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Abstract 13 

Black products constitute about 15% of the domestic plastic waste stream, of which the majority is 14 

single-use packaging and trays for food. This material is not, however, readily recycled owing to the 15 

low sensitivity of black pigments to near infrared radiation used in conventional plastic sorting 16 

facilities. Accordingly, there is mounting evidence that the demand for black plastics in consumer 17 

products is partly met by sourcing material from the plastic housings of end-of-life waste electronic 18 

and electrical equipment (WEEE). Inefficiently sorted WEEE plastic has the potential to introduce 19 

restricted and hazardous substances into the recyclate, including brominated flame retardants 20 

(BFRs), Sb, a flame retardant synergist, and the heavy metals, Cd, Cr, Hg and Pb. The current paper 21 

examines the life cycles of single-use black food packaging and black plastic WEEE in the context of 22 

current international regulations and directives and best practices for sorting, disposal and recycling. 23 

The discussion is supported by published and unpublished measurements of restricted substances 24 

(including Br as a proxy for BFRs) in food packaging, EEE plastic goods and non-EEE plastic products. 25 

Specifically, measurements confirm the linear economy of plastic food packaging and demonstrate a 26 
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complex quasi-circular economy for WEEE plastic that results in significant and widespread 27 

contamination of black consumer goods ranging from thermos cups and cutlery to tool handles and 28 

grips, and from toys and games to spectacle frames and jewellery. The environmental impacts and 29 

human exposure routes arising from WEEE plastic recycling and contamination of consumer goods 30 

are described, including those associated with marine pollution. Regarding the latter, a compilation 31 

of elemental data on black plastic litter collected from beaches of southwest England reveals a 32 

similar chemical signature to that of contaminated consumer goods and blended plastic WEEE 33 

recyclate, exemplifying the pervasiveness of the problem. 34 

 35 
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 39 

1. Introduction 40 

Because of their ease of manufacture, low cost, strength, versatility, inertness and insulating 41 

properties, plastics have become an invaluable commodity in a range of sectors, including packaging, 42 

construction, agriculture, healthcare, transport, clothing, communication and electronics 43 

(PlasticsEurope, 2016; Van Eygen et al., 2017). With such a diversity of applications, plastics may be 44 

tailored to precise needs through the addition of specific substances during manufacturing. 45 

Additives include materials and chemicals introduced intentionally for colour, heat stabilisation, 46 

plasticising, filling, impact modification, internal lubrication and flame retardancy, as well as catalytic 47 

residues arising from the polymerisation process itself (Hansen et al., 2013).  48 

Both in spite of and because of their versatility and widespread use, plastics also pose a number of 49 

environmental threats. Thus, although most plastics are, in theory, recyclable, technological and 50 

economic constraints and the presence of additives that are harmful should they migrate from the 51 

polymeric matrix preclude the recycling of many products, at least into general consumer goods; as a 52 

consequence, a significant fraction of the plastic stream ends up in landfill or incinerated (Ignatyev 53 

et al., 2014). Moreover, through poor management and disposal practices from an individual level to 54 

an institutional basis, plastic littering has become a pervasive problem in the marine environment 55 

(Sheavly and Register, 2007). Here, not only do primary plastic objects and secondary plastic 56 

fragments have an aesthetic impact, they pose significant threats to wildlife (Li et al., 2016). 57 

Incidental or deliberate ingestion of plastic is a particular concern because it occurs across a wide 58 
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range of organisms and may result in blockage of or damage to the digestive tract (Santos et al., 59 

2015; Jovanovic, 2017) as well as act as a vehicle for the bioaccumulation of chemical additives or 60 

pollutants adsorbed to the plastic surface (O’Connor et al., 2016; Massos and Turner, 2017). 61 

Amongst these issues, black plastics pose a unique series of challenges and problems that have 62 

recently emerged. Thus, while there is a requirement for black products in various sectors, recycling 63 

of end-of-life black plastic is hampered by the availability of suitable technology to sort this material 64 

efficiently (Dvorak et al., 2011). As a consequence, the demand for black plastic appears to be met, 65 

in no insignificant part, by the recycling of plastic from waste electronic and electrical equipment 66 

(WEEE) (Chen et al., 2010; Haarman and Gasser, 2016). The presence of restricted chemical 67 

additives, residues or contaminants in WEEE plastic that cannot be identified or removed readily, 68 

however, has resulted in the appearance of potentially harmful chemicals in new black plastic 69 

consumer products intended for the preparation or storage of food or as toys for children (Chen et 70 

al., 2009; Kuang et al., 2018).  71 

The present paper reviews the contemporary literature on the characteristics, life-cycles and 72 

environmental impacts of black plastics, and examines relevant regulations and conventions relating 73 

to the recycling and disposal of plastics that contain restricted chemical additives. The discussion is 74 

aided and directed by measurements of additives in black plastic electrical and non-electrical 75 

consumer products and in black plastic marine litter that have been garnered by the author’s 76 

research group over the past few years or that have been undertaken for the specific purposes of 77 

the current review. 78 

 79 

2. Nature and uses of black plastic 80 

Most black plastics are coloured with carbon black, a group of industrial carbons created by the 81 

partial combustion of various hydrocarbons. Characterised by a small particle size and high oil 82 

absorption, carbon black is cheap to produce and has excellent colour strength, hiding power, 83 

solvent resistance and ultraviolet stability (Brewer, 2004). Addition of about 1% is usually sufficient 84 

as a colourant in unpigmented polymers but higher quantities (up to 40%) may be added to modify 85 

mechanical and electrical properties (Pfaff, 2017). The precise characteristics of plastic can be 86 

further refined by adjusting the size, morphology and dispersion of the particles within the 87 

polymeric matrix.  88 

The properties of carbon black render it suitable for a wide range of plastics but it is particularly 89 

favourable for products used outdoors or where strength, conductivity or thermal stability is 90 
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required. Items employing carbon black therefore include automobile components, mouldings and 91 

piping, ready meal trays, refuse bags, tarp and mesh, and housings and insulation for electrical and 92 

electronic equipment (EEE). Carbon black is also used in products where colour is the principal 93 

concern from an aesthetic perspective, like replica toys, jewelry and food packaging 94 

(Plasticseurope.com, 2016). 95 

In Table 1, a more specific list of consumer products that are wholly or partly constructed of black 96 

plastic is given. Here, products are classified as follows: ‘food-contact’, where plastic is in direct or 97 

indirect contact with food or beverages; ‘storage and construction’, with a range of applications in 98 

the household but excluding storage of food; ‘clothing and accessories’, including articles that are in 99 

direct contact with the skin or that are handled regularly; ‘toys and hobbies’, including objects 100 

potentially mouthable by young children; ‘office and garden’ and other products used in the 101 

workplace or outdoors; and ‘EEE’, or plastic casings of products that are battery- or mains-operated 102 

and that have the propensity to generate heat (and including electrical varieties of products 103 

categorised elsewhere such as toys, tools and sports equipment).  104 

 105 

3. Challenges for the recycling of black plastic 106 

3.1. Non-EEE plastic 107 

Efficient recovery and recycling of non-EEE plastics relies on sorting into monopolymeric fractions 108 

