01 University of Plymouth Research Outputs

University of Plymouth Research Outputs

2018

Factors influencing treatment escalation from long-acting muscarinic antagonist monotherapy to triple therapy in patients with COPD: a retrospective THIN-database analysis

Hurst, JR

http://hdl.handle.net/10026.1/11680

10.2147/copd.s153655 International Journal of Chronic Obstructive Pulmonary Disease Informa UK Limited

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

- 1 Factors influencing treatment escalation from LAMA
- 2 monotherapy to triple therapy in patients with COPD: a
- **3 retrospective THIN database analysis**
- 4

- 5 John R. Hurst,¹ Maria Dilleen,² Kevin Morris,^{2*} Siân Hills,² Birol Emir,³ Rupert Jones⁴
- 6 ¹UCL Respiratory, University College London, London, UK
- 7 ²Pfizer Ltd, Surrey, UK
- 8 ³Pfizer Inc, New York, NY, USA
- 9 ⁴Plymouth University Peninsula School of Medicine and Dentistry, Plymouth, UK
- 10 *At the time of study conduct
- 11

12 Correspondence:

13 Dr. John R. Hurst, UCL Respiratory, University College London, Gower Street, London,

1

- 14 WC1E 6BT, UK.
- 15 Tel: +44 (0) 207 472 6260
- 16 Fax: +44 (0) 207 472 6141
- 17 Email: j.hurst@ucl.ac.uk
- 18
- 19 Abstract word count 269293
- 20 Word count **3328**
- Tables and figures 5 tables; 3 figures
- Supplemental tables and figures: 1 table

23

24 ABSTRACT (293 of 300 max)

- 25 **Purpose:** Inappropriate use of an inhaled corticosteroid (ICS) for chronic obstructive
- 26 pulmonary disease (COPD) has clinical and economic disadvantages. This
- 27 retrospective analysis of the UK Health Improvement Network (THIN) database
- 28 identified factors influencing treatment escalation (step-up) from long-acting muscarinic
- 29 antagonist (LAMA) to triple therapy (LAMA + long-acting beta agonist/ICS). Secondary
- 30 objectives included time to step-up from first LAMA prescription, Global Initiative for
- 31 Chronic Obstructive Lung Disease (GOLD) grouping (<u>2011/2013,</u> 2017), and Medical
- 32 Research Council (MRC) grade prior to treatment escalation.
- 33 Methods: Data were included from 14,866 people ≥35 years old, with a COPD
- 34 diagnosis (01 June 2010–10 May 2015), and initiated on LAMA monotherapy. The
- 35 most commonly used LAMA at baseline was tiotropium (92%).
- 36 **Results:** Multivariate analysis (n=10,492 patients) revealed that COPD exacerbations,
- 37 lower FEV₁, "asthma," MRC grade, proactive and reactive COPD primary care, elective
- 38 secondary care contact, cough, and number of short-acting bronchodilator
- 39 prescriptions were positively associated with treatment escalation (p<0.05). Being
- 40 older, being a current/ex-smoker, or having increased sputum symptom codes were
- 41 negatively associated with treatment escalation (p < 0.05). Median MRC score was 2 at
- 42 baseline and 3 prior to treatment escalation. Using the last MRC reading and
- 43 exacerbation history in the year prior to escalation, GOLD 2017 groupings were as
- 44 follows: A, 27.4%; B, 37.3%; C, 15.3%; D, 20.0%. In patients with available FEV1
- 45 measures, exacerbations and MRC code (n=1,064), GOLD 2011/2013 groupings were:
- 46 <u>A (20.4%), B (19.2%), C: (24.8%), D: 35.6%).</u>
- 47 **Conclusions:** While the presence of COPD exacerbations seems to be the main driver
- 48 for treatment escalation, according to the 2017 GOLD strategy many patients appear to
- 49 be over-treated as they would not be recommended for treatment escalation.

- 50 Reviewing patients' treatment in the light of the new GOLD strategy has the potential to
- 51 reduce inappropriate use of triple therapy.
- 52 **Keywords:** inhaled corticosteroid; treatment step-up; GOLD 2017 grouping; patient
- 53 over-treatment

54 Plain language summary

In patients with chronic obstructive pulmonary disease (COPD) initiated on long-acting 55 muscarinic antagonist (LAMA) monotherapy, this study identified that COPD 56 exacerbations, lower FEV1, "asthma," and health care contact were associated with 57 escalation to triple therapy (LAMA + long-acting beta- agonist/inhaled corticosteroid 58 [ICS]). When treatment practices were analyzed according to the 2017 Global Initiative 59 60 for Chronic Obstructive Lung Disease (GOLD) strategy, many patients appear to be over-treated, particularly with respect to prescription of triple therapy comprising 61 inhaled corticosteroids steroids (ICSs). Understanding factors associated with the 62 escalation of treatment to include ICSs may improve treatment practices in patients 63 64 with COPD, and bring them in line with the 2017 GOLD strategy, and moreover, reduce 65 the inappropriate, expensive, and potentially harmful overprescribing of ICSs for

66 67 COPD.

68 INTRODUCTION

I

69	Chronic obstructive pulmonary disease (COPD) is a complex respiratory disorder that			
70	is characterized by persistent airflow limitation that is usually progressive in nature ⁴ and			
71	is a major cause of morbidity and mortality.1.32 The World Health Organization			
72	estimates that approximately 3 million people died of COPD worldwide in 2015 (5% of			
73	all deaths), and predicts that due to higher smoking prevalence and aging populations			
74	in many countries, the prevalence of COPD is likely to increase in the future. ³⁴			
75	The updated 2017 Global Initiative for Chronic Obstructive Lung Disease (GOLD)			
76	strategy categorizes patients into four grades of airflow obstruction (1 through 4) based			
77	on percentage of predicted forced expiratory volume in 1 second (FEV $_1$), and into four			
78	risk groups (A through D) based on symptoms and exacerbation history .² - <u>.^{2,3} The</u>			
79	previous 2011 GOLD strategy (which was slightly adapted in 2013) used the degree of			
80	airflow obstruction to contribute to A-D grouping, such that those individuals with FEV1			
81	<50% were considered as group C and D. ¹ In 2013, GOLD made a minor update and			
82	treated patients with one hospitalised exacerbation the same as patients with two or			
83	more non-hospitalised exacerbations. ¹			
84	Long-term treatment with an inhaled corticosteroid (ICS) in combination with a			
85	long-acting beta agonist (LABA) is recommended therapy for certain patients in GOLD			
86	2011/2013 groups C and D, but now there are more preferred pathways that			
87	recommend optimal bronchodilation using a long-acting muscarinic antagonist (LAMA)			
88	or LAMA + LABA, before the addition of ICS therapy (as triple therapy) in patients			
89	whose symptoms are not adequately controlled. ²³ In some patients, such as those with			
90	a history and/or findings suggestive of an asthma/COPD overlap, LABA/ICS therapy			
91	may be first choice therapy, but other options should also be considered. ²³ Despite			
92	these treatment pathways indicating appropriate prescription of ICSs, real-world data			
93	suggest that ICS may be inappropriately prescribed in some patients. For example, in a			
94	study of more than 24,000 electronic patient records and patient-completed			

