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HIGHLIGHTS

e Develop a neuroanatomically grounded spiking neural network for visual attention with a word learning capability.
o Demonstrates that a label could be associated with a salient object via Spike-Timing Dependent Plasticity in a simple system.
e Provides a proof-of-concept case for the integration of biologically inspired neural networks with robotics for basic language acquisition.

ARTICLE INFO ABSTRACT

Article history: Recent advances in behavioural and computational neuroscience, cognitive robotics, and in the hardware
Received 3 May 2017 implementation of large-scale neural networks, provide the opportunity for an accelerated understanding
ggie;"edm revised form 21 November of brain functions and for the design of interactive robotic systems based on brain-inspired control

systems. This is especially the case in the domain of action and language learning, given the significant
scientific and technological developments in this field. In this work we describe how a neuroanatomically
grounded spiking neural network for visual attention has been extended with a word learning capability
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Keywords: and integrated with the iCub humanoid robot to demonstrate attention-led object naming. Experiments
Neurorobotics were carried out with both a simulated and a real iCub robot platform with successful results. The iCub
Object naming robot is capable of associating a label to an object with a ‘preferred’ orientation when visual and word
Visual attention stimuli are presented concurrently in the scene, as well as attending to said object, thus naming it. After
Biological inspired models learning is complete, the name of the object can be recalled successfully when only the visual input is

Spiking neural networks present, even when the object has been moved from its original position or when other objects are present

as distractors.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction representations”, that is, brain areas and circuits closely joining
together motor, perceptual and speech-language mechanisms [8].
Current research in behavioural and cognitive neuroscience  This finding is consistent with the embodied view of cognition

demonstrates a close link between the brain systems for language, i psycholinguistics and cognitive science where cognitive func-
action and perception [1-6]. Advances in behavioural and com- tions, such as language, are intertwined with sensorimotor knowl-
putational neuroscience and cognitive robotics provide a timely ~ €dge [9], and with the situated learning approach to studying
opportunity to integrate the interdisciplinary methods and ap- language in context. Research in behavioural and cognitive neu-

roscience has demonstrated that language, action and perception
are closely linked in the brain [10,7,11].

Developments in neuroscience and cognitive research have
been closely followed by advances in the design of neuroanatom-
ically grounded models of word acquisition [12,13] and by the
use of such brain-inspired models in the integration of action and
language learning in robots [ 14,15], in visuo-motor integration [ 16]
and in visual attention [17]. For example, Garagnani et al. [13]

* Corresponding author. designed multi-layer neural networks whose architecture is neu-

E-mail address: daniel.hernandez@plymouth.ac.uk (D. Herndndez Garcia). roanatomically grounded in the left perisylvian language cortex.

proaches from these fields with the aim of furthering the scientific
and technological progress in language processing and embodied
artificial cognitive systems. In the embodied approach to language
acquisition, auditory input, visual input and motor interaction
with the world are considered equally important [7]. Neuroscience
experiments show that the use of language activates “embodied

https://doi.org/10.1016/j.robot.2018.02.010
0921-8890/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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Simulations reproduced the cortical responses to familiar versus
pseudo-word stimuli. Cognitive robotics has previously made use
of brain-inspired models in embodied contexts. Morse et al. [14]
trained the humanoid robot iCub to learn the names of objects,
replicating similar phenomena observed in child language experi-
ments. Caligiore et al. [ 15] developed the TRoPICALS model to study
how vision, action and language are integrated in the representa-
tion and activation of affordances. Adams et al. [16] used a neu-
roanatomically grounded neural model with the iCub humanoid
robot simulator to explore learning of associations between visual
and motor modalities. Adams et al. [ 17] integrated a spiking neural
model for featured based attentional selection with the iCub to
enable the robot to perform a behavioural task: fixating attention
upon a selected stimulus, this is enacted by directing the robot’s
gaze towards the stimulus based on the spiking activity of the
neural model.

In the current work the visual attention model from Adams
et al.[17] has been extended to add language learning capabilities.
In the original attention network objects are salient and attended
to depending upon their shape (orientation). With the addition of
an auditory modality in the present work, words are presented
when the salient object is attended to and, through learning, the
word label is associated with the object. Learning of the label is
independent of the object’s position such that when the auditory
stimulus is removed the label can still be recalled on presentation
of the visual stimulus even when the object was moved from its
original position.

Yu and Smith recently found a strong link between object nam-
ing and visual attention in experiments with children [18]: object
naming only successfully took place when the object was fully
attended to —i.e. centred in the child’s field of view and dominating
the scene. The word learning processes in the model are based
entirely on mechanisms of Hebbian plasticity [19]. In the current
model, learning the association between the auditory and visual
modalities has been implemented using Spike-Timing Dependent
Plasticity (STDP), a mathematical formulation for modelling learn-
ing in real neurons [20]. The model developed during the current
work provides a basis for a future developmental robotics approach
to language learning, as attention to and naming of individual
objects forms the first stage of lexical development [21]. This, in
addition to more complex visual and motor modalities, is required
for the development of higher cognitive abilities such as reasoning
about objects and tasks.

In our model objects can be biased according to their shape, in
this case the shape is defined by the object’s orientation. Following
the nomenclature provided in [22,17], objects will be designated
as ‘preferred’ when positively biased, ‘aversive’ or ‘non-preferred’
when negatively biased, and ‘neutral’ or ‘unbiased’. Preferred ob-
jects are attended to by the robot looking at them, changing its gaze
to fix the object in the centre of its visual field, while aversive and
neutral objects are ignored and provide not activation from the
attention network. The model (see [17] for the original attention
model) has the capability to learn which types of objects are
preferred but here we have used hardcoded preferences in order
to focus on the object naming mechanism. Therefore, before the
learning of an object’s name takes place preferred objects are al-
ready recognized as salient and are attended to but are ‘unlabelled’.
Results show that with a simple extension to add an auditory
modality and learning using STDP, a label can be associated with
the preferred object via its orientation such that when the auditory
stimulus is removed the label can still be recalled on presentation
of the visual stimulus.

The structure of this paper is as follows. A short background on
previous works in neurobiologically inspired robotics (Section 2) is
given first, followed by a description of the visual attention neural
network and of the extensions made to enable word learning

(Section 3). Next the iCub robot and the experimental platform
are introduced (Section 4). Finally, we describe the object naming
experiments and present our results (Section 5) and conclusions
(Section 6).

