Case Report

A Case of Invasive Sinonasal Carcinosarcoma: The Importance of Early Detection

Jason Yuen, Vinay Varadarajan, Marios Stavrakas, Samiul Muquit, and Hisham Khalil

1 South West Neurosurgery Centre, Derriford Hospital, Plymouth PL6 8DH, UK
2 Department of Ear, Nose and Throat, Derriford Hospital, Plymouth PL6 8DH, UK

Correspondences should be addressed to Hisham Khalil; hisham.khalil@plymouth.ac.uk

Received 20 February 2018; Accepted 19 March 2018; Published 22 April 2018

Academic Editor: Kamal Morshed

Copyright © 2018 Jason Yuen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sinonasal carcinosarcomas represent rare neoplasms, with aggressive character and unfavourable prognosis. We present a case of extensive sinonasal carcinosarcoma extending into the anterior cranial fossa and into the orbit and also a review of the current international literature regarding this rare yet aggressive neoplasm. There is currently a lack of specific guidelines on the optimal management of sinonasal carcinosarcoma and the treatment represents a challenge for the clinician. The key message that we would like to disseminate to our colleagues is the importance of suspicion and early detection, as well as the necessity to adopt a holistic approach when counselling patients.

1. **Introduction**

A malignant biphasic neoplasm consisting of an epithelial (squamous) element and mesenchymal component is known as a carcinosarcoma (also known as pleomorphic carcinoma, spindle cell carcinoma, pseudosarcoma, and pseudosarcomatous squamous cell carcinoma) [1, 2] although the exact nomenclature and subclassifications are variable [3]. It is classified under squamous cell carcinoma by the World Health Organization (WHO) [4].

Carcinosarcoma may arise from any squamous epithelium (e.g., salivary glands, respiratory tract, upper aerodigestive tract, and female reproductive organs) [5], but its occurrence in the sinonasal region is extremely rare [1]. There is very little evidence available about its best management.

2. **Case Presentation**

A 75-year-old gentleman first presented to primary care with a three month history of left-sided headaches and diplopia. He also complained of altered taste sensation and paraesthesia in the left maxillary region. There was no history of epistaxis. The patient attended his general practitioner on multiple occasions and was given sinusitis treatment until a CT scan was finally performed due to persistence of symptoms, upon which the patient was then referred to the ENT service.

He has a background history of fast atrial flutter (on bisoprolol), hypertension, polymyalgia rheumatica, benign prostatic hyperplasia, and previously excised papillary squamous cell carcinoma in the left thigh. He quit smoking 40 years prior to presentation. Otherwise, he had lived independently with WHO performance status of 1 (Karnofsky status 90).

The patient underwent complete head and neck examination including flexible nasoendoscopy. There was no discreet neck lymphadenopathy. Nasoendoscopy revealed a mass down to the left inferior turbinate obscuring the left nasal cavity. He complained of diplopia on the left side on the lateral gaze with proptosis of approximately 3 mm compared to the contralateral side. Vision was 6/30 bilaterally with glasses. There was no relative afferent pupillary defect or papilloedema.
2.1. Investigations. Initial CT scan revealed an aggressive lesion in left ethmoidal and frontal sinuses, invading the left orbit and anterior cranial fossa. CT neck and thorax showed no cervical or chest lymphadenopathy.

Subsequent MRI imaging also showed evidence of bone erosion with breaching of the dura in the vicinity of the left orbitofrontal cortex although there was no signal change in the brain to suggest brain invasion (Figure 1). There was destruction of left lamina papyracea. An incidental right anterior cranial fossa meningioma, distant from sinonasal lesion was also identified. This pathologic finding did not have any significant clinical relevance with the primary disease.

A staged whole body positron-emission tomography (PET) scan showed no other distant lesions but confirmed lesion progression through the frontal sinus.

Our initial differential diagnoses were squamous cell carcinoma, carcinosarcoma, lymphoma, teratocarcinosarcoma, olfactory neuroblastoma, small cell carcinoma and alveolar rhabdomyosarcoma.

