
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Health: Medicine, Dentistry and Human Sciences School of Psychology

2018-12-01

A computationally efficient formal

method for discovering simutlaneous

masking in medical alarms

Bolton, ML

http://hdl.handle.net/10026.1/11663

10.1016/j.apacoust.2018.06.012

Applied Acoustics

Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

A computationally efficient formal method for discovering
simultaneous masking in medical alarms

Matthew L. Boltona,∗, Judy Edworthyb, Andrew D. Boydc, Jiajun Weia, Xi Zhenga

aUniversity at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NT, USA
bPlymouth University, School of Psychology, Cognition Institute, Plymouth, UK

cUniversity of Illinois at Chicago, Department of Biomedical and Health Information Sciences, Chicago, IL, USA

Abstract

Numerous patient injuries and deaths have been caused by medical practitioners failing to respond to medical alarms. Simultaneous
masking, where concurrently sounding medical alarms result in one or more being unhearable, is partially responsible for this
problem. In previous work, we introduced a computational formal method capable of proving (formally verifying) if masking
could occur in a modeled configuration of medical alarms. However, the scalability of the method limited the applicability and
completeness of its analyses. In the work presented here, we show how we re-implemented the method to address these shortcomings.
We evaluated the detection capabilities and scalability of the new version of the method with a series of realistic and synthetic case
studies. Our results show that the new version of the method replicates and improves detection capabilities compared to the legacy
method and does so with significant reductions in verification times. We discuss the patient safety implications of our results and
explore directions for future research.

Keywords: Medical Alarms, Masking, Psychoacoustics, Formal Methods, Model Checking

1. Introduction

There are a number of problems with auditory medical
alarms that can make them difficult to hear and respond to
[13, 25]. According to the Pennsylvania Patient Safety Au-
thority [24], there have been 194 documented problems with
operators failing to properly respond to telemetry monitoring
alerts between June 2004 and December 2008, including 12
deaths. According to a 2013 Sentinel Event Alert, 98 alarm-
related non-response incidents were reported from January 2009
to June 2012. Eighty of these produced patient death, 13 resulted
in a “permanent loss of function,” and 5 caused patient hospital
stays to be extended [57].

These problems are directly related to the fact that medical
alarms sound at rates and in numbers that are incompatible with
human sensory, perceptual, and cognitive capabilities [17, 25,
43, 57, 62]. For example, the Joint Commission [57] found that,
in one day, hundreds of alarms can be produced by a single
patient. This aggregates into tens of thousands of alarms sound
daily across a given hospital. Because of these issues and the
difficulties hospitals have had in solving them, the ECRI Institute
has identified medical alarms as one of the most significant
technological hazards to patient safety for more than a decade
[23, 53].

Problems with the design of medical alarm auditory parame-
ters are largely acknowledged as a contributor to these problems
[23, 57, 58, 61]. In particular, the Joint Commission’s 2014

∗Corresponding author
Email address: mbolton@buffalo.edu (Matthew L. Bolton)

National Patient Safety Goal (NPSG) to “improve the safety of
clinical alarm systems” claimed that “individual alarm signals
are difficult to detect” [58].

One problem that can make it difficult for humans to respond
to medical alarms is simultaneous masking. In simultaneous
masking, sounds playing in parallel can interact in ways that
prevents humans from hearing one of or more of them due to
limitations of the human sensory system [30]. A number of
researchers have acknowledged that simultaneous masking is a
problem with medical alarms and at least partially responsible
for non-responses [26–28, 41, 46, 48, 49]. Furthermore, experi-
mental results do indeed show that simultaneous masking exists
in modern medical environments. Momtahan et al. [47], who
analyzed 26 alarms from an operating room and 23 from an
intensive care unit, found 25 pairs of alarms where one could be
completely masked by the other. Toor et al. [59], discovered low
priority sounds present in an operating room could easily mask
higher priority alarms. It is important to note that these analyses
only partially elucidate the problem because neither accounted
for the additive effect of masking: where a sound can be masked
by the interaction of multiple simultaneously playing sounds.
Medical alarms (including those in the international standard
[40]) are usually represented as melodies (patterns) of tonal
sounds. These are particularly susceptible to simultaneous mask-
ing [12, 30]. Given that the probability of masking increases
with the number of concurrently sounding alarms [12, 39, 65],
the sheer number of alarms in modern medical environments
[56] practically assures that masking is occurring.

Even with these results, the preponderance of medical alarm
safety research has focused on other problems [25]. This is likely

Preprint submitted to Computer Methods and Programs in Biomedicine May 18, 2018

a symptom of the complexity of the masking problem. Specif-
ically, it can be extremely difficult to detect auditory masking
experimentally because it may only occur for particular interac-
tions of multiple, concurrently-sounding medical alarms. Given
the number of possible medical alarms, overlaps between them,
and the masking potential associated with additive masking, it is
practically impossible to evaluate every alarm configuration to
find potential masking experimentally.

To address this problem, we developed a computational
method [11, 34–36] that can detect masking in configurations of
tonal medical alarms. The method uses a novel combination of
psychoacoustics and model checking. The psychoacoustics de-
scribe simultaneous masking mathematically by relating sounds’
frequency/tone and volume to the biologically-grounded mask-
ing effect the sounds have [2, 5, 12, 14, 15, 52]. Model checking
is an automated approach for performing mathematical proofs
(a process called formal verification) on models of concurrent
systems [16]. When these technologies are used together in our
method, an analyst can model the sounding behavior of multiple
alarms and use model checking to prove whether the represented
alarms can mask each other. This method has been used to ana-
lyze real medical alarm configurations [11, 36]. However, these
analyses could take days to analyze even one alarm. Further-
more, the nature of the verification process limited the number
of alarm interactions that could be considered in a proof. Thus,
the analyses could conceivably miss interaction problems.

In the research presented here, we describe an improved
version of our method. This improves its masking detection ca-
pabilities while simultaneously improving its scalability. Below
we provide the necessary background to understand the different
versions of our methods. We then present an updated version
of the method and report results that demonstrate its improved
scalability and analysis capabilities with both synthetic and real-
istic applications. We ultimately discuss the implications of our
results and explore avenues of future research.

2. Background

Below, we review the relevant research on model checking,
the psychoacoustics of simultaneous masking, and our method.

2.1. Model Checking
Model checking comes from the computer science field of

“formal methods”. In this context, formal methods are rigorous
mathematical languages and techniques for specifying, model-
ing, and verifying systems [64]. Specifications describe desir-
able system properties, systems are modeled using mathematical
languages, and verification mathematically proves whether or
not the model satisfies the specification.

Model checking performs formal verification automatically
[16]. A model describes a system’s behavior, usually as a finite
state machine: model variables with particular values represent
state and changes in variable values (state) represent transitions.
Specification properties are typically represented in a tempo-
ral logic [29], which use Boolean algebra, temporal operators,
and system model variables to assert desirable system condi-
tions. Verification processes prove whether the model satisfies

the specification by exhaustively searching through the system
model’s statespace looking for violations. If the specification
property proves to be true, the model checker returns a confir-
mation. If the property does not hold, the model checker returns
an execution trace through the model called a counterexample.
This shows exactly how the specification was violated. Model
checking is especially good at discovering problems in systems
with concurrency, where system elements can interact in ways
unanticipated by designers and analysts [33]. Model checking
is typically in the evaluation of discrete systems (where state is
easily represented by discrete, categorical or ordinal variables).
However, hybrid modeling and analysis techniques can account
for continuous state variables [21, 38, 50]. They do this by map-
ping discrete model states (like the sounding state of an alarm)
to continuous, real-valued quantities. For example, when using
timed automata [1, 21], every model discrete state is assigned a
time represented by a real number.

Model checking’s major limitation is scalability. As con-
current elements are added to a formal model, the size of the
model’s statespace increases exponentially [16]. This “state ex-
plosion problem” can lead to situations where the model takes
too long or is too big to verify. Because of this, analysts will
often use abstraction techniques to model the systems they want
to analyze [45].

Even with this limitation, model checking has demonstrated
its utility for a variety of applications, especially for computer
hardware and software [64]. Researchers have used model check-
ing to successfully find and correct human factors issues in auto-
mated systems [6, 10, 20, 51, 63] and medical systems [3, 4, 7–
9, 54, 60]. However, outside of our previous efforts on alarm
masking modeling and detection[11, 34–36], no work has used
model checking to find safety problems associated with human
sensation and perception. Below we describe how our previous
efforts worked. However, before we can do this, we need to
explain the psychoacoustics of masking.

2.2. The Psychoacoustics of Simultaneous Masking

The psychoacoustics of simultaneous masking mathemat-
ically describe how the physical characteristics of a sound
(its volume and tone/frequency) produce masking. These are
based on the excitation patterns of the basilar membrane: the
physical structure in the human ear that is predominately re-
sponsible for the human ability to distinguish between sounds
[2, 5, 12, 14, 15, 52]. These models predict how a masking
sound (the masker) will stimulate receptors on the inner ear’s
basilar membrane based on its volume and its relative frequency
to a potentially masked sound (the maskee). This stimulation
results in a higher volume threshold (in dB) that the volume of
the maskee must exceed to be perceivable [12].

