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WETTING AND DRYING IN TWO-DIMENSIONAL 

TIDAL NUMERICAL MODELS 

STUART STRPLEsTG 

ABSTRACT 

The purpose of this research is to adapt and improve existing two-dimensional numerical 

tidal models so that they can cope with regions where the tide falls and rises to uncover and 

cover inter-tidal banks without incurring numerical shocks which may be caused by the 

discretization of time and space. 

This thesis presents a review of current practices in the numerical modelling of flooding and 

drying banks in two dimensions. A two-dimensional depth-averaged numerical model has 

been written and is presented. It is used as a tool with which to investigate various existing 

algorithms which represent the physical process of the wetting and drying of intertidal zones. 

An alternative method with which to represent the moving boundary has been developed. 

This method is free from disturbances usually caused by the implementation of a moving 

boundary in such a numerical scheme. 

A 2NM numerical model of the Wash, U.K., is run to provide hind-cast tidal data pertaining 

to a particular site and period. A field programme is established to provide validation data 

for the model. 

Finally, conclusions from the programme of research are drawn. 
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INTRODUCTION 

When an area of coast becomes exposed as the tide falls, and covered as the,.tide rises, we 

can term this phenomenon the drying and wetting of an inter-tidal zone. The representation 

of this physical process in a numerical model can create disturbances in the solution. These 

disturbances are essentially the result of an attempt to incorporate, in numerical terms, a 

boundary which moves in a discrete manner. 

Due to the nature of the frictional term in the hydrodynamic equations of motion, a 

mathematical singularity occurs at zero water depth resulting in the numerically calculated 

velocity value potentially increasing to infinity. It is therefore essential that this singularity 

is avoided and an alternative method to represent this very shallow water phenomenon be 

found, either in the way that the frictional force is represented (i.e. to modify the physics 

expressed by Newton's Second Law) or by some otiier physical or numerical means. 

Algorithms for drying and wetting used in existing numerical models, whether they be solved 

implicidy, semi-implicitly or explicidy, appear to have been developed with the elimination 

of instability as their priinary aim rather than the faithful representation of the physical 

processes in very shallow water (Leendertse, 1970; Flather & Heaps, 1975; Owens, 1984; 

Falconer, 1985; Cheng et al, 1993). Other workers, Davies (1986), Backhaus (1983), have 

developed and used three-dimensional models for the analysis of effects such as bottom stress. 
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wind stress and convective circulations. However, three-dimensional models are very costiy 

to run, and there is much pressure these days to develop two-dimensional models that have 

a general ability to function even invery shallow seas. 

Stripling etal. (1994) have established that the incorporation of a moving land/sea boundary 

is one which commercial companies have spent considerable time addressing. Many 

companies are now satisfied that their representation of the physical processes involved is 

adequate; but they also indicate that it could be improved upon if they had sufficient time and 

inclination for the problem to be addressed further. 

Two-dimensional models developed by George at die University of Plymouth over the last 

nine years incorporate a drying algorithm, but are unsatisfactory and require improvement. 

In order to attain this improvement, existing drying algorithms have been analyzed using a 

working two-dimensional model of an idealized sea basin based on those of George & Evans 

(1991) and Prandle (Proudman Oceanographic Laboratory's General Purpose Model). These 

algorithms have been critically examined to establish precisely what happens to certain terms 

in the hydrodynamic equations as the water depth tends to zero. On the basis of this 

examination, the algorithms have been improved upon and incorporated in the model of an 

idealized sea basin, leading to the design of a model of a real sea area, The Wash (on the east 

coast of the U.K.), which has been validated by reference to field measurements taken by the 

Autiior, together witii Mr. X . Ke^ and Mr. A. Flavell* 

It is on the strength of these findings that an improved representation of flooding and drying 

in two-dimensional numerical tidal models has been developed and presented in this thesis. 

D̂epartment of Oceanography, University of Southampton. 
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Chapter 1 provides the reader with a literary review, together with a descriptive view of the 

modelling of wetting and drying banks. 

Chapter 2 describes the development of a two-dimensional depth-averaged numerical model 

which is used as a tool for investigating existing drying algorithms. 

Chapter 3 introduces the reader to a numerical description of the problems encountered when 

it is necessary to incorporate a moving land/sea boundary. This chapter also gives results 

from experiments with existing drying algorithms using the numerical model described in 

Chapter 2 as an experimental basis. 

Chapter 4 gives specific detail about the development of a new drying algorithm using the 

method of sloping facets, and offers results showing that the technique is an improvement 

upon those methods investigated in Chapter 3. 

Chapter 5 introduces a field programme which was set up to provide a database for the 

validation of a model of a real sea area. 

Chapter 6 defines a model of the Wash, U.K. and presents results which are compared to the 

field observations as described in Chapter 5. 

Finally, a summary is presented and conclusions are drawn from the programme of research. 
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CHAPTER 1 

A LITERARY REVIEW 

1.1 Introduction 

The numerical modelling of tidal propagation in shelf seas was not possible until the late 

1960s when computers became large enough to carry out the vast numbers of calculations 

necessary to execute even a coarse-mesh two-dimensional representation. A classic example 

of such a model was that by Heaps (1969) in which the tidal propagation of the North-West 

European Shelf was modelled using finite differences (see Chapter 2, section 2.2.4) applied 

to a mesh of 20' in latitude by 30' in longitude and containing some 2400 cells. This model 

was adequate in most places for examining the vertical tide, which varies but slowly in space. 

Two-dimensional models are based on the depth integrated equations of motion and 

continuity (see Chapter 2) and as such, provide results in the form of vertical tidal elevations 

and depth-averaged stream velocities. The results are generally good for tiie vertical tide in 

sea areas which are well-mixed. Difficulties, however, arise in areas which become dry as 

the tide falls and become wet as it rises again. 
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1.2 State-of-the-Art in Modelling Flooding and Drying Banks 

In order to place in a wider perspective the problem of representing the flooding and drying 

of intertidal flats in a numerical tidal model, attention may be drawn to the weaknesses 

inherent in some commercially available two-dimensional numerical models. 

In a review of state-of-the-art marine transport models. Stripling et al. (1994) have assessed 

the ability of currently available commercial models to predict the fate and dispersion of 

pollutants in die marine environment. These models are highly modular, in that separate 

modules are required for the prediction of tidal propagation, sediment transport, pollutant 

transport, the effect of wind-waves, and the chemistry involved with differing pollutants. To 

ensure that predictions of the fate and dispersion of pollutants are as accurate as possible, it 

is first essential to establish a tidal model that represents die tidal physics accurately. 

Stripling et al. (1994) showed that the current level of technical expertise and presentation 

was generally excellent. It also indicated areas of development in which knowledge of 

processes is scant, with the outcome that one can not have full confidence in all of the results 

obtained. 

It is beyond die scope of this diesis and would contravene contractual obligations to provide 

specific details of the companies reviewed and their modelling procedures. It is possible, 

however, to draw attention to a particular area of weakness, and therefore potential 

development, while maintaining complete company anonymity. 

The research for the above report has shown that commercial companies have spent 

considerable time addressing the incorporation of a moving land/sea boundary. One company 

has found that the introduction of a moving land/sea boundary can have a severely detrimental 
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effect on tidal solutions both in close proximity and at a distance from intertidal regions. 

Another company has had to omit wetting and drying processes completely from one of their 

models, widi the operator having to decide on whedier the intertidal regions are to be 

modelled as permanendy wet or permanendy dry. This is evidendy unrealistic. 

1.3 Early Work on Wetting and Drying (Reid & Bodine) 

As early as the 1960s, it was well recognizedithat there:were.numerical problems associated 

widi the accurate representation of the tide through die solution of the depth-averaged 

hydrodynamic equations. For instance, the advection terms, which are non-linear, were often 

ignored for the purpose of ease of calculation (Reid & Bodine, 1968). More important in the 

numerical representation of the drying and subsequent flooding of inter-tidal flats is the 

mathematical singularity in the frictional term as the water depdi approaches zero. Odier 

workers, e.g. Sielecki & Wurtele (1970), evaded this problem by ignoring the friction term 

completely. 

The earliest attempt to attack the problem of this, singularity was that by Reid & Bodine 

(1968), who, although they were not able fully to represent the non-linear terms, tried to treat 

the singularity numerically. This early scheme involved the application of weir dieory to two-

dimensional flow in the sea. The conditions necessary for the expected flooding or drying 

of a grid square are given by Evans (1987) and are quite thorough. Contrary to almost all 

subsequent work (Leendertse & Gritton, 1971; Flather ,& Heaps, 1975; Falconer, 1983, 1984 

& 1985; Owens, 1984; Stelling et al., 1986; Falconer & Owens, 1987; Flatiier & Hubbert, 

1989) the use of weir theory avoided the incorporation of a critical depdi to prevent die 
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singularity occurring in the ftictional term. A predetermined depdi was- still necessary, 

however, to indicate diat a cell had dried and to induce the setting of the stteam velocities 

to zero. A cell was deemed to dry when the stream velocities fell below a preset value (0.02 

ms'*). This scheme was highly artificial, since the natural sea-bed does not consist of cells 

bounded by barriers which create weir-like flow. However, for Reid and Bodine's study this 

representation was adequate. 

Reid and Bodine (1968) were severely restricted by the processing power of their computer 

since they had to run their numerical scheme on a GE225 computer which possessed only an 

8K memory. In the subsequent few years, computer power increased considerably and more 

complex numerical techniques could be utilized. 

1.4 The Approach of the Civil Engineer 

Since shelf-sea modelling became a reality, the need to represent the movement of the 

land/sea boundary has been one addressed by oceanographers and civil engineers alike. 

Essentially, a civil engineer is very practical in his approach to the construction and use of 

a numerical model to represent the tide. Large sums of money are available to him in his 

quest to solve a problem; he may have to make decisions that could affect large areas of land 

and water, and possibly the lives of many people in the vicinity of a proposed project. 

However, the need to abide by strict time-limits, under the dictum that 'time is money', may 

lead to an engineer 'cutting comers' at appropriate moments in his appraisal of a situation. 

For instance, he may decide that it is more important to maintain stability in a numerical 

scheme than to worry about how he maintains that stability. Thus, acciuracy in areas such as 
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a moving land/sea boundary may not be of prime concem to a civil engineer. 

Civil engineers generally have no need to develop numerical models on the oceanic or shelf-

sea scale. In fact, a civil engineer is largely concerned with smaller scale modelling such as 

that pertaining to estuaries, harbours or small bays. His models typically have a mesh-size 

of tens of med:es. This is usually adequate for his contractual obligations where localized 

conditions are of direct importance. 

1.4.1 Leendertse's models 

Leendertse (1970) developed a water quality model for well-mixed esmaries and coastal seas. 

The computational procedures were tested on models of Jamaica Bay, Long Island, New York 

- a shallow bay containing many tidal flats. This appears to be the first thorough approach 

to the problem of modelling flow over tidal banks which flood and dry. 

The work of Leendertse (1970) was primarily concemed with introducing to his peers, and 

the public, a quantitative mediod of assessing the impact of urbanization on die environment, 

in particular 'the study of technical alternatives in the management of fluid waste discharges 

in well-mixed estuaries and coastal seas', a subject which is still very much of public concem 

and is still being addressed by govemmental and private sector bodies. 

Leendertse's study involved a testing of computational procedure on models of Jamaica Bay, 

Long Island, New York. A grid size of 500ft (150m) was used. However, a larger grid size 

of 833.3ft (250m) was used for a series of experiments in which stability was studied. This 

model was not of the moving land/sea boundary type and, in fact, the land/sea boundary was 

fixed by the minimum depth being set at 3ft below mean sea-level, highlighting the problems 
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encountered coping with a moving land/sea boundary as the grid size increases. 

In 1970, Leendertse made his first attempt to cope widi a moving boundary. As he states, 

the principle may be simple, but the computational procedures are very complex. His simple 

principle was that if a cross-section (see figure 1.1, where the water level is shown by ^, and 

the cross-sections are shaded) for any particular point decreased to less than a preset value, 

then that point should be removed from the computational field, the preset value being 

positive and close to zero. Since finite difference techniques rely upon variables changing 

gradually in time and space, discrete changes such as those experienced when the land/sea 

boundary moves, impart discontinuities into the solution. Leendertse overcame this initially 

by making the check for the location of the new boundary at intervals larger than the time-

step, allowing the disturbance generated time to decay before die next check for the boundary 

location. These disturbances were suppressed by enlarging the bottom friction values 

artificially as the water became very shallow. 

When the water level rose again, grid points were returned to the computational field if an 

average of the water depths at any of the surrounding grid points which were wet resulted in 

cross-sections which were greater than the preset value. Thus the average water level all die 

way around the 'dry' point had to rise above the level left in diat cell before the point was 

considered wet again. 

1.4.2 Leendertse & Gritton 

In Leendertse & Gritton's report of 1971, the procedure of Leendertse (1970) was modified 

to include further drying checks and an important alteration to the process of the 'wetting' 
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Figure 1.1: Diagrammatic representation of the cross-sections of a ceU 
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of a cell. One of the new additions to the drying check was carried out at every time-step 

at the time horizon for the calculation of the tidal stream components. This states that,'if at 

a particular grid point, the new computed value of the water level has decreased so that a 

negative volume is obtained, then that grid point is taken out of the computation'. This meant 

that if the tidal elevation fell below the depth specified at the elevation-point of the grid cell, 

then the cell was deemed dry. Then, before proceeding to the solution in"-the next row or 

column, the velocities and water levels were recalculated for die previous row or column with 

the point now taken as dry, as well as a recalculation of the row or the column (depending 

on which direction the calculation is in at the time) on which the recendy dried out cell lay. 

When a cell dried, it was assumed to hold a diin layer of water over it. The depth of this 

water was set at the previous time-step before a negative volume was obtained. 

Another additional check carried out every time-step after the flow calculations was to 

evaluate all four cross-sections associated with each of the four adjacent grid points. If any 

of tiiese were negative, the point was noted. 

Physically, a negative cross-sectional area is meaningless, but since these cross-sections are 

concemed with mass-transport, it simply means that transport is worked out as being in the 

opposite direction to which it should be. 

At the end of the calculation of all die velocity components, the grid points marked as having 

a negative cross-section adjacent to them had all velocity components leading to diat point 

set to zero. A thin layer of water was left over the cell in this case as well. 

Leendertse and Gritton found that these two additions had very litde effect in adding 

discontinuities to the tidal solution. This was because a large proportion of cells dried 
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through the initial check for drying, while only a few would dry as a result of negative 

volumes or cross-sections, because the preset value was always greater than zero, thus 

removing a cell before die volume or cross-section had a chance to become negative. 

In addition to the initial process for the wetting of a cell the average sturounding wet 

pomt depdis had to be above the depdi of die water left in the dry cell, a dry grid point could 

become wet only if all of the adjacent transport cross-sections were positive as well. That 

being the case, dien die water level was set to diat which was over die cell when it was 'dry'. 

The paper by Leendertse & Gritton (1971) does not contain any validation data so the 

accuracy and performance of the technique remains undisclosed. However, Owens (1984) 

suggests that the use of this technique is restricted in its ability to model on larger scale grids 

due to the unrealistic amount of water left in a grid square that is deemed to have dried out. 

It seems probable that the drying technique developed by Leendertse & Gritton (1971) was 

not introduced as an accurate representation of the natural phenomena but merely to satisfy 

the numerical requirements (that is, to ensure stability) of the models. 

1.4.3 Falconer's models 

By far the closest work to that of J. J. Leendertse in the quest to represent a moving land/sea 

boundary accurately in a numerical model is that of Prof. R.A. Falconer. Falconer began his 

interest in numerical modelling inthe late 1970s, possibly encouraged by die need at that time 

to study, in detail, tidal flushing characteristics and circulation in harbours and estuaries in 

order to provide solutions to water-quality problems. Hydraulic engineers had, traditionally, 

used physical models to predict water movement in estuaries but, by 1980, computing 
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knowledge had reached a level where numerical models were just beginning to replace 

physical models in this field. Thus, numerical techniques had to be developed and improved 

upon by engineers themselves. Falconer was one engineer who developed a keen interest in 

these numerical methods. He followed Leendertse and consequendy he adopted the ADI 

(alternating direction implicit) numerical scheme as used by Leendertse. 

His early models (Falconer, 1980; 1984; 1985) were used to simulate the propagation of the 

tide within harbours and estuaries. 

However, it was not until 1984 that he published details (Falconer, 1984a) on how he had 

confronted the problem of a moving boundary. Wessex Water Authority had two proposals 

for modifying the shape of Holes Bay, a creek in Poole Harbour in Dorset. They had asked 

Falconer to examine the effects of the two proposals on the tidal characteristics of the bay. 

Essentially, he used Leendertse's (1970) and Leendertse and Gritton's (1971) procedure. 

Later, Falconer (1984b), he was required to investigate the velocity fields and temperatiu-e 

distributions (very difficult to do using a physical model) that would be produced by the 

siting of eidier a 700 or 350MW capacity power station on die perimeter of Poole Harbour. 

He stated in this paper that a main problem was 'significant changes' which occur in the plan 

cross-sectional area as large regions of shallow water were dried out and flooded on each 

tide'. The procedure adopted in simulating this moving boundary was similar to that used 

by Leendertse (1970) and Leendertse and Gritton (1971) widi some modifications, and die 

same as diat used previously by Falconer (1984a). He reported that die drying regions were 

'successfully modelled'. However, lack of field calibration data rendered the numerical 

predictions as merely a guide. 
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Falconer persisted with his representation of flooding and drying processes for work carried 

out in Port Talbot Harbour (Falconer, 1985). He used the same procediu-e as in Falconer 

(1984b) and reported diat 'die madiematical reproduction of the flooding and drying of die 

shallow water region at the upper end of the harbotu* appears to be satisfactorily simulated'. 

In 1986 (although this work was actually conducted in 1984) Falconer published more work 

on Holes Bay, Poole.Harbour. A slight alteration appeared in this paper in that all four cross-

sections of a wet cell were checked for water-level as oppose to just die two cross-sections 

in the direction of the calculation. This was necessary in order to account for modifications 

he had made to the finite difference equations. 

