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Abstract

Computational models of the thalamocortical circuit: sleep oscillations
and receptive fields.

Nada Yousif

The thalamus is a subcortical structure, which consists of a collection of functionally and
morphologically defined nuclei. A subset of. these, the sensory nuclei, receive information
from the periphery and relay it to the related primary cortical area. Hence the thalamus was
traditionally assumed to passively relay afferent information. However, the fact that thalamic
relay cells receive a large proportion of their synaptic inputs from the cortical cells to which
they project, has led to the consensus that there is a more significant thalamic contribution to
sensory processing. This thesis investigates the role of the thalamocortical feedback loop using
population-level computational models. In particular two states of thalamocortical activity
are investigated: early sleep, and active visual processing. During early sleep, the network
displays 7-14Hz spindle oscillations. These oscillations have been previously modelled using
conductance-based paradigms, but here the activity is investigated through the nonlinear
dynamics of the circuitry. It is shown that the circuit has an intrinsic resonant frequency in
the spindles range. During visual processing, the role of the lateral geniculate nucleus (the
primary visual thalamic nucleus) was previously overlooked, as thalamic receptive fields are
spatially identical to those in the retina. Temporally however, thalamic and retinal responses
differ in magnitude, and the second model in this thesis shows how cortical feedback can have
a role in angmenting thalamic temporal responses. This model was reduced in order to find
the minimal thalamic circuitry that can produce such responses, and this final model can also
exhibit steady state oscillatory behaviour. The transition from transient visual activity to
sustained oscillatory activity in this model, required a switch in the relative cortical feedback
weights to the thalamocortical and the reticular populations. Together, these results indicate

that the contribution of the thalamus to neural activity can no longer be ignored.
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Cha‘pter 1
Introduction

This thesis describes three population-level computational models of the thalamocor-
tical network. The first is an extremely simplified circuit, which is used to investigate
the existence of spindle oscillations as a result of the intrinsic network dynamics. The
second is a more detailed model, which explores the effect of cortical feedback on tem-
poral thalamic response properties. The third produces both spindle osciliations and
temporal thalamic receptive fields, and examines the transition between these states.

This chapter outlines the specific motivations for carrying out this research.

1.1 The thalamus

The thalamus is a subcortical structure found at the centre of the brain as shown
in figure 1.1. It is a structure that is comprised of a collection of functionally and
morphologically defined nuclei, and figure 1.2 shows a schematic diagram depicting
the division of the thalamus into these constituent nuclei. Those labelled are the three
primary sensory nuclei, and the thalamic reticular nucleus. The thalamus is a-structure

that is conserved across species, and its relative size has grown proportionately to the



1.1 The thalamus

Corpus callosum

Thalamus

- Cerebellum

Brainstem -

Figure 1.1: The location of the thalamus is shown relative to the cortex, the cere-
bellum, the brainstem, and the corpus callosum. The central position of
the thalamus between the cortex and subcortical structures is clear.

cortex through evolution. The central location that the thalamus occupies within the
brain reflects the central position that it also holds along many pathways of information
transfer between various brain regions. Thalamic nuclei can be divided into two classes
based on connectivity and consequently functionality (Sherman & Gullery, 2001): the

first-order and the higher-order nuclei.

1.1.1 Thalamic nuclei

First-order nuclei receive information from subcortical areas and relay this information
to the relevant cortical area. In this thesis, the term first-order specifically refers to
the primary sensory nuclei of the thalamus. These sensory nuclei receive signals from
peripheral sensors in the eyes, ears, and skin, and relay this information to the rele-
vant sensory cortical area. The connectivity of the thalamus preserves the topographic

arrangement that is crucial to early sensory areas, such as retinotopy in the visual sys-
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Medial geniculate

nuclkeus Ventral posterior nuclei Sy g

Lateral geniculate
nucleus

Figure 1.2: The division of the thalamus into its constituent nuclei is schematised
in this figure. The classification of thalamic nuclei is based on function
and morphology. Within the main thalamic mass, nuclei are not separate
structures, but the lateral and medial geniculate nuclei are conspicuous
due to their disconnected locations. Only the primary sensory nuclei
and the thalamic reticular nucleus are labelled. Adapted from Kandel
et al. (2000).







1.1 The thalamus

tem, tonotopy in the auditory system, and somatotopy in the somatosensory system.
Note that motor nuclei can also be described as first order, as in previous literature
(Sherman & Gullery, 2001), as these nuclei also receive subcortical information which
is relayed to cortex. Much less is known about the higher-order nuclei of the thalamus,
which similarly to the first-order nuclei essentially receive and relay information. How-
ever, higher-order nuclsi both receive information from, and transmit information to,
cortical areas. Therefore, these nuclei mediate various forms of cortico-cortical commu-
nication. Table 1.1 shows the afferent and efferent connections of mammalian thalamic
nuclei, and demonstrates that the sensory nuclei can be clearly identified.

The present thesis investigates the role of the first-order, rather than higher-order,
thalamic nuclei. The main reason for this is that these nuclei have been studied in
more depth than their higher-order counterparts, which is erly to be because sensory
pathways are simpler to observe and manipulate experimentally. By initially exploring
first-order nuclei, it is intended that the results and hypotheses of such studies can
be extrapolated to all thalamic nuclei. Similarly, by focussing the current study onto
one sensory modality (vision), the obtained results can be used to understand the
processing that oceurs in other sensory modalities. The latter objective is especially
feasible as the architecture of the thalamocortical network is extremely similar for
the three primary sensory nuclei: the lateral geniculate nucleus (LGN) in the visual
system, the medial geniculate nucleus (MGN) in the auditory system, and the ventral
posterior nuclei (VPN) in the somatosensory system. This feature is demonstrated in
figure 1.3, which depicts the pathways to the cortex through the three sensory nuclei.
However the specific contribution of these thalamic nuclei, particularly in terms of
sensory processing, remain largely unknown.

The prominent position that these nuclei occupy along the sensory pathways hints
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Aﬂ"er_ent Nucleus Efferent

Mamilliary bodies of the | Anterior nucleus Cingulate gyrus
Hypothalamps _

Hypothalamus and pre- | Dorsomedial nucleus PFC

frontal cortex (PFC)

Cingulate gyrus Lateral dorsal nucleus Cingulate gyrus

Visual cortex Lateral posterior nucleus | Parietal association areas

Visual cortex Pulvinar Visual cortex and adja-
cent areas of temporal
and parietal cortex

Basal ganglia, Ventral anterior nucleus | Premotor cortex

Cerebellar nuclei

Ventral lateral nucleus

Motor cortex

Sensory input from face,
and the oral and nasal

cavities

Ventral posterior medial

nucleus

Primary somatosensory

cortex

Sensory input from trunk

Ventral posterior lateral

Primary somatosensory

and extremities nucleus cortex
Cochlea MGN Primary auditory cortex ‘
Retina LGN Primary visual cortex

Basal ganglia, midbrain,

frontal cortex and PFC

Intralaminar nuclei

Basal ganglia and asso-
ciation areas of cerebral

cortex

Table 1.1: This table shows the main mammalian thalamic nuclei, along with their
afferents and efferents (Jones, 1985). The three primary sensory nuclei
can be swiftly recognised due to their peripheral inputs and primary
cortical targets.
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Figure 1.3: The three primary sensory nuclei of the thalamus, and their recipro-
cal connections with the primary cortical area and reticular nucleus are
schematised in this figure, which is redrawn from Alitto & Usrey (2003).
The similarity of these pathways across the three nuclei is clearly ob-

served.







1.1 The thalamus

that they possess a key role. This is particﬁlarly true for the LGN, due to the direct
and seemingly hierarchical structure of the visual system. The peripheral sensors of the
retina with their simple centre/surround receptive fields project to the LGN, which in

turn projects to the primary visual cortex. Here the receptive fields, and consequently

the visual i)rocessing, clearly become more complex. The fact that the LGN lies in the

centre of this otherwise direct pathway, suggests that it performs an active role rather-

than passively relaying visual information from the retina to the cortex. However, in the
auditory system there is a great deal of processing that occurs between the periphery
(essentially the cochlea) and the MGN. This pre-thalamic processing complicates the
circuitry of the auditory pathway. Similarly, in the somatosensory system signals are
relayed via a number of pre-thalamic nuclei, and these may each contribute something
new to the processing of the afferent information.

In addition to this seemingly straightforward relay of sensory information, the tha-
lamus is implicated in more complex activity. Recently there has been an upsurge
in studies which investigate the thalamic involvement in eye movements. When an
animal’s eyes move, the image of the world moves on the retina, and yet the animal’s
visual perception of the world remains static. In order to account for this discrepancy,
there must be some mechanism which suppresses visual perception during the move-
ment of the eyes. Such a mechanism is commonly referred to.as saccadic suppression.
A recent study by Sylvester et al. (2005) investigated the geniculate involvement in
saccadic suppression by measuring responses in the human LGN and V1 with fMRI
during visually guided saccades, and also during saccades in darkness. In darkness,
saccades lead to signal increases in both the LGN and V1, but while visual stimuii
were present, the authors observed a saccadic suppression of visual responses. These

results suggest that visual responses as early as at the LGN may be affected by or even
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involved in saccadic suppression.

There have also been studies which have looked at the properties of saccades in
patients with various types of thalamic lesions, two such examples Gaymard et al.
(1994), and Bellebaum et al. (2005). The earlier of these studies compared the ability
of patients with lesions in intralaminar nuclei to perform memory-guided saccades and
visually-guided saccades. During the latter task, the eyes were initially dig.placed, and
therefore extra-retinal information is needed to accurately make the saccade. Such
information is termed corollary discharge in the literature. The authors found that
lesions in. intralaminar nuclei affected the accuracy of visually guided saccades, but
not memory guided saccades. These results indicate that patients had an impaired
ability to determine eye position. The more recent study by Bellebaum et al. used a
double-step saccadic task, where subjects had to fixate two sequentially flashed targets
by two successive saccades after the disappearance of the stimuli. The second saccade
is made from a different spatial location from which the target was seen, therefore once
again non-retinal information about eye position must be used to guide the saccade.
The authors of this study found that patients with lesions in the ventrolateral and
mediodorsal nuclei made smaller saccades than normal subjects. Similarly, lesions
of the mediodorsal nucleus in monkeys, using focal injection of muscimol (a GABA,4
agonist) caused the animals to misjudge the saccade amplitude and variability (Sommer
& Wurtz, 2004).

A well studied feature of thalamic ceélls is their ability to fire in two different modes
depending upon the membrane potential. The first of these two modes is tonic (or single
spike) firing, and the other is burst firing. During the latter, action potentials are fired
in high frequency (>200Hz) groups, due to the activation of a low threshold calcium

current (Jahnsen & Llinas, 1984a.b). Another recent study finds a higher correlation
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between thalamic burst firing and a preceding eye movement, specifically a microsac-
cade, which is an involintary eye movement performed during fixation (Martinez-Conde
et al., 2002). As microsaccadic activity is related to maintaining visual perception, the
authors suggest that these results indicate that thalamic bursts are more reliable than
single spikes for coding visibility. A subsequent theoretical study has postulated that
such changes in'neuronal-_activity in the thalamus during eye movements are implicated
in the normal development of visual pathways (Rucci & Casile, 2004).

Taken together these studies show mounting evidence for a thalamic inﬂuence; on
visual perception during eye movements, and the processing of information regarding
eye position. The involvement of thalamic nuclei in eye movements does not constitute
a major part of the work in this thesis, however chapters 4 and 6 refer back to these
ideas when considering the role of the thalamus and the thalamocortical network in

active vision.

1.2 The thalamocortical feedback circuit

The thalamus’ specific contribution to neuronal information processing remains elusive,
and its role is often relegated to oné of a simple relay. In recent years however, an
infriguing fact regarding thalamocortical circuitry has altered this dismissive view.
The excitatory thalamocortical cells of the thalamus (also called relay cells or TC
cells) were found to receive a large proportion of their synaptic inputs from cortical
projections, and specifically from the same regions of cortex which they themselves
innervate. The anatomical connections between the mammalian LGN and primary
visual cortex were described in a recent review by Thomson & Bannister (2003). The

results, from a number of different anatomical studies performed both in primate and
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1 To LGN from | From LGN to | To TRN from From TRN to
Layer 6B Layer 6A Layer 6B Superior colliculus
Layer 5A Layer 4Cg3 Layer 4Ca | Other cortical areas
Layer 5B Layer 4C« Layer 4A

TRN Layer 4A Layer 3B
. Layer 3B

Table 1.2: Summary of the results presented in a review by Thomson & Bannister
(2003), which looked at the circuitry between the LGN, TRN, and layers
of the primary visual cortex (V1).
cat, show that although layer 4 is the main target of thalamocortical axons, there also
exists a feedback loop between the TC cells of the LGN and the corticothalamic cells
in layer 6. Layer 6 also innervates the thalamic reticular nucleus (TRN), which is an
inhibitory thalamic nucleus that swrounds much of, and has reciprocal connectivity
with, the dorsal thalamus (this nucleus is shown in figure 1.2). These results are
summarised both in table 1.2 and figure 1.4.

The feedback loop between the LGN and layer 6 of V1 is the main focus of this
thesis. The TC relay cells of the LGN send a projection to cortical cells in layer
4, which is considered to be the main thalamo-recipient layer of the neocortex. The
thalamic input is then processed by the cortical micro-circuitry, which is not considered
in the current work. The tole of this thalamic input to layer 4 is clear; it is the main
feed-forward route for sensory information into the cortex. The role of the input to,
and subsequent feedback from layer 6 does not have such an obvious function, and is

therefore of more interest.
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Figure 1.4: Summary diagram redrawn from Thomson & Bannister (2003), which
shows the connections between the LGN, the TRN, and the varions

layers of primary visual cortex.
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1.2.1 Synaptic dominance of the feedback projection

The lack of understanding about the nature of this monosynaptic feedback circuit, is
confounded by the fact that the feedback projections constitute a significant portion
of the synaptic input of thalamocortical cells. Two main studies that have measured
the relative numbers of three types of synapses made onto TC cells; and inhibitory
interneurons (INs) of the cat LGN are discussed here (Montero, 1991; van Horn ef al,
2000). Both studies were performed in slices of cat LGN, using GABA immunostaining
techniques. Each of the three types, round large (RL), round small {RS), and F-type
synapses, were attributed to originating from retinal, cortical, and GABAergic sources
respectively, and this classification is based on earlier tracing studies (for example see
Szentagothai et al. (1966)). In particular, the aim of the study by van -Horn et al. was
to correct such synaptic measures by accounting for the relative sizes of the synapses,
a factor that was not considered in previous studies. The results of these studies are
presented in table 1.3, and clearly show that T'C cells have between five and nine times
more cortical synaptic inputs than retinal inputs. This seems counterintuitive if the
role of geniculate TC cells is simply to receive visual information and relay it to the
cortex. The thalamic INs however, have similar percentages of cortical inputs and
retinal inputs, which suggests that interneurons provide feed-forward inhibition onto
TC cells.

A similar study was performed by Liu & Jones (1999) in slices of rat reticular nucleus
by staining and imaging individual cells, and the distribution of synapses was found
to be as shown in table 1.4. Three locations throughout the neuronal structure (soma,
proximal dendrites, and distal dendrites) were examined, and corticothalamic terminals

were consistently found to be the most numerous. Compared with the inhibitory
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7Study' ‘Montero (1991) | van Horn €t al. (2000)
Animal Cat Cat
Nucleus LGN : LGN
TG inhibitory 24% 30.9%
TC cortical 58% ' 62%
TC retinal 12% 7.1%
IN GABAergic 26% 24.4%
IN cortical 3% 26.9%
IN retinal 25% 48.7%

Table 1.3: Results from two studies (Montero, 1991; van Horn et el., 2000) which
measured the relative numbers of synapses made onto LGN cells in the
cat. Both excitatory relay cells (T'C) and inhibitory interneurons (IN)
were investigated. Synapses that are cortical in origin are the most nu-
merous type in TC cells. In interneurons, retinal inputs constitute a
much higher relative percentage than in TC cells. Note that the remain-
ing percentage of synapses in the Montero study were undetermined, or
assigned to axonal collaterals of relay cells.

13
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Inpu_t type Somata | Proximal Dendrites | Distal Dendrites
Thalamocortical inputs | 8-16% 25-30% 20% |
Corticothalamic inputs | 65% 50-55% 65-70%

GABAergic inputs | 20-25% 15-25% 10-15%

Table 1.4: The relative numbers of synapses made onto _cells in the rat thalamic
reticular nucleus, from three sources, in three locations throughout the
cell (Liu & Jones, 1999). Synapses that are cortical in origin, are rela-
tively more numerous in each location of the cell.
interneurons of the LGN, corticothalamic feedback is numerically larger than all other
inputs to the reticular (RE) cells. Therefore, it seems likely that these cells mediate
feedback inhibition onto TC cells. This study highlights an important issue that was
not raised when discussing the synaptic studies of the LGN, that is the morphology of
the cells. The location of corticothalamic terminals in T'C cells is known to be different
to that in RE cells, such that corticothalamic terminals are often confined to the distal
portions of the dentritic arbor in TC cells (Yousif & Denham, 2004). This ought to be
taken into account in order to obtain an accurate estimate of the synaptic distribution.
In his study, Montero does refer to the locations of the synapses within the cells, but
the study by van Horn ef al. does not seem to account for this factor.

In addition to the location of synapses, there are other limitations that must be
recognised when looking at studies that measure synaptic densities. One of these was
highlighted in a study by Erisir et al. (1997), which found that the synaptic terminals
that were described as cortical in origin (RS terminals), also subserve brainstem con-
nections. Furthermore, they show that cortical and brainstem inputs in the cat LGN

each account for 50% of the RS terminals. Therefore, when considering the results of
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these studies all possible sources for a given synapse type must be considered.

Additionally, the efficacy of synaptic transmission for each type of connection must
also be kept in mind. Although the retinal input to TC cells is synaptically less nu-
merous than those of any other origin, it may be that the efficacy of this connection
far outweighs that of cortical inputs. However, there have-been no studies that directly
compare f-:he relative efficacy of these two connections.- In a study by Turner & Salt
(1998), retinogeniculate and corticothalamic inputs were examined in slices of the rat
LGN by comparing the excitatory postsynaptic potentials (EPSPs) elicited by each
type of input. The main findings were that retinogeniculate EPSPs have a large am-
plitude, are fast-rising and exhibited paired-pulse depression. While corticothalamic
EPSPs have smaller amplitudes, are slower-rising, and exhibited paired-pulse facilita-
tion. From these results assumptions could bé made about the relative strength of
these connections, however these would be fairly speculative. A later study by Li et al.
(2003) compared the structure of cortical and retinal synapses in the LGN and the
lateral posterior nucleus (LPN), which is a higher-order visual thalamic nucleus. Once
more, the authors draw no conclusions about the effect of these structural properties
on the relative efficacy of retinal and cortical connections in the LGN.

Recent studies, have compared the efficacy of afferent thalamic projections and
intra-cortical connections onto cortical cells (Amitai, 2001; Beierlein & Connors, 2002),
via comparisons of evoked EPSP properties in both cat and rat preparations, and found
that thalamocortical innervation is stronger than intra-cortical innervation. The tha-
lamocortical projection is feed-forward, and we could assume that the intra-cortical
projection serves as a feedback projection. By inference, we could conclude that the
eficacy of feed-forward projections is always more than that of feedback connections,

however this is extremely tentative. The results of a similar study performed in slices
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of mouse thalamus and cortex, measured EPSPs and used a poisson model of synaptic
release to estimate quantal conductance size. This study indicated that the efficacy of
the corticoreticular synapse is higher than that of the corticothalamic synapse (Gol-
shani et al., 2001}, and also stated that corticothalamic release is unrelia;blé. Therefore,
although the peripheral projection into thalamus is mediated by less synapses, it may
be more effective at activating thalamocortical cells.

Nonethelesé, were the first-order nuclei of the thalamus simply acting as passive re-
lays of sensory information, it would be logical for their sensory inputs to far outweigh
inputs from any other source, both in terms of efficacy and number of synapses. Fur-
thermore, the feedback projection is specific with respect to topography (such that a
cortical cell feeds back to the same group of thalamic cells that feed-forward to it), and
other functional properties, as recent experiments have found. For example Murphy
et al. (1999) showed, by recording, mapping and labelling cortical cells in cat V1 and
examining the distributions of their axons with respect to the geniculate retinotopic
map, that each cortical cell projects back to an anatomically overlaid set of thalamic
cells that are aligned parallel or perpendicular to the cortical cell’s orientation pref-
erence. Other recent results from paired in vivo recordings in the cat LGN and V1,
suggest that a cortical cell with a given ON/OFF phase preference directly feeds back
to thalamic cells that have the opposite central phase preference (Wang et al., 2004).
Therefore, feedback projections have been shown to be specific with respect to two ma-
jor receptive field properties: phase and orientation. This precise wiring of projections
indicates that feedback is serving some specialised role. Were this not the case then
feedback projections could be arranged in a diffuse or random manner, which would

be more straightforward for the nervous system to achieve.
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1.2.2 The postulated role of feedback

Within neural systems, feedback is often responsible for fine tuning activity. Many
studies have assigned such a modulatory role to the corticothalamic feedback projec-
tion. In this sense, an input can be classified as a modulator as opposed to a driver, and
this scheme for describing the inputs to neurons was develéped by Sherman & Guillery,
(1998). A driver plays a direct role in shaping the receptive field of a neuron, whilst
a modulator affects the responses of a cell, but does not determine its receptive field
properties. Therefore, while it is clear that corticothalamic feedback must have some
effect on thalamic responses, it has not yet been shown whether this projection actu-
ally determines the form of thalamic receptive fields. In the following three sections,
the role of the thalamus and the thalamocortical network in three different states is
discussed: in the asleep state, in the awake state, and in the transition between these

two states.

1.2.2.1 The asleep state

In the asleep state, the role of the thalamus and the thalamocortical network is under-
stood to be central to the generation and maintenance of sleep oscillations, in partic-
ular sleep spindles. Spindle oscillations are observed in electroencephalogram (EEG)
recordings during early sleep, and Sejnowski & Destexhe (2000) described spindles as
being associated with the “loss of perceptual awareness”. Studies have shown that
these oscillations are no longer observed if the cortex is disconnected from the thala-
mus (Steriade et al., 1985), which is not the case for other oscillatory activities such as
the slow oscillation (Steriade et al., 1993). Spindle oscillations have been well studied

experimentally, and have also served as a favoured thalamocortical activity for theo-
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retical studies. These studies-are discussed at length in chapter 2, therefore at present
it will suffice to say that it is generally accepted that a major role of corticothalamiic
feedback is to synchronise thalamic activity during spindling (Bal ef al., 2000; Contr-
eras et al., 1996; Destexhe et al., 1998, 1999). As the discussion in chapter 2 will show,
these previous modelling studies have concentrated more on the ionic properties that
bring about the oscillations, and less-on the underlying network dyna,micsr intrinsic to

the thalamocortical circuitry.

1.2.2.2 The awake state

Theoretical accounts of the role of the thalamocortical network have mostly been de-
veloped for sleep states. This is likely to be because its role in active sensory behaviour
was assumed for a long time to be one of a passive relay, contributing nothing new
to the processing of information. However, due to the new understanding about the
potential potency of the cortical feedback projection, studies have appeared in recent
years which consider that the thalamocortical network may have an active and dynamic
role in sensory processing. In the visual system, many of the computational studies
regarding the thalamocortical network have attempted to attribute high level feature
extraction to thalamic neurons via feedback (Bickle et al., 1999; Hayot & Tranchina,
2001; Sastry et al., 1999). A more recent computational study by Bressloff & Cowan
(2003b) used a mean-field approach to model the thalamocortical feedback circuit in
order to investigate cortical orientation tuning. The results of their work indicate that
corticogeniculate feedback modulates LGN activity in order to generate a faithful rep-
resentation of the visual input. However despite this body of work, there remains a
trend for the route from the retina to the primary visual cortex to be considered as a

direct pathway, where the thalammis acts purely as a relay station.
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Despite this trend, the influence of cortical feedback on the processing capabilities
of thalamic neurons has started to be explored experimentally. In sensory systems, it is
common to describe a neuronal response via a receptive field (RF). The receptive field
can be defined as the region of stimulus space that directly modulates a cell’s firing rate.
There is growing evidence in the literature to suggest that ¢orticothalamic feedback
directly alters the RF properties of TC cells (Castro-Alamancos, 2002; Ergenzinger
et al., 1998; Ghazanfar et al., 2001; Marrocco et al., 1996; Nicolelis & Fanselow, 2002;
Sillito & Jones, 2002), and consequently of cortical cells (Eyding et al., 2003). This
is despite the traditional view that T'C RFs are determined entirely by feed-forward
peripheral inputs. A number of these studies are briefly summarised below.

Much of corticothalamic feedback from the primate somatosensory cortex acts via
N-methyl-D-aspartate (NMDA) receptors. In a study of the primate somatosensory
system by Ergenzinger et al. (1998) the authors found that the chronic administration of
an NMDA receptor antagonist into a cortical area responsible for hand representation,
blocked much of the stimulus driven activity in this cortical area. They use this fact to
investigate the effect of the corticofugal innervation of somatosensory thalamus. Their
main finding is that in the somatosensory thalamus of experimental animals, RF's were
greatly enlarged compared to in control animals. Therefore, the authors corcluded
that top-down projections from cortex can cause reorganisation of RFs, however they
leave the mechanism for this effect unexplained.

In a later study by Castro-Alamancos (2002), the author investigates the rodent
ventral posterior medial nucleus (VPM), a somatosensory nucleus to which input from
the whiskers comes via lemniscal terminals. There are also neuromodulatory systems
projecting to the VPM, such as cholinergic and noradrenergic fibers, and the concentra-

tions of these neuromodulators are known to increase during activated states. Previous
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studies have suggested that the lemniscal pathway may be modulated by these neuro-
modulators, as the relay of high-frequency activity is regulated by behavioural state.
Therefore, the properties of lemniscal synapses in VPM slices were explored and the ef-
fects of acetylcholine (ACh) and noradrenaline (NE) were considered, by application of

the appropriate antagonists. The neuromodulators were shown to have no direct effect

. on lemniscal synapses, but did reduce inhibitory post synaptic potentials (IPSPs), and

corticothalamic EPSPs. Furthermore, when VPM neurons were at their resting mem-
brane potential, suppression of lemniscal inputs was significant at frequencies greater
than 10Hz. However in the presence of ACh or NE, lemniscal inputs at frequencies of
up to 40Hz could be relayed. Therefore, the author concludes that these neuromodu-
lators allow the transmission of high-frequency inputs by manipulating other thalamic
afferents, particularly the corticothalamic input. Consideration of neuromodulators is
beyond the scope of the current thesis, but the work by Castro-Alamancos highlights
the ability of such inpufts to manipulate the dynamics of the thalamocortical circuitry.

Sillito & Jones (2002) recently discussed to what extent corticothalamic feedback
controls the state and transmission mode of thalamocortical cells, and whether the
connections between thalamus and cortex are involved in specific sensory processing.
They discuss various results from previous experiments. For example, layer 6 cells are
known to innervate an area of LGN significantly beyond the location of their own RFs in
retinotopic space, therefore they may influence inputs that lie outside of their classical
receptive field. They discuss four specific hypotheses with reference to previous results:
1) Feedback enhances the inhibitory surround of the thalamic RF, causing TC cells to
exhibit inereased patch suppression and end-stopping; 2) Feedback increases stimulus
driven synchronous firing between LGN cells; 3) Feedback switches LGN cells between

firing modes; 4) Feedback from medial temporal (MT) cortex (an area implicated in
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visual motion processing) may influence the transfer of retinal information through the
LGN, and may introduce motion sensitivity; In summary, the authors believe that the
feedback to the LGN changes the way in which cells respond to visual stimuli, and
show that there is mounting evidence to support such a viewpoint.

In a study by Eyding et al. (2003), layer 6 corticothalamic projection neurons are
eliminated by noninvasive laser illumination ‘without affecting the underlying circuitry
of the cat viéual‘ cortex. The authors then look at whether the visual responses during
various EEG states are affected. They observe that the loss of the neurons causes
an increase in activity both in the visual cortex and the LGN during synchronised
EEG states, while in less synchronised states, the activity levels remained normal.
LGN cells also exhibit less burst firing, which they relate to a decrease in inhibition, as
feedback to inhibitory thalamic cells is simultaneously decreased. They also observe an
activity-dependent increase in receptive field size in the experimental cortex, which they
attribute to intra-cortical interactions as thalamic receptive fields remain unchénged.
Therefore, this study also shows that the activity of the thalamocortical network is
dynamically modified, this time depending on the EEG state of the animal.

Ghazanfar et al. (2001) previously proposed that cortical feedback is intimately
involved in the formation of the temporal responses of TC cells. In the rat VPM, TC
cells respond best to one whisker “at the earliest poststimulus time and then respond
best to another whisker at a later time”. Therefore, their spatiotemporal receptive
fields (STRFs) are changing over time. The authors of this study investigate the
effect of feedback from somatosensory cortex (SI cortex) by measuring VPM responses
before and after SI inactivation in anaesthetised cats. While SI cortex was in tact,
the STRFs of the VPM neurons are formed by a response pattern consisting of two

temporal phases, an early phase and a late phase. When the activation of SI cortex was
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effectively eliminated by infusion of muscimol (a'GABA-agonist), one or both. of these
temporal phases may be reduced or eliminated. They propose that the early response
of VPM neurons arises from ascending inputs plus the disynaptic pathway from the
SI cortex via the TRN, while the late phase arises due to direct SI innervation of the
VPM. This model fits their data, anid once more suggests that cortical feedback has a
key role in altering thalamic responses, but remains hypothefical. The issue of STB:.FS
constitutes a major proportion of the current thesis and is discussed in more detail in
chapter 4.

Another subset of studies have specifically shown that cortical feedback selectively
enhances thalamic responses, so that particular aspects of feed-forward information
are highlighted (Castro-Alamancos, 2004; Murphy & Sillito, 1987; Yan & Suga, 1996;
Zhang et al., 1997). This issue was reviewed by Alitto & Usrey (2003), who describe the
evidence for such an effect in the three sensory pathways (visual, auditory, somatosen-
sory). This particular idea is termed “egocentric selection” and is the hypothesised
ability of cortical neurons to analyse their thalamic inputs and amplify the transmis-
sion of selected features via feedback. Therefore, cortical neurons would be able to
adjust and improve their own inputs. Evidence for this has been shown in the auditory
system of the bat by Suga et al. (2000). This has also been suggested to occur in
the visual system (Sillito et al., 1994), where feedback was obseérved t6 increase the
temporal coherence between groups of LGN neurons that are co-activated by a com-
mon stimulus. Alitto & Usrey conclude that thalamic neurons are not simple relays of
sensory information, but are the components of a complex circuit, which dynamically
performs computations during sensory processing.

Therefore in sensory systems, there is a growing understanding that the thala-

mocortical network is more than a passive relay. However, the specific role of the
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thalamocortical monosynaptic feedback loop remains largely unknown and disputed.