The psychoacoustics of masking represent frequency on the
Bark scale [22]. The Bark scale maps a frequency in Hz to a
position on the basilar membrane (the spiral tube in the inner
ear’s cochlea) where that frequency most strongly stimulates the
receptors (see Fig. 1). A sound’s frequency in Hz (fsound) is

2

65 Hz

1,350 Hz
24 Bark

1 Bark

4,800 Hz
19 Bark

2,900 Hz
16 Bark

1,600 Hz
12 Bark

9 Bark

1,000 Hz

Figure 1: Depiction of how peak stimulation of sounds in Hz occurs at different
Bark locations along the basilar membrane.

converted to Barks by [22]

zsound = 13 · arctan(0.00076 · fsound)

+ 3.5 · arctan
(

(fsound/7500)
2
)
.

(1)

The “masking curve” then represents the masking threshold
as:

curvemasker (zmaskee) = spreadmasker (δz)

+ vmasker −∆.
(2)

vmasker is the volume of the masker in dB. δz is defined as

δz = zmaskee − zmasker , (3)

where zmaskee and zmasker are the Bark scale frequency of the
maskee and masker respectively. The spreadmasker function
models how the magnitude/volume of the masking threshold
changes with respect to δz. ∆ is the minimum difference be-
tween the masker’s and maskee’s volumes that can result in
masking.

There are a number of psychoacoustic spreading functions
for capturing the masking effect of different types of sounds
[12]. Similarly, the formulation of ∆ will depend on types of
sounds being represented. In this research we use the following
spreading function:

spreadmasker (δz) =

−17 · δz+0.15 · vmasker

· (δz − 1) · θ(δz − 1)
for δz ≥ 0

− (6 + 0.4 · vmasker) · |δz|
− (11 + 0.4 · vmasker · (|δz| − 1))

· θ(|δz| − 1)

otherwise

(4)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise. ∆ was
computed as

∆ = 6.025 + 0.275 · zmasker dB. (5)

These particular formulations were used for several reasons.
First, they have been shown to be appropriate for modeling tonal

Masking Curve

Masker Volume

δz

dB

0

∆

Masking

Figure 2: The basic shape of the masking curve [see (2)] with the MPEG [12]
spreading function [see (4)]. Any sound whose frequency and volume falls
below the masking curve will be masked.

sounds [2, 15]. They are also the basis of the MPEG audio codec
[12] and have been well-validity. The shape of the masking curve
(2) described by these parameters is shown in Fig. 2.

These psychoacoustics will indicate if a single sound can
mask another. They were also the basis for previously published
results [34, 35]. However, the combined masking threshold of
multiple concurrent sounds can be greater than the sum of the
masking effect of individual maskers. This effect is known as
additive masking [12, 39]. This is modeled by adding up the
masking curve values of each potential masker on the power
scale. We can use the following to transform a volume (v in dB)
onto the power scale

power (v) = 10v/10. (6)

Then, for a given potential maskee and N potential maskers, the
additive masking threshold (in dB) is calculated as

power (mthreshmaskee) = power (absmaskee)

+
(∑N

n=1 power (curvemaskern
(zmaskee))

α
)1/α

.
(7)

In the above, α is a positive constant [32]. absmaskee is the
absolute threshold of hearing (in dB) at the maskee’s frequency
(fmaskee in Hz). This is formulated as [55]

absmaskee = 3.64 · (fmaskee/1000)
−0.8

− 6.5 · e−0.6(fmaskee/1000−3.3)2

+ 10−3 · (fmaskee/1000)
4
.

(8)

These psychoacoustics have been used successfully to pre-
dict masking for normal human hearing for decades [12]. They
were employed by researchers to identify when masking could
occur sounds recorded in medical environments [59]. They were
also the basis for lossy audio compression techniques, including
those used in MPEG [12].

2.3. The Previous Version of Our Method
In the previous version of our method [11, 36] an analyst

would follow the process shown in Fig. 3. In this, an analyst

3

Model

Checking

Visualization
Verification

Report

Masking

Visualization

Manual

Modeling

Spreadsheet

Alarm Model

Medical Alarm

Information

Formal Model

Generation

Specification

Properties

Formal Alarm

Model

&

1

2 3

4

Figure 3: The flow model representation of our computational method for using model checking to discover simultaneous masking in configurations of medical
alarms [36]. Numbers are used to show the order in which processes are performed. The formal modeling architecture used in the original method for the formal
alarm model is show in Fig. 4. An example of a produced visualization is shown later in Fig. 8.

examined alarm documentation and described the behavior of
the alarms using a MS Excel spreadsheet, where each alarm was
represented as a sequence of tones (and pauses between tones)
each with a defined frequency (Hz), volume (dB), and duration
(s). When done describing alarms, the analyst used a computer
program to automatically convert the alarm configuration into
a formal model. This conversion also produced specifications
for asserting the absence of masking. This included the lack
of partial masking (no part of an alarm should ever be masked)
and total masking (that no alarm should ever be masked for the
entirety of its sounding cycle). Model checking was used to
prove whether or not each of the generated specifications were
true. In any situation where a counterexample was returned, the
analyst could use a counterexample visualizer to identify where
and how masking could occur.

The old version of the method used the architecture in Fig. 4
to represent the formal alarm configuration model. This was
comprised of multiple, synchronously-composed sub-models.
The clock sub-model used a timed automaton [1, 21] to advance
model time (globalTime) and communicate it to the other sub-
models. Each alarm was represented as a sub-model. Each
could start or stop sounding at appropriate times and update
its state based on its current state and how long it had been
sounding. Alarm state represented each of the distinct tones
or pauses that occurred over a complete sounding. A single
masking computation sub-model used the current state of each
alarm and the psychoacoustics of simultaneous masking to deter-
mine if any alarms were masked by the other sounding alarms.
This sub-model also found the minimum of alarm next times
(the alarmNextTime variables) to calculate a maximum time
(maxNextTime) that the clock could be advanced to.

Because model checkers cannot handle the nonlinear arith-
metic of model variables [18], our method used pre-computed
functions (lookup tables) to capture nonlinear psychoacoustics.
However, because the size of lookup tables can reduce the effi-
ciency of a model (increase verification time), our old method
minimized the number of necessary entries.

Critical to enabling this optimization is the concept of
“power alpha,” a value we introduced in [36]. By transforming a
maskee’s (any potentially masked alarm) volume and the mask-
ing effect of maskers into “power alpha” values using lookup

tables, masking can be detected using only linear arithmetic
operations. Figure 5 explains the formulation and rational for
the “power alpha” values.

Our method used the relationship from Eq. (14) (Fig. 5)
as the basis for its optimization. Specifically, a formal model
generation process pre-computed each alarm’s “power alpha”
values when the alarm was both the potential maskee [using
(12)] and masker [using (13)] for each of the alarm’s states.
These values were implemented in the formal model as lookup
tables that were optimized to have the minimum number of
entries. In the formal model, the masking computation sub-
model treated each alarm as a potential maskee and all others as
potential maskers. Thus, for a given potential maskee alarm, the
masking computation sub-model would use the pre-computed
lookup tables to perform the sum and comparison in (14) to
determine if the potential maskee was indeed additively masked
by the other sounding alarms. We used α = 0.33, to capture the
“over adding” of the masking effects of tones [44]. However, the
method allowed for different analyst-specified α values.

To check a configuration of alarms modeled for masking
using our original model, the analysts would need to check the
generated properties (asserting the absence of any masking of a
given alarm or the absence of total masking of the alarm) against
the formal model using the infinite bounded model checker of
the Symbolic Analysis Laboratory [18]. In doing this, the analyst
would specify a search depth (a bound) on the total number of
transitions considered in the analysis. Ideally this would be

Clock

Masking

Computation

Psychoacoustic Lookup

Functions / Tables
MaxNextTime

∀Alarms:

∀Alarms: AlarmMasked

Alarms AlarmState

GlobalTime

...

...

Figure 4: The architecture previously used for formally modeling a configuration
of medical alarms in our method [36].

4

Note that the below use the equations defined in (1)–(8).

We know from the psychophysics of simultaneous additive masking [12] [see (7)] that a set of maskers will mask a maskee if

power (vmaskee) ≤ power (absolutethresholdmaskee) +
(∑N

n=1 power (curvemaskern (fmaskee))
α
)1/α

. (9)

Using basic algebraic operations, we know that

power (vmaskee)− power (absolutethresholdmaskee) ≤
(∑N

n=1 power (curvemaskern (fmaskee))
α
)1/α

(10)

and thus that
(power (vmaskee)− power (absolutethresholdmaskee))

α ≤
∑N
n=1 power (curvemaskern (fmaskee))

α. (11)

If we let
poweralphamaskee = (power (vmaskee)− power (absolutethresholdmaskee))

α (12)

and
maskingpoweralphamasker (maskee) = power (curvemasker (fmaskee))

α , (13)

then we know that the maskee will be masked by the set of N maskers if

poweralphamaskee ≤
∑N
n=1 maskerpoweralphamaskern

(maskee). (14)

Figure 5: Explanation of “power alpha” and how it can be used to determine if masking is occurring (adapted from [36]).

set, at minimum, to the total number of separate alarm events
that could possibly occur in a given configuration. However,
because increasing the search depth exponentially increased
computational time [36], this was not always possible in practice.