I

95	questionnaires from a large UK primary care database, ~50% of patients in both the		
96	overall cohort (n=24,957) and the cohort with moderate airflow limitation (n=13,557)		
97	were receiving ICS, either in combination with a LABA (26.7% for both cohorts) or in		
98	combination with a LABA and a LAMA (23.2% and 19.9%, respectively). 45 These		
99	findings revealed that ICSs in combination with LABA or LABA + LAMA was the most		
100	frequently used treatment in patients in GOLD group A or B, and that ICSs had been		
101	prescribed in 49% of patients with moderate airflow obstruction and no exacerbations		
102	in the previous year. 45 In light of this, the authors concluded that ICSs were prescribed		
103	irrespective of the severity of airflow limitation, asthma diagnosis, and exacerbation		
104	history, $\frac{4.5}{2}$ which is not in accordance with the 2017 GOLD strategy. ²³ Studies of ICS		
105	withdrawal, even in COPD patients with a history of exacerbations, have shown		
106	strategies can be safely undertaken_that enable patients to change to a more		
107	appropriate therapy according to up-to-date guidances. ^{6,7}		
108	The potentially inappropriate use of ICSs in patients with COPD has economic		
109	and clinical implications, ^{6-10<u>8-12</u> being associated with an increased risk of adverse}		
110	events, including pneumonia, osteoporosis, diabetes, and cataracts. 62 The increased		
111	risk of pneumonia, for example, is particularly well-documented.7-109-12 The economic		
112	impact of COPD and its treatment costs are considerable. For example, the UK		
113	National Institute for Health and Clinical Excellence (NICE) estimated that COPD costs		
114	the National Health Service (NHS) over $\pounds 268$ million in prescriptions alone (based on		
115	2011 data).4413 Furthermore, the Net Ingredient Cost of preparations containing ICSs		
116	for respiratory disease (asthma and COPD) in England alone has been estimated to be		
117	in excess of £700 million, based on 2014 data. $^{44\underline{1}\underline{3}}$ If ICS are inappropriately prescribed		
118			
110	to certain patients, it is one more factor adding to the already high economic and social		
119	to certain patients, it is one more factor adding to the already high economic and social burden associated with COPD.		

121 updated to aid most appropriate treatment practices, supported by clinical

122	observations. Therefore, understanding the pathway and predictors for treatment
123	escalation in COPD may help identify patients for whom alternative treatment
124	strategies or treatment escalation without ICSs may be more appropriate.
125	This study was conducted to determine the factors influencing treatment
126	escalation (step-up) to a LAMA + LABA/ICS fixed-dose combination (FDC) inhaler
127	(triple therapy) in patients with COPD who were initiated on LAMA monotherapy, and
128	included assessment of patients and their treatment using the updated GOLD 2017
129	classification criteria.both the GOLD 2011/2013 and the more up-to-date GOLD 2017
130	classification criteria. ^{1,3} The primary objective was to identify factors significantly
131	associated with time to step-up from LAMA monotherapy to LAMA + LABA/ICS (triple
132	therapy). Secondary objectives included assessing time to step-up from first LAMA
133	prescription, GOLD category according to 2017 criteria, and change in breathlessness
134	(MRC [Medical Research Council]) score prior to treatment escalation.
135	

136 METHODS

137 Study design

- 138 This was a retrospective analysis of anonymized electronic medical records (EMR) in
- 139 the UK Health Improvement Network (THIN) database, a primary care EMR data
- 140 resource with 3 million active patients and 385 active general practitioner (GP)
- 141 practices. Patients were representative of the UK population by age, gender, medical
- 142 conditions, and death rates adjusted for demographics and social deprivation. The
- 143 EMRs were consistently updated and could be followed over time. The GPs
- 144 contributing data to THIN provided health services under the terms of the UK's
- 145 NHS.⁴²¹⁴
- The THIN Data Collection Scheme is approved by the UK South-East Multicentre
 Research Ethics Committee (SRC). Approval for this study was gained from the IMS
 Health Independent Scientific Board (SRC Reference: 16THIN; approval: 29 March

149 2016). The study was conducted in accordance with legal and regulatory requirements and followed research practices described in the Guidelines for Good 150 Pharmacoepidemiology Practices issued by the International Society for 151 Pharmacoepidemiology, International Society for Pharmacoeconomics and Outcomes 152 153 Research guidance, and Pharmaceutical Research and Manufacturers Association guidelines. 154 155 156 Study periods The study period included data up until 10 May 2016 and was the time from the index 157 158 event (date of first LAMA prescription) until the time at which the patient received LAMA + LABA/ICS (triple therapy, defined as any LABA/ICS FDC prescription after 159 initiation of LAMA monotherapy; patients must have also received a LAMA within 2 160 months of treatment escalation). Patients were included if they had a COPD diagnosis 161

162 163

164 Participants

- 165 Data were extracted for patients who had a diagnosis of COPD (but excluding an
- asthma diagnosis), who were ≥35 years old, and who received LAMA monotherapy
- 167 only (aclidinium, glycopyrronium, tiotropium, or umeclidinium) as initial COPD treatment

between 01 June 2010 and 10 May 2015, allowing for at least 1 year of follow-up.

- 168 prior to treatment escalation. Data from patients who started therapy comprising a
- 169 LAMA in combination with any other COPD maintenance therapy (LABA, ICS, or
- 170 LABA/ICS FDC), or who had a history of LAMA, LABA, LABA/LAMA FDC, ICS, or
- 171 LABA/ICS use in the 2-month (60-day) pre-index period, were excluded. Use of reliever
- 172 medications, mucolytics, and xanthines was accepted.
- 173
- 174 Statistical analysis

175 As the study was a retrospective non-interventional database analysis of anonymized patient records, a formal sample size was not calculated. A feasibility calculation was 176 carried out to assess the potential size of the population to be studied. SAS version 9.4 177 (SAS Institute, Inc., Cary, North Carolina, USA) was used for all analyses. No missing 178 179 data imputations and no multiplicity adjustments were performed. 180 Patient characteristics and comorbidities recorded at any time were descriptively 181 summarized (Table S1). Time to treatment escalation (step-up) was assessed using 182 univariate and multivariable Cox regression incorporating time-varying covariates.⁴³ The univariate analysis included 14,866 patients, and any missing data due to missing 183 184 covariates were censored for that observation.¹⁵ The univariate analysis included 185 14,866 patients, and any missing data due to missing covariates were censored for that observation. For the multivariate Cox regression, to ensure inclusion of patients who 186 187 had FEV1 and MRC recorded, the final data set reduced to 10,492. Statistically significant time-varying covariates were included in the final model using a stepwise 188 model selection procedure. Factors significantly associated with treatment escalation 189 (p<0.05) were retained in the model. 190 In the prespecified analysis plan, the following initial terms were included in the 191 multivariate analysis selection: age, gender, FEV1, physician-coded asthma, chronic 192 193 kidney disease, mental health disorders, depression, anxiety, osteoporosis, rheumatoid arthritis, lung cancer, obesity, epilepsy, diabetes, pneumonia, MRC grade, smoking 194 195 status, cough symptoms (number of consultations with code for cough), sputum 196 symptoms (number of consultations with code for sputum), short-acting bronchodilator use, proactive COPD primary care (defined as COPD disease monitoring [including by 197 198 doctor or nurse], shared care disease monitoring, COPD 3-, 6-, or 12-month review follow-up, COPD health education, COPD disease medication optimization, issue of 199 COPD rescue pack or advance supply of steroid medication or antibiotic medication [or 200 deferred antibiotic therapy], COPD disease leaflet given, has COPD care plan or care 201