(and according to resin identification codes) that can be performed cheaply, reliably, safely and 109 

automatically (Bezati et al., 2011). Currently available technology is based on spectral signatures 110 

derived from near infra-red (NIR) reflectance spectroscopy (0.8 to 2.5 m) where plastics are 111 

identified according to stretching vibration modes of CH, CH2 and CH3 groups (Becker et al., 2017). 112 

Plastics coloured with carbon black and other black pigments, however, exhibit very low reflectance 113 

of light in the NIR spectral region and the signal-to-noise ratio of present sensors is insufficient to 114 

allow classification according to polymer type (Rozenstein et al., 2017); identification may be 115 

hampered further by the presence of additional additives and lacquer films (Becker et al., 2017). 116 

Consequently, black plastics with no specific provision for recycling are typically confined to a linear 117 

economy in which end-of-life material enters the unsorted residue of reprocessing facilities before 118 

being sent for landfill or incineration and energy recovery rather than being reconstituted into 119 

pellets for the production of new goods. 120 

Alternative technologies to identify black plastics have recently been investigated that are based on 121 

mid-wave infra-red spectroscopy (3 to 12 m) but thus far these have not proved to be feasible on a 122 
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commercial scale (Becker et al., 2017; Rozenstein et al., 2017). A review into the problem by the UK 123 

government-funded recycling group, WRAP (Waste Resources Action Programme), concluded that, 124 

in combination with existing NIR technology, either alternative colourants or the addition of 125 

fluorescent markers would be the most suitable option to achieve a sufficient throughput of 126 

materials at a recovery or reprocessing facility (Dvorak et al., 2011). To this end, the PRISM project 127 

(Plastic Packaging Recycling using Intelligent Separation technologies for Materials) has recently 128 

secured funding to develop fluorescent materials from metal oxides for marking and coding plastics 129 

that are identified though an ultraviolet light source (Moore, 2016). In the meantime, WRAP has 130 

advised local UK authorities to check with their processor if black plastics are recycled and, if not, 131 

update their communications with householders stating clearly that black products are on the ‘not 132 

recycled’ list (letsrecycle.com 1). 133 

3.2. EEE plastic 134 

Although plastic used for housing or insulation of EEE may be a variety of (mainly neutral) colours, 135 

black is the dominant colour employed for appliances smaller than white goods such as fridges and 136 

washing machines (UNIDO, 2012). Unlike more general black household waste, the majority of which 137 

is food packaging, the disposal of end-of-life black plastic used in, for example, televisions, 138 

computers, phones, power tools, lighting equipment and electrical toys, is embraced by specific, 139 

existing legislation in the European Union that is outlined below. Typically, plastics used in such 140 

equipment, like high impact polystyrene (HIPS), acrylonitrile butadiene styrene (ABS) and 141 

polycarbonate (PC), have better mechanical and electrical properties than those used in most other 142 

consumer products (e.g. polyethylene terephthalate, PET, used in food packaging) but recycling is 143 

confounded by a number of additional challenges, including the potential environmental and health 144 

impacts associated with the presence of hazardous additives (Haarman et al., 2016). 145 

 146 

4. Regulations relevant to EEE plastic 147 

In order to better manage waste from EEE, contribute to a circular economy and enhance resource 148 

efficiency, the Directive on waste electrical and electronic equipment (WEEE) (Directive 2002/96/EC; 149 

European Parliament and Council, 2003a) and the Directive on the restriction of the use of certain 150 

hazardous substances in electrical and electronic equipment (RoHS) (Directive 2002/95/EC; 151 

European Parliament and Council, 2003b) were introduced by the European Union and became 152 

effective from 2003 and 2005, respectively. The former directive focused on the creation of 153 

collection schemes for WEEE and was revised with effect from 2014 in order to tackle a rapidly 154 
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growing and diversifying waste stream (Directive 2012/19/EU; European Parliament and Council, 155 

2012). The latter directive deals with the restriction and replacement of hazardous metals and 156 

specific brominated flame retardants (BFRs) in EEE and was recast with effect from 2013 (Directive 157 

2011/65/EU; European Parliament and Council, 2011) and subsequently amended with effect from 158 

2019 (Directive 2011/65/EU Annex II amendment; European Parliament and Council, 2015) in order 159 

to encompass a broader array of equipment and improve regulatory and legal clarity. Legislative or 160 

administrative procedures based on or similar to these directives have since been adopted in regions 161 

outside of the European Union, including India, China, Japan, Thailand, Latin America, Canada and 162 

various states in the US (Tanskanen and Butler, 2007; Bandyopadhyay, 2009; Terazono et al., 2015). 163 

The production, use and processing of certain BFRs is also restricted according to additional and 164 

more general international agreements. The Stockholm Convention (Resource Futures International, 165 

2001), which came into effect in 2004 and is currently ratified by 181 parties, requires developed 166 

nations to resource the elimination of the production and use of intentionally and unintentionally 167 

produced persistent organic pollutants (POPs) and manage and dispose of POPs by environmentally 168 

sound means. Although BFRs were not included in the list of chemicals in the original convention, 169 

several of those encompassed by the RoHS Directive were added in modifications that have since 170 

come into effect, albeit with exemptions relating to plastic recycling (UNIDO, 2017). The Basel 171 

Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal 172 

(UNEP, 2014) has been effective since 1992 and is currently ratified by 185 parties (but not the US). 173 

This convention was designed to reduce the movement of hazardous waste, particularly from 174 

developed to less developed nations, and includes the BFRs embraced by the Stockholm Convention. 175 

A critical and controversial loophole of the Basel Convention, however, is that exporters are able to 176 

designate WEEE as products that are “repairable” or to be “reused” rather than as hazardous waste, 177 

thereby potentially exempting non-functional electronic equipment from the obligations of the 178 

agreement (Perkins et al., 2014).  179 

 180 

5. Hazardous additives in black plastics 181 

Aside from pigments and dyes, additives are not necessarily specific to plastics of particular colours. 182 

However, the dominant use of black in food packaging and in EEE housings and insulation, coupled 183 

with the constraints on recyclability outlined above, mean that certain additives are likely to be 184 

more of an environmental and health concern when associated with black products. Potentially 185 

