of two or more modelling methods is a common

focus of species distribution modelling studies and numerous examples exist of

comparisons between presence-only (PO) models, those comparing PO methods

with models that incorporate pseudo-absences (PsA) and comparisons between

presence-absence (PA) methodologies. Where no absence data is available, PsA

are sometimes generated in order to be able to use traditional PA algorithms,

including regression based techniques, and to compare their performance with

PO models.

Maxent (Phillips et al. 2006), an extremely popular PO model, has been cited in

excess of 1500 times since its development in 2006. Maxent has performed very

well in several model comparison studies (e.g. (Pearson et al. 2007; Wisz et al.

2008)) and has recently been used in the deep-sea (Tittensor et al. 2009; Clark and

Tittensor 2010; Davies and Guinotte 2011; Howell et al. 2011). Deep-sea species

distribution modelling studies have traditionally been presence-only (e.g. Clark

et al. 2006; Bryan and Metaxas 2007; Tittensor et al. 2009) and with the exception

of Woodby et al. (2009)), because absence data for the deep-sea is much less widely

available. However this problem is not limited to deep-sea environments and, in

fact, the majority of available distribution data is presence-only (Zaniewski et al.

2002).

Maxent has been compared with and indeed outperformed (based on AUC scores)

GLMs and GAMs in studies using PsA data (Elith et al. 2006; Gibson et al. 2007;

Williams et al. 2009) yet the relative performance of Maxent and a GLM/GAM
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using true presence-absence data does not appear to have been investigated. PA

methods are advocated where PA data is available (Elith et al. 2011), yet evidence

suggests that some modellers have used PO models regardless of whether or not

they have absence data, reasons for which might include the apparent simplicity

of certain PO methods. With this in mind, this chapter aims to compare the

outputs of Maxent and a GLM/GAM, using true absence data, both in terms of

model accuracy and the spatial distribution of predictions. The high resolution

environmental data for Hatton Bank has been used for this study, following its

superior performance in Chapter 6.

8.2 Methods

8.2.1 Model units

In order to ensure a fairer comparison of the two models, the intersect method out-

lined in Chapter 4 was not used to create the models units for the GLM/GAMs.

Maxent requires that the data layers are presented in ASCII format with each

environmental data layer having equally sized cells that are exactly aligned be-

tween layers and covering the same spatial extent. As previously mentioned, the

intersect approach would have resulted in different sized and shaped units being

used for the GLM/GAM, yet it was important to ensure that the same number

of presence records were being used in Maxent and the GLM/GAM (Hirzel et al.

2001) and, crucially, that these records were sampling the same combination of

variables at each point.

8.2.2 Gorgonian distribution records

For the GLM/GAMs the gorgonian distribution point data was used to sample

the raster layers, whilst once again reducing the transects to one record per cell

(n=459; 70 presence records, 389 absence records). Using the same presence data
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in the models ensures that absence is the only varying factor (Zaniewski et al.

2002). The presence-only data set has been created simply by extracting the

presence records from the overall transect derived presence-absence data.

8.2.3 Environmental variables

The majority of available high resolution acoustic data for Hatton Bank is gridded

at 25m but a section toward the north of the Bank is gridded at 50m. It is generally

considered better practice to work to the coarsest resolution when preparing data

for inclusion in SDMs and so the entire high resolution bathymetry coverage for

Hatton Bank was regridded to 50m. This was also necessary because some of the

derived layers, e.g. BPI, are calculated with reference to neighbouring cells and

using coarse data at a finer scale would have been inappropriate.

The models were presented with the same (high resolution) environmental data

layers as Chapter 6 with the addition of Bathymetric Position Index (BPI), ru-

gosity, slope and aspect. These layers, derived from the multibeam bathymetry,

were created in ArcGIS using spatial analysis and the Benthic Terrain Model

(BTM). These terrain features provide added value to the bathymetry layer and a

more holistic representation of the benthic environment influencing the distribu-

tion of benthos, and have been shown to be relevant to deep-sea coral distribution

(Wilson et al. 2007; Dolan et al. 2008; Woodby et al. 2009; Howell et al. 2011).

Combined with slope, the orientation (including aspect), curvature and relative

position (including BPI), and terrain variability (including rugosity) of the sea

floor represent the four classes of bathymetric terrain analysis that can contribute

valuable information to predictive modelling (Wilson et al. 2007).

Slope, as has been discussed in earlier chapters, is sometimes used as a proxy for

increased current and differences in substratum and, subsequently, in the char-
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acterisation of different communities (Mohn and Beckmann 2002; Mortensen and

Buhl-Mortensen 2005; Bryan and Metaxas 2007; Wilson et al. 2007; Guinan et al.

2009a,b). Aspect simply refers to the orientation of the dominant slope across the

cell surface, which is relevant to the exposure of a face if, for example, the pre-

vailing current or wave exposure is from a particular direction. The BPI provides

an indication of the relative position of a cell, with respect to surrounding cells,

which may be positive or negative. Both fine and broad scale BPI were calculated

(accepting default settings in the BTM), the latter referencing a wider neighbour-

ing area. Lastly, rugosity is a surface’s crinkliness and is measured by the ratio

of the surface area to the planar area in the areas surrounding the central cell.

