Dual wave farms for energy production and coastal protection

J. Abanades\textsuperscript{1,2}, javier.abanadestercero@plymouth.ac.uk

G. Flor-Blanco\textsuperscript{3}, gfb@geol.uniovi.es

G. Flor\textsuperscript{3}, gflor@geol.uniovi.es

G. Iglesias\textsuperscript{1*}, gregorio.iglesias@plymouth.ac.uk

\textsuperscript{1} University of Plymouth, School of Engineering, Marine Building, Drake Circus, Plymouth PL4 8AA, UK

\textsuperscript{2} TYPSA Group, Renewable Energy Division, Edificio Manuel Borso, C/ Botiguers, 5 - 5ª planta, 46980 Valencia, Spain

\textsuperscript{3} University of Oviedo, Department of Geology, Campus de Llamanquique, C/ Jesus Arias de Velasco, s/n, 33005, Oviedo, Spain

*Corresponding author; e-mail: gregorio.iglesias@plymouth.ac.uk; tel.: +44.(0)1752 586131.
Dual wave farms for energy production and coastal protection

Abstract

The synergetic application of wave farms, i.e., arrays of wave energy converters (WECs), for protecting the coast in addition to their main objective of generating carbon-free energy can place this renewable resource as a major element in ocean and coastal management. In particular, their ability to mitigate coastal erosion by reducing the amount of wave power reaching the coast will be put to use – and this is the motivation for this work. We propose a new approach in which the wave farm has a dual purpose: to generate carbon-free energy and to contribute to coastal erosion management. We illustrate this approach by means of a case study: a dual-purpose wave farm off Xago, a beach-dune system in Asturias (N Spain) subject to severe erosion – manifested dramatically in the retreat of the dune – and located in the area earmarked for the first wave farm in Spain. The objective of this work is to establish whether or not the wave farm may be useful to counter the erosion of the beach-dune system. To this end a wave propagation model is coupled with a state-of-the-art coastal processes model and applied to analyse the response of the system under storm conditions in two scenarios: with and without the farm. The efficiency of the wave farm in mitigating erosion is determined by comparing the results in both scenarios by means of a series of coastal indicators defined ad hoc. We find that the farm reduces storm-induced erosion particularly where it is most acute, in the dune front, and thus contributes to alleviate the current erosive trends. This opens up exciting possibilities of using dual wave farms in lieu of, or as a complement to, coastal structures or beach nourishment. As wave energy develops into a major renewable energy source in the coming decades, dual wave farms are poised to constitute a breakthrough in coastal erosion management.

Keywords: wave energy; coastal management; coastal erosion; beach morphology; sediment transport.
The current status of wave energy is similar to that of wind energy in the early 80’s. With a vast
resource and a very active R&D community, wave energy is expected to become a major renewable in
the coming decades, with wave farms deployed in a number of coastal regions throughout the world
(Bernhoff et al., 2006; Cornett, 2008; Folley and Whittaker, 2009; Guedes Soares et al., 2014; Iglesias
and Carballo, 2009, 2010b; Pontes et al., 1998; Veigas and Iglesias, 2013, 2014; Vicinanza et al.,
2013). In previous work it was established that the extraction of wave energy by a nearshore wave
farm results in a milder wave climate in its lee (Carballo and Iglesias, 2013; Iglesias and Carballo,
2014; Mendoza et al., 2014; Millar et al., 2007; Palha et al., 2010; Ruol et al., 2011; Smith et al.,
2012; Veigas et al., 2014a; Veigas et al., 2014b; Vidal et al., 2007; Zanuttigh and Angelelli, 2013).
The scientific hypothesis of this work is that this reduction in wave energy can be used for coastal
erosion management, in particular in the case of a beach-dune system. To test the hypothesis, a case
study is carried out on Xago Beach, in the area proposed by FAEN (Fundación Asturiana de la
Energía, Asturian Energy Foundation) for the deployment of the first wave farm in Spain. Previous
studies of relevance for this work include the characterisation of the wave resource in the region
(Iglesias and Carballo, 2010a) and the geological and geotechnical study for wave farm development
(Flor-Blanco et al., 2011), in which two areas off the beaches of Xago and Llumeres (Figure 1) were
recommended.