202	pathway, has COPD clinical management plan, on COPD supportive care pathway,
203	seen in COPD clinic), reactive COPD primary care (defined as nighttime or out-of-hour
204	visit; follow-up or acute visit; home-, hotel-, or nursing/residential home visit; twilight
205	visit by the practice, their cooperative, deputizing service, or local rota service; reactive
206	or cooperative surgery consultation; minor injury service; medicines management or
207	telephone consultation related to COPD), elective secondary care contact (defined as
208	COPD secondary care consultation or respiratory hospital referral), COPD
209	exacerbations (composite endpoint defined as COPD emergency admission or acute
210	exacerbation of COPD, lower respiratory tract infection, oral corticosteroids and
211	antibiotic prescription on same day, according to the definition used previously ⁴⁴¹⁶), and
212	cardiovascular risk (composite endpoint defined as combined comorbidity for
213	cardiovascular risk). Cough symptoms, sputum symptoms, proactive and reactive
214	COPD primary care, and elective secondary care contact were based on Read code
215	data only.
216	A stepwise procedure was followed, which is useful where there is a large
217	number of potential explanatory variables and no underlying theory for the order on
218	which to base the model selection. The order of importance of variables automatically
219	selected in the stepwise process was: COPD exacerbations (composite), $FEV_{1,}$
220	"asthma," proactive COPD primary care, use of short-acting bronchodilators, reactive
221	COPD primary care, MRC grade, smoking status, cough symptoms, elective secondary
222	care contact, sputum symptoms, and age. Terms were retained in the model if p <0.05.
223	GOLD grouping was analyzed according to GOLD 2011/2013 criteria for patients
224	with any FEV1. and MRC available during the last 360 days of study period (and
225	exacerbations / hospitalizations as previously described), ¹ and GOLD 2017
226	classification criteria for patients with any MRC available during the last 360 days of
227	study period (and exacerbations / hospitalizations as previously described). ³
228	

229 RESULTS

230 Patient baseline characteristics

- 231 In total, data from 14,866 patients were included in this analysis (Figure 1):
- 232 6,482/14,866 (43.6%) received treatment escalation, and 8,384/14,866 (56.4%)
- remained on LAMA monotherapy. Overall, 1,875/14,866 patients (12.6%) were lost to
- 234 follow-up due to death.
- 235 Patient baseline characteristics are given in Table 1. The mean age of the
- 236 overall population was 68 years, and 54% were male. In the treatment escalation
- 237 group, the mean age was 68 years, and 55% were male. The most commonly used
- 238 LAMA at baseline was tiotropium (92%).

239 Of patients who received treatment escalation, the majority were prescribed

- 240 fluticasone propionate 500 μg/salmeterol 50 μg (as Seretide[®] 500 Accuhaler; 29%),
- followed by salmeterol 25 µg/fluticasone 250 µg (as Seretide[®] 250 Evohaler, 16%). The
- 242 Seretide[®] 250 Evohaler inhaler device does not have a license for the treatment of
- 243 COPD.
- 244

245 Comorbidities

- 246 The most prevalent comorbidities were hypertension (44%), chronic heart disease
- 247 (20%), anxiety (20%), and diabetes (15%) (Table 2). Comparison of comorbidities in
- the population studied here with those in the general population of England⁴⁶¹⁷
- suggests that the prevalence of heart failure (6.7% vs 0.7%, respectively) and
- 250 osteoporosis (7.9% vs 0.1%, respectively) is greater in this COPD population, as might
- 251 be expected.
- 252

253 Time to treatment escalation

- In total, 44% of the cohort received treatment escalation (Figure 2). Of these patients,
- 255 85% did so within 2 years of initiating LAMA monotherapy. The median time to

treatment escalation from the first LAMA prescription was 155 days (interquartile range, 256 422-464 days). In the treatment escalation group, 33% of patients who had a FEV1 257 recording had a FEV₁ <50%, and 67% had a FEV₁ \geq 50%, prior to treatment escalation. 258 259 260 Factors associated with treatment escalation Univariate analysis 261 The factors associated with treatment escalation are reported in Table 3, of which 262 263 COPD exacerbation was associated with the highest hazard ratio (HR, 2.68). Other factors positively associated (p<0.05) with treatment escalation included, in decreasing 264 265 order of HR, MRC grade, "asthma," elective secondary care contact, proactive COPD 266 primary care, pneumonia, cough symptoms, reactive COPD primary care, mental health disorders, depression, sputum symptoms, anxiety, number of short-acting 267 268 bronchodilator prescriptions, and number of steroid prescriptions. Statistically significant factors that were negatively associated with treatment escalation were older 269 age, higher FEV₁, and current or ex-smoker status (Table 3). A small number of COPD 270 patients in this study were recorded as never having smoked. However, the risk of 271 treatment escalation for the two larger, more clinically relevant patient groups of current 272 smokers and ex-smokers was similar (Table 3). 273 274 Multivariate analysis 275 276 The multivariate analysis included 10,492 patients, 4,591 of whom received treatment 277 escalation. Observations confirmed that COPD exacerbations remained the factor most 278 closely associated with treatment escalation (Table 4). Other factors, in decreasing order of hazard ratio, were "asthma," MRC grade, proactive COPD primary care, 279 reactive COPD primary care, elective secondary care contact, cough symptoms, and 280

number of short-acting bronchodilator prescriptions (all *p*<0.05). Age at index date,

282	higher FEV_1 , sputum symptoms, and being a current or ex-smoker were negatively
283	associated with treatment escalation (Table 4).
284	
285	GOLD grade and group classification of patients prior to treatment escalation
286	GOLD 2011/2013 group was determined in a subgroup of 1,064 patients with FEV_1
287	exacerbations and MRC score available during the last 12 months of the study period
288	and who received treatment escalation (Table 5); 60% were classified as being in
289	group C or D compared with 40% in A or B.
290	GOLD 2017 group was determined in a subgroup of 5,090 patients who had
291	received treatment escalation and had an MRC score during the last 12 months of the
292	study period (Table 5). In total, 35% of patients were classified as being in GOLD group
293	C or D, compared with 65% in group A or B. Similarly, GOLD 2017 grade was
294	determined in a subgroup of 1,703 patients who had received treatment escalation and
295	had an FEV_1 score during the last 12 months of the study period (Table 5). In total,
296	67% of patients were classified as being grade 1 or 2, compared with 33% grade 3 or
297	4.
298	Assessment of treatment escalation per Medical Research Council (MRC) group
299	Median (lower, upper quartiles) Medical Research Council (MRC) score in the
300	treatment escalation group was 2.00 (interquartile range: 2.00-3.00) at baseline
301	(n=3,823) and 3.00 (2.00, 3.00) during the study period (n=5,611; Figure 3), suggesting
302	that patients became more breathless prior to treatment escalation.

303

1

304 DISCUSSION

305 This retrospective analysis of the UK THIN database was conducted to determine the factors influencing treatment escalation to a LAMA + LABA/ICS (triple therapy) in 306 patients with COPD who were initiated on LAMA monotherapy. To assess prescribing 307 308 practices at the time of the study, we analyzed patients categorized by the then current 309 GOLD 2011/2013 groupings. In addition, as GOLD updated their guidance in 2017, we 310 also analyzed patients according to the GOLD 2017 strategy. The multivariate analysis demonstrates that COPD exacerbations were the most significant factor (ie, had the 311 highest HR) associated with treatment escalation, but physician-coded asthma, MRC 312 grade, proactive COPD primary care, reactive COPD primary care, elective secondary 313 care contact, cough symptoms, and number of short-acting bronchodilator prescriptions 314 were also clinically and statistically significantly associated with treatment escalation in 315 these patients. The majority of patients had their treatment escalated within 2 years. As 316 treatment escalation (or step-down) is likely to be initiated during a point of contact with 317 a primary care provider, it would be expected that patients with treatment-defined 318 319 exacerbations and other consultations are more likely to receive treatment escalation. Indeed, similar findings have been reported by others.^{16,1718,19} Both lower age and 320 321 greater use of short-acting bronchodilators were statistically significant predictors of 322 treatment escalation in both our univariate and multivariate analyses. Although the HRs are relatively small, it is of note that they represent the impact of one unit of the 323 324 covariate. For age, the unit is 1 year, and for short-acting bronchodilator use, the unit is one extra prescription over the follow-up period. Age was negatively associated with 325 treatment escalation; therefore, if age increased by 1 year, the hazard is multiplied by 326 0.994. Given the poor recording of FEV1 in this patient cohort, short-acting 327 328 bronchodilator use could be an important marker to consider in the identification of

329 patients who are more likely to require treatment optimization.