The more wrinkly the surface, the higher the rugosity. Flat surfaces will have

a rugosity nearing 1. See Wilson et al. (2007) for details of algorithms used in

terrain analysis and for further details about these features.

8.2.4 Maxent, adapted

As stated in the introduction, the published Maxent method (Phillips et al. 2006,

2009; Elith et al. 2011) has been ‘tweaked’ in order that absence data can con-

tribute to the model (method, with permission, from Anna-Leenie Downie, PhD

student, Finnish Environment Institute (SYKE), pers. comm. Method paper in

prep.). In terms of data preparation and its presentation to Maxent, the differ-

ences between this novel approach and the ‘standard’ Maxent approach are small.

Presence data are presented as a csv file as normal, but environmental variable

values for each record are included, much like the samples with data (SWD) for-

mat outlined in the Maxent tutorial. The background samples, instead of being

drawn at random from the study area (default n=10,000), are provided by the

full presence-absence dataset, again with corresponding explanatory environmen-

tal variables, as a csv file. Maxent uses background data to inform the model
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about the relative likelihood of variables over the study area in order that they

can be compared with those sites occupied by the species (Elith et al. 2011). Sub-

stituting background samples with absence records therefore enables the model

to make this assessment based on observation, as opposed to randomly selected

sites.

The model is then ‘projected’ onto the study area data layers. Given the prob-

lems outlined in the Chapter 7 regarding extrapolation and missing data, and the

fact that Maxent’s adoption of an unconstrained exponential probability distri-

bution can lead to large predictions outside the calibration data range (Phillips

et al. 2006), it was important to check the Multivariate Environmental Similarity

Surface (MESS) plot as part of the model development (Elith et al. 2011). Sim-

ply put, the MESS plot highlights areas within the study region that fall outside

the calibration data range and which could therefore result in highly irregular

predictions.

Two separate Maxent models were built. The first used all the environmental

variables without taking correlated variables into account, and generally reflects

the approach adopted by most Maxent studies. The second used just the variables

included in the final GLM.

8.2.5 Model evaluation

Model performance was evaluated based on internal resampling which has previ-

ously been described for the GLM/GAM. For Maxent, both models were rebuilt

100 times, each time using a randomly selected subset comprising two thirds of

the full set of presence records. The resulting predicted values (n=100) at each of

the presence (test) and absence sample points (n=412) was then used to calculate

scores for the four performance indicators (AUC, CCR, sensitivity and specificity)
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as usual. Note that the AUC scores for the Maxent models presented here were

not the ones generated automatically as part of the standard Maxent model out-

put package. This is due to the fact that the automated Maxent AUC scores use

background samples in place of absence data, and therefore the maximum obtain-

able AUC score in unknown, in comparison to when using true absence data when

the maximum score is 1 (Phillips et al. 2006). To ensure a fairer comparison with

the GLM AUC scores, the Maxent predictions were exported and the AUC scores

calculated in R using true absence data.

Performance indicator scores based on Cramer’s prevalence threshold definition

and the threshold where specificity equals sensitivity were calculated. The addi-

tion of the specificity=sensitivity threshold to the model evaluation in this chapter

is because Maxent is being used as a pseudo PA model so that, even though it is

using absence data as the background, the probability distribution is still based

on presence data only and therefore the ratio of presence to absence records is

potentially less relevant to model assessment.

8.3 Results

8.3.1 Significant variables

Based on the Hatton Bank GAMs, significant variables (in order of increasing

UBRE score) were substratum, geomorphology, BPI (fine scale), BPI (broad

scale), aspect, rugosity, slope and depth. Fine and broad scale BPI were, un-

surprisingly, highly correlated, as were slope and rugosity. The best and therefore

final model (a GLM) contained substratum and geomorphology. The relative im-

portance of significant variables according to the GAMs is not entirely in agree-

ment with the full Maxent model in which depth and rugosity were more important

than BPI. Based on the jackknife plot (Figure 8.1), the order of importance of

175



8.3. RESULTS

variables according to Maxent was, starting at the top, substratum, geomorphol-

ogy, depth, rugosity, BPI (fine and broad scale BPI made a similar contribution),

aspect and slope.

Figure 8.1: Jackknife of regularised training gain illustrating the relative im-
portance of the different environmental predictors and the effect on
model gain of the removal of each variable from the Maxent model
for gorgonians on Hatton Bank.

With respect to the new variables used for the Hatton Bank models in this chapter,

probability of gorgonian occurrence appeared to increase with BPI, rugosity and

slope to a certain extent.

There were notable differences between the GAMs and Maxent with respect to

the shape of the response curves for some variables. For example, the Maxent plot

in Figure 8.2 suggests that probability of gorgonian occurrence increases both in

bathymetric depressions and on topographic highs, with the latter being a more

suitable habitat. The GAM agrees with this to a certain extent. Based on the area

of the curve with the narrowest 95% confidence limits in the GAM plot, Figure
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8.2 indicates that probability of occurrence increases almost linearly with fine

scale BPI. However, there were few observation below BPI values of -5 and above

+10, indicated by the ‘rug’ along the x axis, hence the wide confidence limits.

Although it looks as though probability increases below BPI values of -4, only

three out of the 22 observations below -4 were presence records. Gorgonians are

therefore unlikely to be found in bathymetric depressions, a result also supported

by the results of the geomorphology GLM where erosion features were associated

with the lowest probabilities of gorgonian occurrence.