1.4.4 Owens' model 

In 1984, Falconer supervised a research student, P. H. Owens, who developed an improved 

technique for representing the drying and flooding of tidal flats. He addressed the problem 

encountered when using Leendertse's mediod tiiat diis method cannot cope widi large grid 

sizes. This is because the water elevation can change considerably with each time-step, thus 

requiring that the preset limit at which the minimum water-level can be is excessively large. 

Owens (1984) used a one-dimensional basin with a grid size of 1200m - large in hydrographic 

engineering terms - as a study base for his improved algorithm. He adopted an approach 

which was designed to reduce the magnitude of each discontinuity occurring. This was 

different from Leendertse who tried to reduce the number of discontinuities. To achieve this 

he allowed cross-sections to 'disappear' one at a time as each became negative, but only 

deemed the cell dry when the last cross-section became negative. 
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1.4.5 Other models 

Leendertse & Gritton's (1971) technique has, in the main, been adopted by many subsequent 

audiors; Xandiopoulos and Koutitas (1976) used their approach to model the propagation of 

a flood wave over a flat plain, aldiough not stticdy modelling inter-tidal flats, diis experiment 

still required die representation of a moving boundary. Yeh and Chou (1979) were also 

inspired by Leendertse's (1970) approach in their attempt to introduce a moving land/sea 

boundary in their prediction of storm surge levels. Their paper compares the results of a 

fixed boundary model to those obtained using a moving boundary model and concluded that 

the moving boundary model over-predicted surge levels less than the fixed boundary method. 

It also stated that, for a very steep bed-slope, there was very litde difference between the 

solutions obtained from a fixed boundary and a moving boundary model. Gunn and Yenigiin 

(1985) claimed to have developed a mediod which provided solutions in 'good agreement' 

with observations, over the entire extent of the model field. They used a small grid size of 

250m, which required a time-step of less than 12s. Using an estimate of the rate of flood and 

ebb of the tide over an inter-tidal flat of lms"\ they concluded diat for a grid size of 250m, 

it would be necessary to check for a moving boundary only every 250s. This meant that 

approximately every twenty time-steps, the position of the boundary was located. This has 

similarities to Leendertse's (1970) technique in diat any discontinuities caused could decay 

in the time between checks. 

Despite their claim that 'good.agreement' was achieved throughout the model area, graphical 

representations in their paper suggest that differences of up to 30cm could occur between 

computed and observed values. 
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Stelling et al. (1986) demonstrated some of the effects on tidal solutions of cells which are 

in close proximity to cells which wet and dry. Sensibly, they have stressed that numerical 

procedures must be carefully considered before calibration is attempted by adjusting physical 

properties. Although Stelling et al. (1986) appear to have compared three different methods 

of representing the moving land/sea boundary, the procedures adopted in their entirety are 

alinost equivalent to Leendertse and Gritton's (1971) attempt. Therefore, it cannot really be 

considered as an analysis of three different mediods (as is the case with this research). 

However, this is a valuable study as it addresses solely and directiy the problem of how to 

represent a moving land/sea boundary. 

1.5 The Approach of the Oceanographer 

For the oeeanographer, all space scales are considered from global scale modelling to models 

of turbulence. He has interest in a wide range of oceanographic modelling problems, 

particularly in terms of scale, and therefore his approach to finding a solution to a specific 

problem will essentially be different to that of a civil engineer. Numerical modellers at the 

Proudman Oceanographic Laboratory in Birkenhead, e.g. Davies, Flather, Prandle, Proctor, 

Jones, are actively involved in the development of techniques in modelling. 

1.5.1 Flather & Heaps 

Flather & Heaps (1975) published a paper entitied 'Tidal Computations for Morecambe Bay'. 

In this paper a finite difference method for solving the shallow water hydrodynamic equations 
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was introduced, with different conditions defining whether a grid square had become wet or 

dry. These included a testing of the local water-depth and an examination of the slope of the 

free surface between adjacent grid squares. The testmg of the local water-depdi involved 

comparing the present water-depth in a grid to a predetermined minimum depth. Within the 

model this prevented the actual depth from falling below die preset minimum depth, 

terminating the growth of the frictional dissipation before it became too large and before the 

water depth became so shallow that the physical laws expressed in the model were no longer 

applicable. The restriction invoked in the model by the introduction of an examination of the 

slope of the free surface had the effect of preventing artificial grid-scale oscillations which 

may occur causing a grid square to alternate between being wet and being dry at each time-

step calculation. 

The results of this model showed clearly that grid squares near to grid squares that were 

becoming dry were receiving 'shocks' as the squares dried out. These 'shocks' were seen as 

discontinuities in the tidal profiles that were reproduced. It is in this sense that Flather & 

Heaps' (1975) paper is important since it clearly demonstrates die problems associated widi 

the madiematical modelling of flooding and drying banks. Their drying procedure has 

recently been adapted by Flather & Hubbert (1989) in an attempt to reduce the severity of die 

'shocks' induced by die discrete movements of the land/sea boundary. 

1.5.2 Flather & Hubbert 

Flather & Hubbert's (1989) adaption of Flather & Heaps' (1975) drying procedure was based 
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upon the prineiple that if, when a grid square dries out, a shock is imparted through, the 

model, then an attempt" should be made to reduce the severity of this shock. Flather & 

Hubbert (1989) applied their new drying procedure to the same area as Flather & Heaps 

(1975) but to achieve resolution of subgrid^scale features, they digitized the bathymetry in 

part of Morecambe Bay at ten times the resolution of their basic model. It was in this part 

of the Bay that they applied their new experimental procedures. They developed an idea 

using area and breaddi factors. These were factors which could change according to die ratio 

of the wetted area of a grid square to die total area of the grid square, and the ratios of the 

breadth over which flow occurred to the total breadth of the grid square. 

Flather & Hubbert's results showed that having constant area and breadth factors made litde 

difference to the time series obtained from the experiments they did using solely a two-

dimensional scheme, and were apparentiy considerably noisier. However, the experiments in 

which die wetted area of a grid square was allowed to vary widi time substantially reduced 

the discontinuities by representing the flooding and drying process 'in a physically more 

realistic manner'. Unfortunately, the practicalities of digitizing bathymetric data to ten times 

the basic resolution in order to obtain a variable factor is a severe hindrance in the application 

of this drying procedure. 
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CHAPTER 2 

FORMATION OF A STUDY TOOL 

In order diat the flooding and drying of intertidal flats may be studied numerically, it is 

necessary to formulate a numerical model which must be readily adaptable and of good solid 

foundation. Drying algorithms tend to be rigorous in character, and therefore the source code 

of the numerical model must be able to cope adequately with whatever algorithms are 

incorporated within it. It is through long periods of experimentation that a source code 

becomes the aid that it is required to be. Many problems are encountered during and after 

the development stages and must be dealt with accordingly; a model simply cannot work if 

even small errors are left unaltered. 

It is important to realise that the problems associated with the incorporation of a moving 

land/sea boundary do not exist when die numerical model is three-dimensional, since layers 

widiin the vertical coordinate representation can be reduced until none remain. The need for 

reduced computational costs however, requires that accurate tidal predictions are obtained 

from the more economic two-dimensional depth integrated non-linear hyperbolic differential 

hydrodynamic equations. These are considered appropriate when modelling the propagation 
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of the tide in non-stratified, Le^ well-mixed, water columns. 

A two-dimensional numerical model of tidal propagation is based upon the solution of the 

hydrodynamic equations in two dimensions. 

2.1 The Hydrodynamic Equations in Two Dimensions 

The hydrodynamic equations are an expression of the physics of tidal propagation in 

mathematical notation. They are obtained firom Newton's Second Law of motion (1687) 

which states, crudely, that the rate of change of momentum of a particle of constant mass is 

proportional to the force acting upon it in the direction of that force. The hydrodynamic 

equations express Newton's Second Law but are more complex than the crude definition 

stated above since each 'water particle', or unit mass of water, is subject to three forces, three 

accelerations and in three dimensions. Equations 2.1, 2.2, and 2.3 below show die easterly, 

northerly, and upwards components of the hydrodynamic equations (e.g. George, 1994): 

du du dU 9m « . . 1 dp I °' 
— + u— + V — + W— - 2o>Vsin4) = -— 
dt dx By dz pdx p (. 

— + u— + V — + W— + 2cdKsin<> = - ± — 
dt 8x dy dz pdy p d 

dW dW dW dW ^ . 1 dp 
— + u— + V — + W— + 2co«cos<t = -—-21 - g 
dt dx By dz p dz 

_J I I I I I I 1_ 
A B C D E 

I 
F 

I 
G 
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where, 

A = Temporal accelerations, ms"̂  

B = Advective accelerations, ms"̂  

C = Coriolis accelerations, ms'̂  

D = Pressure forces / unit mass in the easterly, northerly and upward directions, ms'̂  

E = Frictional force / unit mass in die easterly direction, ms'̂  

F = Frictional force / unit mass in the northerly direction, ms'̂  

G = Gravitational force / unit mass, ms'̂  

These equations are sometimes referred to as the Navier-Stokes^ equations. 

In die ocean, shallow waters and rivers, die diree forces acting on a particle are diose of 

pressure, gravity and friction per unit mass; The three accelerations experienced by a particle 

are: (f) Coriolis acceleration, which is due to die rotation of the Earth, (/i) die temporal 

acceleration, i.e. the change of a particle's velocity with time, and (iii) the advective 

acceleration, due to the fact that die particle changes its position in space. Equations 2.1,2.2, 

and 2.3 are the equations of motion in three dimensions and express die balance between 

these accelerations and forces per unit mass. 

Large computing power and storage are required to solve these non-linear three-dimensional 

equations, so two-dimensional versions are often used in preference. Two-dimensional 

equations of motion are obtained from the diree-dimensional equations of motion by 

integrating them vertically with respect to depth from the bottom to the surface of the water 

column. When integrated, the unknown velocities u and v in equations 2.1 and 2.2 become 

U and V where; 

and 

N̂amed after L.M.H. Navier (1785-1836) and G.G. Stokes (1819-1903). 
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Since in a two-dimensional model diere is no vertical gradient, 3w/3z = 3w/3t = 3w/3x = 

9w/3y = 0; equation 2.3 thus reduces to the hydrostatic equation and becomes unnecessary. 

The water column is now considered as one unit from sea surface to sea bed in that die whole 

of the water colunin moves in the same direction and with the same velocity within each cell 

of die model. After integration, equations 2.1 and 2.2 become equations 2.4 and 2.5 which 

are a two-dimensional representation of motion in an easterly and a northerly direction 

respectively; 

dt dx dy ^dx {Ji+Q dx^ dy^) 
(2.4) 

' X - . 'v.B / A 2 O l j 2 dt dx dy ''dy (h + O [dx^ dy^) 
(2.5) 

where; 

U = depth averaged velocity in an easterly direction, ms"̂  

V = depth averaged velocity in a northerly direction, ms'\ 

CO = period of Earth's rotation, s. 

(j) = latitude, °N. 

g = acceleration due to Earth's gravity, ms"̂ . 

C = tidal elevation, m. 

K = coefficient of drag. 

h = bed elevation below a fixed datum, m. 

e = eddy viscosity, mV^ 

3t = At = time step, s. 

9x,9y = Ax,Ay = grid spacing in x and y directions, m. 

To ensure that no water enters or leaves the system, a two-dimensional representation of 

continuity of volume, equation 2.6, is required. In this the density of the water is considered 

uniform with depth, an assumption based on the premise diat the water column is well-mixed 
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and diat sea-water is incompressible. The continuity equation is derived from the volume of 

water entering and leaving a cuboid (see for example; Proudman, 1953): 

K ^ ±[ihH)U} -l-{ihH)V] = 0 (2.6) 
dt dx 8y 

2.2 Solution of the Hydrodynamic Equations 

Several techniques are available for the solution of equations (2.4), (2.5) and (2.6), which 

form a system of two-dimensional non-linear partial differential equations of the hyperbolic 

type. These may be the method of characteristics, harmonics, finite elements or finite 

differences. 

2.2.1 The Method of Characteristics 

This method relies on the fact that it is a known characteristic of the hydrodynamic equations 

that they are hyperbolic by nature. Since the characteristics of the equations are known, a 

solution may be projected forward (in time, perhaps) to where the hyperbolic nature is upheld. 

The method of characteristics is often used in the modelling of compression waves or 

situations when a wavefront is progressing through a non-disturbed medium (Jeffery, 1976). 

It may also be used in the solution of the hydrodynamic equations (Dronkers, 1964) in 

estuaries. 

Characteristics are designed for calculations where discontinuities are prevalent. This would 

therefore make them seem ideal for the modelling of flooding and drying regions. In fact. 
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however, this is not the case. 

In order to solve two-dimensional problems using the mediod of characteristics, much time 

is needed to write the machine coding. Once the coding has been written, the solution is very 

expensive computationally due to the excessive amounts of interpolation needed to maintain 

a consistent grid pattern. 

•Whilst the solution may be precise, and the physical attributes of the equations being solved 

are followed closely, the extraordinarily complex programming and expensive solution process 

have meant that tidal modellers have abstained from using the method of characteristics for 

problems of higher order than one-dimension. In addition, when the point spacing is large 

(as would be required in this research), truncation errors become significant and convergence 

of die solution is delayed considerably. 

2.2.2 The Harmonic Method 

This method of solution makes use of the fact that the dependence of tidal motion on time 

is known, and that the frequencies at which the tidal motion is forced are known very 

precisely. 

At present it is not possible to include intertidal regions in the solution of the hydrodynamic 

equations using the method of harmonics. 

This is an new branch of tidal modelling that has yet to beconie established, at least in the 

U.K., however, there is some British interest developing, (e.g. George, 1995). 

2.2.3 Finite Elements 

Figure 2.1 shows an example of a finite element grid. In order for this type of grid to be 
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Figure 2.1: A finite element grid showing a wide range of density of ceHs (HR 
WalUngford) 
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established, it is necessary to purchase a standard commercially available finite element grid 

generator, such as I-DEAS or SIMAIL (Hydraulics Research Ltd., 1993). 

The solution of the hydrodynamic equations using a finite element method was, until very 

recentiy, computationally expensive. Holz and Widiam (1977) present a moving boundary 

scheme which is analogous to Leendertse (1970) using a fixed-grid finite-element approach. 

Lynch and Gray (1980) proposed an improved method of incorporating the moving boundary 

by allowing the boundary of the finite-element grid to deform as the land/sea boundary 

moved. Recent developments, in the field of finite-elements, have been made (Hervouet, 

1991) for use by Electricite de France in die French nuclear industry. The improvements 

made are dependent upon the use of a vector computer to store the vast numbers of arrays 

associated with the finite-element scheme. This can decrease the computational time needed 

by twenty to one hundred times that of a conventional finite-element scheme. 

However, finite-element representations are computationally complex and have therefore not 

been used here. 

2.2.4 Finite Differences 

It was decided to perform the entire numerical procedure using finite differences on a 

Richardson grid (Figiure 2.2). This grid avoids instabilities by requiring that the unknown 

terms in equations (2.4), (2.5) and (2.6) are all evaluated at different locations in space. 

A finite difference technique involves taking the differences in variables (for instance the U 

and y stream components) over a finite distance in space, normally a divisor of the grid size, 

and using diese differences to find the unknowns widiin the equations diemselves. For 

instance, the horizontal eddy diffusion term: 
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Figure 2.2: Richardson grid used in die model showing grid numbering and labelling ('+': 
C-point, '=': U-point, ' | | ' : V-point, 'O': h-point) 
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(2.7) 

when taken a component at a time expressed as differences: 

(dlA 

dx^ Ax 
iU-l) ^ Ax Ax 

Ax 

(2.8) 

(2.9) 

and; 

dy^ 

'dljr (dU\ 
[sy) \MJ) = Ay (2.10) 

Ay Ay 

1 
dy^ (Ay^' 

{^a-ij)-^f^(W.;)-2£/(U)} (2.11) 

would become: 

(2.12) 
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A finite difference form of each and every component within the hydrodynamic equations 

can then be obtained. These expressions are then incorporated as algorithms in a 

programming language, such as FORTRAN, and solved for 'die unknowns'. 

2.2.5 Non-linearity 

The non-linearity of die advection of momenmm in die hydrodynamic equations is often 

ignored for the purpose of ease of calculation (e.g. Reid & Bodine, 1968). The equations 

solved here, however, are fully non-linear and incorporate all the advective terms. 

2.2.6 The Courant Number 

To achieve stability in an explicidy solved numerical model, a suitable time-step must be 

chosen. This time-step is dependent upon the maximum depdi of a grid cell in the model area 

and is calculated using the Coiurant-Friedrichs-Loewy criterion expressed in equation 2.27: 

where, 

C = Courant number (< 1 for stability, see section 2.3.3) 

At = time-step, s 

Ay = meridional grid size, m 

Ax = zonal grid size, m 

h ^ = maximum depth of the model area, m. 

Since the ideal model presented here is of an area small enough for the meridional grid size 

not to be significandy affected by die change in latitude, and that we try to define the area 

(2.27) 
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as a series of squares, we can assume that Ax ~ Ay. Equation 2.27 then becomes equation 

2.28 below. 

^ _ ^t^f^gf^ (2.28) 
Ay 

As the grid size changes or the maximum depth of the model changes, the time-step will 

have to be altered accordingly. For instance, in a morphodynamic model where the 

bathymetry of the sea-bed is constandy changing, if the maximum depth increases 

significantly then instabilities could be induced. In this case, a restriction must be imposed 

on the maximum attainable depth in the model or the time-step must be altered to account for 

the deeper water. 

2.3 Choice of Discretization in Time 

Once discretization of the hydrodynamic equations has been established in space, it is then 

necessary to discretize the solution procedure in time. The interval at which time is advanced 

is known as a time-step. 

In order to maintain stability during the solution of the hydrodynamic equations, it is 

necessary to stagger the process of establishing the unknowns, i;e. ^, U and V. There are 

several methods that may be adopted in order to time-stagger the solution procedure. 

2.3.1 Implicit 

An implicit process is one in which there are several unknowns in each equation. The 

equations must, therefore, be solved simultaneously at each whole time-step. One method 

27 



adopted is that of Gaiiss elimination and back substitution (e.g. Smith (1978)). This requires 

the setting up of large sparse matrices, leading to lengthy computations. Owens (1984) gives 

the appropriate finite difference equations. 