1.2.2.3 The transition from the asleep to the awake state

Throughout the sleep/wake cycle neural activity undergoes considerable changes, and
the behaviour of the sensory thalamocortical network is no exception. These changés
can be considered at different levels of descriptions: there is a switch from hyperpb—
larised to depolarised mernbrané potential levels in tha,la;_mocortical rele;»y cells (Hirsch
et al., 1983); the firing mode of those cells changes from predominantly burst-firing
duﬁng sleep, to predominantly tonic firing during wakefulness (MecCarley et al., 1983);
at the functional level this behaviour is observed as oscillations during sleep, and the
relay of afferent information during arousal. These changes are well understood in
terms of the action of neuromodulators in the thalamus, and the consequent effects
on cellular properties (McCormick & Bal, 1994). However, changes in the network
dynamics have been less well studiea. There have been theoretical studies that have
considered the changes which occur in the thalamocortical network during the sleep to
wake transition, but these have concentrated on the switch from slow wave sleep oscil-
lations, to the fast non-synchronous activity of awake states (Bazhenov ef al., 2002; Hill
& Tononi, 2005). These studies will be readdressed in chapter 5, and it is clear that the
transition from awake visual processing to the early sleep spindle oscillation has thus
far been neglected theoretically, and is consequently less well understood, particularly

with respect to the role of corticothalamic feedback.
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1.3 Investigating neuronal dynamics

A methodology that has up to now been almost entirely unex-plored with respect to
the thalamocortical network, is the use of population models to examine the dynamics
intrinsic to the neuronal circuitry. This is despite the fact that a range of conductance-
based modelling paradigms have been,utilis_ed for the analysis of this system, as re-
viewed in chapter 2. Populat'ion models hav.e' a useful place in the continuum 6f theo-
retical techniques, primarily as they deal with situations where conductance-based or
compartmental models are too complex to represent a given level of network connec-
tivity. More importantly, they allow exploration of the nonlinear dynamics of a system
based solely on the connectivity. However, there are a number of significant drawbacks
that ought to be considered, not only when deciding whether to use population models,
but also when considering the results obtained from such models. These limitations
will be addressed in detail in later chapters of this thesis.

The population-level approach to modelling has proven to be fruitful in many previ-
ous studies, looking at a variety of neuronal systems, and asking a variety of questions.
Recent examples include Bressloff & Cowan (2003a); Deco & Rolls (2004); Denham &
Borisyuk (2000); Husain ez al. (2004); Lanyon & Denham (2004). Specifically, Denham
& Borisyuk (2000) used such a paradigm to build a model of the septo-hippocampal
circuitry and investigated network theta frequency oscillations. A more recent study by
Lanyon & Denham (2004) used a population-level description to create a model which
investigated the mechanisms that underlie visual attention. These examples show that
despite lacking the biophysical details which are vital to the mechanisms at work in the
nervous.system, population descriptions provide a method of examining the dynamics

of neuronal networks, which can explore systems and produce ccoherent and testable
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hypotheses.

This thesis makes specific use of the work of Wilson & Cowan (1972), who derived
a set of nonlinear ordinary differential equations to describe interacting populations of
excitatory and inhibitory neurons. Wilson & Cowan start their derivation by stating
that if “higher functions” of neuronal sys;:ems are to be considered,- then looking at
the level of single cells may not be appropriate. They go on to say- that considering
the time-varying activity across whole layers of cells is a more realistic approach. They
make direct reference to the example of pattern recognition, stating that as this is a
“global process” studying local interactions will not give much information. Therefore,
they build a modelling paradigm that describes the properties of whole populations of
neurons. The derivation of these equations, and the assumptions inherent to it, are
discussed in chapter 3.

The major reason to utilise such models, is that they afford one the ability to analyse
neuronal systems in terms of the nonlinear dynamics. This is the focus of the current
work, and this property of the thalamocortical network has not been considered to this
extent previously. However it is a useful first step in the investigation of a neuronal
circuit, as it can reveal the dynamics infrinsic to that network. In this thesis, the
aim is to consider the activity of the thalamocortical network in two different regimes:
sleep and wakefulness. In terms of dynamics, these states translate to a steady state
activity, which is oscillations, and transient activity, which are the sensory responses.
Therefore the use of population models, which allow direct observation of the neuronal

dynamics, is particularly appropriate.
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1.3.1 Why computational modelling?

A wider question is why one should use theoretical models in neuroscience at all?
Mathematical modelling has a long history in neuroscience, and some of the earliest of
such work was undertaken by Hodgkin & Huxley when they proposed a set of equations
in order to represent the process of action potential gen_eratioﬁ in the squid giant axon
(Hodgkin & I—Iu_xléy, 1952). ’fhey represented {;he eléctrochemic;a;l process 'of- spiking
in terms of three currents: the fast sodium current; the delayed-rectifier potassium
current; and a leakage current. These equations are still widely used in models of
neuronal processing, where the aim is to represent neurons generating spikes. From
this detailed representation of neuronal activity, there has developed a wide array of
modelling techniques for the theoretical analysis of the brain. However the reasons to
utilise any such theoretical approach are important to understand, as they affect the
choice of paradigm.

There are various reasons which may motivate the production of a model of neural
behaviour. The most obvious seems to be in order to replicate the brain and it’s
functioning. This has interesting implications for discovering how the brain may achieve
a behavioural goal, which could then be used for example to design an artificial system
to achieve a similar goal. However, this approach has its limitations. A given outcome
may be achieved in many ways, and this seems even more likely in the brain with its
innumerable connections. Therefore, although a model may be able to show that a
specific behaviour can be achieved in a given way, it must be remembered that the
brain might produce this behaviour via other substrates, and these should at least be
discussed in the context of a proposed model.

Simply to replicate the brain’s activity is also not particularly fruitful, as the brain
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itself is the best place to observe neuronal activity. However, models can allow éxperi-
ments to be performed that are difficult practically, and can also allow many different
permutations of experimental protocols to be tried in a relatively short amount of time.
Therefore such mociels can prove useful to stimulate ideas, and potentially eliminate
less fruitful lines of research. The aim of a study should clearly be used to direct the
choice of paradigm, and it is then important to remember the assumptions which are
-integ;ral to the chosen modelling paradigm, and not to infer too much from the resulis
from a model. If these limitations are considered and the model is validated against
experimental data, and other models which are based upon different assumptions, then
this approach can be useful to make testable predictions about the activity and the
function of the brain.

This thesis makes particular use of population level modelling. This approach is dis-
cussed in later chapters when each of the models is presented. Such models homogenise
a large group of neurons and represent them via a single equation. This simplification
immediately puts limits on the conclusions that can be drawn from such a paradigm.
The models developed in this thesis are based upon the available information about
the thalamocortical circuit, and the behaviour exhibited by the models is compared
to what is seen experimentally and in other computational models of this network.
The models’ limitations are discussed alongside the results, and conclusions are drawn
about the scope of the results. The short comings of the approach are also discussed
in chapter 6, with reference to what cannot be explicitly represented. Such critique of
the modelling paradigm helps to understand the results in this thesis, and shows what

we can learn from the work.
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1.4 Research questions

1.4 Research questions

This thesis makes three specific hypotheses regarding the dynamics of the thalamo-
cortical circuitry: 1) The first hypothesis is that the thalamocortical feedback circuit
possesses arnt intrinsic resonant oscillation in the spindle frequency range. This would al-
low the network to maintain spindling once the oscillation has been generated through
the _;':ondﬁctances possessed by the thalamic cells; 2) The second hypothesis is that
the receptive field properties of thalamocortical relay cells are not only formed by the
feed-forward connections from the retina, but also by the feedback innervation from
the cortex; 3) The third hypothesis is that a single description of the thalamocortical
network can exhibit both spindle range oscillations, and receptive field properties. In
order to address these hypotheses, three population-level computational models of the
thalamocortical circuit were created. The first model is a simple representation of the
thalamocortical network, and was used to investigate the oscillatory dynamics intrinsic
to the circuitry. This model was extended to form the second model and to allow for
receptive field formation. The third model is a reduction of the second model, as it
was intended to find the minimal circuitry to account for the visual responses. Using
population level models to answer these questions is useful, as the models are simple
enough to contain a small number of parameters, and yet they are complex enough to
allow the exploration of the nonlinear circuit dynamics.

The results of the simulations of the spindles model show that the nonlinear dynam-
ics of the connectivity do support oscillations in the spindle frequency range. This basic
thalamocortical network also replicates previous experimental findings through the ma-
nipulation of these dynamics. The receptive field model also uses a population-level

approach, but utilises an extended architecture for the circuitry. Such a biologically
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accurate (with respect to anatomical connections and parameter choices) population
model of the sensory thalamocortical network has not been attempted in the-past. The
dynamics of the thalamocortical network in the extended receptive field model, par-
ticularly the pattern of anti-phase feedback connectivity found by Wang et al. (2004)
and described in chapter 4, are shown to be involved in strengthening the thalamic
temporal response. The third mbdel replicates bof;h the transient receptive field activ-
ity, and the sustained oscillatory activity in the spindle range. Furthermore, the model
reveals that the circuitry must undergo a transition in order to link these two activi-
ties. This transition is related to a relative switch in the weight of cortical feedback to
the thalamocortical, and the reticular cells, which is consistent with previous studies
(Destexhe et al., 1998; le Masson ef al., 2002). Therefore, this thesis demonstrates
that the examination of the dynamics of the thalamocortical network provides robust

answers to the questions that have surrounded this neural structure for decades.

1.5 Structure of the thesis

In order to present these results, the structure of this thesis is as follows: the next
chapter will discuss the previous theoretical studies that have contributed to an under-
standing of the involvement of the thalamocortical network in spindle oscillations. In
this chapter the deficiencies of these stuciies is also brought to light and the need for a
population-level description is demonstrated. In chapter 3 the specific methodological
approach used is described in detail. Following this, the results from the spindles model
are presented and discussed. Chapter 4 considers studies which have measured the spa-
tiotemporal receptive fields of thalamocortical relay cells. The failure of subsequent

studies to fully explain this STRF is discussed, and the necessity for the receptive field
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model is explicated. The description of the receptive field model is then given, and
Ithe results that arise from the behaviour of this model are presented and discussed.
This model is then simplified in order to create the third model. The results from the
simulations of this reduced model are also presented here. In chapter 5 the motivation
for using the third mode! to look at both visual responses and sleep osci_llatipns is
_presented, with reference to previous sfudies _surroﬁnding the sleep/wake transition in
the thalar;locortic'al network. This unified model is described, and the results of sim-
ulations in a transient receptive field mode and s;ustained spindle mode are presented
and discussed. Finally, chapter 6 presents the general discussion and conclusions of

the thesis, including section 6.5 which outlines the details of future work that could be

undertaken to answer the specific questions that have arisen from this thesis.
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Chapter 2

Theoretical background to the spindle

oscillation

2.1 What are spindle oscillations?

Spindling is a periodic neural activity with a frequency in the range of 7 to 14 Hz. It
has been observed both in the thalamus and the cortex during periods of early sleep
and drowsiness. Spindles consist of rhythmic high-frequency (200Hz)} bursts of action
potentials, lasting for 1 to 3 seconds and recurring every 3 to 10 seconds. (Steriade &
Deschenes, 1984). Hence they are often described as a waxing-and-waning oscillation.
Spindle oscillations are thought to originate from intra-thalamic circuitry, primarily
because decorticated thalamic slices exhibit spindles (von Krosigk et al., 1993) as does
the isolated TRN (Steriade et al., 1987).

The mechanism behind spindling is now well understood due to various experimen-
tal and theoretical studies (for example see Bal et al. (1995b); Steriade et al. (1993);
von Krosigk et al. (1993)). Dwring spindle oscillations, neurons of the GABAergic

thalamic reticular nucleus (TRN) generate rhythmic (7-14 Hz) spike-bursts that are
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Figure 2.1: EEG recording and corresponding intracellular recording of spindle os-
cillations made from the ventrolateral (VL) nucleus of the cat thalamus.
Reproduced from Timofeev & Steriade (1997).

superimposed on a depolarising envelope. When thalamocortical (TC) cells are suffi-
ciently hyperpolarised, the low threshold Calcium (Ca?*) current (Ir) is de-inactivated.
' Therefore, IPSPs generated by the reticular (RE) cells cause the TC cells to fire rebound
bursts (which consist of action potentials crowning a Ca®* spike). Once initiated in the
thalamus, these oscillations are transmitted to the cortex where they induce rhythmic
EPSPs, which are the origin of the spindle oscillations observed in the EEG. A typical
EEG recording is shown in figure 2.1, and the high-frequency bursting is clearly seen.
There has been a great dealrof speculation regarding the roles of the two firing
modes of thalamic cells, the burst mode and the toni¢ mode. Burst firing occurs when
a cell is hyperpolarised for a sufficiently long period of time, and this firing mode
has historically been considered to occur during sleep states. Tonic firing occurs at
depolarised membrane potentials and allows thalamic cells to respond linearly to an
input (Réinagel et al., 1999). Therefore, sleep spindle- oscillations occur while the

thalamic cells are in the burst firing mode, and tonic mode is dominant (though not
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Figure 2.2: The inclusion of the Jr and I currents in a single compartment model
by Destexhe et al. (1993) is schematised in this figure.

necessarily exclusive, see Sherman (2001); Swadlow & Gusev (2001)) during awake
states, when the accurate relay of visual information is important.

Due to their appearance during early sleep, spindle oscillations were thought to be
indicative of cortical inactivity, as while spindling thalamic cells do not faithfully relay
the peripheral sensory input. However, recently it has been proposed by Steriade &
Timofeev (2003) that sleep oscillations could represent periods of considerable mental
processing and possibly also memory consolidation. Furthermore, studies of oscillatory
brain states have implications for research into pathological conditions such as epilepsy
(Suffezynski et al., 2001). Therefore, the interest in spindle oscillations exists not just
due to their use as a prototype thalamocortical activity, but also because of their role
in the normal functioning of the brain.

The waxing-and-waning property of spindling was an unresolved issue for a long
time. This property can be clearly seen in the recordings shown in figure 2.3. The
cause for this phenomenon was predicted to be due to the regulation of the level of
intracellular calcium in the TC cells by a modelling study by Destexhe et al. (1993).

The model in this study consisted of a single-compartment model of a TC cell, which
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Figure 2.3: The waxing-and-waning of spindling can be seen in this figure of in vive
recordings from the intact cat thalamus. Reproduced from Contreras
et al. {1996).

contained a number of different currents, in particular [, and Iy, two currents which
are considered to be crucial to the generation of spindles in thalamic cells. Figure 2.2 is
taken from Destexhe ef al. (1993), and this figure shows the arrangement of the currents
in the model. This model showed how the It current allows calcium ions to enter the
cell, and bind to the I channel, therefore changing its current voltage properties. At
the time of this model there existed an alternative view which stated that the cause
of the waxing-and-waning was due to the divergence of the connectivity between the
thalamocortical cells and the reticular cells (Steriade et al., 1993). Since the prediction
of Destexhe et al. (1993) was verified experimentally by Luthi & McCormick (1998),
there has been little further debate regarding this issue.

Since spindles are inseparable from the thalamic circuitry, it was thought that the

cortex did not play a significant part in this oscillation. However, it has been proposed
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2.2 Previous theoretical studies of spindle oscillations

that the role of the cortical feedback is to regulate and synchronise the oscillation
(Bal et al., 2000; Coutreras et al., 1997b; Destexhe et al., 1098). Spontaneous spin-
dle sequences appear almost simultaneously in both the thalamus and the neocortex.
Therefore, it is likely that the spontaneous cortical activity imposes this near simul-
taneity of spindles throughout the thalamus (Contreras et al., 1997a).

The discussion surrounding spindle oscillations has lead to both physiological and
theoretical studies looking into the factors affecting the oscillation. The previous mod-
elling studies have mainly used compartmental models containing various types of ionic
conductances, and a number of such models are discussed below in more detail. The
next section is not meant as an exhaustive survey of the literature, but rather a dis-
cussion of how models of the spindle oscillation have evolved, and to what extent the

main features of spindling have been captured through such theoretical studies.

2.2 Previous theoretical studies of spindle oscillations

Spindle oscillations are a favoured thalamocortical activity for computational mod-
ellers, mainly because the mechanisms which underly this activity are well understood.
As discussed above, early descriptions of this oscillation only considered the contri-
bution of thalamic circuitry. One such theoretical model of spindling by von Krosigk
et al. (1993), considered the dominant role of the TRN in particular, as the authors
stated that “the dependence on the activity of relay neurons is unclear”.

The authors first presented results from intra- and extra-cellular recordings of spin-
dles in slices of ferret thalamus. They observed periodic inhibitory postsynaptic poten-
tials (IPSPs) in relay cells, which are occasionally followed by rebound bursts. Figure

2.4 shows the occurrence of IPSPs in intracellular relay cell recordings by Steriade et al.
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Figure 2.4: This figure, reproduced from Steriade et al. (1993), shows the intracellu-
lar recording of a single cycle of a spindle oscillation. The figure clearly
indicates the occurrence of IPSPs in the TC cell recording, which are
occasionally followed by a caleium spike.

(1993), some of which are followed by calcium spikes. When the recorded relay cells
were depolarised by current injection, the bursts no longer appeared. This supports the
idea that the bursts occur due to the low threshold calcium current I, which requires
a hyperpolarised membrane in order to be de-inactivated (Jahnsen & Llinas, 1984a,b).
Conversely, they measured excitatory postsynaptic potentials (EPSPs) in the RE cells,
and these were synchronous with the bursts observed in the relay cells.

Hence, von Krosigk ef al. proposed the following model for spindle generation: RE
neurons become active and initiate IPSPs in TC cells. As a result of this inhibition,
Iz is de-inactivated which allows relay cells to fire a low threshold calcium spike and a
burst of action potentials at the offset of the IPSP. These bursting relay cells depolarise
the RE cells, activating Iz, and triggering bursts of action potentials. They went on
to propose that the waxing-and-waning of spindles is due to the hyperpolarisation of

RE cells through a calcium sensitive potassium current. In addition, they suggested
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that the synchronisation of this oscillation between neighbouring cells in PGN ‘(the
visual sector of the TRN) or neighbouring LGN laminae, results from a large overlap
in afferent and efferent connections i.e. the convergence and divergence of connections.

This was a very influential study for the understanding of spindling. The authors
accounted well for their experimental observations with a minimal model containing
only thalamic elements, as was the expectation at the time. Furthermore, they a,lso-.
- made predictions about the cause of the synchronisation of the oscillations, as well as
the property of waxing-and-waning.

This theoretical model was soon simulated computationally by Destexhe et al.
(1993), using two single-compartment neurons containing Hodgkin-Huxley type cur-
rents. In this paper, the authors showed that the model TC cell displays both slow
oscillations (in the 0.5-4Hz range), and waxing-and-waning slow oscillations. Closer in-
spection showed that this occurs due to an interaction of the Ir and I, currents, which
is consistent with experimental observations, for example by Soltesz et al. (1991). I
is a hyperpolarisation-activated inward rectifying current, and this current was hy-
pothesised to play a major role in the generation of spindles, and particularly in the
waxing-and-waning behaviour. Similarly, the RE cell model replicates experimentally
observed (Avanzini et al., 1989) periodic bursts at 8-12Hz, which occur due to Ir and
a calcium dependent potassium current.

When these two model cells were mutually connected via inhibitory GABA, (for
the RE to TC conneetions) and excitatdry non-NMDA synapses (for the TC to RE
connections), this network shows 8-10Hz spindle oscillations. The details of the spin-
dling observed in the model, such as the “depolarising envelope” seen in the RE cell
response and the “hyperpolarising envelope” in the TC cell, echoed the results pre-

sented by von Krosigk et al. (1993). This is a good indication that the modelling of
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this network is accurate compared with the experimental results. The results of the
von Krosigk et al. model, and in particular the observation of the cyclical pattern of
rebound bursts between the TC and RE cells, proved to be a major step in showing
how the spindle oscillation could be initiated in the RE nucleus and transmitted to the
TC cells.

Another model which considered this two cell thalamic network, was produced rby
Wang et al. (1995). This model contained a population of single compartment TC cells,
interconnected with a population of single-compartment RE-cells. Both populations
contained a number of ionic currents. The authors showed that this large-scale model
displays spindle range oscillations which are dependent on the reciprocal connectivity
between the TC and RE cells. Furthermore, in the model the synchrony of the oscil-
lation is dependent upon the convergence factor of the TC-RE connectivity. Hence,
this model agrees with the predictions of von Krosigk et al. (1993) by showing that the
oscillations in the model obtain synchrony when the amount of convergence in the RE
to TC connections exceeds a threshold level.

The models discussed thus far have not considered the role of fhe cortex in the
mechanism for spindling, even though Morison & Bassett (1945) proposed many years
earlier that the cortex could be involved. It was not until a study by Contreras et al.
(1996), that the authors asked what specific role the feedback from cortex to thalaamus
could have in spindling. By making recordings in the thalamus of cats under barbiturate
anaesthesia, they found that with the cortex removed spindle oscillations no longer
displayed long range synchrony within the thalamus, but only local synchrony between
cells which were at close proximity to one another. The first model where this influence
was considered appeared just a short time later in a study by Destexhe et al. (1998).

In this study, Destexhe et al. presented increasingly complex models of the spindling
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thalamocortical network, and showed that in these models the synchronising effect
of corticothalamic feedback is apparent. The models all contain single compartment
neuronal elements, and they utilise four different cell {ypes in total: excitatory cortical
pyramidal (PY) cells, inhibitory cortical interneurons, TC cells, and RE cells. The main
result of this paper is that cortical feedback is respOnsible.for the observed coh_efence
between individual TC celis of spindle oscillations. However, this effect only occurs if
"cortical feedback onto RE cells is stronger than that onto the TC cells. When this is the
case, TC cell activity shows an IPSP-EPSP sequence that is crucial for the maintained
synchrony of the oscillation. This idea of “dominant inhibition” recurs in later studies
by the same authors, and also in other modelling studies (for example in le Masson
et al. (2002), which is discussed below). The suggestion that this pattern of activation
exists during spindling, was given credence by a study which measured the quantal
amplitudes related to the synapses mediating feedback to TC and RE cells (Golshani
et al., 2001), which was discussed in chapter 1.

A later paper by Destexhe et al. (1999) that utilised a very similar network, also
looked at the mechanisms underlying the large-scale synchrony of spindles within the
thalamus during three different neural states: (1) natural sleep, (2) barbiturate anaes-
thesia, and (3) natural sleep with depressed cortex. The authors observed that during
natural sleep there is good synchrony between the various neuronal populations, but
in the latter two states there are multiple initiation sites for the oscillations within the
TC cell layer, which resuits in less synchrony. They suggested that these differences
are to do with the variable excitability of the cortex, such that the more excitable the
cortex is, the more coherent the oscillations seem to be. This idea was pursued in a
later paper by Bal et al. (2000), where an almost identical model is used, but feedback

is modelled as an input to the thalamic cells and not explicitly by a layer of cortical
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cells. They showed that increasing the strength of feedback in the model, results in
an increase in the synchrony of oscillations. They went on to show that this is also
observed in vitro, in thalamic slices from the ferret brain. Therefore, these studies col-
lectively showed that corticothalamic feedback is intimately linked with the observed
_ synchrony of spindle oscillations. ‘

The studies discussed thus far have elucidated many features of the activity in the
thalamocortical network during spindle oscillation's. In the final studies reviewed here
another important characteristic of the thalamocortical network is focussed upon, that
is its ability to switch between different modes. A paper by Terman et ol (1996)
describes a small-scale thalamocortical model, and investigates the transition from
spindling to delta sleep rhythms. The delta rhythm is a 1-4Hz oscillation observed
during deep sleep. The paper points out that as the same network of RE cells, TC
cells, and cortical cells is thought to produce both of these sleep rhythms, the same
mechanism ought to be responsible for the two oscillations, and that the switch between
them occurs as a resulf of functional reorganisation within the cireuitry.

The model consists of a population of 10 TC cells, a single RE cell and a cortex
modelled by a single oscillator. All excitatory connections are mediated by AMPA
synapses, and the inhibitory connections are mediated by both GABA4 and GABApR
synapses. The RE cell contains an Iy current, a long lasting after hyperpolarisation
(AHP) current, and two leak currents. The TC cells contain Ir, I, and two leak
currents. They show that a change in the intrinsic properties of the RE cells transforms
the action of predominantly GABA,4 inhibition to predominantly GABAp inhibition,
and consequently causes a switch from spindling to delta oscillations.

This issue of switching between spindles and slower frequency activity comes up

often, both experimentally and in a subset of the studies discussed above. For example,
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von Krosigk ef al. showed that spindles are transformed into a slower (2 to 4Hz} activity
if GAB Ay inhibition is reduced (by application of the GABA,4 antagonist bicuculline
methiodide). By then applying a GABAp antagonist they go on to show that this
occurs because GABAp inhibition, which acts over longer time scales, becomes the
dominant form of inhibition. This behaviour was also replicated in two of the modelling
studies discussed above (Bal et al., 2000; Deste:éhe et al., 1993). - :
" Finally, le Masson et al. (2002) recently used an interesting combiration of exper-
imental and theoretical methods to investigate the thalamocortical network. Their
hybrid network consisted of a thalamocortical cell recorded in vitro from guinea-pig
or ferret slice preparations, attached to a computational model of an RE cell. They
demonstrate that there is a selective relay of sensory information through the TC cell,
which depends upon inhibition from the RE cell. When the inhibitory feedback loop
between the TC and RE cell hias a gain greater than a critical value, the circuit tends
towards oscillations resembling spindles. This causes a decorrelation of retinal input
and TC cell output, hence the cortex is effectively cut-off from sensory input. However,
low feedback gain in the TC-RE loop and the action of noradrenaline, work together
to relay sensory information to the cortex faithfully. This occurs when the TC cells
fire predominantly in tonic mode, therefore are able to code their inputs linearly in
their firing rates. This model therefore predicts that strong intra-thalamic inhibition is
necessary for spindles, and the anthors propose that this intra-thalamic inhibition may
be driven by cortical afferents, therefore agreeing with the requirement for dominant
inhibition, and predicting that dominant excitation is required for the relay of sensory
information.

There have been other studies in which the theoretical treatment of the 7-12 Hz

spindle oscillation has formed a constituent part. However, those that have been re-
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counted here show the develc;pment of the main issues regarding spindles using similar
computational paradigms. These reports have gone far in ziding and inspiriﬁg exper-
imental research of this early sleep oscillation. However, the next section discusses

whether a different approach could inject a fresh perspective into this matter.

2.2.1 The gap in fhe literature

The studies discussed above have explained the mechanism behind spindling extremely
well, from the initial proposal of interconnected RE and T'C cells, to a putative role for
corticothalamic feedback. However, the spindle oscillation could also be examined at
a different level of complexity, that is via population-level modelling. Doing so would
allow the investigation of the intrinsic nonlinear dynamics of the thalamocortical loop
to become easily accessible. The structure of this feedback loop could be examined to
see whether it is able to support spindié frequency oscillations by the interaction of its
component excitatory and inhibitory cell populations.

Population models, were originally developed to minimise the amount of complexity
inherent to conductance-based dynamics in compartmental neuronal models. It was
also thought that, due to the large numbers of neurons involved in neural activity,
systems ought to be modelled by large-scale populations rather than considering the
effect of a small number of detailed components. Such models have previously been
successfully used in numerous studies of neuronal systems to both test and expand
upon experimental hypotheses (for example see Bressloff & Cowan (2003a); Deco &
Rolls (2004) and section 1.3).

Having established which neuronal properties contribute to the initiation and prop-
agation of the spindle oscillation, the use of such population modelling of the thalam-

ocortical network can allow larger scale questions to be addressed. The most central
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of these questions is whether or not spindles are supported by the dynamics of a basic
thalamocortical network. That is, once they are generated by the ionic mechanisms
outlined in the studies discussed above, does the thalamocortical network resonate at
this frequency and help to sustain this oscillation?

Other questions involve the relative importance of the various c,onnectivii:.ies within
the circuit. Although these questions could all be addressed in compa.rtmenta;l ﬁloaels,
a population model allows the global effect of the manipulation of connections to be
observed. An advantage of population-level models is also their much lower computa-
tional cost, as well as the possibility of connecting a number of such models to form
large-scale, high-level representations of neural activity. Another major benefit is the
ability to utilise bifurcation analysis to investigate the nonlinear dynamics of the model
within the paraimeter space. This is an additional way to consider the relative effects
of connections on the network behaviour, and also provides a good indication of the
robustness of the activity with respect to parameter manipulations. This last point is
discussed in more detail in the next chapter.

In order to address and answer these questions, the Wilson-Cowan equations for
the dynamics of neuronal populations were used to describe a thalamocortical network
(Wilson & Cowan, 1972). This is the simplest representation of the thalamocortical
feedback network that could address these questions. Such population dynamics have
been used previously to look at oscillatory behaviour, in different network configura-
tions, and this issue is re-addressed in the next chapter after the presentation of the
proposed model (see section 3.2.6). A recent study by Robinson et al. (2002) also used
a purely population-level approach to investigate a variety of pathological oscillatory
activities in the thalamocortical network. Though this study used a similar approach

to that proposed here, it differs significantly from the aim of this work, as here the
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interest is in the intrinsic resonant behaviour of the healthy thalamocortical network.
In the next chapter, the methodology is outlined, with respect to the specific form and
equations for the model. This is followed by presentation and discussion of the results

of the simulations of this model.

2.3 Summary

In this chapter it has been shown that previous computational models of the spindle os-
cillation have used conductance-based descriptions. These studies have been invaluable
for uncovering the ionic details of the mechanisms that are central to spindling, but are
too detailed to consider the network dynamics. Population models are a useful method
of looking at the nonlinear dynamics involved in neuronal activity. In the following
chapter, the thalamocortical feedback circuit is represented by a set of Wilson-Cowan
equations, and the nonlinear dynamics of such a system are tested to see if they support

oscillations in the 7-14Hz spindle range.
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Chapter 3

A model of the spindle oscillation

3.1 Introduction

A number of previous theoretical studies of the spindling thalamocortical network
have exclusively used ionic models, and concentrated on elucidating the conductances
underlying spindling (as reviewed in section 2.2). Although these models have been
extremely successful at achieving this aim, they have not addressed a fundamental
question regarding this neural activity: that is, whether the intrinsic nonlinear dynam-
ics of the thalamocortical network possess a resonant oscillatory activity within the
7-14Hz spindle range.

In order to address this issue, the existence of a spindle range oscillation was ex-
amined as an activity supported solely by the dynamics of a simple thalamo-reticulo-
cortical circuit model, which is deseribed in the next section. Using a population-level
description of neuronal dynamics means that the major factor influencing the behaviour
of this circuit model is the interaction between the excitatory and inhibitory cell popu-
lations and not ionic mechanisms. Furthermore, only the essential cell types and details

of connectivity are preserved in the architecture of the model. In the current chapter,
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results from the simulations of such a model show that a 7-14Hz range oscillation is
supported by this network, and that the attributes and manipulations of this oscillation

are consistent with previous results from both experimental and theorétical studies.

3.2 Methods

3.2.1 Architecture of the spindles model

The cell types that are involved in the generation and maintenance of spindle oscil-
lations, were clearly outlined in a review paper by Steriade et al. (1993). The paper
discusses various types of thalamocortical oscillations and their underlying mechanisms.
When describing spindling the authors refer to the “main players” as two types of tha-
lamic cells: thalamocortical relay cells, and thalamic reticular cells. In addition, they
stress that cortical pyramidal cells are an important component of the circuitry. Al-
though the cortex was not always thought to be crucial for spindle oscillations, the
current knowledge clearly indicates that cortical cells have a central role in the spa-
tiotemporal properties of the spindle oscillation (as discussed chapter 2). Hence, the
neuronal classes that were considered for the present model are in accordance with
those described above: TC cells, cortical pyramidal (PY) cells and RE cells. No other
cell types were considered, as this study aimed to elucidate the minimal circuit required
to support spindles.

The thalamus contains two types of nuclei, as classified by Sherman & Gullery
(2001). First-order nuclei are the sensory nuclei that receive information from periph-
eral sensors and relay it to the cortex. Higher-order nuclei are involved in transmitting
information within circuits between various cortical areas. Most of the data available

about spindling in the thalamus and the thalamocortical circuit originates from ex-
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periments performed in the cat lateral geniculate nucleus (LGN). Therefore, the LGN,

' visual TRN (or perigeniculate nucleus), and layer 6 of cortical area V1 are the spe-

cific components of the model thalamocortical system described here. Hence, in the
following description the term “thalamus” refers specifically to the LGN.