The GAM with aspect illustrated that north and north-easterly facing slopes were

associated with the highest probability of occurrence. The Maxent plot for aspect

(not shown) also supports this.

The GAM plot for rugosity (Figure 8.3) suggests a humped relationship with

gorgonian occurrence, with probability of occurrence decreasing at rugosity value

of 1.03 and potentially increasing again at values of ∼ 1.08. Once again however,

there were few observations above rugosity values of ∼ 1.02 which meant that the

confidence limits were very wide. Eight of the 22 records above 1.03 were presence

records so an asymptotic relationship might be a more appropriate description,

as illustrated by the Maxent plot.

An asymptotic relationship was found with regard to slope and gorgonian occur-

rence based on the GAM, with probability of occurrence increasing with slope up

to approximately 10◦ above which probability hardly increased at all (although

again there were much fewer observations after this point). In the Maxent model,

probability of occurrence continued increasing until ∼27◦ where it finally levelled

off (although there were no observations at slope above 30◦).
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Figure 8.2: Maxent (top) and Generalized additive model (bottom) plots illus-
trating the positive relationship between fine scale BPI and gor-
gonian occurrence on the Hatton Bank. These plots are based on
models containing only this variable.
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Figure 8.3: Maxent (top) and Generalized additive model (bottom) plots illus-
trating relationship between rugosity and gorgonian occurrence on
the Hatton Bank. These plots are based on models containing only
this variable.
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8.3.2 Model predictions: a spatial comparison

Mapping the spatial predictions from both modelling approaches highlighted that

there were smaller differences between the GLM and full Maxent predictions across

a greater area than between the GLM and reduced Maxent model predictions (see

Figure 8.4 as an example and Appendix E for large fold out maps of habitat suit-

ability for gorgonians based on the three modelling approaches, and of differences

between them). However, the full Maxent model had the largest maximum differ-

ences in prediction value with respect to the GLM.

The majority of differences in logistic probability predictions across Hatton Bank

were small (difference in value <0.1) for both methods. These areas tended to be

in areas of relatively flat seabed with a sand or gravelly sand substratum. In other

words, all models were in agreement that the probability of gorgonian occurrence

in these areas was very low.

For the vast majority (73% and >99%) of Hatton Bank, the GLM predicted lower

probabilities than the full and reduced Maxent models respectively. This is illus-

trated non-spatially in Figure 8.5 which shows how the differences in predicted

probability for each cell change as the full Maxent model predictions increase. It

shows that there is higher agreement between the two models at lower probability

values but that the difference increases slightly with Maxent predicted probabil-

ity. This was not the case with the reduced Maxent model where the greatest

difference between its predictions and those of the GLM, despite being <0.23,

were characterised by sandy gravel which Maxent predicted as being of relatively

low suitability overall but of higher suitability with respect to the GLM.
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Figure 8.4: Spatial overview of differences between full Maxent and GLM pre-
dictions (a) and reduced Maxent and GLM predictions (b) on south-
ern Hatton Bank. The key is relevant to both maps.
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By studying the mapped predictions of the GLM and full Maxent model it is

apparent that the small number of areas with large differences in spatial prediction

are in fact areas where the GLM predicts a higher value than Maxent (Figures

8.6 and 8.7 provide an example).
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Figure 8.5: Graph illustrating the differences in model predictions per model
unit (cell) on the Hatton Bank. The full Maxent model logistic
probabilities have been divided into equal interval categories (x
axis). For each of these categories, the average Maxent and GLM
predictions have been plotted, along with the average difference
(± standard deviation) between each pair of cells. The difference
values do not take into account the direction of the difference, that
is, which of the GLM or Maxent prediction is higher, although the
overall trend is apparent from the other two points plotted in each
category.
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Figure 8.6: Differences between full Maxent and GLM predictions (a) and re-
duced Maxent and GLM predictions (b) on a small area of Hatton
Bank. The key is relevant to both maps.
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Figure 8.7: Close up of an area of Hatton Bank (boxed, top panel) illustrating
the full Maxent (bottom, this page), reduced Maxent (bottom, op-
posite) and GLM (top, opposite) predictions. The curved feature
illustrated is a rocky escarpment. The probability key is relevant
to all three maps.
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8.3.3 Comparison of model performance

Table 8.1 and Figure 8.8 summarise the relative performance of the three mod-

elling approaches. Based on internal resampling, the full Maxent model is signifi-

cantly better than the GLM and reduced Maxent model in terms of AUC scores,

although all three models obtain excellent average AUC scores. Comparison of the

ROC plots (Figure 8.9), as recommended in the previous chapter, shows similarly

shaped curves.

Table 8.1: Performance indicator scores for the Hatton Bank Maxent models
and GLM based on internal resampling and using Cramer’s preva-
lence threshold (A), the sens=spec threshold (B) and a threshold
independent metric. = indicates no significance difference between
model a and model b based on Wilcoxon rank sum tests. ** indi-
cates an outright best score across the three models. The sens=spec
threshold varied with each iteration, as did the Cramer threshold for
GLM. The Cramer threshold for the Maxent models was 0.108.