2.2. Treatment. After the diagnostic workup, the patient underwent endoscopic examination of the nose and biopsy of the lesion under general anaesthesia. Extensive disease was noted at the ipsilateral maxillary antrum. Histology revealed an extensive necrotic biphasic epithelioid, spindled malignant neoplasm in keeping with carcinosarcoma. Immunohistochemistry afterwards showed no loss of DNA mismatch repair (MMR) protein expression.

2.3. Outcome. After a successful biopsy and radiological investigative workup, the patient was discharged home. Unfortunately in the community, his preexisting comorbidities worsened, and he developed poorly controlled fast atrial flutter and urosepsis with E. Coli bacteraemia. He was readmitted for antimicrobial and supportive treatment. The patient eventually recovered and was discharged.

Discussion was undertaken at the multidisciplinary meeting and with international experts in the field. The consensus is that although the disease can potentially be resected with major surgery such as craniofacial resection, due to its location and size, surgical treatment would have significant risk of bleeding, cerebrospinal fluid (CSF) leak, and meningitis. After detailed consultation and discussion about the possible treatment options including the risks of such procedures with the patient and his family, he was not keen to proceed and opted for palliative radiotherapy and symptomatic management.

The radiotherapy dose delivered was 20 Gy in five days, then a two-week break and finally another 20 Gy in five days. One year after diagnosis, patient tolerated the radiotherapy and continued to lead an independent life.

3. Discussion

In the head and neck area, carcinosarcomas most frequently occur in the larynx and oral cavity, followed by the skin, tonsils, sinonasal tract, pharynx and hypopharynx [6, 7]. Histologically, they have been classified as part of a spectrum of sarcomatoid carcinomas, most of which present in late middle-aged men with a long history of tobacco use. They consist of foci of overt carcinoma admixed with areas of divergent differentiation into mesenchymal tissues [8]. Spindle cell formation is also typical in the sarcomatous component. A recent study suggested that a MET protooncogene mutation may be a prerequisite event in its pathogenesis [9].

Presenting symptoms of sinonasal carcinosarcomas typically include nasal obstruction, epistaxis, facial pain, and headache [10, 11], These are rather nonspecific to the disease. They tend to grow rapidly, with extensive local destruction. Therefore, early diagnosis and aggressive therapy are necessary to improve the often dismal prognosis [2, 8].

In a Japanese case report of maxillary carcinosarcoma, the patient died despite intensive radiochemotherapy and total maxillectomy due to rapid tumour recurrence and metastasis. However, it appeared the carcinomatous component...
Table 1: Cases of sinonasal carcinosarcoma that are reported in the literature.