Having defined the cell types (and particular nucle:i) that are considered to be
important for this study, the connections bétween the various populations must also
be defined. The structure and -connectivity of first order nuclei has been described
previously (Jones, 1985; Sherman & Guillery, 2002), and is now extremely well known.
The TRN surrounds much of the dorsolateral and anterior thalamus. The GABAergic
cells in this nucleus receive collaterals from both thalamocortical and corticothalamic
projections. In turn, RE cells innervate the excitatory cells of the LGN. The TRN
has been considered to have a crucial, yet unknown role in mediating the activity in
the thalamocortical network (for example Crick (1984); McAlonan & Brown (2002);
Montero {2000)). The central position it holds, monitoring both the ascending and
descending flow of information, is the main reason that such views exist.

In addition to this intra-thalamic circuitry, there is the feedback loop between the
LGN and V1. The connections to, from, and within V1 have also been clearly mapped,
as described by Thomson & Bannister (2003). The TC cells of the LGN, feed visual
information forward to both layers 4 and 6 of the primary visual cortex. The thalamic
innervation of layer 4 is synaptically more numerous than that of layer 6 (Bannister
et al., 2002). After traversing the intra-cortical circuitry, thalamic information reaches
layer 6 via an alternative route: the information is passed from layer 4 to layers 2/3,
from layers 2/3 to layer 5, and finally from layer 5 to layer 6. The LGN receives a
feedback projection from V1, from the corticothalamic cells found in layer 6. In this

study, finding the minimal model required to support spindle range oscillations is of
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Figure 3.1: The minimal architecture required to represent the thalamocortical net-
work. Three cell types are represented: excitatory cortical pyramidal
cells (PY), inhibitory thalamic reticular cells (RE), and excitatory tha-
lamocortical relay cells (T'C). Connections between cell populations have
an associated weight parameter, and are all excitatory (labelled by a tri-
angular arrowhead —) except for a single inhibitory connection (labelled
by a circular arrowhead —e).
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interest. Therefore only the monosynaptic feedback loop between TC cells in the LGN
and the excitatory cells in layer 6 of V1 is considered, in addition to the TRN, and this
circuit is schematised in figure 3.1.

The model contains a single population to represent each type of neuron. Again this
is to keep the model as simple as possibie, in order to examine the intrinsic dynamics
of the network. The figure also shows a driving force, which acts upon the TC cells and
is labelled “P”. P represents an intrinsic membrane property of TC cells, which is the
ability of the TC cells to fire rebound bursts following hyperpolarisation (Deschenes
et al., 1984). The use of the input P ensures that the TC cell population becomes
depolarised following the decay of inhibition by the RE cell population. Therefore, it
acts in the same way as de-inactivation of the low threshold calcium current Iz, which
brings the TC cell to firing threshold so that it may fire bursts of action potentials
crowning a low-threshold calcium spike {(Jahnsen & Llinas, 1984a,b).

In summary, the model architecture takes into account only those neuronal types
that have been shown to be essential for the initiation and maintenance of spindle
oscillations, These are layer 6 pyramidal cells in V1, inhibitory cells of the TRN and
the excitatory thalamic relay cells of the LGN. The architecture defined here, is similar
to many of the previous theoretical models of spindling, as discussed in section 2.2.
However, in its deliberate sparseness, the model described here deviates sharply from

its predecessors.

3.2.2 The Wilson-Cowan equations

The Wilson-Cowan equations for the nonlinear dynamics of the activity of neural pop-
ulations (Wilson & Cowan, 1972) have been used to represent the thalamocortical

network presented above. A full mathematical derivation of these equations will not
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be relayed here, but the main steps highlighting the crucial assumptions that the au-
thors made, are recounted in this section. The starting premise is that in the analysis of
higher level activities of the brain, the properties of interacting populations of neurons
are of interest. In particular, Wilson & Cowan state that information in the sensory
modalities is relayed via “large-scale spatiotemporal activity in sheets of cells”, there-
fore their aim is to describe a model that accounts for these global population dynamics
of neural activity. -

The initial assumptions are outlined here:

1. Cells within a population are assumed to be in close spatial proximity. Their
interconnections are assumed to be random but dense enough so there is at least

one path (direct or via interneurons) between any two cells in a population.

2. Spatial interactions within populations are overlooked, therefore the model deals

only with the temporal dynamics of a population.

3. Wilson & Cowan chose the relevant variable to be the proportion of cells in a
population which become active per unit time. Therefore, single cell activity is

represented by a rate code and not by the timing of individual spikes.

4. Finally, they assume that all neural activity of any complexity is dependent upon

the mutual interaction between excitatory and inhibitory cells.

Hence, they define the dynamic variables representing the activity of populations to
be E(t) and I(t), for excitatory and inhibitory populations respectively. By definition,
E(t)=0 and I({t)=0 are resting states, which represent a low-level background firing or
a spontaneous firing rate. Therefore, small negative values of these variables represent

a suppression of resting activity.
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Wilson & Cowan derive the functions Z,(z) (where p=i for inhibitory, or p=e
for excitatory populations) which are called the response functions. These functions
represent the proportion of cells firing in a population for a given level of input activity
7. The response functions can be derived by assuming that the population has a
distribution of neural thresholds, and that all cells receive the same average excitation
z(t). Alternatively, Z,(z) can be found by -assuming that the cells in a population
all have the same threshold, but that there is a distribution of the number of afferent
synapses per cell. Either approach leads to the response function having the form of a
monotonically non-decreasing sigmoid function as shown in Wilson & Cowan (1972),

and as defined by equation 3.1.

1 1

Zp(z) = 1+exp(—by(z — 6,)) 1+ exp(bpby)

(3.1)

Here 6, and b, are constants, and z is the level of input activity. Following Wilson
& Cowan, the following values are used for these constants throughout this thesis: 8, =
1.3,b, =4, 8;=2.0, and b; = 3.7.

Wilson & Cowan assume that cells sum their inputs and that the effect of stim-
ulation decays over time. They introduce the idea of “connectivity coefficients” (¢,)
where 7 is the number labelling a given connection. Effectively these are the weights
(or strengths) associated with each connection. In practice these parameters are chosen
using various types of experimental data, as described in section 3.2.4 below.

The authors consider what proportion of cells are sensitive in the period (t+7), and
subsequently receive supra-threshold excitation at time t. The next main assumption
is that the probability that a cell population is sensitive, meaning not refractory, is

independent of the probability that it is excited above threshold. This allows them
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to neglect the inclusion of a term to account for this correlation. There are then two
final steps in the derivation. The first involves time coarse-graining, which averages
out rapid temporal variations over a time-scale of 7. The second entails stating that
the steady state solution (i.e. the solution in the absence of external inputs) ought to
be zero, which is satisfied by defining Z,(0) = 0. Hence, they arrive at equations 3.2

and 3.3, for the dynamics of an excitatory and an inhibitory population respectively.

TE% = —FE+(ke—7.E)  Z(a1F — ee] + P) (3.2)
dr ,
TiE = —I+ Ui.‘; — TiI) . Zi(c;_o,E — oyl 4+ Q) (33)

The constant r,, (where p=e or p=i) is set to be equal to 1, where rp,P (P=F or P=I)
represents the probability that a cell is refractory. %, is defined to be the maximal
value of the functions Z;, such that k, = Z,(c0).

Therefore, the Wilson and Cowan type equations for the three cell populations that
are considered in this study (as described in section 3.2.1), are shown in equations 3.4

to 3.6. Where Epy, Irp, and Frg are the dynamic variables representing the neural
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activity of the PY, RE and T'C populations respectively.

T dEdltDY = —Epy(t) + (ke — EPY(i)) + Ze(wl - Brc(t)) (34)
T2 dIdI;E = —Irp(t) + (ki — Ine(t)) - Zi(w2- Bro(t) + w3 - Epy())  (3.5)
3 di?;c = ~Erc(t) + (ke — Erc(t)) - Ze(—wd - Irp(t) (3.6)

+wh - Epye_(t) + P)

Here 7,,, where nis 1 to 3, are the time constants of the PY, RE, and TC populations
respectively. wl is the TC to PY connection weight, w2 is the TC to RE connection
weight, w3 is the PY to RE conneciion weight, w4 is the RE to TC connection weight,

and w5 is the PY to TC connection weight, as schematised in figure 3.1.

3.2.3 Criticism of the Wilson-Cowan paradigm

Although in the previous section the assumptions made during the derivation of the
equations were explained; this section highlights the main criticism of this modelling
paradigm, which lies with the parameters. The Wilson-Cowan equations contain two
main types of parameters that must be defined by the user: 7 and w.

T represents the time constant of the change in the proportion of non-refractory cells
which -are firing in a population, in response to the change in the average membrane
potential activity of the cells. The 7 parameter has been assumed in previous studies to
be equivalent to the membrane time constant of the particular cell type, as in Tsodyks

et al. (1997) and Denham & Borisyuk (2000). However, the time required for a change
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in the firing of a cell, also relies upon synaptic delays and synaptic time constants, and
such effects are not considered if 7 is egual to the membrane time constant.

Similarly, the weight parameters w are assigned values relative to the other weight
parameters in the model, based on various types of phj,-rsiological data (as described
in section 3.2.4 below), but there is no direct physiologically measurable value which
is-equivalent to w. Furthermore there is often insufficient data about the nuinbers of
synapses, strengths of synapses, and reliability of synaptic transmission, which mediate
the various connections in the brain.

The fact that the parameter choices will to some extent be fairly arbitrary, can be
defended against criticism if the user takes appropriate measures. For example, in the
current study the relative parameter choices have been chosen (section 3.2.4) using a
variety of physiological data, and are therefore linked to the relative strengths of these
connections in the brain. Furthermore, given that parameter choices are subject to
error, the range of parameters for which a given result is observed can be tested. If
the result is robust then parameter perturbations within these ranges do not affect
the observation of the result. In the current study, parameter ranges were tested by

bifurcation analysis, which is explained in section 3.2.5.

3.2.4 The choice of parameters

As stated in the previous section, the T parameter is usually set to be equal to the
membrane time constant, and is therefore set within 10 and 20ms (Tsodyks et al.,
1997). For thalamic cells a wide range of values for the membrane time constant have
been measured. For TC cells, the observed range is 5 to 64ms (Turner et al., 1997;
Ulrich & Huguenard, 1996), for RE cells it is 13 to 53ms (Landisman et al., 2002; Ulrich
& Huguenard, 1996), and for cortical cells it is 7 to 22ms {Anderson et al., 2000; Hirsch
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et al., 1998, 2002). The time constants that were chosen for the populations lie within
each observed range.

The weights of each connection type also need to be assigned. There is a great deal
of evidence from physiological experiments that can be used to determine the relative

connection strengths. For example, the number of synapsés serving a connection type,

- and the efficacy of synaptic transrission between populai:,ions. The data that was used

in this study is as follows: the corticothalamic (CT) projections to RE cells are stronger
than the CT projections to TC cells (Golshani et al., 2001); the strength and reliability
of TC to RE projections (Contreras et al., 1993; Gentet & Ulrich, 2003); the relative
strength of the thalamocortical projections (TC to PY cells) compared to the feedback
corticothalamic projections (Castro-Alamancos & Calcagnotto, 2001); studies which
specify the numbers of synapses from each afferent, for example van Horn et al. (2000),
show that the greatest number of synaptic contacts onto T'C cells are cortical in origin;
the fact that RE cells send most of their outputs to innervate TC cells (Wang et al.,
2001). Hence, the selected parameter values for the model reflect the above findings in

respect of their relative magnitudes.

3.2:5 Bifurcation analysis

The Wilson-Cowan model discussed in section 3.2.2 is described by a system of coupled
ordinary differential equations (ODEs). These equations contain a number of free
parameters, which can be fixed by considering the evidence from the literature, as
described in the previous section. However, the effect of parameter changes on the
evolution of dynamical regimes in the model is an important consideration. For such
a system of nonlinear ODEs, the point at which the right-hand side of the system is

equal to zero, is called a fixed point (also known as an equilibrium point, the steady
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state, etc). If'we consider the following set of antonomous ODEs:

&= f(z,0) (3.7)

where f(z, ) is a nonlinear vector function; x represents the dynamic variables; o
represents the parameters of the system; z € R*; o € R-.

To find a fixed point, the following equations have to be solved for fixed a:
f@o,0) =0 (3.8)

where x4 is a fixed point of the system. If we consider a small neighbourhood around
Zg, the nature of the fixed point’s stability can be accurately defined. The fixed point
is asymptotically stable if there exists a sphere around zq, such that all trajectories
starting within this sphere tend to zp, as time tends to infinity.

To formulate a criterion of stability, the system of nonlinear ODEs in equation 3.7
can be linearised in the region xg + h, where h represents a small perfurbation from

xg, in the following way:

h = z—-1
so h = &
d fi .
= flzo+ h,a) = f(zp,0) + 5 - h + higher order terms
3745/ 4

If we neglect all higher order terms, then the following linear equation governs the
system dynamics, near zg:

h=Ah (3.9)
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where A is the Jacobian matrix of the system at the fixed point. We can assume
a solution of the form & = hpe™™, and substitute this into- equation 3.9 to obtain
Ahoe*t = AhgeM, or Ahg = Ahy, and the latter is the standard eigenvalue equation.
Here A represents the eigenvalues of the Jacobian matrix, and hg represents the cor-
resporiding eigenvectors. Therefore, if the eigenvalues of the Jacobian matrix are less
than zero, e~ tends to zerb, and the trajectory tends to xp. Hence the fixed point is
asymptotically stable (see Strogatz (1994) for more details).

For a given system of equations, the nature of such fixed points can change as
the parameters of the system are varied. If a fixed point changes stability, appears,
or disappears we say that a bifurcation has occurred. At points of bifurcation the
behaviour of a systém changes in a way that depends upon which type of bifurcation
has happened. There are a number of types of bifurcations possible, and the type of
simple bifurcations that may occur can be classified by the eigenvalues of the linearised
system.

This study considers whether a nonlinear, autonomous system can support os-
cillations. An important type of bifurcation to consider when looking at oscillatory
behaviour, is the Andronov-Hopf (A-H) bifurcation. This type of bifurcation is char-
acterised by a pair of eigenvalues crossing the imaginary axis on a complex plane. For
example at a stable fixed point of the system, the eigenvalues all have negative real
parts. As the parameters of the system vary, an Andronov-Hopf bifurcation may oceur,
and the fixed point will become unstable due to the two eigenvalues (which crossed the
imaginary axis) having positive real parts after the bifurcation occurs. At the point
of an Andronov-Hopf bifurcation, a particular type of trajectory can appear in the
neighbourhood of the fixed point. This trajectory is called a limit cycle, which is an

isolated closed curve. Rotation along the limit cycle is periodic, and hence oscillatory
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behaviour is encountered.

Let us suppose that a., denotes the value of the parameter which corresponds to an
A-H bifurcation, such that for o« < a, the fixed point is stable. If the Andronov-Hopf
bifurcation is super-critical, then for o > @ the fixed point is unstable and a stable
limit cycle appears. If the A-H bifureation is sub-critical, then for oo > a, the fixed
point is unstable, and an unstablé limit cycle appears in the region where o < a.

Note that oscillatory behaviour can also arise when a saddle-node on an invariant
circle (SNIC) bifurcation occurs. In the latter case, the frequency of oscillations tends
to infinity near the critical bifurcation point. This type of bifurcation will not be
discussed at length here, as the thalamocortical circuit investigated was not observed
to encounter a SNIC bifurcation in the parameter space. However more details about
this type of bifurcation can be found in Kuznetsov (1998); Strogatz (1994).

Computational methods of finding bifurcations are often based on the center man-
ifold theory. This theory allows an n-dimensional system to be reduced to two-
dimensions, nearby of an Andronov-Hopf bifurcation point. This theory will not be
discussed here, but more details can be found in chapter 5 of Kuznetsov (1998). Based
on this theory, we can plot bifurcation curves of an autonomous system by exploring
the stability of equilibrium points. One way of doing this is to use an automated system
for bifurcation analysis such as LOCBIF (Khibnik et al., 1993). This package starts
by finding a fixed point in the system equations, and can then vary a single parameter
systematically whilst keeping all other parameters static. The parameter space can
be assessed in this way to find bifurcation points. If a bifurcation point is located, it
can be taken as the new starting point of the system. Through another procedure of
systematic parameter variations, this time varying pairs of parameters at a time, we

can define parameter sets which are critical for that bifurcation to occur. If this is done
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Figure 3.2: This figure shows a schematic figure of the two population excitatory-
inhibitory model which constitutes the Wilson-Cowan oscillator.

for an Andronov-Hopf bifurcation, the oscillatory regions within the parameter space
can be found. Hence, this can be used to analyse a given oscillating system, and fest

the robustness of this particular behaviour.

3.2.6 Previous population models of oscillations

A final step before presenting the results from the proposed model, is to consider ad-
ditional theoretical studies of oscillations. There are previous population-type models
which have investigated oscillatory behaviour arising in such networks. The simplest
of which is often referred to as the “Wilson-Cowan oscillator”, and this network con-
sists of an excitatory-inhibitory pair of interconnected populations, which Wilson &
Cowan based the derivation of their equations upon (see section 3.2.2). This network
is shown schematically in figure 3.2, and has been examined in the subsequent litera-
ture. One particular éxample is presented in Dayan & Abbott (2001), where this model
is analysed with specific reference to oscillatory activity. The authors discuss how the
existence of oscillations can be examined by linearising the system in the neighbour-
hood of a fixed point, as explained in the previous section (3.2.5). The dependence of
the dynamics on parameter values are then explored with reference to the eigenvalues

of the Jacobian matrix.
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The equations that Dayan & Abbott analyse are similar to the original Wilson-
Cowan equations, except that a threshold is used in place of a sigmoid function. The
parameters are set at initial values, and setting the right—hand side of the equations to
zero allows the authors to find the equilibrium points of the system of equations. They
therefore show that there exists a single equilibrium point. The authors maintain the
weight parameters at constant values and look at the effect of varying the tiine cons-t_ant
of the inhibitory population on the ‘activity. They present the “stability” matrix for
the system, which is equivalent to the Jacobian matrix defined in the previous section.
They describe how the eigenvalues of the Jacobian reflect the activity of the network,
such that if the real part of all of the eigenvalues are negative the equilibrium point
is stable. If the stability of the equilibrium point changes, a bifurcation occurs. By
examining the eigenvalues of this system, they show that increasing the time constant

. of the inhibitory population from its initial value causes the system to undergo an
Andronov-Hopf bifurcation, and display oscillations.

Dayan & Abbott go on to discuss a model of the olfactory bulb by Li & Hopfield
(1989). This model consists of a layer of inhibitory cells and a layer of excitatory
cells which are interconnected. There are ascending excitatory sensory inputs to the
excitatory cells, and top-down excitatory cortical inputs to the inhibitory cells. Li &
Hopfield represent this network by two coupled ODEs, and show that the oscillatory
behaviour seen in the olfactory bulb can be replicated by the dynamically changing
value of cortical innervation. These two previous studies clearly show how linearising
a system of ODEs near an equilibrium point yields useful information about the dy-
namic behaviour of that system. Both these examples used two coupled equations, and
therefore analysed a 2 by 2 Jacobian matrix.

The current model contains three populations, and therefore linearising in the region
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Re(x)

Figure 3.3: This figure shows the relationship between the real part of an eigenvalue,
and the weight parameter w2. The equilibrium point is unstable (Re(X)
is positive) if w2 is less than approximately 4.

of an equilibrium point gives a 3 by 3 Jacobian matrix. This is more complex to
determine and find trends for the eigenvalues with respect to the parameters. Therefore,
the current study used LOCBIF (see previous section) to numerically find the Jacobian
and its eigenvalues for equations 3.4 to 3.6. As LOCBIF calculates the eigenvalues at
each: point whilst varying one or two parameters, it is possible to observe the change
in dynamics as a change in the stability of the linearised system as done by Dayan &
Abbott (2001), and Li & Hopfield (1989). An example of this is shown in figure 3.3
where the real part of one of the eigenvalues changes from negative (indicating a stable
equilibrivin point) to positive (indicating that the equilibrium point has lost stability)
as the parameter w2 changes. This loss of stability is indicative of the occurrence of
the Andronov-Hopf bifurcation, and therefore oscillations. It is interesting to observe
the change in eigenvalues when examining a change in the activity of the model, and
therefore this theoretical approach will be used to alongside the experimental results

in section 3.3.8.

61




3.3 Résults

3.3 Results

3.3.1 Main result - a 7-14 Hz oscillation

As described in the previous section, the architecture of the model, involves & simple
thalamo-reticulo-cortical network (see figure 3.1) consisting of only three cell pop-
ulations: an excitatory cortical pyramidal cell population (PY cells), an inhibitorly
thalamic reticular cell population (RE cells), and an excitatory thalamocortical relay
cell population (T'C cells). Hence, the network is represented by three coupled differ-
ential equations (equations 3.4 to 3.6). The parameters, representing both the time
constants of each cell population and the weight of each connection, were set such that
the constraints outlined in section 3.2.4 were adhered to. These parameters were then
explored within the ranges permitted by these constraints, and oscillatory activity was
observed. At this point the model parameters were set at the values shown in table 3.1.
From here onwards this set of parameters will be referred to as the control parameters
for this model.

The oscillation cbserved had a frequency of approximately 10Hz, which is within the
spindle range of 7-14Hz. The activities of the three populations are shown separately
and on a single plot in figure 3.4. Figure 3.5 shows a close-up view of the activity, and it
is clear that the populations are almost in phase with one another. The peaks marked
by straight lines in figure 3.5 show that the populations are within 18ms of one another.
Previous studies have reported that cortical and thalamic activity during spindling, is
simultaneous within up to 100ms (Destexhe et al., 1998; Verzeano & Negishi, 1960).

This synchronous oscillatory behaviour seen throughout the thalamocortical net-
work is consistent with previous experimental (Contreras et al., 1996, 1997a) and mod-

elling studies (Destexhe et al., 1998, 1999). These earlier studies reported that the
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Parameter name | Value
T 20ms
T 20ms
T3 20ms
wl 12
w2 4
w3 14
w4 8
w3 10
P 3

Table 3.1: The table shows the parameters used in the spindles model. These pa-
rameters are in line with the constraints set by physiological studies, as
described in section 3.2.4.
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Figure 3.4: The model displayed robust oscillatory behaviour with a frequency of
approximately 10Hz. All populations oscillated at the same frequency
as shown here.

spindle oscillation is synchronised across cortical and thalamic cell populations, which
is attributed to the influence of cortical innervation of thalamic cells. Furthermore, in
the current model the TC cell population leads the oscillation. This is also consistent
with previous simulation results, as can be seen in figure 4 of Destexhe et al. (1998),
and figure 5 of Destexhe et al. (1999). This result also agrees with the idea that spindles

are instigated by “initiator” TC cells, as proposed by Destexhe et al. (1998).
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Figure 3.5: The oscillatory behaviour displayed by the three cell populations in the
model was almost in phase. The figure shows that their activity was
separated by less than 18ms overall (where response refers to Epy, Irg
or Erc).
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3.3.2 Bifurcation analysis results

This spindle rangé oscillatory activity was observed for a large range of parameter
values. Therefore, it was necessary to quantify the robustness of the oscillation with
respect to variations from the control parameters (shown in table 3.1). This was done
by using bifurcation analysis to investigate the differential équations that describe
the network (equations 3.4 té 3.6). An automated package called LOCBIF (Khibnik
et al., 1993) was used, which finds equilibrium points in the phase space of a system
of nonlinear differential equations, and investigates the effect of varying parameters on
the nature of such points, as described in section 3.2.5.

Through the use of this software, it became clear that oscillatory activity in the
model arises when an Andronov-Hopf bifurcation occurs in the parameter space. The
software can trace the curves of Andronov-Hopf points, which will be referred to as
bifurcation diagrams. In order to do this, the software first locates a single Andronov-
Hopf bifurcation point of the system whilst varying a single parameter and tracing
a curve of equilibrium points. The eigenvalues of the system are calculated at each
equilibrium point on the plotted curve. The eigenvalues at the critical point of an
Andronov-Hopf bifurcation, must fulfil the following requirements: the real parts of two
of the three eigenvalues are zero, and the imaginary parts {(of the same two eigenvalues)
-are equal and opposite. That is, they are a complex conjugate pair, with zero real part.
Therefore the software checks for the existence of such a point, by testing whether the

sum of a pair of purely imaginary eigenvalues is zero. These conditions are summarised
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in equations 3.10 to equations 3.12 below:

Ay = —if - (3.11)
M+Xd =0 (3.12)

Starting from the located Andronov-Hopf point, the bifurcation curves can then
be fraced as required. Two parameters are varied simultaneously, whilst all other
parameters are kept at control values (table 3.1). In this way, still using the condition
set out in equation 3.12, a curve of Andronov-Hopf bifurcation points can be traced.
All points on one side of such a curve represent a stable equilibrium and the points
on the other represent an unstable equilibrium. Depending on whether the bifurcation
is subcritical or supercritical, there either exists an unstable limit cycle nearby of the
curve on the side of the stable equilibrium, or a stable limit cycle on the side of the
unstable equilibrium. During the analysis of the model, the software reports that a
supercritical Andronov-Hopf bifurcation has occurred. Therefore, a bifurcation curve
separates the oscillatory region from the non-oscillatory region of the parameter space,
because there exists stable limit cycles near the bifurcation curve. Note that it is also
necessary to check the oscillatory regions by trial of parameter pairs, to investigate
whether the entire region is oscillatory, or if only regions near the curve are oscillatory.

Bifurcation curves for all combinations of the model’s connection weight parameters,
are shown in figures 3.6 and 3.7, and for the time constant parameters in figure 3.8.
Pairs of parameters within the regions were tested, and it was found that not al regions
were oscillatory. This issue is re-addressed in section 3.3.3, where it is shown that this is

due to the occurrence of another type of bifurcation. Generally, the plots show that the
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* parameters are not tightly confined around their control values. Hence, within feasible
parameter ranges the values can vary and the network will still produce oscillations.
This is an important consideration for the robustness of the result, showing that fhe
oscillations do not only occur for one fixed set of parameters, but for a flexible range
of values.

When- these plots are considered in more detail, a number of interesting features
of the model’s behaviour come to light, and the plots in ﬁgﬁre 3.6 show the most
interesting relationships between the model’s weight parameters. The time constant
plots show that oscillations are possible for a wide range of physiologically viable valies
of 75 and 73. However, this is not the case for =, which is the time constant for the
cortical pyramidal cell population. This can be clearly seen in the (r, 73) plot (figure
3.8(c)} where 7; is constrained to a value of less than approximately 22ms. This
suggests that pyramidal cells, which are believed to have a central role in the control
of spindling (see section 2.2), have a relatively restricted range for their time constant
parameter. Hence, the oscillatory behaviour in this model is dependent upon the
temporal properties of the cortical cells. This is consistent with the idea that PY6 cells
have an influence on the temporal properties of spindling, as reviewed in section 2.2.

w2 is the weight parameter of the TC to RE connection, and w3 mediates the PY
to RE connection. In the (w2, w3) parameter space, the oscillatory region is bound
by the w3 axis, as shown in figure 3.6(b). While w3 can take a reasonably wide range
of values, w2 is tightly constrained to be less than a value of approximately 5. w2
and w3 are the two excitatory inputs to the inhibitory RE population. The limited
range of values that these parameters can take shows a hecessity for a controlled level
of inhibition in the network. This plot also shows the dispensability of w2, as while it

is clear that w2 can be set to zero and oscillations are maintained, this is not the case
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for w3. This can also be seen in the (w2, w4) and (w2, w5) parameter spaces (figure
3.7). No other parameter is expendable in this way, and this is discussed in more detail
below.

The w2 parameter may also be rgsponsible for cOnstra,injl'lg activity in the (wl,
w2} parameter space. From figure 3.6(a) it is clear that w1l and w2, which represent
the strength of the excitatory conmnections from the TG pobﬁlation to the cortical
' PY‘and reticular RE populations respectively, are constrained to a relatively small
range of values. This indicates that the strengths of TC cell projections may play
a significant role in determining whether or not spindle oscillations occur. TC cells,
and therefore the strength of their projections, are modified during arousal through the
action of neuromodulators such as acetylcholine (Steriade et al., 1997). This cholinergic
innervation causes increased firing rates and greater excitability in the TC cells, and
therefore also in their cortical targets (Dossi et al., 1991; Steriade, 2000). Hence, it
may be that the increased excitation of TC cells and consequently of the cortical and
reticular cells, is a major factor in terminating spindling activity in the network during
the transition from sleep to awake states.

Related to this idea is the relationship that exists between the strength of the cor-
tical excitation of the RE cells, (w3 referred to as the corticoreticular projection) and
the strength of the RE cell inhibition of the TC cells (w4). The reciprocal relationship
between these parameters, which is necessary for maintaining oscillatory activity in
the model, is shown by the bifurcation diagram in figure 3.6(c). Therefore, the model
suggests that the hyperpolarising effect of cholinergic innervation of RE cells (Steriade
et al., 1997) which would decrease RE firing and therefore decrease the strength of
the reticular innervation of the TC cells (and so less w4), would need to be accompa-

nied by an increase in corticoreticular excitation in order for spindle oscillations to be
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maintained.

w4 and w5 represent the two inputs (from the RE and PY cell populations respec-
tively) to the TC cell population. The bifurcation diagram for the parameter space
defined by these two weights shows that they are not restricted a great deal with re-

spect to one another (figure 3.6(d)). Hence, relative to the control set of parameters

shown in table 3.1, w4 and w5 can take much bigger values compared to the rest of the-

parameters, and oscillations will be maintained (provided that the two parameters are
increased simultaneously). However for fixed w4, w5 is limited in the range of values
it can take. Hence the balance between these two inputs is important for the existence
of oscillations, such that too much cortical feedback to the TC cell population without
a corresponding increase in inhibition from the reticular cell population, would elimi-
nate spindling. This is related to the requirement for dominant inhibition, which was
discussed in section 2.2 in relation to previous studies, and will be dealt with below.

w1l and w5 are the two parameters that mediate the connections between the TC
cells in the thalamus and the cortical PY cells. wi is the feed-forward, TC to PY,
connection weight, and w5 is the feedback, PY to TC, connection weight. The (w5,
wl) parameter plot shows that for small positive values of w5, wl can be large (and can
be greater than the range shown in figure 3.6(e)). However, for a fixed value of wl, w5 is
constrained to a limited range of values. Similarly, for larger values of wb there is a tight
control over the range of values that wl can take. The reciprocal relationship between
these parameters indicates the importance of a balanced monosynaptic feedback loop
for spindling in the model, and therefore in the dynamics of the entire network.

A major theme to emerge from these results is that of balance. In several cases,
the two parameters represented within a plot impose some form of restriction on one

another. This concept of balance is crucial to the maintenance of the spindle frequency
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oscillation in the model, and indicates that though the parameters can vary, they can
only vary relatively to one another. This in turn implies that thers is a specific region
in the multi-dimensional parameter space where spindle range oscillatory activity is
maintained. This is expected as the oscillatory parameter space should be restricted
to physiologically acceptable ranges, and not encompass all pgssible values. This link
between the individual bifurcation plots and _:the expefiméntai data that Was pr-e'Sente‘d

in section 3.2.4, is discussed in detail in section 3.3.5 below.