2. Background on neurobiologically inspired robotics

Neurorobotics is not encapsulated in a single field it ranges
across many disciplines such as computer science, engineering,
neuroscience, and others. The field is based on the embodied
approach to cognition. The grand challenge of neurorobotics is to
build a well-founded experimental science of embodiment [23].
Because the nervous system is so closely coupled with the body
and situated in the environment, brain-based robots can provide
powerful tools for studying neural function, as they can be tested
and probed in ways that are not yet achievable in human and
animal experiments. Neurobiologically inspired systems present
great potential to advance the field of autonomous robots and our
understanding of the human brain [24].

Experiments in neurorobotics permit to progress in under-
standing how the interplay between neural learning dynamics,
physical embodiment and environmental factors shape develop-
mental trajectories [23]. While relatively few studies can be found
addressing the implementation of biologically inspired robot de-
signs and neural architectures that lead to brain-based robots [25],
we can highlight a small number of relevant and similar ap-
proaches in the development of neuromorphic cognition. Rucci
etal.[26] provide examples of robotic systems work in the areas of
sensory perception and motor learning. In Krichmar and Cox [27] a
strategy for controlling autonomous robots based on the principles
of neuromodulation in the mammalian brain is presented. Galluppi
et al. [22] provides the implementation of a neural network for
feature-based attention integrating a visual AER sensor and the
SpiNNaker system. Adams et al. [17] integrated a spiking neural
model for visual attention with the iCub to enable the robot to
perform a behavioural task: fixating attention upon a selected
stimulus. The work of de Azambuja and colleagues [28] use Lig-
uid State Machines (LSM) to learn trajectories with the BAXTER
robot. Gamez et al. [29] present a spiking neural interface for the
iCub robot, “iSpike”. Barros et al. [30] present a model that uses
a hierarchical feature representation to deal with spontaneous
emotions, and learns how to integrate multiple modalities for non-
verbal emotion recognition, making it suitable to be used in an HRI
scenario. Park and Tani’s work [31] presents neurorobotics exper-
iments on acquiring skills for “communicable congruence” with
humans via learning. Seepanomwan et al. [32] propose a novel
neurorobotic model that has a macro-architecture constrained by
knowledge held on the brain, encompasses a rather general mental
rotation mechanism, and incorporates a biologically plausible deci-
sion making mechanism. In Beyeler et al. [33] a cortical neural net-
work model for visually guided navigation has been embodied on
a physical robot exploring a real-world environment. The work of
Walter et al. [34] provides an overview of available neuromorphic
chip designs and analyse them in terms of neural computation,
communication systems and software infrastructure, as well as
review neurobiological learning techniques.

A commonality among neurorobotic approaches is that they
are neuromorphic in their architecture; they contain neuronal
elements and synaptic connectivity inspired by what is currently
known about the nervous system; and they are embedded on
physical devices [24]. A wide variety of computational approaches
can be used to control neurobiologically inspired robots, including
spiking neural networks, firing rate neurons, recurrent neural net-
works, and dynamic neural fields [22,17,28,29,31].

Studies attempting to use Spiking Neural Networks (SNN) for
practical applications demonstrate promising results in solving
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complex real world problems. SNNs seem to be able to solve
difficult cognitive problems [35] in possibly nonstationary en-
vironments [36]. Perhaps spike based neurorobots can embody
behavioural features that are difficult or impossible using other
methods [37]. An attractive factor of the approach is its potential
to inform the neurosciences as well as the robotic domain [34].

3. Biologically inspired neuroanatomical model of visual atten-
tion and language grounding

There is strong neuroscientific evidence showing that activa-
tion of brain areas, responsible for motor, perceptual and speech-
language mechanisms relates to the use of language [8]. These
results are consistent with the psycholinguistics and cognitive
science embodied view of cognition, for which cognitive functions,
such as language, are closely integrated with sensorimotor knowl-
edge [9]. Various connectionist models of word learning and lan-
guage processing exist [38-43]. While these models have provided
important contributions to the understanding of how different
parts of the human brain may play an active role in language
processing, in general they fall short of providing a mechanistic
explanation of the neurobiological mechanisms at the basis of
language acquisition and processing, and at their neurobiological
plausibility [5].

The basis for the model used in this work is an attentional
model, inspired by the primate visual system, first described
in [44]. This network was subsequently reformulated as a spiking
neural network and adapted to run on the SpiNNaker platform [22].
In a previous work [17], the network was adapted to generate
visual attention behaviour for the iCub robot.

In the present work an auditory modality and learning using
Spike-Timing Dependent Plasticity (STDP) was added to extend the
visual attention network in [17] with multi-modal and auditory
areas for a word learning capability. In the attention network ob-
jects are salient and attended to depending upon their orientation.
The addition of an auditory modality allows a word label to be
associated with the salient object attended to through learning.
Learning is position independent such that when the auditory
stimulus is removed the label can still be recalled on presentation
of the visual stimulus even when the object was moved from
its original position. The present work was implemented using
the Python PyNN interface language for SNNs but future works
will be directed to implemented in the SpiNNaker neuromorphic
platform. The network should transfer seamlessly to SpiNNaker
given that previous work using only the visual attention portion
of the network has already done so [17].

3.1. The spiking neuron model

Spiking neuron models process information coming from many
inputs to produce single spiking output signals. A SNN is supposed
to generate one or more spikes, when internal variables of the
model reach a certain state, with a probability increased by ex-
citatory inputs and decreased by inhibitory inputs [45]. A neuron
fires whenever its “potential”, the sum of excitatory postsynaptic
potentials (“EPSPs”) and inhibitory postsynaptic potentials (“IP-
SPs”), reaches a certain threshold @. Postsynaptic potentials result
from the firing of other neurons connected through “synapses”.
The firing of a “presynaptic” neuron u at time s contributes to the
potential P, of the spiking neuron v at time t an amount that is
modelled by the term w, , - €, ,(t — ), which consists of a “weight”
wy,», > 0and aresponse function e, ,(t — ).

The most widely used and most common model of spiking neu-
rons is the class of integrate and fire models, the Integrate-and-Fire
(IF) and Leaky-Integrate-and-Fire (LIF) models are the best-known
examples of formal spiking neuron models [46]. Both of these

models treat biological neurons as point dynamical systems, and
neglect the spatial structure properties of biological neurons [45].
While these are still simplified models, focusing on just a few
aspects of biological neurons, they are substantially more realistic
in comparison with previous neural models [47]. For the IF and the
LIF neuron the shape of the action potentials is neglected and every
spike is considered as a uniform event fully characterized by the
time of its appearance [48]. The model is based on the principles
of electronic circuits. The LIF basic circuit consists of a capacitor
C in parallel with a resistor R driven by a current I(t). The mem-
brane potential in the LIF neuron is described by the single first-
order linear differential equation rm‘;—;‘ = —Upes(t) + RI(t), where
tm = RC is taken as the time constant of the neuron membrane,
modelling the voltage leakage, and u as the membrane potential. A
spike firing time tY) is defined by a threshold criterion u(t")) = ».
Immediately after tU), the potential is reset to a new value ues; <
¥. An absolute refractory period can be modelled by forcing the
neuron to a value u = ugs during an absolute refractory time
Agps after a spike emission, and then restart the integration at time
t0) 4+ Agps, with initial value u = uyes. The combination of leaky
integration and reset defines the basics of the Leaky-Integrate-and-
Fire model [46]. This model is computationally simple and can be
implemented in hardware like the SpiNNaker system [49].