<table>
<thead>
<tr>
<th>Number</th>
<th>Age (years)/sex</th>
<th>Location</th>
<th>Stage</th>
<th>Treatment</th>
<th>Outcome</th>
<th>Author, year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62/F</td>
<td>Maxillary sinus</td>
<td>ND</td>
<td>RT</td>
<td>No marked improvement of the tumor, DWD</td>
<td>Meyer and Shklar, 1957 [24]</td>
</tr>
<tr>
<td>2</td>
<td>71/M</td>
<td>Maxillary + ethmoid sinuses</td>
<td>T4aN0M0</td>
<td>Preoperative RT + TM + RE</td>
<td>ND about postoperative tumor condition, death due to intracerebral abscess at postoperative period</td>
<td>Feinmesser et al., 1982 [16]</td>
</tr>
<tr>
<td>3</td>
<td>65/F</td>
<td>Maxillary sinus</td>
<td>ND</td>
<td>TM + RT</td>
<td>LR, DWD 8 months later</td>
<td>Ampil, 1985 [14]</td>
</tr>
<tr>
<td>4</td>
<td>57/F, (postradiation)</td>
<td>Nasoethmoid sinus</td>
<td>ND</td>
<td>Tumor excision, ethmoidectomy and turbinectomy</td>
<td>LR 5 months after surgery, outcome uncertain</td>
<td>Hafiz et al., 1987 [17]</td>
</tr>
<tr>
<td>5</td>
<td>60/M</td>
<td>Nasomaxillary sinus</td>
<td>T3N0M0</td>
<td>TM + RT + CT</td>
<td>LR, DWD 2 months later (diffuse metastasis in lung and brain)</td>
<td>Sonobe, 1989 [11]</td>
</tr>
<tr>
<td>6</td>
<td>53/M</td>
<td>Maxillary + ethmoid sinuses</td>
<td>T4aN0M0</td>
<td>TM + craniofacial resection + RT + CT</td>
<td>Disease free after 9 months</td>
<td>Shindo et al., 1990 [2]</td>
</tr>
<tr>
<td>7</td>
<td>81/F</td>
<td>Maxillary sinus</td>
<td>T3N0M0</td>
<td>TM + RT + 2nd operation</td>
<td>LR, DWD 3 months after second operation</td>
<td>Sanabre et al., 1998 [27]</td>
</tr>
<tr>
<td>8</td>
<td>47/M</td>
<td>Maxillary sinus</td>
<td>ND</td>
<td>PM + RT</td>
<td>LR, DWD after 1 year</td>
<td>Furuta et al., 2001 [10]</td>
</tr>
<tr>
<td>9</td>
<td>54/M</td>
<td>Maxillary sinus</td>
<td>T3N3M0</td>
<td>RT + CT</td>
<td>DWD 4 months; possibly from lung metastasis</td>
<td>Howard et al., 2007 [19]</td>
</tr>
<tr>
<td>10</td>
<td>Mean age at diagnosis 54 (range, 42–66)</td>
<td>Sinonasal track, unclear exact locations</td>
<td>T1/2 3</td>
<td>Surgery alone 2</td>
<td>Mean follow-up 38 months (6–40)</td>
<td>Doshi et al., 2010 [15]</td>
</tr>
<tr>
<td>11</td>
<td>75/M</td>
<td>Nasal cavity</td>
<td>T4N0M0</td>
<td>Surgery + CT + RT</td>
<td>5 with disease at last follow-up</td>
<td>Terada and Kawasaki, 2011 [30]</td>
</tr>
<tr>
<td>12</td>
<td>60/M</td>
<td>Maxillary sinus and nasal cavity</td>
<td>Unclear</td>
<td>CT + RT</td>
<td>DWD after 9 months</td>
<td>Terada, 2011 [29]</td>
</tr>
<tr>
<td>13</td>
<td>29/F</td>
<td>Nasopharyngeal</td>
<td>T1N2cM0</td>
<td>RT</td>
<td>Clinically free-of-disease 2 months after RT</td>
<td>Lim et al., 2012 [22]</td>
</tr>
<tr>
<td>14</td>
<td>60/M</td>
<td>Maxillary + ethmoid sinuses</td>
<td>T3N0M0</td>
<td>TM + RT + CT</td>
<td>LR, FL</td>
<td>Moon, 2013 [1]</td>
</tr>
<tr>
<td>15</td>
<td>29/M</td>
<td>Nasal cavity</td>
<td>T2N0M0</td>
<td>Surgery</td>
<td>Disease-free after 6 months</td>
<td>Gupta, 2013 [32]</td>
</tr>
<tr>
<td>16</td>
<td>52/M</td>
<td>Frontal, sphenoid, ethmoid, and maxillary sinuses</td>
<td>T4aN0M0</td>
<td>TM + RT + CT</td>
<td>LR</td>
<td>Alem and AlNoury, 2014 [13]</td>
</tr>
<tr>
<td>17</td>
<td>61/M</td>
<td>Maxillary sinus</td>
<td>T4aN2cM1</td>
<td>TM with modified neck dissection</td>
<td>DWD shortly after surgery with sternal metastasis</td>
<td>Cheong et al., 2014 [12]</td>
</tr>
<tr>
<td>18</td>
<td>Mean age at diagnosis 60.3 (SD, ±21.3)</td>
<td>Nasal cavity 7 Maxillary sinus 5 Ethmoid sinus 1 Frontal sinus 1 Sphenoid sinus 1</td>
<td>T1/2 3</td>
<td>Surgery alone 3</td>
<td>Five-year disease-specific survival of 48.5%</td>
<td>Patel et al., 2015 [5]</td>
</tr>
<tr>
<td>19</td>
<td>66/M</td>
<td>Maxillary sinus</td>
<td>T3N0M0</td>
<td>PM + RT + CT</td>
<td>LR, DWD 10 months after initial presentation</td>
<td>Ando et al., 2015 [9]</td>
</tr>
<tr>
<td>20</td>
<td>78/F</td>
<td>Ethmoid sinus</td>
<td>T4N0M0</td>
<td>Surgery + RT</td>
<td>Disease-free after 36 months</td>
<td>Iqbal et al., 2015 [20]</td>
</tr>
</tbody>
</table>
responded to the radiochemotherapy but that was not the case
with the sarcomatous component [11].