This version of the method successfully improved upon the
older version of the method [34, 35] by both being more us-
able (due to the spreadsheet-based modeling) and more scalable
(the computational efficiency of using the optimized lookup ta-
bles) [11, 36]. In showing this, we analyzed the alarm system
evaluated in the early versions of the method [34, 35] as well
as the alarms from a real telemetry monitoring system, a GE
CARESCAPETMMonitor B850 [31]. These analyses found a
number of masking conditions. However, because of the search
depth limitation of the method, it is possible some masking
conditions were missed. Furthermore, even with the use of a
less-than-optimal search depth, the analyses took prohibitively
long to complete. For example, the analysis of partial masking
for one alarm of the monitor took 4.57 days.

3. Objectives

In the work presented here, we show how we improve our
computational technique for detecting simultaneous masking in
configurations of medical alarms. In particular, we sought to
improve its scalability and detection capabilities by rearchitect-
ing how formal alarm models are constructed. This specifically
worked by eliminating the need for the explicit formal modeling
of a clock (see Fig. 4) by representing all relevant alarm times
in a given model state. In addition to improving scalability, this
eliminates the need for an analyst to specify a search depth when
performing model checking. Thus, the exhaustiveness of our
new approach was not limited by search depth, enabling a com-
plete analysis of modeled alarm behavior. Below we describe
how this new approach was realized. After this, we use the
new approach to evaluate the alarm configurations reported in
previous results [11, 34–36] to compare prediction performance
and time. We also characterize how the method scales with a

series of synthetic test cases. Finally, we interpret our results
and explore their implications for future research.

4. The New Method

We updated our method to improve its scalability and remove
the limitation that search depth placed on result completeness.
Like the previous version, the new method uses the process
shown in Fig. 3, where the analyst models alarms in an excel
spreadsheet and automatically generates the model and spec-
ification properties used for checking for masking. However,
in the new method, the formal alarm models generated use a
new modeling architecture specifically designed to reduce the
search depth required when model checking for masking. This
was accomplished by ensuring that all of the information re-
quired for determine if masking was possible could manifest
in the initial state of the model. This eliminated the need for a
timed-automata based clock and thus ensured that search depths
could no longer limit the detection capabilities of the method.
This approach makes significant use of anonymous functions
[19, 19, 37].

Anonymous functions come from the area of lambda calcu-
lus [37]. Specifically, anonymous functions are defined using
lambda abstractions that describe functional mappings between
types. In this work, we specify anonymous functions using
lambda abstractions as defined in the language of of the sym-
bolic analysis laboratory (SAL) [19]. This takes the form:

LAMBDA (VariableDeclaration) : Expression.

In this, the VariableDeclaration defines a variable of a specific
type and the Expression defines how that type is transformed
(which can be into the same or a different type) using the name
of the variable. For example, let TheArray be an array of
values, where allowable indices of the array are defined by the
type ARRAYINDEX. With this, the lambda abstraction

LAMBDA (X : ARRAYINDEX) : TheArray[X] > 10

5

AlarmTimes: Array

of alarm times*

...

Open parameter

alarm start times

...

Anonymous functions that

map alarm times to alarm

states at those times§

Alarm1State: Array

of Alarm1’s states

...

AlarmNState: Array

of AlarmN’s states

...

...

There are

M = Σ (1 + Number of Events in Alarmi)

elements in the array

Times that are not alarm start times are

derived from the alarm start times

N

i = 1

All alarm

state arrays

have M

elements

Anonymous function that maps all of

the arrays of alarm states to an array

of Booleans indicating if AlarmX is

masked at each time†

Lookup functions of

pre-computed

psychophysical masking

values for each

pair of alarm states‡

AlarmXM: Array of Booleans

indicating if AlarmX is masked

at each time

...

The alarm

masking

array has M

elements

Figure 6: The new architecture for formally modeling a configuration of medical alarms in our method. Note that the superscript symbols ∗, §, †, and ‡ are used to
concepts in this figure to corresponding concepts from Fig. 7.

describes an anonymous function that maps an array of integers
to a sequence of Booleans where the mapping at a given X is
true when the value at index X is greater than 10.

Anonymous functions are convenient for model checking
because they give modelers a convenient notation for deriving
complex systems concepts from a model’s current state. This can
enable a modeler to define complex concepts without having to
perform computations using state transitions. In our new version
of the method, we exploit anonymous functions to map an array
of all of the important alarm time events for a given configuration
(previously represented between model states using a timed
automata; Fig. 4) to values indicating if an alarm is masked.
Because all of the relevant alarm times are now represented in a
models current state, verifications can be complete without the
need for a model checker search depth greater than 0.

The architecture for our new approach is shown in Fig. 6. In
this, all relevant analysis times are modeled in an array (Alarm-
Times). Each entry in the array represents a time in which one
alarm from the modeled configuration can change its state. The
start times of each alarm are treated as open parameters (mean-
ing they can be any possible time). The other event times for
each alarm are then automatically computed based on when they
sound relative to the previous alarm event (hence the arrows
pointing between alarm elements in Fig. 6). Multiple anony-
mous functions are then used to compute the state of each alarm
at each time. Specifically, the array of times is mapped into
arrays of alarm states (Alarm1State...AlarmNState). There is
one alarm state array for each of the N alarms in the modeled
configuration. Each alarm state array has the same number of
entries (M) as the array of alarm times, where each entry in an

array represents the associated alarm’s state at the time in the
corresponding entry in the array of alarm times. An alarm’s
state is encapsulated by a unique name to indicate what tone is
sounding or a generic non-state if the alarm is not sounding or
in a pause.

A different, single anonymous function is then used to com-
pute an array of Boolean values (AlarmXM with size M) to
indicate if a given alarm (AlarmX in Fig. 6) is masked at each
time based on the state of all of the alarms at each time. This
functions makes use of the psychoacoustics of simultaneous
masking to accomplish this. In particular, the function uses the
same optimized lookup tables and the relationship from (14)
(Fig. 5) as was used by the old version of the method. Note that
if an alarm is not making any noise (it is not sounding or in a
pause state; Alarm0) then this array indicates that it is masked.
The distinction between masking that occurs when the alarm
is not making noise and when it is making noise occurs when
properties are being checked by the model checker.

To reduce complexity, a model based on the architecture
in Fig. 6 is generated for each alarm in a configuration. This
ensures that only psychoacoustic lookup tables are required for
masking associated with a given alarm in a given model.

When a model based around the architecture in Fig. 6 is
analyzed with the infinite bounded model checker, the analyst
can check one of two generated specification properties. To
check for total masking (that AlarmX can be rendered completely
unhearable by other sounding alarms), the analyst checks a
property of the form

G¬(∀ i ≤M : AlarmXM [i]). (15)

6

This asserts that for all paths through the model (G) it should
never be true (¬) that for all the times (i), AlarmX is masked
(Masking [i]). Note that here AlarmX represents the alarm that
is being treated as the maskee. To check for partial masking
(that the alarm can be masked in part by other sounding alarms),
the analyst checks a property of the form:

G
(
∀ i ≤M : AlarmXM [i]

⇒ AlarmXState = Alarm0

)
. (16)

This asserts that for all possible paths (G) and all of the times (i)
through the model, if AlarmX is masked then this implies that
the alarm is not making any noise (AlarmXState = Alarm0 ;
the alarm is either not sounding or in a pause between alarm
sounds). When checking both of these properties, because all
of the possible alarm sounding patterns can be present in one of
the infinite model initial states, search depth can be set to 0.

We modified the software implementation of the method
(Fig. 3) to support the new modeling architecture (Fig. 6) and
specification property patterns from (15) and (16). Like the pre-
vious version [36], the updated implementation generated mod-
els and specifications for use with the infinite bounded model
checker of SAL [18] However, unlike the previous version, this
new implementation generated multiple formal models, one for
each included alarm. This allowed us to realize the totality of
the new optimized approach by only having to generate lookup
tables for values associated with treating a given alarm as the
maskee. This meant that an analyst would need to run verifica-
tions using different formal models instead of just one. From
a practitioner’s perspective, this is a trivial difference. Figure 7
shows how the formal model and specifications for a given alarm
(AlarmX) are generically formulated using the input language
of SAL [19].

5. Testing and Results

We evaluated our new method using two different types of
tests. In the first, we evaluated the same cases originally reported
in [36] to determine whether the new version of the method
could detect the same masking conditions as the old one and
to compare computational efficiency (verification time) of the
two approaches. In the second, we set out to fully characterize
the scalability of the new method using a series of synthetic
case studies based on the parameters of the international medical
alarm standard [40]. Both are described below.