Performance 

indicator 

Model a Model a score Relative 

performance 
Model b Wilcoxon 

rank sum test 

statistic (W) 

Significance 

(A) Cramer’s prevalence threshold 

CCR 
GLM 0.793 ± 0.011** > Full Maxent 10000.0 p = < 2.2 -16 

Reduced 

Maxent 
0.358 ± 0.030 < GLM 10000.0 p = < 2.2 -16 

Full Maxent 0.518 ± 0.013 > 
Reduced 

Maxent 
7874.5 p = 1.038-12 

Sensitivity 
GLM 0.756 ± 0.019 < Full Maxent 9527.5 p = < 2.2 -16 

Reduced 

Maxent 
0.920 ± 0.013 > GLM 782.0 p = < 2.2 -16 

Full Maxent 0.937 ± 0.011** > 
Reduced 

Maxent 
5667.5 p = 0.0457 

Specificity 
GLM 0.799 ± 0.015** > Full Maxent 10000.0 p = < 2.2 -16 

Reduced 

Maxent 
0.324 ± 0.032 < GLM 9998.0 p = < 2.2 -16 

Full Maxent 0.493 ± 0.014 > 
Reduced 

Maxent 
2151.5 p =1.490-12 
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Performance 

indicator 

Model a Model a score Relative 

performance 
Model b Wilcoxon 

rank sum test 

statistic (W) 

Significance 

(B) Equal sensitivity / specificity threshold 

CCR 

 
GLM 0.781 ± 0.011 = Full Maxent 4985.0 p = 0.5146 

Reduced 

Maxent 
0.772 ± 0.013 = GLM 5633.0 p = 0.0609 

Full Maxent 0.778 ± 0.008 > 
Reduced 

Maxent 
6056.0 p = 0.0049 

Sensitivity 

 
GLM 0.782 ± 0.011 = Full Maxent 5285.5 p = 0.2406 

Reduced 

Maxent 
0.787 ± 0.010 = GLM 5228.5 p = 0.2871 

Full Maxent 0.780 ± 0.009 = 
Reduced 

Maxent 
5441.5 p = 0.1299 

Specificity 

 
GLM 0.781 ± 0.014 = Full Maxent 4887.0 p = 0.6088 

Reduced 

Maxent 
0.771 ± 0.014 = GLM 5361.0 p = 0.1880 

Full Maxent 0.777 ± 0.008 > 
Reduced 

Maxent 
6163.5 p = 0.0022 

Performance 

indicator 

Model a Model a score Relative 

performance 
Model b Wilcoxon 

rank sum test 

statistic (W) 

Significance 

(C) Threshold independent 

AUC 
GLM 0.850 ± 0.007 < Full Maxent 4267.0 p = 0.0367 

Reduced 

Maxent 
0.840 ± 0.009  = GLM 5669.0 p = 0.0511 

Full Maxent 0.859 ± 0.005** > 
Reduced 

Maxent 
6438.0 p = 0.0002 
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Figure 8.8 shows clearly the effect of threshold selection on the relative perfor-

mance of the models. Using the sensitivity = specificity threshold means that

all three models produce acceptable average scores close to 0.8. With the ex-

ception of CCR and specificity, for which the full Maxent obtained significantly

better scores than the reduced Maxent model, there were no significant differ-

ences in relative performance of the three models for the three threshold-specific

performance indicators.

Use of the prevalence based threshold results in the performance of both Maxent

models displaying a classic trade off between sensitivity and specificity. The GLM

outperforms the Maxent models for both CCR and specificity and, while not

displaying outstanding sensitivity like the Maxent models, achieves scores >0.75

across all three indicators. The Maxent models, in contrast, achieve very poor

scores for two of the indicators.

8.4 Discussion

8.4.1 The relative importance of environmental variables

The focus of this chapter is on the relative performance of the different modelling

approaches and because the importance of the different environmental variables

has been discussed in previous chapters it will not be discussed at length again

here, with the exception of the ‘new’ variables used in this chapter (namely as-

pect, BPI, slope and rugosity) because the use of bathymetric terrain analysis has

been adopted in several studies mapping deep sea benthos, including gorgonians

(Wilson et al. 2007; Woodby et al. 2009). But it is of interest that Howell et al.

(2011), again using Maxent, also identified substratum and geomorphology as the

two most important variables influencing the distribution of Lophelia pertusa reefs

on Hatton Bank and George Bligh Bank.
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Two studies in the North Atlantic cited a preference of corals for south facing

slopes (Dolan et al. 2008; Guinan et al. 2009a) which is in direct contrast to the

results obtained here where north and northeasterly slopes were favoured. How-

ever, the Dolan et al. (2008) and Guinan et al. (2009a) studies were focused on

reefs in and around the Porcupine Seabight where prevailing currents come from

the south west following the continental slope (New and Smythe-Wright 2001),

whereas this study focuses on Hatton and George Bligh Banks where prevailing

currents come from the north east. This suggests that corals have a preference

for the direction of the prevailing current. Based on the aspect GAM and Max-

ent model, and in agreement with Howell et al. (2011), probability of gorgonian

occurrence was lowest at a bearing of ∼300◦.

In support of the results presented here, Dolan et al. (2008) reported that higher

BPI values were associated with the distribution of the scleractinians Lophelia

pertusa and Madrepora oculata on a carbonate mound in the Porcupine Seabight,

southwest of Ireland. BPI was also found to have a significant influence on the

distribution of the same two species in the Rockall Trough, with corals generally

associated with areas with higher BPI values (positive elevations) (Howell et al.