I

330	Our study focused on treatment escalation in patients receiving LAMA	
331	monotherapy only, and in the majority of cases we found that treatment escalation	
332	occurred within 2 years of treatment initiation. A smaller retrospective cohort study of	
333	3,268 patients from the US Truven Marketscan® Commercial Database likewise	
334	demonstrated dynamic changes to COPD prescriptions within 2 years of treatment	
335	initiation with a LABA. ⁴⁶¹⁸ More specifically, within 24 months of follow-up, 16% of	
336	patients received treatment escalation, the majority of whom had added therapy (84%)	
337	progressed to triple therapy. ⁴⁶¹⁸ This escalation may be a result of poor control of	
338	symptoms, ⁴⁶¹⁸ in line with the present study, which suggests that treatment escalation	
339	is a direct result of COPD exacerbations or other symptoms that lead patients to	
340	contact their primary care provider.20	
341	A secondary objective of this study was to analyze how GOLD strategies guide	
342	treatment practices. Although UK treatment practices may be guided by NICE, ¹³	
343	guidelines from COPD-specific organizations, such as GOLD, are routinely updated to	
344	provide care paradigms reflective of recent clinical evidence. ³ We analyzed treatment	
345	patterns according to GOLD grouping prior to treatment escalation by applying the	
346	GOLD 2017 strategy document, in addition to the GOLD 2011/2013 strategies that	
347	were contemporary to the study window. When data were analyzed using the	
348	2011/2013 GOLD strategy, 60% of the 1,064 patients who received treatment	
349	escalation were classified as group C or D. When data were grouped according to the	
350	GOLD 2017 strategy, only 35% of the 5,090 patients who received treatment escalation	
351	were classified as group C or D. Although a larger sample was available for the 2017	Commented [DM1]: Note that the denominators in each
352	analysis, this observation indicates that fewer patients are recommended for ICS	of the GOLD11 and GOLD17 analyses are different (n=1064 vs n=5090) (may want to refer to Table 5 in brackets so that this is clear).
353	treatment than under the GOLD 2011/2013 strategy, providing that they do not have	
354	co-morbid asthma. Our findings reflect the impact of previous iterations of GOLD	
355	strategies or other national guidances, such as NICE in the UK, but may also be a	
356	result of an increase over time in the proportion of patients who are receiving triple	

357	therapy. ²¹ According to the GOLD 2011/2013 strategy, which was in place during the
358	study window, patients in group D (35.6% of the population) would have been
359	recommended to receive LABA/ICS therapy. ¹ In fact at the time of the study, use of
360	triple therapy was common practice and NICE 2011 guidelines recommended that
361	some patients with advanced COPD may require maintenance with oral corticosteroids,
362	when these cannot be withdrawn following an exacerbation, ¹³ and many UK GPs would
363	follow this practice above all other strategies. It was not until after the period covered in
364	this study, with publication of studies such as WISDOM and FLAME, ^{7,22} that many
365	doctors became aware that dual bronchodilation with LABA and LAMA is preferable to
366	use of ICS-containing regimens as first line therapy for the majority of patients with
367	COPD, particularly if the aim of treatment is to reduce the frequency of
368	exacerbations. ^{21,23} The WISDOM study published in 2014 demonstrated that
369	exacerbating patients with severe COPD run in on triple therapy (according to GOLD
370	2011/2013) were not at a higher risk of severe exacerbations following withdrawal of
371	ICSs compared with patients who continued on triple therapy. ⁷ The GOLD 2017
372	strategy now recommends that alternative treatment strategies should be considered
373	before the use of ICSs, including pulmonary rehabilitation, smoking cessation, and the
374	addition of LABA without ICSs. The present observations suggest that if the GOLD
375	2017 strategy recommendations were adopted by clinicians, there would be a reduction
376	in over-prescription of ICSs. Future studies may highlight changes in treatment practice
377	with the uptake and application of the GOLD 2017 strategy and other updates in
378	national treatment guidances since the study was sampled.
379	This retrospective analysis has several strengths, but also some limitations. The
380	THIN database is a very large data set that is representative of the UK population. ⁴⁸²⁴
381	Data are collected in a non-interventional way, therefore reflecting "real-life" clinical
382	practice. Information is continually updated, permitting investigation of the effects of
383	new interventions/treatments. A literature search of the terms "THIN" and "validation"

384	revealed that the THIN database has been validated for the Read codes for some but
385	not all of the covariates used in this study. ^{14,10-2316,25-29} It is important to note that the
386	GOLD guidelines were updated while the manuscript was in progress. Although earlier
387	GOLD guidelinesguidances, such as GOLD 2011/2013, may have been contemporary
388	to treatment practices during the study period, we additionally assessed patients
389	according to GOLD 2017 grouping, in order to demonstrate how physicians may need
390	to adapt their treatment practices in light of new evidence. As we discuss above, it is
391	likely that physicians were treating according to older GOLD strategy, or other
392	guidance contemporary to the study window such as NICE 2011, and this is a possible
393	explanation for the high proportion of patients in the treatment escalation group.
394	Although only a minority of the study population had FEV_1 measurements recorded in
395	the database (17.7% [n=2635/14,866]), FEV_1 measurements were not required for
396	COPD diagnosis. Furthermore, GOLD 2017 guidelines do not use FEV_1 for determining
397	categories (and hence treatment), which is a welcome change in policy, as FEV_1 has
398	been reported to be a poor predictor of exacerbation risk. ²⁴³⁰
398 399	been reported to be a poor predictor of exacerbation risk. ²⁴³⁰ Other limitations of this study include noncompliance to medication prescriptions,
399	Other limitations of this study include noncompliance to medication prescriptions,
399 400	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and
399 400 401	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and
399 400 401 402	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and emergency admissions), may be poorly reported. A Hospital Episode Statistics-linked
399 400 401 402 403	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and emergency admissions), may be poorly reported. A Hospital Episode Statistics-linked subset of the THIN database could have been employed for secondary care COPD
399 400 401 402 403 404	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and emergency admissions), may be poorly reported. A Hospital Episode Statistics-linked subset of the THIN database could have been employed for secondary care COPD exacerbations, but it would have significantly reduced the number of eligible patients.
 399 400 401 402 403 404 405 	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and emergency admissions), may be poorly reported. A Hospital Episode Statistics-linked subset of the THIN database could have been employed for secondary care COPD exacerbations, but it would have significantly reduced the number of eligible patients. However, comorbidities were chosen using Read codes used in the Quality and
 399 400 401 402 403 404 405 406 	Other limitations of this study include noncompliance to medication prescriptions, which results in inaccurate assumptions of drug-related exposure; validation gaps and the fact that some covariates, even though validated (eg, COPD exacerbations and emergency admissions), may be poorly reported. A Hospital Episode Statistics-linked subset of the THIN database could have been employed for secondary care COPD exacerbations, but it would have significantly reduced the number of eligible patients. However, comorbidities were chosen using Read codes used in the Quality and Outcomes Framework where relevant, which are well recorded. As with any database

410

1

411 CONCLUSIONS

Overall, 44% of COPD patients in UK primary care received treatment escalation from 412 LAMA monotherapy to triple therapy (LAMA + ICS/LABA). While the presence of 413 COPD exacerbations appears to be the main driver for treatment escalation in this 414 415 cohort, according to the 2017 GOLD strategy, 65% of the cohort who had their 416 treatment escalated were classified as GOLD group A or B and would therefore not 417 now be recommended for treatment escalation. Reviewing patients' treatment in light of updated GOLD strategy has the potential to reduce inappropriate prescription of triple 418 therapy. If treatment escalation is needed in these patients, the GOLD strategy 419 suggests the use of alternative strategies without ICSs.²³ Given the gaps identified in 420 421 EMR data recording, education around appropriate assessment and recording of data is required to guide rational treatment decisions and review. 422 423

424 Acknowledgments

Reused with the permission of The Health and Social Care Information Centre[®]. All
rights reserved. This study was sponsored by Pfizer. The authors would like to thank
Ewa Śleszyńska-Dopiera of Quanticate Ltd. for her programming support. Medical
writing support was provided by Helen Jones and Karen Burrows of Engage Scientific
Solutions and was funded by Pfizer.