Implicit schemes are unconditionally stable in theory, implying that there is no limit to the 

length of time-step. In practice, however, large time-steps produce inaccurate solutions and 

therefore an accuracy constraint based on the Courant number and the speed of propagation 

of the tidal wave is necessary, thus limiting the time-step. 

The popular 'Altemating-Direction-Implicit' scheme (ADI scheme) is so-called because of 

the implicit manner of solution and the fact that all the streams in one direction are evaluated, 

after which the streams in the remaining direction are evaluated. In areas of intricate 

geometry, however, this scheme does not work well. 

Although time-steps can be large with an implicit manner of solution, thus giving a shorter 

overall run-time, the complexity of the programming negates straight-forward implementation 

of various comparative algorithms. 

2.3,2 Semi-Implicit 

The semi-implicit scheme has been adopted by various authors (e.g CasuUi, 1990). This 

scheme introduces a time-splitting of the advection terms from the rest of the terms. The 

advective terms are evaluated explicitly at a set time interval, while the rest of the terms are 

evaluated implicitiy at a time interval less than the interval for die advective terms, hence the 

term semi-implicit. This avoids the complex programming that is required in the solution of 

the advective terms in an implicit manner, while still allowing large time-steps. This method 

of solution has not been chosen here. 
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2.3.3 iExplicit 

In explicit schemes, there are fewer unknowns than in implicit schemes and the equations 

can therefore be solved by rearranging. In a central explicit scheme, the time-step is split into 

two parts. During die first half time-step, the velocities are evaluated firom the elevations 

given in the previous time-step. In the second half-time step, the new velocity values are 

used to establish the new tidal elevations. 

Explicit schemes are conceptually the simplest of all the solution methods and are also the 

most straight-forward to programme. The method of solution adopted here is wholly explicit 

in that subsequent solutions of die unknowns are obtained firom solutions firom a previous 

time-step. Hence the solution procedure can be known as an 'explicit forward time-stepping 

finite-difference numerical model'. 

In an explicit model, the Courant number must be less than one for the stability criterion 

(equation 2.28) to be satisfied i.e. 

For the idealized model described in section 2.5, which may have: 

Ax = Ay = 5000m, 

^max = 54m, 

then, to satisfy inequality 2.29: 

J ^ Af\/2x9.81x54 
5000 

or. 

29 



At < Q̂QQ < 153.61. 
^2x9.81x54 

(2.30) 

giving a time-step of less than or equal to 153.61s. In fact, At=124.2s is a convenient value 

to choose, it being one three hundred and sixtieth of a tidal cycle. Therefore, one time-step 

becomes equivalent to one degree of tidal time; thus not only are there 360° in the cycle but 

also 360 time-steps. 

2.4 Instability 

Even experienced modellers that have been practising for perhaps ten years or so are still 

plagued by instabilities within their numerical schemes. It is through the application of 

differing techniques diat 'weak spots', i.e. potential sources of instability, in the source code 

become apparent, be they simply typing errors that have passed unnoticed for a period of time 

or more serious anomahes (which are generally harder to locate) such as accidentally taking 

differences over incorrect positions in space or the incorrect labelling of variables involving 

the misuse of values in subsequent routines. 

The above errors may or may not induce instabilities, as there are many possible reasons why 

instability should occur. Even programming structure may create the necessary conditions. 

The actual sources of instabilities are extremely awkward to pinpoint, but even so, for every 

small error that is eradicated during the search for the cause, whether the cause is found 

immediately or not, the source code contains less potential for instability. The result is that 

actual soiu-ce programs become stronger and more robust. 
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2.5 A Numerical Model of an Idealized Portion of Shelf Sea 

A source code written in FORTRAN, caUed MODKS.FTN77 (see Appendix 1), was 

developed by the Audior to solve die equations of motion (2.4), (2.5) and continuity (2.6) in 

two dimensions. It is based on models by George & Evans (1991) and by Prandle (Pfoudman 

Oceanographic General Purpose Model). 

Specification for a numerical model of an idealized portion of shelf sea has been laid down 

for the comparison and contrasting of methods, principles and algorithms which represent the 

physical phenomenon of tidal flooding and ebbing. A theoretical bathymetry has been 

assumed while tidal conditions for the area have been chosen as roughly that of an area of 

the North Sea off the Humber coast. 

It became apparent that a theoretical model design has a great advantage over a model of a 

real sea area for research purposes in that it is readily adaptable and is not bound by the need 

to follow rigid guidelines. It is also not restricted by validation processes, since these are not 

necessary wheii only intemal comparisons are being made. The results from the model are 

therefore not a guideline for the assessment of its absolute performance in representing a real 

situation outside of the model environment; instead, the relative performance of algorithms 

within the model environment become the judgemental factors. This works on the premise 

that if, say, algoridim 1 gives better results in relation to those obtained from algoridim 2, 

when all other factors are equivalent, within a theoretical system, then algorithm 1 will also 

perform better in a representation of a real system. 

2.5.1 Setting Up the Model 

The model region itself consists of a square divided into 40 x 40 grid cells, each grid cell 
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having the nominal dimensions 5km x 5km (although different grid sizes can.be chosen). A 

beiach was required (see section 2.5.5) in order that the land/sea boundary should move as the 

tide progressed through its cycles. 

2.5.2 Tidal Input to a Theoretical Model 

Tidal input to the idealized model was assumed to be sinusoidal and given by: 

C(0 =^cos(co^-^) = acoBwt + aBimit (2.13) 

where; a = Acos^ , a = A s i n ^ , ^ = phase. 

Since the model region is sufficiently small, dien die tidal input may be expressed as a 

Taylor expansion: 

da da (2.14) 
a = a^+x^+y^ 

° dx dy 

da da (2.15) 
a = a^+x— +y— 

° dx By 

where and a^ are the real and imaginary values at the centre of the model, which may 

be considered as die origin. 

Now, if the real and imaginary components from equation 2.13 are differentiated with respect 

to the X and y (east-west and north-south) directions, we get equations 2.16, 2.17, 2.18 and 

2.19: 

^ = - ^ ( A c o s ^ ) = c o s ^ M - A ^ ^ i E (^-l^) 
dx dx dx dx 
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dy dy dy By 

dx dx dx dx 

(2.17) 

(2.18) 

— = —(i lcose ) = cose >lsme — 
dy dy dy , dy 

The model area was taken to be a square of side 200km, aligned north-south, with AQ = 2m 

and ^ = 180°, these particular values being close to values from P.O.L.s' Tidal Adas Of The 

British Isles for an area of the North Sea off the Humber coast for species Mj. There were 

several reasons for this particular choice. The first was that the maximum depth of the 

theoretical model was close to that of the sea-bed off the Humber coast. Secondly, this 

region had an area of similar size to that of the theoretical model which had almost straight 

co-phase lines for the M2 tide, with the range varying (approximately) only zonally, and the 

phase only meridionally, dius allowing simplification of the calculation of die tidal input. 

If we assume diat, in the theoretical model, the range varies only meridionally, and the phase 

varies only zonally then, with ^ = 180°, equation 2.16 becomes equation 2.20, and 2.17 

becomes 2.21. Since there is no zonal variation of A, 2.18 becomes 2.22. Equation 2.19 

becomes 2.23; 

dx dx 

i^ = -A^= -2x0.005 = 10mm/km ^'^'^^^ 
dy dy 
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= 0 
(2.22) 

da dA = 10mm/km 
(2.23) 

dy dy 

However, when the phase is at 180°, the imaginary component of the tidal elevation is equal 

to zero. Therefore, die change in tidal elevation is represented by Equation (2.21). This 

value is based on the assumption that the figure 0.005rad/km is equivalent to 0.3°/km, the 

phase difference obtained from die Tidal Adas Of The British Isles. 

2.5.3 Boundary Conditions 

When starting off the numerical model, there is deemed to be no tide anywhere i.e. C = U 

= V = 0 everywhere. A tidal regime has to be specified at the sea boundaries in order that 

a tide may propagate throughout the model area. For a 'wind-up' period, the amplitude of 

the tide on the boundaries is gradually and linearly increased, which ensures that momentum 

within the model builds up gradually. 

Since there are no restiictions caused by validation procedures, any tide may be chosen for 

any theoretical basin whether large volumes of water are required to move or smaller 

volumes. The only restriction is that of maintaining stability. In shortj a tidal regime can be 

chosen to suit whichever phenomenon is being studied. However, it is perhaps better practice 

to attempt as close a match as possible to real conditions. Figure 2.3 shows a surface plan 

of the model area including the phase difference along the north and south boundaries and 

the amplitude differences along die east and west boundaries.there being no phase difference 
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Figure 2.3: Surface plan of model area showing amplitude and phase differences 
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from north to south and no amplitude difference from east to west. 

2.5.4 Bathymetiic Design 

The process of developing a numerical model from scratch involves the correction of many 

mistakes and much experimentation. Many of the methods used during the development of 

a model tend to cope only with the temporary requirements at any given stage in its 

development. Steps which carry out specific functions are added and subtracted throughout 

the course of the procedure as different problems and new ideas arise. 

One fine example of such a process comes about from die need to establish a bathymedy 

over which the tide can propagate. Before any flooding and drying of intertidal flats can be 

incorporated, Le^ the introduction of a moving land/sea boundary, the source code must 

perform in a stable manner duroughout a run. 

In order that stability could be established, the model was first tested using a completely flat 

sea-bed with each cell having a depth of 50m, thus avoiding the numerical need of coping 

with a moving boundary. This gave the sea basin die appearance of a large box. However, 

instabilities frequendy arose leading to an addressing of die problem of defining die 

bathymetry in a theoretical manner whilst retaining a measure of closeness to the real world. 

A short analysis can demonstrate the theory involved when a flat sea-bed is used as the 

bathymetric specification in an idealized model: 

If equation 2.6 is expanded to show the various terms: 

dt ^dx dx) ' dx {dy dy) ^ ^ dy 

and if spatial derivatives of C and /z are separated equation 2.24 becomes equation 2.25: 
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dt dx dy) \ dx dy) 
- (C ̂ h) (dU^dV\ 

{dx dy) 
(2.25) 

then typical sizes of the terms from equation 2.25 in a shelf sea might be: 

INSHORE OFFSHORE 

U , V 

ac/ax, ac/ay 
ah/ax, ah/ay 
au/ax, av/ay 

giving: 

1̂ 
8JC dy, 

(U^,ydh\ 
\ dx dy) 

-(C+^) 

K 
dt 

(dU^dV\ 
[Bx dy) 

1 ms* 
10 m 
10 mmkm-* = 10"̂  
10mkm-* = 10-2 
1 ms-*km-* =10-̂ s-* 

10-̂  ms* 

10-2 ms-* 

10-2 ms* 

<10-̂  ms"* 

1 ms-* 
100 m 
10 mmkmT* = 10"̂  
1 mkm-* = 10-' 
1 ms-*10km-* = lO^̂ s'* 

10-̂  ms-* 

10-' ms-* 

10-2 ms-* 

<10-' ms* 

If the terms in the equation of continuity of mass, equation 2.6, are scaled (see above), the 

analysis shows that under normal circumstances, the spatial variation of depdi below M.S.L. 

is typically 2 dex greater than the spatial variation of the tidal elevation. Le^ dh/dx ~ dh/dy 

> a ^ x « aC/ay. in the case of the flat bottomed idealized model however, dh/dx = dh/dy 

= 0 which leads to equation 2.6 being dominated by the terms containing dC/dx and dCjdy 

whereas in normal ckcumstances diese terms are negligible. This appeared to provoke 

instability and so a random variation in sea-bed depth was imposed. 
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2.5.5 Introducing a Moving Land/Sea Boundary 

Once the model had remained stable for several tidal cycles it became necessary to introduce 

a moving land/sea boundary. This was achieved by adding a Gaussian expression, equation 

2.26, as a loop to MODKS.FTN??, producing a Gaussian shoal. This gave a representation 

of an island in the middle of a basin with coastline all the way around on which the land/sea 

boundary would move. 

where, R} = {i-2lf + {j-2Vf, i and; being die model coordinates. 

However, before the bathymetry was altered to introduce a 'sudden' moving boundary, the 

top of the Gaussian shoal was set at a depth of 4m below mean sea-level for five tidal cycles, 

accounting for die 4 at the end of equation 2.26. At this point the shoal was set to slowly 

rise to mean sea level, exposing the shoal as the tide fell to ensure drying. The shoal would 

then stay at mean sea level for a further six tidal cycles, when the model reached a steady 

state. When confidence had increased in the programming, the shoal was input as an island 

that did not rise and was set with the 'peak' at mean sea-level. This became the 'test ground' 

for three existing drying algorithms. Figure 2.4 shows a three-dimensional view of the 

Gaussian bathymetry. 

2.5.5.1 Addition of a Drying Algorithm 

Now that a moving boundary had been introduced, it became necessary to include a drying 

algorithm. Since the Author was most familiar with that of Flather & Heaps' (1975) method. 
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Figure 2.4: Gaussian shoal bathymetry used to test algorithms 
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it being the one adopted by Dr. George at the University of Plymouth after his initial work 

incorporating Reid and Bodine's (1968) algorithm, this became the first drying algorithm 

incorporated into the source code (see Chapter 3). The strength and stability of the numerical 

scheme was built solidly around this algoridim before the incorporation of any odier was 

considered. 

2.5.6 Horizontal Eddy Diffusion 

Horizontal eddy diffusion can be quite a percepmal nightmare, it being a rather indefinable 

quantity. However, possibly the best way to understand the actual functioning of this 

phenomenon is to picture a swimming pool with a wave machine working. At certain points 

in the swimming pool, waves will meet and peak, possibly resulting in clapotis (a splash or 

a spout of water into the air). In modelling terms, this may be considered as a precursor to 

instability. Although in Public Baths this may be a desirable effect, in a numerical model it 

is most undesirable. But, supposing the above effect were to be prevented, given that all 

energy input must remain at the same frequencies, dien die most assured method would be 

to resdict the movement of the water. This could be achieved by covering the surface widi 

a material that has just die correct properties to prevent the splashing from occurring - or a 

heavier material that could even begin to suppress the formation of waves. This is the 

behaviour of the horizontal eddy diffusion term. A particularly high value makes the sea 

system behave as diough it has a material spread over the surface that has a sttong damping 

effect. A lower value may be considered to have a lesser damping effect. Obviously, it is 

not desirable to achieve stability simply by applying a greater and greater eddy diffusion 

value as this would provide misleading results through over-restriction of water movement. 
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Ideally, eddy diffusion should be as light as possible in order that the water colunin has as 

much freedom of movement as possible. 

In MODKS.FrN77, horizontal eddy diffusion was made depth-dependent, increasing with 

increase in depdi. Once stability was achieved with a flat-bottomed sea-bed, a sensitivity 

analysis was conducted to establish a minimum value of the horizontal eddy diffusion 

required to ensure stability. This turned out to be ten times the depth. 

2.5.7 Coriolis Acceleration 

The Coriolis acceleration has been included in the model since the scale of the water-body 

considered here makes it significant. The spinning of the Earth has an effect on accelerating 

particles, of any size, and deflects the path of the particle to the right in the Northern 

Hemisphere. Calculation of the 'Coriolis effect' can be simplified in numerical tidal models 

for small sea areas, over which the latitude changes only slighdy, by adopting the J-plane 

approximation' (e.g. Gill, 1982) which allows 2cL)sin$ to remain constant over the small 

change in latitude. For models which cover large sea areas, however, it is apparent that this 

component would vary significantly over the large change in latimde and therefore must be 

included as a varying quantity (e.g, George, 1993). 

2.6 Data Output 

Output files consisted of consecutive or periodic values of all possible variables within the 

hydrodynamic equations. 

A subroutine was written into MODKS.FTN77 to produce an interim output over a 'window' 

of the model area which would provide a time-sequenced view of an area specifically chosen 
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to observe the progression of the tidal elevation and current component values. This was of 

particular value in locating the cause/soiurce of an instability as it developed. 

Other components of the hydrodynamic equations were logged throughout a cycle so as to 

provide time-series which would show how each component varied for a particular cell and 

its smxounding cells. This provided the basis for a qualitative analysis of the effects of a 

drying and wetting cell on its surrounding cells and the physical processes occurring within 

the chosen cell. 

2.6.1 Representation of Output Data 

Graphical illustration of output data was achieved through software written by the Author 

in FORTRAN using calls to graphics subroutines in the GINO-F package. This software 

provided graphical representation of up to five of die time-series obtained, and can be seen 

in Appendix 2. This proved to be invaluable for the initial qualitative assessment of different 

drying algorithm performances since the effects of discontinuities and errors in programming 

could be observed. It was an aim to produce smooth tidal curves, so, for instance, it could 

be assumed diat the more effective the drying algoridim used, the smoodier the tidal curves 

should appear. 

Abnormally long or short drying periods could also be spotted by comparison of the tidal 

curve obtained to a basic tidal curve for a specific point. A basic tidal ciu^^e, in this case, 

was one obtained analytically assuming that there was no shoal present. This provided an 

approximation of die time when the tidal height should, ignoring shallow water distortion, 

pass die sea-bed elevation of a dry cell, thus indicating that it should become wet at around 

that time. 
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Tidal sdream information can also be represented as 'arrows', showing tiieir direction- and 

magnitude (set and rate). Commercially available software, such as MATLAB®, allows the 

production of 'arrow' pictures from the large data matrices output from MODKS.FrN77 

without the need to write extensive plotting software. 
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CHAPTER 3 

EXISTING 'DRYING' ALGORITHMS 

Since there have been numerous attempts at the incorporation of a moving land/sea boundary 

in two-dimensional numerical tidal models, the Author has chosen to analyze the underlying 

principles of the apparent two differing approaches to the solution of the problem. 

In this chapter, the minutiae of the existing wetting and drying algorithms are critically 

examined. In addition, subsequent improvements to each traditional method have been 

analyzed. 