Spike-Timing Dependent Plasticity (STDP) is a form of com-
petitive ‘Hebbian learning’ that uses exact spike timing informa-
tion [20,50]. Experimental and modelling studies have shown that
this form of ‘Hebbian’ plasticity, where the relative firing times
of pre and postsynaptic neurons influence the strengthening or
weakening of connections, covers central aspects of the mech-
anism that real neurons use [20]. When the presynaptic spike
is emitted before the postsynaptic spike there is potentially a
causal relationship and the connection is strengthened, long-term
potentiation (LTP). When firing times cannot be causally related
(i.e. the postsynaptic spike occurs before the presynaptic one)
then the synapse is weakened, long-term depression (LTD). Post-
synaptic neurons are sensitive to the timing of incoming presy-
naptic potentials, which leads to competition among the presynap-
tic neurons. This sensitivity can result in shorter latencies, spike
synchronization and faster information propagation through the
network [50,20].

The STDP learning rule is defined by a function F(At) which
determines the amount of synaptic modification, weight change,
dependence on a single pair of pre- and postsynaptic spikes sepa-
rated by a time At,

_ JAL -exp(At/Ty) if At <0
Flat) = {—J;\ ~exp(—A+t/r,) if At>0 (1)

where, 7, and 7_ are time constants that determine the ranges
of pre-to-postsynaptic interspike intervals over which LTP and
LTD occur. A and A_ are positive amplitudes determining the
maximum amounts of synaptic modification, which occur when
At is close to zero [20]. Connection weights are hard limited to
lie between 0 and a upper maximum value, gmax. The function
F(At) would result in weight changes for LTP and LTD when At
is < 0 or > 0O respectively. The change of the peak conductance, g,
at a synapse due to a presynaptic spike occurring at time t,. and a
postsynaptic spike at time tpo is given by g — g 4 gmax * F(At),
where At = tye — tpos. If this modification would make g less
than O or greater than gmax, g is set to the appropriate limiting
value [51].

3.2. Spiking neural network of visual attention and object naming
Fig. 1 shows the visual attention model and the object naming

extension to the model to add multi-modal and auditory areas.
The original attention model architecture of [22,17] consists of six
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Fig. 1. Neural model architecture with relevant brain areas and connectivity. Original attention model architecture from [17] in lighter grey, object naming extension to the
model with auditory and multi-modal areas shown in a darker grey. Arrow heads indicate direction of connections, dashed links indicate STDP is enabled in the connection.
V1-V2-V4 — Visual Cortex areas 1-2-4, PFC — Prefrontal Cortex, LIP — Lateral IntraParietal area, FST - Fundus of the Superior Temporal Sulcus, STP - Superior Temporal
Polysensory area, PB - Auditory Parabelt area, CB - Core and Belt combined auditory area.

areas that model a specific set of cortical areas in the mammalian
eye and brain. The Retina area corresponds roughly with the retina
and Lateral Geniculate Nucleus (LGN) in the real visual system
and consists of layers of ‘ON’ and ‘OFF cells. Areas V1, V2 and
V4 correspond to known visual processing areas in the occipital
lobe of mammalian cortex. The PFC area corresponds to Prefrontal
Cortex. The LIP area corresponds to the Lateral IntraParietal cortex.
All areas are topographically mapped to the input space so that
a neuron represents a fixed visual position in the input image.
The model was extended, with a biologically inspired architecture,
to enable the association of a label with an object adding two
multi-modal and two auditory areas. The CB area combines the
auditory Core and Belt. The PB area corresponds to the auditory
Parabelt. Areas FST and STP represent the Fundus of the Superior
Temporal Sulcus and Superior Temporal Polysensory respectively
of the Superior Temporal Sulcus (STS). The Retina represents a 32
x 32 neuron visual field, while V1 and V2 are 20 x 20 image
maps (400 neurons), and V4, PFC, FST, STP, PB and CB are 10 x 10
neuron matrixes; in total the systems simulates 6124 neurons.
Each one of the areas V1, V2, V4, PFC, FST and STP are separated into
4 orientation-specific layers (Horizontal: —, Vertical: |, Diagonal:
\and Counterdiagonal: /). The LIP area merges the 4 orientation
layers via a winner-take-all. The CB area process auditory input.
PB forms the link to the multimodal areas in order to make associ-
ations with the visual modality.

In the model, area V1’s role is orientation selectivity. The V1
area provides functionality in a similar manner to cortical area V1
in the human brain, which contains neurons selective to stimulus
orientation [52]. V1 layers contain tunable orientated Gaussian
filters, equally dividing the possible angles in [0, ) radians, that
perform low-level orientation discrimination. The spike input from
the Retina is connected to area V1 implementing a convolutional
network with different Gaussian orientation filters. Each neuron in
area V1 is one to one connected to the equivalent neuron in area
V2 for each of the 4 orientation layers.

Area V2 is a pooling and competition layer between the 4 orien-
tations. V2 is also tuned for orientation but at a coarser resolution
than V1. Area V2 pools input from a local neighbourhood of V1
neurons to merge patches into orientated edges; subsampling the
activity of neurons with the same preferred orientation is imple-
mented by a localmax function, in a manner similar V2 complex
cells [53]. Each V2 sublayer has internal lateral inhibition to form
a soft-winner-take-all and a global winner-take-all among the
sublayers. The local competition between neurons with different
preferred orientations sustained the activity of neurons whose pre-
ferred orientation matched the stimulus, and suppressed activity
relating to non-matching neuronal responses [22]. The V2 to V4
connection has STDP enabled which results in faster saccades and
more persistent attention to preferred stimuli.