3.3.3 Bogdanov-Takens bifurcations

The (w1, w3) parameter space contains a cross-over point. This feature is anomalous, as
it is inconsistent with the idea that the line of bifurcation separate oscillatory from non-
oscillatory regions of the parameter space. Furthermore, when surveying the parameter
space, it was clear that there existed regions of the parameter space that were Jabelled
oscillatory, though oscillations were not observed. This prompted further examination
of the system using the bifurcation analysis software, and it was found that a point
exists along some of the Andronov-Hopf bifurcation curves where the system undergoes
a Bogdanov-Takens (B-T) bifurcation. This means that the curve of Andronov-Hopf
bifurcation points comes into contact with a fold bifurcation and a saddle separatrix
simultaneously in the parameter space, see Kuznetsov (1998) for more information.
After this point, the Andronov-Hopf curve which the software identifies is no longer
a true line of bifurcation. The reason for this is that LOCBIF uses the condition in
equation 3.12 to test for the existence of an Andronov-Hopf bifurcation, i.e. that the
sum of two of the eigenvalues is zero. However there are three ways that this condition
can be-satisfied. Either by the two eigenvalues being a pair of complex conjugates with

real parts equal to zero, as the further two conditions in equations 3.10 and 3.11 specify.
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Alternatively, if a pair of the eigenvalues are real, equal, and of opposite sign they will
also sum to zero. Finally, the pair of eigenvalues can both be equal to zero to fulfil the
requirement. At a B-T point, the eigenvalues that were complex conjugates {on the
line of Andronov-Hopf points) become precisely equal to zero. After this point, the
pair of eigenvalues are real, with equal and opposite values. Hence, although L_OCBIF’S
requirement for an Andronov-Hopf bifurcation is met' along the curve, after 2. B-T point
the plotted curve is not a true line of Andronov-Hopf bifurcation.

Therefore, the region bound by the Andronov-Hopf curve after a B-T bifurcation
point is not necessarily oscillatory. The actual reductions in the oscillatory regions
which are shown in figure 3.6, were found by testing various pairs of parameters in
the vicinity of a B-T point to see whether they resulted in oscillatory behaviour or
not. The results are shown in figure 3.9. In the (w1, w2) plot in particular, this new
bifurcation results in a considerably smaller oscillatory area than the enclosed loop
of the Andronov-Hopf bifurcation curve. This area is reduced even further when the
w2 = 0 line is plotted, in order to exclude the region of negative parametfer space.
It is worth noting that wl and w2 represent the connections made by the TC cell
population onto the pyramidal and reticular populations respectively. As discussed
earlier, these connections may be important in the conformational changes that the
network undergoes in the transition from sleep to arousal.

Note that although a B-T point occurred in the (w2, w3) plot, it lies in the negative
region of w2 parameter space and is therefore not considered to affect the results here,
and is not shown in figure 3.9. Such occurrences of B-T points at negative parameter
values also happen in the time constant plots, and are also not shown here. Finally,
there was no occurrence of a B-T point in the closed curve of Andronov-Hopf points

in the (w3, wd) parameter space. It is important to note that despite the occurrence
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of this additional bifurcation, the relationships between the connection weights which

were discussed in section 3.3.2 remain valid.

3.3.4 Three dimensional considerations

The bifurcation curves shown thus far enclose the oscillatory regions in two-dimensiors
—of t_he parameter space, and therefore give an indication about the situation i;1 the.
multi-dimensional pafameter space. While it becomes increasingly difficult to consider
higher dimensions, it is possible to visualise the oscillatory regions in three-dimensions
by producing a given bifurcation curve for a pair of parameters while systematically
varying a third parameter. This analysis can show how the oscillatory region of two
parameters depends on a third. While it is superfluous to the aims of the current inves-
tigation to produce and analyse such plots for all possible combinations of parameters,
this analysis was done for two interesting cases. The results, shown in figures 3.10 and

3.11 indicate the following:

e w4 is the RE to TC connection weight, and this parameter manipulates the
(wi,w2) bifurcation curve by restricting the oscillatory region at values smaller
than its control value (of 8), and expanding the oscillatory region at values larger
than its control value. Considering the occurrence of B-T points along the bifur-
cation curves shows that this effect is perpetuated, such that at smaller values
the limit of the oscillatory region is very tightly constrained. At higher values
of w4, the oscillatory region is less constrained. Therefore, as the inhibitory
innervation of the TC population increases, the strength of TC innervation of
both the PY and RE populations can also increase while. oscillatory behaviour is

maintained. This is an interesting result, as it suggests that the inhibition of the
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Figure 3.9: Bifurcation curves in the parameter spaces of the following pairs of pa-
rameters: (a) wl and w2, (b) w4 and w5, (¢) w5 and wl, (d) wl and
w3, (e) wl and w4, and (f) w2 and w5. The plots show the reduced
oscillatory area due to the occurrence of a Bogdanov-Takens point. In
each plot, the dashed blue line shows the continued A-H curve beyond
the B-T point, and the red line shows the limit of oscillatory behaviour,
which was found by trial of parameter pairs.
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Figure 3.10: These figures show a representation of the three-dimensional parameter
space of w1, w2 and w4. The figures show how the (w1, w2) bifurcation
curve varies with w4, by displaying the (wl, w2) curve at different
values of w4, as shown in the legend. (a) shows the overall picture, and
(b) shows a detailed view including B-T points and limits of oscillatory
behaviour. Note that at wd=12 the limit of the oscillatory region goes
beyond the scope of the figure and therefore no line is shown,
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Figure 3.11: This figure shows a representation of the three-dimensional parameter
space of w2, w4 and P. The figure shows how the (w2, w4) bifurcation
curve varies with P, whose values are given in the legend.

TC cell popuiation by the RE cell population, is facilitatory for the existence of

oscillations.

e P is the parameter which represents the ability of the T'C population to rebound
from inhibition. Its control valueis three, and it was varied between two and four,
while the (w2, w4) bifurcation curve was plotted. It is clear that as P increases
the oscillatory region also expands. Primarily this indicates the importance of
the P parameter, because as P decreases the oscillatory region of the parameter
space decreases. w2 and w4 mediate the TC to RE and RE to TC connections
respectively. The increase in P is specifically accompanied by an increase in
the range of values that w2 can take. Therefore an increased ability of the TC
population to rebound from inhibition allows the TC population to have a greater

impact on the RE population, which is an intuitive result.
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3.3.5 Comparison to experimental results

If the bifurcation curves are directly compared to the experimental evidence given
in section 3.2.4, a number of interesting similarities are highlighted. Four pieces of

evidence from section 3.2.4 are referred fo here:

1. Castro-Alamancos & Calcagnotto (2001) showed tha the strength of feed-forward
thalamocortical projections out-weighs that of feedback projections. In the model,
these connections are represented by the weight parameters wl and w5 respec-
tively. In the (wb, wl) parameter plane, figure 3.6(e), the majority of the oscil-
latory parameter space lies in the region where wl>w5, and therefore the model

reflects this experimental result well.

2. van Horn et al. (2000) showed that the greatest number of synaptic contacts onto
T'C cells are cortical in origin. In the model there are two synaptic inputs into
the TC cell population, the RE input labelled w4, and the cortical input labelled
w5. The bifurcation curve in the (w4, w5) parameter space shown in figure 3.6(d)
does not appear to be consistent with this view. However, once the B-T point
is included in this figure, and the limited oscillatory region is taken into account
(figure 3.9(b)), it appears that most. of the oscillatory region is within the region

where wb>w4, and hence the model is consistent with the data in the literature.

3. Golshani et al. (2001) show that the strength of cortical feedback to RE cells is
stronger than that to TC cells. This relationship is examined in detail ini a later

section, where it is shown that the model also reflects this experimental result.

4. Finally, Wang et al. (2001) show that RE cells send most of their projections to

TC cells. In the model the RE population only projects to the T'C population,
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., Parameter Upper limit | Lower limit

wl 20% 3%
w2 10% 20%
w3 10% 20%
wd 20% 20%
wh 20% 5%

P 20% 3%

T 20% 20%
T2 20% 10%
T 20% 20%

Table 3.2: The table shows the upper and lower limits that each parameter used
in the model can take, while oscillatory behaviour is maintained in the
model. These limits are given as percentages of their control values,
which are shown in table 3.1.

and so this condition cannot be tested directly.

3.3.6 Individual parameter ranges

As shown above, LOCBIF allows investigation of the parameter space by manipulating
two parameters at a time. It is also useful to look at the range of values of a single
parameter, which allow the network to maintain oscillations. Therefore, these ranges
were explored between +20% of the control values shown in table 3.1. The limits for
each parameter are shown in table 3.2.

If £5% is considered to be the minimum accepted variability that a parameter can
have, then from the figures in table 3.2 there is one main result seen. That is that

P and wl are effectively at minimum values when they are at their control values (as
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shown in table 3.1). The P parameter represents an intrinsic property of the TC cell
population, which is required for spindling to occur (see section 3.2.1). That is the
ability of the TC population to rebound from inhibition. Without this parameter, as
soon as the TC population receives inhibition from the RE population, its activity
would be suppressed and therefore oscillations could not persist. This property is
directly comparable $o the ability of TC cells to fire post-inhibitory rebound bursts,
whiéh they do during.oscillatory behaviour Steriade et al. (1993); von Krosigk et al.
(1993). Hence the dependence of the model on its value is not surprising. wl is the
weight of the TC population to PY population connection, and this value also has to
exceed a minimum for the oscillations to persist. This demonstrates the importance of
the inclusion of the cortical population, and therefore of corticothalamic feedback in

supporting the spindle-range oscillatory behaviour in this network model.

3.3.7 Weight manipulations

Similar manipulations were performed to look at which connections in the network
could be spared while the network continues to oscillate. Each weight was set to zero
in turn, whilst keeping all others at their control level. It was clear that all connections
are essential for oscillatory behaviour to exist, except for the relay cell population to
reticular cell population connection. This has been discussed above in relation to the
bifurcation diagrams. To reiterate it seems that the T'C input to the RE cell population
is not vital for oscillations to exist in the model’s behaviour, whereas the RE input
to the TC population and the PY to TC input both are required. This is likely to
be because the TC to PY to RE pathway can compensate for the direct TC to RE
projection.

The bifurcation diagrams can also show whether oscillations remain when severed
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connections are compensated for by increasing other connection weights. If the weight
of the connection between the PY and the TC populations is set to zero, and no
other changes are made, the oscillations cease. However, if feedback is severed while
rthe TC to PY connection is increased to a value greater than approximately 43, then
oscillations remain. Hence, although the monosynaptic feedback loop is important for
os¢illations, one part of this loop can combensate for the other. In, this way, a -ba,la.nce
between the two major excitatofy pathways is apparent and is the only case where
such compensation can be seen.

The connection weights were not only set to zero, but also halved and doubled to
further examine the dependence of the oscillatory activity on the parameters. The full
resulfs are shown in figure 3.12. There were some particularly interesting ma.nipula-—

tions, which are highlighted here:

1. If either w3 (PY to RE comnection weight) or w5 (PY to TC) were halved,
the oscillation did not disappear entirely but was damped. This shows that
the cortical inpuf to both the TC and RE cell populations is important for the

preservation of oscillations.

2. If w2 (TC to RE), w3 or w4 (RE to TC) were doubled, the oscillation was not
abolished but was damped. This clearly indicates that too much inhibition is

perilous for the maintenance of oscillations.

3.3.8 The 5-dimension parameter space

Bifurcation analysis in two and three dimensions can- give a good insight into the be-

haviour of theé model with respect to the oscillatory regions of the five-dimensional
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Figure 3.12: This figure shows the effect on the oscillatory activity when each weight
parameter is put to zero, halved, and doubled. (2) wl, (b) w2, (c) w3,
(d) w4, and (e} w5. Note that the activity with control parameters is
also shown for reference.
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Figure 3.13: This figure shows the results of the simulations which examined the 5
dimensions of the parameter space. Each point in the figure is a point
where oscillations occur, plotted against the frequency of oscillations

at that point.

parameter space. However, as discussed previously this is a simplification of the re-
ality, as all five weight parameters interact dynamically to effect the behaviour of the
system. In order to understand how this occurs, the five-dimensional parameter space
was assessed by observing the activity of the network while all 5 weight parameters
were simultaneously varied. The visualisation of a 5-dimeénsional space is not straight-
forward, however figure 3.13 plots the points, from the 161,051 points tested, at which
oscillatory behaviour occurs.

Examining the regions where oscillations are not present shows that these points
often relate to unphysical regions of the parameter space with respect to the connec-

tivity of the network. For example, no oscillations occur during the first 29,559 points
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tested. These points relate to the parameter space where wl has not yet reached a large
enough value o allow for oscillations. This reinforces the results in section 3.3.7, which
showed that when wl was set to zero, oscillatory behaviour was no longer observed.
Throughout the rest of the points tested, oscillations appear to die away regularly,

which.can be seen in figure 3.13 as the recurring vertical spaces where no points are

plotted. The parameter values in these regions were studied, and it was found that the.

following relationships between weight parameters are important for the maintenance

of oscillations.

¢ BEach time that w3, wd and wb are reset to zero oscillations cease. This is under-
standable in terms of the model architecture, as all but two of the connections

(wl and w2) are severed at these points.

e There also exists a fine balance between w4 and w5, such that oscillations are
often inhibited if w5 becomes greater than w4. Some degree of “balance” between
these parameters can be seen in the two-dimensional bifurcation diagram (figure
3.6{(d)). Furthermore, although the bifurcation diagram including the B-T point
(figure 3.9(b)) shows that more of the oscillatory region exists where w4 is greater
than w5, the 5-dimensional simulations show the significance of this relationship

much more clearly.

¢ The simulations show that at a number of points where w5 becomes zero, oscilla-
tions do not cease if a particular relationship between wl, w3 and w4 is adhered
to. Figure 3.14(a) shows the values of these three parameters plotted in three-
dimensions, for all the oscillatory points where w5 is zero. These points form a
plane in the (w3, wd) space at wl=35. Figure 3.14(b) shows that w3 and w4 can

take almost any pair of values, with w3 always greater than 10. This relationship
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Figure 3.14: These plots show the relationships between the parameters (a) wl, w3,
and w4, and (b) w3 and w4, for all points where w5=0 and oscillations
continue.

would not be observable in two or three-dimensions, but in the five-dimensional

space it is possible.

Relating these observations to the theoretical analysis of the system, as discussed
in section 3.2.6, we can see the changes reflected in the eigenvalues of the system.
Recalling that an Andronov-Hopf bifurcation can be detected by the real part of at
least one of the eigenvalues becoming positive (Dayan & Abbott, 2001), it is possible to
use LOCBIF to plot the eigenvalue against the changing parameter value in a particular
region of interest. For example, figure 3.13 shows that oscillations do not start. to occur
until wl is large enough. The first point at which oscillations are observed, is when
wl=10, w2=0, w3=10, w4=15, and w5=10. Using LOCBIF to examine the eigenvalues
around this point, while varying w1 produces the plot seen in figure 3.15(a). This plot
shows that for wl less than 10, the eigenvalue has a negative real part, indicating that

the equilibrium point is stable and therefore no oscillations will occur. However, as wl
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Figure 3.15: This figure shows how the real part of one of the eigenvalues (A) in the
system changes as (a) wl, and (b) w5 and wl change for two specific
points.in the 5 dimensional space.

becomes greater than 10 the real part of the eigenvalue becomes positive, hence the
equilibrivm point is unstable and oscillations are possible.

A second example is when wb is zero, oscillations are possible at only one value
of wl. Looking at the eigenvalues in this case, as shown in figure 3.15(b), shows that
when w1 is at the desired value of 35, the eigenvalue becomes positive at w5=0 therefore
allowing oscillations at this point. However, at a different value of wl (in figure.3.15(b)
wl=25), the eigenvalue becomes real at approximately wi=1. Therefore the theoretical
analysis of the eigenvalues, as performed by LOCBIF, matches the simulations well.

Other interesting results to emerge from these experiments, are related to the fre-
quency of oscillations. The two horizontal lines in figure 3.13, show the limit of the
spindle frequency range. It is readily seen that most of the oscillatory points lie within
this range. However, there are oscillatory points which lie in the 2-5 Hz, and the 15-

30 Hz ranges. Such slow oscillations are related to paroxysmal activity, as discussed
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Figure 3.16: These figures plot the relationship between (a) wl and w5, and (b)
w2 and the remaining four parameters, for the points where the fre-
quency of observed oscillations is less than 6Hz, in order to observe any
correlations between these parameters.

below (section 3.3.9.1). The higher frequency range is called the beta band, which is
associated with concentration and perceptual awareness. These points were analysed
with respect to the parameter values which are required to cause the activity.

Figure 3.16(a) shows the relationship between wl and w5 when oscillations are in
the 2-5 Hz range. This figure shows no definitive relationship, although not all points in
the space are sampled, and it seems that there is a degree of balance required between
these two parameters as seen previously (see section 3.3.2). Figure 3.16(b) shows that
w2 is always relative-ly smaller than the other 4 parameters, and this is consistent with
the restricted range of w2 that was seen in previous sections.

For regions of the parameter space which result in 15-30 Hz oscillations, figure
3.17(a) shows that wl is in general large compared with the other parameters, while
once again w2 is small. wl mediates the connection from the TC cell population to

the PY cell population, and if beta oscillations are related to perception, then this is
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Figure 3.17: These figures plot the relationship between (a) wl, and (b) w2, and
the remaining four parameaters, for the points where the frequency of
observed oscillations is more than 14Hz, in order to observe any corre-
lations between these parameters.

consistent with a requirement for a strong feed-forward pathway through the thalamus.

The simulations in the 5-dimensional space have proven useful for the furfher un-
derstanding of the system, particularly when considering the effect of the parameter
changes on the changes in the eigenvalues of the equations. Furthermore the frequency
changes observed provide more insight into the behaviour of the model. This consid-

eration of frequency is considered in more detail in the next sections.

3.3.9 Frequency considerations

So far in this chapter, the parameter ranges that support the existence of oscillatory
behaviour have been shown, and these ranges are generally quite broad. An additional
consideration is whether the frequency of the oscillatory activity remains within the
7-14Hz range, while parameters are changing. There are two ways that we can assess

whether the frequency of oscillations is robust to parameter changes or not. The first
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is to try pairs of values within each parameter space and check the frequency at each
point. For almost all oscillatory regions of weight parameter space investigated in
this way, the oscillations remained within the spindle frequency range (7-14Hz). The
main exception is when w2<0, which is not physiologically meaningful. For varying
time constants this robust frequency value is also not maintained, and this is discussed
* below in more detail. 7

The second option for monitoring fi‘equency involves utilising LOCBIF further.
Whilst tracing bifurcation curves, it is possible to simultaneously monitor the frequency
of oscillations. As described above, while the curve is being traced the eigenvalues
are calculated at each point. As explained previously, two of the eigenvalues at an
Andronov-Hopf bifurcation are +44, and 3 is equal to the frequency of the oscillations
in radians per second. Therefore, if the frequency is required to remain within a range
of 7-14Hz, this relates to an angular frequency range of 44-88 rads™!. Therefore, the
value of this angular frequency (relating to the frequency around the limit cycle) can be
observed whilst tracing the bifurcation curves in order to assess how well the.oscillatory
parameter space represents spindle range oscillations. This analysis also showed that
within physically reasonable ranges of parameters, the frequency remains within the
spindle range of 7-14Hz. The exceptions are near B-T points where the amplitude of
oscillations tends to zero.

Investigation of the time constant parameter spaces are considered in more detail

below, by the manual trial of various pairs of parameter points.

3.3.9.1 Transition to a slow frequency oscillation

Simulations showed that modifying the values of 73 or 73 within the oscillatory range of

parameter values (as defined by the bifurcation curve in figure 3.8(c)) has little effect on
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the frequency of the oscillations, such that the frequency remains fairly constant within
the 7-14Hz spindle range. However with increased 7», the time constant for the reticular
cell (RE) population, the frequency of the oscillatory activity in the entire network
changes. In particular, for the case when 7 is increased from it’s control value of 20ms,
the frequency of oscillations is dramatically reduced. This change in nétwork activity
is illustrated in figure 3.18, where 7, is increased t0 60ms and the frequency dro.ps to
approximately 4Hz (exactly 3.90Hz in all three cell populations). It is proposed here
that this change in 75 is comparable to the pharmacological manipulation of thalamic
slices by application of bicuculline methiodide, a GABA 4 antagonist.

This manipulation has been carried out in a number of previous studies {for example
Bal et al. (1995a,b); Kim et al. (1997); von Krosigk ef al. (1993)). In Kim et al. (1997),
it was shown that the normal interaction of RE and TC cells in generating spindle
oscillations was disrupted by the application of bicuculliﬁe to their slice preparation.
Specifically, the bursting in RE cells was prolonged due to disinhibition from other RE
cells. This in turn resulted in the activation of slow bicuculline-resistant IPSPs in TC
cells. Application of a GABAg receptor antagonist resulted in the abolition of this
slow IPSP, confirming that these IPSPs are mediated by GABAp receptors. The IPSPs
mediated by GABA,4 and GABAg receptors wére also observed to differ significantly
in their delay to onset. Bursts of action potentials in single RE cells resulted in the
activation of GABA 4-receptor-mediated IPSPs with a delay to onset of <1 ms, whereas
the activation of prolonged burst discharges resulted in the activation of GABAp-
receptor-mediated IPSPs at a delay of 30 to 42 ms. Application of bicuculline therefore
resulted in the abolition of spindle wave associated IPSPs in TC cells, resulting in a
synchronised 2-4 Hz “paroxysmal” oscillation.

In the present model an equivalent manipulation to the application of bicuculline
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Figure 3.18: The oscillatory activity in the model shows a 4Hz frequency when the
time constant of the reficular cell populations is increased to 60ms.
Note that the frequency of oscillation is very similar in all populations,
and the populations are well synchronised.

93




3.3 Results

would have to slow the rate at which inhibition acts on the TC cells, in order to
mimic a slower (compared to normal) IPSP. This can be achieved by increasing the
time constant of the RE cell population, which therefore increases the time course
that inhibition acts over. Simulating the considerably slowed inhibitory effect of this
population on the TC cell population gives the result shown in figure 3.18, which
shows that the frequency is dramatically reduced. .This Was observed forl a range of
physiologically feasible increases in 7» (20 to 100ms) and the accompanying change in
frequency was measured and can be seen in figure 3.19(a). This figure demonstrates
that as 7 increases, the frequency rapidly decreases to around 2-4Hz, and that in this
range the frequency asymptotically approaches 2Hz.

Such slow oscillations are also identified by an increase in synchrony (Bal et al.,
1995b). In the Wilson-Cowan model, higher synchrony within a population can be in-
terpreted as a higher proportion of the population being active during the oscillation,
and therefore the amplitude of oscillation will be greater. Therefore, 7 was increased,
while the amplitude of the resulting oscillation was measured at each step. Figure
3.19(b) shows that as the oscillations become slower, they also become more synchro-
nised, which is consistent with experimental results. Thus the behaviour of the model
indicates that the transition from spindle to synchronised “paroxysmal” oscillations,
may be part due to the slower GABAg-mediated inhibition of the TC cells causing a

change in the nonlinear dynamics of the thalamocortical network.

3.3.10 Dominant inhibition

There has been some speculation in the literature regarding the importance of the
corticoreticular feedback connection, and it has been suggested that the strength of

this innervation compared with that from cortex to the LGN, must be greater for
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Figure 3.19: (a) The frequency of oscillations has a strong dependence on the time
constant of the reticular cell populations, as shown here. With increas-
ing 72, the frequency drops to around 2-4Hz. (b) The synchrony of
oscillations also has a dependence on the time constant of the reticular
cell populations, as shown here. With increasing -, the amplitude of
oscillations (and therefore the synchrony) increases steadily.
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Figure 3.20: The bifurcation diagram for the parameters representing the corti-
coreticular (PY to RE) projection, w3, and the corticothalamic (PY
to TC) projection, w5. Both the original Andronov-Hopf bifurcation
curve (a), and the curve including the Bogdanov-Takens point (b) are
shown. In (b) the dashed blue line is the continuation of the Andronov-
Hopf point following a B-T point, and the red line is the limit of the
oscillatory parameter space, found by trial of parameter pairs.

spindling to occur (Destexhe et al., 1998). As discussed in section 2.2, based on de-
tailed conductance-based modelling studies it was proposed that the conductance of
the AMPA-mediated cortical drive on RE cells must be substantially greater than that
on TC cells, in order for cortical stimulation to evoke spindle oscillations, and to repli-
cate a number of important features of this oscillation. The IPSP/EPSP sequence seen
in model TC cells was indicated by Destexhe ef al. to be consistent with several exper-
imental observations {e.g. those of Contreras & Steriade (1996)). To investigate this
idea further, the oscillatory region in the (w3, wb) parameter space was examined and
the results are shown in figure 3.20(a). In figure 3.20(a), the line of equality {(w3=w53)
is also plotted, and it is clear that much more of the oscillatory region lies in the space
which satisfies ws > ws.

Furthermore, this parameter plot indicates that the corticothalamic feedback has
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to be balanced in order for oscillations to continue. This is seen in the Shape of
the oscillatory region, which is a confained area. Therefore, corticothalamic feedback
cannot be increased without an accompanying increase in corticoreticular feedback.
Also for a given value of w3, w5 is very much restricted to a given set of values, and
this effect is enhanced once we consider the t-rue oscillatory region after identifying
a B-T point, as shown in figure 3.20(b). This is also con.sistent with the view that
¢orticothalamic feedback, both via the TRN and directly to the LGN, controls the
oscillations.

The idea of dominant inhibition was first suggested by Destexhe et al. (1998), when
they presented a number of models of spindling in the thalamocortical network. This
paper is reviewed in section 2.2 of chapter 2. The authors found that in order to achieve
the correct EPSP-IPSP pattern, which is required to generated rebound bursts and
therefore spindles, a large difference in AMPA-conductances between PY to TC and
PY to RE connections was needed. "This population model does not reflect the 20-fold
difference in AMPA-conductances between the TC and RE cells, as was implemented
in the model by Destexhe et al. (1998). However, this is understandable as the weight

parameters in this population model are not equivalent to synaptic conductances.

3.3.11 Synchrony of oscillations

Finally, to further investigate the role of cortical feedback in the model, the effect of
feedback on the synchrony of the oscillatory behaviour within the TC population was
investigated. Previous studies have proposed that the role of cortical feedback is to syn-
chronise activity within the thalamus during spindle oscillations, which was discussed
in section 2.2. Once more, higher synchrony is interpreted as a higher proportion of

the population being active, and therefore a greater amplitude of oscillation.
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Figure 3.21: To consider the effect of cortical feedback on the synchrony of oscilla-
tions, the plot shows the amplitude of the oscillatory response (which
is a measure of synchrony) varying with feedback weight. In all plots
w3 is kept constant at the level shown in the legend, while w5 is varied.
Each plot shows that synchrony increases with increasing feedback.

Figure 3.21 shows that increasing corticothalamic (w5) feedback strengths, while
corticoreticular (w3) feedback is kept constant, yields an almost linear relationship

between feedback and amplitude. Hence, the model supports the hypothesis that the

-effect of corticothalamic feedback is to increase synchrony within thalamic populations

during the spindle oscillation.

3.4 Discussion

The main result of this present chapter is that based on the simulations of a population

model, the thalamocortical network possesses an intrinsic oscillatory activity. With the
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weights of the connections set at values that reflect the relative strengths of the actual
connections in the brain, the frequency of this oscillation lies within the 7-14Hz spindle
range. Modelling spindling activity has previously depended upon the inclusion of
various currents, the most important of these being I (Deschenes et al., 1984), and I,
(Destexhe ef al., 1993). The model presented here depends only upon the dynamics of
the excitatory and inhibitory populations and connections within the circuit (W'ilson'
& Cowan, 1972), an this has been shown to be enough to sustain a natural oscillation.

The bifurcation curves, which display the Andronov-Hopf bifurcation points in the
various parameter planes of the system, clearly show that the oscillatory behaviour of
the network is robust to a range of parameter variations, which are consistent with
the biological constraints. Not only do oscillations occur for ranges of weight and
time constant parameter values, but the frequency of oscillations remains within the
spindle frequency range for almost all parameter values tried. The only exception to
this frequency robustness occurs with respect to 72, the time constant of the reticular
cell population. When this parameter increases the frequency of oscillations decreases,
and this effect is discussed below with specific reference to previous experimental work.

The bifurcation curves also show that in general, there must be a balance of con-
nection weights in the model if oscillations are to be maintained. Either reciprocal
or linear relationships between pairs of parameters can be seen in parameter planes
such as (wl, w2), (w3, wd), (w5, wl), (w4, w5) and (w2, w5). There is a range of
experimental evidence which has shown specific relationships between the connections
represented in the model. Therefore it is reasonable to see such relationships in the
model’s bifurcation curves, and the analysis shows that such relationships are reflected
by the model. In particular, the w2 parameter, which mediates the TC to RE con-

nection, is tightly constrained and can even be set to zero. It is hypothesised that the
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TC to RE -connection can be compensated for by the disynaptic loop through the PY
population. The importance of this disynaptic pathway can be seen in the (w1, w3)
bifurcation curve, which shows that the oscillatory region is tightly constrained to a
region where w3 (the weight of cortico-reticular feedback) is large compared to wl.

Other interesting results include the following: The (w1, w2) curve, which are the
output conhections of the TC populati.on, shows how the TC population may control
spindling in transitions between sleep and awake states via its innervation of the other
cell populations; w4 and w5 are the inputs to the TC populations, and the curve in their
parameter plane shows that they are generally not constrained, though again there is
some degree of balance required; The first of the three-dimensional plots shows that
increased inhibition of the TC population allows the TC innervation of the PY and RE
populations to act over a greater range of values; The second showed that the increased
ability of the TC population to rebound from inhibition allows the TC population to
have a greater impact on the RE population. Taken together these results show that
there are a number of interesting relationships between the model’s parameters.

These relationships also show how the model’s parameter choices can be validated
by bifurcation analysis. The curves reflect previous experimental results, which sug-
gests that the model’s behaviour is accurate. Due to the biclogical constraints as
discussed above, it is reasonable to assume that there is a specific region in the multi-
dimensional parameter space of the model which is oscillatory. Therefore, the fact that
both the two-dimensional and 3-dimensional plots show that the parameters constrain
one another is intuitive. The importance of the monosynaptic feedback loop, which
is mediated by the feed-forward wl, and the feedback w5 weight, is also reflected in
many of the bifurcation curves and is consistent with experimental results.

The control that is exerted over spindle oscillations by cortical feedback has been
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shown in previous studies, both experimentally (Bal et al., 2000; Blumenfeld & Mc-
Cormick, 2000; Contreras et al., 1997a) and in conductance-based models (Bal et al.,
2000; Destexhe et al.; 1998, 1999). Here this effect is highlighted in the (w3, w5) bifur-
cation curve, which shows that these two paths for cortical feedback must be balanced
in order for -oscillations to be maintained. Furthermore, feedback weights w3 and w5
also impose restrictions on other connection weights), which can be seen from the other
bifurcation curves involving w3 or w5.

The plot of the oscillatory region in the (w3, w5) parameter space further shows
that much more of the oscillatory region lies in the region where w3 is greater than
wd. This agrees with the idea that the PY-RE connection needs to outweigh the PY-
TC connection in order to achieve spindling (Destexhe ef al., 1998). This idea has
emerged from previous modelling studies using conductance-based models. However,
this population level model also indicates that a similar mechanism is at work, at the
level of the nonlinear dynamics of the network.

A specific role for corticothalamic feedback in spindling has been previously pro-
posed. The massive feedback projection from the cortex to the thalamus has been
hypothesised to be responsible for synchronising the activity during oscillatory be-
haviour. The current model also shows that if feedback to the LGN is outweighed by
that to the TRN, then as feedback increases so does the amplitude of oscillations. With
the modelling paradigm used here, a greater amplitude of oscillation is a direct indica-
tion of a larger number of simultaneously active cells, and therefore higher synchrony
within populations. Hence, the results support the suggestion that corticothalamic
feedback synchronises oscillatory activity in the thalamocortical network.