3.1 Leendertse & Gritton 

Leendertse & Gritton (1971) adopted a mediod whereby three tests were applied at each grid 

point, in order to locate grid cells which were becoming dry, and to remove them from the 

computational field, thereby inducing a moving land/sea boundary. Firstly, a volumetric flow 

was calculated through the walls of each grid square and if this cross-sectional flow became 

negative (that is, in the opposite sense to which it should be) dien the grid square was 

assumed to have become dry and removed from the computation whilst die current values 
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were set to zero. Or, with the volume given by (see figure 3.1): 

where s = grid spacing, if VOL^j was negative, then the grid square was assumed dry and 

t-i 
the water depdi set to the value at the previous computation, ^^J. In addition, the previous 

row or column of calculations were then, recalculated with diegrid square taken as being dry. 

Secondly, the depths of each of the four cross-sections (see figiu:e 1.1) surrounding each grid 

square were calculated at the end of each half time step, i.e. H^^, H^^, H^^, H^^ (see figure 

3.2) where; 

Again, if the results were numerically negative, the grid square was deemed to have become 

dry. 

The third and most rigorous test of whether a grid square had dried or not was that if any 

of the four cross-sections decreased to less than a critical value, then that grid point was 

removed fi"om the computation and the water level was set at its last value and maintained 

at that level until the grid square flooded. The critical value, ^cr' determined by the 

depths of the surrounding grid squares such that: 

where hp^. is a height preset above the highest surrounding mean depth value and k^^^ is 

the minimum value of , , h„ and h„ . 
Vj Vz «i «2 
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Figure 3.1: Diagram to show depth related variables used to evaluate the volume of a cell 
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Figure 3.2: Diagram to show cross-sections used for determining die moving boundary 
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Leendertse and Gritton (1971) found that discrete changes in the land boundary as grid 

squares began to dry out, and also to flood, created numerical disturbances. To overcome this 

they allowed computational time for die disturbances to decay by making this third and final 

test, since it was by this test that most grid squares became dry, at intervals greater than the 

time-step. 

The test for flooding was whether or not the average water depth of the surrounding grid 

squares was greater than die depdi of water left in die grid square by the drying procedure: 

Again, transport cross-sections were computed with a positive cross-section resulting in the 

flooding of that square. This check was also carried out at intervals greater than the time-step 

to allow the computational noise generated by the moving boundary time to decay. 

This method has been incorporated in the study tool described in Chapter 2. 

3.2 Falconer & Owens 

In 1984 Falconer applied his technique to a comparison of the hydraulic featiu-es and 

flushing characteristics of Holes Bay in Dorset, to test two proposed new oudines of the bay. 

In this bay, large areas of marshland are dried out and flooded throughout the tidal cycle, 

creating a moving land boundary. Falconer (1984, 1986) overcame the associated problems 

using Leendertse & Gritton's (1971) drying technique with two basic differences. Firstly, the 

fiirst two checks were combined and carried out at a different time in the tidal solution and 

only two cross-sections in the direction of the calculiation were considered rather than all four 

cross-sections for each grid square. However, in the 1986 paper all four cross-sections were 
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considered in die finite difference equations. Secondly, an average water elevation was lised 

in calculating each cross-section radier dian a particular elevation in a wet grid square (see 

figure 3.3): 

K = \-7(CM.yM-C!-ij.x-CiVl-^CUl) 

Falconer reported diat aldiough diis increased the computational cost, it improved die 

accuracy of the scheme, with the possibility of numerical instabilities being generated 

reduced. 

However, Falconer discovered that when this procedmre was applied to a model of the 

Humber Estuary, unstable solutions were produced despite the claim that implicit solutions 

are unconditionally stable. In order to refine the procedure, a method was developed which 

would allow for large grid size and time-step models (Owens, 1984; Falconer & Owens, 

1987). An analysis of the method was made using an idealized basin. This illustrated the 

discontinuities produced by the sudden setting to zero of streams in grid squares which still 

retained significant volumes of water. Owens (1984) redefined the way diat the volume 

element of a grid square was evaluated: 

where, A ^ = maximum value of /f^, / j ^ , h and /t„ . 

This assumed that the bed within a grid square was level with the value of the lowest 

surrounding mean depdi. Falconer & Owens (1987) modified die mediod by introducing two 

new tests. The first was to check each cross-section at the end of every half time-step, if a 

cross-section was found to be negative then it was equated to zero along with the 

perpendicular velocity component Therefore, if the deepest cross-section of a grid square 
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Figure 3.3: Diagram showing the location of elevation points used to establish the elevation 
at a stream point 
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became negative then the stream velocities across all foiu: cross-sections were zero and the 

grid square had become dry. This had the effect of smoothing the reduction of velocity 

components to zero by removing the grid squares from the calculation in a more evenly 

spaced manner during the solution of the hydrodynamic equations. Also, the test for a dry 

square becoming wet was carried out at every time-step rather dian every few time-steps 

(Leendertse 1970; Leendertse & Gritton 1971; Falconer 1984, 1985, 1986). The second test 

involved setting a critical level at a predetennined depth above the lowest surrounding depth. 

This defined a minimum cross-sectional area through which water could flow when a grid 

square flooded again. With this method however, the predetermined depdi is most effective 

when set at different levels depending on the tidal range. For instance. Falconer found the 

best results for the tidal range in his study of the Humber Estuary were obtained using a 

predetermined depth of 0.2m. 

This method has been incorporated in the study tool described in Chapter 2. 

3.3 Flather & Heaps 

Independendy of the work initiated by Leendertse (1970), Flather and Heaps (1975) proposed 

a new finite difference method for tidal computations in shallow water. 

The test-bed for die development of their new techniques was Morecambe Bay. This was 

considered to be suitable due to the large areas of sandbanks exposed at low tide. Their 

approach was less complex than diat of Leendertse and Gritton (1971). The specific detail 

of whedier or not a cell had become wet or dry was: 
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If (i) i?/;/' > 0 and > 0 so diat H^";^' > 0, 

or (ii) Hi;/' > 0 and Hjjt'i ̂  0 and H^l^* > 0 and c S j ' - > s, 

or (iii) Hi;/* ^ 0 and > 0 and H'^l^' > 0 and C f j i - C^j"' > e, 

where //„ is die total water depth at the east-west velocity point and e is a critical elevation 

difference, then there was still considered to be flow through the grid square (see figure 3.4 

for a description of the variables involved). 

As with other drying procedures, if a grid square was deemed to have become dry, then the 

stireams were set to zero; if it had become wet, then new values of the tidal streams were 

calculated from the solution of the equations of motion. 

Flather and Heaps' 1975 paper presents time series which show the distortion of the tide as 

it propagates through shallow water as well as discontinuities induced by the presence of cells 

which wet and dry. 

This method has been tested using the study tool described in Chapter 2. 

3.4 Flather & Hubbert 

Flather and Hubbert (1989) presented a refined version of Flather and Heaps' (1975) drying 

technique. 

This refined method was developed through the comparison of various schemes. In their first 

scheme the depth was defined at the centre of each coarse grid square but in the high 

resolution area the depth was taken to be: 
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Figure 3.4: Diagram showing the positions in space of the variables which define die 

moving boundary 
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h = hi^ if 0^N<50 

where N is the number of high resolution grid points within a grid square which are not 

permanent land points. This provided a mean depth of die 'wet' part of a grid square. It also 

'smoothed out' a deep channel, so Hadier & Hubbert artificially increased the depdi along 

a route corresponding to the topographical position of the channel dius artificially creating a 

deep water channel. This made the channel unrealistically wide, so Flather & Hubbert 

decided to represent the deep channel in a one-dimensional format by modifying the two-

dimensional scheme in this area. By including additional factors, in terms of area and breadth 

constants, Flather & Hubbert were able to make the one-dimensional and two-dimensional 

representations of the equation of continuity equivalent. To achieve this, the continuity 

equation, equation 2.6, was re-written thus: 

l£A=B = C = l, then equation (3.1) is identical to equation (2.6). Written in finite-

differences, equation (3.1) becomes equation (3.2): 

+ Auh + OBU] + —{(h + OCV} = 0 (3.1) 
dt dx dy 

I \ 

+ Lt = 0 (3.2) 
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where; 

A = area factor 

= wetted area of grid box/total area of grid box 

• B = breadth factor for CZ-point of cell 

= breadth factor over which flow occurs/total breadth of cell 

C = breadth factor for V-point of cell 

Hu = total water depth at tT-point 

By = total water depth at V-point 

Thus, for example, if there is no north-south flow (i.e. V = 0) then with arbitrary values of 

the area and breadth factors, the two-dimensional equation approximates a one-dimensional 

flow in the east-west direction. 

Changing from one-dimensional to two-dimensional flow as the banks of the channel is 

breached is represented by an appropriate drying procedure which either sets V to zero if the 

surrounding banks are dry or computes its value from die momentum equation. 

The drying test used was that by Fladier & Heaps (1975) (see section 3.3), where the tests 

were carried out after each U and V calculation to determine whether the associated grid point 

was 'wet' or 'dry'. 

A final scheme allowed the area and breadth factors to be included but used as variables so 

that they could change as die water level changed. This allowed the water level in a cell to 

decrease progressively until the cell dried completely, thus reducing the shock that a sudden 

change from a cell being entirely 'wet' to entirely 'dry' induces in the system. 

This was attained by combining the breadth factors with the total water depths at the stream 

points of a cell. This meant replacing BH„ and CH^ in equation (3.2) widi the redefined 

factors B' and C\ These now represent the transport across the cross-sectional area of each 

side of the cell. The new areal and cross-sectional factors were established from the high 

55 



resolution bathymetry and defined at fixed stuface elevation levels every 0.1m in the range 

-3.5m to 3.5m. If the surface water level was between any of the 0.1m increments, the values 

of A', E' and C were calculated by linear interpolation. 

Widi the variable areal and cross-sectional factors, equation (3.2) now becomes equation 

(3.3) expressed in finite-differences: 

Ax 

Ay 
= 0 (3.3) 

Publication of results for this method show that there are still considerable anomalies present 

in the solution. Figure 3.5 shows the wetting part of the tidal cycle for the same cell under 

two different experimental conditions. It can be seen that there is a considerable measure of 

disturbance caused by the wetting of this cell. The result of a cell wetting on nearby cells 

has not been published. In addition, R.A. Flather has indicated, through personal 

communication, that although the present level of moving land/sea boundary computations at 

P.O.L. is quite refined, die results are still unsatisfactory. It is a problem, however, that he 

considers would require too much time for further development. 

Due to the impracticalities of digitizing the bathymetry to obtain an area of high resolution 

and the significant increase in computational costs (particularly high when large areas wet and 

dry), the Author has not tested this numerical scheme. 
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Figure 3.5: To show high frequency oscillations for two different experimental runs (after 

Hadier & Hubbert, 1989) 
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3.5 Comparison of Results 

The results obtained from MODKS.FrN77 have been presented in graphical format, showing 

time series of; the elevation of a cell chosen to be a test cell, the elevation of a cell adjacent 

to the test cell in order to demonstrate the effect that nearby cells can have on each other, and 

various components from the hydrodynamic equations in two dimensions which pertain 

specifically to the test cell already mentioned. 

3.5.1 Leendertse's (1970) Drying Algorithm 

Figure 3.6 shows two tidal elevation profiles and the easterly component of the depth-

averaged velocity. Qualitative analysis shows that there are quite powerful 'shocks' 

introduced into the system, causing the elevation profiles to kink quite considerably at, for 

example, about 1750°. These kinks are caused by a nearby cell becoming wet; slowing the 

rate of rise in the already wet cells as the momentam balance adjusts to the sudden 

appearance of a large area of sea. This slowing of the rate of rise becomes too exaggerated 

and die rate of rise is then accelerated, which is also too severe and eventually anodier 

decrease in the rate of rise occurs. This time, however, the rate of decrease in the rate of rise 

is less severe than the initial decrease, indicating the damping of an oscillatory process which 

is trying to attain equilibrium. 

The effects of this disruption in the elevation profiles can be seen until just after high water 

when equilibrium is attained for a short while. 

The velocity profile shown in figure 3.6 is the u-component of the depth averaged velocity 

(mutatis mutandis, the v-component behaves similarly). It can be clearly seen in figure 3.6 

that there is uncertainty in the wetting process of this particidar algorithm as the velocity 
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alternates between a real value and zero for several time-steps after the initial wetting. 

This is also reflected in the profiles of the gravitational and frictional terms (in the easterly 

direction only) shown with the tidal elevations in figure 3.7 at around 1680°. 

Figure 3.7 also shows that the gravitational and frictional terms tend to balance each odier 

out as the water becomes shallow. 

The drying process appears to operate satisfactorily, however, one must bear in mind that 

once a cell has been 'switched off, it takes no further part in the computational process until 

it becomes wet again. The acmal effects of a cell drying on its surroundings are therefore 

far less pronounced dian diose disturbances caused by a cell becoming wet and its subsequent 

behaviour. 

The initial wetting period can be seen in more detail in figure 3.8. This figure demonstrates 

the alarming effect that die wetting of a cell using Leendertse's (1970) mediod can have. We 

can see here diat there is a pronounced disparity between the rates of rise of the two adjacent 

cells and the effect that this has on the shape of the profile after the initial wetting. This 

figure also enlarges the disturbance in die velocity field. This disturbance shows die 

uncertainty of wetting in this method. 

3.5.2 Owens' (1984) Drying Algorithm 

Time series that were produced with the incorporation of Owens' (1984) drying algorithm 

can be seen in figures 3.9 and 3.10. The elevation profiles show distinct short period and 

longer period oscillations about a smooth profile. In order that an equilibrium state is 

obtained, the model has to be run for a longer period of time than is necessary for the other 

algorithms used. 
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There are ripples apparent in the solution shortly after high water at about 2200°. At this 

time, there are no nearby cells which are becoming \yet or dry. It seems plausible that these 

small anomalies in the profile may be caused by energy balance problems, possibly created 

by the symmetry of the Gaussian bathymetry. The purely mathematical nature of this shape 

may have repercussions in the solution, but it is also likely that an island of this shape may 

have the ability to create shorter period trapped intemal waves which propagate around the 

island. The shorter period oscillations seen in the elevation profiles may well be crude 

attempts of the model to represent this phenomenon. This explanation is unlikely to be the 

case though, since the resolution of the model is probably insufficientiy fine to represent this 

type of feature. 

Alternatively, a more likely explanation for these short period oscillations may be that they 

are, in fact, an indication of trains of energy advecting around the model, perhaps with some 

form of total (or partial) intemal reflection from the boundaries, with their source being a 

shock induced by die moving of the land-sea boundary. If this is the case dien the 

conservation of momentum seems to be adhered to quite rigorously in the model. 

The short period oscillations are also apparent in the velocity profile shown in figure 3.5. 

As with Leendertse's (1970) metiiod, there are quite large discontinuities apparent caused by 

the wetting of nearby cells. These discontinuities cause the rise of the tide to be modelled 

as a tendency towards a smooth curve rather than a smooth ciurve. In other words, the profile 

is attempting to become smooth widi the apparent effect of the discontinuities being 

dampened towards high water. 

The drying of the cells appear to be quite well represented, widi only a slightiy marked 

decrease in the rate of fall of the tide in the shallowest cell as it approaches dryness at around 

2320°. 
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The initial wetting period can be seen much more clearly in figure 3.11. Again, we can see 

the differences in the rise rates of an already wet cell and a cell which has just become wet, 

along with the subsequent oscillation caused by the attempt of the momentum balance to gain 

a hold. 

The gravitational and frictional terms again show a balance as the water depth decreases. 

3.5.3 Flather & Heaps (1975) Drying Algorithm 

Time series obtained durough die implementation of Flather & Heaps (1975) drying algoridim 

can be seen in figures 3.12 to 3.14. Figure 3.12 shows some elevation profiles of adjacent 

cells together with the easterly velocity component. The elevation profiles can be seen to be 

suffering from a similar effect previously described, where there are long firequency 

oscillations in the profiles caused by the unrealistic wetting rates. 

The velocity profile in figure 3.12 also demonstrates diis effect. From about 2090° to 2130° 

there are some quite severe falls in the strength of the predicted tidal stream, which would 

not occm: in nature. These anomalies are a reflection of the momentum balance trying to gain 

equilibrium between the two different water levels in the adjacent cells. In contrast, the rate 

of die tidal stream during the falling tide is free firom such numerical disturbances. 

There are more examples of this phenomenon in figure 3.13. This figure shows die balance 

between die slope term (gravitational) and die fiiction term. The slope tenn is as it says, in 

that it is dependent on the surface slope between adjacent cells. During the period on the 

rising tide where there is a discrepancy between the rates of rise of the tide in nearby cells, 

i.e. the slope between them is uncertain, the slope term demonstrates dramatic oscillations 

which appear to dampen by high water. The fiictional acceleration is very small when die 
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Figure 3.12: Elevation and easterly velocity component of a test cell with elevation of an 
adjacent cell 
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A c c « l e r a l i o m 

Figure 3.13: Elevation and accelerations due to both gravity and friction of a test cell with the 
elevation of an adjacent cell 
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water is deeper, and the relative effect of the uncertainty in rates of rise is therefore not as 

marked in the profile of the frictional acceleration. When the water is shallower, however, 

the fiictional and gravitational terms tend to balance each other. 

Figure 3.14 shows an enlargement of die initial wetting period for die method presented by 

Hadier & Heaps (1975). In this figure we can just make out diat at about 2030°, cell e(l+l j) 

dries completely after having become slighdy wetted about 50° of tidal time earlier. This is 

purely a numerical artefact. We can also see die wide differential between the rates of rise 

of die adjacent cells at the point of cell e(i+lo) becoming wet. 

3.5.4 Rate of Rise of Hooding Cells 

Table 1 shows quantitatively the difference between the rates of rise of the tide between the 

test cell and a nearby cell (as shown in figures 3.6 to 3.14) the instant that the test cell 

becomes wet. The nearby cell may be considered to be representative of the environmental 

tidal conditions as it is already completely wet. As can be seen, there is an order of 

magnimde difference in the rise rates between die test cell as it becomes wet and die 

environmental rate of rise of the tide in the nearby wet cell. Ideally, the rates of rise of the 

tide in die wetting cell and its environment should be almost identical. Included in die table 

is information on the improved algorithm as presented in Chapter 4. 