PFC area functions in the current model as a memory area for
hardcoding preferred orientation of an object. In real brains, PFC
is involved in many functions related to complex cognitive be-
haviour and has been implicated in remembering object locations

during selective attention [54]. Four neuronal populations in the
PFC (memory) area encode the goal of selecting a stimulus with a
particular orientation. Each V4 layer receives (initially hardwired)
bias from a PFC layer which determines a top-down source of pref-
erence. In the model, the orientation of objects can be designated
as ‘preferred’, ‘non-preferred’ or ‘neutral’. This is implemented
using fixed biases applied via the PFC area. The initial and resting
membrane potentials of the PFC neurons are randomly initialized
with a uniform distribution and the offset current is set to hardwire
the preference in orientation. The model has the capability to learn
which types of object’s orientations are preferred but in this work
hardcoded preferences have been used in order to focus on the
object naming mechanism.

Area V4 is a biasing layer; is also tuned for orientation, groups
lower level features into shapes and is also subject to attentional
modulation. V4 area neurons are analogous to the neurons of cor-
tical area V4, which receives a large input from working memory
via the frontal eye field [55]. Area V4 receives combined activity
from V2 (pooling and competition) and PFC (memory) layers, such
that activity is maximized for stimuli of the desired orientation,
provided they are also present in the visual field [22]. V4 groups
edges into objects by locally subsampling V2 neurons in their
matching sublayer.

The LIP area works as a selection layer to form a retinotopic
visual saliency map. Experiments have shown that neurons in LIP
store location information that guides movement to fixate upon a
target [56]. The LIP area performs object selection via a winner-
take-all mechanism and identifies the salient location of the ob-
ject with the preferred orientation in the scene, the most active
neuron from the LIP layer provides the location output, saliency
spikes 3 and its transformed into a point in the robot visual field,
so that the iCub robot can look at the object. The Robot moves
using the iKinGazeCtrl [57] to attend to the salient object, this
includes rotations of the head and neck, and movement of the
eyes. V4 neurons project one-to-one to a merged-orientation LIP
layer which provides a first stage of output selection. The LIP also
includes a hard winner-take-all pattern of lateral inhibition to se-
lect a single attentional position at each moment, driving actuators
which direct motion. Activity at this location (i.e. the target of
attention) was maintained, while activity at other locations was
suppressed [22].

In our model, area CB represents the first areas of the auditory
cortex. In the brain, the auditory system is subdivided into three
areas, A1 primary auditory cortex, auditory Belt and Parabelt [58].
The CB area combines both the auditory Core and auditory Belt in
our model. The auditory Core, including primary auditory cortex
(A1), and auditory Belt are topographically connected with a tono-
topic arrangement [59]. Justification for combining auditory Core
and auditory Belt comes from assuming the Belt is a coarser tono-
topic representation of the Auditory Core and so for the purpose of
modelling there is no benefit to separating these two areas unless
one is modelling a hierarchical tonotopy to process actual auditory
input [59,58].
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The PB area represents the second auditory area, the Parabelt,
and forms the link to the multi-modal areas in order to make
associations with the visual modality. In the auditory system,
the Parabelt lies within a third level of cortical processing in a
core-belt-parabelt pathway [58,59]. The auditory processing is
extended beyond auditory cortex via connections of the Parabelt
with specific regions of adjacent temporal cortex, medial temporal
cortex, prefrontal cortex, and parietal cortex [58]. The connections
from the PB area are used to link visual and auditory areas in the
model via a multi-modal area modelled in the Superior Temporal
Sulcus, since there is evidence that the Parabelt connects to poly-
sensory areas with nearby cortex of the upper and lower banks of
the Superior Temporal Sulcus [59].

In the model FST and STP areas represent the multi-modal area
of the Superior Temporal Sulcus (STS); here subdivided into caudal
and rostral areas, namely the Fundus of the Superior Temporal
Sulcus (FST) and Superior Temporal Polysensory (STP). The caudal
parts of STS are known to be occupied by visual areas, but there
is no evidence for direct Parabelt connections with these visual
areas. However, the more rostral parts of the STS appear to be
polysensory, with neurons responding to auditory, visual, and even
somatosensory stimulation [59,60]. In this model the V4 visual
area connects to FST as there is anatomical evidence for such a
connection in primates [61]. In our model learning the association
of a label with an object takes place on the bridge between the
auditory and multi-modal areas, that is, the PB to STP connection
which are in the model random, sparse and enabled with STDP.
As STP-PB and LIP are not themselves directly connected but
indirectly associated by their connections with V4, this in theory
means that object naming should be location independent. In our
experiments, the visual field of the robot remains static for the
duration of the learning and recalling phase. This simplifies the
problem as the visual shape of the object, its orientation will not
be changing due to the movement and rotation of the robots head,
creating additional problems that are not addressed in this paper.

3.3. Non bio-inspired approaches for language grounding learning

Symbol grounding and embodied language learning have been
an attractive research topic for cognitive and developmental
robotics [62,63]. These issue have been addressed by many authors
and there have been different approaches and several grounded
language learning architectures proposed in the literature. For
example, the work of Saunders and his collaborators focus on
grounding lexical concepts in a robot’s sensorimotor activity via
human-robot interaction [64,65]. In [66] prosodic analysis and ex-
traction of salient words are associated with a robots sensorimotor
perceptions for acquisition of lexical meaning, in an attempt to
ground these words in the robots own embodied sensorimotor
experience. Lyon et al. [67,68] provides a developmental robotics
model of the transition from babbling to word forms with the iCub
robot. Their work demonstrates a platform in which it is possible
to sustain interaction to achieve rudimentary word form acquisi-
tion in real-time using a simple frequency dependent probabilistic
generation mechanism, together with human reinforcement [68].
The work Foerster et al. [69] addresses the acquisition of the word
“no” and of the concept of negation. Their cognitive architecture
extends symbol grounding beyond the realm of sensorimotor-data
to encompass affect, in their system the utterance of negation
words is grounded in a negative affective/motivation state and
often have prosodic saliency [69]. This taxonomy have informed
recent developmental robotics studies of the role of affective be-
haviour in the acquisition of negation. Steels and his group, [70,71],
have used hybrid population of robots, Internet agents, and hu-
mans engaged in language games. In their work relevance is given
to the social aspects of the symbol grounding, as well as the

perceptual grounding of categories [72]. The work of Nakamura
and others, [73,74], deal with multimodal sensory information by
using a latent Dirichlet allocation (LDA)-based framework for mul-
timodal categorization and words grounding by robots. [75] shows
multimodal categorization based on the autonomously acquired
multimodal information and partial words given by human users
and [74] proposed an unsupervised method to generate natural
sentences from observed multimodal information in a bottom up
manner using multilayered multimodal latent Dirichlet allocation
and Bayesian hidden Markov models. Many others examples can be
found, see [76-79] for a review of robotics models of the grounding
of language.