The Xago beach-dune system constitutes an ideal case study, for it has experienced significant erosion
in recent years. This is revealed particularly by the dune toe, which receded up to 11.5 m over a
relatively short period of time, 2011-2014 (Figure 2) (Flor-Blanco et al., 2013; Flor et al., 2015). The
conventional approach to defending the coast against flooding and erosion involves coastal structures:
stone-armour or concrete-unit revetments, seawalls, groynes, detached breakwaters, etc. – this is the
so-called “hard engineering” approach. The downsides of this approach are well known: it results in
armoured coastlines, which bear little resemblance to their natural counterparts. Structures such as
seawalls tend to have high wave reflection coefficients (far higher than those of beaches), which
implies larger wave heights in front of the structure and often loss of sediment. Moreover, in the current context of climate change and transition coasts, the inability of structures to adapt to sea-level rise poses a problem. Indeed, there have been recently many cases of coastal structures failing to cope with the increased pressures of climate change (Castelle et al., 2015; Kendon and McCarthy, 2015; Senechal et al., 2015). These examples of failures of coastal structures – due to either structural collapse or excessive overtopping – expose the dramatic consequences of the inadequacy of many of the existing structures in the current transition scenario. The conventional approach to solving this problem entails upgrading the existing structures or building new ones, in both cases at a large cost.

On these grounds, nearshore wave farms present three main advantages relative to conventional coastal structures. First, by providing renewable, carbon-free energy, wave farms contribute to decarbonising the energy supply and thereby combatting the manmade causes of climate change. Second, the environmental impact of wave farms on the littoral – the single most sensitive environment in the planet – is considerably lower than that of coastal structures. Last, but not least, wave farms consisting of floating wave energy converters (WECs) – e.g., WaveCat, WaveDragon, DEXA – adapt naturally to sea level rise, and therefore can cope well with the main impact on the littoral of climate change.

Thus, rather than resorting to the conventional approach (more structures) to fix obsolete, underperforming structures, deploying wave farms to generate carbon-free energy as their main purpose and, in synergy with it, defend the coastline against erosion and flooding is a new alternative that warrants consideration. Incidentally, their application to coastal defence would enhance the economic viability of wave energy through the savings achieved in conventional defence schemes.

2. MATERIALS AND METHODS

2.1 STUDY SITE
Xago (Figure 2) is a ~2 km sandy beach with a flat intertidal area. The sedimentology is characterised by siliciclastic sands of medium size. Their grain size distribution – a prerequisite for the coastal processes model – was established based on sediment samples, and the values of the most relevant metrics (D50 and D90, which are the intercepts for 10%, 50% and 90% of the cumulative mass) were obtained by means of the GRADISTAT model (Blott and Pye, 2001). The tidal regime is semidiurnal, with maximum and mean tidal ranges of 4.98 m and 2.66 m, respectively (Flor-Blanco et al., 2013) – a macro-tidal system close to the transition to meso-tidal. The beach is exposed primarily to waves from the IV quadrant (NW).

2.2 WAVE PROPAGATION MODEL

SWAN (Simulating WAves Nearshore) is a third-generation spectral wave model that solves the equation of conservation of wave action considering the relevant wave generation and dissipation processes, such as shoaling, refraction due to current and depth, whitecapping, bottom friction and depth-induced wave breaking. The deep water boundary conditions were obtained from WaveWatch III (WWIII), a third-generation offshore wave model consisting of global and regional nested grids with a resolution of 100 km (Tolman, 2002). The model was validated over a twelve-month period using data from the wave buoy off Salinas Beach (~1 km to the west of Xago Beach) in conjunction with data from node #3085039 of the SIMAR-44 dataset (off Xago Beach), kindly provided by Spain’s State Ports (Puertos del Estado).