Chapter 4 discusses the problems demonstrated by the above drying algorithms, together with 

explanations of die causes. 
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Drying Environmental Rate of Rate of Rise of Tide in 

Algorithm Rise of Tide, ms"̂  Wetting Cell, ms-̂  

Leendertse (1970) 5.11*10"̂  4.11*10-̂  

Flather 8c Heaps (1975) 5.65*10-̂  9.66*10-5 

Owens (1984) 5.75*10"̂  5.79*10-5 

George & Stripling (1994) 4.35*10-̂  3.91*10-̂  

Table 1: To show the difference between the rate of rise of tide in a wetting cell and 
the environmental rate of rise 
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CHAPTER 4 

THE NEW DRYING ALGORITHM 

As has been shown in Chapter 1, much work has been done in attempts to eradicate the 

inherent errors which occur when representing the moving land/sea boundary during solution 

of the hydrodynamic equations in two dimensions. A method has been developed whereby 

the moving boundary can be modelled with a minimum of numerical distmrbance while 

computational time allowed for the calculations has not been significantiy increased. 

This improvement in moving boundary representation is applicable to finite difference 

methods in particular and, although the physical representation has been modified, the relevant 

physical laws expressed by Newton have remained unaltered. 

4.1 The Richardson Grid 

For the purposes of wetting and drying, a cell in the Richardson grid (figure 2.2) is defined 

as being centred about the elevation point (figure 4.1), rather than consisting of an elevation 

point, two stream points, and a depth point (as shown in figure 2.2). Such a cell is deemed 

to be bordered by four 'gates' leading to the four adjacent cells. This provides a 
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Figure 4.1: Definition of a cell in the Richardson grid for the purposes of wetting and 
drying 
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computational grid with an elevation point at the centre, four stream points at each side and 

four depth points, one at each of the vertices of the cell. 

Typically, cells are deemed dry if the water elevation at the elevation point is less than the 

elevation of the sea bed at the elevation point and wet if die water elevation is above die 

elevation of the sea bed at this point. Gates are switched on and off according to techniques 

already discussed in Chapter 3. 

Since the depth of the cell as defined in figure 2.2 is specified not at the '^-ppint' but at the 

'ft-point', then the depth of the sea bed (referenced to a fixed datum) at the '^-point' of a 

potential drying cell, defined as in figure 4.1, must be evaluated firom the depths at the 

surrounding '/i-points'. 

4.2 Difficulties in Wetting and Drying 

4.2.1 Cells Which Dry too Slowly 

Early test runs of the existing algorithms analyzed showed that cells which were drying had 

a layer of water left in them which amounted to a few decimetres. This water was gradually 

draining out of the grid square but not fast enough to keep up with the decrease in water level 

in the surrounding wet grid squares. This represented a state whereby a 'dry' grid square was 

'high but not dry'. For this water to keep up with the sturounding environmental fall rate, 

the remaining water had to leave die drying grid square at grossly exaggerated speeds of up 

to 20 ms'\ thus affecting the streams in nearby wet grid squares through the continuity 

equation. 

In order to avoid having grid squares which do not dry fast enough, the real depth of water 

is replaced by a computational depth if it drops below a critical depth, H^. The usual reason 

75 



given for the necessity of a 'critical depth' is to avoid the frictional term becoming too large 

and inducing instability. It is, however, possible for the critical depth to be very small (e.g. 

0.01m) before instability due to this cause arises. It is therefore suggested that the 

inti-oduction of a critical depth will be more effective in preventing the slow drainage of 

drying grid squares than in preventing instabilities occurring. It is true, however, that some 

value of a critical depth is needed to prevent a singularity occurring in the friction term. 

The value required to prevent grid squares suffering from slow drainage can be estimated 

from theory. This theory begins with the assumption that in very shallow water, the motion 

is dominated by fiiction and gravity. This can be shown by scaling. The equations of motion 

therefore may be reduced to: 

If we consider a cell with only one adjacent wet cell, (cell b, figure 4.2) then the equations 

may be reduced to one dimension: 

dr C+h 

where R = rate of stream. 

Ignoring signs, and putting S = dC/dr = slope of the water surface, we have: 

gSH « KR^ (4.1) 

where H = ^ + h. 
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If we consider a cell of side 'r'; die rate of discharge of water from it, Q, is given by: 

Q = RHr 

and also by: 

where if is die rate of fall. 

Equating these two expressions gives: 

RH (4.2) 

Substitution of 4.1 in 4.2 gives: 

gSH _ 1 
K 

(4.3) 

In order for cells not to be subjected to slow drainage, the rate of fall as given by very 

shallow water theory in equation 4.3 must be the same as that experienced in the adjacent 

deeper cell due to the general (envkonmental) rate of fall of the tide. Rearranging equation 

4.3 gives: 

H = 
\ gs I 

where S is taken to be the environmental rate of fall. 

Typical values of these parameters in the idealized model may be: 

^ = 3x10"* ms\ S = 10 mm/km = IxlO'^, 

g = 10 ms ^ and K = 0.0025 giving: 

H = J0-0025(5000x3xl0-^)^l ^ 3 
10x1x10-5 

(4.4) 

r = 5000m, 

This is surprisingly deep, and since equation 4.1 is less likely to hold at such a depth, it must 
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be regarded as an estimate only. It would appear diat operating the idealized model with a 

critical depdi of 3.8m would eliminate die difficulties associated widi drying and wetting. 

As this is clearly not an option, an alternative must be sought. 

4.2.2 CeUs Which Wet too Slowly 

As a dry cell begins to wet, the environmental rate of rise of the tide is larger than the rate 

of rise that can be withstood by the wetting cell while retaiiung sensible flooding velocities. 

To show diis, consider a cell which is beach and is about to flood (figure 4.2): 

The wet cell, cell s, has a head of water waiting to wet the dry cell, celVb'. In this instance, 

cell b is totally dry. Now, consider what will happen on the first wetting time-step: 

The cross sectional area = (^ -Qr , 

where; ^ = elevation in cell s, 

Cb = elevation in cell b, 

r = length of side of cell. 

Therefore, the volume of water entering cell b on the first wetting time-step is given by: 

Fo/ = (C,-Ci)rt/At 

This volume of water is instandy distributed over the whole area of cell b (r^). Therefore, 

the depth of water,D, in cell b immediately after the first wetting time-step is given by: 

r 

which gives a rate of rise of tide in cell b, R^, of: 

(4.5) 
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For a 10m tidal range, the rate of rise of tide in cell s, ~ 0.7 x lO'̂ ms'̂  With a time-step 

of 124.2s, die difference in sea-surface elevations between the wet and the wettiaig cell is 

given by: 

- Ci = R^At = 0.7x10-3x124.2 = 0.097W 

With the rate of rise of the tide in the wetting cell given by equation 4.5, assuming a 

remarkably fast flow rate of 2 ms"*; 

r 0.09 x2.00̂ 1 
5000 

= 3.6 X10-5 WW-1 

Thus there is a large difference in the rate of rise of the tide in the wet cell and the wetting 

cell. 

For a model which has a much smaller grid size, e.g. a fine-scale model of The Wash: 

r = 740m, At = 62.1s. 

Here, C - Cb = 0.7x10"' x 62.1 = 0.043m 

Again, assuming a reasonably fast flow of 2ms"*: 

f0.043 x2.000^ 
740 

This shows that even for a finite difference grid of a considerably smaller size, the problem 

of wetting too slowly is still significant. 

We can determine at what rate the water needs to enter the wetting cell for there to be no 

difference in the rate of rise of die tide therein, R^ = Rf,: 

_ Rs^tu 
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Therefore, for R, = R^: 

AtU = 1 or; U = — 
At 

For r = 5000m and At = 124.2s: 

U = = 403ms-' 
124.2 

Clearly, diis is unreaUstic. 

Eventually, the differences in rates of rise of tide between wettmg and wet grid squares will 

be overcome as the pressure difference induces 'normal' flow. 

There are several ways of solving this problem. These are eidier artificially to slow down 

the rate at which the tidal wave rises (the 'Canute method'), or to increase the rate of rise in 

the flooding cell whilst retaining a sensible flow rate. 

As the first option would represent an unnatural phenomenon, it can not really be considered. 

The second approach involves the addition of 'layers' of water in the flooding cell at discrete 

intervals to keep the sea-surface elevation in equilibrium with the seaward rise in elevation. 

However, the addition of small volumes of water in such a process again introduces 

discontinuities in the solution of the Navier-Stokes equations. 

4.3 The Method of Sloping Facets 

An alternative solution to the introduction of a critical depth is to allow the cell in question, 

defined by the Richardson grid, to remain operational for as long as possible without 

disobeying the physical laws. 
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Traditionally, in die use of finite difference methods, the bathymetry of the sea bed is 

schematized through the representation of each grid square as having a constant depth over 

its entire area. When the depth of each grid square is defined in this manner, the sea bed 

loses its gendy slopmg nature and becomes artificially represented by a series of steps or 

plateaux. Thus, computationally, grid squares appear to have vertical walls leading to 

adjacent grid squares (figure 4.3). 

It may be noted here that when the bathymetry of a sea area is shown graphically as a three-

dimensional image (e.g. figure 4.4), what is being seen is not what is being used 

computationally. However, it does seem to be a closer representation of nature than a series 

of plateaux joined together at vertical walls. 

A method has been developed whereby the bathymetiy is approximated by a series of 

'slopmg facets' (figure 4.5). As widi the stepped sea-bed representation, tiiese facets are also 

centred on die '^-point'. 

This creates a situation where each gate can allow water to flow through it even when the 

water level has dropped below the bed elevation at the '^-point'. In fact, water may flow in 

or out of a cell when as litde as 1% of the sloping facet has water in it. Obviously, this will 

be in the deepest comer of the cell. 

4.3.1 Introducing Areal Factors 

The idea of areal factors is not a new one. Hadier and Hubbert (1989) have.also applied a 

method of areal factors. However, their technique remained rigid to the finite difference 

scheme and consequendy only considered a higher resolution of grid squares within a coarser 

scale grid square. 
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Figure 4.3: A stepped badiymetiy 
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Figure 4.4: An example of an isometric projection (HR Wallingford) 
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Through the improved application of areal factors, there is absolutely no need for extra 

bathymetric digitization and higher computational costs. It works by the areal factor being 

defined as a triangular portion of the whole grid square. Consequentiy, a cell may gradually 

become wet or dry by the change of area of a triangle or two triangles, depending on die 

orientation of die slope and die water level within diat sloping cell. 

There are five cases possible, each requiring a different method of evaluating the areal factor. 

Let the heights above a fixed datu of die sea bed at die comers of a cell defined on die 

Richardson grid be hj, /zj, hs and /ẑ , where hj < < h4 (h measiured positive above a 

fixed damm). Let ^ be the elevation of the sea surface within the cell: 

Case 1 

C,<hj Areal Factor = 0 (ue^ cell is completely dry) 

Case 2 

hi<l,<h2 Areal Factor = shaded area = — 
2 -h, h.~- h. 
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Cases 

h2<^<hs The areal factor is established using a local coordinate system 

and Heron's formula is used to find the areas of the triangles 

whose vertices are indicated below. 

Case 4 

Areal factor = (aieaAhjhzhs - areaABC/z )̂ + aresuJizAB 

/2j < C Areal factor = shaded area = 1 - — 
2 

2̂ (î  

mf^. 

h i 
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Cases 

Areal factor = 1 

In order that the cell is computationally active, even when the tidal elevation is below the 

depth at the elevation point of the cell, a breadth factor is applied.. This factor has the effect 

of redistributing the volume of water in a partially wet sloping cell along the whole edge of 

a computational cell which has horizontal edges, causing the stteam point along the edge to 

be considered wet. Thus, yolume A is equal to volume B below: 

There are three possibilities which may arise here, firstly, if ^ < hi then the breadth factor is 

zero, secondly, if ^ > hj then the breadth factor is one. In the third case, when hj < ^ < hj, 

die breaddi factor is given by: 

breadth factor = 
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4.4 Comparison With Other Drying Methods 

The idealized model has been used as a tool to compare the method of sloping facets with 

the algoridims tested in Chapter 3. 

The results can be seen in Figures 4.6, 4.7 and 4.8. This comparison shows a marked 

improvement on the existing algoridims, with nunierical shocks caused by the Wetting of a 

nearby cell having been completely eliminated using the new method of sloping facets. The 

velocity profile (figure 4.6) shows litde or no adverse effects due to surrounding cells. The 

initial uncertainty of whether or not a cell has become wet or not as demonstrated in figure 

3.8 (Leendertse ;1970) does not apply widi this mediod. 

The oscillations in the gravitational profile that were so prevalent in figures 3.7, 3.10 and 

3.13 during the rise of the tide have been almost completely eliminated, see figure 4.7. 

The initial wetting period shown in detail in figure 4.8 illustrates how the rate of rise of the 

tide in the cell and its environment are almost identical, even at the precise moment of 

wetting. Indeed, as table 1 shows (p. 72), the rate of rise of tide in the wetting cell at the 

instant it becomes wet is almost identical to the environmental rate of rise that is represented 

by the rate of rise of the tide in a fully wetted adjacent cell. This appears to have eradicated 

the associated resultant oscillations in the solution entirely. 

4.5 A Rogue Situation 

Dining the coiurse of experimentation, a situation was found in which the method of sloping 

facets ceased to work. As has been previously stated,, on a finite difference grid the depths 

of the sea-bed are specified at the /i-points, however, the Richardson grid requires that a cell 

is centred on a ̂ -point. This leads to the necessity of having to establish the depth of the sea-
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bed at the C-point by averaging the depdis specified at the four surrounding /z-points. 

It was thought that if the depths of the sea-bed were initially specified at the ^-point, as well 

as at the /i-points, then the extra computational time which arises from the process of 

averaging would be avoided. This is readily achieved when the model is idealized and the 

extra depths merely need to be calculated with a simple algorithm. However, this led to a 

'pyramidal' cell (figure 4.9) appearing at the peak of the Gaussian shoal. In this instance, the 

method of. sloping facets does not work. 

In reality though, this situation would not arise as depdis are extiracted from charts and odier 

sources, not created through short algorithms. Even so, the author recommends that if this 

mediod is to be implemented anywhere that die tradition of specifying the depdis of the sea­

bed at the /z-points should continue. 
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CHAPTER 5 

'THE WASH' - FIELD MEASUREMENTS 

As a final test in detennining the performance of the new drying algorithm it is necessary 

to apply the technique in a real situation. It was decided that a suitable test-bed for the 

algoridim would be The Wash; East Anglia. 

5.1 The Wash 

The Wash is a large embayment on the east coast of England, latimde 53°00'N, longitude 

00°20'E (figure 5.1). It faces approximately northeast and is about 20km wide by 30km in 

length. At the entrance to the embayment there are deep channels (e.g. the Lynn Deeps) with 

maximum depths of about 40m. Over most of the area, however, depths are generally less 

than 10m. Mean tidal ranges are 6.5m during spring tides and 3.5m dining neap tides. 

Before land reclamation began, the Wash was a much larger area of sea and marsh (e.g. 

Harris, 1953). During the 17* century, a Dutch engineer called Vermuyden (1567 - 1641) 

initiated a remarkable feat of engineering which involved the draining of large parts of 

marshland surrounding the Wash, and its reclamation from the sea. This area is known as 

the Fennes. Since this reclamation began, extensive deposits of sediment have formed broad 
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Figure 5.1: Location map of tiie Wash, U.K. 
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bands of intertidal regions along the northern and western regions of the Wash. Offshore, 

there are also large intertidal banks. Figure 5.2 shows an aerial photograph of the Wash. The 

sandbanks can be clearly seen, as well as the possible presence of large amounts of suspended 

sediment. It is probable that the majority of die silt in die Wash stems from die erosion of 

parts of die coast north up to die Humber estuary. 

There are three main rivers draining in-to the Wash; the Welland, Nene and Ouse. These 

drain a large portion of centi-al eastern England (1.3x10* hectares (= 13000km^), (Evans and 

Collins (1975)) between die Trent drainage basin to the north and the Thames to the south. 

Shipping channels for the inland ports of Spalding, Wisbech and Kings Lynn on these rivers 

can be seen in figure 5.2. There are substantial difficulties in keeping these channels open 

to shipping due to the vast quantities of sediment that are deposited in theni. Retaining walls 

have had to be constructed to maintain the buoyed shipping lanes at constant positions. 

Regular dredging helps to keep diem open. 

Further inland, long sections of these rivers are raised high above the surrounding land (some 

surrounding areas can be more than 3m:;below mean sea level) and it is often possible to walk 

alongside the river bank and be below the level of the river bed. This gives some idea of the 

effect of land reclamation in the Fenland area. 

Due to the fact that the majority of the surrounding countryside is very close to the mean 

springs high water level, the Wash is surrounded by a man-made sea-wall. Large sections 

of this sea-wall were built by convicts in the 1940s and 1950s. Apparentiy, very few returned 

for another go. Landward of die sea-wall runs a dyke system which holds any water which 

has seeped du:ough during periods of high water. Periodically, automatic and manual 

pumping stations return the water to die sea. 
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Figure 5.2: Aerial photograph of the Wash showing survey Une 
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5.2 The Study Area 

A visit to the Wash was made in January 1992. This was intended as a reconnaissance 

exercise to assess a likely situation for measurement. After observing possible positions, a 

meeting with the harbourmaster at the port of Kings Lynn was arranged. The author was 

informed that during the previous year several people had drowned on the' mudflats and 

advice was given that a smrvey should only be attempted by a minimum of two people, with 

distress packs, lifejackets and V.H.F. radio. In addition, an inflatable boat with a powerful 

engine, if not two, would be required. 

It was therefore apparent that to set up a survey programme would require extensive planning 

and considerable funding. Fortunately, it came to the Author's attention diat die Department 

of Oceanography at the University of Southampton had an ongoing programme of field 

measurements in die Wash, under die direction of Professor M.B. Collins. It was arranged 

that the Author would accompany their research team during the next period of field work. 

A week of field measurements were conducted by the Audior in association with two of 

Professor M.B. Collins' research students (Mr. X . Ke and Mr. A. Flavell). This period of 

observation included the measurement of suspended sediment concentrations, water depth and 

current velocity detail for six different sites dining nine tidal cycles. 

The observations were taken along line ' A B ' shown in figure 5.2 on the Frieston Shore. 