It was not the motivation of this work to provide a compari-
son between cognitive and developmental, non-bio-inspired, ap-
proaches to language learning and grounding but to highlight how
a neuroanatomically grounded model for visual attention can be
extended with a word learning capability and validate its real-
time implementation with the iCub humanoid robot to demon-
strate attention-led object naming. Here we aim at more realistic
modelling of spiking neuron activity in large neuronal assemblies
(6124 total neurons in the implementation reported in this paper
and scalable up to tens of thousands of neurons in future work)
distributed across a range of cortical areas.

Integrating spiking neural networks with robots introduces
considerable complexity yet providing no significant benefit in
task performance, where non bio-inspired robotic solutions or
abstract neural simulations can usually produce better-performing
and more informative results. But, we suggest, in a cognitive
robotics context, where the goal is understanding computations
of the brain, such an approach may yield useful insights to neural
architecture as well as learned behaviour. Advances in understand-
ing the neurobiology suggest that neural models more closely
matching the biology can help reveal the computational principles
necessary for cognitive robotics while illuminating human brain
function [80]. One of the principal contributions of the cognitive
neurorobotics approach is that it allows to pursue both the study
of the neuroscience of the brain and the engineering of functional
robots in the same context as a tool to uncover the model of
computation, and then in a recursive process take the insights thus
gained to refine the model systematically and produce systems
that function in the real world. Next stage of our research will
take advantage of the huge benefits offered by advances in neu-
romorphic hardware systems, since development of neuromorphic
hardware [81] and of the robotic systems have now reached a point
of maturity where integrated neurorobots able to demonstrate
effective behaviour in nontrivial real-world scenarios are within
reach [17]. This type of model will lead to more precise predictions
and stronger experimental validation of the theory.

4. Experimental platform

Fig. 2, shows the experimental setup for the object naming
experiments for the simulated (left) and real (right) iCub humanoid
robot. Only two objects of different orientations (horizontal and
vertical) are ever present in the scene. One of these orientations
(horizontal or vertical) will be biased to be ‘preferred’ while the
other will be biased as ‘non-preferred’ or ‘aversive’, diagonal and
counterdiagonal are ‘unbiased’ or ‘neutral’. Therefore, before the
learning of an object’s name takes place preferred objects are al-
ready recognized as salient and are attended to but are ‘unlabelled’.

4.1. iCub humanoid robot
The iCub simulator is an accurate physical simulation of the

real iCub (Fig. 2) that can be used to develop applications that
are easily transferable to the real robot with minimal changes.
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Fig. 2. The iCub simulated environment (left) and the real iCub (right).

Table 1

LIF and STDP parameters for the neuron model.
Parameter Description Value
Vrest Resting potential —65 mV
Vieset Reset potential —65 mV
Vihresh Threshold potential for spiking —45 mV
Trefrac Refractory period 3.0ms
Tm Membrane time constant 24.0 ms
T+ LTP time constant 20.0 ms
= LTD time constant 20.0 ms
gmax Maximum synaptic weight 20.0 nA
Ay LTP weight update amplitude 0.05gmax
A_ LTD weight update amplitude 0.0675gmax

As well as basic motor control and visual processing, for more
specialized tasks the iCub simulator (and real robot) can be inte-
grated with external libraries such as the OpenCV image processing
framework. For communications, iCub uses YARP, a generic and
flexible protocol which we used to connect to the neural model.
Fig. 3 gives an overview of the integrated system which we used
for both simulated and real iCub. For convenience, we also used
Aquila, a software architecture for cognitive robotics designed to
provide useful functionality for iCub applications [82]. In particular
we used the Tracker module for the extraction of objects from the
scene and the iCubMotor module to convert image coordinates into
head motor movements to enable the iCub to look at a location
corresponding to a point in a 2D image and also point towards it.

4.2. Spiking neuron network

The model used in the current work was described in Sec-
tion 3.2. We implemented a network consisting of 10 areas of
artificial spiking neurons modelling regions of the visual and au-
ditory cortex. Fig. 1 shows the Visual Attention and Object Naming
model. The visual attention part of the network was scaled up,
from that originally used in [17], to a 32 x 32 neuron visual field
Retina (input) area, with 20 x 20 neuron matrixes V1 and V2 areas
and 10 x 10 neuron matrixes V4 and PFC areas for each of the
4 orientations, LIP area is a 10 x 10 neuron matrix. The auditory
extension for object naming areas CB, PB, STP, and FST are modelled
by 10 x 10 neuron matrixes areas, with the STP and FST consisting
of the same 4 orientation-specific layers as the visual areas of the
model. In our network implements 6124 simple LIF neurons, and
learning is done by STDP. See Table 1 for a summary of the LIF
neuron and STDP parameters. The network was implemented in
the Python PyNN' [83] interface language for SNNs and uses the
Python Brian SNN simulator? [84] as a backend.

1 http://neuralensemble.org/PyNN/.
2 http://briansimulator.org/.

4.3. Input stimuli

4.3.1. Visual input

In all experiments, visual input comes from a single iCub cam-
era, thus avoiding the complexities of stereo processing. The im-
ages are produced in a 240 x 320 RGB format and served up via
a YARP buffered image port. The Tracker module from the Aquila
software architecture for cognitive robotics [82] is used to process
the raw image to a saturation mask view so that objects in the scene
stand out from the background and their shapes and positions can
be extracted. This is further processed into an image of black and
white pixels (max intensity), and resized down to the dimensions
of the input layer of the visual and attentional network (32 x 32).
The robot posture and visual field is fixed during learning the label
and recalling phase. After activation of the LIP area in the network
the robot gazes towards the salient object moving its head, neck
and eyes.

The final stage of processing is to convert the white (‘ON’)
pixels in the image to spikes for input to the visual and attentional
network. There is a straight conversion of pixel to spike: the x, y
pixel location in the image is mapped to a neuron ID in the network
Retina input population and inserted into a spike list. This spike list
is then sent to the network as a YARP Bottle object. The spikes are
injected into the ON and OFF layers of the Retina area at every time
step of the simulation. The same spikes are injected into both ON
and OFF layers but the OFF spikes are delayed by 1.0 ms.