430

431 Disclosure

432 MD, SH, and BE are employees of Pfizer and have company stock/shares. KM was an

- 433 employee of Pfizer at the time of study conduct. RJ reports no conflicts of interest in
- 434 relation to this study, but reports personal fees from Astra Zeneca, Boehringher
- 435 Ingelheim, Chiesi, Cipla, GSK, Novartis, and Pfizer. JRH reports personal fees for
- 436 advisory boards and educational activities and support to attend meetings from
- 437 pharmaceutical companies that make medicines to treat COPD.

438	REFE	EFERENCES		
439	1.	Global Initiative for Chronic Obstructive Lung Disease (GOLD) [homepage on		
440		the Internet]. Global Strategy for the Diagnosis, Management and Prevention of		
441		COPD. 2011. Available from: <u>http://www.goldcopd.org/</u>. Accessed September 14,		
442		20162013. Available from:		
443		http://goldcopd.org/uploads/users/files/GOLD_Report_2013_Feb20.pdf.		
444		Accessed March 18, 2015.		
445	2 2.	Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis,		
446		Management and Prevention of Chronic Obstructive Lung Disease 2017		
447		Report: GOLD Executive Summary. Respirology. 2017;22(3):575-601.		
448	<u>3</u> .	Global Initiative for Chronic Obstructive Lung Disease (GOLD) [Internet]. Global		
449		Strategy for the Diagnosis, Management and Prevention of COPD. 2017.		
450		Available from: http://goldcopd.org/gold-2017-global-strategy-diagnosis-		
451		management-prevention-copd/. Accessed November 22, 2016.		
452	<u>34</u> .	World Health Organization (WHO) [Internet]. The 10 leading causes of death.		
453		2017. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.		
454		Accessed April 12, 2017.		
455	4 <u>5</u> .	Price D, West D, Brusselle G, et al. Management of COPD in the UK primary-		
456		care setting: an analysis of real-life prescribing patterns. Int J Chron Obstruct		
457		Pulmon Dis. 2014;9:889-904.		
458	5	Magnussen H, Watz H, Kirsten A, et al. Stepwise withdrawal6. Kaplan AG.		
459		Applying the wisdom of stepping down inhaled corticosteroids in COPD patients		
460		receiving dual bronchodilation: WISDOM study designwith COPD: a proposed		
461		algorithm for clinical practice. Int J Chron Obstruct Pulmon Dis. 2015;10:2535-		
462		<u>2548.</u>		
1				

I

463	7.	Magnussen H, Disse B, Rodriguez-Roisin R, et al. Withdrawal of inhaled
464		glucocorticoids and rationale. Respirexacerbations of COPD. N Engl J Med.
465		2014; 108(4):593-599<u>3</u>71(14):1285-1294 .
466	<u>68</u> .	Price D, Yawn B, Brusselle G, Rossi A. Risk-to-benefit ratio of inhaled
467		corticosteroids in patients with COPD. Prim Care Respir J. 2013;22(1):92-100.
468	7 <u>9</u> .	Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone
469		propionate and survival in chronic obstructive pulmonary disease. N Engl J
470		Med. 2007;356(8):775-789.
471	<u>810</u> .	Suissa S. Number needed to treat in COPD: exacerbations versus pneumonias
472		Thorax. 2013;68(6):540-543.
473	9 <u>11</u> .	Larsson K, Janson C, Lisspers K, et al. Combination of budesonide/formoterol
474		more effective than fluticasone/salmeterol in preventing exacerbations in
475		chronic obstructive pulmonary disease: the PATHOS study. J Intern Med.
476		2013;273(6):584-594.
477	<u> 1012</u> .	Yawn BP, Li Y, Tian H, Zhang J, Arcona S, Kahler KH. Inhaled corticosteroid
478		use in patients with chronic obstructive pulmonary disease and the risk of
479		pneumonia: a retrospective claims data analysis. Int J Chron Obstruct Pulmon
480		<i>Dis.</i> 2013;8:295-304.
481	11<u>13</u>.	National Institute for Clinical Excellence (NICE) [Internet]. Costing Report. NICE
482		clinical guideline 101. 2011. Available from:
483		https://www.nice.org.uk/guidance/cg101/resources/costing-report-
484		134511805.https://www.nice.org.uk/guidance/cg101. Accessed April 4, 2016.
485	12<u>14</u>.	IMS Health. Available from: http://www.epic-uk.org/our-data/our-data.shtml and
486		http://www.epic-uk.org/our-data/statistics.shtml Accessed April 4, 2016.
487	13<u>15</u>.	Cox DR. Regression Models and Life-Tables. J R Stat Soc Series B Stat
488		Methodol. 1972;34(2):187-220.

I

489	<u>1416</u> .	Rothnie KJ, Müllerová H, Hurst JR, et al. Validation of the Recording of Acute
490		Exacerbations of COPD in UK Primary Care Electronic Healthcare Records.
491		PLoS One. 2016;11(3):e0151357.
492	15<u>17</u>.	NHS England [Internet]. QOF database. Available from:
493		https://www.gpcontract.co.uk/browse/ENG/15.https://www.gpcontract.co.uk/brows
494		e/ENG/15. Accessed October 7, 2016.
495	16<u>18</u>.	Wurst KE, St Laurent S, Mullerova H, Davis KJ. Characteristics of patients with
496		COPD newly prescribed a long-acting bronchodilator: a retrospective cohort
497		study. Int J Chron Obstruct Pulmon Dis. 2014;9:1021-1031.
498	17<u>19</u>.	Kerkhof M, Freeman D, Jones R, Chisholm A, Price DB. Predicting frequent
499		COPD exacerbations using primary care data. Int J Chron Obstruct Pulmon Dis.
500		2015;10:2439-2450.
501	18 20.	Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic
502		obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128-1138.
503	<u>21.</u>	Brusselle G, Price D, Gruffydd-Jones K, et al. The inevitable drift to triple
504		therapy in COPD: an analysis of prescribing pathways in the UK. Int J Chron
505		Obstruct Pulmon Dis. 2015;10:2207-2217.
506	<u>22.</u>	Wedzicha JA, Banerji D, Chapman KR, et al. Indacaterol-Glycopyrronium
507		versus Salmeterol-Fluticasone for COPD. N Engl J Med. 2016;374(23):2222-
508		<u>2234.</u>
509	23.	Halpin DM, Quint JK. The WISDOM of inhaled corticosteroids in COPD. Thorax.
510		<u>2014;69(12):1071-1072.</u>
511	<u>24</u> .	University College London (UCL) [Internet]. The Health Improvement Network
512		(THIN) Research Team. THIN Database; 1999-2016. Available from:
513		https://www.ucl.ac.uk/pcph/research_groups-themes/thin-
514		pub/database. https://www.ucl.ac.uk/pcph/research-groups-themes/thin-
515		pub/database. Accessed April 12, 2017.
1		