2011) with the exception of a few cases where corals were found in topographically

complex depressions (Guinan et al. 2009a) as predicted by Maxent.

Rugosity was found to be a significant factor in 80% of the models in Woodby

et al.’s (2009) study of deep water benthos, including gorgonians and other corals,

in the Central Aleutian Islands, southwest of Alaska. As with the results presented

in this chapter, probability of coral occurrence increased with both rugosity and

slope. Although Guinan et al. (2009a) reported fractal dimension a more impor-

tant predictor than rugosity, it is a measure of surface complexity nonetheless and

again, corals were associated with more complex surfaces. In contrast, Mortensen
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and Buhl-Mortensen (2004) did not identify a significant relationship between sur-

face roughness and deep water gorgonians (Paragorgia arborea, Primnoa resedae-

formis, and Acanthogorgia armata) in the Northwest Atlantic. However, surface

roughness was calculated on the scale of the entire video transect and using a dif-

ferent method to the terrain analysis adopted by this and the other studies listed

in this section.

Slope can be used as a proxy for increased current which is important for bring-

ing food to deep-water corals (Mohn and Beckmann 2002; Mortensen and Buhl-

Mortensen 2005; Bryan and Metaxas 2007; Wilson et al. 2007; Guinan et al.

2009a,b). However, slope is often used as a proxy for substratum in lieu of this

information (Bryan and Metaxas 2007; Dolan et al. 2008) suggesting that substra-

tum is a better predictor of gorgonian distribution as indeed the results presented

in this chapter demonstrate. Although slope only explained a small amount of de-

viance in the GAM and was the least important variable in the Maxent model, its

significant contribution to explaining gorgonian distribution is in agreement with

other authors who have reported the probability of gorgonian and other coral oc-

currence increasing with slope (Mortensen and Buhl-Mortensen 2004; Leverette

and Metaxas 2005; Bryan and Metaxas 2006; Guinan et al. 2009a,b). As noted

in this analysis, Howell et al. (2011) reported an asymptotic relationship between

slope and rugosity and the occurrence of the coral (Lophelia pertusa) on Hatton

Bank.

Although the GAMs and full Maxent model are in agreement about the two

variables with the greatest influence on gorgonian distribution (substratum and

geomorphology), they differ in the relative importance of other variables. This

may be due to a combination of factors including the distribution of presence data

within the wider PA dataset, and the possibility that Maxent may overfit. Using
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rugosity as an example, half of the presence records are located within the top

quarter of rugosity values (based on the full PA dataset), yet only a seventh of

presence records were included in the first half of the data values. Consequently,

Maxent may overestimate the importance of rugosity on gorgonian distribution

based on the distribution of the presence records.

8.4.2 Spatial differences in model prediction

The majority of the study area is characterised by very small differences in pre-

dicted habitat suitability, suggesting that there is general consensus between the

GLM and Maxent approaches regarding the relative suitability of different habi-

tats within the study area. This is encouraging and suggests that Maxent does

not appear to be adversely influenced by the lack of absence data in model cali-

bration with respect to presence-absence (PA) models, as suggested by Elith and

Graham (2009).

PA methods can assign lower probabilities to areas in which the species are present,

but in which there may be a higher proportion of absences, which the presence-

only model may otherwise identify as important habitat (Brotons et al. 2004).

The fact that the GLM has predicted relatively higher probability than Maxent

in some areas is probably because the GLM is quite conservative, only adding

variables if they are significant and penalising quite heavily for their addition.

The GLM probability value in Figure 8.6 is based solely on the fact that it is a

rocky escarpment whereas Maxent has used a range of variables in its prediction.

This suggests that Maxent may overfit to the data, although the regularization

multiplier in Maxent aims to address this by forcing the model to focus on those

variables that explain the most about the data (Phillips et al. 2006).
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8.4.3 Model performance

Some authors have advocated the use of threshold-independent methods above all

else, including recommendations specific to deep-sea modelling studies (Tittensor

et al. 2009), while other authors recommend the use of a suite of performance

indicators (Lobo et al. 2008) and so it is important that the performance across

the range of metrics is presented.

The GLM had the most consistent performance based on the threshold-dependent

metrics and while the full Maxent model AUC scores were significantly better

than the GLM, the average scores based on resampling were very close and both

excellent. Taking significant differences in performance into account, that is, the

number of times the model had the outright best score, the full Maxent model

and GLM had comparable performance.

However, due to the possibility that the full Maxent model might have overfitted

to the data, it is a fairer to compare the GLM with the reduced Maxent model

that used the same variables. In which case, taking significant differences in per-

formance into account, the GLM only performed slightly better than the reduced

Maxent model, although again the reduced Maxent model did have some very

poor scores.

Maxent has performed well against PA models in other studies, despite using PsA

data as opposed to the true absence data used in this study (Elith et al. 2006;

Gibson et al. 2007; Williams et al. 2009). Gibson et al. (2007) found that Maxent

only performed slightly better than a GLM (using PsA data) for a rare parrot

species. Yet an early study by Ferrier and Watson 1997 found that GLMs and

GAMs built with PsA data performed significantly better than and BIOCLIM

(PO data). However, BIOCLIM is an older method than Maxent and Maxent
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has outperformed it in several studies (Elith et al. 2006; Hermanlimianto and van

Ofwegen 2006).

