University of Plymouth

PEARL https://pearl.plymouth.ac.uk
Faculty of Science and Engineering School of Biological and Marine Sciences
2013-01

Network position: a key component in
the characterization of social personality

types

Wilson, Alexander

http://hdl.handle.net/10026.1/11468

10.1007/s00265-012-1428-y
Behavioral Ecology and Sociobiology
Springer Science and Business Media LLC

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Behav Ecol Sociobiol (2013) 67:163—173
DOI 10.1007/s00265-012-1428-y

METHODS

Network position: a key component in the characterization

of social personality types

Alexander D. M. Wilson - Stefan Krause -
Niels J. Dingemanse - Jens Krause

Received: 13 March 2012 /Revised: 3 October 2012 /Accepted: 3 October 2012 /Published online: 16 October 2012

© Springer-Verlag Berlin Heidelberg 2012

Abstract In recent years, animal social interactions have
received much attention in terms of personality research
(e.g. aggressive or cooperative interactions). However, other
components of social behaviour such as those describing the
intensity, frequency, directedness and individual repeatabil-
ity of interactions in animal groups have largely been
neglected. Network analysis offers a valuable opportunity
to characterize individual consistency of traits in labile
social groups and therein provide novel insights to person-
ality research in ways previously not possible using tradi-
tional techniques. Should individual network positions be
consistently different between individuals under changing
conditions, they might reflect expressions of an individual's
personality. Here, we discuss a conceptual framework for
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using network analyses to infer the presence of individual
differences and present a statistical test based on randomi-
zation techniques for testing the consistency of network
positions in individuals. The statistical tools presented are
useful because if particular individuals consistently occupy
key positions in social networks, then this is also likely to
have consequences for their fitness as well as for that of
others in the population. These consequences may be par-
ticularly significant since individual network position has
been shown to be important for the transmission of diseases,
socially learnt information and genetic material between
individuals and populations.
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Animal personality and social network analysis have been the
subject of significant research interest in recent years, and
their potential ecological and evolutionary importance has
been suggested by numerous empirical and conceptual studies
in both fields of research (Réale et al. 2007; Sih et al. 2009;
Sih et al. 2012; Wolf and Weissing 2012). Yet in spite of great
potential, the integration of these two areas of research
remains largely in its infancy (Krause et al. 2010). This
situation is due partly to conceptual challenges and partly to
difficulties associated with delineating what are generally
considered individual traits in dynamic social environments.
Animal ‘personality’ occurs when between-individual varia-
tion in behaviour is maintained across contexts (Réale et al.
2007; Dingemanse et al. 2010a). Such between-individual
variation has been demonstrated for a wide variety of behav-
iours (e.g. boldness, activity, aggression and sociability) (Bell
etal. 2009). While interest in between-individual variation has
existed for some time, new emphases in personality research
have been placed on the adaptive mechanisms causing and
maintaining such variation (reviewed by Dingemanse and
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Wolf 2010; Wolf and Weissing 2010) and how its presence
affects ecological and evolutionary processes (Sih et al. 2012;
Wolf and Weissing 2012). Surprisingly, few studies have
examined how and why individual repeatability in social
behaviours might be maintained, in spite of evidence from
the network literature suggesting that network attributes can
be heritable (Fowler et al. 2009), related to a variety of
ecologically relevant processes (Hamede et al. 2009; Drewe
2010), and hence might evolve in response to selection (Lea et
al. 2010). Studies of what are generally considered social traits
(i.e. cooperative or agonistic interactions) typically compare
individuals dyadically (Wilson et al. 2010b) or on a hierarchi-
cal basis (i.e. more or less aggressive), but other aspects of
these behavioural phenomena are often overlooked. The rela-
tive frequency of interactions, individual preference for par-
ticular group members and the potential ecological
significance of these characteristics represent just some of
the variables often ignored in typical individual-level studies
of behavioural traits. Thus, in many respects, personality
research on a social or group level has often lacked critical
information for understanding the mechanistic underpinnings
or adaptive benefit of such consistency in behavioural types
(but see Cote et al. 2008; Wilson et al. 2010a).