The 5-d parameter manipulations proved to be extremely insightful, particularly

when examining the eigenvalue changes at the same time. Although the visualisation
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of all 5 of the weight parameters changing simultaneously is not easy to achieve, the
results clearly reflected the relationships identified in. the bifurcation diagrams in less
dimensions. Relating the results to the changes in the eigenvalues reinforced the the-
oretical analysis, and supported the use of LOCBIF for numerically determining the
eigenvalues of the system. Furthermore, the changes in the oscillation frequency pro-
vide a further insight into the thalamocortical network, showing that the speeding up
of oscillations into the attentive beta range is associated with a strong feed-forward
thalamic projection into the cortex.

The slowing effect of the reticular time constant is comparable to that seen when
bicuculline methiodide is applied to thalamic slices (e.g. by von Krosigk et al. (1993)).
Bicuculline blocks GABA 4 receptors in the LGN, therefore GABApg-mediated inhi-
bition becomes dominant. Therefore, inhibitory inputs from the TRN induce slower
IPSPs in TC cells, which was observed to result in spindles being transformed into slow
paroxysmal 3-4 Hz oscillations. In the model, reducing 7 means that the inhibitory
effect of the RE cell population acts over a longer time scale, and is therefore consistent
with the effect of the application of bicuculline. This manipulation causes a slowing of
the oscillation frequency to a similar 2-4Hz range. Furthermore, the synchrony within
the T'C cell population also increases as the frequency decreases, which is also consis-
tent with previous findings (Bal et al., 1995b). It is interesting that the transformation
of spindles into slow, synchronised oscillations is replicated in this population model.

It is clear that in the circuit all included connections bar one are essential for the
maintenance of oscillatory behaviour. Therefore the model does not support the exper-
imental evidence, which shows that spindles exist in thalamic circuits. However, the
model does not attempt to explain the generation of spindling, but to consider whether

the thalamocortical network can support spindles which have been generated by ionic
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interactions in the thalamic circuit. In addition, P is required to be greater than zero
in order for the oscillations to exist. Therefore the included architecture of the model
is validated by this result. The spindle frequency oscillation is not dependent on the
TC-RE connection, which is inconsistent with the known circuitry of the thalamus, and
with previous studies showing that disconnection of TC cells from RE cells abolishes
spindling in thalamic slices (von Krosigk et al., 1993). However, in the model it is
likely that the lack of direct excitation from the T'C cell population is compensated
for by indirect excitation from the PY cell population. This compensatory pathway
would not be present in the experiments as they were performed in thalamic slices, i.e.
disconnected from the cortex.

In the current model, the existence of spindling is dependent upon the presence
of the cortical population. This is not the case in the real system, as it has been
shown experimentally that thalamic slices exhibit spindle oscillations in absence of the
cortex (for example see von Krosigk et ol (1993)). The current model does not of-
fer an alternative mechanism for the generation of spindling, as this phenomenon and
its generation by the intrinsic properties of the RE and TC cells and their reciprocal
connections is well established and fully described in previous experimental and mod-
elling literature (for example Bal et al. (1995b); Steriade ef al. (1993); von Krosigk
et al. {1993)). Instead, the present model is used to investigate whether a model of the
nonlinear population dynamics in thalamocortical network possesses a robust oscilla-
tory activity in the spindles range; and therefore whether the structure of the network
contributes to the maintenance of this behaviour once it is generated by the TC-RE
network. Therefore, the necessity for the inclusion of the cortical population indicates
that the cortex is involved in this maintenance of the oscillatory activity.

The approach used here is an extremely simplified one, such that iénic properties
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are not explicitly represented by the model. Therefore this model fails to fully rep-
resent characteristics of spindle oscillations, such as waxing-and-waning. However, as
discussed in chapter 6 extensions fo the current model could involve including ionic
neuronal properties, and would be interesting future work. Furthermore, each Wilson
& Cowan equation represents a homogenous population of neurons with no spatial
dimension. In reality, neurons in any given group are not perfectly identical and there- -
fore the condition of homogeneity does not hold. As discussed in chapter 6, section
6.4.1, although homogeneity within a population of neurons is not perfect, within a
localised region of a specific brain area, one can assume that neurons of the same type
are similar.

The lack of spatial differentiation means that interesting phenomena such as the
effect of cortical feedback on the synchrony of spindling between TC neurons across
a region of thalamus cannot be measured, as done experimentally (Destexhe et al.,
1999). These limitations are important to understand, as they effect the questions
that can be answered using such a representation. Therefore, this model should be
considered as a tool in understanding thalamocortical spindling, which should be used
in conjunction with other models, and experimental data. As the aim of this study
was to investigate the oscillatory capabilities based on the dynamics of this simple

thalamocortical network, this approach was well suited to address the hypothesis.

3.5 Summary and contributions

Using a population-based model of the thalamocortical network, it has been shown
that the nonlinear dynamics intrinsic to this feedback circuit instil an ability to sup-

port oscillatory activity in the 7-14Hz spindling frequency range. The architecture of
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the network is the simplest possible representation of the thalamocortical loop; a TC
cell population, a cortical population and a reticular cell population. The connections
between these populations were only included if they have been observed experimen-
tally. The parameters for the network were also determined from experimental data,
and the dependence of the network activity upon these parameters was evaluated using
bifurcation analysis. This analysis indicated that the oscillatory activity in the 7-14Hz
range is a robust property in relation to the model parameter space. However, it has
also shown how a few parameters, relating either to specifi¢c connection strengths be-
tween populations or to the activation time constants for specific populations, exercise
a close control over both the existence and frequency of the network oscillations. In
this way, the results show a remarkable consistency with both experimental results and
with results from other modelling studies, which used conductance-based models and
emphasised the intrinsic membrane properties of the cells involved. A major predic-
tion of the model is that the switch from normal spindle (7-14 Hz) to paroxysmal (2-4
Hz) oscillations may be a result of the change in the inherent thalamocortical circuit
dynamics. This change is caused by the switch from a mainly GABA s-mediated to a
more slowly activating, GABAg-mediated inhibition of the TC population by the RE
population. The study of population-based models of neuronal networks may have par-
ticular value in neuroscience, since such models emphasise the importance of nonlinear

dynamics in network behaviour.
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Chapter 4

A model of receptive fields in the Lateral

(Geniculate Nucleus

4.1 Introduction

The hierarchy of the mammalian visual system has formed the basis of our understand-
ing of visual processing, as well as being the foundation of most of the research in this
area, for decades. However this hierarchical rule, which predicts that at each subse-
quent step through the visual system the level of processing should become increasingly
complex, is broken as early as at the lateral geniculate nucleus (LGN), the primary vi-
sual nucleus of the thalamus. The thalamocortical (TC) relay cells of the LGN receive
their driving input (as defined by Sherman & Guillery (1998)) from retinal ganglion
cells. In turn, they send driving projections directly to the primary visual cortex (V1).
TC cells have receptive field (RF) structures that are almost identical, in spatial terms,
to those of their retinal inputs (Bullier & Norton, 1979; Hirsch, 2003; Hubel & Wiesel,
1961; Kufller, 1953). In fact, the only reported difference is an increased inhibitory
effect of the surround (Hubel & Wiesel, 1961; Levick et al., 1972; Singer & Creutzfeldt,
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1970; Solomon ef al., 2002). Therefore there appears to be no significant increase in the
level of complexity of the thalamic RF's, which clearly challenges the idea of hierarchy.

Furthermore, TC cells in the LGN receive only 7% to 12% of their synaptic inputs
from retinal sources (Montero, 1991; van Horn et al., 2000). In contrast, TC cellsreceive
feedback projections originating from excitatory cells in layer 6 of V1 which constitute
approximately 30% of their inputs (Montero, 1991; van Horﬁ et al., 2000). It has
been proposed in earlier studies that cortical feedback modulates thalamic responses
(Destexhe, 2000; Montero, 1997; Rivadulla et al., 2002), but the specific role of this
input in sensory processing remains something of a mystery. Intuitively the magnitude
of the cortical innervation suggests that the responses of thalamic TC cells should
be driven by their cortical inputs as well as their retinal inputs. However, thalamic
static responses to visual stimuli do not agree with this view, as they almost precisely
replicate those responses seen in the retina (Bullier & Norton, 1979; Hirsch, 2003; Hubel
& Wiesel, 1961; Kuffler, 1953).

However, when the temporal response properties of TC cells are considered, they
tell a different story. The mapping of spatiotemporal receptive fields (STRFs) using
a technique called reverse correlation (Jones et al., 1987), has been an important tool
in visual neuroscience for some time (for a review see DeAngelis et al. (1995)). For
example, Cai et al. (1997) mapped the time-varying structure of TC cell receptive fields.
STRFs have also been mapped in earlier studies using different experimental paradigms
(Bullier & Norton, 1979; Stevens & Gerstein, 1976; Wolfe & Palmer, 1998), particularly
the response plane technique (also reviewed in DeAngelis et al. {1995)). The results
of Cai et al. (1997) confirm that TC cells do have a spatially concentric receptive field
structure that is almost identical to those of retinal ganglion cells. However, they also

show that this-spatial structure reverses in polarity over time.
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Cai et al. stimulated cat LGN TC cells with continuous sequences of bright and dark
bars, which were presented at randomly selected positions across a cell’s receptive field.
Bach time a cell fires a spike, the authors look backwards in time t6 find the stimulus
(position and polarity) which triggered that spike (within a given time interval). The
stimulus histogram is incremented at that spatial position, and separate histograms
for light and dark stimuli are constructed. The final step involves subtracting the
dark histogram from the light histogram to yield a composite STRF. This process is
schematised in figure 1 of Cai ef al. (1997), which is reproduced here in figure 4.1.
These measured STRFs were shown to be biphasic in time, such that an ON-centre
cell is bright-excitatory (in response to a stimulus presented in the centre of its RF) in
the first phase of its response, and in the second phase the cell is dark-excitatory.

This time-varying property of TC cell phase preference, was also observed by (Reid
et al., 1997). These authors also performed a reverse correlation study, in this case
with m-sequences, to estimate the RF structure of an OFF-centre Y cell in the cat
LGN. As reviewed by Ringach & Shapley (2004), an m-sequence is a stimulus that is
often used in reverse-correlation studies, and is effectively a “string of -1’s and 1's”,
which approximates white noise. Reid ef al. recorded what they called a “seemingly
paradoxical feature of the receptive field”, that the RF centre exhibits light-excitation
at delays longer than 39 ms, peaking at around 65 ms. The expected dark-excitation
was observed within a latency of 7.4 ms, peaking at ~22ms.

In both of these studies, a TC cell responds as expected in the first ~ 50ms post-
stimulus, but will produce the response expected from a cell of the opposite polarity
in the subsequent ~ 50ms. This is depicted in figure 4.2, which shows a typical ON-
centre TC cell STRF as measured by Cai et al. (1997). A study which followed Cai

et al. and Reid et al. measured the responses of connected retinal and geniculate

108




4.1 Introduction

Spike Train ==+ Time

T F‘r——

/ Stimulus Sequence

Stimulus

TR
¥

+1 il
BEREIE T

Bright

Bright - Dark

Figure 4.1: This figure is reproduced from Cai et al. {1997), and shows the reverse
correlation algorithm which was used in that study in order to find the
spatiotemporal receptive field structure of geniculate relay cells.
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cells by an identical reverse correlation method (Usrey et al, 1999). This was the
first study to simultaneously use reverse correlation to measure the STRFs of pairs of
monosynaptically connected retinal ganglion cells (RGCs) and TC cells.

Usrey et al. found that RGCs and TC cells both display a biphasic temporal re-
sponse as shown previously (Cai et al., 1997; Citron et al., 1981; Reid et al, 1997):
However, they also show that the second phase of the TC cell response has a larger
amplitude than that of the retinal response, when normalised with respect to the ampli-
tude of the first phase. In some cases the amplitudes differed by three-fold. Therefore,
although retinal inputs are in part responsible for the formation of TC temporal re-
sponses, this study highlights the fact that thalamic responses differ significantly from
those of their retinal counterparts. This mismatch is not explained by Usrey et al., nor
in the subsequent literature.

One plausible explanation for the difference in the magnitude of the thalamic and
retinal second-phase, is that the increased late dark-excitation exhibited by ON-centre.
TC cells (or the light-excitation by OFF-centre cells) is an offset response. That is, an
excitatory response to the bright stimulus being switched off or leaving the receptive
field. Considering the latencies involved allows the investigation of this proposal. Bair
et al. (2002) recently made measurements of onset and offset responses in the LGN
of macaque monkey. The results show that the latencies of offset responses are in the
range of 18-27ms. Previous studies made in cat LGN, found the offset response to have
a mean of 38ms (Mastronarde, 1987). Cai et al. (1997) used stimuli that were 13ms
long, and the peak of the dark-excitation that Cai et al. measure occurs between 60-
100ms. Therefore the biphasic response of Cai et al. occurs in the period of time after
an expected offset response would be observed. Therefore, the mechanism underiying

the appearance of this biphasic response remains unknown.
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Figure 4.2: This figure, which is reproduced from Cai et al. (1997), shows a typi-
cal spatiotemporal receptive field of an LGN relay cell. The cell, which
is classified as an ON-centre cell, shows the expected centre-surround
receptive field at 25 ms post-stimulus onset. However at 60ms this re-
sponse has reversed in polarity over time.
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Therefore the retinal input to TC cells determines their spatial centre-surround re-
ceptive fleld properties, and to some extent accounts for the formation of the biphasic
temporal receptive field. However, it is not clear what purpose the numerically large
cortical innervation of TC cells serves. This poses a particular conundrum as corti-
cothalamic feedback is specific with respect to a number of cell properties, as discussed
in chapter 1, section 1.2.1. The most interesting of these properties are topography,
cortical orientation preference (Murphy et al., 1999), and phase preference (Wang et al.,
2004). Given that the results of Cai et al. (1997) are related to the phase properties
of TC cells, it is logical that if feedback has an effect on thalamic temporal receptive
fields, the phase relationship will be of particular importance. Wang et al. (2004) per-
formed paired, in vivo recordings in the cat LGN and V1. Their results, which are
based on the changes in firing mode of TC cells when the gain of the cortical feedback
is manipulated, indicate that a cortical cell with a given ON or OFF preference di-
rectly feeds back to thalamic cells that have the opposite central phase preference. In
the present work, a population-level model of the thalamocortical feedback circuit was
constructed in order to investigate the influence of such anti-phase cortical feedback
on thalamocortical cell response dynamics and receptive fields. It is hypothesised that
this property plays a major role in the formation of thalamic temporal responses, and
in particular in the strengthening of the second phase, therefore accounting for the
difference between TC cells and RGCs measured by Usrey et al. (1999).

As described previously in section 1.2.2.2, Ghazanfar et al. (2001) proposed that
cortical feedback is intimately involved in the formation of temporal responses in rat TC
cells. The authors investigated the effect that inactivating the somatosensory cortex
(SI) has on thalamic responses. They proposed that the early response displayed by

VPM neurons arises from ascending inputs plus the disynaptic pathway from the SI
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cortex via the TRN, while the late phase arises due to direct SI innervation of the VPM.
Hence, they provide empirical evidence that corticothalamic feedback contributes to
the temporal RF structure of TC cells. It is intended that theoretical evidence in
support of this experimental study will be obtained in this part of this thesis.

As for the spindles model presented in th;e previous chapters, the Wilson-Cowan
equations were used to create an extended population model of the thalamocortical net-
work (Wilson & Cowan, 1972). Such models allow the analysis of the network behaviour
in terms of the dynamics of the connectivity. The model network’s architecture is de-
scribed in section 4.2.1, and is based solely on connections that have been biologically
proven to exist. A recent study by Casti et al. (2002) investigated a population-level
model of LGN cells, but this was based on a population of integrate-and-fire-or-burst
neurons, and is theréfore at a higher level of complexity than that of the Wilson &
Cowan equations. Here only spatial receptive fields are applied through the connec-
tivity, and therefore the effect that the network dynamics have on temporal response
properties can be defermined. In the subsequent sections the model is described in de-
tail, in particular the equations, architecture, and receptive field properties. Following
this, the results of simulating this model are presented and discussed. It is shown that
this network allows the thalamocortical relay cell populations to display temporal re-
sponses consistent with those observed experimentally, only when feedback is arranged

in anti-phase.
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4.2 Methods

4.2,1 Architecture of the receptive field model

In the sensory thalamocortical network there is evidence for a topographic mapping
of connections (Sherman & Gullery, 2001), hence this rule was the underlying premise
for specifying the model’s architecture. The model involves a feedback loop between
the TC cell populations of the LGN and the excitatory cell populations in layer 6 of
the primary visual cortex (Amitai, 2001; Kaplan, 2004; Thomson & Bannister, 2003).
This is the main component of the thalamocortical network that will be examined. The
excitatory cortical cell populations receive inputs from the TC cell populations in order
to form receptive fields that consist of three elongated subregions, a central subregion
of one polarity flanked by two subregions of the opposite polarity. This receptive field
connectivity is described in detail in section 4.2.4. In total the model contains four
types of excitatory cortical cell populations: (1) horizontal ON, (2) horizontal OFF,
(3) vertical ON, and (4) vertical OFF cell populations. The orientation refers to the
preferred orientation of the cell population (as determined by the connectivity), and
the ON or OFF refers to the polarity of the dominant central subregion.

In addition, there is the involvement of the thalamic reticular nucleus (TRN). As
described previously in section 3.2.1, the TRN receives collaterals from both thalamo-
cortical and corticothalamic projections, and sends its own projections to the TC relay
cells (Liu & Jones, 1999; Wang et al., 2001). Theré are also inhibitory interneurons
present both in the cortex and the LGN, and such local inhibitory interneurons are
assumed to be essential to normal neuronal functions. Similar architectures have been
represented in previous models of the thalamocortical network (Bal et al., 2000; Bickle
et al., 1999; Destexhe, 1999; Destexhe et al., 1998; Hayot & Tranchina, 2001; Kirkland
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et al., 2000; le Masson-et al., 2002; Suffczynski et al., 2001; Terman et al., 1996), al-
though these previous studies usually neglect one or other of thé inhibitory thalamic cell
classes. However, as these two separate sources of inhibition in the thalamus have been
postulated to serve distinct roles (Uhlrich & Cucchiaro, 1992), both were included in
the current model. This anatomical connectivity is summarised schematically in figure
4.3.

The specific connectivity of the model can be seen in figure 4.4. This figure shows
the connections between all cell types except the detailed structure of the inputs to
the T'C cell populations, which are shown separately in figure 4.5. Note that figure 4.5
shows the feedback connections arranged in anti-phase, which is the first of the three
feedback arrangements that are examined in this model (see below and section 4.2.5
for more details). The connections are arranged so that populations are retinotopically
connected. More specifically, many of these are point to point connections. The main
exception is the connection between TC cell populations and cortical cell populations,
where nine TC cell populations feed into each cortical cell population (except at the
boundaries of the layers). This is due to the method adopted for the feed-forward
formation of layer 6 cortical cell population RFs, which is explained in detail in sec-
tion 4.2.4. In a number of cases, a presynaptic population is also connected to its
retinotopically nearest neighbours in the postsynaptic population.

Between all cell populations of the same type, except the TC cell populations,
there are horizontal nearest neighbour connections. Within thalamic nuclei no such
horizontal connections between TC cells have been found (Contreras et al., 1997b),
and were therefore not included. In cortical excitatory layers and the RE layer there
are also next to nearest neighbour connections. This is because there is evidence for

long-range horizontal connectivity between the pyramidal layer 6 cells (Bolz & Gilbert,
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Figure 4.3: This figure shows the anatomical connectivity of the TC feedback net-
work based on the physiological data from the literature. This figure
presents the cell types and connections that were included in the archi-
tecture of the receptive field model. Excitatory connections are labelled
by a triangular arrowhead —, and inhibitory connections by a circu-
lar arrowhead —e. Note that PY6 = Layer 6 cortical pyramidal cells,
IN6 = Layer 6 cortical interneurons, RE = cells of the thalamic retic-
ular nuclens, TC = thalamocortical relay cells, and TIN = thalamic
interneurons.
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Figure 4.4: This figure shows the detailed connectivity between the populations in
the model. In each of the PY6, ING, and RE layers there are 20 pop-
ulations of each cell sub-type. The TC and TIN populations have 40
populations to allow for 20 ON-centre and 20 QFF-centre populations.
The details of the connectivity can be found in the main text.
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Figure 4.5: Detailed connectivity of the inputs to the TC cell populations. PY6
populations innervate a row of TC cell populations, which are parallel
to the orientation preference of the PY®6 cell population. This is con-
sistent with the findings of Murphy et al. (1999). Thalamic inhibitory
inputs from RE and interneuron populations come from retinotopically
matching and nearest neighbour populations.
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1986; van Brederode & Snyder, 1992). For the reticular cell populations, this is because
horizontal connections have been proposed to have functional significance (Sherman &
Gullery, 2001).

Studies have shown that TC cell to cortical cell connections join cells of the same
phase type {Alonso et al., 2001; Alonso, 2002). This means that an ON-centre TC
cell will feed forward to an ON dominant cortical cell. This idea is also a major
factor in the Hubel and Wiesel model for the formation of cortical receptive fields
(Hubel & Wiesel, 1962), and consequently this strategy was adopted in the current
model. However, a recent study by Wang et al. (2004) suggests that this in-phase
connectivity may not be maintained for feedback connections. The authors initially
propose a number of connectivity patterns that may be present between the thalamus
and the cortex. Their experiments measure the change in thalamic firing mode when
cortical feedback is focally enhanced. With enhanced feedback, the authors report that
a larger proportion of TC cells increase the burst/tonic ratio, compared to those with a
decrease in burst/tonic ratio. As burst firing requires hyperpolarisation to activate the
Ip current, it is proposed that feedback must either occur between the same polarify
cells via an inhibitory interneuron, or between cells of the opposite polarity. Figure
4.6 shows the proposed circuitry, from Wang et al. (2004), for clarification. That is,
when a TC cell receives input from the visual cortex it comes from a cell which has
the opposite ON/OFF phase preference. Thefefore, three feedback architectures of
the model are investigated: one containing anti-phase feedback, one without cortical
feedback, and one with in-phase feedback. The STRF results shown in section 4.3.2
were produced for these three model architectures.

In summary, there are 5 main cell types (and a total of 10 sub-types) represented

in the model. There are 20 populations of each sub-type, therefore there is a total of
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Figure 4.6: This figure shows the circuitry which the results from Wang et al. (2004)
suggest exists between the thalamus and the cortex. A given ON cen-
tre TC cell is shown at the bottom of the figure, and this cell receives
feedback either directly from a cortical cell of the opposite polarity or
indirectly from a cell of the same polarity via an inhibitory interneu-
ron. This connectivity pattern is termed anti-phase or phase reversed
feedback.
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200 cell populations:

1. Layer 6 cortical pyramidal cells in four sub-types, called PY6 cell populations:
horizontal ON cell populations, horizontal OFF cell populations, vertical ON cell

populations, and vertical OFF cell populations.
2. Layer 6 cortical inhibitory interneurons, called IN6 cell populations.
3. Cells of the thalamic reticular nucleus, called RE cell populations.

4. Thalamocortical relay cells in the LGN, called T'C cell populations: ON-centre

populations, and OFF-centre populations.

5. Inhibitory interneurons in the LGN, called TIN cell populations: ON-centre pop-

ulations, and OFF-centre populations.

4.2.2 The Wilson-Cowan equations

As hefore, the Wilson-Cowan equations for the nonlinear dynamics of neural popu-
lations were used to represent the thalamocortical network described above (Wilson
& Cowan, 1972). The equations for each of the five main cell types are presented in
equations 4.1 to 4.5. Whilst only one of each connection type appears in the equations
shown here, there may be more than one connection from a given type of presynaptic
cell population innervating the postsynaptic population, as described in the previous
section (section 4.2.1) and as shown in figures 4.4 and 4.5. Note that both TC cell

populations and TIN cell populations receive retinal input (Sherman & Gullery, 2001).
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In summary, the main features of the Wilson & Cowan model are as follows:

(4.2)

(4.3)

(44)

(4.5)

1. The functional variable is the fraction of cells in a population that are firing per

unit time, at time t. For example, Epysg, or Iyyvs.

2. The model ignores spatial interactions within populations and deals only with

the temporal dynamics of that population.
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3. The strength of the connection from a given presynaptic population (Pre) to a

postsynaptic population (Post) is denoted by wPrePost.

4. The functions Z,(z) (where p=i for inhibitory populations or p=e for excitatory
populations) are called the response functions. These represent the proportion of
cells firing in a population for a given level of input activity . They are defined

by equation 3.1 in chapter 3.

4.2.3 The choice of parameters

In equations 4.1 to 4.5, as described previously in section 3.2.2, each of the parameters
7 represents the time constant of the change in the proportion of non-refractory cells
which are firing in a population, in response to the change in the average membrane
potential activity of the cells. As before, experimental data from the literature was
used to determine the range of values that these parameters could take. For TC cells,
the observed range 7 is 5 to 64ms (Turner et al., 1997; Ulrich & Huguenard, 1996); for
RE cells it is 13 to 53ms (Landisman et al., 2002; Ulrich & Huguenard, 1996); for TIN
cells, membrane time constants as high as 94ms have been reported (Zhu et ol., 1999);
for cortical cells the range is within 7 and 22ms (Anderson et al., 2000; Hirsch et al.,
1998, 2002). Therefore, the time constants were chosen to be within these ranges.
The weights of each connection type also need to be defined, and once more there
is a great deal of evidence from physiological experiments that can be used to deter-
mine the relative connection strengths, for example the number of synapses mediating
a connection, or the efficacy of synaptic transmission between populations. For the
current study the evidence described in section 3.2.4 was used in partnership with

the additional following data: thalamic interneurons receive their greatest number of
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synaptic inputs from retinal sources (van Horn ef al., 2000); the strength of thala-
mocortical innervation is greater than the intra-cortical innervation of a cortical cell
(Amitai, 2001; Beierlein & Conmnors, 2002); there is a larger number of intra-cortical
connections compared with thalamocortical connections '(Usrey, 2002); the fact that
RE cells send most of their outputs to innervate TC cells (Wang et al., 2001). The

selected parameter values were chosen to reflect the above findings as described below.

4.2.4 Receptive field structures

The aim of this model was to look at the effect of cortical feedback on the temporal
receptive field properties of thalamic celis. By imposing only spatial recéptive fields,
the effect of network dynamics on the arising temporal responses can be examined.
Therefore, it was assumed that the visual field is a 2-D space uniformly divided info
pixels, and each TC and TIN (Dubin & Cleland, 1977) cell population receives input
from a 4x4 pixel portion of the space. A centre-surround receptive field is created by
taking as input to the population the sum of 4 central pixels and the 12 peripheral
pixels. For an ON-centre cell population, the centre four pixels give a positive input
and the peripheral pixels a scaled negative input. Therefore, a light stimulus (positive
contrast relative to a zero background) flashed in the RF centre will elicit a positive
input, but a light in the surround produces a negative input. The opposite situation
exists for OFF-centre, ON-surround populations. In this way 20 TC and 20 TIN ON-
centre, OFF-surround populations, and 20 TC and 20 TIN OFF-centre, ON-surround
populations were obtained. These have spatially overlapping surrounds at each point
in the visual space. This process is depicted in figure 4.7.

Simple cortical cell RFs were originally proposed by Hubel & Wiesel {1962) to be

constructed through a purely feed-forward scheme. This involves aligned TC cells with
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overlapping centre/surround RFs feeding information to a single simple cell to form
a RF with alternating ON and OFF subregions. This mechanism does not allow for
contrast invariant orientation tuning of cortical cells, as described in a review by Ferster
& Miller (2000). However, the current study uses simple stirnuli and concentrates on
the responses of thalamic cell populations, which allows the use of a feed-forward
mechanism for cortical RF formation.

Reid & Alonso (1995) also showed that a given cortical cell’s RF subregion (ON and
OFF, centre and flanking) is constructed by receiving inputs from TC cells whose RF
centres are at the same retinotopic location and have the same ON/OFF phase (Reid
& Alonso, 1995). This is schematised in figure 4.8, which also shows the connectivity
adopted in the model in order to create the cortical receptive field structure. Here
a horizontal ON cell population receives input from three aligned ON-centre TC cell
populations to form the central region of the RF. The cell population also receives
input from three aligned TC OFF-centre cell populations at either side of its central
RYF region, to form flanking subregions of the opposite polarity.

Other than the spatial receptive field structure, no other response properties are im-
posed on the cell populations. Hence, all observed temporal responses can be assumed

to arise from the nonlinear dynamics of the network activity.

4.2.5 The phase relationship

As described in section 4.2.1, results based on three alternative corticothalamic feed-
back arrangements will be presented. One involves phase reversed (or anti-phase) cor-
ticothalamic feedback, where a TC cell population of a given phase, receives feedback
from a cortical cell population whose central subregion is of the apposite ON/OFF

polarity. Anti-phase feedback was shown to exist in the cat visual thalamocortical
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Figure 4.7: The setting up of an ON-centre, OFF-surround TC cell population’s
receptive field. The cell population receives input from 16 (4x4) pixels
in the 10x12 array that represents the visual field. The central four give
a positive input and the outer 12 a negative input. This situation would
be reversed for the construction of an OFF-centre RF.
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Figure 4.8: The setting up of a cortical, horizontal, ON receptive field. The figure
shows the arrangements of TC cell populations, which are represented
by their RF centres, which form the cortical RF. The PY population
receives input from three T'C populations, whose centres are af the same
retinotopic location as the PY6 cell population’s central subregion. It
also receives input from 6 TC populations of the opposite polarity (3
either side) to form antagonistic, flanking subregions.
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circuifry by Wang et of. (2004). The second contains no feedback connections. The
third involves phase matched {or in-phase) corticothalamic feedback, where a TC cell
population of a given ON/OFF phase receives feedback from a cortical cell population
whose central subregion is of the same ON/OFF polarity.

The network is represented by the coupled differential equations (equations 4.1 to
4.5 in section 4.2.2). The parameters representing the time constant of each cell popu-
lation, and the weight of each connection between the populations, were set such that
the constraints outlined in sections 3.2.4 and 4.2.3 were adhered fo. These parameters
were then explored wifhin the ranges permitted by these constraints and set at the
values shown in table 4.1, which were used for the anti-phase case, the case without

feedback, and the in-phase case.

4.2,.6 Mapping spatiotemporal receptive fields

The process of reverse correlation was first deseribed by DeBoer & Kuyper (1968), and
has been used a great deal to map receptive fields in the visual (reviewed by DeAnge-
lis et al. (1995)), auditory (reviewed by King & Schnupp (1998)) and somatosensory
modalities (reviewed by Ghazanfar & Nicolelis (2001)). Reverse correlation involves
stimulating a neuron with a continuous random sequence of brief stimuli, whilst record-
ing the ongoing response of that neuron. Two fundamental assumptions are that, (1)
the cell responds linearly, and (2) the stimulation approximates white-noise. If these
assumptions are satisfied, then calculating the cross-correlation of the response with
the stimulus at various time delays yields the spatiotemporal filter of the recorded
neuron.