In the twelve-month period considered for model validation purposes (January 2010 - December 2010), the average values of significant wave height ($H_s$), mean period ($T_m$) and wave direction ($\theta$) were: 1.40 m, 6.02 s and 317.1°, respectively. Storm waves are also typically from the NW; for instance, during the storm from 7th November 2010 to 16th November 2010 the average deepwater wave conditions were: $H_s = 3.72$ m, $T_m = 7.49$ s and $\theta = 299.9^\circ$. This period was selected for the assessment of the effects of the wave farm as it presents storm clustering, one of the most relevant
phenomena in coastal erosion (Dissanayake et al., 2015). Indeed, in this period up to four storm peaks occur within approximately a week.

Deepwater wave data from the nearby Avilés offshore wave buoy and hindcast wave data with a three-hourly frequency, along with tidal data from the port of Gijon (20 km away) with an hourly frequency, were used to force the wave propagation and coastal processes models.

As regards wind conditions, in the twelve-month validation period the highest probability of occurrence (22.4%) corresponded to southerly winds (from 157.5° to 202.5°). More importantly, however, the strongest winds (with wind speeds, $u_{10}$, exceeding 20 ms$^{-1}$) were associated with northwesterly directions (from 292.5° to 337.5°). Three-hourly values of wind speed and direction obtained from the Global Forecast System (GFS) weather model were input into the wave propagation model.

High-resolution bathymetric and topographic data, obtained in ad hoc surveys, were used as input for the coastal processes and wave propagation numerical models (Figure 3). Importantly, the dataset covered not only the submarine beach but also the subaerial beach, including the dune system, with elevations ranging from –20 m to +15 m (with reference to the Spanish National Geodetic Vertical Datum).

In order to locate the WECs accurately and simulate their effects on the nearshore wave conditions, two computational grids with different resolutions were defined (Figure 5): (i) a coarse grid (50 × 50 m), which extended 25 × 25 km and covered part of the Avilés submarine canyon system (including the Avilés Canyon itself, with water depths over 900 m); and (ii) a high-resolution nested grid (12 × 15 m), which extended 5.4 km offshore and 4.5 km from east to west, covering the area of interest.

For the purposes of the modelling in the present research work, the area selected for the wave farm was situated off Xago Beach, at a water depth of ~30 m (Figure 6). Following previous work (Carballo and Iglesias, 2013), the WECs were laid out with a spacing of $2.2D$, where $D = 90$ m is the distance between the twin bows of an individual WaveCat WEC. Their interaction with the wave field
was modelled based on the wave transmission coefficients obtained in laboratory tests (Fernandez et al., 2012). The results of the wave propagation model provided boundary conditions for the XBeach model grid covering the study area (Figure 5).

2.3 COASTAL PROCESSES MODEL

XBeach is a process-based model that predicts the response of the beach under storm conditions considering wave propagation, sediment transport and seabed updates. Wave propagation takes into account the coastal processes in the nearshore area by means of the time-dependent wave action balance coupled to the roller energy equations and the nonlinear shallow water equations of mass and momentum. Sediment transport is modelled applying the depth-averaged advection diffusion equation on the scale of wave groups based on different equilibrium concentration and the Van Rijn–Van Thiel formulation (Van Thiel de Vries, 2009). The complete description of XBeach is given by Roelvink et al. (2006) or Roelvink et al. (2009). XBeach has been successfully applied to predict storm-induced erosion in sandy beaches (Abanades et al., 2014b; McCall et al., 2010; Pender and Karunarathna, 2013; Villatoro et al., 2014) and gravel beaches (Jamal et al., 2014; McCall et al., 2014; Williams et al., 2012).

The computational grid extended some 1.7 km alongshore and 2 km offshore, from the dune system to water depths of approximately 20 m, with a resolution of $7.5 \times 5$ m. Spectral wave parameters (wave height, period, direction and spreading) from the SWAN runs were used to prescribe the offshore boundary conditions.