The recent advent of social network analysis provides a
range of statistical tools that allows the characterization of
the fine social fine structure of animal groups and popula-
tions in a manner previously not possible (Krause et al. 2007;
Croft et al. 2008; Wey et al. 2008). Importantly, network
analysis provides an investigatory framework for consider-
ing not just the intensity of social interactions (i.e. level of
expression), but also the consistency and frequency of
individual-level interactions and preferential associations in
a labile social environment. In this respect, consistency in
individual network position may even represent an outcome
of'individual variation in key behavioural traits (personality).
Should this be the case, this notion may have significant
ecological and evolutionary implications. For example, indi-
viduals may act as ‘brokers’ of information or keystone
figures in the transmission of disease and information in
animal groups. While these are terms that are already used
in the social network literature on animals in some cases (see
Croft et al. 2008 for a review), this is often done without
checking some of the crucial underlying assumptions for the
characterization of behavioural types (e.g. Dingemanse et al.
2012; Dingemanse and Dochtermann 2012). The most im-
portant assumption is likely that individuals repeatedly and
consistently occupy the same or similar positions in net-
works. Yet, most network studies are unreplicated, involving
only a single recording session which simply does not allow
statements on whether individuals occupy particular posi-
tions consistently over time. The aim of this paper is to
provide an investigatory framework for considering individ-
ual variation in network position and to underscore the
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potential importance of this level of variation in terms of
the ecology and evolution of personality in animals.

Network positions of individuals

Over the last decade or so, significant advances have been
made in the application of network analysis to animal pop-
ulations. These advances have been, in part, owing to the
adaptation and application of network calculations and
descriptors from psychology, and also the utilization of
new descriptors better suited to the study of animal popula-
tions (see Croft et al. 2008). For example, network analysis
allows one to examine the social structure of animal groups
and provide novel insight into the potential costs and bene-
fits of different positions in a network. Many studies have
shown that different positions in animal groups (both spa-
tially and socially) can have distinct advantages and disad-
vantages in terms of predator avoidance, access to
information and disease transmission (reviewed in Krause
and Ruxton 2002; Croft et al. 2008). By looking at these
advantages with a network perspective, new insight can be
gained into important processes underlying social phenom-
ena (i.e. dominance hierarchies) and therein social evolution
(Shizuka and McDonald 2012).

For the purposes of this review, we will limit our dis-
cussion to several of the most commonly used and ecolog-
ically relevant descriptors of network positions (but see
Newman 2003; Croft et al. 2008 for additional examples
and descriptions). Some of the most promising descriptors
(e.g. node betweenness and degree) for application to per-
sonality research involve aspects of ‘centrality’ which gen-
erally estimate the social importance of an individual based
on the number and frequency of interactions with other
group members. An individual's degree is the number of
immediate neighbours a particular individual has. Node
betweenness, however, measures the extent to which a focal
individual lies in shortest paths between pairs of other indi-
viduals (Croft et al. 2008). These descriptors are important as
they provide a manner by which to characterize and describe
ecologically relevant individual-level interactions as well as
the importance of particular individuals in population-level
social structures. For example, Lusseau and Newman (2004)
characterized the social structure of bottlenose dolphins
(Tursiops spp.) and suggested that some individuals (as indi-
cated by their high ‘betweenness’) might act as social brokers
by interconnecting otherwise distinct communities. Similarly,
other studies have used degree and node betweenness to track
disease transmission among captive (e.g. Otterstatter and
Thomson 2007) and wild (e.g. Hamede et al. 2009; Drewe
2010) populations as well as to characterize the importance of
the number versus nature (who is connected to whom) of
connections in animal contact networks.
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Another potentially useful network metric for application
to personality research is that of the local clustering coeffi-
cient. The local clustering coefficient is a measure of cliqu-
ishness derived from local network structure (i.e. phenotypic
assortment or associations between familiar individuals). It
quantifies the extent to which (immediate) neighbours of
some focal individual are themselves neighbours (Croft et
al. 2008). A social ‘clique’ is a subset of highly connected
individuals in a network. Cliques and the level of connect-
edness in a network can be important as the removal of
certain key individuals can result in a loss of network
cohesion and, perhaps, the collapse of a network that is
not well connected. For example, using experimental
manipulations of network composition in pig-tailed maca-
ques (Macaca nemestrina), Flack et al. (2006) found that the
removal of high-ranking individuals involved in group po-
licing resulted in a notable decline in group cohesion.
Additionally, in some cases, cliques may also be a necessary
factor in the evolution of cooperative behaviours that may
only develop in such highly interconnected groups of indi-
viduals in a population.