Note that all of these analyses followed the procedure spec-
ified by our method (Fig. 3). First, the analyzed alarms were
modeled using the reported parameters in an excel spreadsheet.
Second, we used our updated software to automatically generate
formal models and specification properties for evaluating the
masking potential of each alarm. Third, SAL’s infinite bounded
model checker was used to formally check whether each alarm
was could be partially or totally masked. All of these verification
results reported below were conducted on a computer worksta-
tion with a 3.3 GHz Intel Xeon processor and 64 GB of RAM
running Linux Mint. Finally, our method’s visualization was
used (where appropriate) to plot the results.

Table 1: Case Study 1 Alarm Configuration
(adapted from [36])

Name Freq. (Hz) Vol. (dB) Time (s)

Alarm 1 261 80 0.250
0 0 0.100

370 80 0.250
Alarm 2 277 60 0.150

0 0 0.050
277 60 0.150

Alarm 3 524 85 0.200
0 0 0.075

294 85 0.200

Note. Alarm tones are listed vertically (from top to
bottom) based on the order that they sound in a given
alarm’s cycle. A pause is indicated by a volume or
frequency of 0.

5.1. Reproduction of Previous Analyses

We originally evaluated three case studies [36]. Below we
discuss how each of these cases was evaluated with the new
method and compare the new results to those obtained in [36].
Each case study provides different challenges. Case study 1 is
a simple example where masking can manifest between pairs
of alarms without additive masking. Case study 2 is a more
complex application where additive masking is required to detect
masking conditions. Case study 3 is a realistic application: an
actual telemetry monitoring system.

5.1.1. Case Study 1: The Original Application
In the case study originally presented in [34] and reevaluated

in [36], there were three alarms (Table 1). All of these alarms had
two tones separated by a pause. The frequencies, tone and pause
lengths, and volumes were consistent with those commonly
found in medical alarms [40, 47].

With old method [36], analyses were conducted on four dif-
ferent configurations: one for configurations with each possible
pair of alarms from Table 1 and one with all three alarms. Each
configuration was also modeled and evaluated with the new
method. A comparison of the analysis results with both meth-
ods is reported in Table 2. These show that the same outcome
was achieved between the two methods when each specification
property was checked. The produced counterexamples showed
that the same masking conditions were discovered using both
methods.

The results in Table 2 also demonstrate the scalability im-
provements of our new method. The new method was able
to perform each of the analyses significantly faster than the
older method, where reductions in verification times varied from
66.67% to 99.98%.

This case study illustrates the improvements in verification
time achieved by the new method while preserving the detection
capabilities. However, this case study does not evaluate the
additive masking detection capabilities of the method. This
is because multiple overlapping alarms were not required to
produce the discovered masking conditions. Additive masking
detection is evaluated in the next case study.

7

GenericAlarms_AlarmX : CONTEXT =
BEGIN
 TIME : TYPE = {X : REAL | X >= 0};
 POWERALPHA : TYPE = {X : REAL | X >= 1};
 ALARMSTATE : TYPE = {Alarm0, Alarm1_1, Alarm1_3, …, AlarmX_1, …, AlarmX_J, …, AlarmN_1, …, AlarmN_K};
 TIMEINDEX : TYPE = [1..M];
 TIMEARRAY : TYPE = ARRAY TIMEINDEX OF TIME;
 TIMEINDEXtoSTATE : TYPE = [TIMEINDEX -> ALARMSTATE];
 TIMEINDEXtoBOOL : TYPE = [TIMEINDEX -> BOOLEAN];

 AlarmX_1Threshold?(MaskerState : ALARMSTATE): POWERALPHA =
 IF MaskerState = AlarmX_1 THEN PowerAlpha.Alarm1_1.AlarmX_1
 …
 ELSIF MaskerState = AlarmN_J THEN PowerAlpha.AlarmN_K. AlarmX_1 ELSE 1 ENDIF;
 …
 AlarmX_JThreshold?(MaskerState : ALARMSTATE): POWERALPHA =
 IF MaskerState = Alarm1_1 THEN PowerAlpha.Alarm1_1.AlarmX_J
 …
 ELSIF MaskerState = AlarmN_J THEN PowerAlpha.AlarmX_J.AlarmN_K ELSE 1 ENDIF;

 Alarms : MODULE =
 BEGIN
 OUTPUT AlarmTimes : TIMEARRAY
 OUTPUT Alarm1State, …, AlarmNState : TIMEINDEXtoSTATE

 INITIALIZATION
 %AlarmTimes[1]
 AlarmTimes[2] = AlarmTimes[1] + Time.1_1; AlarmTimes[3] = AlarmTimes[2] + Time.1_2; …
 …
 %AlarmTimes[H]
 AlarmTimes[H + 1] = AlarmTimes[H] + Time.N_1; … AlarmTimes[M] = AlarmTimes[M - 1] + Time.N_J;
 …
 %AlarmTimes[I]
 AlarmTimes[I + 1] = AlarmTimes[I] + Time.N_1; … AlarmTimes[M] = AlarmTimes[M - 1] + Time.N_J;

 DEFINITION
 Alarm1State = LAMBDA (ti : TIMEINDEX) : LET TheTime : REAL = AlarmTimes[ti] IN
 IF TheTime >= AlarmTimes[1] AND TheTime < AlarmTimes[2] THEN Alarm1_1
 ELSIF TheTime >= AlarmTimes[3] AND TheTime < AlarmTimes[4] THEN Alarm1_3
 …
 ELSE Alarm0 ENDIF;
 …
 AlarmXState = LAMBDA (ti : TIMEINDEX) : LET TheTime : REAL = AlarmTimes[ti] IN
 IF TheTime >= AlarmTimes[H] AND TheTime < AlarmTimes[H + 1] THEN AlarmX_1,

…
 ELSIF TheTime >= AlarmTimes[J - 1] AND TheTime < AlarmTimes[J] THEN AlarmN_J

ELSE Alarm0 ENDIF;
 …
 AlarmNState = LAMBDA (ti : TIMEINDEX) : LET TheTime : REAL = AlarmTimes[ti] IN
 IF TheTime >= AlarmTimes[I] AND TheTime < AlarmTimes[I + 1] THEN AlarmN_1,

…
 ELSIF TheTime >= AlarmTimes[M - 1] AND TheTime < AlarmTimes[M] THEN AlarmN_J
 ELSE Alarm0 ENDIF;
 END;

 AlarmX : MODULE =
 BEGIN
 INPUT Alarm1State, …, AlarmNState : TIMEINDEXtoSTATE
 OUTPUT AlarmXM : TIMEINDEXtoBOOL

 DEFINITION
 AlarmXM = LAMBDA (ti : TIMEINDEX) : LET TheState : ALARMSTATE = AlarmXState(ti) IN
 IF TheState = AlarmX_1 THEN
 PowerAlpha.AlarmX_1 <= (AlarmX_1Threshold?(Alarm1State(ti)) + … + AlarmX_1Threshold?((AlarmX-1State(ti)) +
 AlarmX_1Threshold?((AlarmX+1State(ti)) + … + AlarmX_1Threshold?(AlarmNState(ti)));

…
 ELSIF TheState = AlarmX_J THEN
 PowerAlpha.AlarmX_J <= (AlarmX_JThreshold?(Alarm1State(ti)) + … + AlarmX_JThreshold?((AlarmX-1State(ti)) +
 AlarmX_JThreshold?((AlarmX+1State(ti)) + … + AlarmX_JThreshold?(AlarmNState(ti)));
 ELSE TRUE ENDIF;
 END;

 AlarmXSystem : MODULE = Alarms || AlarmX;

 AlarmXTM : THEOREM Alarm1System |- G(NOT(FORALL (ti : TIMEINDEX) : AlarmXM(ti)));
 AlarmXPM : THEOREM Alarm1System |- G(FORALL (ti : TIMEINDEX) : AlarmXM(ti) => AlarmXState(ti) = Alarm0);
END

Type definitions

Precomputed lookup tables/functions of masking power alpha
values. There is one function for each of AlarmX’s states. In all
of these, AlarmX is the presumed maskee. Returned values of
the form PowerAlpha.A.B are computed using Eq. (13) from
Fig. 5 with the physical properties (volume and frequency) of
the masker alarm’s state A and the maskee alarm’s state B. Array of alarm

times
Anonymous functions that map

AlarmTimes’ entries to alarm states
Assigning alarm event times. Start
times are open parameters. Other
event times are derived from them. In
the presented code, AlarmTimes[1],
AlarmTimes[H], and AlarmTimes[I] are
the start times for Alarm1, AlarmX, …,
and AlarmN respectively.

Lambda abstraction definition of the
annonymous functions that map
AlarmTimes to alarm states for each alarm

Module for computing
if AlarmX is masked

Anonymous functions that map
AlarmTimes’ entries to each alarm’s states

Anonymous function that maps
AlarmTimes’ entries to Booleans indicating
if AlarmX is masked at each time

Lambda abstraction definition of the
anonymous functions that calculates
AlarmXM using equation (14) from Figure
5. Note that PowerAlpha.A represents the
poweralpha value from equation (12) for
AlarmX state A.