Elith et al. (2011) have very recently applied Maxent as outlined in this study,

and compared Maxent’s performance built using presence and absence data as

background data with Maxent models built using randomly sampled background

data. The ‘presence-absence’ Maxent model produced predictions most consistent

with ecological knowledge available for the species. Furthermore, the ‘presence-

absence’ model achieved the highest overall AUC score based on five-fold cross

validation with new data.

The results presented in this chapter demonstrate that Maxent has shown promis-

ing performance as a presence-absence model and, by virtue of its ease of use and

excellent performance, might make a valuable contribution to marine conservation

planning. However, Maxent was designed for presence-only modelling and whilst

it shows some excellent performance in this study, further research is needed by

its developers in collaboration with ecologists and other modellers to confirm

whether indeed Maxent is an appropriate model for presence-absence data and, if

so, whether the model could be further improved. If this is confirmed then there

is no question that the position of Maxent as the model du jour will only increase.
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Chapter 9

Discussion
This thesis comprises a collection of studies that set out to critically appraise the

application of species distribution modelling in marine conservation planning by

investigating fundamental challenges to their use and exploring solutions, and has

demonstrated unequivocally their potential value to marine conservation manage-

ment, thereby meeting the project aim and all of its objectives.

Two key problems that influence the employment of SDMs but have received lit-

tle critical investigation in the marine environment were identified; environmental

data resolution and model transferability. This study has evaluated the conse-

quences of using environmental data at different resolutions (Objective 3), with

specific reference to available data sets in the nearshore and offshore study sites,

and of transferring deep-sea models (Objective 4), in order to allow managers to

make informed decisions with respect to the best and most appropriate use of

existing data.

This study has also used novel approaches and investigated their suitability for

marine conservation planning, namely the use of model classification error in the

spatial prioritisation of monitoring sites (Objective 2), leading to the development

of a proof of concept for the application of SDMs to MPA monitoring, and the

adaptation of an existing presence-only modelling method to include absence data

(Objective 5). The latter will contribute to a much needed debate about the

adoption of Maxent as a presence-absence model given its ease of use, excellent
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performance, and clear outputs.

Together, these studies contribute practical recommendations and novel appli-

cations within the wider species distribution modelling discipline, to ensure the

ongoing improvement and development of models to support conservation plan-

ning.

Finally, the thesis has contributed to the bank of knowledge on gorgonian ecology

and the environmental variables influencing their distribution on both local and

landscape scales (Objective 1). It is the first study to model shallow and deep

water gorgonian distribution in UK waters.

9.1 Species Distribution Models and management

In the absence of complete survey coverage it is necessary to turn to surro-

gates in order to inform conservation management (Ferrier and Watson 1997) and

species distribution modelling in the marine environment has developed signifi-

cantly over the past few years, especially within deep-water environments (Davies

et al. 2008)).

A review of twenty recent marine conservation related species distribution mod-

elling studies written over recent years (Cañadas et al. 2005; Clark et al. 2006;

Carlson et al. 2007; Davies et al. 2008; Degnbol and Wilson 2008; Panigada et al.

2008; Bailey and Thompson 2009; Guinan et al. 2009b; Maxwell et al. 2009; Tit-

tensor et al. 2009; Woodby et al. 2009; Clark and Tittensor 2010; Embling et al.

2010; Magris and Déstro 2010; Tittensor et al. 2010; Dambach and Rodder 2011;

Davies and Guinotte 2011; Howell et al. 2011; Pittman and Brown 2011; Tracey

et al. 2011) reveals that, whilst being valid studies that contribute to broadening

the knowledge base of the target species or modelling methodology, their appli-

cation in the majority of cases is ‘passive’. That is to say, they do not explicitly
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state the desired application of the results more specifically than being available

to support marine conservation management. In only two of the papers have the

outputs of the modelling been linked specifically to management decisions (in both

cases, using marine mammal model outputs to identify boundaries for proposed

SACs: Cañadas et al. (2005); Embling et al. (2010)).

A crucial stage has been reached in the application of marine species distribution

models where it is necessary to start considering the end point application of these

models: How can model outputs be more than maps? How can they best be used

to inform conservation planning? Should metadata standards be developed for

model outputs? How can predictive layers best be used with other conservation

planning tools such as Marxan? If these models are to be applied in a management

context then these questions need to be addressed. Two important areas of dis-

cussion and further research are therefore adding value to model outputs (creating

more than maps of habitat suitability) and model endpoint specification.

9.2 Adding value to model outputs

As demonstrated in Chapter five and by several recent studies (e.g. Clark and

Tittensor (2010); Tittensor et al. (2010); Dambach and Rodder (2011)), the com-

bination of model outputs with additional activity layers or global climate change

scenarios adds another dimension to the model and contextualises model outputs

with respect to current management issues. The spatial footprint of human activ-

ities in coastal and offshore environments (Stelzenmuller et al. 2008; Benn et al.