‘hazardous’ substances in this context are the metalloid, antimony, and the four heavy metals and 186 
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two groups of BFR defined by the current RoHS Directive for WEEE materials (European Parliament 187 

and Council, 2011). 188 

Antimony (Sb) is often homogeneously dispersed in PET, a plastic of high thermal stability and the 189 

most widely used for food packaging and cooking, as catalytic residue from the polycondensation of 190 

ethylene glycol and terephthalic acid. Its precise impacts on human health are still unclear but a 191 

toxicological similarity with arsenic ensures that it is gaining interest and remains a concern (Pierart 192 

et al., 2015). Because of toxicities that are better understood, cadmium (Cd), chromium (Cr) in its 193 

hexavalent form, mercury (Hg) and lead (Pb), and the polybrominated biphenyl (PBB) and 194 

polybrominated diphenyl ether (PBDE) flame retardants, are restricted by the RoHS Directive on 195 

homogeneous materials or components of EEE (including plastic housings and insulation) to 196 

concentrations of either 1000 ppm or 100 ppm (Cd only). Note that four phthalate plasticisers are 197 

also to be added to the restricted list for EEE products placed on the market from 2019, and that, 198 

despite compounds of Sb (and in particular, antimony trioxide, Sb2O3) commonly used as a 199 

halogenated flame retardant synergist (Felix et al., 2012), the metalloid itself has not been 200 

considered in the directive. 201 

5.1. Measurement of hazardous additives in plastic 202 

Determination of specific flame retardants and metals-metalloids in plastics may be accomplished 203 

by, for example, gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma 204 

mass spectrometry (ICP-MS), respectively, following decomposition of the matrix in a suitable 205 

solvent or mineral acid. Although these techniques are extremely sensitive, sample preparation can 206 

be both time- and resource-consuming and may generate significant quantities of hazardous waste 207 

(Chen et al., 2009; Mello et al., 2015). Accordingly, increasing use has been made of energy-208 

dispersive x-ray fluorescence (XRF) spectrometry as a means of analysing plastics simultaneously for 209 

Br, as a proxy for BFRs, and Cd, Cr, Hg, Pb and Sb (Furl et al., 2012; Gallen et al., 2014; Aldrian et al., 210 

2015; Massos and Turner, 2016). This approach relies on irradiating a sample with a high intensity, 211 

collimated x-ray beam (typically up to 50 kVp and 100 A) and deconvoluting a spectrum of 212 

secondary x-rays generated by the material through a series of iterations. (Note that, unlike NIR, x-213 

ray intensity is not affected by colour). XRF cannot discriminate different brominated compounds or 214 

oxidation states of Cr and detection limits on the order of tens of ppm mean that low levels of BFRs 215 

and metals may not be reported. However, the technique has the advantages of being rapid, non-216 

destructive and, with handheld devices and suitable x-ray shielding, portable. 217 

5.2. XRF-determination of black plastic additives for the present study 218 
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In the present study, concentrations of the elements listed above, plus Cl as a measure of 219 

chlorination and an indicator of polyvinyl chloride (PVC; operationally defined as [Cl] > 15% for the 220 

purposes of the XRF calibration), were determined in plastics using a Niton XL3t 950 GOLDD+ XRF 221 

according to protocols described in detail elsewhere (Turner and Solman, 2016) and as summarised 222 

below. Data for old and new black plastics, sourced from various households, offices, nurseries, 223 

schools, stores and fast-food establishments, have been compiled both from results of previous 224 

research into consumer plastics in general (Turner and Filella, 2017a; 2017b) and from new 225 

measurements where black products have been specifically targeted. Data for marine plastic litter 226 

that is coloured black have been distilled from published and unpublished results of several beach 227 

litter surveys undertaken around the English Channel and Atlantic coasts of south west England 228 

(Turner, 2016; Massos and Turner, 2017).  229 

Thus, plastic products or specific components thereof (‘samples’), and excluding rubbers, foams and 230 

textiles, were analysed by XRF in situ or in a laboratory test stand in a low density plastics mode with 231 

thickness correction and using an excitation beam width of 8 mm or 3 mm depending on sample size 232 

and accessibility. Counting was performed for periods of between 30 s and 200 s (depending on 233 

sample thickness, composition and analyte signal) that were equally distributed between a low 234 

energy range (20 kV and 100 A) and main energy range (50 kV and 40 A). X-ray spectra were 235 

quantified by fundamental parameter coefficients to yield concentrations on a dry weight basis (in 236 

ppm) and with a counting error of 2(95% confidence) that were downloaded to a laptop using 237 

Niton Data Transfer (NDT) software. For quality assurance purposes, reference discs supplied by the 238 

manufacturer and certified for concentrations of Cd, Cr, Hg, Pb and Sb in polyethylene (PN 180-619, 239 

LOT#T-18), Cd, Cr, Hg, Pb and Br in polyethylene (PN 180-554, batch SN PE-071-N) or Br and Sb in 240 

PVC (PVC-4C80) were analysed throughout each measurement session, while high quality virgin 241 

black pellets of various construction and with no added components (supplied by Algram Group Ltd, 242 

Plymouth) were used to check for false positives. Median detection limits under these operating 243 

conditions were < 10 ppm for Br, Cr and Pb, about 20 ppm for Hg and around 40 ppm for Cd and Sb, 244 

with precise values dependent on the nature of the sample but that were generally inversely related 245 

to material thickness. 246 

 247 

6. Concentrations of hazardous additives in black consumer plastics 248 

Results arising from the XRF-analyses of black plastic electrical and non-electrical consumer products 249 

are summarised in Table 2, where samples have been grouped according to the categorisation given 250 

in Table 1. Thus, in total, more than 600 samples were tested, with at least 70 considered in each 251 
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category and PVC encountered in 43 cases and across all categories. In Figure 1, examples of Br-252 

positive samples among non-EEE products and Pb-positive samples among both EEE and non-EEE 253 

products are photographed to illustrate the range of items in which hazardous substances may be 254 

found. 255 

Bromine was detected in almost one half of all black samples tested and in at least 20% of samples 256 

from each category, with concentrations overall ranging from 1.5 to 133,000 ppm and detection 257 

most frequent (on a percentage basis) in the EEE category. By comparison, analysis of samples 258 

coloured other than black and reported in Turner and Filella (2017b) revealed variable 259 

concentrations of Br in various older (pre-RoHS) white EEE and in only a limited number of non-EEE 260 

that were usually green and where the halogen is employed in phthalocyanine pigments (Ranta-261 

Korpi et al., 2014). 262 

Lead and Sb were detected in about one quarter of all black samples analysed and exhibited a more 263 

uniform distribution across the different categories than Br. Lead was most commonly detected in 264 

the clothing and accessories and toys and hobbies categories and least frequently in the food-265 

contact category, and concentrations above 5000 ppm were always associated with PVC products. 266 

Antimony was most frequently detected in the EEE plastics, where concentrations spanned about 267 

three orders of magnitude, but was present across all other categories and with concentrations that 268 

were greatest either in the presence of high concentrations of Br or in PVC products. In the food-269 

contact category, Sb was detected in 12 out of 14 PET trays tested (all of which were Br-negative) 270 

and at concentrations that were rather uniform (344 + 89.0 ppm). However, the metalloid was never 271 

detected in other plastic products at similar concentrations and in the absence of Br, providing 272 

empirical evidence that black PET is not widely recycled into consumer goods. 273 

Cadmium and Cr were detected in fewer black samples than the elements above but were present in 274 

items across all categories and, with the exception of Cd in a plastic brooch (35,000 ppm), 275 

concentrations spanned about two order of magnitude. On a percentage basis, Cd was most 276 

frequently encountered amongst office and garden equipment while Cr was most frequently 277 

detected in food contact items (including PET food trays). In contrast, Hg was detected in only eight 278 

samples across five categories and at concentrations that were always below 100 ppm. 279 