I

516	19<u>25</u>.	Langley TE, Szatkowski LC, Wythe S, Lewis SA. Can primary care data be
517		used to monitor regional smoking prevalence? An analysis of The Health
518		Improvement Network primary care data. BMC Public Health. 2011;11:773.
519	20 26.	Iyen-Omofoman B, Hubbard RB, Smith CJ, et al. The distribution of lung cancer
520		across sectors of society in the United Kingdom: a study using national primary
521		care data. BMC Public Health. 2011;11:857.
522	21<u>27</u>.	Meropol SB, Metlay JP. Accuracy of pneumonia hospital admissions in a
523		primary care electronic medical record database. Pharmacoepidemiol Drug Saf.
524		2012;21(6):659-665.
525	22 28.	Quint JK, Müllerova H, DiSantostefano RL, et al. Validation of chronic
526		obstructive pulmonary disease recording in the Clinical Practice Research
527		Datalink (CPRD-GOLD). BMJ Open. 2014;4(7):e005540.
528	23 29.	Peng M, Chen G, Kaplan GG, et al. Methods of defining hypertension in
529		electronic medical records: validation against national survey data. J Public
530		Health (Oxf). 2016;38(3):e392-e399.
531	24<u>30</u>.	Jones RC, Price D, Chavannes NH, et al. Multi-component assessment of
532		chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE
533		indices and the global obstructive lung disease categories in international
534		primary care data sets. NPJ Prim Care Respir Med. 2016;26:16010.
535		

536

1

Table 1 Patient characteristics at baseline

			Treatment
	All	Monotherapy ^a	escalation ^b
Characteristic	N=14,866	n=8,384	n=6,482
Age, years			
Mean±SD	68.4±10.7	68.8±10.9	67.8±10.5
Range	35–101	35–99	36–101
Sex, n (%)			
Female	6,781 (45.6)	3,843 (45.8)	2,938 (45.3)
Male	8,085 (54.4)	4,541 (54.2)	3,544 (54.7)
LAMA therapy initiated, n (%)			
Tiotropium Handihaler	12,501 (84.1)	6,858 (81.8)	5,643 (87.1)
Tiotropium Respimat	1,183 (8.0)	611 (7.3)	572 (8.8)
Aclidinium	623 (4.2)	471 (5.6)	152 (2.3)
Glycopyrronium	487 (3.3)	376 (4.5)	111 (1.7)
Umeclidinium	87 (0.6)	79 (0.9)	8 (0.1)
ICS/LABA ^b stepped up to, n (%)			
Fostair NEXThaler 200/6ª	-	-	1 (0.02)
Flutiform 50/5ª	_	_	1 (0.02)
Fostair NEXThaler 100/6	_	_	16 (0.25)
DuoResp Spiromax 320/9	_	_	19 (0.29)
Flutiform 250/5ª	_	_	24 (0.37)
Relvar Ellipta 184 µg ^a	_	_	34 (0.52)
Flutiform 125/5 ^a	_	_	41 (0.63)
Seretide 50 Evohaler ^a	_	_	64 (0.99)
Relvar Ellipta 92 µg	-	-	139 (2.1)
Symbicort 100/6 Turbohaler ^a	-	_	154 (2.4)

Int J COPD MS ID 153655

|

Seretide 100 Accuhaler ^a	-	-	178 (2.8)		
Seretide 250 Accuhaler ^a	-	-	399 (6.2)		
Fostair 100/6	-	-	462 (7.1)		
Seretide 125 Evohaler ^a	-	-	508 (7.8)		
Symbicort 200/6 Turbohaler	-	-	667 (10.3)		
Symbicort 400/12 Turbohaler	-	-	915 (14.1)		
Seretide 250 Evohaler ^a	-	-	1,022 (15.8)		
Seretide 500 Accuhaler			1,849 (28.5)		
Time to treatment escalation, days					
Mean±SD	-	-	324.6±392.1		
Range	-	-	1–2,080		
Time to end of follow-up ^c , days					
Mean±SD	535.1±437.7	697.8± 400.0	324.6±392.1		
Range	0–2,080	0–1,193	1–2,080		
Abbreviations: ICS, inhaled corticosteroids; LABA, long-acting beta agonist; LAMA, long-acting					
muscarinic antagonist; SD, standard deviation.					
^a Note: Not licensed for COPD.					
^b For the monotherapy group, follow-up was measured up to 1,193 days to reflect a similar period to that					
of follow-up in the treatment escalation group (calculated as the 95th percentile of distribution of the					

time to escalation).

°It may be inappropriate to compare across groups owing to different lengths of follow-up.

Int J COPD MS ID 153655

I

Table 2 Comorbidities recorded at any time during the study period

	n (%)		
Comorbidity	(N=14,866)		
Hypertension	6,603 (44.4)		
Chronic heart disease	3,036 (20.4)		
Anxiety	2,969 (20.0)		
Diabetes	2,174 (14.6)		
Depression	1,967 (13.2)		
Asthma	1,965 (13.2)		
Cerebrovascular disease	1,695 (11.4)		
Atrial fibrillation	1,464 (9.9)		
Osteoporosis	1,174 (7.9)		
Heart failure	990 (6.7)		
Mental health disorders (QOF)	882 (5.9)		
Obesity	826 (5.6)		
Lung cancer	416 (2.8)		
Rheumatoid arthritis	380 (2.6)		
Epilepsy	337 (2.3)		
Chronic kidney disease	247 (1.7)		
Abbreviation: QOF = Quality and Outcomes Framework.			

Int J COPD MS ID 153655

Table 3 Univariate Cox regression analysis with significant (p<0.05) unadjusted predictors of</th>

treatment escalation

	Univariate analysis		
		(N = 14,866)	
Variable (electronically coded)	HR	95% CI	P-value
Composite: COPD exacerbations ^a	2.675	2.534–2.823	<0.0001
MRC grade (vs 1)			<0.0001
Grade 5	2.489	2.009-3.083	<0.0001
Grade 4	1.988	1.781–2.219	<0.0001
Grade 3	1.571	1.434–1.721	<0.0001
Grade 2	1.183	1.086–1.288	0.0001
Asthma	2.210	2.079–2.350	<0.0001
Elective secondary care contact	1.466	1.371–1.569	<0.0001
Proactive COPD primary care ^b	1.303	1.275–1.332	<0.0001
Pneumonia	1.246	1.147–1.354	<0.0001
Number of cough symptoms ^c	1.209	1.183–1.236	<0.0001
Reactive COPD primary care ^d	1.191	1.100–1.290	<0.0001
Mental health disorders	1.187	1.075–1.311	0.0007
Depression	1.160	1.082–1.243	<0.0001
Number of sputum symptoms ^e	1.149	1.108–1.193	<0.0001
Anxiety	1.125	1.060–1.194	0.0001
Number of short-acting bronchodilator	1.041	1.038–1.045	<0.0001
prescriptions			
Number of steroid prescriptions	1.026	1.023–1.028	<0.0001
Age ^f	0.997	0.995–1.00	0.0251
FEV ₁	0.979	0.976-0.982	<0.0001