4.3.2. Auditory input

For the ‘auditory input’, the iCub robot enabled with speech-
to-text and text-to-speech functionality provided by the Speech
Recognition [85] and pyttsx [86] python libraries respectively run-
ning on an external PC connected to the robot’s network. During
learning trials the object label was repeated by the human operator
and converted to text. The word stimulus is applied by sending the
neuron IDs to the neural network as a YARP Bottle object, sent to a
dedicated ‘speech in’ YARP port. The iCub interface program inserts
the label into the Word Location Map linking it to the neuron IDs
of the CB area. A Word Location Map linking the neuron IDs in CB
and the label for the preferred object is set up at the beginning
of the simulation. All other CB neurons are mapped to the label
“None” in order to make it obvious if the label is not correctly
associated. A group of four adjacent neurons in the CB area, of
the extended auditory model for object naming, are designated to
receive the ‘speech’ stimulus to be used for naming the preferred
object (the choice of four adjacent neurons is arbitrary, it could
be more or less depending upon how many words need to be
encoded). Spikes were then generated and sent to the network to
simulate an input spike train in the auditory network. A Poisson
spike train of frequency 20 Hz is applied to these neurons at every
time step of the simulation.

Artificial auditory perception is complicated, and the way in
which sounds are represented in mammalian auditory cortex is
not well understood [87]. A future direction of our research will
be to improve and expand or auditory model, and to evaluate
the possibility to use neuromorphic auditory sensors, in order
to use actual auditory sound signals. For instance, the model by
Coath et al. [87] learns temporal structures in auditory data and
is suitable for neuromorphic implementation. Their model consist
of 32 tonotopic channels interconnected through excitatory and
inhibitory connections with axonal conduction delays and STDP
based learning. Applications pertaining to vision, auditory and ol-
factory neuromorphic sensors have been discussed by [88]. Several
efforts have been made to develop auditory sensors that model
the human cochlea using aVLSI (analog Very Large Scale Integra-
tion). AER EAR [89] is a matched pair of silicon cochlea with an
AER interface. This auditory sensor models the basilar membrane
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Fig. 3. Integration between the neural model and iCub, oval shapes are YARP ports, larger rectangles are software components. The ‘Main’ program forms the interface
between the iCub and the PyNN neural network; it receives visual information and translates it to spikes as well as generating the auditory stimulus. Spikes coming back
from the neural network are translated into a position so that iCub can look or point at the object. In the recall condition auditory spikes are sent back from the network and

the main program maps them to a label.
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bio-physics by cascading low-pass filters to provide output over
32 channels [88]. AEREAR2 6658899, a further improvement of
AEREAR, is 64 channel binaural audition sensor with microphone
pre-amplifiers and per-channel capability has set a benchmark in
neuromorphic audition [88]. Current progress will lead to develop-
ing more precise and efficient neuromorphic auditory systems by
applying interesting approaches such as spike based audio front
ends described in [90].

5. Experiments and results
5.1. Learning to associate a label with an object

For the learning experiments, associating a ‘word’ label to a
preferred attended object, 20 trials were run using the iCub sim-
ulator with visual and auditory stimulation for 2000 ms. For ten
trials the preferred object orientation was set as Horizontal with
the corresponding label “Object A” and the aversive orientation set
as Vertical. For the other ten trials the preferred orientation was
Vertical with the corresponding label “Object B” and the aversive
orientation Horizontal. In Fig. 2 the robot setup and positioning
of the objects for one trial can be seen. Fig. 4 shows the input
image from the iCub simulator cameras (left). This is processed
and resized into a black and white pixels image of the input layer
dimensions (centre). Finally, white (‘ON’) pixels are converted into
spikes for input to the attentional network (right).

First, we verify the operation of the visual attention part of
the network by learning to attend to the preferred object, this is
verified that the visual attention network produces a higher spike
activity for the objects that have been biased to be ‘preferred’
and that the iCub robot changes its gaze so to centre the visual
field on the object. Fig. 5 shows the results for learning with a 2-
stimulus scene, where the vertical object is set to be the preferred
object. The stimulus was provided by a pair of horizontal and
vertical bars drawn in the iCub simulator. The maps show spike
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Fig. 4. Input image from iCub cameras (left). Down sampled black and white pixels (centre). Spikes input to the attentional network (right).

Table 2
The training procedure.

Learning to associate a label with an object

1. Set iCub in ‘ready’ pose (see Fig. 2)

2. Create the corresponding object in the world (random position)
3. Image of object is processed to spikes (see Fig. 4)

4. Applied ‘word’ stimulus to the neural network

5. Network is trained

6. Let iCub look and label object

7. Set iCub back to ready pose

8. Repeat 2-7 as required

count, on the layer for the preferred orientation, over a run with
lighter coloured areas indicating higher saliency. The V1-V2-V4
pathway selects progressively sharpened locations of visual inter-
est. Winner-takes-all mechanism in V2 encourage the selection of
a single most-salient location. The PFC provides bias for the V4
layers to prefer objects lying in one orientation but avoid objects
of another orientation. The V4 layers produce a stronger input to
the LIP neurons in the preferred location due to the bias effect.
The LIP area winner-takes-all structure should then select a single
attentional position. Spike activation can be seen in Fig. 5. Although
through the network there is activity produced for both objects, the
network is able to determine which one is the preferred object. The
LIP saliency map shows that the vertical object was preferred and
provides the more active location.

The learning procedure, for associating a label with an object,
follows as described in Table 2. First, the iCub robot is set up in
its ‘ready’ configuration and an object is placed in the world in
a random position (see Fig. 2). Visual and auditory input stimuli
are provided to the neural network processed to a set of spikes.
Simulation of the network is run for 2 s; the spiking activity and
STDP learning throughout the visual attention network and the
auditory extension leads the iCub robot to focus its view on the
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Fig. 5. Visual attention learning with a 2-stimulus scene, vertical objects set to preferred. Top row left to right: The stimulus image with a pair of horizontal and vertical
bars, the attended position is highlighted in the vertical object. The V1 layer for the preferred orientation. The V2 layer for the preferred orientation. Bottom row left to right:
PFC is enabled biasing V4 layer. The V4 layer for the preferred orientation. The LIP saliency map, the most active location is computed by a winner-takes-all mechanism and

indicates the position to attend to for the robot.

object (LIP salient point) and to learn to label the named object
(STP-PB STDP enabled connection).

After each learning trial, connection weight changes between
STP and PB were examined as well as activity in the FST layers.
Weight differences were observed in different areas of the STP-
PB weight matrix corresponding to the preferred and aversive
objects. After examining connection weight changes between all
STP orientation layers and PB we found that, as expected, the
largest weight increases were for connections between the STP
layer corresponding to the preferred direction and PB. Fig. 6 shows
2D plots of the STP-PB weight changes (AWeight) for connections
between all orientation specific layers of STP and PB in an experi-
ment where the vertical orientation was designated preferred. The
largest weights occur on the connections for the Vertical orien-
tation which was the preferred orientation since these neurons
receive the largest activity from FST (visual stimulus from V1-V2-
V4 pathway) and the PB (auditory stimulus from CB area) neurons.