Regarding black EEE plastics, 90 samples were identified from appropriate symbols and signage as 280 

post-RoHS Directive (or placed on the market since 2005) and 32 as pre-RoHS, with the remaining 281 

samples (unmarked components of absent larger items) unclear in this respect. A comparison of the 282 

descriptive statistics for Br, Cd, Cr, Pb and Sb in post- and pre-RoHS samples, shown in Table 3, 283 

indicates a similar percentage frequency of detection in both categories for all elements with the 284 
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exception of Pb, which was encountered in fewer cases post-RoHS. Moreover, a series of non-285 

parametric Mann-Whitney U tests, performed in Minitab 17, revealed that, among the elements, 286 

only concentrations of Pb were statistically different ( < 0.05) between the two categories (and 287 

lower post-RoHS).  288 

 289 

7. Sources of hazardous additives in black plastics 290 

7.1. Additives in EEE plastics 291 

Of the elements considered, Br was most commonly detected among the black plastic samples 292 

analysed. Within the EEE category, its occurrence is attributed to the historical and contemporary 293 

use of brominated flame retardants in thermosetting plastic housing and casings (Shaw et al., 2014). 294 

Halogenated materials act as efficient and cost-effective flame retardants by interrupting the radical 295 

chain reaction in the gas phase, and the variety of brominated compounds available allows specific 296 

needs to be met in different plastics with a range of applications. Commercial mixtures of deca- and 297 

octaBDE, trisbromophenol derivatives and brominated phosphates were commonly employed in 298 

polymers for EEE before 2005 (UNEP, 2010), and usually in the presence of Sb2O3 as a synergist. The 299 

Sb2O3 to BFR ratio was generally in the range of 0.2 to 0.5, or equivalent to a mass ratio of Sb to Br of 300 

about 0.3 to 0.5, except where the metalloid caused molecular weight degradation of the matrix (a 301 

particular problem in PC) (Papazoglou, 2004). Environmental concerns and implementation of the 302 

RoHS Directive, however, resulted in the subsequent development of alternative brominated 303 

compounds that are supposed to be safer and the wider use of halogen-free flame retardants like 304 

hydrated minerals of aluminium and magnesium and phosphate esters (Liagkouridis et al., 2015). 305 

The precise quantity of a compound or mixture required to achieve adequate flame retardancy 306 

depends on the composition of the polymer, the application of the product, the type and nature of 307 

retardant and its compatibility with the polymeric matrix, and the efficiency of any synergist. 308 

Papazoglou (2004), however, suggest that a minimum of 3 to 5% by weight of a brominated 309 

compound is required in most plastics, which is equivalent to a Br content of at least about 20,000 310 

ppm. On this basis, only four out of 32 pre-RoHS black EEE products analysed as part of the present 311 

study, and each containing Sb, are sufficiently flame retardant in terms of bromination, with a 312 

further four samples of high Cl content likely to be retardant in terms of chlorination (Table 3). 313 

Failure to detect Br in eleven pre-RoHS samples suggests that either non-halogenated flame 314 

retardants were employed or the voltage of the product was sufficiently low to circumvent retardant 315 

addition. In the remaining samples, the presence of Br over a wide range of concentrations (from 316 
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about 4 to 4000 ppm) that are too low to provide retardancy, coupled with a co-association with Sb, 317 

raises possibilities about material recycling. 318 

A similar distribution of Br and Sb is evident in the post-RoHS samples (Table 3). Thus, here, only two 319 

samples contained sufficient Br (and Sb) to provide flame retardancy, presumably from unrestricted 320 

brominated compounds, with 31 products containing no measurable Br and probably attaining 321 

retardancy, where required, through non-brominated compounds. The remaining post-RoHS 322 

samples contained Br over a wide range of concentrations (from about 2 to 10,000 ppm) that are too 323 

low for retardancy but that were often co-associated with Sb, consistent with the material recycling 324 

assertion mentioned above. 325 

Unlike Br and Sb, which have distinct functions in the manufacture and protection of EEE plastics, 326 

the sources of Cd, Cr and Pb in a variety of pre- and post-RoHS samples are less clear but likely to be 327 

more varied. Regarding plastics themselves, compounds of both Cd and Pb have been used as 328 

stabilisers in PVC (Titow, 2012) while Cr(VI) may be present in some polyethylene as residual 329 

chromium trioxide catalyst from the polymerisation process (Epacher et a., 2000). However, the 330 

presence of these metals in a wider array of (non-PVC) EEE plastics implies that many products may 331 

have been manufactured from a mixed recyclate. For example, Dimitrakakis et al. (2009) found that 332 

WEEE plastic may contain 15 or more different polymer types, with polymer identification not 333 

always possible (especially for black materials that evade NIR detection) and cross contamination 334 

during recycling inevitable. Regarding the present results, that Cd and Pb were always associated 335 

with Cl in the EEE samples tested suggests traces of PVC may have been recycled into new products. 336 

Alternatively (or additionally), since Cd, Cr(VI) and Pb have a wide variety of uses in non-plastic 337 

electronic equipment (as, for example, alloying elements, anticorrosion agents and activators, and in 338 

components of batteries, bonding agents, film pastes, solder, varnishes and ceramic capacitors), 339 

imperfect sorting of WEEE materials during dismantling may result in contamination of the plastic 340 

recyclate (Wäger et al., 2012). There also exists the possibility that the XRF results were skewed by 341 

secondary x-rays generated by metallic parts in the vicinity of the plastic being probed. However, 342 

where the co-existence of metallic and plastic components was evident or suspected, potential 343 

interferences were minimised by probing the edge of the sample using a 3-mm excitation beam 344 

width (Turner, 2018a); moreover, this effect would not explain the presence of Cd, Cr and Pb in 345 

plastic components with no metallic attachments, like battery compartment covers, support 346 

apparatus, protective caps, calculator cases and audio docking station adaptors, as well as their 347 

occurrence in the non-EEE samples reported in Table 2. 348 

 349 
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7.2. Additives in non-EEE plastics and evidence for the recycling of poorly-sorted WEEE 350 

In non-EEE black plastic samples, relatively high concentrations of Cd and Pb may be attributed to 351 

the use of metal-based stabilisers in PVC products, while smaller quantities of Cr and Sb are likely 352 

the result of catalytic residues in polyethylene and PET, respectively. However, the widespread 353 

detection of these elements, and in particular Pb, across a broader range of materials, coupled with 354 

the extensive occurrence of Br among the samples tested that require no flame retardancy (and at 355 

concentrations insufficient to provide retardancy), calls for an alternative explanation. 356 

Unlike other colours of plastic that can be readily identified by NIR spectrometry, there are 357 

technological and economic difficulties in the sorting and recycling of black plastics, as discussed 358 

earlier. With a high demand for black plastics in various sectors, it is suspected that polymers of this 359 

colour are often sourced for new consumer goods from end-of-life WEEE, and as implicated more 360 

specifically for both old and new EEE plastic above. New goods may be constructed entirely from 361 

black WEEE plastic, or may be blended with cleaner plastics (including those of other colours) and re-362 

pigmented black.  363 

In theory, and because industry-scale technology does not exist for removal of Br from plastic, 364 

sorting facilities should isolate plastics containing BFRs for disposal by appropriate means or for 365 

energy recovery in the metal or cement industries according to best available technologies  (UNIDO, 366 