Access to the site was made through H.M.P Frieston (North Sea Camp) witii the permission 

of the prison Governor (this particular site provided an undisturbed working environment. 

It also provided access to the shore by road and was situated away from the R.A.F bombing 

range). 

Figure 5.3 shows a cross sectional representation of Frieston shore along the survey line. 
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Plate 1: Seawiirds from station 6 

Plate 2: Current meter rig 
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It also shows the positions of the six survey stations, and their approximate elevations relative 

to Ordnance Datum Newlyn. Plate 1 shows the expanse of inter-tidal flat from station 6, 

seaward. 

53 Aims of the Field Work 

Since die critical times during the tidal cycle, widi repect to the accurate representation of 

flooding and drying, are die periods of wetting and immediately after, and the short period 

approaching drying, Le when the water is exdremely shallow, it was required diat detailed 

measurements should be taken during these times. These measiurements would then be used 

for validation purposes in a hind-casting model of die Wash. 

5.4 Methods of Measurement 

At present, there are no methods known to the Author which allow the measurement of tidal 

currents in extremely shallow water to any great accuracy, even the electromagnetic method 

can give spurious results in extremely shallow water. Therefore, the existing method of 

determining currents from die rotation of impellers was used and eventiially adapted (see die 

tilting method below). 

Two Braystoke direct-reading current meter rigs (see plate 2) were employed at each station 

of the survey site. The five impellers on each rig were set at optimum heights in order to 

obtain velocity readings throughout the water column. These current meters were connected 

to a Valeport multi-channel pulse counter (see plate 3) by thirty metres of cable. 

During the initial wetting period and the period shordy before drying, the smaller of the two 

rigs, mounted widi microimpellers (1.5cm in diameter), was held by hand and tilted so diat 
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the lower impellers could be positioned as close to the sea-bed as possible. The reliability 

of this method is not known as there was a tendency for small sediment particles to jam the 

impeller and prevent rotation. If this occurred, the rig was removed from the water, freed, 

and returned as quickly as possible. Generally, though, measurements were continuous. 

During periods when the water was extremely shallow, readings were taken every thirty 

seconds if possible, however, once the water depth had reached about 0.2m, readings were 

taken at greater intervals. 

The inflatable boat was anchored fore-and-aft at some distance from the deployment site in 

order that it remained in a fixed position away from the current meter rigs. Thus avoiding 

over-riding the rigs at high water (see plate 4). Anchor lines were lengthened and shortened 

as the tide rose and fell, thus preventing the anchors dragging or keeping the slack out of 

them. Measurements could not be taken throughout consecutive tidal cycles as alternate tides 

were required to float die boat so diat it could be towed to the next station. 

Out of the nine tidal cycles measured, five provided thorough time series measurements in 

extremely shallow water. This was due to the differing requirements of the survey team and 

the rota system adopted to allow periods of rest. The Author was therefore not present on 

every tide measured and time series obtained dining his absence were not entirely of the 

required detail. 

5.5 Period of Observation 

The survey took place from die 19* June 1993 to die 24* June 1993. This was during spring 

tides, so that the maximum amount of water was entering and leaving the Wash. 

The weather during this period was exceptionally calm, leading to the almost complete 
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absence of wind waves. Only on one occasion was diere rough weadier of any kind. This 

turned out to be extremely valuable as interference by wind/wave induced currents with the 

tidal signal was kept to an absolute minimum. 

Table 2 shows a summary of the survey programme, including a brief description of the sea-

state and weather conditions. 

Date Time 

(EST) 

Station H.W. 

(m) 

Survey Contents Environmental Conditions Date Time 

(EST) 

Station H.W. 

(m) (HJi.S,SPM,WS) 

Environmental Conditions 

19/06/93 03:45-07:15 93-5 6.7 H,R,SPM Breeze, high cloud, sunny, waves J'20cm. 

19/0̂ 93 16:15-19:15 93-4 6.7 H.R.S,SPM Light breeze, sunny, calm sea. 

20/06/93 04:30-07:45 93-3 6.9 H.R.SPM,WS W/NW breeze, clear sky, waves i5cm. 

20/06/93 17:20-19:50 93-2 7.0 HJl.SPM.WS NW breeze, high cloud, no waves. 

21/06/93 05:15-08:00 93-1 7.0 HJl,SPM.WS Fine, calm sea. 

21/06/93 17:25-2125 93-5 7.0 H,R,SPM,WS SE breeze, bright, calm sea. 

22/06/93 17:45-23:00 93-6 7.1 H,R.S.SPM,WS SE breeze, drizzle, wind increasing, waves 
TSOcm, choppy. 

23/06/93 19:00-22:45 93-3 7.1 HJl.S,SPM,WS Light breeze, overcast, slight swell. 

24/06/93 07:25-11:00 93-0 7.4 H.R,SPM.WS Calm, no breeze, no waves. 

Wliere; H = Water Deptli, R = Current Rate, S = Current Set, SPM = Suspended Particulate Matter, 
WS = Water Sample. 

Table 2: Summary of Survey Programme. 

Appendix 3 shows the entire data set of field measurements. 
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CHAPTER 6 

'THE WASH' - A NUMERICAL MODEL 

Typically, model development has proceeded by comparing new model output with earlier 

test results, as presented in Chapter 3, or by studying the sensitivity of model results to 

changes in model input parameters (e.g. section 2.5.6). Whilst refinements in modelling and 

parameterization are intuitively sensible extensions to existing procediures and are expected 

to result in better predictions, there is, generally, disappointingly littie direct evidence from 

field observations that this is the case. Field researchers, struggling with limited resources 

and firequentiy attempting to identify particular processes firom amongst the complexity of 

other processes which occur in nature, have generally not used models to inform and assist 

with the planning of field work, with the result that many of their results are not directiy 

relevant to model testing. The result of tiiese two separate approaches is too often modellers 

who are uncritical of their model results and see no need for field testing, and field 

researchers who disdrust models because of their experience of the real environment. 

It is quite apparent that in order for model predictions to become more accurate and field 

workers to begin to accept die valuable contribution of numerical modelling to the 

understanding of natural phenomena, that the two must be drawn closer together. However, 

due to the lack of resources available for modellers to carry out dieir own field measurements 

and the field researchers reluctance to place tmst in modelling techniques, further 
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understanding of marine processes is unnecessarily hindered. 

It is to further this end that the Author has carried out a programme of field observations 

widi which to validate a numerical model; to show that it is possible for field work and 

numerical modelling to combine together to achieve greater understanding. 

6.1 Model Design 

There are several differences between the layout of an idealized model and a model of a real 

area. Whereas in an idealized model it is possible to avoid time-consuming construction of 

hydrographic data-files, in a model of a real area it is necessary to spend considerable time 

creating the required input files. 

Two models have been designed here; a coarse grid model (2NM) and a fine grid model 

(0.4NM). Due to processing restrictions, only the coarse grid model has been run, with the 

intention of obtaining adequate computational power to run the finer grid (0.4NM) model in 

the future 

6.1.1 Bathymetric Data File 

Whereas for the idealized models the bathymetry could be specified using simple loops 

within the source code, when a model of a real sea area is desired, the shape of the sea-bed 

must be arrived at in a more complicated and time-consuming manner. 

In order to provide a bathymetric data-file for a numerical model, two steps must be taken; 

firsdy to gather the necessary data and secondly to interpolate these raw data in order to be 

represented on the structured grid. Data can be obtained by digitizing bathymetric charts, 

taking bathymetry from a larger scale model which covers the same region, and using 
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available measurements. Care must be taken when using data from several different sources 

to ensiure that differing reference points for the measurement of depth values are accounted 

for. 

The quality of certain data may be suspect depending on how they were obtained or how 

recent they are. This may cause problems when it comes to interpolation of bathymetric data 

as good quality data may easily become contaminated by the presence of poorer quality data. 

The combination of such data should be carefully considered before the decision is inade to 

include or discard any material. 

The best bathymetiy is not always obtained by assigning specific depth measurements to the 

exact geographical position in the model area. Because two-dimensional numerical models 

calculate averaged sdream velocities and water depths, it follows that averaged badiymettic 

features are more important than bathymetric features at discrete positions. 

It is possible for a bathymetric file to be constructed in one of two ways. One method may 

be termed die 'gridding mediod', die other the 'sounding mediod' (George, 1993). 

The gridding mediod requires that the average depth of a grid square be obtained directiy 

from a grid drawn on the chart and a method of proportion assigned to account for any 

soundings and isobaths that may be present in the superimposed grid square (see George 

(1993) for specific detail on averaging methods). 

The sounding method requires that depth souncHngs and their locations in space be compiled 

in a file and interpolation methods be used to establish a schematization of die sea-bed 

bathymetry over the model area. This has die advantage that one database can be used for 

many different models over a region which has had its depths digitized. However, isobaths, 

which provide much needed information in regions of sparse soundings, are difficult to 

incorporate in the interpolation process, whereas the gridding method readily allows isobaths 

108 



to be taken into consideration during the method of averaging. Due to the fact that the 

soundings found oh an Admiralty Chart are referred to chart datum while tidal elevations in 

numerical models are computed relative to mean sea level, it is necessary to adjust each depth 

value taken from the chart in order that they shoidd also be relative to mean sea level. 

Since this numerical model of die Wash is 'study specific', it is not deliberately intended 

to be part of a larger database, the gridding method has been used to create a bathymetric 

database. Admkalty Charts N^'s 108 and 1200 have been used to provide die batiiymetric 

information. The bathymedic file for the 0.4NM model may be seen in Appendix 4, while 

figure 6.1 shows an isometric presentation produced from this data set The bathymetric input 

for the 2NM model was obtained by averaging the bathymetry in 5x5 squares of cells from 

the 0.4NM model, which correspond to the same area as one cell from the 2NM model. 

6.1.2 Masking File 

For the model of the Wash the precise locations of land and sea are defined by a masking 

file (see George, 1993). This has a similar format to that of the bathymetric file and can be 

superimposed on the bathymetric file to produce a graphical image of the area being 

modelled. This is invaluable during the development of such files as areas of inconsistency 

between bathymetric and masking files can be readily observed and altered. 

6.1.3 Model Area 

Figure 6.2 is a graphical representation of the whole of the 2NM model of the Wash. This 

figure shows the masking file and bathymetry (in decimetres) superimposed, as suggested 

above. In addition, the coastiine and the open sea boundary of the model can be seen. 
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6.1.4 Open Boundary Conditions 

Tidal input for the idealized model has been described in Chapter 2, section 2.5.2. This is 

inapplicable to the model of the Wash, and therefore boundary conditions must be defined in 

some odier manner. 

There are five basic forms of boundary conditions, which may be applied in different, 

situations, in different combinations. These are water levels, tidal velocities, water fluxes, 

Riemann (weakly reflective) boundaries, or gravitational effects. The exact form of die 

boundaries depends on the phenomena being studied. The form should, ideally, be chosen 

to give the best driving force tb the modelled phenomena. For instance, models of water in 

an estuary should be driven by the specification of water levels at the entrance to the estuary. 

Fluxes, sd-eam velocities, and Riemann boundaries can equally be applied in order to obtain 

the same intemal solution. However, since velocities and fluxes are only weakly connected 

to water levels, then in the estuarine case used as an example above, the control over the final 

solution would be less than if the tidal input were in the form of water levels. 

If there is more than one open boundary, different forms of boundary conditions should be 

applied at each boundary. For instance, at the open ends of a straight channel, the application 

of velocities at both boundaries would lead to continuity problems if the fluxes were not 

compatible. In this instance, it would probably be best to specify at one end water levels and 

at the odier end velocities. To model a large basin (of die order of kilometires), die 

prescription of water level forcing at die boundaries is generally adequate. 

In practice, the availabiUty of certain types of boundary condition data determines the 

selection of type made. Most open sea models can be driven only by water level input at the 

boundaries since these may well be the only quantities known at the sea boundaries. 

112 



A M P L I T U D E (CM) - E L E V A T I O N 
0 .0000 
o.opoo 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 

270.6418 
0.0000 
0.0000 

0.0000 
252.1376 
262.7488 
269.3411 

0.0000 

228.9792 
239.5120 
254.8744 
266.4209 

0.0000 

219.2066 
226.2165 

0 . 0000 
0.0000 
0.0000 

207.4745 
213 .0491 

0 .0000 
0 .0000 

. 0.0000 

P H A S E ( D E C S ) - E L E V A T I O N 
0.0000 
0.0000 
0 .0000 
0 - 0000 
0.0000 

0.0000 
0.0000 

189 .2860 
0 .0000 
0.0000 

0 .0000 
180.9720 
187 .8050 
190.4240 

0.0000 

168.0250 
178.1630 
187.3220 
190 . 8710 

0.0000 

168.6870 
175.3540 

0.00 00 
0 .0000 
0.0000 

170 .1100 
174 .4910 

0 .0000 
0.0000 
0.0000. 



When water level boundaries are applied on their own it is the gradient of the sea-surface 

level which drives the system and therefore care must be takeii with the data as small errors 

in these values can be compensated within the model only by large responses of the intemal 

forces of the model. This could, for instance, induce higher velocities in order to compensate 

for the exaggerated pressure gradients on the boundary. The influence of this kind of error 

is not restricted to the area of data error determined by grid sizes, but by the physical area 

of influence, according to the error in water level specification. 

In order to minirhize the effects of possible errors in boundary specifications, it is normal 

practice to specify die boundaries as far away geographically as possible from the area of 

interest 

The information needed to provide boundary conditions for the model of the Wash has been 

obtained from a larger scale model (POL Continental Shelf model: CSS), figure 6.3. These 

data can be seen in table 3, where the values of elevation and phase pertaining to the M2 tidal 

constiment are given in the form of a grid which provides coverage of the area of the Wash 

model. Table 3 can be considered as a crade co-tidal chart. From the values provided by 

POL, a detailed co-tidal chart was constracted (figure 6.4). The crosses on figure 6.4 

represent die positions of die data points provided by P.O.L.. From this chart, the phase and 

amplitude of the tidal constituent were extracted at each ^-point on the 0.4NM model 

boundary (see figure 6.5). The boundary values pertaining to the coarser 2NM model were 

taken at every fifdi point from tiie 0.4NM model boundary. 

In addition to the constituent, the amplimde and phase of the S2 and N2 constituents were 

also used as input. These were extracted from co-tidal charts published by Howarth (1990) 

and are based on observation rather than on the results of modelling. Appendix 5 shows the 

boundary values. 
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Figure 6.4: M2 co-tidal chart of die Wash, U.K. 
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6.1.5 Model Time-Step 

By rearranging the inequality equation 2.29, the time-step for the 2NM model of die Wash 

can be evaluated from: 

At ^ i 132.15 
^2x9.81x40 

Since one diree hundired and sixtieth of die tidal cycle is 124.2s, and it fulfils the stability 

requirement above, it has been chosen as the time-step for die model of die Wash. 

6.2 Results 

In this comparison exercise, results output from a cell in the 2NM model are compared to 

die measurements taken along die transect 52' 57' 17"N, 00' 06' 33"E to 52' 57' 34"N, 00° 

05' 40"E. The time, date and the tidal conditions of the model output correspond to the field 

measurements. The exact position in space of the nearest model point, however, is 52° 56' 

00"N, 00° 06' 00"E; over a mile away from the field survey transect (see figure 6.6). 

Results from the 2NM model of the Wash can be seen in Appendix 6. Particular sets of 

results are also reproduced here in figures 6.7 to 6.12. These sets have been chosen due to 

the completeness of the corresponding field data sets. 

Elevations of the survey stations were taken from figure 5.3, and converted to mean sea 

level. Meteorological and environmental effects (such as river discharge) on the tide cannot, 

at present, be represented in die model, and therefore, perturbations in the tide caused by wind 

set-up/set-down, wave/current interaction, or freshwater influences are deemed to be inherent 

errors of the model, and will be dealt with no fiuther ui the discussion of the results, although 

it is recognized that there is some contribution in the measurements from these phenomena. 

118 



LANIV' 

5258' 00" 

5257' 36" 

1:1 ^5 ° 

00 06' 00" 

52-57' 12" 

Denotes 2NM elevation point 

_j_ Denotes 0.4NM elevauon point 

# Denotes survey station 
4 ^ • 

_ _ Denotes real coastline 

— Denotes model coastline 

52*56' 48" 

_|_ 52-56' 24" 

52-56' 00" 

00 06' 36" 

Scale: km 

Figure 6.6: A portion of 0.4NM/2NM model area showing positions of survey stations 
and the coasdine 
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Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57' 17"N, 00 06' 33"E. 





SI 

1 
p\ 
bo 

9 
I 

3 

3 
S 

1. 
I 

I 
00 

cs 

I 
0\ 

0.8 

0.6 
03 
E 
CD 

E 

CO 

0.4 

0.2 

0 

• ° n LJ 

\ • • 
\ 1 ' • • • 1 1 

w 
1 1 H I A r " — Jt 

1 • 1 1 

• 
• 

• • • • 

16 18 20 22 
Time (GMT), hrs, on 22/06/93 

360 

300 

240 

180 

03 
CD 

D) 
CD 

CD CO 
E 
CO 

120 g 
CO 

60 

0 
24 

Predicted Set Predicted Rate • Estimated Set . ̂  Measured Rate 

Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57' 17"N, 00 06' 33"E. 



51 
1 
O N 

V O 

f 
cn 
O 
S 

O 

3 
n 
CO 

CI. 

1 

I 
i 
I 
GO 

0 0 

a. 

4̂  

E 

CO 

c 
g 

> 
LU 

-1 

-2 
14 16 18 20 

Time (GMT), lirs, on 19/06/93 

• Predicted ••• Measured 

22 24 

Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57' 26"N, 00 06' 05"E. 



Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57 32"N, 00 05' 46"E. 



Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57 25"N, 00 06' 08"E. 



Elevation, pred. b Elevation, meas. Rate, predicted a Rate, measured 

Note: The predicted data are from a point 52 56' 00"N, 00 06' 00"E, while the measured 
data are from a point 52 57* 29"N, 00 05" 57'E. 