Prior to the development of the reverse correlation technique, the prevalent method

used for mapping the STRF properties of neurons was the “response-plane” technique,
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Paraméter name | Value
TPY6 20ms -
TING 20ms
TRE 20ms.
7IC 20ms
7TIN 20ms

wPYBING 5
wPY6RE 15
wPY6TC 15
wPY6TIN 15
wINGPY6 10
wRETC 15
wRETIN 5
wTICPY6 40
wTCING )
wTCRE 10
wTCTIN 10
wTINTC 15
wPY6PY6 0.5
wINGING 1
wRERE 1
wTINTIN 1

Table 4.1: Table of parameters used in the model. The weights are labelled by
wPrePost, where “Pre” refers to-the presynaptic population and “Post”
refers to the postsynaptic population. For example, the connection from
'I'C cell populations to P'Y6 cell populations is weighted by a parameter

labelled wTCPY6.
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which was described by Stevens & Gerstein (1976). This process involves presenting
a brief stimulus at sequential positions in a cell’s receptive field, and recording the
cell’s response in the form of a peri-stimulus time histogram (PSTH) to each stimulus
for a give period of time. The PSTH at each position then represents the response
profile at that point. The main benefit of using reverse correlation rather than the
response-plane method is time. Reverse correlation involves presenting a continuous
stream of stimuli and recording the response of the neuron continuously, and therefore
it is much faster than the response-plane method. When mapping the response-plane,
there must be a delay after the presentation of each stimulus and before a subsequent
stimulus can be presented, while the response is recorded.

There are two major reasons why it is not necessary to record STRFs in the model
using reverse correlation: (1) time is not a constraint, as the computational simulations
performed here are faster than the equivalent experimental recordings; (2) the spatial
structure of the receptive field is already known, as these are “hard wired” into the
model (as described in section 4.2.4). Therefore, in the current work, a technique
analogous to plotting the response-plane was used. Stimuli were briefly presented (for
30ms) at sequential positions in the receptive field of the cell population. The firing
rate was recorded for a period of 300ms post-stimulus. This was done for both positive
contrast stimuli (relative to a zero background) and negative contrast stimuli, and
responses at each position for each stimulus type were recorded. Finally, in order to
compare the results with those of Cai et al., the dark response was subtracted from
the light response for each stimulus presentation, and the “composite” STRE was

constructed.
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Figure 4.9: The static receptive field of a TC (a) and a PY6 (b) population. In (a)
the response clearly has an ON-centre/OFF-surround structure in space,
as expected from the input connectivity. In (b) the cell population has
an elongated three subregion receptive field, which is also expected from
the wiring of the model and consistent with experimental results.

4.3 Results

4.3.1 Feed-forward visual responses

As discussed above, TC cells have been shown to have static centre/surround RFs
which spatially resemble those of their retinal inputs. To ensure that the model agreed
with this, responses to feed-forward information from the visual field were examined
when corticothalamic feedback was not present. At this point there was no need to
consider the three versions of the model separately, as without feedback these versions
are identical. Initially, the static RFs were mapped using a similar technique to that
described above (section 4.2.6).

To reiterate, single spots of light and then dark stimuli (positive and negative
contrast) were flashed for 30ms at all points within a TC cell population’s receptive

field, while the response of that population to each stimulus was observed. The peak
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amplitude of the cell population’s response was recorded. The final step was to calculate
the composite response as a light minus dark profile (as in Cai et al. (1997)). An ON
response is a response to a positive stimulus, and an QFF response is a response to a
negative stimulus, therefore it is reasonable to calculate a light-minus-dark RF which
can be directly compared to the results of Cai et al.. Figure 4.9 shows examples of
typical TC and PY6 cell population static RFs. The TC cell population in figure
4.9(a) is expected to have (from its input connections), and is shown to have, an ON-
centre/OFF-surround receptive field. Similarly, the PY®6 cell population in figure 4.9(b)
should have and is shown to have three elongated subregions, vertically aligned, and
with a central ON subregion.

Having ascertained that the shape of the spatial RF's matches those shown in previ-
ous experimental studies and the expectations from the wiring of the model, responses
to more complex stimuli were examined, also in the absence of feedback. In the first of
these simulations the stimuli used were spots of varying diameter and annuli. The four
stimuli are shown schematically in figure 4.10. The TC cell populations responded as
expected due to their centre/surround RFs. As shown in figure 4.11(a), this ON centre
cell population responds preferentially to a spot of light covering the entire RF centre,
but with a slightly suppressed firing rate to the dark central spot. It also responds
vigorously to a dark annulus covering the surround of the RF, but with slightly sup-
pressed firing to a light annulus. Hence, the model produces the responses expected
from thalamocortical cells with centre/surround RFs.

The responses shown in figure 4.11(b) are from a cortical cell population, which is
a target of the TC cell population shown in figure 4.11(a). The PY®6 cell population
has very similar responses as the TC cell population to the same four stimuli. The

main deviation is in the response to the spot extending beyond the TC RF. In this
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Figure 4,10: The figure shows the set of stiznuli used to test the static responses
of the cell populations. At the top is a depiction of a concentric an-
tagonistic receptive field. Below are the four stimuli used, which are
described in the figure.

case the PY6 cell population responds vigorously to the dark stimulus, though the
TC cell population did not. This stimulus covers a substantial proportion of the PY6
population’s flanking OFF subregions, which are larger than the surround of the TC
RF. Hence, the wiring of the model explains why the PY6 population responds more
vigorously than the TC population in this case.

It is widely known that when stimulated with oriented bars, cortical responses differ
from those of their thalamic inputs, as cortical cells respond preferentially to bars at
a particular angle (Gardner et al., 1999; Hirsch, 2003; Hubel & Wiesel, 1961, 1962).
Therefore, light and dark bars of different orientations were presented to the model,
and the responses of the cortical cell populations were recorded. In this way tuning
curves were produced, and an example is shown in figure 4.12. This figure shows that
the cortical cell population has a distincet preference for vertically oriented bars. From

the connectivity of the model, this preference is expected.
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Figure 4.11: The responses of a typical TC (a) and a PY6 (b) cell population to

flashed stimuli of varying diameters. In (a) the ON-centre TC cell
popuiation responds most strongly when stimulated by a bright spot
covering just the centre of its RF, or a dark stimulus covering the sur-
round. These responses are consistent with the expectations of the RF
structure. The responses in (b} correspond well with the T'C responses
in (a), apart from the response to the stimulus that extends beyond
the RF. This is discussed in the main fext.
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Figure 4.12: Response of a typical PY6 cell population to flashed bars at four dif-
ferent orientations. The plot shows that the PY6 cell population has a
distinct preference for vertically oriented bars.

4.3.2 Thalamic spatiotemporal receptive fields

The effect of introducing corticothalamic feedback and completing the network was
explored next. A protocol similar to the response-plane technique was used once more.
However the evolution of the response over time was now considered. This means
that a given population’é response is recorded for a given amount of time, and these
responses (light minus dark) are plotted against one spatial dimension to obtain the
spatiotemporal receptive field of that cell population. These can then ‘be directly
compared to those shown by Cai et al. (1997). To reiterate, Cai et al. showed that
reverse-correlation of TC cell responses produced STRFs that were centre-surround in
space and biphasic in time. The latency between the peaks of the two phases was found
to be approximately 35ms.

Typical responses of a TC cell population in the anti-phase model are shown in

figure 4.13, which shows a TC cell population with ON-centre/OFF-surround input
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wiring. Note that the results in this section are shown for both bar stimuli, as used
by Cai et al., and for single pixel stimuli. In agreement with the findings of Cai ef al.,
a biphasic response pattern is displayed by the thalamocortical cell population, such
that during the first pliase the cell population responds as expected in an ON-centre
manner (that is light-excitatory). After a latency of approximately 20ms this response
changes polarity and the cell populations respond in an OFF-centre manner (that is
dark-excitatory). Note that this biphasic response can be seen if the stimuli used are
either bars or single pixels. However, the surround response only shows this biphasic
property when bars are used. This is corisistent with the results of Cai et al., who also
used stimulating bars. In the model, this difference is due to the fact that bars excite
the cortical cell populations more strongly, as PY6 cell populations are selective for
oriented stimuli, and therefore cortical feedback to the TC cell populations is stronger
when bars are used. This indicates that feedback plays a role in the formation of the
second phase of the response.

In both the bar case and the single pixel case, the surround response merges with
the centre response in time, which is consistent with the results of Cai ef al. (1997).
This is related to the idea that the surround response is delayed relative to the centre
response, and therefore they appear to merge into one another. It is inferesting to
see that this model, with no imposed temporal response properties, also replicates this
feature of thalamic receptive fields. When using single pixels, the latency between the
bright-excitatory and dark-excitatory phases increases. This is because single pixels
induce less excitation, hence the network is not driven as strongly or rapidly as it is
with bars, and therefore the latency between the two phases is longer.

Cortical feedback to all thalamic cell populations was disconnected, by setting the

weight of the connections to zero, and this is the second of the feedback arrangements
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Figure 4.13: Temporal evolution of the response of a TC cell population stimulated
with bars (a) and single pixels (b) along a row of its RF, in the intact
network with anti-phase feedback. The biphasic response is clearly
seen, such that during the first 30ms post-stimulus onset, the cell pop-
ulation displays a light-excitatory response in the RF centre. In the
following 30ms of time the cell population shows a dark-excitatory re-
sponse in the RF centre. The initial surround response merges into the
secondary centre response, which is also consistent with the data of
Cai et al. (1997). The latency between the peaks of these two response
phases is approximately 20ms in the bars case and approximately 30ms
in the single pixel case, which are both of the same order of magnitude
as in the Cai et al. study.
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Figure 4.14: Temporal evolution of the response of a TC cell population stimulated
with bars (a), and single pixels (b) in the network with no corticotha-
lamic feedback. In this case no biphasic response is seen, even at long
latencies.

which was examined in this model. For simplicity no attempt was made to model
retinal ganglion cells with biphasic temporal responses. Therefore the current reuslts
show that when cortical feedback is not present the recorded TC cell population loses
the second phase of its STRF, as shown in figure 4.14, regardless of whether bars
or single pixels were used. These results indicate that in the model corticothalamic
feedback plays a major role in generating this dynamic response property, and this is
explored in more detail in section 4.3.3 below.

Finally the network was arranged to contain in-phase feedback connectivity, as de-
scribed in section 4.2.5. In this case, simulations of the TC cell populations response
to either bars or single pixels show that there is no appearance of a biphasic response,
as shown in figure 4.15. Therefore, the simulations of the model in the three different
feedback configurations clearly indicate that corticothalamic feedback is vital for the

emergence of a biphasic response, and furthermore that anti-phase feedback is specifi-
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Figure 4.15: Temporal evolution of the response of a TC cell population stimulated
with bars (a), and single pixels (b) in the intact network with in-phase
feedback. Once more, no biphasic response is seen.

cally required.

4.3.3 Parameter manipulations

When using a theoretical model to investigate neuronal systems, it is crucial that the
robustness of a result with respect to parameter variations is considered. Unlike in the
previous model, it was not possible to use bifurcation analysis, as there are too many
equations and therefore parameters for the software (LOCBIF) to handle. Instead,
the parameters of the anti-phase network were manually manipulated and the effects
on the activity were observed, to assess the robustness of the behaviour. Initially
all parameters were varied between +20% , and assuming that +5% is the minimum
acceptable variability, it was found that all parameters exceeded this minimum, which
indicates that the response is robust to such parameter changes around the control
values.

The next step was to specifically change (put to zero, halve and double) the con-
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nection weights of the inputs to the TC population being observed. Note that for
these experiments, single pixels and not bars were flashed in the centre of the TC cell
receptive field. By using single pixels, less network activity is elicited, and this allows a
clearer dis¢rimination of the mechanisms which underly the observed behaviour. The
results show that the second phase was absent during the manipulation of only two
of the connection weights. This occurred when varying the PY6 to TC connection
weight, as shown in figure 4.16, and when varying the TC to PY8 connection weight,
as shown in figure 4.17. These plots show that without either part of this thalamocor-
tical feedback loop, the biphasic response is not present. Looking at the light and dark
responses individually (also shown in figures 4.16 and 4.17), it is apparent that the TC
population cannot respond positively to a dark stimulus as it does in the control case,
but instead responds with a small suppression of firing rate. Therefore, the composite
response is dominated by a mainly light response.

Another interesting feature of this response property, which emerged from this set of
experiments, relates to the timing of the second phase. The parameter manipulations
revealed that the strength of the feed-forward thalamocortical connection, and the
strength of the corticothalamic feedback connection can change the relative timing of
the two phases. This is shown in figure 4.18, where the weights of these connections are
varied around their control values. The figure shows that as either of these connections
increases, the latency between the first (bright-excitatory) phase and the second (dark-
excitatory) phase decreases. Therefore, it seems that in the model the effect of feedback
on the temporal response properties of the TC cell populations is not static, but a
dynamic effect. Note that it was also found that the RE to TC, and TIN to TC
connections can have a similar controlling effect on the latencies of the response phases,

which is demonstrated in figure 4.19. However, as the second phase is not present
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Figure 4.16: Manipulations of the PY®6 to TC connection weight. When this weight
is set to zero, the T'C cell population no longer has a positive response
to dark stimuli as it does in the control case. Hence, the composite
light-minus-dark respcnse is no longer biphasic.
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Figure 4.17: Manipulations of the TC to PY6 connection weight. When this con-
nection weight is set to zero, the TC cell population does not show

a positive dark response. Hence the light-minus-dark response is no
longer biphasic.
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Figure 4.18: These plots show that PY6 to TC (a) and TC to PY®6 (b) connection
weights can control the timing of the second phase in the TC cell pop-
ulation response. In (a) wPY6TC is varied at the values shown in the
legend, and in (b) wTCPY®8 is set at the values shown in the legend.
In both cases the latency decreases as the weights increase.

without the TC to PY6 feedback loop, the former case is of more significance.

The results presented thus far strongly suggest that in the model the second phase

of the TC STRF occurs due to the following pathway: the OFF cell population at the

same retinotopic position as the ON cell population being recorded, responds positively

to the dark stimulus. This is relayed to cortical OFF cell populations at and around

that retinotopic position, which feedback to the ON cell population in that retinotopic

position, thereby feeding back a positive response to a dark stimulus. As well as fitting

the data presented thus far, this is intuitively the simplest manner that this response

profile could be generated in the model via anti-phase feedback.

To test if this postulated pathway was responsible for this effect, focal lesions were

made along this pathway in the following ways (which refers to the labelling in figure

4.20):

¢ The contral situation (A).
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Figure 4.19: These plots show that TIN to TC (a) and RE to TC (b) connection
weights can control the timing of the second phase in the T'C cell pop-
ulation response. In (a) wIINTC, and in (b) wREPY6 are set at the
values shown in the legend. In both cases the latency increases as the
weights increase.

[}

e The retinal input to the OFF TC cell population was removed (B).

¢ Disconnection of the OFF TC cell population input to the horizontal OFF PY6

cell populations (C).

¢ Disconnection of the OFF TC cell population input to the vertical OFF PY6 cell
populations (D).

e Disconnection of the OFF TC cell population input to both the horizontal and
vertical OFF PY8 cell populations (E).

¢ Disconnection of the horizontal OFF PY®6 cell population inputs to the ON TC

cell population (F).

¢ Disconnection of the vertical OFF PY®6 cell population inputs to the ON T'C cell
population (G).
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« Disconnection of inputs from both OFF PYS6 cell populations to the ON TC céll

population (H).

The results of these lesions are shown in figure 4.20, and they clearly show that
losing any part of this pathway inhibits or eradicates the dark response. In particular
when there is no input to the OFF TC population at the same retinotopic position
as the ON TC population, the dark response is absent. In the remainder of the plots
there remains some dark excitation, though it is significantly reduced compared to
the control case. The remaining dark excitation is due to the OFF cell population
providing input to form the flanking subregions of surrounding cortical populations.
‘Therefore there are divergent connections, which allow some dark-excitation to spread.
In order to observe the emergence of the biphasic response more clearly, the next step
of this investigation involved reducing the circuitry of this STRF model, to find the

minimal required architecture.

4.4 Reducing the model

The results from the previous section have shown that the model thalamocortical net-
work has the dynamics intrinsic to its circuitry to contribute to the generation of
biphasic STRFs as measured by Cai et al. (1997); Reid et al. (1997); Usrey et ol.
(1999). These results also show that in the model, this response is mainly reliant on
the corticothalamic feedback loop, and in particular on anti-phase feedback. Therefore,
the model was reduced in order to capture the minimal description of the thalamocor-
tical network that can produce these responses, as was done for the spindles model in
chapter 3.

There were two routes by which this was achieved. The first involved eliminating
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Figure 4.20: Focal lesions along the pathway proposed to mediate the biphasic re-
sponse in the TC cell populations: (A) The control situation; (B) The
retinal input to the OFF TC cell population was removed; (C) Discon-
nection of the OFF TC cell population input to the horizontal OFF
PY®6 cell populations; (D) Disconnection of the OFF TC cell popula-
tion input to the vertical OFF PY6 cell populations; (E) Disconnection
of the OFF TC cell population input to both the horizontal and ver-
tical OFF PY6 cell populations; (F) Disconnection of the horizontal
OFF PY6 cell population inputs to the ON TC cell population; (G)
Disconnection of the vertical OFF PY®6 cell population inputs to the
ON TC cell population; (H) Disconnection of inputs from both OFF
PY6 cell populations to the ON TC cell population. The results show
that a lesion at any point in this pathway causes a loss of the biphasic
response.
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cell populations that did not contribute to the generation of the STRFs. Therefore
“the interneuron populations at the level of the thalamus and of the cortex were re-
moved. The reticular population also did not play a significant role in the generation
of this biphasic response property, however the inclusion of these cell populations was
considered to be essential to the definition of the thalamocortical circuit.

"The second method was to consider the minimum number of populations that were
needed to represent a thalamocortical network. To produce a single cortical receptive
field, with three antagonistic subregions, as described in section 4.2.4, a minimum of
three TC populations of one polarity and six of the opposite polarity are needed. To
produce two cortical receptive fields of opposite polarities, nine TC ON populations
and nine TC OFF populations are needed. If there are 18 such populations in a
model, 4 different classes of cortical receptive fields can be formed: ON horizontal,
OFF horizontal, ON vertical, and OFF vertical. In addition nine RE populations
would be needed to provide topographic inhibition of the TC cells. As a result of
these considerations a reduced model was built, and the architecture of this model is
described in detail in the following sections, followed by presentation and discussion of

the results of the simulations of this network.

4.4.1 Architecture of the rednced model

As in both of the previous models, the basic component of the circuitry is the feedback
loop between layer 6 excitatory cells in primary visual cortex, and the thalamocortical
relay cells in the LGN. Anti-phase feedback connectivity (Wang et al., 2004) is utilised
in the description of this model, as the results from the previous sections suggest that
this architecture is crucial for the formation of thalamocortical STRFs (as described

by Cai ef gl. (1997) and Reid et al. (1997)). Populations of reticular cells are also
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included, as the participation of this nucleus to thalamic activity was deemed essential.
Therefore, the model architecture is as shown schematically in figure 4.21.

As in the previous STRF model, each cortical cell population receives input from 9
TC cell populations, three to form an elongated central subregion, and a scaled input
from six others to form the flanking subregions of the cpposite phase. Each of these
cortical cell populations feeds back to the cental TC cell population of the opposite
phase preference. The surrounding TC cell populations are included for the formation
of the cortical RFs and not for functionality, therefore they do not receive cortical
feedback. This was in order to keep the model as simple as possible. The TC cell
populations receive inputs from the visual field, which are structured in order to form
centre/surround RFs as described before in section 4.2.4. Finally, the populations
in the RE layer make reciprocal point-to-point connections with the topographically
matching TC cell populations (ON and OFF), and the central RE cell population
receives input from all four cortical cell populations.

In summary, the following cell types are included in the model:
1. PY6 horizontal ON dominant population.

2. PY®6 horizontal OFF dominant population.

3. PY% vertical ON dominant population.

4. PY®6 vertical OFF dominant population.

5. Nine TC ON-centre populations.

6. Nine TC OFF-centre populations.

7. Nine RFE populations.
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PY6 populations

>k

RE populations

TC populations

Figure 4.21: This figure shows the connectivity between the populations in the final
model. In each of the TC and RE layers, there are 9 cell populations of
each cell sub-type. There are four cortical cell populations, which have
four different orientation and phase preferences. Red connections orig-
inate from ON-dominant cortical cells, and green from OFF-dominant
cortical cells. Details of the connectivity can be found in the main text.

149







4.4 Reducing the model

4.4.2 The Wilson-Cowan equations

Once more, the Wilson & Cowan equations for the nonlinear dynamics of populations
of neurons were used for this study. Both the motivation and the short-comings of this
approach are described elsewhere (sections 3.2.2 and 3.2.3), and will not be repeated
here. The equations for this model are given in equations 4.6 to 4.8. These appear to
be identical to those for the first model, because every connection is not specifically
shown, only the connections between cell types. Therefore, while there are only three
equations shown here, the model actually consists of 31 equations, one for each cell
population. Similarly, only one of each connection type is shown here, but there may

be up to nine of each type.

prs% = —Epr(t) + (b — Epy(t)) - Zuo(wl - Bro(t)) (4.6)
TRE@S;E = —Ing(®) + (b — Inp(t)) - Z(w2 - Bro(t) + w3- Bey(t)) (47)
TTcdﬁiO = —Erc(t) + (ke — Erc(t)) - Ze(—ws - Ina(t) (4.8)

+wh - Epys(t) + Retina’t)

In summary, this model takes into account the minimal architecture which has been
shown to be necessary for the initiation and maintenance of the spindle oscillation. It
also incorporates the feed-forward connectivity that is required for the formation of
spatial thalamic and cortical receptive fields. The model includes feedback projections

which connect cortical cell populations with TC cell populations of the opposite phase
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preference. Therefore, this model investigated whether these few distinctive features
cconstitute a sufficient representation of the thalamocortical feedback loop, such that

the visual STRF properties of TC cells could be replicated.

4.4.3 The choice of parameters

Once again, the parameters for this model were set using data from physiological ex-
periments. The specific pieces of data used are those outlined previously (see sections
3.24 and 4.2.3). To reiterate: the strength and reliability of TC to RE projections
(Contreras et al., 1993; Gentet & Ulrich, 2003); the relative strength of the thala-
mocortical projections (TC to PY6 cells) compared to the feedback corticothalamic
projections (Castro-Alamancos & Calcagnotto, 2001); van Horn et el (2000) show
that the greatest number of inputs into TC cells are cortical; the greater strength of
thalamocortical innervation compared to intra-cortical innervation of a cortical cell
(Amitai, 2001; Beierlein & Connors, 2002); but the larger number of intra-cortical con-
nections compared with thalamocortical connections (Usrey, 2002); the fact that RE
cells send most of their outputs to innervate TC cells (Wang et al., 2001).

The parameter space was explored within these constraints, and set at the values
shown in table 4.2, which will be referred to as the control set of parameters. Compared
to the situation in the large-scale model, these parameter relationships show less need
for a large weight on the feed-forward projection from thalamus to cortex, but a need
for a larger weight on the feedback from cortex. Therefore, the overall gain of the
feedback loop is adjusted slightly. This is likely to be due to the re-scaling of the size
of the network. Furthermore, the excitatory projections to the RE populations are

slightly weaker than in the large-scale model, which reflects the smaller gain of the

feedback loop.
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“Parameter name | Value-
TPY6 20ms
i TRE 20ms
TTC 20ms
wl 20
w2 )
w3 5
wd 10
wbH 15
Input 3

Table 4.2: The table shows the parameters used into obtain STRFs in the third
model. As in chapter 3, wl is the TC to PY6 connection, w2 is the TC
to RE connection, w3 is the PY6 to RE connection, w4 is the RE to TC
connection, and w5 is the PY6 to TC connection.
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4,4,4 Results

The model, as described in the previous sections, was investigated by running the same
simulations as for the full STRF model. The reduced model displays static feed-forward
responses which are consistent with those seen in the large-scale model, as rshown in
figure 4.22. The TC cell population has a centre-surround RF in space, as expected
from the wiring of the model. The cortical cell population has an elongated oriented
receptive field, as expected from the inputs it receives from the T'C cell populations.
Both of these populations respond as anticipated due to their receptive fields, to either
the spots of various diameters, or to the bars of changing orientation (also shown in
figure 4.22). This shows that the loss of the inhibitory interneurons at the level of the
thalamus and the cortex, has no significant effect on the replication of visual responses
within the model.

Figure 4.23 shows this biphasic response of the central TC ON cell population. The
population’s response to a light stimulus (single pixel in RF centre}, to a dark stimulus,
and the composite light minus dark response, are all shown. The composite response is
clearly biphasic, which occurs due to a light-excitatory phase in the initial part of the
response, followed by a delayed dark-excitatory phase. This is the same mechanism as
in the larger-scale model. The STRF of the same ON-centre cell population is shown
in figure 4.24(a) as a surface plot. The biphasic nature of the response is clearly seen
in the centre of the RF, but is not so obvious in the surround. However, using a bar
stimulus as in figure 4.24(b), yields an STRF which is unmistakeably biphaéic in both
the centre and the surround of the RF. Once more, the use of bar stimuli is more
effective than single pixels as cortical cell populations are selective for bars and send

stronger feedback to the TC cell populations.
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Figure 4.22: This figure shows the static feed-forward responses of a TC ON-centre
cell population (a) and (c), and an ON-dominant horizontal PY6 cell
population (b) and (d). In (a) and (b) the static receptive fields are
plotted, and these are as expected from the connectivity of the model.
The figure in (c) shows the response of the TC population to spots of
varying diameters. As predicted from the RF, the population responds
maximally to light in the RF centre and to dark in the surround. Fi-
nally, (d) shows the orientation tuning curve of the PY6 cell popula-
tion, and consistent with its RF, the population is optimally tuned to

horizontal stimuli.
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Figure 4.23: The responses of the central TC ON-centre population to a single
pixel in the centre of its RF. The response to a light pixel, a dark
pixel, and the composite light-minus-dark response are all shown. The
formation of the biphasic composite response occurs due to the early
light-excitatory phase followed by a late dark-excitatory phase. This is
consistent with the dynamics of the large-scale model.
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Figure 4.24: The STRF of the central TC ON-centre population was measured with
single pixels (a), and with bars (b), in the intact network with anti-
phase feedback. Though a biphasic response can be seen in both cases,
the surround is only clearly biphasic when bar stimuli are used.
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Figure 4.25: The STRF of the central TC ON-centre population was measured with
bars, in the network without corticothalamic feedback in place (a), and
with in-phase cortical feedback connectivity (b). Note that in the in-
phase case all weights were set to 80% of their control values, in order
to avoid saturation of the network activity.

TC cell population STRFs were also measured when the network had no feedback,
and in-phase feedback. The case when there is no feedback is shown in figure 4.25(a),
and this result clearly shows that there is no appearance of a second phase. In the in-
phase case, responses of all populations saturate due to the positive feedback circuitry.
However, if the weights are scaled by 80% to lower the overall level of activity in the
network, the result in figure 4.25(b) shows that there is no observation of a second
phase. These results agree with those of the detailed model, by suggesting that in
this model network, anti-phase cortical feedback is required for the generation of the
biphasic thalamocortical STRF.

Investigation of the parameter ranges which maintain the TC cell population’s
biphasic response, shows that this response is robust with respect to parameter vari-

ations. Each parameter was investigated individually between -20% and +20% of its







4.4 Reducing the model

Parameter name | Upper range | Lower range
wl 10% 5%
w2 20% 20%
w3 20% 20%
wd 20% 20%
wh 20% 20%
Inpust 20% 5%

Table 4.3: Table showing the range (relative to the coptrol values given in table 4.2)

that each parameter can take, while the biphasic response persists.
value in table 4.2, and the ranges that allow the biphasic response to persist are shown
in table 4.3. Assuming a 5% range as a minimum requirement for robustness, it is clear
that all the weight parameters can vary within this amount while the biphasic response
is maintained. Therefore, the model’s behaviour seems to be robust with respect to
such parameter fluctuations. Note that the TC to PY6 connection weight, and the
input value (to the TC cell populations) cannot decrease below 5%. Therefore the gain
of the feed-forward route to the cortex cannot be compromised.

Each parameter was also set to zero, half and double its value in table 4.2. From
these manipulations, it became clear that the reticular cell populations contribute very
little to the biphasic response, as setting any of the weights of the connections with the
RE populations to zero did not eradicate the second phase. However the TC to PY8,
and PY6 to TC connections are essential for the existence of the phase of excitation
to the non-preferred stimulus. That is if they are set to zero-or halved, the response is
no longer cbserved.

Specifically, and as in the earlier model, the pathway for the occurrence of a bipha-
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Figure 4.26: Focal lesions along the proposed pathway which mediates the occur-
rence of the biphasic response. In each of the three lesioned cases, the
dark-excitation, and consequently the second phase disappears.

sic response in an ON TC cell population was predicted to consist of the following
connections: 1) Input to OFF TC cell population at the same retinotopic position as
the TC ON cell population; 2) TC OFF to cortical OFF populations; 3) Cortical OFF
populations to the TC ON population. In order to test this prediction, focal lesions
were made along this pathway. As can be seen in figure 4.26, eliminating any of these
sections of the pathway eliminates the dark-excitatory response, and therefore the sec-
ond phase of the composite response. Therefore, it is clear that the same dynamics are
at play in this model as in the large-scale STRF model.

The biphasic response observed in this model, displayed a latency of approximately
20ms. As in the previous model, this latency could be manipulated by varying the
connection weights of the thalamocortical feedback loop. Figure 4.27 shows this effect,

in the two plots of the latency between the two phases (measured as the time between
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Figure 4.27: These plots show that TC to PY6 (a), and the PY6 to TC (b} connec-
tion weights can control the latency between the STRF phases in the
_ TC cell population response.

the peak of light excitation and the peak of dark excitation). Both plots clearly show
that as the weight of either of the connections increases, the latency between phases
decreases.

Finally, in order to ensure that the model continues to respond as expected when
feedback is present, the static experiments were repeated. The results are shown in
figure 4.28 and demonstrate that feedback does not have a significant effect on the

static structure of the responses.

4.5 Discussion

The main finding presented in the current chapter, is that a population model of the
visual thalamocortical system can replicate experimentally derived {Cai et al., 1997)
spatiotemporal responses of LGN thalamocortical cells. In particular, the model goes

on to show that only when the thalamocortical feedback loop is completed the TC
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Figure 4.28: This figure shows the static responses when feedback is in place, of a TC
ON-centre cell population (a) and (c), and an ON-dominant horizontal
PYG6 cell population (b) and (d). In (a) and (b) the static receptive
fields are plotted, and these are as expected from the connectivity of
the model. The figure in (c) shows the response of the TC population
to spots of varying diameters. Finally, (d) shows the orientation tuning
curve of the PY6 cell population, which is consistent with its RF.
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cell populations develop a second phase in their visual responses. This second phase
is a delayed response (relative to the initial phase) of the opposite ON/OFF polarity.
As biphasic RGCs were not present in the model, these modelling results show that
the dynamics of corticothalamic feedback is able to contribute to the formation of
the thalamic biphasic temporal respomse. This pathway can therefore account for
the amplitude difference between the magnitude of the second phase in TC cells and
RGCs as measured by Usrey et al. (1999). This property arises only if corticothalamic
feedback to T'C cells is arranged in anti-phase, as reported by Wang et al. (2004). This
means that a cortical cell population with a given ON/OFF preference, feed back to
thalamocortical cell populations with the opposite ON/OFF preference.

This result could be inaccurate for a number of reasons. A main concern when using
a population-level description of neuronal dynamics, is that it is difficult to relate the
variables used in the description of the model to measurable quantities. Though the
weight parameters and the time constant parameters are derived from physiologically
observable values, in practice the user is more free to choose parameter values than
when using conductance based models. This issue was discussed in detail in section
3.2.3, and it was explained that the dependence on parameters could be tested through
various experiments. In the current chapter, the results of parameter manipulations
were shown, and these indicate that the biphasic property of the thalamic receptive
fields is a robust response within reasonable parameter ranges.