2017). Although sorting may be accomplished by, for example, density separation in fluids or manual 367 

inspection according to age or ISO signage, with occasional spot checks using portable XRF for 368 

validation, poor, low-cost or inefficient practices allow materials impregnated with BFRs to re-enter 369 

the recyclate (Haarman and Gasser, 2016). This is a particular problem in (but vis not unique to) less 370 

developed nations, like India, Pakistan, Nigeria and China, which, despite the objectives of the Basel 371 

Convention, import significant quantities of WEEE from Europe, North America, Australia and Japan 372 

(Sepúlveda et al., 2010; Obaje, 2013), presumably as “used” or “repairable” goods. Here, large 373 

stockpiles that include older WEEE and restricted BFRs may be processed by inexperienced 374 

operatives without suitable screening technology at informal or unregulated facilities (UNIDO, 2017; 375 

Ni et al., 2013). (At the time of writing, China, the largest recipient of waste from overseas, has 376 

announced stringent restrictions on waste importation and introduced a licensing scheme that 377 

targets facilities with clean records and full regulation compliance, a system that will also allow the 378 

country to boost its own waste recycling rate; Letsrecycle.com 2.)   379 

 380 
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A consequence of this quasi-circular economy, coupled with imperfect international monitoring and 381 

regulatory loopholes, is that, unaware to the consumer and, in many cases, the manufacturer and 382 

retailer, BFRs and heavy metals like Pb end up in a heterogeneous assortment of items. These are 383 

exemplified in Figure 1 and include the ring of a baby’s dummy, a disposable fork from a reputable 384 

supermarket, various kitchen utensils, the wheels of toy cars, games marbles and counters, necklace 385 

beads and pendants, clothes hangers, spectacle cases, plant pots, lawnmower blades, coffee 386 

plungers, thermos flasks and rawl plugs. Moreover, given the heterogonous mixture of EEE plastic 387 

types and vintages apparently recycled, coupled with potential blending with cleaner materials, 388 

concentrations of Br and Pb vary widely, with identical looking products from different suppliers 389 

sometimes containing relatively high concentrations of these elements and sometimes Br- and Pb-390 

free. Significantly, consumer products analysed by XRF that returned concentrations of either 391 

element above 1000 ppm in the present study are RoHS non-compliant with respect to the heavy 392 

metal or potentially non-compliant with respect to BFRs. That is, limits designed for hazardous 393 

substances in WEEE are being breached for goods beyond the scope of the legislation, including 394 

products in regular contact with food, toys designed for young children, items of jewellery and a 395 

range of handles and grips. 396 

Further, empirical  evidence for the recycling of BFRs into non-EEE consumer goods is the co-397 

existence and correlation of Sb with Br. Thus, in Figure 2, concentrations of the two elements are 398 

plotted against each other for both EEE plastics, with pre- and post-RoHS samples discriminated, and 399 

non-EEE products, where each sample category is discriminated. (Note that four highly chlorinated 400 

or PVC-based samples have been omitted where Sb was evidently used as a synergist for chlorine-401 

based flame retardants.) Results of linear regression analysis of the data sets, shown in Table 4, 402 

reveal significant relationships in all cases, with slopes ranging from about 0.33 to 0.54 and that are 403 

consistent with the mass ratios of Sb-based synergists to BFRs in plastics defined above. Significantly, 404 

once 95% confidence intervals had been factored in, there was no statistical difference between the 405 

slope defining all non-EEE samples and that defining all EEE products. 406 

A growing body of literature is reporting the occurrence of BFRs in a range of products where they 407 

are neither needed nor expected and present an unnecessary hazard to the consumer. For instance, 408 

Miller et al. (2016) used XRF to demonstrate the widespread occurrence of Br in plastic consumer 409 

goods that had been newly purchased on the US market, with mass spectrometry performed on 410 

black necklaces and garlands confirming the presence of several restricted BFRs. Samsonek and 411 

Puype (2013) and Kuang et al. (2018) detected various restricted BFRs in black thermos cups 412 

purchased in the EU and in black kitchen utensils purchased in the UK, respectively, while Chen et al. 413 

(2009) found several BFRs in toys bought on the Chinese market, including PBBs that had never been 414 
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produced in the country. Clearly, the reconstitution of WEEE into consumer products is a pervasive, 415 

global issue affecting plastics across a multitude of sectors and that is likely to have wide-ranging 416 

impacts on the environment and on human health. 417 

 418 

8. Potential environmental and health impacts of hazardous additives in black plastics 419 

The environmental impacts of plastics in general arise from the energy and resources involved in 420 

their production and transportation, the presence of broadly-used organic additives (e.g., 421 

phthalates), and the poor management of plastic waste and its disposal. With regard to black 422 

plastics, impacts are compounded and diversified because of inefficient and inadequate recycling 423 

and the presence of a range of harmful chemical additives. 424 

8.1. PET packaging 425 

Because of the potential toxicological profile of Sb (Gebel, 1997), its occurrence in black PET used in 426 

food packaging or cooking has been evaluated as a possible health hazard. Diffusible species of Sb 427 

are likely to be the monodentate glycolate (-Sb-OCH2CH2OH) and chelate ligand (-OCH2CH2O-) 428 

complexes, with inorganic Sb probably making a small contribution. Diffusion of Sb from the PET 429 

matrix depends on a number of factors, like degree of crystallinity of the polymer, the molecular 430 

weight distribution of the Sb-glycol complexes and the presence of additional additives that may act 431 

as sorbents for Sb (e.g. TiO2 micro-particles), but is facilitated when the contents are heated, as in 432 

pre-packed ready meals (Haldimann et al., 2013). In some food trays exposed to high temperatures, 433 

migratable concentrations have been found to exceed the European Commission limit of 40 g kg-1 434 

but not the WHO accepted tolerable daily intake of 6 g kg-1 body weight per day (Haldimann et al., 435 

2007).   436 

Black PET used for food packaging appears to be derived from virgin stock, with few uses of the 437 

polymer in EEE (Bhaskar et al., 2010) and no empirical evidence of recycling from this source (at least 438 

with respect to detectable Br or Pb). Moreover, it is a highly significant contributor to household 439 

plastic waste, with a recent study in Copenhagen finding that between 10 and 15% of rigid material 440 

(excluding WEEE) was black and largely derived from packaged food (Plastic Zero, 2014). In the UK 441 

alone, industry estimates that there are between about 30,000 and 60,000 tonnes per annum of 442 

rigid black plastic in the waste stream whose principal use was the packaging of food (Dvorak et al., 443 