Regarding coastal morphodynamics, the beach may be divided into three main sections: (i) the west section, which experiences significant storm-induced erosion; (ii) the middle section, characterised by some erosion on the dune front and deposition in the intertidal area of materials eroded in the west section; and (iii) the east section, subject to intense erosion of the foredune (Flor-Blanco et al., 2013). It is also noteworthy how the evolution of the foredune front has changed over the last years relative to previous decades: whereas the dune limit advanced from 1970 to 2011 (Figure 4), it retreated from 2011 to 2014 (Figure 2). This change from progradation to recession, which may well be related to the
The response of the Xago beach-dune system to storm conditions was compared in two scenarios, with and without the wave farm, in order to establish the effects of the wave farm on the system and, on these grounds, test the scientific hypothesis of this work.

### 2.4 Coastal Indicators

Coastal indicators were used to quantify the effects of the wave farm on the beach-dune system, as follows. The effects on the nearshore wave conditions were analysed through Reduction in Significant wave Height ($RSH$) (Abanades et al., 2015), a dimensionless indicator defined as

$$RSH(x, y) = H_{s,f}(x, y)^{-1}(H_{s,b}(x, y) - H_{s,f}(x, y)),$$  \hspace{1cm} (2)

where $H_{s,f}$ and $H_{s,b}$ are the significant wave height with the wave farm and without (baseline), respectively, at a generic point of coordinates $(x, y)$. This indicator shows the reduction of the significant wave weight induced by the wave farm in terms of its magnitude in the baseline scenario.

The effects of the wave farm on coastal morphodynamics were studied by means of the coastal indicators developed by Abanades et al. (2014a): (i) Bed Level Impact ($BLI$), (ii) beach Face Eroded Area ($FEA$) and (iii) Non-dimensional Erosion Reduction ($NER$).

The $BLI$ indicator, with SI units of m, represents the difference in seabed level at a point of the beach between the two scenarios, with and without the farm:

$$BLI(x, y) = \zeta_f(x, y) - \zeta_b(x, y),$$  \hspace{1cm} (3)
where $\zeta_f(x,y)$ and $\zeta_0(x,y)$ are the seabed level with the farm and without it (baseline), respectively, at a generic point of the beach designated by its coordinates $(x,y)$, and at the point in time considered. The $y$-axis is directed along the general coastline orientation, with the coordinate increasing towards the eastern end of the beach, and the $x$-axis is directed along the beach profiles, with the coordinate increasing towards the landward end. A positive or negative value of $BLI$ signifies that the presence of the wave farm resulted in a higher (accretion) or lower (erosion) seabed level relative to the baseline (no farm) scenario, respectively.

The $FEA$ indicator, with units of $m^2$, represents the volume of the beach face (the section of the profile exposed to wave uprush) eroded per unit length of beach relative to an initial condition – typically, a point in time before the beginning of the storm considered. It is defined in both scenarios, baseline ($FEA_b$) and with the wave farm ($FEA_f$):

$$\frac{1}{x_{\text{max}}} \int_{x_i}^{x_{\text{max}}} [\zeta_0(x,y) - \zeta_b(x,y)]dx, \quad (4)$$

$$\frac{1}{x_{\text{max}}} \int_{x_i}^{x_{\text{max}}} [\zeta_0(x,y) - \zeta_f(x,y)]dx, \quad (5)$$

where $\zeta_0(x,y)$ is the seabed level at the point of coordinates $(x,y)$ at the initial condition (typically, a point in time before the storm), and $x_i$ and $x_{\text{max}}$ are the values of the $x$-coordinate at the seaward end of the beach face and landward end of the profile, respectively. The $FEA$ indicator is a profile function, and hence depends only on the $y$-coordinate, so it allows the alongside analysis of the erosion in the beach.