Between-individual variation in network position

The use of network positions provides a unique opportunity
to describe important new social aspects of personality that
has thus far been omitted from studies of behavioural types.
However, despite the obvious potential for the application of
network analysis to personality research (Krause et al.
2010), surprisingly few studies have attempted to character-
ize such a relationship (Pike et al. 2008; Croft et al. 2009),
and fewer still have described network position in terms of
personality (but see Lusseau and Newman 2004). The im-
portance of this notion lies in the fact that network positions
may reflect important ecological and evolutionary processes
(Otterstatter and Thomson 2007; Fowler et al. 2009;
Hamede et al. 2009; Krause et al. 2010). Some network
positions may have higher fitness than others and represent
significant differences in the investment of time and resour-
ces (see Krause et al. 2010). For example, if one were to
consider connectedness as above, a highly connected indi-
vidual may be required to devote considerably more time
and energy in establishing and maintaining connections than
a poorly connected individual. This differential allocation of
resources may have significant costs (or benefits as the case
may be) in terms of mating, competition, foraging and
antipredator behaviour, but will likely vary between net-
works and the nature of the social ties between individuals.
While a given network position might be stable over the
long term, acute changes in ambient conditions (i.e. compe-
tition and disease) might result in short-term changes in
network position optima when involving seasonal

considerations (i.e. breeding cycles) or perhaps more long-
lasting changes resulting from ontogenetic processes or
niche shifts (sensu Wilson and Krause 2012a, b). In humans,
maintaining high levels of connections among individuals
using social media networks (e.g. Facebook) has been
shown to result in the formation and maintenance of ‘social
capital’, which may be considered a surrogate term for the
acquisition of new information and resources between indi-
viduals (Ellison et al. 2007). Further, as with other consis-
tent individual differences in behaviour, network positions
as traits may coevolve with other important behavioural and/
or morphological traits (Sih et al. 2004). Our proposed novel
approach in using network position in studies of personality
would therein provide and integrate a wealth of quantitative
variables (type, frequency and intensity) regarding social
interactions where previous studies were limited to dyadic
relationships.

There are some conceptual challenges associated with the
use of network position in personality research, not least of
which is delineating the behaviour exhibited by a focal
individual when it is not independent of the behaviour
exhibited by others (Webster and Ward 2011). However, so
long as the relative differences between individuals remain
consistent, the influence of social context on the absolute
value of an individual's average trait expression is not overtly
important for considering repeatable differences in network
position. The use of appropriate network descriptors and
testing for the consistency of network positions between
networks (see statistical test below) may open up many
new experimental possibilities for research into animal per-
sonality traits and their proximate and evolutionary bases.

Network metrics

In this study, we have utilized three of the most commonly
used node-based network metrics as outlined earlier in this
paper, that of degree, node betweenness and local clustering
coefficient. However, we have provided more detailed def-
initions and calculations of our descriptors and related net-
work factors for the sake of clarity.

A network consists of a set of ‘nodes’ or ‘vertices’ V=
{v1, V2, ..., v,} and a set of ‘edges’ E={ey, ey, ..., €,,}, each
of which connects two nodes. There are different types of
networks, for example directed and undirected networks. In
a directed network, each edge has a direction and a directed
edge e=(vy, v,) connects v, to v,, but not v, to v. In contrast,
in an undirected network, each edge connects its nodes in
both directions. Also, networks may be weighted or un-
weighted. In a weighted network, each edge is assigned a
number which is called its ‘weight’. Which type of network
is the most appropriate one depends on the type of relation
that is modelled by the network. For relations that are not
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symmetric, it is advantageous to use directed networks. If it
is important to express that the connections have different
‘strength’ or ‘length’, weighted networks should be used.

In this study, we use undirected, unweighted networks
without self-loops (i.e. edges that connect a node to itself).
Such networks are usually called ‘simple’ networks. Note
that most of the definitions in this section only apply to this
type of network. However, the definitions can be modified
and extended such that weighted, directed edges can be
taken into account (see Croft et al. 2008, for examples).
For a focal node v;, the nodes that are connected to v; via
some edge are called the ‘neighbours’ of v,. For our pur-
poses, we will describe the descriptors we are measuring in
our statistical test as (1) degree, (2) node betweenness and
(3) local clustering coefficient.

Firstly, the degree of a node is simply the number of its
neighbours. The possible range of values of the degree
depends on the number of nodes in the network. In an
undirected network with N nodes, the degree of each node
is in the range 0 ... N-1.

Secondly, the node betweenness of a node v measures the
extent to which shortest paths between other nodes run
through v. A path between two nodes v, and v, is a sequence
of edges that connect v, to v, via zero or more intermediate
nodes. A shortest path between two nodes vg and v, in an
unweighted network is a path with a minimal number of
edges. Note that there may be more than one shortest path
between two nodes. If b(v;,vV,) is the proportion of shortest
paths between v, and v, that run through a focal node vy, then
the node betweenness of v,in an undirected network is the
sum of the proportions b(v;,v5V;) of vy regarding all pairs of
other nodes v; and v;. More formally,

Node betweenness (vy) = S, izr, j2rb (vis vy, ).