2011). Based on the mean concentration of Sb in PET trays (~ 350 ppm), it is estimated that up to 20 444 

tonnes of the metalloid may also be disposed of annually via landfill and incineration. Regarding the 445 

latter route, Sb is a problematic element because of its propensity to leach from bottom ash at 446 
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concentrations that exceed limit values for use in secondary materials but through mechanisms that 447 

are currently unclear (Van Caneghem et al., 2016). 448 

Disposal of Sb is also at odds with the EU’s raw materials initiative. Thus, the metalloid is listed as 449 

one of the original fourteen critical raw materials which display a particularly high risk of supply 450 

shortage over the next decade and have a relatively high impact on the economy (European 451 

Commission, 2011). Specifically, Sb has an “import dependency” (mainly from China) of 100% and 452 

low “substitutability” and “recycling rate” scores. The recovery of Sb from various WEEE plastics by 453 

centrifugation of residues arising from polymer dissolution has been trialled in the laboratory but 454 

the upscaling necessary to attain a marketable secondary product is not currently feasible 455 

(Schlummer et al., 2016). 456 

8.2. WEEE plastic and recycled WEEE plastic 457 

WEEE plastic contains a wider array of hazardous chemical additives whose toxicities are relatively 458 

well-defined. Environmental impacts and human exposure arising from soil and water contamination 459 

and release of semi-volatile BFRs may, therefore, be significant at dismantling, recycling and 460 

moulding facilities, and especially at those that are unregulated or poorly managed (Zhang et al., 461 

2012; Han et al., 2017). Local contamination may also occur through landfilling, with anaerobic 462 

conditions promoting the debromination of many highly brominated PBDEs into more toxic 463 

congeners (Tokarz et al., 2008). However, because black WEEE plastic appears to be ubiquitously 464 

recycled into components of toys, games and jewellery, products that are used to store, dispense, 465 

strain, stir or mouth food, and items for the storage and application of cosmetics, the wider 466 

population is exposed to these chemicals through a variety of pathways. 467 

Unfortunately, very few studies have examined the migration or availability of additives from 468 

recycled WEEE plastic. Chen et al. (2009) estimated the exposure of PBDE flame retardants to young 469 

children from a number of hard plastic toys purchased in China (and using empirical measurements 470 

and data for EEE plastics) through inhalation, dermal contact and direct mouthing. Maximum total 471 

exposure was about 10 ng kg-1 body weight per day, with mouthing the greatest exposure 472 

contributor and comparable to that arising from human milk consumption for toddlers and higher 473 

than that resulting from fish consumption for infants. However, there was a significant degree of 474 

uncertainty in the calculations and it was predicted that exposure could be enhanced substantially 475 

for toys with higher BFR concentrations (the median value for PBDEs in the study was 53 ppm) and 476 

for longer mouthing periods or occasional swallowing of pieces that had been chewed off. More 477 

recently, Kuang et al. (2018) estimated the exposure of BFRs from black kitchen utensils purchased 478 

in the UK that had been in contact with food fried in oil at 160 oC. Daily exposures of up to 6 g for 479 
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total BFRs and 4 g for total PBDEs were reported, with the latter considerably exceeding 480 

corresponding UK exposure estimates determined independently for dust ingestion (up to 0.4 g 481 

day-1) and the diet (up to 0.075 g day-1) (Besis and Samara, 2012).  482 

An additional problem associated with plastic products containing BFRs is the presence and 483 

formation of highly toxic polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated 484 

dibenzofurans (PBDFs). These compounds may be present in technical mixtures of PBDEs as 485 

impurities but can be formed in significantly greater quantities during low temperature (< 500 oC) 486 

thermolysis (Wang et al., 2010). Here, many BFRs, including PBDEs and PBBs, act as precursors for 487 

the formation of PBDDs and, in particular, PCDFs, through debromination and hydrogenation 488 

reactions, with the yield increasing in the presence of Sb2O3 (Weber and Kuch, 2003). The mild 489 

thermal stress involved in the production, moulding or recycling of plastics may be sufficient to 490 

produce PBDD/Fs under many circumstances (Ebert and Bahadir, 2003), resulting in calls from some 491 

(now historical) sources for plastics containing PBDEs not to be recycled (Meyer et al., 1993). 492 

PBDD/Fs are also formed under conditions employed during the incineration of municipal waste. 493 

Here, generation is greatest in the economiser, where temperatures are reduced from those in the 494 

combustion chamber and superheater to values optimal for PBDD/F formation (250 to 450 oC) 495 

(Wang et al., 2010). The presence and formation of PBDD/Fs in plastic goods poses a risk of exposure 496 

to consumers while their generation during processing or combustion presents an occupational risk 497 

and has adverse impacts on local air quality. Significantly, UNEP (2010) assert that the formation of 498 

PBDD/Fs is the most important contributor to the total health impacts arising from the recycling of 499 

PBDEs. 500 

9. Marine pollution 501 

Where plastic waste has captured the attention of the public and scientific community to the 502 

greatest extent over the past few years is the marine environment. Here, plastic has impacts that are 503 

many and varied, ranging from aesthetics to the local economy, and from vessel damage to wildlife 504 

entanglement. Additives and contaminants in plastics beached around the coasts of southwest 505 

England have recently been investigated by XRF (Turner, 2016; Massos and Turner, 2017) allowing a 506 

direct a comparison to be made of black consumer goods in current or recent use with black plastic 507 

objects and fragments of less well-defined origin and age. 508 

Published and unpublished data generated by our research group indicate that beached plastic that 509 

is black constitutes less than 5% of the total population sampled on a number basis, a value that is 510 

considerably lower than estimates of black plastic in domestic waste stream after exclusion of WEEE 511 

(up to about 15%; Plastic Zero, 2014). The discrepancy may be partly attributable to the difficulty in 512 



17 
 

detecting black objects against a dark background or where black stones or macroalgae are present. 513 

However, in our experience there were no clear differences in the relative abundance of black 514 

plastics retrieved from a variety of beaches, including those that were composed only of fine, pale 515 

sand. It is more likely that a higher proportion of black plastic has a density greater than that of sea 516 

water (1.03 g cm-3) and a propensity to sink rather than be washed up in the coastal zone. For 517 

example, the density of PET is about 1.4 g cm-3 while the densities of materials commonly employed 518 

in EEE range from around 1.05 g cm-3 for ABS and HIPS to at least 1.3 g cm-3 for PVC; higher values 519 

also arise in the presence of residues and functional additives. 520 

The occurrence and concentrations of hazardous elements in beached black plastics from southwest 521 

England are summarised in Table 5. Here, samples have been categorised as primary objects that 522 

were recognisable (mainly bottle tops), secondary fragments that were not identifiable, and plastic 523 

pellets that are used as feedstock by the plastic manufacturing industry or as biobeads in 524 

wastewater treatment (Cornish Plastic Pollution Coalition, 2017). In total, 135 samples from over 525 

2000 retrieved were black, with the relative abundance of this colour greatest among pellets. Only 526 

one black sample was constructed of PVC, with all of those identified by Fourier Transform Infrared 527 

spectrometry (n ~ 50) as polyethylene (PE) or polypropylene (PP) and whose densities (0.90 to 0.97 g 528 

cm-3, respectively) are consistent with the sorting of marine plastics on this basis as asserted above. 529 