Finally, the $NER$ indicator is also a profile function, in this case non-dimensional, defined as

$$NER(y) = 1 - \left(x_{\text{max}} - x_i\right)^{-1} \int_{x_i}^{x_{\text{max}}} \left[\zeta_0(x,y) - \zeta_f(x,y)\right]\left[\zeta_0(x,y) - \zeta_0(x,y)\right]^{-1}dx. \quad (6)$$

It expresses the variation in the eroded area of a generic profile $(x)$ caused by the wave farm as a percentage of the total area eroded between the initial condition (typically, a point in time before the
storm) and the point in time considered. Thus, a positive or negative value implies a reduction or increase in the eroded area as a result of the wave farm, respectively.

3. RESULTS AND DISCUSSION

First, the model was validated using the data from the wave buoy off Avilés (with available data from 1st March 2010 – 1st September 2010) and the point SIMAR44-3085039 (1st January 2010 – 1st January 2011). The model results are in excellent agreement with the observations (Figures 7 and 8), as corroborated by the root mean square error and coefficient of determination (Table 1).

The effects of the wave farm on beach morphodynamics were analysed by comparing the response of the beach with and without the wave farm to the storm from 7 November 2010, 12:00 UTM to 16 November 2010, 06:00 UTM (delimited by dashed lines in Figures 7 and 8). In the significant wave height patterns at 18:00 on 9th November 2010 (Figure 9) an area of wave energy concentration is apparent. During the propagation of waves towards the coast their properties change as a result of their interaction with the seabed (refraction, shoaling, friction). Over an irregular bathymetry (Figure 6) this interaction often leads to areas of energy concentration, also known as nearshore hotspots (Iglesias and Carballo, 2010b) – such as the area selected for the deployment of a wave farm off Xago.

The effects of the wave farm on wave heights were substantial directly behind the wave farm (Figure 9), with a reduction in significant wave height ($RSH$) of over 50%. This reduction decreased towards the coastline due to the energy diffracted from both sides of the farm into its wake; importantly, however, it was still significant near the coastline, with $RSH$ values exceeding 15% along the 10 m contour. The farm was not directly in front of the beach but somewhat to the east (Figure 9), which reduced its impact on the conditions in the western part of the beach. This is apparent in the significant wave height values along the 20 m contour (Figure 10) and the resulting $RSH$ values (Figure 11). (The 20 m contour itself is depicted in Figure 6). Strictly speaking, $RSH$ was non-zero
over a 3500 m stretch alongshore. More importantly, however, relevant $RSH$ values (above 30%) extended over some 1300 m alongshore – and this, it may be argued, is the alongshore extent of the wave farm wake for practical purposes. Owing to the position of the farm to the east of the beach, the wake extends some distance east of the beach (Figure 11). The maximum $RSH$ values within the wake were a hefty ~50%.

As regards beach morphodynamics, in the baseline scenario (without the wave farm) the storm produced acute erosion in the subaerial beach, in particular in front of the dune in the eastern part of the beach, with a fall in the beach level of up to 2.5 m (Figure 12). In general, some erosion in front of the dune occurred throughout the beach, in line with the general recessionary trend of the dune toe in the period 2011-14 (Figure 2). The low-tide terrace, for its part, experienced accretion in the west and mid-sections – which would appear to be a consequence of the deposition of the sand eroded from the subaerial beach – and some erosion in the east section of the beach. Further offshore areas with some degree of erosion are interspersed with areas of little erosion.

For the analysis of the effects of the wave farm, the coastal indicators defined in Section 2.4 were applied. Based on the $BLI$ values after the storm (Figure 13) three main areas can be distinguished: the dune front along the entire beach, the low-tide terrace in the east section, and the low-tide terrace in the west and mid-section of the beach. $BLI$ values are positive in the first two areas, negative in the latter. Considering also the results shown in Figure 12, these values indicate that the wave farm reduced storm-induced erosion in the dune front and the east section of the low-tide terrace, and reduced storm-induced accretion in the west and mid-sections of the low-tide terrace.