Module that synchronously composes the other model modules

There are a total of M alarm event times

Specification properties:
TM for total masking and
PM for Partial Masking

There are unique states for each non-silent alarm event. Alarm0

represents silent alarm states (when an alarm is not sounding

or paused). AlarmX has J events. AlarmN has K events.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

*

§

†

‡

Figure 7: Generic model code for implementing the architecture from Fig. 6 for checking if an arbitrary alarm (AlarmX) is masked within a configuration of N
alarms. This uses the input language of SAL [19]. Lines that start with % indicate code comments. Magenta variables represent values inserted into the code during
generation. Ellipses are used to show where incremental code is produced based on the presented patterns. Annotations (in green boxes) are used to describe the code.
Where applicable, variables in this are named consistently with their corresponding concepts from Fig. 6. This includes AlarmTimes, M, N, Alarm1State–AlarmNState,
and AlarmXM. The assignment of alarm times (Fig. 6∗) is shown in lines 27–34. The lambda abstractions that define the anonymous functions that map alarm times to
alarm states (Fig. 6§) are shown in lines 37–53. The lambda abstraction that defines the anonymous function that maps all of the alarm states to the masking-indicating
Boolean array for AlarmX (Fig. 6†) is in 62–70. The psychoacoustic mapping functions used for this (Fig. 6‡) are defined in lines 11–19.

8

5.1.2. Case Study 2: Additive Masking Detection
The second case study (originally from [36]) evaluated the

alarms in Table 3. These were chosen because they, with the
exception of tone timing, are similar to medium priority sounds
from the international medical alarm standard’s reserved sounds
[40] and we wanted to test whether our method could reproduce
the additive masking capabilities of the previous method.

As in the previous analyses [36], we used these alarms to
construct four different configurations: one for each possible
pair of alarms and one with all three. By using our method
to evaluate all four configurations, we were able to determine
if our method could reproduce the additive masking results.
Specifically, if we found masking that occurred due to two or
more alarms overlapping a maskee, where masking did not occur
when each potential masker alarm overlapped the maskee by

Table 2: Case Study 1 Verification Results

Model Original Method New Method %

Alarms Alarm Spec. Time (s) Result Time (s) Result Decrease

1 & 2 1 Partial 0.15 X 0.03 X 80.00%
Total 0.11 X 0.03 X 72.73%

2 Partial 0.47 × 0.02 × 95.74%
Total 0.24 X 0.02 X 91.67%

1 & 3 1 Partial 0.11 X 0.02 X 81.82%
Total 0.12 X 0.03 X 75.00%

3 Partial 0.16 X 0.02 X 87.50%
Total 0.10 X 0.02 X 80.00%

2 & 3 2 Partial 1.24 × 0.03 × 97.58%
Total 0.17 X 0.02 X 88.24%

3 Partial 0.15 X 0.03 X 80.00%
Total 0.09 X 0.03 X 66.67%

1, 2, & 3 1 Partial 6.65 X 0.06 X 99.10%
Total 1.58 X 0.04 X 97.47%

2 Partial 89.97 × 0.07 × 99.92%
Total 148.29 × 0.04 × 99.97%

3 Partial 3.74 X 0.06 X 98.40%
Total 1.46 X 0.04 X 97.26%

Note. X indicates a verification confirmation and × indicates a verification
failure with a counterexample. Time represents the total verification time in
seconds. % Decrease is computed as 100% · (Original Time - New Time) /
Original Time. In all verification results, the number of visited states is not
reported because this is not calculated by SAL’s infinite bounded model checker.

Table 3: Case Study 2 Alarm Configuration
(adapted from [36])

Name Freq. (Hz) Vol. (dB) Time (s)

Alarm A 261 84 0.1
0 0 0.1

329 84 0.1
0 0 0.1

392 84 0.1
Alarm B 261 84 0.1

0 0 0.1
329 84 0.1

0 0 0.1
293 84 0.1

Alarm C 523 84 0.1
0 0 0.1

293 84 0.1
0 0 0.1

392 84 0.1

Table 4: Case Study 2 Verification Results

Model Original Method New Method %

Alarms Alarm Spec Time (s) Result Time (s) Result Decrease

A & B Alarm A Partial 4.48 X 0.03 X 99.33%
Total 1.09 X 0.02 X 98.17%

Alarm B Partial 3.42 X 0.04 X 98.83%
Total 2.34 X 0.03 X 98.72%

A & C Alarm A Partial 4.31 X 0.04 X 99.07%
Total 0.99 X 0.03 X 96.97%

Alarm C Partial 2.89 X 0.04 X 98.62%
Total 1.85 X 0.04 X 97.84%

B & C Alarm B Partial 3.96 X 0.04 X 98.99%
Total 1.40 X 0.03 X 97.86%

Alarm C Partial 3.60 X 0.03 X 99.17%
Total 1.48 X 0.04 X 97.30%

A , B & C Alarm A Partial 189.2 X 0.24 X 99.87%
Total 13.56 X 0.12 X 99.12%

Alarm B Partial 670.23 × 0.27 × 99.96%
Total 9.83 X 0.15 X 98.47%

Alarm C Partial 815.29 × 0.34 × 99.96%
Total 16.94 X 0.12 X 99.29%

itself, then our method could find additive masking conditions.
We checked the specifications for each alarm (for both partial

and total masking) using both versions of the method. For the
original, for models containing two alarms, verification search
depths were set to 12. A search depth of 18 was used for models
with three alarms. Search depths of 0 were used for all analyses
with the new method. Results are reported in Table 4.

As with the previous case study, these results show that the
new method can replicate the result of the previous version while
offering significant improvements in verification time (96.97%
– 99.96% decreases with reductions factors of 33 – 2,482.33).
These results are significant because they further confirm that
our new method is capable of detecting additive masking. The
counterexamples for these analyses show that partial masking
of the third tone of Alarm B occurs when it sounds at the same
time as the first tone from Alarm A and the second tone of
Alarm C. The second tone of Alarm C can be partially masked
when sounding concurrently with the first tone of Alarm A and
the third tone of Alarm B. Because no masking occurred in
the models with only two alarms, the masking observed in the
three-alarm model is additive.

5.1.3. Case Study 3: The GE CARESCAPETMTelemetry Monitor
To evaluate a realistic application, we used our new method

to analyze the alarms in the GE CARESCAPETMMonitor B850
[31], a telemetry monitoring system compatible with the in-
ternational medical alarm standard [40] (an analysis originally
reported in [36]). The GE monitor had the alarms described
in Table 5. There were four high-priority alarms that played
identical ten-tone alarm melodies (including the same timings)
at different volumes, a medium-priority alarm with three tones
in its melody, and a one tone low-priority alarm. The analysis
allowed any of the included alarms to sound concurrently.

We modeled the alarms from Table 5 in both versions of
the method. Each alarm was evaluated with both methods to
determine if it was ever partially or totally masked. Because

9

Table 5: Alarms from Case Study 3, the GE CARESCAPE Telemetry Monitoring System

Name Freq. (Hz) Vol. (dB) Time (s) Name Freq. (Hz) Vol. (dB) Time (s) Name Freq. (Hz) Vol. (dB) Time (s)

CPU-C1 523 72 0.1 D15K 523 81 0.1 D19KT 523 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

698 72 0.1 698 81 0.1 698 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

784 72 0.1 784 81 0.1 784 82 0.1
0 0 0.3 0 0 0.3 0 0 0.3

880 72 0.1 880 81 0.1 880 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

988 72 0.1 988 81 0.1 988 82 0.1
0 0 1.0 0 0 1.0 0 0 1

523 72 0.1 523 81 0.1 523 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

698 72 0.1 698 81 0.1 698 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

784 72 0.1 784 81 0.1 784 82 0.1
0 0 0.3 0 0 0.3 0 0 0.3

880 72 0.1 880 81 0.1 880 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

988 72 0.1 988 81 0.1 988 82 0.1
0 0 5.0 0 0 5.0 0 0 5

SystemHigh 523 84 0.1 SystemMedium 523 83 0.2 SystemLow 523 79 0.2
0 0 0.1 0 0 0.2

698 84 0.1 784 83 0.2
0 0 0.1 0 0 0.2

784 84 0.1 988 83 0.2
0 0 0.3 0 0 19.0

880 84 0.1
0 0 0.1

988 84 0.1
0 0 1.0

523 84 0.1
0 0 0.1

698 84 0.1
0 0 0.1

784 84 0.1
0 0 0.3

880 84 0.1
0 0 0.1

988 84 0.1
0 0 5.0

Note. CPU-C1, D15K, D19KT, and SystemHigh are high-priority alarms. SystemMedium is a medium-priority alarm. SystemLow is a low priority alarm.

of the complexity of the model, we anticipated that the original
method would have scalability problems. Thus, in the results
reported in [36] (and reproduced here) we attempted to mini-
mize verification search depths. Specifically, all properties were
verified iteratively starting with the minimum depth capable of
detecting masking. If no masking was found, the search depth
was increased by one for each verification until masking was
discovered or the verification took a prohibitively long time.
For partial masking, this meant search depths started at 2 and
increased from there. For total masking, search depths started
at the total number of states in the associated alarm and were
iteratively increased up to 21. Search depths greater than 21
were not considered because of the amount of time required for
the analyses. Because a depth of 21 would encapsulate what
was likely to be the worst possible masking condition for the
three high-priority alarms (when they all sounded at the same
time as each other due to them all having the same tones), this
was seen as sufficient. Verifications done with the new method
were performed with a search depth of 0.