Nonetheless, aggressive treatment may not cease disease
progression and improve survival. Cheong et al. [12] re-
ported on a 61-year-old male patient who underwent total
maxillectomy and modified radical neck dissection and died
shortly afterwards with sternal metastasis, despite having
had extensive surgery with curative intent.

Table 1 shows the similar cases of sinonasal carcino-
sarcoma reported in the literature [1, 2, 9–31]. The optimal
treatment of this disease remains undetermined. It is difficult
to ascertain the effectiveness of the treatment modalities (a
combination of surgery, radiotherapy, and chemotherapy)
from the small number of cases available in the literature.
They generally confer a poor outcome and a high recurrence
rate. A recent large case-control analysis of 15 sinonasal
patients in America showed an average five-year disease-
specific survival of 48.5%, which is significantly poorer than
tools with carcinosarcoma at other anatomical sites [5].
Therefore we advocate, when patients are operatively fit with
resectable disease, they should undergo aggressive surgical
treatment with adjuvant radiotherapy as an attempt to
improve outcome. This is because radiotherapy alone tends
to convey a less favourable outcome, and the role of che-
mothorapy is unclear.

Since the optimal management of carcinosarcoma remains
uncertain, it is intuitive to study a related but separate (also
highly aggressive) entity known as teratocarcinosarcoma
[26, 33–35]. This tumour type also includes a component of
neuroectodermal tissue and is much more prevalent in the
medical literature. According to a recent systemic review of 49
patients, it is recommended that optimal treatment involves
radical surgical resection followed by radiation therapy [25].

If more doctors are aware of this condition and the
associated presenting symptoms, perhaps earlier diagnoses
can be made. Therefore, patients may potentially get the
option of a curative total resection, since the invasion of the
skull base and surrounding structures is a poor prognostic
factor.

In conclusion, sinonasal carcinosarcomas represent rare
neoplasms, with aggressive character and unfavourable
prognosis. Here we present a case of extensive sinonasal
carcinosarcoma extending into the anterior cranial fossa and
into the orbit and also a review of the current international
literature regarding this rare yet aggressive neoplasm. There
is currently a lack of specific guidelines on the optimal
management of sinonasal carcinosarcoma, and the treat-
ment represents a challenge for the clinicians. The key
message that we would like to disseminate to our colleagues
is the importance of suspicion and early detection, as well as
the necessity to adopt a holistic approach when counselling
patients.

Consent

The patient has consented for publication in written form.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

cinosarcoma of the maxillary sinus,” Clinical and Experi-
nosarcoma of the nasal cavity and paranasal sinuses,” Head
in the head and neck,” Journal of Laryngology and Otology,
vol. 95, no. 3, pp. 311–316, 1981.
[4] IARC, World Health Organization Classification of Tumours-
Pathology and Genetics of Head and Neck Tumours, IARC
“A case-control analysis of survival outcomes in sinonasal
carcinosarcoma,” American Journal of Otolaryngology, vol. 36,
no. 2, pp. 200–204, 2015.
Pathology of the Head and Neck, Springer-Verlag, Berlin,
Heidelberg, Germany, 2006.