The greatest $BLI$ values (over 2 m) were found in the first area, the dune front, and especially in the east section of the beach, which experienced the greatest erosion in the absence of wave farm (Figure 12). In the west and middle sections $BLI$ values were also significant, between 1-1.5 m. In sum, the wave farm contributed significantly to mitigate storm-induced erosion on the dune front.

In the second area, the low-tide terrace in the east section of the beach, the maximum $BLI$ values were smaller than those on the dune front but nevertheless relevant – with storm-induced erosion...
decreasing by up to 1 m over a large area. Thus, in the east section of the beach, both on the dune front and the low-tide terrace, erosion is significantly mitigated, which can be explained by the fact that this area is directly in the lee of the wave farm, with consequential reductions in significant wave heights (RSH values of ~50%, Figure 11).

Finally, in the third area, the west and middle sections of the low-tide terrace, negative BLI values occur. The sediment eroded from other areas is deposited in part here, so the storm actually results in accretion in this area (Figure 12). In this context, the negative values of BLI indicate that the wave farm reduces accretion.

In sum, the wave farm, by reducing the amount of wave energy that reaches the beach during the storm, dampens the morphodynamics of the system: it reduces both erosion (in the first and second areas) and accretion (in the third area).

The wave farm was most effective at countering erosion on the dune front. This is no mean feat given that it was precisely the dune front that experienced the greatest erosion in the baseline scenario. Thanks to the absorption of wave energy by the wave farm the landward reach of erosion was displaced offshore by over 10 m along the three profiles considered, representative of the three sections of the beach (Figure 14): P1 (west), P2 (middle) and P3 (east). In the east section (P3) this displacement reached a very substantial 25 m, which is indicative of the efficiency of the wave farm in mitigating storm-induced erosion in the area directly in its lee.

To investigate in particular erosion on the beach face, two coastal indicators were applied: $FEA_b(y)$ and $FEA_f(y)$, which represent the area eroded in the beach face at the $y$ profile in the baseline and the wave farm scenarios, respectively (Figure 15). The largest values in both scenarios correspond to the east section of the beach, although significant erosion occurred throughout. The reduction achieved by the wave farm is apparent by comparing the curves of $FEA_b$ and $FEA_f$, and particularly so in the east section – again, the wave farm is most effective were erosion is most pronounced.
Finally, the $NER$ indicator represents the reduction in the eroded area caused by the wave farm as a proportion or percentage of the total eroded area in the baseline scenario (Figure 16). The wave farm was found to reduce erosion ($NER > 0$) on most of the beach, with the highest values in the east section ($NER > 60\%$). As indicated, this is precisely the area where the erosion of the beach face was more pronounced in the baseline scenario (Figure 15) – hence the interest for coastal management. In any case, this drastic reduction in erosion in the east section, for all its relevance, must not obscure the significant reductions elsewhere, with an average $NER$ value of 17.64%.

These results indicate that a wave farm off Xago Beach would have contributed to mitigating the dune erosion over the last decade at the very least during the storm events (short-term analysis). Although further analysis in the long-term would undoubtedly be useful – possibly using behavioural models rather than process-based models – the present results can be of particular relevance in cases with assets (promenades, buildings, roads, railways, etc.) close to the beach and at risk from storm-induced scour at the toe of their foundations, for they indicate that a wave farm deployed off the affected section of coast would contribute to preventing storm-induced toe scour, which may lead to structural failure.