Table 6: Case Study 3 Verification Results

Original Method New Method

Alarm Spec Depth Time (s) Result Depth Time (s) Result

CPU-C1 Partial 2 145.70 × 0 55,265.73 ×
Total 21 60,967.05 × 0 2,361.15 ×

D15K Partial 2 135.21 × 0 70,236.22 ×
Total 21 145,870.50 X 0 302.14 ×

D19KT Partial 2 135.21 × 0 75,160.80 ×
Total 21 148,252.81 X 0 413.19 ×

SystemHigh Partial 2 139.02 × 0 80,352.56 ×
Total 21 395,441.48 X 0 73.31 ×

SystemMedium Partial 2 104.24 × 0 45,424.01 ×
Total 21 203,702.73 X 0 84.32 X

SystemLow Partial 2 81.24 × 0 992.29 ×
Total 4 216.66 × 0 76.51 ×

10

AlarmCPUC1

AlarmD15K

AlarmD19KT

AlarmSystemHigh

AlarmSystemMedium

AlarmSystemLow

(a) D15K

AlarmCPUC1

AlarmD15K

AlarmD19KT

AlarmSystemHigh

AlarmSystemMedium

AlarmSystemLow

AlarmCPUC1

AlarmD15K

AlarmD19KT

AlarmSystemHigh

AlarmSystemMedium

AlarmSystemLow

(b) SystemHight

(c) D19KT

0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

0 1 2 3 4 5 60.5 1.5 2.5 3.5 4.5 5.5 6.5

Not Masked

Masked

Legend

Figure 8: Plots illustrating the new total masking conditions found using the new masking verification method: (a) D15K, (b) SystemHigh, and (c) D19KT. In these,
boxes indicate when an alarm is making noise in accordance with the sounds shown in Table 5.

Results are shown in Table 6. In these, the new method was
able to reproduce the partial masking results for the alarms of the
GE CARESCAPE. Specifically, partial masking was observed
for all of the alarms. The new method also found the same total
masking conditions reported in [36]. However, the new method
also found additional total masking conditions not found with
the original method. Specifically, the new method found that
D15K, D19KT, and SystemHigh could also be totally masked.
While unexpected, these results actually make sense given that
the search depth was limited in the original analyses due to
scalability limitations of the original method. The method’s
visualization of the total masking of these three alarms (Fig. 8)
shows that this probably occurred because more than 21 alarm
events (the maximum search depth in the original analyses) were
required to achieve these masking results.

Finally, it is important to note that, unlike the results from
the previous analyses, the partial masking verification results
actually took longer with the new method than the original one
(Table 6). This occurs because, in the original analyses, partial
masking was found at search depths of 2. Thus, the original
method was considering significantly fewer alarm interaction
conditions. For the total masking analyses (where significantly
larger search depths were originally used), the new method
reduced verification times from between 64.69% and 99.98%.
This, coupled with the additional masking conditions discovered
with the new method, clearly demonstrates that the new method
is both more complete than the old approach (the analysis is no

longer limited by search depth and thus offers genuine proof of
masking conditions) and more computationally efficient.

5.2. Scalability Analyses

The following analyses were constructed to characterize how
our method scales. To do these, we developed an artificial case
study which had three base alarms (Table 7). In this configura-
tion, Alarm 1 was designed to never be masked and Alarm 2
was designed to be both partially and totally masked by Alarm
3. Each of these alarms contains ten tones followed by a pause,
making them have the maximum number of alarm events al-
lowed in IEC 60601-1-8. In the scalability analyses, variations
of this configuration were created, where both the number of
alarm events and number of alarms were varied. Specifically,
cases were created where all of the alarms in the test case had
between 1 and 10 tones (all followed by a pause) where the
tones included in the analyses started with the first tones for
the alarms in Table 7 and iteratively adding each of their tones
(and their following pause) as the number of tones increased.
For each specific number of tones, separate cases were created
which contained between 3 and 8 alarms (this was chosen as the
upper limit because there are 8 reserved alarm sounds in IEC
60601-1-8). For each case where there were more than 3 alarms,
Alarm 3 was reproduced to add the additional alarms.

For all of these cases, the partial masking and total mask-
ing of both Alarm 1 and Alarm 2 were recorded to get metrics
(verification times) for both discovering the presence and ab-

11

Table 7: Alarms Used in the Scalability Analyses

Name Freq (Hz) Vol (dB) Time (s) Name Freq (Hz) Vol (dB) Time (s) Name Freq (Hz) Vol (dB) Time (s)

Alarm 1 150 60 0.1 Alarm 2 1000 84 0.1 Alarm 3 150 84 0.1 ...
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.3 0 0 0.3 0 0 0.3

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 1.0 0 0 1.0 0 0 1.0

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.3 0 0 0.3 0 0 0.3

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 0.1 0 0 0.1 0 0 0.1

150 60 0.1 1000 84 0.1 150 84 0.1
0 0 5.0 0 0 5.0 0 0 5.0

Note. In analyses with more than three alarms, each additional alarm is a duplicate of Alarm 3.

sence of partial and total masking. In the results, the method
always found that Alarm 1 was totally or partially masked and
that Alarm 2 was never masked (as expected). Verification times
can be found in Table 8. In all of these results, verification
times appeared to increase exponentially with both the number
of alarms and the number of tones in the alarms. To check this,
we fit exponential functions to the data using linear regression
and computed the coefficient of determination (R2). In all cases,
R2 > 0.9 indicating a very good fit of an exponential function
to the data. This confirmed our observation.

Even though verification time increases exponentially with
the number of tones and the number of alarms in the model,
the scalability results are encouraging. Specifically, all of the
verifications were able to complete, with the longest taking just
under three days.

It is also important to note that the analyses that indicated the
presence of total masking (Table 8) took significantly less time
to complete than the other analyses. This is not surprising given
that analyses finish as soon as they find a property violation. It
is also convenient for analyses, because it means that problems
can be discovered and potentially correct quickly.

6. Discussion

This work has introduced an approach that significantly im-
proves the scalability and completeness of a formal-methods-
based approach for discovering when masking can cause medical
alarms to be imperceptible. This development was achieved by
allow the full sounding cycle of alarm configurations to be con-
sidered in the set of model initial states.

The results presented for the legacy analyses (compared to
analyses originally reported in [36]) demonstrate that the method
is capable of achieving the same level of masking detection seen
with the previous version of the method. This is shown by the
fact that the new method was able to find the positive masking

results for case studies 1, 2, and 3. Due to the scalability limita-
tions of the original method, the original verification analyses of
case study 3 did not use a search depth sufficient enough to con-
sider all possible model interactions. Thus, the analyses of case
study 3 with the new method found masking conditions not pre-
viously discovered with the original method. This demonstrates
the improved detection capabilities afforded by the completeness
of the new method. This is a significant result because it shows
that the new method will not miss critical alarm interactions.

Not only was the new method complete, but it also signifi-
cantly improved scalability. In particular, the analyses for case
studies 1 and 2 saw across the board reductions in verification
times ranging from 66.67% to 99.97% for comparable analyses.
Similar reductions were observed for the total masking analyses
with case study 3. Conversely, increases in verification times
were observed for partial masking. However, this is due to the
improved completeness of the new method. Thus, these results
do not constitute a serious problem for the new method.

The method improvements are responsible for the perfor-
mance observed in the synthetic case studies for assessing scal-
ability. In particular, the analysis that took the longest time to
complete (total masking of alarm 1 with 10 tones and 8 alarms)
completed in less than three days (249,676.89 s; Table 8). These
results have important implications for the use of the method.

The results for case study 3 and the scalability results show
that the method can be realistically used by designers to evaluate
the masking potential of alarms from modern medical devices.
Specifically, for a complex configuration with up to 8 alarms
each with up to 10 tones (and 10 pauses), it will take less than
three days of computational time to run an evaluation on each
alarm. Furthermore, analyses of different alarms can be run in
parallel. Thus a full design could be evaluated in three days with
enough conveintional computational resources. It is worth noting
that 8 alarms (with ten tones each) is a fair number of alarms to
consider in a given analyses when evaluating a design. This is

12

Table 8: Scalability Analyses Verification Times (in seconds)

Alarms

Tones 3 4 5 6 7 8 R2

Partial Masking of Alarm 1

1 0.03 0.05 0.15 0.55 1.63 4.29 0.99
2 0.05 0.21 0.60 2.55 12.61 34.96 ∼ 1
3 0.14 0.58 1.87 8.06 64.44 215.03 0.99
4 0.27 1.18 3.08 36.72 177.60 793.33 0.99
5 0.39 2.07 15.59 89.63 596.68 3,241.92 ∼ 1
6 0.63 3.68 30.71 244.53 1,919.88 10,587.44 ∼ 1
7 1.04 6.15 46.10 335.16 4,916.96 25,279.72 ∼ 1
8 1.34 6.91 97.56 1,587.23 11,283.61 53,273.24 0.99
9 1.70 16.05 82.43 2,178.08 20,215.13 133,548.58 0.99