Among the elements analysed, Hg was never detected and Br, Cr and Pb were most frequently 530 

encountered, with detection frequencies of the latter elements similar across each sample category 531 

and comparable with corresponding frequencies for non-WEEE products shown in Table 2. Thus, 532 

despite a narrower range of plastic types and potential alteration of the chemical makeup by aging 533 

and weathering, the hazardous element signature of beached samples in terms of detection 534 

frequency (and concentration range) is comparable to that of non-EEE consumer goods and blended 535 

WEEE plastic. Significantly, the common occurrence of Br, Pb and Sb in black pellets (but not in 536 

pellets of other colours), which are likely derived from a multitude of local, regional and distant 537 

sources, confirms the pervasive, widespread use of recycled EEE by the global plastics industry. 538 

The similarities of black plastic in marine waste and consumer goods are illustrated more specifically 539 

in Figure 3 where the concentration of Sb is plotted against the concentration of Br for beached 540 

samples (and with the exception of a single object of PVC where Sb was employed as a synergist in 541 

the highly chlorinated matrix). Thus, a significant relationship is evident with a slope of about 0.6 542 

and an intercept of around 70 ppm. Although the estimate of the gradient was associated with 543 

relatively high degree of uncertainty, a value greater than estimates for the slopes defining the Sb-Br 544 

relationships for all categories of non-EEE and EEE in Table 4 suggests that brominated compounds 545 
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may have a greater propensity for mobilisation into sea water from the aging matrix than 546 

compounds of Sb (Turner, 2018b). 547 

With a higher frequency of hazardous elements (and in particular Br, Pb and Sb) than other colours 548 

of beached plastic litter, black items pose greater risks of chemical exposure to organisms that 549 

inadvertently or incidentally ingest plastics (including invertebrates, fish, birds, crustaceans and 550 

cetaceans; Law, 2017). Few investigations have been performed in respect of chemical additives (for 551 

any colour of plastic), partly because the significance of restricted elements incorporated into the 552 

matrix of plastic litter (rather than being adsorbed to its surface) has only recently been 553 

demonstrated (Nakashima et al., 2012; Turner and Solman, 2016). Nevertheless, in a study of PBDEs 554 

in the abdominal adipose of twelve Pacific short-tailed shearwaters, Tanaka et al. (2013) found 555 

accumulation of both lower- and higher-brominated congeners. Accumulation of the former were 556 

attributed to exposure through the diet since similar congeners were present in natural prey (pelagic 557 

fish), while accumulation of the latter was attributed to exposure from ingested plastics since these 558 

congeners were absent from its prey but more typical of flame-retarded plastics retrieved from its 559 

digestive tract. Of significance in the context of the present discussion, photographs of the ingested 560 

plastic captured by the authors reveal a relatively high proportion (and significantly greater than 5%) 561 

of black fragments. Tanaka et al. (2015) provided further evidence for the accumulation of PBDEs by 562 

procellariiform seabirds from ingested plastics by conducting leaching experiments on materials 563 

compounded with deca-BDE. Thus, while small quantities of the BFR were mobilised by sea water 564 

and acidified pepsin, up to 40% was released in a solution containing fish oil, a component of 565 

stomach fluid while feeding. 566 

More recently, a kinetic study of the mobilisation of hazardous elements from microplastics into a 567 

digestive fluid that simulates the chemical conditions in the gizzard-proventriculus of the northern 568 

fulmar has been undertaken (Turner, 2018b). Cadmium, Cr, Pb and Sb release could be modelled 569 

using a pseudo-first-order diffusion equation with rate constants ranging from of 0.02 to 0.5 h-1, 570 

while bioaccessibilities (as a percentage of total elemental content) ranged from < 1 for Cd in PE to > 571 

20% for Pb in PVC. Nakashima et al. (2016) have also shown that up to about 0.1% of Pb in PVC can 572 

leach into sea water, and that further leaching is possible should the surface become damaged by 573 

abrasion such as might happen when beached. While not all plastics tested in these studies were 574 

black, the more frequent occurrence of hazardous elements in black materials is of relevance in the 575 

context of the current synopsis. 576 

 577 

9. Concluding remarks and recommendations 578 
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While environmental and health impacts arise from the production and use of plastics in general, 579 

black plastics pose greater risks and hazards because of technical and economic constraints imposed 580 

on the efficient sorting and separation of black waste for recycling, coupled with the presence of 581 

harmful additives required for black plastic production or applications in the EEE and food-packaging 582 

sectors. By comparison, for example, while historical white EEE may contain restricted chemical 583 

additives, end-of-life white plastic in general is more readily sorted and, therefore, sourced more 584 

safely for recycling. 585 

Black PET, the most common component of black plastic in household waste, is not generally 586 

recycled and therefore sits within a linear economy. Suggestions made to improve its recyclability 587 

include technologies that better label or identify black materials or the use of different black 588 

pigments (Dvorak et al., 2011; Plastic Zero, 2014) but a more sustainable option would be to use 589 

lighter coloured (and preferably clear) plastic to package food, and especially where thermal stress is 590 

not a constraining factor. This could be accomplished by making the public more aware of the 591 

problems associated with black plastic recycling and subsequently pressuring retailers and 592 

manufacturers for change. To this end, and at the time of writing, one of the largest supermarket 593 

chains in the UK has announced plans to phase out black plastic food packaging from their own 594 

products by the end of 2019 (Moore, 2018). 595 

In contrast, black EEE plastic is contained within a complex, poorly quantified and largely undesirable 596 

and unregulated quasi-circular economy. The life cycle of this material is conceptualised in Figure 4, 597 

along with some of the key environmental impacts and exposure pathways associated with the 598 

disposal and recycling of restricted additives (of which brominated compounds, Pb and Sb are 599 

conceived as the most problematic). Thus, here, the demand for black plastic from the 600 

manufacturing industry is at least partly met from recycled WEEE plastic that should be free of 601 

restricted additives like BFRs and heavy metals. However, poor or inefficient isolation of compliant 602 

material has resulted in such a wide and uncontrolled dispersion of contaminants in black plastics 603 

that their eradication is now only possible through the manufacture of black goods from virgin 604 

materials. Realistically, the most acceptable immediate objective would be a reduction in the 605 

impacts of hazardous additives through the recycling of black plastic into goods where human 606 

exposure is minimal (e.g. pallets, lumber, communal refuse bins, guttering, road signs).  607 