Because the V4 layer corresponding to the preferred orientation
receives a larger stimulus from PFC its neurons produce more
spikes and this in turn causes greater weight increase on the
connections from V4 to FST and between STP and PB due to STDP.
The spike rate for neurons in PB that received the word stimulus
increased gradually during learning, a consequence of increased
connection weights between STP and PB. Fig. 7, shows a compari-
son spike plot of the auditory input stimulus (20 Hz) (bottom part
of figure) and the spike output of the same four neurons over the
course of the simulation when STDP learning is active (top part
of figure). Initially the output rate is similar to that of the input
stimulus but around 500 ms the rate increases until the end of the
run.

Table 3 summarizes the results of running the learning ex-
periments with 20 trials. Experiments with the Vertical objects

Table 3
Summarized results across all learning experiment trials.
Preferred object STP-PB PB spikes V2-V4 LIP spikes
AWeight AWeight
Horizontal 0.1066 41.8 1.5261 2209
Vertical 0.4447 58.1 1.4465 243.2

presented greater spike activation and weight increases in the
object naming part of the network than those where the Hori-
zontal object was preferred. The average weight increase over all
connections and runs was 0.4447 for the STP-PB connections and
1.4465 for the V2-V4 connections when the preferred orientation
was Vertical and 0.1066 for the STP-PB connections and 1.5261 for
the V2-V4 connections when the preferred orientation was set to
Horizontal.

Figs. 8 and 9 show results for one learning run to label an
object in the visual attention and object naming network when the
preferred object to label was set to be ‘Horizontal’ and ‘Vertical’
respectively. Here the greatest activity in the LIP and FST maps
are on the neurons corresponding to where the preferred object is
visible in the scene; while the PB neurons activity is determined
by the auditory stimulus through the CB connection. Thanks to
STDP we learn the association between the auditory and visual
modalities. The 2D plot of STP-PB (AW) shows connection weight
changes between STP and PB. Largest weight increases occur in the
STP-PB connections for the layer corresponding to the preferred
orientation. There is no direct connection between LIP and STP,
they are only indirectly associated by their connections with V4
orientation layers, thus association of the object’s label is not
directly dependent on location.
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Fig. 7. Spike plots for PB area. (Bottom) PB spikes when learning is deactivated.
(Top) PB spikes when learning is activated. The input ‘word’ stimulus for the
auditory input is fixed at 20 Hz during the run. From STDP learning on the preferred
connections between STP and PB, the “word neurons” received more stimulation
and increased their rate when learning is active (Top) than when STDP learning is
not used (Bottom).

Recalling a previously learned name

In the recall condition, saved weights from each learning trial
run in Section 5.1 were loaded into the network, STDP learning
was disabled as well as the word input stimulus and only visual
stimulation was applied to the network for 2000 ms. The procedure

LIP_0_saliencyMap

045
040
035
030
025
020
015
010
0.05
0.00

LIP Map

FST_2_saliencyMap

FST Map

0032
0.028
0.024
0.020
0.016
0.012
0.008
0.004
0.000

Table 4
The testing procedure.

Recalling a previously learned name

1. Set iCub in ‘ready’ pose (see Fig. 2)
2. Create the corresponding objects in the world
3. Image of object is processed to spikes (see Fig. 4)
4. Disable ‘word’ stimulus to the neural network
5. Neural model produces a speech response
6. Active neurons IDs sent back to iCub
7. iCub translates neuron response to ‘speech’
8. iCub speak object label ‘word’
9. Set iCub back to ready pose
10. Repeat 2-9 as required

for recalling a previously learned label with an object follows as
described in Table 4. First, the iCub robot is set up in its ‘ready’
configuration and objects are placed in the world (see Fig. 2). Visual
input stimuli are provided to the neural network, processed to an
appropriated set of spikes, while the auditory signal is disabled.
Simulation of the network is run for 2 s; the spike activation and
learned weights throughout the visual attention network and the
auditory extension leads the iCub robot to focus its view on the
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Fig. 8. Object label learning with a horizontal object set to preferred. From left to right: The LIP saliency map. The FST map for the preferred orientation layer. STP-PB

connection weight changes for the preferred orientation layer. The PB saliency map.
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Fig. 10. Recalling a previously learned object’s name. From left to right: The presented scene with the position to attend to highlighted. LIP salient point. STP saliency map.
Active PB spikes of the encoded ‘word’ label. STP activation from the visual stimulus cause the PB neurons associated with the encoded ‘word’ to be active. IDs of active
neurons in PB are sent back to the iCub and mapped to a label in the Word Location Map, thus recalling the object’s label. (Rows 1-2) the object is on the same position
that was used for learning the label. (Rows 3-4) the object was moved from its original position. In each case the label was correctly recalled as shown by the activity of the

recalled PB neurons.

object (LIP salient point) and to activate FST, STP and PB neurons
in the network to produce a speech response to name the object.
At the end of the run the IDs of neurons that were active in PB
were sent back to iCub via YARP and mapped to a label in the Word
Location Map.

To verify the learning and recalling of object’s name labels we
performed a series of ten runs loading the saved weights from
the previous learning experiments with the objects present in the
scene as for the learning trials. We found that in all ten cases
the correct label was recalled. On presentation of only the visual
stimulus the network can still produce activation of the PB neurons
needed to recall the expected object’s label.

We also tested the network’s ability to recall the label when
the object was moved from its original position. We performed the
same ten recalls but with object positions swapped and found that

in all ten cases the correct label was recalled despite the object
being in a different location from where it was originally named.
Fig. 10 shows examples of positions of the object during recall.

To further test recall when the object was moved from its
original position recall was done with the object moved to several
different positions and also including another object (with differ-
ent orientation) in the scene as a distractor. Fig. 11 shows examples
of positions of the object during recall. In all cases the label was
correctly recalled when the object was attended to.