Lastly, the local clustering coefficient of a node v is the
proportion of possible edges between neighbours of v that
actually occur in the network. More formally, if the node v
has k neighbours, and there exist m edges between these
neighbours, then

Local clustering coefficient(v ) = 2m/(k(k — 1)), if

k > 1, and 0 otherwise.

By definition, the local clustering coefficient is always in the
range 0 ...1.

Testing individual consistency in network position
To test whether individuals show repeatable differences in
network position, it is critical to have some measure of

consistency and repeatability of network position over time
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and/or situations. This requires repeated observations of a
given group or population of individuals and tracking of all
individuals within that network over a set time period or
number of observations. If a population is sampled over
multiple sessions, and for each session the social network
structure is established, a randomization test can be applied
to check for consistency of network positions of the indi-
viduals. We will explain the details of such a test in this
section. To illustrate our test, we use networks that were
generated by a very simple simulation programme, which
will be explained in the next section.

In a network, the node values for a given network mea-
sure are not independent of each other. Therefore, we use a
randomization test. We assume that we have K networks
each of which was established by sampling the same popu-
lation of N individuals multiple times. We construct a null
model by permuting the node labels in each network, and
we use as a test statistic the sum of the variances of indi-
vidual ranks in the networks (SV). In the case of tied values,
we use mean ranks. More precisely, if R is a matrix of ranks,
where R; ; is the rank of individual 7 in network & regarding a
certain network measure, then the test statistic SV is defined as
follows: SV(R) = ", variance(R;1,... R x), where N
is the number of individuals (= number of rows) and K the
number of networks (= number of columns).

The main reason for using ranks rather than raw values is
that we are interested in individual network positions relative
to other individuals. In this context, it is more important to find
out, for example, whether certain individuals tend to have a
relatively high node betweenness compared to others than
whether individuals tend to have similar concrete node be-
tweenness values. Also, while it is obvious that for each
individual all ranks are equally probable under the null model,
we usually do not know very much about the distribution of
the raw values unless we have full knowledge of the mecha-
nism that generates the networks. A test statistic that measures
the variability of the raw values would therefore be difficult or
even impossible to interpret without this knowledge, despite
parametric metrics having obvious heuristic values in evolu-
tionary research (Dingemanse et al. 2012a).

If individuals have similar ranks across the observed net-
works, the test statistic should yield small values. Following
the usual definition of randomization tests (Manly 2007) for a
given level «, we regard the value SV(R;) of our observed
matrix R; as significant, if it is among the mx o smallest
values of the sequence SV(R;), SV(R,), ... SV(R,,) of m
values, where SV(R,), ..., SV(R,,) are constructed by permut-
ing the values of each column of R;.

Note that there are two different sources of consistency of
network positions. Firstly, individuals may have certain
preferences when choosing a group member to interact with.
For example, individuals that strongly prefer to interact with
only a small number of their group members are likely to
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have a consistently lower degree than individuals who have
no specific preferences. Secondly, individuals may have
different tendencies to interact at all. For example, even if
no individual in a population has specific preferences for
other members, individuals with higher interaction frequen-
cies will have higher degrees than others. Therefore, it is
important that no bias is introduced by the observation
method. More precisely, the probability of observing an
individual must be equal for all individuals. Otherwise, there
is a risk of reporting spurious interpretations. If for some
individuals it is known that they have been observed with
lower probability, the bias can be alleviated by filtering the
networks, i.e. by removing these individuals and all their
edges from the networks, though such an approach would
possibly also result in a biased estimate of the population if
the removed individuals are of specific behavioural type.

Ilustrative example

To illustrate our randomization test, we simulated obser-
vation sessions of a population of N interacting individ-
uals in a very simple way that allows one to distinguish
between the two sources of consistency mentioned
above. We used the programming language Java and
the Java Universal Network/Graph Framework JUNG
version 2.0.1 (Madadhain et al. 2005).

In our simulation, each individual will be involved in a
fixed number of interactions and each individual has specif-
ic preferences for the other individuals. For individual i, the
number of interactions is denoted by a; and the preference
for individual j by p,(j). More precisely, the simulation of an
observation session works as follows. M =", . y ai/2
times an individual i is picked, and for this individual, a
partner j is chosen with probability p{j), where le;‘s N
pi(j) = land p,(i)=0, such that the number of interactions of
neither 7 nor j exceeds the limits a; and a;, respectively. After
an observation S consisting of M interactions has been
generated, a network is constructed by adding an edge (i,))
for each interaction between the individuals i and j
contained in S. This means that the resulting network will
contain at most M edges and each individual will have a
degree of at most a;.