2010) could be combined with species distribution model outputs and economic

analyses, for example, to better understand how the vulnerability of different

habitats might shift in a changing economic climate. Equally, species distribution

model outputs might assist in the identification of potential synergistic cumulative
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impacts (see Rogers and Laffoley (2011)) before they necessarily occur, thereby

adopting the precautionary principle. For example, global predictions of habitat

suitability for cold water corals with respect to climate change scenarios (Titten-

sor et al. 2010) could be combined with maps of global trawling effort to identify

areas in which are likely to be threatened by both activities and hence areas where

we might expect to see some permanent loss of deep-water coral habitat. This

would address both spatial and temporal vulnerability.

With particular relevance to deep-sea species distribution modelling, where video

survey techniques are an important source of biological survey data, the need for

research into indicator species that can be used as a proxy for the distribution of

other species is central. The identification of a group of species that are highly

conspicuous on video, and therefore suitable for generating presence-absence data,

and whose presence is commonly associated with the presence (or absence) of

other species of conservation importance or species richness (determined from the

analysis of photographic stills, for example), would allow for proxy distribution

modelling of other species or areas of high biodiversity.

Lastly, it would be of tremendous value to combine SDM outputs with biological

traits in order to map ecosystem structure and function, and to identify areas

characterised by particular biological traits. The outputs of this study, for ex-

ample, when combined with the biological traits of the species used in the study

(growth rates, fragility, longevity etc.) would help to identify areas of functional

or ecological significance, as defined by the CBD criteria for identifying ecolog-

ically or biologically significant areas (2008 Decision IX/20 Annex 1) and FAO

criteria for identifying vulnerable marine ecosystems.

200



9.3. MODEL ENDPOINT SPECIFICATION

9.3 Model endpoint specification

Model endpoint specification simply refers to the provision of and appropriate

preparation of model outputs for external use, that is, use by a different person

or organisation for conservation planning. To quote Sundblad et al. (2009), ‘maps

of potential distribution will be of little use, or may even do more damage than

good, e.g. by spatial misallocation of conservation, if the predictive capability is

not communicated to end-users’. To this effect there are several facets of SDM

outputs that warrant greater consideration than they are currently given.

The first concerns metadata and the apparent lack of metadata standards for

SDM outputs. These standards should be developed so that anyone inheriting

SDM outputs, such as GIS layers, is provided with enough information about

the model that they can make an informed choice about the application of the

outputs. At the very least, the metadata should include the modelling approach,

details of the variables included in the final model and details of any thresholding

methodology if a binary prediction is presented.

Furthermore conservation prioritisation should account for uncertainty, including

with respect to SDM outputs (Elith and Leathwick 2009), yet model error, for

example, is rarely mapped in the published literature. Managers will be faced

with spatial choice when planning and the additional information provided by a

map of model error, such as the standard error of model predictions, or confidence

layers, may influence their decisions. Providing this information might also foster

confidence in model outputs so it is important that all of this information is

accessible.

Further research is needed to determine the best approach for incorporating SDM

outcomes into spatial prioritisation programmes such as Marxan (Loisells et al.
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2003; Wilson et al. 2005; Leathwick et al. 2008). Wilson et al. (2005) studied

the influence of using binary outputs versus probabilities of species occurrence

in Marxan and encountered various problems including Marxan solutions that

were inefficient and that missed targets. However, of the three different methods

of threshold definition used and the two different methods of using predicted

probabilities, no method appeared to consistently perform better than the other.

If the outputs from a high resolution species distribution model are to be used

in much coarser resolution planning units for example, should the precautionary

principle be adopted and assign the value of the model unit with the highest

predicted probability to the planning unit? Or should an average of the model

unit probabilities be taken which, although easily justified, might result in the

loss of valuable information about highly suitable habitat? It would be of great

interest to further investigate the use of SDM outputs in Marxan, and other marine

planning tools, using some sensitivity analyses.

The recent extension to 2020 of the Convention on Biological Diversity target

deadline (protection of 10% of all marine and coastal ecoregions), progress in

the identification and designation of Marine Protected Areas beyond areas of

national jurisdiction, and ongoing development in marine planning, mean that

species distribution models have both an urgent and long term contribution to

make to marine conservation planning globally, and it is hoped that the outcomes

of this thesis will contribute to this and inform best practice.
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Conference posters
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Poster presented at the 1st Marine and Coastal Policy Forum, Plymouth, UK,
22nd-24th June 2011 (prize awarded) and 1st Marine Management Organisation
Conference, Plymouth, UK, 13th-14th September 2011.
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Poster presented at the 1st International Marine Conservation Congress, Virginia,
19th-24th May 2009.
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Appendix B

Lyme Bay substratum description cross

referencing

Table B.1: The supporting habitat descriptions for the Devon Wildlife Trust
pink sea fan data (from the towed video reef survey) were cross-
referenced with the Devon Wildlife Trust biotope layer. Only those
data where the description matched were included in the model
building. The table below lists the permitted matches.

Devon Wildlife Trust biotope 

layer substratum description 

The following categories from the substratum description from Black (2007) were 

considered a `match’ with the biotope layer.  