Int J COPD MS ID 153655

1

Smoking status (vs never smoked)				
Current	0.716	0.649–0.791	<0.0001	
Ex	0.769	0.697–0.848	<0.0001	
Abbreviations: AECOPD, acute exacerbation o	of COPD; CI, confi	idence interval; F	EV ₁ , forced	
expiratory volume in 1 second; HR, hazard ratio; LRTI, lower respiratory tract infection; MRC, Medical				
Research Council; OCS, oral corticosteroid.				
Note: Data ordered by HR.				
Composite endpoint: If COPD emergency admis	ssion or AECOPD	or LRTI or OCS	6 + antibiotic	
occurred on the same day, 1 was assigned (othe	erwise 0). We use	d time-varying c	ovariates (so patient	
nas 0 assigned until the first occurrence of any o	of those). This has	s been validated	in a previous	
paper. ^{14<u>16</u>}				
COPD disease monitoring; disease monitoring l	by doctor; disease	e monitoring by r	urse; shared care	
disease monitoring; COPD 3-monthly, 6-monthly	, and annual revi	ews; COPD follo	w-up; COPD health	
education; COPD disease medication optimization; issue of COPD rescue pack or advance supply of				
steroid medication or antibiotic medication or deferred antibiotic therapy; COPD disease leaflet given,				
has COPD care plan; has COPD care pathway; has COPD clinical management plan; on COPD				
supportive care pathway; seen in COPD clinic.				
Number of consultations with code for cough: C	/O – cough, dry c	ough, productive	cough-clear	
sputum, productive cough-green sputum, productive cough-yellow sputum, productive cough not				
otherwise specified (NOS), coughing up phlegm, night cough present, chesty cough, bronchial cough,				
morning cough, evening cough, cough with fever, difficulty in coughing up sputum, cough symptom				
NOS, nocturnal cough/wheeze, cough aggravates symptom, cough swab, [D]cough, [D]cough with				
hemorrhage.				
ⁱ Night visits; after-hours visits; follow-up visits; acute visits; home visits; hotel visits; nursing home				
visits; residential home visits; twilight visits; visits by the practice, their cooperative, deputizing service,				
or local rota service; reactive surgery consultations; co-op surgery consultations; minor injury service;				
medicines management; or telephone consultation related to COPD.				
^e Number of consultations with code for sputum. C/O – sputum – symptom, sputum sample obtained,				
sputum examination, sputum sent for examination, sputum examination: abnormal, sputum: excessive				

Int J COPD MS ID 153655

mucoid, sputum: mucopurulent, sputum: fetid/offensive, yellow sputum, green sputum, dark green sputum, pale green sputum, sputum appearance, brown sputum, white sputum, volume of sputum, copious sputum, profuse sputum moderate sputum, grey sputum, sputum microscopy, sputum: pus cells present, sputum: organism on gram stain, sputum microscopy NOS, sputum evidence of infection, sputum appears infected, sputum culture, sputum examination NOS, sputum sent for C/S,
[D]abnormal sputum, [D]sputum abnormal – amount, [D]sputum abnormal – color, [D]sputum abnormal – odor, [D]abnormal sputum – tenacious, [D]abnormal sputum NOS, [D]positive culture findings in sputum, sputum clearance, difficulty in coughing up sputum, acute purulent bronchitis, chesty cough, bronchial cough, productive cough NOS, coughing up phlegm.
'HR relative to change to every 1 year difference in age.

I

Table 4 Multivariate analysis outcomes: predictors of treatment escalation

	Multivariate Cox regression analysis		
	(N = 10,492)		
_	HR	95% CI	<i>P</i> -value
COPD exacerbations: composite ^a	2.114	1.870–2.389	<0.0001
Asthma	1.948	1.695–2.238	<0.0001
MRC grade (vs 1)			<0.0001
2	1.167	1.005–1.355	0.0430
3	1.403	1.189–1.656	<0.0001
4	1.757	1.420–2.174	<0.0001
5	1.923	1.135–3.258	0.0151
Proactive COPD primary care ^b	1.273	1.213–1.337	<0.0001
Reactive COPD primary care ^c	1.246	1.173–1.324	<0.0001
Elective secondary care contact	1.186	1.031–1.364	0.0171
Cough symptoms ^d	1.101	1.055–1.149	<0.0001
Number of short-acting bronchodilator	1.030	1.023–1.037	<0.0001
prescriptions			
Age at index date ^e	0.994	0.989–0.999	0.0324
FEV ₁	0.980	0.977–0.983	<0.0001
Number of sputum symptoms ^f	0.907	0.833–0.988	0.0249
Smoking status (vs never smoked)			
Current	0.544	0.424–0.700	<0.0001
Ex	0.702	0.552-0.892	0.0038
Abbreviations: AECOPD, acute exacerbatio	on of COPD; CI, c	onfidence interval; FE	V1, forced
expiratory volume in 1 second; HR, hazard ra	atio; LRTI, lower r	espiratory tract infecti	on; MRC,
Medical Research Council; OCS, oral cortico	steroid.		

Int J COPD MS ID 153655

Note: Multivariate analysis included 10,492 patients, of whom 4591 received treatment escalation. Data are ordered by HR.

^aComposite endpoint: If COPD emergency admission or AE COPD or LRTI or OCS + antibiotic occurred on the same day, 1 was assigned (otherwise 0). We used time-varying covariates (so patient has 0 assigned until the first occurrence of any of those). This has been validated in a previous paper.¹⁴¹⁶

^bCOPD disease monitoring; disease monitoring by doctor; disease monitoring by nurse; shared care disease monitoring; COPD 3-monthly, 6-monthly, and annual reviews; COPD follow-up; COPD health education; COPD disease medication optimization; issue of COPD rescue pack or advance supply of steroid medication or antibiotic medication or deferred antibiotic therapy; COPD disease leaflet given; has COPD care plan; has COPD care pathway; has COPD clinical management plan; on COPD supportive care pathway; seen in COPD clinic.

^cNight visits; after-hours visits; follow-up visits; acute visits; home visits; hotel visits; nursing home visits; residential home visits; twilight visits; visits by the practice, their cooperative, deputizing service, or local rota service; reactive surgery consultations; co-op surgery consultations; minor injury service; medicines management; or telephone consultation related to COPD.

^dNumber of consultations with code for cough: C/O – cough, dry cough, productive cough-clear sputum, productive cough-green sputum productive cough-yellow sputum, productive cough not otherwise specified (NOS), coughing up phlegm, night cough present, chesty cough, bronchial cough, morning cough, evening cough, cough with fever, difficulty in coughing up sputum, cough symptom NOS, nocturnal cough/wheeze, cough aggravates symptom, cough swab, [D]cough, [D]cough with hemorrhage.

^eHR relative to change to every 1 year difference in age.

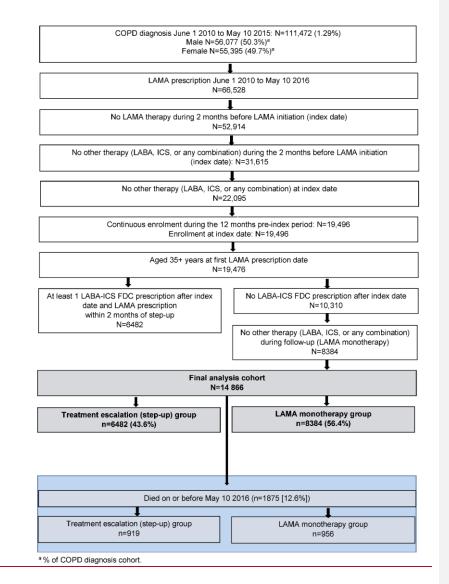
¹Number of consultations with code for sputum. C/O – sputum – symptom, sputum sample obtained, sputum examination, sputum sent for examination, sputum examination: abnormal, sputum: excessive – mucoid, sputum: mucopurulent, sputum: fetid/offensive, yellow sputum, green sputum, dark green sputum, pale green sputum, sputum appearance, brown sputum, white sputum, volume of sputum, copious sputum, profuse sputum moderate sputum, grey sputum, sputum microscopy, sputum: pus cells present, sputum: organism on gram stain, sputum microscopy NOS, sputum evidence of infection, sputum appears infected, sputum culture, sputum

Int J COPD MS ID 153655

examination NOS, sputum sent for C/S, [D]abnormal sputum, [D]sputum abnormal – amount, [D]sputum abnormal – color, [D]sputum abnormal – odor, [D]abnormal sputum – tenacious, [D]abnormal sputum NOS, [D]positive culture findings in sputum, sputum clearance, difficulty in coughing up sputum, acute purulent bronchitis, chesty cough, bronchial cough, productive cough NOS, coughing up phlegm.