If all g, and all p,(j) are equal, respectively, for each indi-
vidual, all ranks (regarding any network metric) are equally
probable, and for a set of K networks constructed from sepa-
rate simulated observation sessions of the same population,
the consistency test will reject the null hypothesis in 100 % of
the cases. If, however, the ; or the pyj) differ, some individ-
uals will tend to occupy certain network positions with a
higher probability than others. In our example, we chose the
same number of interactions (a,=6) for all individuals (N=
15), but different individual preferences p,(j) to generate a set

of five networks (Fig. 1). The values of p,(j) are shown in
Table 1. Here, some individuals tend to form clusters, while
others choose their partners more randomly.

Using the randomization test described above, we can
demonstrate how different measures of individual network
positions can be consistent over five observation sessions
when using degree (p=0.031, SV=184.2, Table 2), the local
clustering coefficient (p=0.009, SV=204.8, Table 3) and
node betweenness (p=0.003, SV=202.0, Table 4) as net-
work descriptors (following 10*-1 randomizations). Of
course, our test will not detect consistency of network
positions in every set of networks generated using our
example probabilities. The percentage of detections strongly
depends on the number of interactions a;. For example,
given the preferences in Table 1, in 10,000 simulated sets
of five networks, the test (with 10%-1 randomizations, o=
0.05) found consistency regarding the node betweenness in
10.3 % of the cases for a,=2 (i.e. if only two interactions per
individual were simulated), in 39.6 % of the cases for a;=6
and in 90.1 % of the cases for a,=12.

Fig. 1 Social networks (a—e) generated from the same fictitious pop-
ulation of 15 individuals. Numbered nodes represent individuals and
edges (/ines) social connections between them
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Table 1 Probabilities p,(j) used in the network simulation to express individual preferences (for example, the value 0.22 in line 3, column 4 means
that when individual 3 interacts, it will choose individual 4 with probability 0.22)

Individual j
1 2 3 4 5 6
Individual i 1 0 022 022 022 022 0.01
2 022 0 022 022 022 001
3 022 022 O 022 022 0.01
4 022 022 022 O 022 0.01
5 022 022 022 022 O 0.01
6 0.01 001 0.01 0.01 0.01 O
7 0.01 0.01 0.01 0.01 0.01 029
8 0.01 001 0.01 0.01 0.01 029
9 0.01 001 0.01 0.01 0.01 029

10 0.01 040 0.01 0.01 001 040
11 030 0.02 0.02 002 002 0.02
12 0.02 030 0.02 0.02 002 0.02
13 0.07 0.07 0.07 0.07 007 0.07
14 0.07 007 007 0.07 0.07 0.07
15 0.07 007 007 0.07 0.07 0.07

0.01 0.01 0.01 0.01 0.01 0.01 001 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 001 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 001 002 0.02
0.01 001 0.01 0.01 0.01 0.01 001 0.02 0.02
0.01 001 0.01 0.01 0.01 001 001 002 0.02
029 029 029 0.01 0.01 0.01 001 0.02 0.02

0 029 029 0.01 0.01 0.01 001 0.02 0.02
029 0 029 001 001 001 0.01 0.02 0.02
029 029 O 0.0r 001 001 0.01 0.02 0.02
0.01 001 001 O 0.01 001 001 0.04 0.06
0.02 030 0.02 002 0 0.06 006 006 0.06
0.02 002 030 0.02 006 0 0.06 0.06 0.06
0.07 007 0.07 0.07 0.07 0.07 0 0.07  0.09
0.07 007 0.07 0.07 007 007 0.07 0 0.09

0.07 007 0.07 007 007 007 007 009 0

Additional analyses

In our example, the individual mean ranks were correlated
across the network descriptors (all two-sided p values <0.035
in randomization tests with 9,999 randomizations and Kendall's
T as a test statistic). In real networks, this is not necessarily the
case. However, it is to be expected that some descriptors might

occasionally be correlated, and as such, it is important to
determine which traits are independent and which covary.
Correlation analysis provides a potential starting point for char-
acterizing network position traits by relating independent
descriptors to each other and other traits and therein assists in
the delineation of the properties of a network; its structure could
be further explored using multivariate methods detailed

Table 2 Individual differences in degree for a fictitious population (N=15) over five simulated sampling sessions

Individual ~ Sample 1 Sample 2 Sample 3

Sample 4 Sample 5 Variance of ranks ~ Mean rank

Value Rank Value Rank Value Rank

Value Rank Value Rank

1 4 14 3 12.5 4 9

2 6 3.5 3 12.5 5 2.5
3 5 10 3 12.5 4 9

4 3 15 4 7.5 4 9

5 5 10 3 12.5 4 9

6 5 10 3 12.5 4 9

7 6 3.5 4 7.5 3 14.5
8 6 3.5 3 12.5 3 14.5
9 6 3.5 5 3.5 4 9
10 5 10 4 7.5 4 9

11 5 10 4 7.5 4 9
12 6 3.5 5 35 4 9
13 5 10 5 3.5 5 2.5
14 6 3.5 6 1 5 2.5
15 5 10 5 3.5 5 2.5