Rock 

Boulders 

Bedrock 

Bedrock and boulders 

Rock and mixed substrata 

Any of  the above plus: 

Mosaic of  mixed substrata and bedrock 

Bedrock with sediment veneer 

Mixed (if  Black (2007) indicated that the habitat was suitable for supporting pink sea fans, 

because this meant that boulders were present  or if  the description mentioned large boulders) 

Mixed substrata Mixed (excluding the exceptions outlined above) 

Gravel 
Mixed (if  Black (2007) indicated that the habitat was unsuitable for supporting pink sea fans 

because this meant that boulders were not present) 

Sand, Mud, Mud and sand Soft  

Mud, sand and mixed 

Soft 

Mixed (if  Black (2007) indicated that the habitat was unsuitable for supporting pink sea fans 

because this meant that boulders were not present) 
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Appendix C

Wilcoxon test statistics for performance

indicator analysis; Hatton Bank

models (Chapter 6)
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Table C.1: Comparative performance of the different resolution Hatton Bank
models built with two thirds of the data, based on four performance
indicators. Relative performance is indicated by < and >.

Performance 

indicator

Model a Relative 

performance

Model b Wilcoxon

rank sum 

test statistic 

(W)

Significance

CCR
HHRM > HLRM 701135.0 p = < 2.2 -16

HHRM > HMRM 950284.0 p = < 2.2 -16

HMRM < HLRM 187822.0 p = < 2.2 -16

Sensitivity
HHRM > HLRM 745118.5 p = < 2.2 -16

HHRM > HMRM 793292.0 p = < 2.2 -16

HMRM < HLRM 428450.5 p = 1.489 -08

Specificity
HHRM > HLRM 598216.5 p = 1.410 -14

HHRM > HMRM 885057.5 p = < 2.2 -16

HMRM < HLRM 230234.5 p = < 2.2 -16

AUC
HHRM > HLRM 964426.5 p = < 2.2 -16

HHRM > HMRM 991660.0 p = < 2.2 -16

HMRM < HLRM 410411.0 p = 1.991 -16
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Table C.2: Comparative performance of the different resolution Hatton Bank
models standardised for sample size (with respect to the low resolu-
tion model) and prevalence, based on four performance indicators.
Relative performance is indicated by < and >.

Performance 

indicator

Model a Relative 

performance

Model b Wilcoxon

rank sum 

test statistic 

(W)

Significance

CCR
HHRM > HLRM 581711 p=1.195 -10

HHRM > HMRM 848488 p = < 2.2 -16

HMRM < HLRM 196978 p = < 2.2 -16

Sensitivity
HHRM > HLRM 632625 p = < 2.2 -16

HHRM > HMRM 806096 p = < 2.2 -16

HMRM < HLRM 290432 p = < 2.2 -16

Specificity
HHRM > HLRM 571122.5 p=1.744 -08

HHRM > HMRM 757746 p = < 2.2 -16

HMRM < HLRM 299874 p = < 2.2 -16

AUC
HHRM > HLRM 930251 p = < 2.2 -16

HHRM > HMRM 989661 p = < 2.2 -16

HMRM < HLRM 312839 p = < 2.2 -16
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Appendix D

Wilcoxon test statistics for performance

indicator analysis; Lyme Bay models

(Chapter 6)
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Table D.1: Comparative performance of the different resolution Lyme Bay
models built with (a) two thirds of the data and (b) standardised for
sample size (with respect to the low resolution model) and preva-
lence, based on four performance indicators. Relative performance
is indicated by < and >.

Performance 

indicator

Model a Relative 

performance

Model b Wilcoxon

rank sum 

test statistic 

(W)

Significance

CCR LHRM > LLRM 940839.0 p = < 2.2 -16

Sensitivity LHRM > LLRM 689288.5 p = < 2.2 -16

Specificity LHRM > LLRM 883673.0 p = < 2.2 -16

AUC LHRM > LLRM 867730.5 p = < 2.2 -16

Performance 

indicator

Model a Relative 

performance

Model b Wilcoxon

rank sum 

test statistic 

(W)

Significance

CCR
LHRM > LLRM 941091.0 p = < 2.2 -16

Sensitivity
LHRM > LLRM 768659.5 p = < 2.2 -16

Specificity LHRM > LLRM 950939.0 p = < 2.2 -16

AUC LHRM > LLRM 924078.0 p = < 2.2 -16

(a)

(b)
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Appendix E

Maps of predicted gorgonian habitat

suitability for Hatton Bank based on

Maxent and Generalized Linear Model

outputs, and differences between the

two sets of predictions (Chapter 8)
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List of abbreviations
AUC Area Under the Curve

BAP Biodiversity Action Plan

BPI Bathymetric Position Index

BTM Benthic Terrain Model

CCR Correct Classification Rate

Chl. a Chlorophyll a

DWT Devon Wildlife Trust

ENFA Ecological Niche Factor Analysis

GAM Generalized Additive Model

GLM Generalized Linear Model

MCZ Marine Conservation Zone

MPA Marine Protected Area

OSPAR Oslo/Paris convention (for the Protection of the Marine Environment)

of the North-East Atlantic)

PA Presence-absence

PO Presence-only

PsA Pseudo-absence
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ROC Receiver Operating Characteristic

SAC Special Area of Conservation

SDM Species Distribution Model

SENS Sensitivity

SPEC Specificity

SPM Suspended Particulate Matter

SST Sea Surface Temperature

TDD Training Data Derived

UBRE Un-Biased Risk Estimator

VME Vulnerable Marine Ecosystem
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