6.2.1 Station 6 

The nearest survey station to tiie model output point was Station 6 at 52° 57' 17"N, 00° 06' 

33 " E . Figure 6.7 shows the measured elevation profile and the elevation profile at the 

nearest 2NM model point. The model cell wets suddenly and smoodily, with no sign of 

spurious oscillations. The field measurements, too, show a sudden wetting. Unfortunately, 

measurements on this particular survey were hampered by waves and poor light. As a result, 

there are apparent oscillations in the nieasured profile. 

Good agreement is shown in the general shape of the tidal curves, with the model 

reproducing the faster rate of rise of the tide than the rate of fall of the tide demonstrated by 

the field measurements. However, there is an obvious discrepancy between the two ciurves; 

the time series from the model cell implies that the survey station became wet approximately 

half an hour after it actually did. 

The time of high water being predicted half an hour late is likely to be partly due to the 

inaccurate representation of bed fiiction, which may have allowed too much water to 

propagate inshore, thus delaying the time of high water. It may also be a feature of the 

coarseness of the model or perhaps due to the difference in bed-levels as explained below. 

In the field, water-levels could be determined relative to die level of the sea-bed, but absolute 

water-levels were difficult to determine, because the survey stations were well over a 

kilometre from the nearest bench-mark. Predicted tide heights were determined for the 

secondary port of Tabs Head (close to Frieston and less than 2km from the survey stations) 

using the simplified harmonic method (N.P. 159A). Comparisons of the estimated absolute 

levels with these predictions suggested that the former were up to Im in error. Li the light 

of this discrepancy, the bed-levels were each raised by 0.8m to produce the ciurves shown in 
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figures 6.7 to 6.12. 

The remaining discrepancy in the actual value of high water could be due to several other 

points. One is the inadequate specification of boundary input data. For the three tidal 

components which were used, errors could be ±0.1m in total, while an estimate of the effects 

of aU the other harmonics which were not used (there were no quarter diumal or species 0 

input) could be ±0.3m. Another, the inadequate representation of bed friction (see section 

6.2.3), may be responsible for an error of ±0.2m. 

Figure 6.7 shows the tidal stream and set predictions with the tidal stream measurements and 

estimates of the actual stream set. It is difficult to assess the validity of comparisons between 

the measiured and predicted values of these two variables in this instance, since stream 

measiurements close to the shore are affected by currents from short period wave action and 

local topographic featiires. Longshore currents may also contiibute to the signal, particularly 

close to the surf zone. This station, however, was too far seaward of the surf zone for 

longshore currents to cause too much of a problem, although the effect of possible resultant 

rip currents is not known. Perhaps the most problematic cause of variance is the topography 

and characteristics of the bed, which may vary considerably, even on a scale of metres. The 

fact diat die model cells are 3700x3700m indicates diat local features will not be delineated 

by die model. 

In spite of all the potential for inaccurate predictions, figure 6.8 shows that the time series 

produced are very good when compared to the measurements. With regards to the stream 

rate, the initial peak velocity predicted by the model is ~30% higher than the initial peak 

velocity that was measured. Apart from errors in measurement, this is probably due to the 

larger volume of water being propagated inshore by the model than the measurements indicate 

(as shown by the higher predicted level at high tide). The model had to cope widi this 'exdra' 
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volume of water through continuity, thus moving more water in the same amount of time, 

resulting in a higher flux. In addition, it must be remembered that die model output point is 

over a mile away from the survey station. 

The shape of die sdream rate profile is very encouraging, however, widi peak velocities 

predicted on wetting and on drying, by both the model and the measurements, widi lower 

velocities predicted at aroiind slack water. The velocities on drying are predicted to be 

smaller than die velocities on wetting, which agrees with the measurements, obviously due 

to the vast mass of water seaward 'holding back' the receding water-line. The character of 

the flood stream rate is predicted very well in that it shows a sudden rise to a peak velocity 

from dry as the point becomes wet. Following this, the model predicted a steady decrease 

in the velocity magnitude at a rate close to that shown by the measurements. The stream set 

is shown to be reasonably well reproduced; however, the measurements cannot be relied upon 

as they were estimates of the direction of movement, since no apparams was deployed on site 

for the purpose of measuring this attribute. 

6.2.2 Further Survey Stations 

Figure 6.9 to 6.12 show the elevations measured at four other stations along the transect that 

yielded comprehensive data sets and were sea points according to the model. Again, the rates 

of wetting and drying are predicted well; however, the times and heights of high water are 

consistendy poorly reproduced. The retardation of the time of high-water is more than likely 

due to two factors. The first is minimal, and is due to the predictions being made at such a 

distance from the survey transect. The main factor is probably the representation of bed 

firiction in this, or any, numerical model where discretization in space is necessary. 
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6.2.3 Bed Friction 

The fact that an area of sea is separated into discrete cellSj which themselves may cover a 

substantial area of sea, leads to the necessity of making assumptions or generalisations. One 

generalisation made here is that the roughness of the sea bed was considered to be constant 

over the whole area of the numerical model, Le^ the drag coefficient applied was not variable. 

In fact, no attempt was made here to mne the model through the drag coefficient. 

When tuning a tidal numerical model, adjusting the drag coefficient parameter is a good 

place to begin, since fiiction is of paramount importance in tidal propagation (Svendsen & 

Jonsson, 1980), especially in shallow water as shown, for instance, in figure 3.7. The Author 

decided here though, diat simply to change the drag coefficient to another number in order 

to obtain a closer fit to the measurements was inappropriate. 

The concept of having a drag coefficient (or bed roughness) that is variable over the entire 

model area is not a new concept (e.g. Wallace, 1994). Varymg the bed roughness is possible, 

at present, only firom cell to cell, or area to area. When we are dealing with large cells, such 

as those in the 2NM model of the Wash presented here, the bed roughness can alter 

considerably from one part of the cell to anodier, so varying the bed roughness from cell to 

cell solves only part of the problem. This is based on the presumption that the bed roughness 

over the entire area (or at least the area of interest) of the model is known. In addition, bed 

roughness is certainly not linear with horizontal distance or depth, but dependent upon bed-

forms and material, so discrete measurements or calculations are again only of limited value 

and very costly. The expense is further increased when we consider that, even if such 

detailed measurements were to become available to modellers, they would be site specific, 

and consequendy, applicable only to the area where the measurements were taken. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

SUMMARY 

Three existing drying algorithms were incorporated into a numerical scheme and analyzed. 

Then: performance was found to be unsatisfactory so a new algoridim was developed. The 

results have shown an improvement upon general modelling techniques in wetting and drying 

models. 

A week of field work was conducted alongside die numerical development. This has proved 

that provided diere are sufficient research funds, it is possible for numerics and real life 

observations to work in unison towards a common end. 

Field measurement techniques were adapted to provide the best measurements possible of 

the initial wetting and the late diying periods on a tidal flat in the Wash, U.K.. A 2NM 

numerical tidal model of the Wash was designed and validated by these field measurements. 

On the whole, the model performed very well, with the biggest problems being; precisely 

where the measiurements were output from (i.e. the model output point was over a mile from 

the survey transect), the lack of a detailed survey of the bed levels at the survey stations, and 

the uncertainty in the representation of bed fiiction in large cells. 
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CONCLUSIONS 

1/ With regards to wetting and drying in tidal numerical models, there is one problem 

which appears to cause more disruption of the solutions than any other. This is the fact that 

cells are not able to wet quickly enough when the tidal elevation siuxounding them has risen 

sufficiendy. For cells which are large, e.g. 5km, the current methods for wetting a cell 

require that a 25km^ area of siea are required to suddenly and instantaneously become wholly 

wet and active widiin die numerical scheme. There is simply not die volume of water 

available for this to happen, neither can water physically travel fast enough to reach the 

opposite computational edge of the cell. 

21 Disturbances which are generated by unnaturally imposed requirements (e.g. the 

sudden wetting of a cell) have a considerable effect on cell dynamics and surrounding 

solutions. If a cell is required to wet suddenly, there will natiu^lly be an imbalance in the 

conservation of momentum equation. 

3/ A new numerical technique has been devised which allows a cell to wet and dry 

gradually. In principle diis is a very sdraightforward idea. However, the computational 

process can be quite complex. This method, the 'method of sloping facets', was used to 

eliminate discontinuities inherent in a 'large cell' wetting and drying process as the tide rises 

and falls. The testing of this method has proved that sloping facets provide solutions which 

are not adversely affected by the wetting and drying of cells. It was concluded that the 

models incorporating diis new technique resembled nature in that discontinuities related to cell 

size inherent with discretization demonstrated in previous work were removed. 

4/ It is suggested that a finer scale model of the Wash be run in order to resolve the field 

observation profile better, thus providing model output at a position in space closer to where 
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these field measurements have been taken. It may also be interesting to compare output from 

coarse and fine models of the same area. 

5/ An area of fiuther work which would require considerable attention is to attempt to 

find a more realistic manner of expressmg the effect of frictional drag on the water column, 

and for the new knowledge to be integrated into numerical inodels. This suggests that it will 

be necessary for field workers to work more closely widi numerical modellers,, in order to 

combine their experience and understanding. 

6/ There has been some light shed in this thesis on the relationship between frictional and 

gravitational accelerations in very shallow water, Le^ that they balance each other. This has 

interesting connotations, as the resulting hydrodynamic equations become, in this case, 

ordinary differential equations which can be solved through an iterative process, with no need 

for time-stepping in the solution technique. This suggests that, potentially, hydrodynamic 

approximations for cases tens of years into the future could be found very quickly. This 

would naturally be tempered though, perhaps when applied to a practical situation such as 

the need for long-term morphodynamic modelling, in which the speed of computation would 

be dependant upon the time-step required to maintain stability of the morphodynamic scheme. 

Nonedieless, it could be a valuable area for future research. 
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APPENDIX 1 



L I S T O F T E R M S U S E D I N M O D K . F T N 7 7 

(upper case = lower case for all terms) 

A - Amplitude of tide, m 
CD - Stability conso^nt on die water deptii value 
CDRAG - Coefficient of drag 
CORX - Zonal Coriolis component, ms"̂  
CORY - Meridional Coriolis component, ms"̂  
CV - Stability constraint on the velocity magnitude 
DA - Change in amplitude 
DDX - Slope of water over distance 9x 
DDY - Slope of water over distance dy 
DE - Depdi of water at U-point east of test-cell 
DEDT - Change of tidal elevation with time, dllJBt 
DEPTHX - Water depth at U-point 
DEPTHY - Water depdi at V-pomt 
D N - Total water depth at V-point north of test cell 
DP - Change in tidal phase 
DS - Total water depdi at V-point soudi of test cell 
DT - Time step, 9t 
DTC - Total water deptii in test cell 
DUDT - Temporal acceleration (zonal component), 8U/3t 
DVDT - Temporal acceleration (meridional component), 9V/3t 
DW ^ - Total depdi of water at U-point west of test ceU 
DX - Zonal finite difference grid size 
DY - Meridional finite difference grid size 
D l - Total water depth at I or J on a 3-point 
D2 - Total water depth at I+l or J+1 on a 3-point 
E - Tidal elevation 
E N - New value of E 
EDDYX - Zonal component of eddy viscosity 
EDDYY - Meridional component of eddy viscosity 
ELEVE - Average depdi along the eastem edge of cell 
ELEVN - Average depdi along the northern edge of cell 
ELEVS - Average depdi along the soudiem edge of cell 
ELEVW - Average depdi along the western edge of cell 
E M E A N - Mean value of elevations surrounding cell 
E l - Tidal elevation at I or J 
E2 - Tidal elevation at I+l or J+1 
F - Coriolis parameter 
FDL - Counter for output routines 
FP6 - Counter for every 6^ value of \|/ 
FPIO - Counter for every lO**" value of \j/ 
FRICX - Zonal fiictional component 
FRICY - Meridional frictional component 
GDEDX - Slope term in tiie east-west direction 
GDEDY - Slope term in the nordi-soudi direction 
H - Depdi of sea bed at h-point 
HE - Depth of sea bed at ^-point 





HEAST - Depth of sea bed at U-point east of cell 
HED - Horizontal eddy diffusion 
HEDD - Horizontal eddy diffusion as a function of depth 
H N - Depth of sea bed at V-point north of cell 
HS - Depth of sea bed at V-point south of cell 
HW - Depth of sea bed at U-point west of cell 
HI - Depth of sea bed at I or J on a 3-point 
H2 - Depth of sea bed at I+lor J+1 on a 3-point 
I - North to south coordinate 
I - Counter in DO loops 
IPSI - Integer value of y 
IP6 - Every 6"" value of \j/ 
IPIO - Every 10"̂  value of y 
ITC - Number of tidal cycle 
r rCA - Number of tidal cycle for beginning of analysis 
ITCR - Tidal cycle in which shoal is raised 
ITS - Number of time step 
J - East to west coordinate 
K E Y - Switch to indicate instability 
KHE - Counter to specify deptiis or to read from file 
KIE - Counter for specifying elevations or to read from file 
KIS - Counter for 'cold' or 'hot' start 
K N - Switch to indicate dry cell 
KOP - Switch for output to file 
KWET - Switch to indicate wetted cell 
K4 - Switch to locate a maximum of foiu" surrounding wet cells 
NDAL - Counter for choice of drying algoridim 
NOC - Output channel to mainframe file space 
NRUN - Run number 
OPSI - Counter for screen dump every 36* value of ^ 
P - Tidal phase 
PSI - Tidal time angle, yf 
PSm - New value of \|/ 
PSIR - Tidal time angle in radians 
PSI8 - Double precision value of PSI 
PSI36 - Every 36° of V 
RATEX - Stream rate at U-point 
RATEY - Sd-eam rate at V-point 
RR - Key for flat or Gaussian badiymedy 
R2 - Value of I (coordinate) used to create shoal 
U - Zonal depth averaged velocity 
UATVP - Zonal velocity component at V-point 
UDUDX - Advective term 
UDVDX - Advective term 
U N - New value of U 
UV - U or V value 
V - Meridional depth averaged velocity 
VATUP - Meridional velocity at U-point 
VDUDY - Advective term 





V D V D Y - Advective terai 
V N - New value of V 
WIND - Value for 'winding 





c-
c-
c-
Q ******************************************** 

* 2-D MODEL USING HYDRODYNAMIC EQUATIONS * 
C * * 

C * U T I L I Z I N G 4 DIFFERENT ^DRYING' METHODS * 

c ******************************************** 
c 
c 
c — BY 
c 
C MR. S STRIPLING 
C 
C UNIVERSITY OF PLYMOUTH 
C • — C-
c-
C-
C-

program model 

parameter(mpti=40,mptj=40) 
dimension u(mpti,mptj),v(mpti,mptj),un(mpti,mptj),vn{mpti,mptj) 

&,kwet(mpti,mptj),e(mpti,mptj),en(mpti,mptj),he(mpti,mptj) 
&,deepp(mpti,mptj),h(mpti,mptj),kn(mpti,mptj) 
dimension dudt{mpti,mptj),corx(mpti,mptj),gdedx(mpti,mptj) 

&,fricx(mpti,mptj),dvdt(mpti,mptj),cory(mpti,mptj) 
&,gdedy(mpti,mpt j),fricy(mpti,mpt j) 
dimension a(mpti,mptj),p(mpti,mptj),dec(mpti,mptj) 

&,hs (mpti,mpt j) ,em(mpti,mpt j)-, um (mpti, mpt j ) , vm (mpti, mpt j) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common / g r i d / ngs,nsbc,ndal 
common /numb/ p i , r a d 
common /stab/ cd,cv,key 
common /cons/ fdl,hed,cdrag, f 
common / s tar t / k i e ,k i s ,nrun ,rr 

integer hour 
character wash*l 

real etime, dtime, tim(2) 

psi8 = O.dO 

c-̂  To force the grid-s ize 

ngs = 3 

c To set switch for-output 

kop = 1 

c To specify the number of the run 
write (*,*) ' ' 
write(*,*) ' ' 
write(*,*) ' Input the run-number' 
write(*,*) ' ' 
write(*,*) ' ' 
read(*,l)nrun 

1 format(i5) 
c nrun = 115 



To specify counter for ' f u l l ' boundary levels at the start 

kie = 0 

To gather information on the run 

write(*,*) ' ' 
write{*,*) 'Do you wish to run the Wash model ? (y/n)' 
write(*,*) ' ' 
read(*,'(al)')wash 
write(*,*) ' ' 
write(*,*) 'Is this to be (1) a hot run, or (2) a cold run ?' 
write(*,*) ' ' 
read(*,*)kis 

To determine the dimensions of the grid 

ny 
nx 

= 40 
= 40 

if(wash.eq.'y')then 

ny 
nx 

= 60 
= 65 

endif 

To set s tab i l i t y l imits 

C V 
cd 

= 9.9 
= 6.0 

r r = -1.0 

To specify constants 

rad = 0.0174532925 
p i = 3.141592654 
f = 2.0*7.29e-05*sin(50.*rad) 
hed = 10.0 
cdrag = 0.0025 
f d l = 0 . 1 
hour = 0 
i f = 18 
j f = 21 

if(wash.eq.'y')then 

dy 
dx 
dt 

= 741.3 
= 741.3 
= 62.1 

else 

write(*,*) 'This model may be run with a grid size of:' 
write(*,*) ' ' 
write(*,*) '(1) 5000m or (2) 1000m' 
write(*,*) ' ' 
write(*,*) 'Which would you prefer, (1) or (2) ? ' 
write(*,*) ' ' 
read(*,*)ngs 

if(ngs.eq.1)then 

dy = 5000. 
dx = 5000. 



dt = . 124.2 

else 

dy = 1000. 
dx = 1000. 
dt = 62.1 

endif 

endif 

Opening f i l e s 
open(25,file='knout') 

open(54,file='fintop') 
open(56,file='newstore') 
open (22, f i le='ddl') 
open(23,file='ddf') 
open(24,file='ddo') 
open(99,file='bathys') 
open(13,file='sip-depths') 
open(50,file='hhestore') 
open(11,file='wasdep') 
open(43,file='washhe') 
open(63,file='dds') 
open(64,file='ddse') 
open(30,file='magn00') 
open(70,file='dir00') 
open(31,file='magn01') 
open(71,file='dir01') 
open(32,file='magn02') 
open(72,file='dir02') 
open(33,file='magn03') 
open(73,file='dir03') 
open(34,file='magn04') 
open(74,file='dir0 4') 
open(35,file='magn05') 
open(75,file='dir05') 
open(36,file='magn06') 
open(76,file='dirO 6') 
open(37,file='magn07') 
open(77,file='dir07') 
open(38,file='magn08') 
open(78,file='dir08') 
open(39,file='magn09') 
open(79,file='dirO 9') 
open(40,file='magnlO') 
open(80,file='dirlO') 
open(41,file='magnl1') 
open{81,file='dirll') 