5.3. Real speech IO on the iCub robot
The experiments described in Sections 5.1 and 5.2 were re-

peated on the iCub robot enabled with speech-to-text and text-to-
speech functionality running on a laptop connected to the robot’s
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orientation was set to ‘Vertical’. Bottom-row a run of the experiment where the preferred orientation was set to ‘Horizontal'.
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Table 5
Summarized results of learning experiment trials with iCub robot.
Preferred object STP-PB PB spikes V2-V4 LIP spikes
AWeight AWeight
Horizontal 0.1049 47.8 1.4088 173.4
Vertical 0.4073 61.8 1.4491 206.8

local network. During learning trials the object label was repeated
by the human operator, converted to text and sent to a dedicated
‘speech in’ YARP port. The iCub interface program inserted the label
into the Word Location Map linking it to the neuron IDs of 4 CB
neurons. Spikes were then generated and sent to the network. For
recall, active neuron IDs were sent back to iCub and mapped to
the label stored in the Word Location Map as before. This text was
sent to a dedicated YARP ‘speech out’ port and converted to actual
speech. Fig. 12 shows the real iCub set up for the experiments and
the processing of the input image with the real iCub cameras for
transformation into spikes for input to the attentional network.
As before ten trials were done where one run consisted of
a learning phase followed by a recall phase. The biasing of
‘preferred’/‘non-preferred’ stimuli were the same as described be-
fore. The results were similar to those produced with the iCub
simulator in that in all cases weight increases through V2-V4 and
STP-PB connections were greater for the preferred orientation.

The average weight increase over all connections and runs was
0.4073 for the STP-PB connections and 1.4088 for the V2-V4 con-
nections when the preferred orientation was Vertical and 0.1049
for the STP-PB connections and 1.4088 for the V2-V4 connections
when the preferred orientation was set to Horizontal. Table 5
summarizes the results of running the experiments with the iCub
robot.

For the recall phase of the experiments, in all cases the label
was recalled correctly when the preferred object was attended
to. To further test recall when the object was moved from its
original position a learning run with a single (Vertical) object in
the scene was done and then recall was done with the object
moved to several different positions and also including another
object (Horizontal) in the scene as a distractor. Figs. 13 and 14
show experimental runs for both Vertical and Horizontal preferred
objects. The figure shows the positions of the object when learning
the object’s label and also recall examples where the position of the
object was changed and also when an additional object was present
in the scene as a distractor. In all cases the label was correctly
recalled when the object was attended to.

In the recall phase STP activation from the visual stimulus
caused the PB neurons associated with the encoded ‘word’ to be
active. IDs of active neurons in PB were sent back to the iCub and
mapped to a label in the Word Location Map and converted into
speech.
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Fig. 13. Word learning and recall in different object positions for ‘Vertical’ preferred objects. The learning phase occurred with the object as in the top row. Successful recall
of the word and attention to the object occurred when the object was moved to a different location and also when another object was added to the scene.

6. Discussion and conclusions

In the work described here a neuroanatomically grounded ob-
ject naming system based upon a visual attention network was
developed. It demonstrates that a label could be associated with
a salient object via Spike-Timing Dependent Plasticity in a simple
system. This combined auditory and visual attention system forms
a basis from which to add other modalities, for example motor
areas, along the lines of the neurobiological model of Garagnani
et al. [6].

The visual attention model architecture of Adams et al. [17] was
extended to model real brain areas of the auditory cortex to incor-
porate the capability of naming the attended objects using Spike-
Timing Dependent Plasticity. The extended auditory modality as-
sociates a word with an object of preferred orientation. Extra sub-
areas, with plausible neuroanatomy of multisensory and auditory
neurons, were added to the attention network to link visual and
auditory information. Two multi-modal and two auditory areas
were added to the network. We model the core-belt-parabelt
auditory processing pathway with two areas, CB and PB. The com-
bined auditory area (CB) models the primary auditory cortex and
auditory belt, while the PB area represents the Parabelt, and forms
the link to the multi-modal areas, subdivision and connections of
auditory system are supported by [58,59]. The multi-modal areas
represent the Superior Temporal Sulcus which is subdivided in
the model into two areas, the Fundus of the Superior Temporal
Sulcus (FST) and the Superior Temporal Polysensory (STP) area. The
subdivision and connections of STS multi-modal area into caudal
(FST) and rostral (STP) areas are supported by [59,60]. V4 visual

area connections to the FST are supported in [61] by anatomical
evidence that such a connection exists in presence primates.

For learning, 4 neurons in CB corresponding to a ‘word’ are
stimulated with Poisson spikes (20 Hz) at the same time as the
visual input is processed. We showed how connection weights
between the V4 area (representing the object’s orientation) and the
FST and STP areas (multi-modal system) increased substantially
more for the orientations biased as preferred, and that learning
of the salient object’s label occurs between STP and the PB area
(auditory cortex) thanks to STDP. After learning, when word input
is disabled, the activation from V4 through FST-STP-PB causes
word activation to occur, thus once learning has taken place visual
stimulation alone could recall a label associated with the object.
We have also shown that recall occurred even when the object was
moved to a different position, hence ‘word’ association is learned
positionally independent.

This work has described a neurorobotics approach based
upon neuroanatomically grounded Spiking Neural Networks with
biologically-inspired learning for object naming driven by visual
attention. It provides a proof-of-concept case for the integration of
biologically inspired neural networks with robotics for basic lan-
guage acquisition, as visual attention is crucial for learning object
names. Most important for robotics, the model shows pattern com-
pletion ability; after training if just the visual input is presented
the auditory parts of the pattern are completed successfully. Our
experiments point the way to one of the goals of cognitive robotics:
self-directed robots able to respond adaptively and appropriately
rather than imperatively to the combination of unexpected events
and indeterminate consequences characteristic of the real world.
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Fig. 14. Word learning and recall in different object positions for ‘Horizontal’ preferred objects. The learning phase occurred with the object as in the top row. Successful
recall of the word and attention to the object occurred when the object was moved to a different location and also when another object was added to the scene.

We intend to add several enhancements in future work. Fol-
lowing on from our previous work in [17] the network will be
implemented on SpiNNaker hardware enabling us to scale up the
network whilst maintaining as close to real time speed as possible.
Using a larger network (2 to 4 times the number of neurons used
now up to tens of thousands of neurons) will make it possible
to have more objects in the scene as distractors and also more
complex objects. Also, we plan to implement the network us-
ing event-driven cameras and neuromorphic sensors. Applications
pertaining to vision, auditory and olfactory neuromorphic sensors
have been discussed by [88]. Key contributions such as DVS and
DAVIS cameras and AEREAR AEREAR2 cochleas have provided con-
siderable progress towards a sensor design that simulates neuro-
biological vision and auditory sensing. A limitation of the current
network is that objects can only be recognized in terms of their
orientation, so it will be necessary to add extensions to enable
preference by colour as well as orientation and a more complex
shape description. It is important to be able to use a greater reper-
toire of objects with richer visual features so that more interesting
learning experiments can be done. In the experiments described
here, PFC orientation bias is hardcoded in the system, however,
it is already possible to learn orientation preferences rather than
hardcode them and so a similar mechanism could be implemented
for orientation and colour combined. The enhanced system will be
used to model the developmental pathway for language, moving
from single word to two word associations — for example, action-
verb and noun.
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