5 5.5 4 7.5 12.3 9.7
5 5.5 3 13.5 26.5 7.5
4 13 5 2.5 17.7 9.4
4 13 3 13.5 10.2 11.6
5 5.5 3 13.5 9.9 10.1
4 13 4 7.5 5.4 10.4
4 13 4 7.5 20.2 9.2
5 5.5 4 7.5 21.7 8.7
5 5.5 4 7.5 6.0 5.8
4 13 4 7.5 52 9.4
5 5.5 5 2.5 8.9 6.9
5 5.5 3 13.5 18.3 7.0
5 5.5 4 7.5 92 5.8
5 5.5 6 1 3.6 2.7
5 5.5 4 7.5 9.2 5.8

Each individual was assigned an actual value and then ranked according to that value for each network observation
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Table 3 Individual differences in the local clustering coefficient for a fictitious population (N=15) over five simulated sampling sessions
Individual Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Variance of ranks ~ Mean rank
Value  Rank  Value Rank  Value Rank  Value Rank  Value  Rank

1 0500 3 0333 45 0.167 13.5 0.300 8 0333 6.5 16.4 7.1

2 0.333 10 0.000 13.5 0.300 10 0.200 12 0333 6.5 6.9 10.4

3 0500 3 0333 45 0333 75 0333 4 0.100 14.5 21.8 6.7

4 0.333 10 0.167 10 0333 75 0333 4 0.667 1 15.5 6.5

5 0400 6.5 0.000 13.5 0500 4 0.500 1.5 0333 65 20.1 6.4

6 0.600 1 0.000 13.5 0500 4 0.500 1.5 0500 2.5 26.6 4.5

7 0400 6.5 0.500 1 1.000 1.5 0333 4 0500 2.5 49 3.1

8 0467 5 0.000 13.5 1.000 1.5 0.300 8 0333 65 19.4 6.9

9 0.333 10 0300 7 0500 4 0300 8 0333 65 4.8 7.1

10 0.100 15 0.167 10 0.167 13.5 0.000 15 0.167 11 53 12.9

11 0.200 14 0.167 10 0.167 13.5 0.300 0.100 14.5 8.1 12.0

12 0.333 10 0.400 2.5 0.167 13.5 0.300 0333 6.5 16.7 8.1

13 0.500 3 0300 7 0.400 6 0.200 12 0.167 11 13.7 7.8

14 0.333 10 0.400 2.5 0.300 10 0.200 12 0.133 13 17.0 9.5

15 0.300 13 0300 7 0.300 10 0.100 14 0.167 11 7.5 11.0

Each individual was assigned an actual value and then ranked according to that value for each network observation

elsewhere, particularly factor analysis (Budaev 2010) in com-
bination with structural equation modelling (Dochtermann and
Jenkins 2007; Dingemanse et al. 2010a; Dochtermann and
Jenkins 2011). Some authors have used mixed models to ana-
lyse network data (Otterstatter and Thomson 2007; Frere et al.
2010; Lea et al. 2010). While it is possible to account for some

aspects of non-independence of individuals in networks using
such models, it remains an open question whether this is
generally the case (Croft et al. 2011). The use of mixed models
(instead of randomizations) may depend on the response vari-
ables (i.e. network metrics) in question and the biological
inferences that authors wish to make from the test results.

Table 4 Individual differences in node betweenness for a fictitious population (N=15) over five simulated sampling sessions

Individual Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Variance of ranks Mean rank
Value Rank Value Rank Value Rank Value Rank Value Rank

1 2.03 14 1.87 15 2.50 11 6.00 8 5.75 6 14.7 10.8
2 8.79 1 3.83 12 11.03 6 6.35 1.53 14 29.8 7.4
3 2.53 11 2.23 14 2.37 12 3.65 12 13.88 3 18.3 10.4
4 2.33 12 10.03 2.87 10 3.09 14 0.75 15 22.7 10.8
5 442 9 7.33 1.50 13 4.60 11 2.83 10 2.8 10.4
6 1.87 15 3.25 13 13.67 3 2.23 15 1.75 13 25.2 11.8
7 5.96 7 5.00 10 0.00 14.5 3.12 13 2.28 11 8.3 11.1
8 3.34 10 4.00 11 0.00 14.5 6.22 5 5.03 9 11.8 9.9
9 7.95 3 10.28 1 11.50 5 7.60 3 5.58 7 52 3.8
10 8.46 2 7.58 7 20.17 1 5.32 10 10.40 13.7 4.8
11 6.75 8.72 6 6.40 8 5.98 9 1465 2 8.2 5.8
12 6.08 6 7.37 8 17.83 2 6.04 7 1.90 12 13.0 7.0
13 2.09 13 1022 2 3.73 9 6.11 6 5.42 8 16.3 7.6
14 5.70 8 8.73 5 11.73 4 10.48 1 18.80 1 8.7 3.8
15 6.69 5 9.55 4 10.70 7 9.22 2 6.43 5 3.3 4.6