Int J COPD MS ID 153655

Table 5 Treatment escalation per GOLD 2011/2013 and 2017 classification 1.3


Characteristic, n (%)	GOLD 2011/2013: patients	GOLD 2017: patients	with Inserted Cells	
	with any FEV1 and MRC	any MRC score during	g the	
	score during the last 12	last 12 months of stu	udy	
	months of study period	period		
	Treatment escalation group	Treatment escalation g	jroup	
	<u>N=1,064</u>	N 5,090		
GOLD group				
A	<u>217 (20.4)</u>	1,393 (27.4)		
В	<u>204 (19.2)</u>	1,900 (37.3)		
С	<u>264 (24.8)</u>	777 (15.3)		
D	<u>379 (35.6)</u>	1,020 (20.0)		
% predicted FEV ₁				
<u><50%</u>	<u>388 (36.5)</u>	=		
<u>≤50%</u>	<u>676 (63.5)</u>	=		
MRC score			Inserted Cells	
1 or 2	<u>481 (45.2)</u>	2,170 (42.6)		
≥3	<u>583 (54.8)</u>	2,920 (57.4)		
Primary care exacerbations				
≤1	<u>762 (71.6)</u>	3,505 (68.9)		
≥2	<u>302 (28.4)</u>	1,585 (31.1)		
COPD emergency admissions	-			
0	<u>953 (89.6)</u>	4,758 (93.5)		
≥1	<u>111 (10.4)</u>	332 (6.5)		
		Patients with any FE	EV1	
		measurement at any	time	
		during study perio	d	
		Treatment escalation g	jroup	
		N=1,703		
GOLD grade	-			
1: FEV₁≥80%		241 (14.2)		
2: FEV ₁ 50–79%		907 (53.3)		
3: FEV ₁ 30–49%		480 (28.2)		
4: FEV ₁ <30%		75 (4.4)		

Int J COPD MS ID 153655

Predicted FEV ₁	Ξ					
<50%		555 (32.6)				
≥50%		1,148 (67.4)				
Abbreviations: COPD, chronic obstructive pulmonary disease; FEV ₁ , forced expiratory volume in 1 second;						

GOLD, Global Initiative for Chronic Obstructive Lung Disease; MRC, Medical Research Council.

Int J COPD MS ID 153655

Figure 1. Cohort selection from THIN database of 8,676,730 patient records.

Abbreviations: COPD, chronic obstructive pulmonary disease; FDC, fixed-dose combination; ICS, inhaled corticosteroid; LABA, long-acting beta agonist; LAMA, long-acting muscarinic antagonist.

Int J COPD MS ID 153655

I

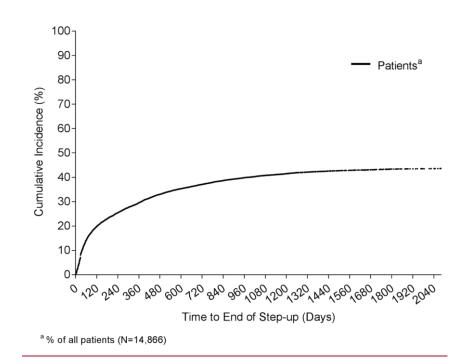
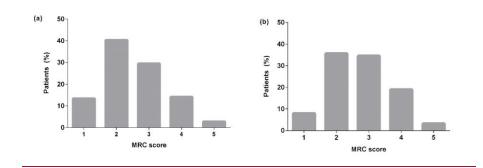



Figure 2 Cumulative time to treatment escalation.

Int J COPD MS ID 153655

Figure 3 Medical Research Council (MRC) breathlessness score in the treatment escalation group (a) 12 months from baseline (n=2,659) and (b) during the study and follow-up period (n=5,611). Median MRC score at baseline was 2.0, and 3.0 during the study period.

Int J COPD MS ID 153655

[[Supplement]]

Supplemental Table 1 Covariates (during the analyzed baseline period)

	<u>Overall</u>
	population
Covariate	<u>N=14,866</u>
Smoking status, n (%)	
Unknown	<u>7 (0.1)</u>
Current smoker	<u>7,049 (47.4)</u>
<u>Ex-smoker</u>	<u>6,697 (45.1)</u>
Never smoked	<u>1,113 (7.5)</u>
MRC score (as categorical), n (%)	
<u>Unknown</u>	<u>6,466 (43.5)</u>
Grade 1	<u>1,437 (9.7)</u>
Grade 2	<u>3,730 (25.1)</u>
Grade 3	<u>2,134 (14.4)</u>
Grade 4	<u>925 (6.2)</u>
Grade 5	<u>174 (1.2)</u>
MRC score (as numeric)	
Mean (SD)	<u>2.4 (1.0)</u>
<u>FEV₁, %</u>	
Mean (SD)	<u>64.0 (17.9)</u>
COPD disease severity, n (%)	
Unknown	<u>10,96 (68.6)</u>
Mild	<u>2,217 (14.9)</u>
Moderate	<u>1,993 (13.4)</u>
Severe	<u>444 (3.0)</u>
Very severe	<u>16 (0.1)</u>

Int J COPD MS ID 153655

1

Respiratory hospital referral recorded, n (%)	<u>997 (6.7)</u>
Elective secondary care contact (COPD secondary care	
consultation or respiratory hospital referral), n (%)	<u>2,911 (19.6)</u>
Acute exacerbations of COPD, Mean (SD)	<u>0.3 (1.1)</u>
COPD emergency admissions, Mean (SD)	0.04 (0.3)
LRTI events, Mean (SD)	<u>2.8 (5.2)</u>
Cough-related events, Mean (SD)	<u>1.9 (3.3)</u>
Sputum-related events, Mean (SD)	<u>0.5 (1.6)</u>
Oral corticosteroid prescriptions, Mean (SD)	<u>3.7 (14.7)</u>
Oral antibiotics prescriptions, Mean (SD)	<u>9.0 (11.3)</u>
Short-acting bronchodilator prescriptions, Mean (SD)	<u>14.7 (34.2)</u>
COPD proactive primary care consultations, Mean (SD)	<u>1.5 (2.2)</u>
COPD reactive primary care consultations, Mean (SD)	<u>1.0 (2.6)</u>
Elective secondary care consultation, n (%)	<u>2,068 (13.9)</u>
Composite endpoint: Exacerbations (COPD emergency	
admission or AECOPD or LRTI or OCS + antibiotic), n (%)	<u>10,805 (72.7)</u>
Abbreviations: AECOPD, acute exacerbation of COPD: EEV4 force	

Abbreviations: AECOPD, acute exacerbation of COPD; FEV1, forced expiratory volume

in 1 second; LRTI, lower respiratory tract infection; MRC, Medical Research Council;

OCS, oral corticosteroid; SD, standard deviation.