A further short-coming is that the model may be too simple, in that it does not
explicitly contain the detailed physiological neuronal properties of the thalamocortical
network. However, the use of a population model is a step towards understanding
the sensory thalamocortical network, which should be considered in partnership with

other models and further experimental work. This is also an important way to validate
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resulfs.

An alternative explanation for the generation of an increased second phase in TC
cells is via feedforward inhibition. TC cells receive inhibition from local inhibitory
interneurons, which in turn receive direct visual input from the retina. As these in-
terneurons have membrane time constants of up to 94ms (Zhu et al., 1999), it is possible
that the TC cell second phase is augmented via this pathway of feedforward inhibition.
Another criticism is that there is no experimental evidence to support the involvement
of cortical feedback in the manipulation of biphasic responses in thalamocortical cells.
Furthermore, the data from Wang et al. (2004) does not show that corticothalamic
feedback only occurs between cells of the opposite polarity, but indicates that there is
a high correlation between cells connected in this way and their results. Despite these
concerns, the models presented in this chapter show that the dynamics of the thalamo-
cortical feedback cireuit allows anti-phase cortical feedback to have such a role. This is
the main experimentally testable hypothesis to emerge from the work presented in this
chapter. Therefore although alternative explanations exist, and corticothalamic feed-
back is not necessarily exclusively arranged in anti-phase, the results from the current
work necessitates experimental verification.

"The parameter manipulations also allowed the exploration of the genesis of biphasic
STRFs. These experiments showed that in the model, cortical feedback onto the TC
cell populations is crucial for the presence of the response, and this innervation changes
an ON-centre TC cell population’s response to a dark stimulus (presented in its RF
centre) from being small and negative, to being delayed and positive. The most obvious
pathway that could generate such a dark response is through anti-phase feedback. The
involvement of this pathway was tested with “focal lesions” of connections, and as

shown in figure 4.20 this proposed disynaptic feedback loop appears to be mediating
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the emergence of this response.

This effect on the temporal structure of the thalamic receptive field properties, is
a novel suggestion for the purpose of corficothalamic feedback. Previous suggestions
for the role of corticothalamic feedback in the visual system, have centred around
feedback imposing higher level processing capabilities on thalamic cells. For example,
Bickle et al. (1999) proposed that the thalamocortical feedback circuit directs selective
attention to various points of a stimulus. Hayot & Tranchina (2001) suggested that
feedback causes geniculate cells to be sensitive to orientation discontinuify. A model
presented by Sastry et al. (1999) offered the possibility that .corticothalamic feedback
allows the uncluttering of a visual stimulus with respect to line detection. A study
by Hillenbrand & van Hemmen ({2001) also investigated the possibility that cortical
feedback modulates the temporal response properties of TC cells in order to control
cortical velocity tuning. Bressloff & Cowan (2003b) recently suggested that cortical
feedback manipulates thalamic responses in order to improve thalamic relay and fa-
cilitate cortical responses. Here however, feedback is shown to affect the fundamental
temporal stricture of geniculate RFs.

The modulation of TC cell temporal response properties, also has the ability to be
a dynamic property. This comes to light in the plots showing that the latency between
phases can be varied, by changing the weights which mediate the feed-forward and
feedback connections between the TC cell and the PY6 cell populations. This means
that it is possible for the thalamocortical network to continuously modulate thalamic
response properties via these weights. This could be determined by top-down informa-
tion to the primary visual cortex from higher cortical areas. Such ideas for a dynamic
‘role of the cortical feedback projection have been previously proposed (for example in

the discussion by Sillito & Jones (2002)), and the current results provide evidence that
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the thalamocortical feedback network has the intrinsic dynamical properties to support
such a role.

The purpose of this strengthened biphasic STRF is an interesting question. Natural
images tend to vary slowly in time, such that there is significant redundancy in natural
stimuli. If we assume that the goal of the visual system is to rid the input signal
of these correlations and therefore maximise information transfer, we can predict the
optimal form of the visual receptive field. An early study by Atick & Redlich proposed
that spatial decorrelation occurs through retinal ganglion cells, and derived the form
of retinal spatial responses based on this hypothesis. Dong & Atick (1995} performed
a similar theoretical study of temporal decorrelation, and found that the optimal form
for a temporal receptive field which achieves temporal decorrelation of a natural image
is biphasic. Therefore a possible role for a strengthened second phase is to allow the
thalamocortical cells to temporally decorrelate natural images.

Subsequent studies have examined LGN responses both experimentally (Dan et al.,
1996; Lesica & Stanley, 2004) and theoretically (Truccolo & Dong, 2001) to test to
what extent this theory can be proven to be frue. These studies have shown that the
impulse response function of cells in the LGN is well suited, both theoretically and
experimentally, to temporally decorrelating an incoming visual signal. Therefore the
inpuf into the cortex should in this sense be optimal, with the retina removing spatial
correlations, and the LGN removing temporal correlations. This will consequently
allow the visual system to respond rore efficiently.

A stronger biphasic temporal RF in thalamus conpared to retina also allows TC
cells to respond more transiently to stimuli, which is consistent with more band-pass
temporal tuning in TC cells compared to the retina (Usrey et al., 1999). In addition,
Muklierjee & Kaplan (1995) suggest that the temporal tuning of LGN cells is modu-
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lated by cortical feedback and neuromodulation from the brainstem. Sillito & Jones
(2002) proposed that feedback to the LGN from as high up as MT cortex can influence
thalamic responses to moving stimuli. The possibilitsr of such top down modulation of
thalamic temporal responses is the possible reason why this effect is achieved in the
thalamus and not the retina. Cortical feedback reaches thalamic cells, but not retinal
ganglion cells. Therefore if feedback from higher cortical areas aims to manipulate the
temporal responses in the visual pathway, the first subcortical relay at which this can
happen is in the LGN. The idea of a top-down influence on responses to moving stimuli
may also be involved in eye movements. When the eyes maove, the afferent sensory in-
formation will be similar to that from a moving stimulus. For the differentiation to be
made between moving eyes and moving stimuli, top-down and bottom-up information
must be combined. The thalamus. is an ideal site for this processing to occur. However,
these ideas require more theoretical and experimental work in order to understand how
these observations fit together.

The model was reduced in order to find the minimal architecture which could pro-
duce the correct structure for the STRFs. The results of simulations of this reduced
model show that the same dynamics are at work as in the original model. That is, the
dynamics of the thalamocortical feedback circuitry described by this model support
the relay of visual information, such that experimentally recorded visual responses are
accurately replicated in the model’s responses. This architecture simply contains three
cell types, which are interconnected as found experimentally, and these results therefore
suggest that this could be considered as a fundamental thalamocortical unit. This has
implications for future investigations of early sensory pathways, as this thalamocortical
unit displrays the dynamic visual behaviour expected from the network. Such an active

role in neuronal activity for the thalamus has been previously overlooked, particularly
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when considering tliie thalamic contribution to sensory processing.

The structure and physiology of the thalamocortical system in the visual, auditory
and somatosensory modalities is very similar (Alitto & Usrey, 2003). Using the Wilson-
Cowan equations to represent a system, means that the detail of the model is contained
in the connectivity. Therefore, if the main components of the circuitry are similar
then we can extrapolate the results between systems. The current findings lead to
the prediction that the same effect will be seen in the auditory and somatosensory
thalamocortical circuits. Although there are fewer studies in these other two sensory
modalities, there is experimental evidence for changes in the RF structure of TC cells as
a result of changes in corticothalamic feedback, in both the auditory (Suga et al., 2000;
Yan & Suga, 1996; Zhang & Suga, 2000), and somatosensory (Ghazanfar et al., 2001;
Krupa et al., 1999) systems. Therefore this may be a common effect across modalities,
and a general principle for the role of cortical feedback in the sensory thalamocortical

network.

4.5.1 Summary and contributions

Once more the thalamocortical feedback circuit was represented by a set of Wilson-
Cowan equations. However, this time an extended architecture was used in order to
replicate RF properties. The dynamics arising in the system were examined to see
if the network is able to display transient responses that are consistent with those
seen experimentally. This is the first time that a population-level model of the visual
thalamocortical network with biologically accurate architecture has been constructed.
It is also the first time that anyone has attempted to discover the full neural mecha-
nism underlying the thalamocortical cell STRF, as measured by Cai et al. (1997) and
Reid et al. (1997), and explain the amplitude difference between TC cells and RGCs
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measured by Usrey et al. (1999).

The network involves TC cell populations, cortical (excitatory and inhibitory) cell
populations, reticular cell populations, and inhibitory thalamic interneuron popula-
tions. The connections between these populations are only included if they have been
observed experimentally. The parameters for the network are also derived from ex-
perimental data. Three feedback patterns were investigated in the modelling work, an
anti-phase arrangement, a network with no feedback present, and an in-phase arrange-
ment. A reduced version of the model highlights the fact that the main component
of the architecture required to produce these responses is the feedback loop between
cortex and thalamus.

The current results show that cortical feedback contributes to the formation of the
thalamic recéptive field structure, and in particular that anti-phase feedback strength-
ens the change in polarity (with respect to ON/OFF phase preference) of the responses
in the temporal domain. Therefore, the feedback generated response can account for
the discrepancy between retinal and thalamic responses, as measured in simultaneous
reverse correlation experiments by Usrey et al. (1999), where the authors showed that
the thalamic second phase has a consistently larger amplitude than the retinal second
phase. This indicates that feedback is not just a modulator of thalamic responses as
suggested previously, but could also be what Sherman & Guillery (1998) called a driv-
ing input; their definition being that a driver is involved in the formation of receptive
field properties. The effect of feedback on the temporal properties of thalamic cells has
been proposed previously, for example in spindle oscillations (Bal ef al., 2000) and in
the spike timing of visual responses (Worgotter et al., 1998). However, this is the first
report of feedback playing a part in the temporal properties of geniculate receptive

fields, and it has implications for the processing of even the simplest visual stimuli.
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Chapter 5

Spindle oscillations and receptive fields

5.1 Introduction

It is well established that the responses of the thalamus {(along with other brain areas)
change dramatically throughout the sleep/wake cycle (Hobson & Pace-Schott, 2002;
McCormick & Bal, 1994). Looking at the membrane potential of individual thala-
mocortical cells, this change can be seen as a hyperpolarisation during sleep states
(velative to awake states), or a depolarisation during awake states (relative to sleep
states) (Hirsch et al., 1983). Looking at this in terms of firing mode, this variation
manifests itself as burst-firing during sleep and tonic firing during wakefulness (McCaxr-
ley et al., 1983), which is due to the activation kinetics of the T-type calcium current
(Jahnsen & Llinas, 1984a,b). The latter is a traditional view that has been challenged
in recent years, by reports of bursting during awake activity (Sherman, 2001; Swadlow
& Gusev, 2001). At the functional level this activity translates into oscillations during
sleep, and the relay of afferent information during wakefulness.

The models that have been presented thus far in this thesis, have examined the

circuitry which is required to produce these two temporally separated phenomena,
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through the nonlinear dynamics of the thalamocortical network. A logical question to
emerge from this work, is whether these two isolated depictions of the thalamocortical
feedback circuit can be united into one. Attempting to answer this question would hélp
to understand not only the dynamics involved in producing each behaviour individually,
but also the re-organisation that the circuitry must undergo, if any, in order to make
the transition between them.

There have been numerous previous attempts to experimentally investigate the be-
haviour of the thalamocortical feedback loop during transitions from sleep to wake (for
a review see McCormick & Bal (1994)). These have mainly been interested in studying
the membrane potential, firing rate, and oscillatory behaviour in these two states. A
modelling study by Bazhenov et al. (2002), presented a large-scale conductance-based
model of the thalamocortical circuit to look specifically at the behaviour of this network
during slow-wave-sleep, and activated states (awake states and REM) with respect to
sleep oscillations and information transfer. The model was compared to simultaneous
in vivo experiments performed in anaesthetised cats.

The authors investigated the switch between the ‘two states, and modelled the tran-
sition from sleep to activated states by blocking the resting potassium conductance in
the PY and TC cells, which is known to be caused by an increase in the levels of
the neuromodulator acetylcholine (McCormick, 1992). There is also a change from
low-frequency synchronised activity to tonic firing at 30-40Hz. Relating these neu-
romodulatory changes to the configuration of the model circuitry based on previous
experimental evidence (Gil et al., 1997), the authors note that the change from sleep
to activation is associated with a weakening of PY to PY connections, which in turn
causes a reduction in the strength of RE to TC to RE connections. Hence, this study

considers the transition between sleep and awake states, and provides clues about the
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functional re-organisation of the network during this process.

A very recent study by Hill & Tononi (2005), presented a large-scale model of the
thalamocortical network. Again the neurons in this model were conductance-based, and
the authors include a number of intrinsic and synaptic currents. The aim of this study
was also to investigate the transition between awake states and slow sleep oscillations.
Their work shows that the change from wakefulness to sleep requires an increase in
a leak pofassium current, which ekpla.ins the hyperpolarisation observed during this
transition. They also model the transition by an increase in the strength of cortico-
cortical connections, which they find synchronises the slow sleep oscillations. Though
this model replicates the data at a very detailed level, it provides limited information
regarding the functional reorganisation at the level of the connectivity.

In this chapter, the third population-level model of the thalamocortical network
which was presented in the previous chapter, is used to look at the steady-state dy-
namics associated with spindle-range oscillatory behaviour, in addition to the transient
generation of thalamocortical STRFs. This is the first time that a model has inves-
tigated the switch from awake sensory processing to early sleep spindling states. In
particular, the use of a population-level description allows the analysis to be based
upon the dynamics of the connectivity, which Bazhenov et al.; Hill & Tononi suggested
are involved in the switch in activity. The results from this model predict that this
transformation between early sleep oscillations and awake visual processing, are reliant
upon a relative change in gain of the thalamocortical loop and the thalamo-reticular

loop, and specifically due to a relative change in the feedback weights.
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5.2 Method

The reduced model which was presented in chapter 4, section 4.4, contains TC cell
populations, RE cell populations and cortical cell populations, as in the simple spindles
model. However, unlike that first model this version now involves more than a single
population for each cell type, which allows for the definition of receptive fields. The
model has 9 TC ON populations and 9 TC OFF populations, which are arranged in
two 3x3 topographic arrays. These TC cell populations project to the cortex, in such
a way that the receptive fields of 4 cortical cell populations are formed. These RFs,
which are spatially superimposed, have four different preferences with respect to phase
and orientation: 1) horizontal ON, 2) horizontal OFF, 3) vertical ON, 4) vertical OFF.
These cortical cell populations are considered to topographically match the central TG
-cell populations. There are also 9 RE cell populations which have reciprocal projections
(also arranged topographically) with all nine TC cell populations in each of the ON-
and the OFF-centre layers. The central RE population also receives innervation from
all four of the cortical cell populations. The cortical cell populations project to the
TC cell populations topographically (that is to the central TC populations only), and
these feedback connections are arranged in anti-phase (Wang et al., 2004), as in the

earlier STRF model. The model architecture is duplicated from chapter 4 in figure 5.1.

5.3 Results

The model was investigated by running the same simulations that were described in
the previous chapters. Active visual processing, early sleep activity, and the transition
from the former state to the latter is of interest here. Hence the next section will

summarise the results of the transient behaviour first presented in chapter 4, and the
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PY6 populations

zi’< )%

RE populations

TC populations

Figure 5.1: This figure shows the connectivity between the populations in the final
model. In each of the TC and RE layers, there are 9 cell populations of
each cell sub-type. There are four cortical cell populations, which have
four different orientation and phase preferences. Red connections orig-
inate from ON-dominant cortical cells, and green from OFF-dominant
cortical cells. Details of the connectivity can be found in the main text.
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Figure 5.2: The STRF of the central TC ON-centre population was measured with
bars. A biphasic response can be clearly seen in both the centre and the
surround of the receptive field.

subsequent section will present the results of the steady state oscillatory activity.

5.3.1 Visual responses

To reiterate, when the reduced model’s parameters were set at the values in table 5.1,
the model produces the biphasic response seen in figure 5.2, and this response only
arises when the PY6 to TC feedback connections are arranged in anti-phase. The
precise pathway was hypothesised to be as follows: Visual input to OFF TC cell pop-
ulation at the same retinotopic position as the TC ON cell population; This TC OFF
population transmits to cortical OFF populations; These cortical OFF populations
feedback to the TC ON population being recorded. This pathway was tested with
focal lesions, and the results in figure 5.3 show that losing any part of this pathway
eradicates the second phase. Therefore, this model exhibited the same responses as

the more detailed receptive field model.

173







5.3 Results

Parameter name | Value
TPY6 20ms
TRE | 20ms
7TC 20ms
wl 20
w2 5
w3 5
w4 10
w9 15
Input 3

Table 5.1: The table shows the parameters used into obtain STRFs in the unified
model. As in chapter 3, wl is the TC to PY8 connection, w2 is the TC
to RE connection, w3 is the PY6 to RE connection, w4 is the RE to TC
connection, and w5 is the PY6 to TC connection.
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Figure 5.3: Focal lesions along the proposed pathway which mediates the occurrence

of the biphasic response. In each of the three lesioned cases, the dark-
excitation, and consequently the second phase disappears.
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5.3.2 Spindle range oscillations

In order to ohserve oscillations in this same model, the parameters were changed to
the values shown in table 5.2. These will be referred to as the control set of parameters
for the oscillatory simulations. A specific aim was to keep as many of the parame-
ters consistent between the two regimes, so that only the crucial changes are made.
Coﬁlparing. these control parameters to the control set for the STI.{F responsés in the
previous section, the only differences are in the feedback connection weights from the
cortical cell populations to the two types of thalamic populations. Feedback to the
TC cell populations is decreased (compared to its value in the STRF simulations), and
assuming that the role of the feedback loop during awake states is to transmit infor-
mation, then this weight decrease is appropriate as this role becomes negligible during
sleep (Bazhenov et al., 2002).

There is an associated need for the cortical feedback to the reticular population to
be increased, which agrees with the idea that the reticular nucleus is central to the
generation of spindles (Steriade et al., 1987). The relative switch in the weights of
the feedback connections also fits with the idea that dominant inhibition is required
for oscillations in this system (Destexhe et al., 1998), and with the prediction that
dominant excitation is required for relay of information (le Masson et al., 2002).

Compared to the values used in the simpler spindles model of chapter 3, these
parameters have not changed a great deal in relative terms. However, in that first
model, the largest connection weight was assigned to the PY6 to RE connection, and
in the current model it is assigned to the TC to PY6 connection. This is mainly due
to the fact that it was intended to keep as many of the parameters as possible the

same beftween the two regimes, and in the STRF regime a large feed-forward weight is
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Parameter name | Value
- 7PY6 20ms
7RE 20ms
TTC 20ms
wl 20
w2 -5
w3 110
w4 10
wh 6*
Input 3

Table 5.2: The table shows the parameters used in order to obtain oscillations in
the third model. These parameters will be referred to as the control set
for oscillations in this model. Those marked with an asterisk are different
to the control STRF set shown in table 5.1.

necessary for obtaining the appropriate visual responses.

The oscillatory behaviour from all 31 populations is shown in figure 5.4(a), and it is
clear to see that all populations oscillate. The frequency of oscillations is 12Hz, which is
within the 7-14Hz spindle range. Figure 5.4(b) shows a close up of the activity recorded
from a PY6 population, an RE population, and a TC population. The TC cells lead
the oscillation, which is consistent with both the simpler model and with previous
studies (Destexhe et al., 1998, 1999). The RE cells have the highest amplitude of
activity, which indicates that there is the most synchrony within the RE population.
The amplitude of the activity in the PY6 populations is the next largest, and the
TC cells display the smallest amplitude activity. This follows from the idea that in a

population of spindling TC cells not every cell will fire at each cycle, and therefore TC
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Parameter name | Upper range | Lower range
wi 0% | 20%
w2 20% 20%
w3 20% 20%
wd 20% 5%
wb 5% 20%
Tnput 20% 20%

Table 5.3: Table showing the range (relative to the control value given in table 5.2)
that each parameter can take and still allow oscillatory activity to persist.
activity will not show high synchrony compared to the RE cell population (Destexhe
& Sejnowski, 2002).

Due to the large number of equations, it was not possible to plot the oscillatory
regions of parameter space using the bifurcation analysis software {(LOCBIF) which
was used previously. However, the parameter values were examined within -20% and
+20% of their control values. As shown in table 5.3, in no case was the upper or the
lower limit less than 5%, and so all the parameters exceeded the threshold of acceptable
variability. Therefore, the oscillatory activity in this model (in addition to the visual
responses) is also robust to parameter fluctuations within reasonable ranges. If the
PY6 to TC weight exceeds 5% of its control value, or the RE to TC connection weight
drops below 5% of its control value, the activity in the network saturates. Therefore
it seems that there is a requirement for a minimum amount of inhibition (and not too
much excitation) of TC responses.

Parameters were also set to zero, half, and double their control values, as before

in the earlier spindies model. The network continues to oscillate when the TC to RE

177




5.3 Results

0.5

04t

a3l

021

Activity

0.3

xm

0.1 02
Time (seconds)

(a)

dop

IE'rc

_EPI"D

3

0.55 Q.65 o7

06
Time (seconds)

(b)

Figure 5.4: This figure shows the oscillatory activity displayed by the final model.
All cell types and populations participate in the oscillation as shown in
(2). Looking at the activity close up in (b), we can see that the frequency
of the oscillations is 12Hz, that the TC population leads the activity,
and that the relative pattern of amplitudes (and therefore synchrony)
are consistent with experimental findings (see main text).
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connection is severed. Once again, it is proposed that this case exists because the RE
populations receive an excitatory input from the PY®6 cells, and therefore do not rely on
input from the TC cells. This is consistent with the idea of dominant inhibition, as the
feedback route to the RE nucleus is strong compared to the feed-forward innervation
of the RE nucleus. These manipulations also show that when either of the excitatory
-connections of the TC-PY6-TC feedback loop are doubled, the activity saturates and
therefore oscillations aré no longer observed. This is expected if we consi&er that
the oscillatory state requires a balance of excitation and inhibition, and increasing
excitation destroys this balance.

The main result from the spindleés model in chapter 3, showed a switch in the
oscillation frequency following an increase in the time constant of the reticular cell
population. This was also replicated in the current model as shown in figures 5.5(a)
and 5.5(b). Therefore, this model also supports the hypothesis that the transition in
oscillation frequency is due to the effect of slower GABAp inhibition on the nonlinear
dynamics of the thalamocortical network. There is also an increase in synchrony which
manifests itself as an increase in the amplitude of the activity, and arises from an
increase in the RE time constant. This situation is shown in figure 5.5(c), and is
consistent with experimental results. Once again, the dynamics of the thalamocortical
network appear to be the same in this model as in the simpler model, and are able to
explain experimentally observed phenomena.

Finally, it was not possible to compare the regions of oscillatory parameter space
in the (ws,ws) plane in order to consider dominant inhibition. However, the model’s
behaviour is consistent with such a relationship, as discussed above. Furthermore,
increasing cortical feedback {onto the TC cell population while keeping feedback to

the RE population constant) increased the synchrony of the activity, as shown in
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Figure 5.5: The plot in (a) shows the occurrence of slow oscillations in the model,
when the RE time constant is increased. In (b} the frequency of oscilla-
tions is plotted against the value of the reticular time constant, and (c)
shows the relationship with the amplitude of the oscillations.
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Figure 5.6: This plot shows the relationship between the value of the feedback con-
nection weight onto the TC cell populations, and the synchrony of the
oscillatory activity. It is clear that as the feedback increases, the ampli-
tude and therefore the synchrony of the oscillation increases.

figure 5.6. This is in line with previous studies showing that increases in the strength
of corticothalamic feedback synchronises spindles (Bal et al., 2000). Therefore these
results show that once more the thalamocortical network has an intrinsic resonant
frequency in the spindle range, which is capable of explaining activity observed in
previous experimental and theoretical studies based only on the nonlinear dynamics of

the network.

5.4 Discussion

In the previous chapter a third population-level model of the thalamocortical network
was built, as a simplification of the detailed STRF model. In this chapter it was
intended that this model would bring together the behaviour replicated by the two
previous models into a single model of the thalamocortical network. The main benefit

of.doing so is that it makes it possible to consider a generic form of the thalamocortical
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circuitry, whose dynamics support two types of activity which are considered integral
to the role of the thalamus. Furthermore, the changes that this circuitry needs to
undergo to make the transition from sleep to wakefulness in the healthy brain, could
also be considered via connectivity strengths between the included populations.

The results show that the same dynamics are at work in the sleep/wake parameter
regimes of this unified model, as in the separate sleep/wake models that were presented
previously. This indicates tﬁat the dynamics deseribed in the earlier models are uni-
versal to the thalamocortical network. That is, the dynamics of the thalamocortical
feedback circuitry described by this model support the relay of visual information, such
that experimentally recorded visual responses are accurately replicated in the model’s
responses. Specifically, the response pattern is such that a TC cell of a given ON/OFF
phase preference, responds with excitation to a light/dark stimulus early on, but re-
sponds with excitation to dark/light stimuli after a delay. In the model this reversal in
phase is driven by cortical feedback, and may serve as a dynamic control of thalamic
responses.

The model is also capable of supporting oscillations in the 7-14Hz spindle frequency
range, which are oscillations measured during early sleep throughout the thalamocor-
tical network. This shows that the intrinsic nonlinear dynamics of the thalamocortical
feedback circuit are sufficient to support oscillations. Purthermore, manipulations of
these dynamics replicate experimental manipulations which lead to switches in the os-
cillation frequency. Hence these activities, which are inseparable from the description
of the thalamus, are embedded in the dynamics of the circuitry, and not in separate
accounts of the circuitry, but in a single representation of it.

This architecture simply contains three cell types, which are interconnected as found

experimentally, and these results therefore suggest that this should be considered as

182




5.4 Discussion

a fundamental thalamocortical unit. This has implications for future investigations
of early sensory pathways, as this thalamocortical unit displays a range of dynamic
behaviour expected from the thalamus. Such an active role in neuronal activity for the
thalamus has been previously overlooked, particularly when considering the thalamic
contribution fo sensory processing. However, this study shows that this simple three
cell architecture can produce oscillations, as well as perform the relay of visual infor-
mation whic:h is dependent on an anti-phase é-lrrangement of feedback (Wang et al.,
2004).

When an animal passes from being awake into sleep, the brain undergos a va-
riety of changes, particularly with respect to neuromodulatory innervation (for two
recent reviews see Hobson & Pace-Schott (2002); Pace-Schott & Hobson (2002)). In
the thalamocortical circuitry in particular, it is known that the activity changes from
unsynchronised high-frequency activity which is crucial for the relay of visual informa-
tion, into a variety of slower frequency synchronised oscillations (McCormick & Bal,
1994). These changes occur due to changes in intra-cellular properties, but can also be
seen in the strength of connections as shown by Bazhenov et al. (2002); Hill & Tononi
(2005). Here the parameter changes that were required to make the transition from the
awake behaviour to the early sleep state, are consistent with previous ideas about this
network. In particular with an idea that there is a need for dominant inhibition during
sleep oscillations (Destexhe et al., 1998), and with the prediction that dominant exci-
tation for the relay of information during awake states (le Masson et al., 2002). This is
the major hypothesis to emerge from this model, and this needs to be fully investigated
in future experimental work.

The results from the current model could be inaccurate due to errors in assign-

ment of parameter values, or oversimplifications. However, the model was scrutinised
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alongside previous experimental work and more detailed models, hence it ought to be
considered asgan additional tool for understanding the thalamocortical network, and
not a full description in isolation of all other work. The parameter manipulations show
that this activity is robust to parameter variations within acceptable ranges, and there-
fore does not depend critically on the parameter choices. Furthermore, the results of
. this model are consistent with those of the previous two models of the thalamocortical
network, and exhibit observed patterns of activity.

The main hypothesis of the current model is that in order to make a transition be-
tween early sleep and awake states, there needs to be an accompanying change in the
relative strength of cortical feedback to TC and RE cells. Although this agrees with
previous theoretical hypotheses, there is no experimental evidence to support this idea.
Furthermore, this idea conflicts with a study which measured the quantal amplitudes
(that is the size of the EPSC elicited due to the release of a single quanta of neurotrans-
mitter) in corticothalamic and cortico-reticular synapses (Golshani et al., 2001). This
study was performed in slices of mouse ventrobasal nucleus and TRN, and the authors
made estimations of quantal size based upon the measurement of EPSCs elicited in RE
cells and T'C cells after minimal stimulation of the corticothalamic fibers. They find
that EPSC size and consequently quantal amplitude is larger in RE cells compared
with TC cells, which they take to indicate that cortico-reticular synapses are more
effective than corticothalamic synapses. Therefore, these experimental results do not
agree with the hypothesis of the current model. However, in order to obtain a clear
view of synaptic strength, other factors need to be addressed, such as the number of
synapses, the number of synaptic contact sites, and the locations of the synaptic con-
tacts throughout the dendritic tree. Furthermore, the assessment of synaptic efficacy

needs to be performed in vivo, both in awake-animals, and in the same animals during
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sleep states, in order to test the current hypothesis accurately.

Finally, as in the previous two models, there are a number of assumptions made
during the formulation of this model. The first is that in the process of simplifying the
second model into this third form, the cortical and the thalamic interneurons were left
out, while the reticular neurons were kept. From previous models of spindle oscillations,
it is known that the presence of the reticular nucleus is crucial for the observation of
this activity, and it was felt that a model neglecting this population would not have
be valid. This model also dramatically reduces the number of cortical populations,
and while there are nine TC cell populations of each ON/OFF types, there are only
four cortical cells populations in total. Although this does not represent the true ratio
of TC to PY cells, the aim of this model was to find a minimal representation of
the thalamocortical network which could account for spindling and STRFs. Nine ON
centre and nine OFF centre TC cell populations were required to generate cortical
populations of opposite ON/OFF preference, therefore the minimum number of TC
cell populations had to be 18, with four cortical populations to represent vertical and
horizontal receptive fields.

As before, the current model uses the population approach, which assumes homo-
-geneity in a large group of neurons, and as discussed previously, such %suﬁptions limit
the scope of the work. However, for understanding the change in dynamics which oc-
curs as this system passes from transient awake activity to steady state sleep activity,

the use of population level modelling has proved useful, allowing testable hypotheses

to be made about the thalamocortical network during this transition.
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5.4.1 Summary and contributions

This is the first time that a model representing the transition from awake visual pro-
cessing to early sleep activity in the thalamocortical network has been attempted. It
is also the first population-level model that has attempted to bridge the gap between
steady state oscillatory activity and transient sensory responses in the early visual
system. The results from the model arée successful at representihg the two types of
behaviour that was shown in the previous models of the two isolated descriptions of
the network. This unified model shows that it is possible to represent both aspects
of thalamic functionality through the dynamics intrinsic to a single architecture. This
has implications for the way the thalamus is considered as a unit within both sensory
processing and sleep states. The model also uncovers the relationships required be-
tween populations in order to make the transition between the two states, predicting
that it is heavily reliant on a shift in the relative weights of the feedback connections

to the TC and RE cell populations.
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Chapter 6

General Discussion

‘The aim of this thesis was to investigate the dynamics intrinsic to the activity of the
thalamocortical network, through the use of population-level, computational models.
The contribution of the thalamus to neural activity has been overlooked in the past,
with the role of the thalamus often relegated to a passive relay. However, due to the
observation that there is a large cortical innervation of the thalamus, recent studies
have started to investigate a more substantial role for the thalamocortical network.
The three hypotheses of this thesis were as follows: (i) The intrinsic dynamics of a
simple thalamocortical network are able to support oscillatory activity in the spin-
dle frequency range; (ii) The dynamics of corticothalamic feedback contributes to the
formation of temporal thalamic receptive field properties; (iii). A single description of
the thalamocortical feedback loop can account for both the sustained spindle range
oscillatory activity, and the transient relay of visual information. By producing three
biologically-defined models, which represent this network during an early sleep state
and an awake state, both individually and together, these hypotheses have been -ad-
dressed in detail. In the present chapter the results that have arisen from the work

presented in chapters 3, 4, and 5 are summarised and discussed in the context of the
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original hypotheses.