Each individual was assigned an actual value and then ranked according to that value for each network observation
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Logistical and experimental constraints

Beyond characterizing individual-level consistency in net-
work attributes, a number of logistical and conceptual chal-
lenges remain for quantifying individual variation in network
position. Logistical challenges include understanding how test
power changes with observed group/population size, how
often groups/populations should be sampled and how many
observations should be made to construct a network per
sampling session. Sample size limitations represent a signifi-
cant issue for work on social networks. Networks that are
large (consisting of hundreds or thousands of individuals)
are difficult to quantify, manipulate and replicate. Similarly,
identifying and tracking individuals, particularly in the wild or
with large species or populations, represent further technical
challenges. Avoiding recording errors (i.e. mis-identifying
individuals) and successfully providing continuous tracking
of large numbers of individuals over short observation ses-
sions are also challenging concerns; however, these issues
may be partially overcome using technological innovations
(Krause et al. 2011). That said, our example demonstrates that
consistency in network descriptors may be achieved in as few
as 15 individuals, and thus, the problems arising in large
populations may be avoided by utilizing smaller groups or
populations when possible.

Another issue that needs to be resolved is that each
individual's estimate of its ‘average’ network position comes
with uncertainty that should be accounted for when this
value is used in further analyses (see Hadfield et al. 2010
for discussion). Modern statistical methods, fortunately, do
allow for such uncertainty to be taken forward into follow-
up analyses, for example by using Markov chain Monte
Carlo methods and the posterior distributions of estimates
(see Dingemanse et al. 2012a).

Experimental challenges include, but are not limited to,
finding suitable ways to test for the underlying proximate
bases of any consistency in network position, how network
position might carry over between different behavioural
contexts and how best to deal with populations that fre-
quently change in their social composition (e.g. fission—
fusion). Testing individual consistency in network position
across networks (via manipulation and/or exchange experi-
ments) may provide an important insight into the plasticity
of network position between individuals as well as their
adaptive significance in terms of ecology and evolution.
Recent studies have highlighted the important role that
plasticity has in terms of guiding an individual's overall
behavioural phenotype when it comes to personality
(Dingemanse et al. 2010b). Since individuals vary in the
average level of behaviour they display across different
contexts, traits are arguably most interesting when they
carryover irrespective of environmental variation. Thus,
manipulation/exchange experiments demonstrating that
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particular individuals retain their relative network position
when transferred between different social groups or environ-
ments would be a valuable finding for characterizing whether
individual network characteristics are maintained (i.e. repeat-
able) over contexts. Potential applications of this type of ex-
change experiment may involve transferring individuals
possessing similar network properties between groups or ex-
changing individuals from opposite network positions between
groups (e.g. individual of high degree and betweenness ex-
changed for an individual of low degree and betweenness). The
combination of these two types of manipulation experiment
would provide interesting insights into the importance of indi-
vidual behavioural predisposition relative to the ambient social
environment in network personality experiments as well as test
the robustness of such parameters to changes in group compo-
sition and behavioural context. While consistency in network
position would be interesting in itself with regard to personality,
consistency following disturbance would be especially com-
pelling as individuals might be expected to alter their behaviour
in an adaptive manner when confronted with dramatically
different social environments.

In contrast, understanding what types of changes in social
environment might instead disrupt any potential observed
consistency in network position is also invaluable. Several
experimental studies have documented evidence of such
changes in social dynamics when group composition was
changed by the addition of new individuals (Darden et al.
2009; Jacoby et al. 2010) or manipulations based on behav-
ioural type (Sih and Watters 2005). These further investiga-
tions into the social dynamics of personality in networks
provide valuable novel insight into understanding how the
importance of individual network attributes may be affected
over different time scales and their robustness to change in
dynamic environments. Such studies may also provide im-
portant information for studying those species in which
animal groups undergo fission—fusion changes in their
membership. For example, while our test is ideal for study-
ing network position in captive or closed populations, it is
also useful for considering fission—fusion populations as one
can modify their sampling technique over longer periods of
time to monitor which individuals leave or rejoin and how
often groups of individuals are observed together. If certain
members of a group are generally observed for similar
observation frequencies, standard filtering techniques can
exclude transient members and allow analysis of more
long-term members. While this is somewhat speculative,
these populations would likely need to be considered on a
case-by-case basis. That said, the aim of this case study is to
provide a novel and useful analytical framework for consid-
ering network position in animal groups, and while fission—
fusion populations remain a challenge, our test is of clear
value for laboratory studies or those studies of wild popu-
lations where group membership is relatively constant.
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Fitness consequences of a network position trait