However, the effects of wave farms on the coast do not lend themselves to general statements, for they will depend on the characteristics of the area in question (wave energy resource, wave climate and grain size distribution, among others), of the WECs and their layout. In this sense, ad hoc studies are necessary for determining the viability of such projects in an area, considering not only the effectiveness of the wave farm in mitigating coastal erosion but also any other effects. In certain cases, these may be negative, e.g. in an coastal area popular with surfers. The reduction in wave power and, consequently, wave height near shore might have a negative impact on the tourism and the economy of the area; in the latter the deployment of the WECs could affect the fisherman’s activity and the lower resource could reduce the nutrient flow. On the other hand, in beaches like Xago, that are experiencing a drastic reduction of the sand volume, the installation of a wave farm can contribute for the production of renewable energy and mitigate coastal protection.
4. Conclusions

This work posited the hypothesis that wave farms can serve for a dual purpose, production of carbon-
free energy and coastal erosion management, and tested this hypothesis through a case study: the
Xago beach-dune system in N Spain – a beach backed by a dune field which has experienced
substantial erosion in recent years, and is located in the area proposed for the deployment of the first
wave farm in Spain.

To establish the effectiveness of the wave farm in mitigating storm-induced erosion, a series of
coastal indicators were applied to the results of two numerical models – a coastal processes model,
XBeach, fed by a wave propagation model, SWAN. The wave propagation model was used to
determine the effects of the wave farm on the nearshore wave conditions. Wave energy extraction by
the WECs was found to have relevant nearshore effects, with reductions in the significant wave height
($RSH$) of up to 50% along the 20 m contour.

For the purpose of coastal erosion management the crux of the matter is of course the effects of the
wave farm on the morphodynamics of the beach-dune system. These may be summarised as follows:
by reducing the amount of wave energy available at the beach, the wave farm acted as a dampener of
coastal processes. The areas which experienced erosion under storm conditions (dune front, low-tide
terrace in the east part of the beach) saw their erosion mitigated thanks to the wave farm. Similarly,
the areas which experienced accretion under storm conditions (low-tide terrace in the west and middle
parts of the beach) saw their accretion reduced.

Importantly, the farm reduced storm-induced erosion of the dune front. The scarp, or landward
extreme reached by erosion, was displaced seaward by up to 25 m in the east part of the beach, i.e. in
the section most affected by storm-induced erosion. Had the wave farm been operating, this would
have been of great practical significance, given the unrelenting retreat of the dune toe experienced by
the beach in the period 2011-14.
Further research is certainly warranted to validate our hypothesis, and analysis at the local scale will always be necessary. In any case, the results so far are promising as to the potential of dual-purpose wave farms to serve as a coastal erosion management tool, replacing, or at least complementing, conventional coastal structures (detached breakwaters, groynes, etc.) which tend to have far greater visual impact and, unlike offshore floating wave farms, do not adapt naturally to sea level rise – an important aspect in the current context of climate change.

For this new approach to wave energy, the dual-purpose wave farm, to materialise, its benefits in terms of coastal management must be translated into incentives for the developers of the wave farms; in economic terms, the positive externalities (reduced storm-induced erosion, reduced visual impact, etc.) must be internalised through appropriate mechanisms (Astariz and Iglesias, 2015a; Astariz and Iglesias, 2015b; Astariz and Iglesias, 2016). If correctly applied, the potential of this new approach is immense.

In sum, with the advent of large scale wave energy exploitation over the coming decades, a new, potent tool for coastal erosion management will arise.

ACKNOWLEDGEMENTS

This research was carried out in the framework of the Marie Sklodowska Curie Individual Fellowship WAVEIMPACT, Wave Farm Impacts and Design (Marie Curie Fellow, G. Iglesias), funded by the European Commission, PCIG13-GA-2013-618556, and was partly funded by the School of Engineering of the University of Plymouth (UK). The authors are grateful to Cluster de Energía, Medioambiente y Cambio Climático of Oviedo (Spain) and Spain’s State Ports (Puertos del Estado) for kindly providing the data.

REFERENCES


FIGURES

Figure 1: Location of the Xago beach-dune system in Asturias, N Spain. The squares on the right-hand side of the figure delimit the areas selected for the deployment of wave farms: Xago and Llumeres (Flor-Blanco et al., 2011).
Figure 2: Dune toe recession at Xago.