10 3.05 9.85 239.35 2,354.85 31,542.81 213,370.02 0.99

R2 0.97 0.91 0.95 0.96 0.97 0.97

Total Masking of Alarm 1

1 0.02 0.05 0.12 0.50 1.42 3.85 ∼ 1
2 0.05 0.17 0.65 3.09 9.39 33.20 ∼ 1
3 0.13 0.38 2.19 13.61 59.33 229.04 ∼ 1
4 0.20 1.03 5.84 44.19 225.64 1,064.94 ∼ 1
5 0.35 1.63 11.96 103.41 665.59 3,753.30 ∼ 1
6 0.56 2.64 23.19 214.12 2,373.25 13,000.95 ∼ 1
7 0.85 5.39 38.07 519.12 4,505.68 37,017.86 ∼ 1
8 1.19 6.45 57.90 1,049.41 12,825.34 69,355.22 0.99
9 1.60 8.13 103.84 1,986.15 25,995.18 148,159.88 0.99

10 2.07 14.75 163.11 4,366.77 48,322.69 249,676.89 0.99

R2 0.96 0.95 0.95 0.97 0.97 0.97

Partial Masking of Alarm 2

1 0.03 0.04 0.12 0.39 1.16 4.78 0.98
2 0.05 0.22 1.05 4.49 16.72 51.12 ∼ 1
3 0.16 0.77 6.58 27.01 97.77 330.36 0.99
4 0.31 2.43 26.63 121.44 537.13 1,460.08 0.98
5 0.55 4.64 71.59 404.97 1,463.16 5,349.96 0.98
6 1.05 16.79 214.23 1,216.66 4,786.87 18,030.59 0.97
7 1.30 32.31 345.01 2,476.75 8,357.33 42,150.85 0.97
8 2.57 67.48 890.27 4,239.88 23,432.29 69,819.05 0.96
9 3.76 164.43 1,398.34 8,187.31 32,677.39 111,553.38 0.96

10 5.86 204.45 1,909.07 16,608.25 48,411.44 189,249.12 0.96

R2 0.98 0.97 0.94 0.94 0.93 0.93

Total Masking of Alarm 2

1 0.03 0.03 0.06 0.10 0.14 0.20 0.97
2 0.04 0.11 0.22 0.49 0.66 1.26 0.98
3 0.10 0.30 0.54 1.08 1.92 3.28 0.98
4 0.19 0.51 1.17 2.54 4.84 7.45 0.98
5 0.33 1.01 2.42 4.76 9.01 14.68 0.98
6 0.49 1.55 4.02 8.62 16.01 29.16 0.98
7 0.79 2.48 6.57 13.64 25.20 53.91 0.99
8 1.02 3.55 9.75 20.94 41.22 76.28 0.98
9 1.71 5.50 14.66 30.80 58.38 104.28 0.98

10 2.28 7.75 21.28 42.01 86.12 160.37 0.98

R2 0.98 0.95 0.96 0.95 0.94 0.94

made clear by considering the fact that a device as complex as the
telemetry monitoring system evaluated for case study 3 only had
6 alarms. Even the IEC 60601-1-8 international medical alarm
standard only contains 8 reserved alarm sounds, which can have
up to 10 tones. Thus our method is fully capable of evaluating
the alarms of conventional designed standards as well as the
reserved sounds of IEC 60601-1-8. As such, the work presented

here has the potential to allow designers to reduce the likelihood
that alarms in their devices will be masked. This should improve
the probability that medical practitioners will hear the alarms,
respond to them appropriately, and thus avoid adverse health
outcomes. We plan to publish a free implementation of our
analysis method so that designers will be able to use it in future
device designs.

It is important to note that our method does not consider the
likelihood or risk of any particular masking condition. We do not
view this as a major limitation of our work because any alarm
masking could be fatal in a medical environment. Furthermore,
predicting the probability that any particular alarm will sound at
a given time will likely be difficult and have high variance. How-
ever, should such estimates become possible, we could adapt
our method for use with emerging probabilistic model check-
ing techniques [42]. Probabilistic model checking is similar to
more convention model checking approaches, but allows proba-
bilities and consequence to be associated with different formal
model transition. This enables its use for predicting the proba-
bility and risk of outcomes. Future work should investigate how
our method could be used with probabilistic model checking to
enable such capabilities.

The results of the telemetry monitoring systems (case 3)
are particularly troubling because there are ways for all of the
high priority alarms in the system to be masked. This system
was not chosen for analysis because we anticipated it having
masking problems. On the contrary, it was the only medical
device we could obtain detailed alarm information for. This
provides further evidence that the masking problem is more
serious than previously thought and worthy of consideration in
system design.

The results for the telemetry monitoring system are even
more concerning given that its alarms were designed in com-
pliance with IEC 60601-1-8, the international medical alarm
standard [40]. This suggests that masking is a critical issue in
the standard. This conclusion is further bolstered by the fact that
the standard was the inspiration for the sounds analyzed under
case study 2. Thus, in future work we plan to use our method to
evaluate the IEC 60601-1-8 international standard. In particular,
IEC 60601-1-8 contains a number of reserved sounds: standard
alarm melodies for representing common medical alarm con-
cepts. In total, there are eight reserved alarm sounds where,
depending on the priority, alarms could have 1, 3, or 10 tones
separated by a pause. As such, the scalability analyses presented
here show that our method is capable of handling the complexity
of the alarms in the international standard.

It is worth noting that the international medical alarm stan-
dard specifies that alarms have additional (lower volume) fre-
quencies in each tone. This can make IEC 60601-1-8 compliant
alarms harmonically richer. The alarms evaluated in this paper
only considered the primary frequency of alarms. However, our
current version of the method is able to account for this feature
of IEC 60601-1-8 and the nature of our new architecture allows
the masking effect of additional frequencies to be considered
without additional impact on scalability. This is due to the fact
that the effect of additional frequencies can be incorporated into
the pre-computed “power alpha” values that our method uses.

13

Thus, should our analysis of IEC 60601-1-8 prove insightful,
this work has the potential to make recommendations for im-
proving the international medical alarm standard. This could
significantly decrease the likelihood that medical alarms are
masked. In a medical environment, where seconds can mean
the difference between life and death, this could have profound
implications for patient safety and health.

7. Acknowledgement

Research reported in this paper was supported by the Agency
for Healthcare Research and Quality under award number
R18HS024679. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the Agency for Healthcare Research and Quality.

References

[1] Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical
computer science, 126, 183–235.

[2] Ambikairajah, E., Davis, A., & Wong, W. (1997). Auditory masking and
MPEG-1 audio compression. Electronics & Communication Engineering
Journal, 9, 165–175.

[3] Baksi, D. (2008). Formal interaction specification in public health surveil-
lance systems using π-calculus. Computer methods and programs in
biomedicine, 92, 115–120.

[4] Baksi, D. (2009). Model checking of healthcare domain models. Computer
Methods and Programs in Biomedicine, 96, 217–225.

[5] Baumgarte, F., Ferekidis, C., & Fuchs, H. (1995). A nonlinear psychoa-
coustic model applied to ISO/MPEG layer 3 coder. In Proceedings of the
Audio Engineering Society Convention. New York: Audio Engineering
Society.

[6] Bolton, M. L. (2017). Novel developments in formal methods for human
factors engineering. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (pp. 715–717). Los Angeles: Sage volume 61.

[7] Bolton, M. L., & Bass, E. J. (2009). A method for the formal verification of
human interactive systems. In Proceedings of the 53rd Annual Meeting of
the Human Factors and Ergonomics Society (pp. 764–768). Santa Monica:
HFES.

[8] Bolton, M. L., & Bass, E. J. (2010). Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs. Innova-
tions in Systems and Software Engineering: A NASA Journal, 6, 219–231.

[9] Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2012). Generating phe-
notypical erroneous human behavior to evaluate human-automation inter-
action using model checking. International Journal of Human-Computer
Studies, 70, 888–906.

[10] Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal
verification to evaluate human-automation interaction in safety critical
systems, a review. IEEE Transactions on Systems, Man and Cybernetics:
Systems, 43, 488–503.

[11] Bolton, M. L., Hasanain, B., Boyde, A. D., & Edworthy, J. (2016). Using
model checking to detect masking in IEC 60601-1-8-compliant alarm
configurations. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (pp. 636–640). Los Angeles: SAGE Publications.

[12] Bosi, M., & Goldberg, R. E. (2003). Introduction to Digital Audio Coding
and Standards. New York: Springer.

[13] Boyd, A. D. (2010). Centralized Telemetry Monitoring Center Human
Factors Report. Technical Report University of Illinois at Chicago.

[14] Brandenburg, K., & Bosi, M. (1997). Overview of MPEG audio: Current
and future standards for low bit-rate audio coding. Journal of the Audio
Engineering Society, 45, 4–21.

[15] Brandenburg, K., & Stoll, G. (1994). ISO/MPEG-1 audio: A generic
standard for coding of high-quality digital audio. Journal of the Audio
Engineering Society, 42, 780–792.

[16] Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking.
Cambridge: MIT Press.