A key challenge of assessing the fitness consequences of
different network positions is to experimentally ascertain how
the potential factors affecting network position influence their
heritability. While this can be difficult to demonstrate empiri-
cally, one approach might involve establishing a causal link
between consistent differences in behaviour (i.e. personality)
and individual position within a given social group. For exam-
ple, one might explore the relationship between aggression (a
personality trait) and dominance hierarchies (an outcome of
interactions between individuals in a group) (McGhee and
Travis 2010) and relate this to differences in correlated heritable
traits (Moore 1990; Horne and Ylonen 1998).

If network attributes can be repeatable or heritable
(Fowler et al. 2009) and individuals consistently occupy
particular network positions, then the question arises what
the fitness consequences of such positions are and whether
selection can shape the evolution of networks. Two plausi-
ble scenarios seem likely. First, individuals in different
network positions may achieve different absolute fitness
values. Should this be the case, how then would these
differences arise and be maintained in animal groups and
what ecological factors enable certain individuals to have
high fitness and others not? Alternatively, individuals in
different network positions may initially be capable of
achieving the same fitness, but differences in network posi-
tion may, for whatever reason, be related to differences in
other indirect fitness components (e.g. mortality risk and
fecundity profile). Not many studies have commented on
the fitness consequences of network position, but there are
notable exceptions. For example, Oh and Badyaev (2010)
found that male house finches (Carpodacus mexicanus) can
choose their social background to enhance their attractive-
ness to female conspecifics. Males with less elaborate orna-
mentation tended to be more socially labile (showing higher
betweenness) relative to more elaborate males (with more
colourful plumage). Social labiality was reflected in duller
males changing associations between distinct social groups
to find groups which best suited their duller ornamentation
and therein provide themselves with the maximum possible
fitness advantage by increasing their relative attractiveness
to females. In another study, McDonald (2007) demonstrat-
ed that centrality was a good predictor of future reproductive
success and adult social status for juvenile male long-tailed
manakins (Chiroxiphia linearis). Ryder et al. (2008)
found a similar result in that social network connectivity
(as measured by degree, eigenvector centrality, informa-
tion centrality and reach) predicted the ability of male
wire-tailed manakins (Pipra filicauda) to become terri-
tory holders and therein obtain greater reproductive suc-
cess via preferential access to potential mates. However,
all of these studies present only correlational evidence

and research is now needed to determine whether there
is a causal relationship between network position and
fitness. Nevertheless, this evidence presents an interest-
ing starting point for an investigation of a link between
social structure and function.

Conclusions

The use of network position in personality research holds
much promise for behavioural biologists (Krause et al.
2010). While previously qualitative aspects of animal social
interactions have received much attention in terms of person-
ality research (e.g. aggressive or cooperative interactions),
until the advent of network analysis, no proper analytic frame-
work existed to describe the quantitative aspects of animal
social behaviour (i.e. the intensity, frequency, directedness and
consistency of interactions) in a meaningful way. Thus, key
components of our understanding of behavioural types and
their relationship to group-level dynamics have largely been
neglected. The analysis of individual variation in network
position meet these demands and also provide a frame-
work for measuring individual-level consistency in ani-
mal groups. Since network position has been shown to
be important in terms of the transmission of diseases,
socially learnt information and genetic material between
individuals and populations, it is probable that different
network positions may have diverse fitness consequences
(Franz and Nunn 2009; Krause et al. 2010). Some net-
work positions may require considerable input of time
and resources to attain and/or maintain and thus be
associated with significantly different costs and benefits
due to this differential allocation of resources between
individuals. Understanding how and why these differen-
ces arise may provide important insight into the evolu-
tion of social personality traits and behavioural types in
general. This is particularly important in that recent ev-
idence suggests that at least some network attributes may
be heritable and thus subject to selection (Fowler et al.
2009). The statistical test which we developed demon-
strates that individual-level consistency in network posi-
tion can be successfully characterized at the level of the
group and under changing social conditions. As such,
this technique should represent a valuable tool for those
interested in the origin and maintenance of social per-
sonality traits and an important next step in the integra-
tion of network analysis and personality research.
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