Figure 3: Bathymetry for the coastal processes model, with Profiles P1, P2 and P3 from left to right. [Water depths in m].
Figure 4: Simplified dynamic and sedimentary model of Xago (Flor-Blanco et al., 2013).
Figure 5: Computational grids for the SWAN and XBeach models, and wave buoy locations [Water depths in m].

Figure 6: Wave farm layout off Xago [Water depths in m].
Figure 7: Validation of the SWAN wave propagation model with the Aviles wave buoy data: observed ($H_{S,BUOY}$) vs. calculated ($H_{S,SWAN}$) time series of significant wave height. The dashed lines delimit the storm period used for the study.

Figure 8: Validation of the SWAN wave propagation model with the point SIMAR44-3085039 off Xago Beach: observed ($H_{S,BUOY}$) vs. calculated ($H_{S,SWAN}$) time series of significant wave height. The dashed lines delimit the storm period used for the study.
Figure 9: Significant wave height in the baseline scenario ($H_{sb}$) and with the wave farm ($H_{sf}$) on 9 Nov 2010, 18:00 UTC. [Deep water wave conditions: $H_s=10.28$ m, $T_p=15.64$ s, $\theta_p=268.45^\circ$].

Figure 10. Significant wave height in the baseline scenario ($H_{sb}$) and with the wave farm ($H_{sf}$) along the 20 m water depth contour on 9 Nov 2010, 18:00 UTC. [Deep water wave conditions: $H_s=10.28$ m, $T_p=15.64$ s, $\theta_p=268.45^\circ$].
Figure 11: Reduction of the significant wave height ($RSH$) parameter along the 20 m water depth contour on 9 Nov 2010, 18:00 UTC. [Deep water wave conditions: $H_s = 10.28$ m, $T_p = 15.64$ s, $\theta_p = 268.45^\circ$].

Figure 12: Fall in bed level after the storm (without the wave farm). Positive and negative values indicate erosion and accretion, respectively.
Figure 13: Bed level impact (BLI) at Xago after the storm [16 Nov 2007, 06:00 UTC]. Positive values indicate reduction in erosion due to the wave farm.
Figure 14: Bed level at profiles P1, P2 and P3: before the storm ($\zeta_0$) [07 Dec 2007, 12:00 UTC] and after the storm [16 Nov 2007, 06:00 UTC] in the baseline scenario ($\zeta_b$) and with the wave farm ($\zeta_f$). [Profiles P1, P2 and P3 are delimited in Figure 3].
Figure 15: Beach face eroded area at the end of the time period studied [16 Nov 2007, 06:00 UTC] in two scenarios: baseline ($FEA_b$) and with the wave farm ($FEA_f$). The $y$-coordinate is the alongshore coordinate, with $y$ increasing eastwards.
Figure 16: Non-dimensional erosion reduction (NER) on the beach face at the end of the time period studied [16 Nov 2007, 06:00 UTC]. The y-coordinate is the alongshore coordinate, with y increasing eastwards.
Table 1: Wave data used to validate the wave propagation model and values of the error statistics: Root Mean Square Error ($RMSE$) and coefficient of determination ($R^2$).

<table>
<thead>
<tr>
<th>Data</th>
<th>Data available</th>
<th>Error statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave buoy data off Avilés</td>
<td>1st March 2010 – 1st September 2010</td>
<td>0.33 0.89</td>
</tr>
<tr>
<td>SIMAR44-3085039 off Xago</td>
<td>1st January 2010 – 1st January 2011</td>
<td>0.45 0.92</td>
</tr>
<tr>
<td>Data</td>
<td>Data available</td>
<td>Error statistics</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Wave buoy data off Avilés</td>
<td>01/03/2010 – 01/09/2010</td>
<td>0.33 [m]</td>
</tr>
<tr>
<td>SIMAR44-3085039 off Xago</td>
<td>01/01/2010 – 01/01/2011</td>
<td>0.45 [m]</td>
</tr>
</tbody>
</table>

Table 1: Wave data used to validate the model and values of the error statistics: Root Mean Square Error (RMSE) and coefficient of determination ($R^2$).