[17] Cvach, M. (2012). Monitor alarm fatigue: An integrative review. Biomedi-
cal Instrumentation & Technology, 46, 268–277.

[18] De Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M.,
& Tiwari, A. (2004). SAL 2. In Proceedings of the 16th International
Conference on Computer Aided Verification (pp. 496–500). Springer.

[19] de Moura, L., Owre, S., & Shankar, N. (2003). The SAL language man-
ual. Technical Report CSL-01-01 Computer Science Laboratory, SRI
International Menlo Park.

[20] Dix, A. J. (1991). Formal methods for interactive systems volume 16.
London: Academic Press.

[21] Dutertre, B., & Sorea, M. (2004). Timed systems in SAL. Technical Report
NASA/CR-2002-211858 SRI International.

[22] E. Zwicker and R. Feldtkeller (1967). Das Ohr als Nachrichtenempfnger.
Stuttgart: Hirzel Verlag.

[23] ECRI Institute (2014). Top 10 health technology hazards for
2015. Health Devices, November. URL: http://www.ecri.org/
2015hazards.

[24] ECRI Institute, & ISMP (2009). Connecting remote cardiac monitoring is-
sues with care areas. Pennsylvania Patient Safety Authority, 6, 79–83. URL:
http://patientsafetyauthority.org/ADVISORIES/
AdvisoryLibrary/2009/Sep6(3)/Pages/79.aspx.

[25] Edworthy, J. (2013). Medical audible alarms: A review. Journal of the
American Medical Informatics Association, 20, 584–589.

[26] Edworthy, J., & Hellier, E. (2005). Fewer but better auditory alarms will
improve patient safety. Quality and Safety in Health Care, 14, 212–215.

[27] Edworthy, J., & Hellier, E. (2006). Alarms and human behaviour: Implica-
tions for medical alarms. British Journal of Anaesthesia, 97, 12–17.

[28] Edworthy, J., & Meredith, C. S. (1994). Cognitive psychology and the
design of alarm sounds. Medical Engineering & Physics, 16, 445–449.

[29] Emerson, E. A. (1990). Temporal and modal logic. In J. van Leeuwen,
A. R. Meyer, M. Nivat, M. Paterson, & D. Perrin (Eds.), Handbook of
Theoretical Computer Science chapter 16. (pp. 995–1072). Cambridge:
MIT Press.

[30] Fastl, H., & Zwicker, E. (2006). Psychoacoustics: Facts and models
volume 22. Springer.

[31] GE Healthcare (2010). CARESCAPETMMonitor B850 Technical Specifi-
cations Supplement. Technical Report 2040386-084D General Electric
Company.

[32] Green, D. M. (1967). Additivity of masking. The Journal of the Acoustical
Society of America, 41, 1517–1525.

[33] Grumberg, O., & Veith, H. (2008). 25 Years of Model Checking: History,
Achievements, Perspectives. Berlin: Springer.

[34] Hasanain, B., Boyd, A., & Bolton, M. (2016). Using model checking to
detect simultaneous masking in medical alarms. IEEE Transactions on
Human-Machine Systems, 46, 174–185.

[35] Hasanain, B., Boyd, A., & Bolton, M. L. (2014). An approach to model
checking the perceptual interactions of medical alarms. In Proceedings
of the 2014 International Annual Meeting of the Human Factors and
Ergonomics Society (pp. 822–826). Santa Monica: HFES.

[36] Hasanain, B., Boyd, A. D., Edworthy, J., & Bolton, M. L. (2017). A formal
approach to discovering simultaneous additive masking between auditory
medical alarms. Applied Ergonomics, 58, 500–514.

[37] Henk, B. (1984). The lambda calculus: Its syntax and semantics. Studies
in logic and the foundations of Mathematics, .

[38] Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science (pp.
278–292). Washington: IEEE Computer Society.

[39] Humes, L. E., & Jesteadt, W. (1989). Models of the additivity of masking.
The Journal of the Acoustical Society of America, 85, 1285–1294.

[40] IEC 60601-1-8 (2003-08-14). Medical Electrical Equipment - Part 1-8.
Geneva: International Electrotechnical Commission.

[41] Konkani, A., Oakley, B., & Bauld, T. J. (2012). Reducing hospital noise: A
review of medical device alarm management. Biomedical Instrumentation
& Technology, 46, 478–487.

[42] Kwiatkowska, M., Norman, G., & Parker, D. (2011). Prism 4.0: Verifi-
cation of probabilistic real-time systems. In International conference on
computer aided verification (pp. 585–591). Springer.

[43] Lacherez, P., Seah, E., & Sanderson, P. (2007). Overlapping melodic
alarms are almost indiscriminable. Human Factors, 49, 637–645.

[44] Lutfi, R. A. (1983). Additivity of simultaneous masking. The Journal of
the Acoustical Society of America, 73, 262–267.

14

http://www.ecri.org/2015hazards
http://www.ecri.org/2015hazards
http://patientsafetyauthority.org/ADVISORIES/AdvisoryLibrary/2009/Sep6(3)/Pages/79.aspx
http://patientsafetyauthority.org/ADVISORIES/AdvisoryLibrary/2009/Sep6(3)/Pages/79.aspx

[45] Mansouri-Samani, M., Pasareanu, C. S., Penix, J. J., Mehlitz, P. C., OMal-
ley, O., Visser, W. C., Brat, G. P., Markosian, L. Z., & Pressburger, T. T.
(2007). Program Model Checking: A Practitioners Guide. Technical Re-
port Intelligent Systems Division, NASA Ames Research Center Moffett
Field.

[46] Meredith, C., & Edworthy, J. (1995). Are there too many alarms in the
intensive care unit? An overview of the problems. Journal of Advanced
Nursing, 21, 15–20.

[47] Momtahan, K., Hetu, R., & Tansley, B. (1993). Audibility and identifi-
cation of auditory alarms in the operating room and intensive care unit.
Ergonomics, 36, 1159–1176.

[48] Patterson, R. D. (1982). Guidelines for Auditory Warning Systems on Civil
Aircraft. Civil Aviation Authority.

[49] Patterson, R. D., Mayfield, T. F., Patterson, R. D., & Mayfield, T. F.
(1990). Auditory warning sounds in the work environment. Philosophical
Transactions of the Royal Society of London. B, Biological Sciences, 327,
485–492.

[50] Podelski, A., & Wagner, S. (2006). Model checking of hybrid systems:
From reachability towards stability. In Hybrid Systems: Computation and
Control (pp. 507–521). Springer.

[51] Rukšėnas, R., Back, J., Curzon, P., & Blandford, A. (2008). Formal
modelling of salience and cognitive load. In Proceedings of the 2nd
International Workshop on Formal Methods for Interactive Systems (pp.
57–75). Amsterdam: Elsevier Science Publishers.

[52] Schroeder, M. R., Atal, B. S., & Hall, J. (1979). Optimizing digital speech
coders by exploiting masking properties of the human ear. The Journal of
the Acoustical Society of America, 66, 1647–1652.

[53] Stead, W. W., & Lin, H. S. (Eds.) (2009). Computational Technology for
Effective Health Care: Immediate Steps and Strategic Directions. Atlanta:
National Academies Press.

[54] Ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van
Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K. et al. (2006).
Improving medical protocols by formal methods. Artificial Intelligence in
Medicine, 36, 193–209.

[55] Terhardt, E. (1979). Calculating virtual pitch. Hearing Research, 1,
155–182.

[56] Thangavelu, S. D., Ifeachor, E., Edworthy, J., Yunus, J., & Chinna, K.
(2014). Challenges and recommendation of clinical alarm system in
intensive care units from user perspective. In 2014 IEEE Region 10
Symposium (pp. 366–369). Piscataway: IEEE.

[57] The Joint Commission (2013). Medical device alarm safety in hospitals.
Sentinel Even Alert, 50.

[58] The Joint Commission (2013). Npsg.06.01.01: Improve the safety of
clinical alarm systems. Joint Commission Perspectives, 33.

[59] Toor, O., Ryan, T., & Richard, M. (2008). Auditory masking potential of
common operating room sounds: A psychoacoustic analysis. In Anesthe-
siology (p. A1207). Park Ridge: American Society of Anesthesiologists
volume 109.

[60] van Breda, W., Hoogendoorn, M., Eiben, A., & Berking, M. (2017).
Assessment of temporal predictive models for health care using a formal
method. Computers in Biology and Medicine, 87, 347–357.

[61] Vockley, M. (2014). Clinical Alarm Management Compendium. Arlington:
AAMI Foundation.

[62] Way, R. B., Beer, S. A., & Wilson, S. J. (2014). Whats that noise? Bed-
side monitoring in the emergency department. International Emergency
Nursing, 22, 197–201.

[63] Weyers, B., Bowen, J., Dix, A., & Palanque, P. (Eds.) (2017). The
Handbook of Formal Methods in Human-Computer Interaction. Berlin:
Springer.

[64] Wing, J. M. (1990). A specifier’s introduction to formal methods. Com-
puter, 23, 8, 10–22, 24.

[65] You, Y. (2010). Audio Coding: Theory and Applications. Springer Science
& Business Media.

15