6.1 Computational modelling

As a starting point, it is useful to refer back to the discussion in the introduction,
and to consider whether the approach of computational modelling was fruitful in this
case. When studying a system with the api)roach of computational modeliing, it is
important to clearly state and consider the aims of the work. As discussed in chapter
1, the aims of a study are vital to determine whether a chosen paradigm is appropriate.
For example in this thesis the hypotheses all relate to investigating the dynamics of
the thalamocortical network, therefore the choice of population models is fitting. If
instead the aim with the spindling model, for example, was to investigate the waxing-
and-waning phenomenon, then this approach would be unsuitable.

The assumptions intrinsic to the chosen modelling paradigm must also be considered
alongside the results from such work. In this thesis the assumptions of the particular
Wilson & Cowan population approach used are discussed with the results in each
discussion section, and are discussed again in section 6.4.1 below. The discussion of
assumptions allows one to specify the limitations of the modelling approach and relate
this to the results presented. Consequently, it is less tempting to infer too much from
the results and draw unsubstantiated conclusions. Thus, the models in this thesis have
made conclusions about the thalamocortical network, which are testable hypotheses,
and while alternative explanations may be plausible, this study calls for further work

in order to verify or disprove these hypotheses.
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6.2 The use of population models

Population models were initially developed in order to investigate neuronal activity
from a global perspective rather than at the detailed biophysical level. There are a
number of different approaches that have been taken in order to derive various popula-
tion descriptions of neurons, ranging from the approach used in this thesis (Wilson &
Cowan, 1972) and similar paradigms (Gerstner, 1995), to mean-field approaches which
consider the average activity of populations of spiking neurons (Nykamp & Tranchina,
2000; Treves, 1993). Such population descriptions have been used éxtensively to exam-
ine a large variety of systems with a vast range of functional specificity. These models
do not explicitly represent the distinguishing cell to cell attributes found in the nervous
system, such as conductances, dendritic structure, etc. However, the link to biological
reality lies in the connectivity between the included cell populations. Therefore, these
models consider that the behaviour fo arise from a network occurs as a consequence of
the dynamical interaction between populations.

This allows such models to be applied to a range of neuronal systems. In fact, a
single population can encompass an entire brain area rather than a specific cell type,
which allows for large-scale representations. As discussed in chiapter 1, many studies
have shown that these models can successfully be used to study a system of interest,
such that experimental findings are replicated by the behaviour of the model, and
hypotheses can be made, which can be tested by further or simultaneous experimental
work. The replication of observations, and subsequent ability to propose plausible roles
for the thalamocortical network are the main requirements of any modelling paradigm,
and it is clear that population-level models are able to fulfil this need. However, as

discussed throughout the thesis, it is extremely important to remember that inherent
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to this approach aré a number of assumptions and simplifications which limit the
conclusions that can be drawn from such studies. These are discussed in section 6.4.1
below.

In the current thesis, the aim was to investigate the dynamics intrinsic to the
circuitry of the thalamocortical feedback network. By doing the emerging activity
could be related to the behaviour previously observed and described, in order to make
plausible hypotheses abou;s the.-nature and purpose of this feedback loop. This was done
through the specific use of the Wilson & Cowan equations, which constitute a simple
representation of neuronal dynamics. The form of these equations was described both
in general and with specific reference to the models produced in this thesis, in chapters
3, 4, and 5. The three models display behaviour that has been reported in previous
electrophysiological work, and consequently hypotheses have been made (reviewed in
section 6.5) about the thalamocortical network in early sleep, in vision, and during the
transition between the two states. In the next section, the results of this thesis are
re-iterated in more detail, and discussed both sequentially, and in unison with reference

to the specific insights gained from this work.

6.3 The dynamics of the thalamocortical network

6.3.1 The spindle oscillation

The first model presented in this thesis (chapter 3) consisted of a minimal three-
population network, which includes only the fundamental cell types that are considered
to be essential for generating spindle oscillations (Steriade et al., 1993). The hypothesis
that was to be addressed by creating this model, was that the nonlinear dynamics

of the thalamocortical circuitry is able to display oscillatory activity in the spindle
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frequency range (7-14Hz). A further goal was to determine if this three population
representation is sufficient to describe this oscillation as an intrinsic, resonant activity
of the thalamocortical network. The connectivity of the model network was strictly
defined by information about the thalamocortical feedback circuit, which exists in the
literature. The behaviour of this first model shows that this simple description of the
thalamocortical network can oscillate with a frequency in the 7-14Hz range (section
3.3.1). '

A major implication of this result is that the dynamics intrinsic to the activity of the
thalamocortical network can be used to understand the network behaviour. The circuit
displays robust oscillations in the correct frequency range, and previous experimental
results can be understood in terms of the underlying nonlinear dynamics. Previous
theoretical studies of the spindling thalamocortical network have been largely restricted
to conductance-based paradigms (such models are reviewed by Destexhe & Sejnowski
(2001, 2002), and are discussed in detail in section 2.2). Therefore, oscillatory activity
in these previous models arises from the interplay of a number of currents, which
have been found to be present in thalamic neurons (Huguenard & McCormick, 1992;
McCormick & Huguenard, 1992). The present work shows that the thalamocortical
network has an intrinsic -ability, due to its connectivity, to oscillate at this 7-14Hz
frequency range. This does not imply that studies at the ionic level are unnecessary, but
does indicate that simplifying the level of complexity can be a useful way to understand
the processes at play within neuronal systems. Furthermore the population-level model
does nof propose a new mechanism for the generation of spindle oscillations, but implies
that the-dynamics of the circuitry supports the oscillatory activity.

However, there are a number of limitations in the spindling model which need to be

discussed. Initially, it ought to be noted that the existence of spindling is dependent
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upon the presence of the cortical population. This is not correct with respect to the
known mechanism underlying the spindle oscillation, as spindling is observed in thala-
mic slices, therefore in isolation from the cortex (von Krosigk et ol., 1993). However,
the aim of the current model is to investigate whether the nonlinear dynamics of the
thalamocortical network allows it to sustain the oscillatory behaviour. Therefore, the
reliance on the cortical population shows that the cortex is involved in such a process.
In addition, the Wilson & Cowan approach models homogenous populations of cells
with no spatial dimension. As discussed in section 6.4.1, homogeneity is not perfect,
but within a localised region one can assume that cells are similar. The lack of a spatial
dimension also limits the phenomena which can be investigated. Identifying such short
comings are a vital part of the understanding of a computational model, but using this
model as one approach to tackling questions about thalamocortical oscillations, to be
used with other theoretical and experimental studies allows useful observations to be
made.

Hence, the work presented in this thesis looks at the involvement of the dynamics
of the minimal and healthy thalamocortical network in producing normal osci]latbry
brain activity, which occurs in early sleep and periods of drowsiness. The results from
this research show that this simple dynamical representation is adequate to observe

activity which has previously been replicated through ionic descriptions.

6.3.2 Spatiotemporal receptive fields

The aim of the second model was to study the thalamocortical network in the awake
state, and specifically the role of this network in visual processing. The definition of
visual responses which was considered is the spatiotemporal receptive field (STRF).

The hypothesis was that corticothalamic feedback drives TC cell visual responses, and
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in particular contributes to the formation of the temporal receptive field, which has
been shown to have a greater amplitude second phase than that of afferent RGCs
(Usrey et al., 1999). The main result arising from this model suggests that only phase-
reversed feedback allows thalamocortical relay cells to develop a second stage to their
témporal receptive fields, which matches experimentally observed STRFs (Cai et al,
1997; Reid et al., 1997). These previous results showed that a TC cell’s STRE reverses
in ON/OFF polarity {or light/dark preference) over time (see section 4.3.2).

The model also produces responses that have previously been measured in the
visual system, such as transient responses to spots of light, and cortical orientation
tuning curves (section 4.3.1), which all indicate that the model’s replication of visual
activity is reliable. Hence, the main hypothesis to emerge from the second part of the
thesis, is that anti-phase feedback connectivity allows cortical cells to dynamically drive
thalamocortical cells, such that their femporal response properties are shaped by this
input. The implications of this result are far reaching. They support the idea that the
feedback projection from cortex to thalamus modulates neuronal response properties,
which is an idea that has started to emerge in the literature (Alitto & Usrey, 2003;
Ghazanfar et al., 2001). However, there is a need for future experimental work to verify
this main hypothesis, and this is discussed in section 6.5 below.

Again, it is important to recognise the limitations of this part-of the current work. In
particular, another patﬁway which could cause an increased second phase in TC cells is
via feed-forward inhibition. If this pathway did account for the change it would be much
simpler for the nervous system to achieve. Secondly, no previous experimental work
has shown that cortical feedback is linked to the biphasic responses of thalamocortical
relay cells. Thirdly, although Wang et al. (2004) show a correlation between their

results and anti-phase feedback connectivity, there is no evidence to suggest that this

193




6.3 The dynamics of the thalamocortical network

is the only way that cortical cells are connected to TC cells. However, considering that
the top-down control of thalamic temporal responses has the potential to modulate
temporal decorrelation (Dong & Atick, 1995), responses to moving stimuli (Sillito &
Jones, 2002), and possibly eye movement related information (sections 1.1.1 and 4.5),
the added expense of a top-down control of thalamic RFs is conceivable, Furthermore,
some involvement of corticothalamic feedback in controlling a variety of aspects of
thalamic RF's has been shown experimentally in different modalities (see section 1.2.2.2
for a review). Therefore, this work proposes that the dynamics of the thalamocortical
feedback circuit allows anti-pl-lase cortical feedback to augment the second phase of
the temporal RF. This proposed hypothesis can be verified experimentally, and hence
future work could address these doubts experimentally.

This result implies that the previously overlooked role of the thalamus is central
to sensory processing. Due to the stereotypical structure of the thalamocortical net-
work within sensory systems, this result can be extrapolated to apply to the MGN and
VPN. The latter point is particularly true as the current work utilises a population
description, and therefore the details of the connectivity are the most important char-
acteristic of the network. As described in chapter 1 the thalamocortical network in the
visual, auditory, and somatosensory systems is very similar, hence the results of the
current work can be assumed to be universal to the three first-order sensory nuclei of
the thalamus.

The STRF model was reduced to form the third model presented in this thesis,
which preserved the three population architecture of the first model, but extended
this representation to allow the formation of receptive fields. This model was pro-
duced in order to clearly identify the pathway underlying the STRF formation, and to

find the minimal architecture which can produce the biphasic STRF properties. This
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model showed clearly that it is the anti-phase feedback arrangement, via a disynaptic
thalamocortical pathway that produces the biphasic STRF, and that the minimum
thalamocortical model re'quires only enough thalamic populations to create one each
of four different cortical receptive fields. This minimal model can therefore account for
the properties of the STRF generation well, and via the same mechanism as in the full

STRF model.

6.3.3 Transition from receptive fields to spindles

This third model was used to address the final hypothesis which predicted that both
the steady state oscillatory behaviour, and the transient receptive field behaviour could
exist in a single description of the thalamocortical network. If so, the requirements
that the transition between these states puts onto the network configuration could
also be investigated.The results from this model showed that the representation of
the thalamocortical network adopted in this part of the thesis can account for both
types of behaviour. The main hypothesis of this model is that the transition between
these two regimes requires a switch from cortical feedback to TC cell populations being
dominant, in the receptive field case, to cortical feedback to the RE cell populations
being dominant, in the spindles case. The model produced the expected responses
when the experiments performed in the previous two models were repeated, which
validates the responses of this third model.

Once more, a number of assumptions were made when defining this model. Cortical
and thalamic interneurons were neglected, and the numbers of populations, particu-
larly cortical, were dramatically reduced. However, one of the aims was to find the
minimal representation of the thalamocortical network which displays the activity in

the preceding two networks. The population approach also introduces simplifications,
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with respect to homogeneity, and the lack of explicit representation of ionic behaviour.
As an initial step in investigating changes in neuronal population dynamics which oc-
cur as an animal passes from a awake activity to a early sleep activity, this approach
has proved useful, allowing suggestions about the system to be made. Finally, there is
no experimental verification for the idea of dominant excitation in awake states, and
the current knowledge shows that quantal amplitude of cortical synapses is larger in
RE cells compared with TC cells (Golshani et al., 2001}, which indicates that cortico-
reticular synapses are stronger than corticothalamic synapses. Therefore further exper-
imental work is necessary to measure the relative strengths of these synaptic contacts,
which would involve considering a number of different factors in vivo, which can effect
efficacy.

Hence, the hypothesis from the third model is supported by the evidence currently
available in the literature, but requires further experimental verification as described

in section 6.5 below.

6.3.4 Dynamics reflect functionality

Taken together these results show that the functionality of the thalamocortical network
can be understood through an appreciation of the dynamics of the circuit. In the case of
oscillatory activity, this statement is infuitive. Such that if there exists ionic properties
to generate oscillatory activity, it would be beneficial for the cireuitry which underlies
this behaviour to have a resonant frequency in the same range, in order to sustain
the oscillations and not damp the activity. In the model of visual processing it is also
clear that the circuitry, and specifically the fact that there exists a precise wiring of
feedback connections with respect to the phase preference of cells, is arranged to suit

the facilitation of top-down control of temporal thalamocortical cell responses. The
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unified model shows that a switch in the relative strength of the weights of the two
cortical feedback connections, facilitates the switch in wake/sleep regimes. In the brain,
this switch is initiated by the actions of various neuromodulators.

Population-level models could be used as the first stage of a theoretic;al investigation
of a system, to see if the dynamics of the circuifry yield the behaviour that is of interest.
As in this thesis, it is also possible to go on and look specifically at which components of
the circuitry are particularly important for the observation of the given activity, either
through bifurcation analysis, or via parameter manipulations. This type of research
has been done in the past, but possesses a number of limitations as discussed in the
next section. However, the current results show that such models can be used alongside
electrophysiological data and ionic models, to produce biologically defined networks,
replicate previously observed data, and make plausible hypotheses about the networks

under scrutiny.

6.4 Limitations of the paradigm

When considering the results from the current work, there are a number of limiting
issues that must be taken into account. The population-level approatch is a simplified
representation of neuronal dynamics, and the derivation of the Wilson & Cowan equa-
tions requires a number of assumptions to be made, which were outlined in section
3.2.2. Here, the areas where these assumptions may not hold are discussed in detail.
In the second part of this section, parameter choices are discussed as another shortfall

of this modelling paradigm.
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6.4.1 Assumptions

As in the derivation of any mathematical model, assumptions are made to simplify the
model] sufficiently to make it usable. In the equations of Wilson & Cowan, which were
adopted for the models in the current work, the main assumption is that populations
consist of a homogenous set of nieurons. While this is clearly never the case, as no
two neurons are entirely identical, we can assume that this is approximately the case
in the populations represented here, particularly as a population of cells in this thesis
refers to a particular cell type and not an entire brain area, which may contain many
different cell types.

Wilson & Cowan state that the cells within a population are assumed to be fully
connected either directly or via interneurons. Again this is an assumption that is likely
not to be true, with cells being connected only to cells that are in close topograph-
ical proximity. This assumption can be overlooked given that here each population
represents a localised topographic region of cells, which is particularly true in the vi-
sual models. A linked assumption, imposed not by the modelling paradigm but by
the architecture, is that in the visual models each population has a single receptive
field. Therefore a number of cells are assumed to have receptive fields that are entirely
overlapping in space. This is not precisely the case, though receptive fields of nearby
cells do overlap in early sensory areas (Reid & Alonso, 1995), and so this assumption
is not without physiological basis.

An issue which has been discussed by other modelling studies, is that of transient
responses. Due to the structure of the Wilson & Cowan equations, and in particular the
time coarse graining performed at the end of the derivation, the activity exhibited by

the equations cannot vary over extremely short time scales (Gerstner, 2000; Nykamp &
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Tranchina, 2000). However, as the models presented in this thesis deal with interacting
populations in different brain regions, the delays introduced can be accounted for by
delays in axonal propagation. Furthermore, in both of the regimes it is interactions
that occur over time scales which are longer than those unaccounted for, which are of
primary interest. Finally, all three models display responses that fit the experimental
data well, particularly temporally, and therefore this issue does not appear to have a

significant effect on the activity here.

6.4.2 Parameters

Another issue that was discussed in an earlier chapter (see section 3.2.3), and is re-
iterated here, is that of parameters. The parameters that are required for the definition
of the models, the population time constants and connection weight parameters, have
no directly physiologically measurable counterparts. As discussed before, the choice of
parameters can be justified by the use of physiological data, and therefore there will
be some correlation with the cellular properties in the brain. However, the assignment
of parameter values remains arbitrary, and therefore the range of parameters for which
a given result is observed should be found, either by bifurcation analysis or manual
manipulation of each of the parameters. These processes are by no means conclusive,
as they are performed in one, two, or at most three dimensions of parameter space
at a time. Hence they yield no appreciation of the effect of manipulating mbre than
three parameters at a time. This shortfall can only be overcome by being aware that

it exists, and by taking it into account when considering the results of the work.
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6.4.3 Conclusions about limitations

Despite the shortcomings, population models are a good first step towards understand-
ing the functionality of neuronal networks, and particularly for looking at the dynamics
without the complication of ionic properties. A major reason for believing this asser-
tion is thét the models presented here do not only hypothesise about what could be
happening in the thalamocortical network, but also display activity that is consistent
with the expectations from previous experimental results. Furthermore, it is inevitable
that the modelling paradigm does not precisely represent the neuronal circuitry in ev-
ery aspect, because any model makes assumptions and simplifications, which is why it
is merely a model. If the limitations are fully understood, and discussed with respect
to the particular model under scrutiny, as has been done here, then the precise scope

of the work can be appreciated.

6.5 Future work

This section considers the questions that have arisen from this current work, in terms
of how they could be addressed in the future, through both experimental work and

extensions of the modelling work.

6.5.1 Experiments to test hypotheses

An essential consequence of such a theoretical study is that it fuels a need for exper-
imental work to test the hypotheses which arise from it. The main hypotheses that

have emerged from this work are summarised below, along with ideas for experiments

to investigate these questions:
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1. The spindles model suggests that the slowing of the intrinsic oscillatory activity
in the T'C circuitry, occurs due to GABAp affecting the nonlinear dynamics of
the network. Experiments to investigate this idea further are also required, as
this frequency change has not been investigated to a great extent previously,

particularly not in terms of the network dynamics.

2. The main hypothesis of the STRF model, is that corticothalamic feedback strength-
ens the second phase of the temporal response of TC cells, which allows an ON
centre T'C cell to respond like an OFF centre cell after a certain latency. Experi-
ments could manipulate the gain of the corticothalamic feedback whilst light /dark
responses are measured. The.expectation is that the reduction of feedback would
reduce the late phase-reversed component of the TC cell receptive field, so that

it has the same magnitude as an RGC’s second phase.

3. The unified model investigated the transition from sleep to wakefulness, and in the
model there is a requirement for cortical feedback to TC populations to outweigh
feedback to RE populations in the transient visual regime. Whilst the opposite
relationship is necessary for the sustained oscillatory regime. This hypothesis
needs experimental verification by the measurement of the synaptic properties,
such as conductances, efficacy eic, of the PY6 to TC and PY6 to RE connections

during sleep states and active behaving awake states.

6.5.2 Extension to the spindles model

The spindles model is an intentionally simplified version of the thalamocortical net-
work. However, the work in this thesis has attempted to explain processes which

depend on the ionic properties of the cells by the nonlinear dynamics of the circuitry
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alone. In particular, the switch to slower frequencies is explained by a rearrangement
of the dynamics of the circuitry due to a slowing of the inhibitory population’s time
constant. In order to investigate this further, an extended model could be built, which
would include ionic components. To maintain the simplicity of the model, the conduc-
tances could be limited to the TC cell, while the Wilson & Cowan equations for the
reticular and cortical cell populations are preserved. That is, the new model would be
a population/conductance-based hybrid. This extended model for the TC cell is shown
in figure 6.1.

The synaptic currents would allow the investigation of the frequency switch phe-
nomenon, while the interface between population dynamics and conductances would
be an interesting approach to investigate. Furthermore, the cell shown in figure 6.1
includes intrinsic currents. This factor would allow the investigation of another intrigu-
ing and unresolved issue with respect to spindles, that is the basis of the waxing-and-
waning. As described in chapter 2, spindle oscillations wax-and-wane over 3-5 second
periods, and the basis for this property is thought to be the up-regulation of the I
current via calcium. A hybrid model, which maintains the dynamics that allow 7-14Hz
oscillations, but includes the ionic properties of thalamic cells, could yield extremely

interesting results on a number of issues related to spindling.

6.5.3 The receptive field model

The major feed-forward cortical targets of TC cells are cells in layer four. The simple
cells in this layer are considered to be the first stage of cortical processing, and a
great deal of experimental work has been done to investigate their properties. In fact
most of the information in the literature about simple cells is based upon experiments

performed on layer 4 cells. Furthermore, the cells in layer 4 have interconnections with
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GABA, GABA,
AMPA

Leak

Figure 6.1: A schematic representation of a proposed extension to the T'C cell com-
ponent of the spindles model. The cell has five intrinsic currents, a
T-type calcium current Iy, a hyperpolarisation-activated cation current
Iy, in addition to sodium, potassium, and leak currents Iy,, {x, and
I1ear- There are also three synaptic currents, GABA4 and GABApg for
reticnlar inputs, and AMPA for cortical inputs.
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the corticothalamie cells of layer 6 (Thomson et al., 2002), forming an additional loop
between the main thalamocortical input layer and the main thalamocortical output
layer. Therefore, a useful extension of the STRF model, would involve the inclision of
this cortical layer. -

A schematic depiction of what such an extended model would look like is given
in figure 6.2. This extra level of cortical processing may have interesting effects on
the emergence of visual responses in thalamic cells. Furthermore, it would also be
possible to look at how cortical responses are in turn affected by the changing thalamic
responses, given that this is essentially a recurrent circuit which may be dynamically
updating its own inputs. This latter point is an extremely interesting suggestion,
which has been discussed in the literature (Alitto & Usrey, 2003), but has not been

investigated a great deal experimentally or theoretically.

6.5.4 The unified model

The main neural mechanism involved in changing the dynamics during sleep/wake cy-
cle is neuromodulation. Acetylcholine (ACh) is particularly important in controlling
this transition, and the thalamus receives dense innervation by cholinergic fibres (Mec-
Cormick, 1992). Application of ACh into the thalamus has opp_osite effects on TC and
RE cells, such that TC cells are excited, but RE cells are inhibited (McCormick, 1992).
When the brain switches from wake to sleep states, the level of ACh in the thalamus
decreases. Therefore, TC cells will be more excited during wakefulness when there are
higher levels of ACh, and RE cells will be more excited during slesp states when there
is lower concentrations of ACh.

Tlﬁs is consistent with the model’s prediction of dominant excitation during visual

activity, and dominant inhibition during sleep oscillations, and leads to the question of
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Figure 6.2: A schematic representation of the proposed extension to the STRF
model. This model would include more of the cortical circuitry, by
including layer 4 (L4) as well as layer 6 (L6) cells. Both cortical layers
have excitatory {white) as well as inhibitory (grey) cells. The layers of
cells shown here may include sub-types of cells, such as ON and OFF
cells in the TC and TIN layers, and horizontal/vertical and ON/OFF
cells in the excitatory cortical layers.
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what would happen if the modulation of the thalamic activity by ACh were explicitly
incorporated into the model. The interaction of this neuromodulator with the network
dynamies could then be explored. The action of ACh could be modelled via a leak
potassium current, as has been done previously (Bazhenov et ol., 2002; Hill & Tononi,
2005), which would therefore transform the population model into a hybrid model (as
in section 6.5.2), with a single extra conductance. As the role of neuromodulation
is central to the sleep/wake cycle, this extension should yield interesting and useful

results for understanding the wake to sleep transition.

6.6 Conclusions and contributions to knowledge

In this section the main findings of the research are re-iterated, with the specific aim

of highlighting the significance, novelty, and contribution to knowledge.

6.6.1 Population models

There have been previous attempts at describing the thalamocortical network at a
population-level (Bressloff & Cowan, 2003b; Hoppensteadt & Izhikevich, 1998; Robin-
son et al., 2002). However, these previous cases have not taken into account the accu-
rate connectivity of the thalamocortical network (Hoppensteadt & Izhikevich, 1998),
have considered the existence of pathological activity in the thalamocortical activity
(Robinson et al., 2002), or have focussed on cortical response properties (Bressloff &
Cowan, 2003b). Thus, the models in this thesis are novel; the first because it repre-
sents spindle-frequency oscillations in the thalamocortical network of a healthy, normal
brain, and retains only the circuitry that has been previously proposed to be essential

for the generation and maintenance of these spindle oscillations. The second model is
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an extended thalamocortical architecture within the visual system, and looks at the
temporal responses arising from the dynamics of the cireuitry. Finally the third model
is novel as it represents both spindling and receptive field properties in the same model.

The results suggest that the functions of the thalamocortical network are reflected in
the nonlinear dynamics of the inter-connected cell populations. Previous studies have
not considered this feature of the circuitry before, and yet the current results suggest
that this is an extremely fruitful level of investigation. However, if is important to
recall that this approach contains a number of assumptions and simplifications, as
explained throughout the thesis. Hence, if these limitations are discussed in context
of the observed. results, then the conclusions drawn will be tempered by thesé issues,
allowing for realistic hypotheses to be made. Therefore, the models presented here are
indicative of the benefits of using population-level descriptions as a methodology in

neuroscience research.

6.6.2 Spindles are a resonant intrinsic activity

The first model investigated the existence of spindles as an activity arising from the
simple representation of the thalamocortical network. In this model spindles exist
as a resonant property of the dynamics of the thalamocortical circuitry. Bifurcation
analysis of the equations of the network show that this activity is robust with respect
to parameter variations, and that relationships between connections, which have been
either shown to exist in experimental work or hypothesised based on previous modelling
studies, also exist in the present model. Therefore, this approach is congistent with the
dynamics of previous models which have involved increased levels of complexity, and
with the dynamics of the network in real tissue.

This spindle frequency-range oscillation can be converted into other oscillatory
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states through the transformation of the intrinsic dynamics. In particular, as in ma-
nipulations carried out in thalamic slices, the oscillation was changed info a slow 4Hz
oscillation by varying the temporal properties of the inhibitory dynamics within the
network. Hence, the main hypothesis of the model is that changes in oscillation fre-
quency occur as a re-arrangement of the dynamics in the thalamocortical circuitry,
which is caused by the slower GABAp inhibition. This calls for future work to ad-
dress this question (as described in section 6.5). The model also supports previous
findings which showed that corticothalamic feedback is involved in the synchronisation
of spindle oscillations, and therefore that cortical feedback acts on the spatiotemporal

properties of thalamocortical activity.

6.6.3 Spatiotemporal responses due to the dynamics of feedback

The receptive field model had spatial response properties hard-wired into the system
through input connections to the various cell populations, and temporal responses
arose from the dynamics of the circuitry. It is known that retinal inputs alone do not
sufficiently account for the second phase of thalamic temporal responses (Usrey et al.,
1999), therefore this model was used to examine the STRFs of TC cells as described
previously (Cai et al., 1997; Reid et al., 1997), and the dependence of those responses on
the arrangement of cortical feedback. Consistent with the experimental studies these
TC cell STRFs were shown to be biphasic in time, such that TC cells have response
properties that reverse in ON/OFTF phase preference over time. The basis of such
responses should be of great interest to the understanding of the early visual system,
yet no previous attempt has been made to investigate this feature.

Very recent work has shown that corticothalamic feedback is specific with respect

to the phase preference of a cortical cell and its target TC cells (Wang et al., 2004).
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The STRF model shows that the emergence of biphasic responses can be explained
based on the nonlinear dynamics of the anti-phase feedback network. Hence the main
hypothesis of the second model is that anti-phase feedback augments the feed-forward
biphasic response property that TC celis receive from their retinal inputs. It may be
that this control is dynamically applied during active vision to alter the thalamocortical
cell responses dynamically in time. The latter point is particularly plausible, as the
model shows that changes in the weights of the T'C to PY6 and PY6 to TC connections
can change the latency between the phases of the STRF. This may have implications
for the thalamic involvement in the processing of information about moving stimuli,
and possibly also eye movements. However, more work needs to address such ideas in
detail. This model was reduced in order to find the minimal architecture required to
generate this response property. In this way, the reduced model clearly showed that
a disynaptic pathway, via anti-phase feedback, mediates the emergence of the second

phase in the model TC cell populations.

6.6.4 The transition from receptive fields to spindles

This reduced model contained the three cell type architecture of the simple spindle
oscillation model, which was extended to allow for the formation of spatial receptive
field structures. This model was used to examine both the transient STRF's of TC cells,
and the steady state spindle frequency range oscillatory activity. As in the receptive
field model, the TC cell STRFs Lwere shown to be biphasic in time, such that the phase
preference reverses over time. Furthermore, the model also produced oscillations in the
spindle frequency range, which were robust to parameter variations within reasonable
ranges. These oscillafions underwent the same manipulation observed in the spindles

model, such as changes in frequency, and control of synchrony via corticothalamic
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feedback.

Hence, these results show that the sustained and transient responses that were ob-
served individually in models of the thalamocortical network can be observed in a single
description of the circuitry. Furthermore, the switch between the two involves a switch
in the relative strength of cortical feedback to the TC and RE populations, such that
dominant excitation is required for the STRF responses, and dominant inhibition for
the oscillatory responses. This latter point is the main hypothesis of the unified model
and is consistent with previous theoretical findings relating to the thalamocortical cir-
cuitry. However this hypothesis necessitates further verification through experimental
studies of the thalamocortical circuitry, as there is no experimental evidence to support

the switch in synaptic strength.

6.7 Summary

The results of this current work show that population-level, biologically defined de-
scriptions of the thalamocortical feedback circuit can be used to look at the role of
this network in the asleep and the awake state, both separately and simultaneously.
The results show that the spindle oscillation occurs as a resonant activity of a simple
thalamocortical circuit. A second model of the STRFs of TC cells agrees with exper-
imental findings which showed that corticothalamic feedback ought to be arranged in
anti-phase, as this arrangement is necessary for the thalamic temporal receptive fields
to match those derived experimentally, and exceed the strength of the second phase
of the temporal retinal response as measured by Usrey et al. (1999). The final model
shows that a single description of the thalamocortical network can display both sleep

and awake activity, and that the switch between the two relies upon a switch in the
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relative cortical feedback strength, which is also consistent with previous theoretical
hypotheses.

The specific implications of these results are as follows: The first model shows that
the thalamocortical network has an intrinsic resonance within the spindle range, and
that cortical feedback influences the synchrony of this oscillatory activity. The results
from simulations of the second model show that anti-phase feedback shapes the tem-
poral responses of TC cells, and therefore cortical cells mdy be able to dynamically
control thalamic responses, and therefore their own inputs, via feedback. The third
model shows that feedback also controls the responses of thalamic cells through the
wake to sleep transition. In all cases corticothalamic feedback controls the temporal
structure of thalamic activity: via synchrony of oscillations, STRFs, and the switch be-
tween transient and steady state activity. This has implications for the involvement of
the thalamus and the thalamocortical network in dynamic activity in the brain. Hence
these results suggest robust, theoretically derived roles for the thalamocortical feedback

network, which was previously dismissed as a passive relay of afferent information.
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