Given the nature and scale of these challenges and the long-term, widespread contamination of 608 

multi-use black plastics, it is recommended that future scientific research focus on the behaviour 609 

and migration of additives that have been recycled into sensitive consumer goods like food-contact 610 

items, drinks vessels and small toys. While a few publications have recently addressed restricted 611 
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BFRs in this respect, there is a complete lack of information on the migratability of heavy metals, and 612 

in particular, Pb. 613 
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Table 1: Categorisation and inventory of common consumer products that are constructed in part or 840 

in whole of black plastic.  841 

 842 

 843 

Table 2: Detection frequency and descriptive statistics for the elements determined by XRF in the 844 

different sample categories of black plastic. Concentrations are in ppm. 845 

 846 

 847 

 848 

 849 

 850 

 851 

Food-contact Storage and construction Clothing and accessories Toys and hobbies Office and garden EEE

drinks stirrers coat hangers and sizer labels buttons and toggles car chassis and wheels stapler and scissor grips televisions

coffee cup lids bottles and lids spectacle frames and sunglasses caterpillar tracks seating and handles mobile phones

straws tubes and caps beads and necklaces figures and animals tarping and mesh laptops and tablets

kitchen utensils spectacle cases bracelets and brooches toy guns lawnmower blades cameras and lenses

thermos mugs and flasks rucksacks watch straps trains and tracks wire ties games consols

food presentation trays cases masks balls and marbles bins and butts media storage

ready meal trays luggage tags protective clothing and guards games icons and figures pens and lids wire insulation

cutlery carrier bags shoes and boots magnetic counters taping chargers, plugs and transformers

coffee plungers folders hair bands and clips trophy bases hosing remote controls

bottles and bottle tops refuse sacks strapping and cord tripods furniture electrical toys

coffee pods boxes and crates shoehorns musical instruments trolley wheels radios

ice cream carton lids CD and DVD cases keyfobs Xmas cracker toys rivets domestic appliances

draining boards ink cartridges umbrellas Xmas decorations foot pumps and adaptors power tools

tupperware lids suckers hair brushes and combs photo frames and book covers plant pots printers and copiers

lunch boxes cable ties and strapping belts tweezers garden tools projectors

stoppers and caps piping wallets and purses printing sets signage calculators

caistors building blocks parcel packaging lighting equipment

tool grips fidget spinners DVD players

element descriptor Food-contact Storage and construction Clothing and accessories Toys and hobbies Office and garden EEE

(n  = 129; PVC = 1) (n  = 112; PVC = 11) (n = 71; PVC = 2) (n  = 86; PVC = 4) (n  = 97; PVC = 12) (n  = 133; PVC = 11)

Br n 29 57 38 49 32 88

mean 594 2800 3850 1180 359 6280

median 56.3 142 53.9 74.9 19.7 244

min-max 2.6-6010 3.4-94,500 1.5-92,200 3.3-14,500 1.5-7000 1.8-133,000

Cd n 8 7 6 4 10 8

mean 79.0 77.5 6100 433 502 84.0

median 67.5 56.3 146 317 246 52.9

min-max 27.2-148 18.6-209 77.0-35,000 197-902 21.1-1590 18.8-287

Cr n 35 15 15 11 12 20

mean 58.6 41.3 283 80.6 119 108

median 36.9 36.2 117 38.5 29.4 61.1

min-max 19.4-278 18.3-99.4 19.1-1800 18.1-389 17.8-847 16.4-478

Hg n 1 1 4 0 1 1

mean 25.8 6.8 18.4 16 91.7

median 12.8

min-max 4.8-43.4

Pb n 18 32 25 29 27 31

mean 40.5 1170 473 629 2220 915

median 44.5 48.5 50.6 76.3 103 76.1

min-max 5.9-101 4.3-16,500 5.2-4670 5.6-9600 4.1-14,100 2.2-11,800

Sb n 20 30 15 22 15 51

mean 560 2780 4740 1490 2080 4760

median 342 398 240 447 456 600

min-max 137-3200 24.7-35,850 29.5-48,600 52.9-9190 99.5-17,700 38.8-56,900
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Table 3: A comparison of detection frequency and descriptive statistics for the elements determined 852 

by XRF in pre- and post-RoHS EEE black plastics. Note that Hg was not detected in either category. 853 

Concentrations are in ppm. 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

element descriptor Pre-RoHS Post-RoHS

(n  = 32; PVC = 4) (n  = 90; PVC = 7)

Br n 21 58

mean 13,900 3930

median 753 214

min-max 3.7-101,000 1.8-133,000

Cd n 3 4

mean 58.9 52.1

median 48.1 52.9

min-max 29.2-99.7 18.8-83.9

Cr n 4 15

mean 127 106

median 157 52.2

min-max 20.5-172 16.4-478

Pb n 12 18

mean 1990 245

median 101 28.9

min-max 8.0-11,800 2.2-1650

Sb n 15 32

mean 9210 2920

median 776 552

min-max 53.4-56,900 38.8-30,100
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category n slope intercept, ppm r 2 p

Food-contact 7 0.331 119 0.939 <0.001

Storage and construction 25 0.377 227 0.998 <0.001

Clothing and accessories 9 0.383 216 0.995 <0.001

Toys and hobbies 19 0.541 80.8 0.929 <0.001

Office and garden 6 0.480 167 0.919 0.003

All non-EEE 66 0.386 273 0.981 0.002

pre-RoHS EEE 12 0.464 -822 0.726 <0.001

post-RoHS EEE 24 0.229 695 0.966 <0.001

pre- and post-RoHS EEE 36 0.342 562 0.705 <0.001

Table 4: Results of regression analyses of Sb versus Br for the different black plastic sample 867 

categories. 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

  879 
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element descriptor Objects Fragments Pellets Total

(n  = 17; PVC = 1) (n  = 10; PVC = 0) (n  = 108; PVC = 0) (n  = 135; PVC = 1)

Br n 9 4 46 59

mean 26.2 245 298 253

median 13.0 185 26.5 25.6

min-max 9.2-94.7 16.9-591 4.5-4590 4.5-4590

Cd n 1 1 8 10

mean 123 79.8 85.6 88.8

median 76.1 80.4

min-max 63.1-139 63.1-139

Cr n 5 7 56 68

mean 47.3 40.9 53.9 52.1

median 43.2 33.6 41.5 41.5

min-max 24.1-70.1 24.3-81.7 21.5-538 21.5-538

Pb n 7 5 34 46

mean 47.1 71.2 77.8 72.4

median 35.7 37.7 35.8 35.9

min-max 8.5-109 11.0-149 11.2-941 8.5-941

Sb n 1 2 10 13

mean 6260 340 784 1140

median 340 327 364

min-max 150-531 74.0-2720 74.0-6260

Table 5: Detection frequency and descriptive statistics for the elements determined by XRF in 880 

beached black plastic litter. Note that Hg was not detected in any sample category. Concentrations 881 

are in ppm. 882 

 883 

 884 

 885 

 886 

  887 
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Figure 1: Examples of EEE and non-EEE samples that were Pb-positive (a) and non-EEE samples that 888 

were Br-positive (b). 889 

 890 

  891 
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Figure 2: Concentrations of Sb versus concentrations of Br in non-EEE black plastic samples (a) and 892 

black plastic EEE casings (b). 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

Figure 3: Concentrations of Sb versus concentrations of Br in beached black plastics. Note that Sb 905 

was not detected in distinct objects that were non-PVC-based. 906 
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Figure 4: The life cycle of black plastic used in EEE. Solid lines represent the preferred pathways based on adequate testing for Br, while broken lines 

represent the non-preferred pathways along with exposure routes and environmental impacts of hazardous additives (brominated compounds, Pb and Sb). 
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