Specifying bathymetry 

if(wash.eq.'y')then 

nsbc = 3 

i f ( k i s . e q . 2 ) ca l l batwas(i ,j ,h, he) 
i f ( k i s . e q . l ) c a l l washhe(h,he) 

else 

write (*,*) 'You may choose a sea-bed configuration 
write(*,*) ' ' 
write(*,*) ' ' 
write(*,*) '(1) A basin with a sloping beach' 



write(*,*) ' ' 
write(*,*) ' or' 
write{.*,.*) ' ' 
write (*.,*) ' (2) A basin with a Gaussian Island.' 
write(*,*) ' ' 
read(*,*)nsbc 

i f ( k i s . e q . l ) c a l l sethhe(he,h) 

if(kis .eq.2)then 

i f (nsbc .eq . l ) ca l l bathys(he,h) 

i f (nsbc.eq.2)cal l depths(h,he,kwet) 

endif 

endif 

Setting i n i t i a l conditions 

if(wash.eq.'y')then 

c a l l wasic(un,vn,en,e,u,v,a,p) 

else 

c a l l setic(un,vn,en,e,u,v,h,he) 

endif 

i f (k is .eq . l ) then 

i t c = 5 

else 

i t c = 0 

endif 

i t s = 0 

if(ngs.eq.3)then 

i tca = 4 

else 

i tca = 5 

endif 

To select a drying algorithm 
write(*,*) 'Would you l ike to run the model using:' 
write(*,*) ' ' 
write(*,*) '1: Flather & Heaps (1975). drying algorithm' 
write (*,*.) ' or' 
write(*,*) '2: Leendertses (1970) drying algorithm' 
write(*,*) ' or' 
write(*,*) '3: Owens (1984) drying algorithm' 
write(*,*) ' or' 
write(*,*) '4: George & Str ip l ing (1994) drying system ?' 
write(*,*) ' ' 
read(*,*)ndal 



print *.,'elapsed:', etime,' user:' , tim:(l);,', sys:',.tim 

i f (ndal .eq .1)ca l l setwet(kn) 

Solution of the hydrodynamic ecjuations: 

100 continue 

if(ndal.eq.4)then 

c a l l dpoint(h,deepp,he) 
c a l l calcus(dudt,corx,gdedx,fricx,un,he,e,h,v, 

& u,dudtl ,corxl ,gdedxl , fricxl) 
c a l l calcvs(dvdt,cory, gdedy,fricy,vn,he,e,h,u, 

& v ,dvdt l ,coryl ,gdedyl , fr icyl ) 

else 

c a l l calcu(dudt, corx,gdedx,fricx,kwet,e,he,un,v, 
& u,dudtl ,corxl ,gdedxl , fricxl ,h,kn) 

c a l l calcv(vn,dvdt,cory, gdedy,fricy,kwet,e,he,u, 
& V ,dvdt1,COry1,gdedy1,fricy1,h,kn) 

endif 

c a l l expluv(un,vn) 
c a l l smooth(un,vn) 

i f (ngs .eq. l )ps in = real(psi8) + 1 . 
if(ngs.eq.2)psin = real(psi8) + 0.25 
if(ngs.eq.3)psin = real(psi8) +0.5 

iplO = int(psin/10.) 
fplO = (psin/10.) - iplO 

if(ngs.eq.3)then 

c a l l wasen(e,a,p) 

else 

c a l l seten{en) 

endif 

if(ndal.eq.4)then 

c a l l calces(he,un,vn,en,e,deepp,h, 
& u, V , dudt, corx, gdedx, f r icx , dvdt, cory, 
& gdedy,fricy,dec) 

else 

c a l l calce(en,e,he,h,kn,un,vn,dudt,corx, 
& gdedx, fr icx , dvdt, cory,gdedy,fricy,u,v, 
& kwet) 

endif 

To check for s tab i l i ty 

c a l l chstab(en,un,vn) 
if(key.eq.l)go to 90 



I 

c Output Options 

c ~ To c a l l subroutine quiver for output 

ps i = real(psi8) 

i f ( i tc .eq.6)then 

plO = ps i - 10. 
p30 = int ( (ps i - 10.)/SO.) 

if(p30.ge.0)then 

op = ((psi - 10.)/30.) - p30 
ip = int(psi) 

if(abs(bp).It.1.Oe-06)then 

c a l l quiver(u,un,v,vn,e,he) 
hour = hour + 1 

endif 

endif 

endif 

c To output information into fintops 

ip6 = int(psi /6 . ) 
fp6 = (psi/6.) - ip6 
if(abs(fp6).It .1.Oe-06)call intop(e,u,un,v,vn, 

& em, um, vm) 

c To store e,u,v,h,he at a set time 

if((itc.eq.4).and.(psi .ge.359.9))then 

c a l l store(he,e,u,v,hs) 
c a l l stohhe(he,h) 

endif 

c i f ( i t c . e q . i t e r ) c a l l raise(h,he,deepp) 
if(itc.eq.itca+2)go to 90 

c Up-dating 

i f (ngs.eq.DpsiS = psiS + l.OdO 
if(ngs.eq.2)psi8 = psi8 + 0.25dO 
if{ngs.eq.3)psi8 = psi8 + 0.5d0 

i f (ps i8 .gt .3 60.dO)then 

i t c = i t c + 1 

psi8 = psi8 - 360.dO 

endif 

i t s = i t s + 1 
do 300 i = l ,ny 

http://eq.it




do 300 j = l,.nx 

u{i ,j) = un(i , j ) 
v ( i , j ) = vn( i , j ) 

300 e ( i , j ) = en(i , j ) 

go to 100 

90 c a l l intop (e,u,uh,v,vn,em,Lim,vin) 

etime = dtime(tim) 
print *,'elapsed:',etime,' u s e r : ' , t i m ( l ) , ' , • sys:',tim(2) 

stop 
end 

subroutine areaf(ec,he,hne,hnw,hse,hsw,af) 

To establish the wetness of a c e l l by areal factors 

dimension hk(4) 

hk(l) = hne 
hk(2) = hnw 
hk(3) = hse 
hk(4) = hsw 
z4 = -99. 

do 2 k = 1,4 

if(hk(k).gt.z4)then 

z4 = hk(k) 
k4 = k 

endif 

2 continue 

z l = 99. 

do 3 k = 1,4 

. i f (hk(k) . I t . zDthen 

z l = hk(k) 
k l = k 

endif 

3 continue 

if(ec.ge.hne.and.ec.ge.hnw.and.ec.ge.hse.and.ec.ge.hsw)then 

af = 1 . 
return 

elseif(ec.le.hne.and.ec.le.hnw.and.ec.le.hse.and.ec.le.hsw)then 

af = 0 . 
return 

endif 





do 4 k = 1,4 

i f (k.eq.kl .or ,k.eq,k4)then 

go to 4 

else 

k2 = k 
go to 5 

endif 

4 continue 

5 do 6 k = 1,4 

i f (k.eq.kl .or .k.eq.k2.or .k.eq.k4)then 

go to 6 

else 

k3 = k 
go to 7 

endif 

6 continue 

7 if(hk(kS).le.hk(k2))then 

kt = k2 
k2 = k3 
kS = kt 

else 

continue 

endif 

c to evaluate areal factor for case (i) 

i f(ec. lt .hk(k2))then 

af = 0.5* (ec - hk(kl))**2/((hk(k2) - hk(kl))*(hk(kS) 
& - hk(kl))) 

return 

endif 

c—•— to evaluate areal factor for case (ii) 

i f(ec. lt .hk(k3))then 

y2 = (hk(k3) -ec)/(hk(k3) - h k ( k l ) ) 
x3 = (hk(k3) - ec)/(hk(k3) - hk(k2)) 
y3 = x3 
c a l l heron{0.,0.,0.,y2,x3,y3,atl) 

y2 = (ec - hk(k2))/(hk(k4) - hk(k2)) 
x3 = (ec - hk(k2))/(hk(k3) - hk(k2)) 
y3 = x3 
c a l l heron(0.,0.,0.,y2,x3,y3,at2) 

http://ec.lt
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af = 0.5 - a t l + at2 
return 

else 

c to evaluate areal factor for case ( i i i ) 

a f l = 0.5*(hk(k4) - ec)**2/((hk(k4) - hk(k2))*(hk(k4) 
& - hk(k3))) 

af = 1.0 - a f l 
return 

endif 

end 

subroutine bathys(he,h) 

c—— To input a sloping bathymetry 

dimension he(ny,nx),h(ny,nx) 
common / l i m / ny,nx 

do 200 i = l ,ny 
do 200 j = l ,nx 

he( i , j ) = 5.0 

he( i , j ) = he(i , j ) - (i-1) + (drandO - 0.5) 

i f ( i .gt .25)then 

he( i , j ) = -50. + (drandO - 0.5) 

e l se i f ( j . I t .11 .or . j .gt .29) then 

he(i , j ) = 5.0 

endif 

200 continue 
do 400 i = l , n y - l 
do 400 j = l , n x - l 

h ( i , j ) = 5.0 

h ( i , j ) = h ( i , j ) - (i-0.5) + (drandO - 0.5) 

if(i .ge.25)then 

h ( i , j ) = -50. + (drandO - 0.5) 

e l se i f ( j . I t .10.or . j.gt.29.) then 

h ( i , j ) = 5.0 

endif 

400 continue 

do 600 i = l ,ny 
write(99,5) (he( i , j ) , j = l,nx) 

600 write(99,5)(h( i , j ) , j = l,nx) 



5 format(10f8.2) 

return 
end 

subroutine batwas(i,j,h,he) 

To read bathymetry for the Wash from wasdep 
and to evaluate h e ( i , j ) . 

dimension h(ny,nx), he(ny,nx) 
common / l i m / ny,nx 

do 200 i = l ,ny 

r e a d { l l , 7 5 ) ( h ( i , j ) , j = l,nx) 

do 300 j = l ,nx 

h ( i , j ) = h{i,j)*0.1 - 3.4 

300 continue 

200 continue 

do 1 j = l ,nx 

he{l,j) = h{l , j) 
he{ny,j) = 200. 

1 continue 

do 2 i = l ,ny 

he( i , l ) = h( i , l ) . 
he(i,nx) = h(i,nx) 

2 continue 

do 3 i = 2,ny 
do 4 j = 2,nx 

he( i , j ) = 0.25*(h(i,j) + h ( i - l , j ) + h ( i - l , j - l ) 
& + h ( i , j - l ) ) 

4 continue 
3 continue 

open(43,file='washhe') 

do 5 i = l ,ny 

write(43,100)(h(i ,j) ,j = l,nx) 

5 continue 

do 6 i = l ,ny 

write(43,100)(he(i,j) ,j = l,nx) 

6 continue 

75 format(65f5.0) 
100 format(65f5.1) 



return 
end 

subroutine calce(en,e,he,h,kn,un,vn,dudt,corx, 
& gdedx, fricx,dvdt,cory,gdedy,fricy,u,v, 
& kwet) 

c 
c To calculate the elevation at a grid-point using 
c the conservation of mass equation. 

dimension u(ny,nx), v(ny,nx), un(ny,nx), vn{ny,nx) 
dimension e(ny,nx), en(ny,nx), he{ny,nx), h(ny,nx) 
dimension dudt(ny,nx), corx(ny,nx), gdedx(ny,nx), 
& fricx(ny,nx), dvdt(ny,nx), cory(ny,nx), 
& gdedy(ny,nx), fricy(ny,nx), kwet(ny,nx),kn(ny,nx) 
common /lim/ ny,nx 
common /time/ itc,psi,its,dt,hour,psin 
common /coord/ if,jf,dx,dy 
common /grid/ ngs,nsbc,ndal 
common /start/ kie,kis,nrun,rr 

do 20 i = 2,ny-l 
do 20 j = 2,nx-1 

en(i,j) = 0. 

c Depths at e-points for plotting purposes: 

dtc 
dee = 
dew = 
den = 
des = 

c Depths 

de = 0 .5*(e(i,j) + e(i,j+l) - h ( i - i , j ) - h(i,j)) 
dw = 0 .5*(e(i,j) + e ( i , j - l ) - h ( i , j - l ) - h ( i - l , j - l ) ) 
dn = 0 .5*(e(i,j) + e ( i - l , j ) - h ( i - l , j - l ) - h ( i - l , j ) ) 
ds = 0 .5*(e(i,j) + e(i+l,j) - h ( i , j - l ) - h(i,j)) 

c To calculate e using Flather & Heaps' method: 

if(ndal.eq.l)then 

if(kn(i,j).eq . O.and.he(i,j).gt . - 6 .)then 

en(i,j) = he(i,j) 
go to 10 

endif 

c To calculate e using Leendertse's method: 

elseif(ndal.eq .2)then 

if(kwet(i, j).eq.O)then 

c a l l wetest(i,j,kwet,e,he,dn,ds,de,dw) 
if(kwet(i,j).eq .O)then 

en{i,j) = he(i,,j) 
go to 10 



endif 

e l s e i f (de . l e .O . .or .dw. l e .O . .or .dn . l e iO . .or .ds . l e .O . 
then 

kwet(i,j) = 0 
en(i , j ) = he( i , j ) 
go to 10 

endif 

To calculate e using Owen's method: 
elseif(ndal.eq^3)then 

hmax = h{i , j) 
if(h(i,j-1).lt.hmax)hmax = h( i , j -1) 
i f (h(i-1, j-1) .It.hmax)hmax = h,(i-1, j-1) 
if(h{i-l ,j) . lt .hmax)hmax = h ( i - l , j ) 
dc = e ( i , j ) - hmax 

N.B, The value dc may seem a b i t odd, but i t i s 
merely a representation of the volume of a c e l l , 
not i t ' s depth. 

i f (kwetd, j) .eq.O)then 

c a l l wetowe(i,j,kwet,e,he,dn,ds,de,dw) 
i f (kwetd, j) .eq.O) then 

eh{i,j) = he(i , j ) 
go to 10 

endif 

e lse i f (dc. le .0 . ) then 

kwet(i,j) = 0 
en(i , j ) = he( i , j ) 
go to 10 

endif 

endif 

ddx = (de*un(i,j) - dw*un(i,j-1))/dx 
ddy = (dn*vn(i-l,j) - ds*vn(i ,j)) /dy 
dedt = -ddx-ddy 
en(i , j ) = dedt*dt + e ( i , j ) 

i f ( en ( i , j ) . l e .he ( i , j ) ) then 

if(ndal .eq. l )then 

en(i , j ) = he(i , j ) 

elseif(ndal.eq.2.or.ndal.eq.3)then 

kwet(i,j) = 0 
en(i , j ) = he(i , j ) 

endif 

elseif(ndal.eq.2)then 

c a l l leen3(i,j,kwet,h,en,he) 



elseif(ndal.eq.3)then 

c a l l owen3(i,j,h,en,he,kwet) 

endif 

10 i f ( i . e q . i f . a n d . j . e q . j f ) t h e n 

if(ndal.eq.1)then 

c a l l focus(23,dee,dew,den,des,dtc,e(i, j+1),e(i, j -1 ) , 
& e ( i - 1 , j ) , e ( i + l , j ) , e ( i , j ) , u n ( i , j ) , d u d t ( i , j ) 
& c o r x ( i , j ) , g d e d x ( i , j ) , f r i c x ( i , j ) , v n ( i , j ) , 
& d v d t ( i , j ) , c o r y ( i , j ) , g d e d y ( i , j ) , f r i c y ( i , j ) , 
& h e ( i f , j f ) , h e ( i f , j f + l ) , h e ( i f , j f - 1 ) , 
& he ( i f - l , j f ) ,he ( i f+ l , j f ) ) 

elseif(ndal.eq.2)then 

c a l l focus(22,dee,dew,den,des,dtc,e(i,j+1),e(i,j-1), 
& e ( i - l , j ) , e ( i + l , j ) , e ( i , j ) ,un( i , j ) ,dudt( i , j ) 
& corx'(i, j) ,gdedx(i, j ) , f r i c x ( i , j ) , vn ( i , j ) , 
& dvdt ( i , j ) , cory( i , j ) ,gdedy( i , j) , f r i c y { i , j ) , 
& he ( i f , j f ) ,he( i f , j f+1) ,he( i f , j f -1) , 
& he ( i f - l , j f ) ,he ( i f+ l , jf)) 

elseif(ndal.eq.3)then 

c a l l focus(24,dee,dew,den,des,dtc,e(i,j+1),e(i,j-1), 
& . e ( i - l , j ) , e ( i+ l , j ) , e ( i , j ) ,un( i , j ) ,dudt( i , j) 
& c o r x ( i , j ) , g d e d x ( i , j ) , f r i c x ( i , j) , vn ( i , j ) , 
& d v d t ( i , j ) , c o r y ( i , j ) , g d e d y ( i , j ) , f r i c y ( i , j ) , 
& he(if, j f ) , h e ( i f , j f + l ) , h e ( i f , j f - 1 ) , 
& he ( i f - l , j f ) ,he ( i f+ l , j f ) ) 

endif 

endif 

20 continue 
200 format(f6.2) 

return 
end 

subroutine calces(he,un,vn,en,e,deepp,h, 
& u,V,dudt,corx,gdedx,fricx,dvdt,cory, 
& gdedy,fricy,dec) 

To calculate the elevation of a grid-point using the 
momentum equation, and Str ip l ing & George's drying 
algorithm 

dimension u(ny,nx), v(ny,nx), un(ny,nx),vn(ny,nx), dec(ny,nx), 
& en(ny,nx), he(ny,nx), deepp(ny,nx), e(ny,nx), 
& h(ny,nx), dudt(ny,nx), corx(ny,nx), 
& gdedx(ny,nx), fricx(ny,nx), dvdt(ny,nx), 
& cory(ny,nx), gdedy(ny,nx), fricy(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /coord/ i f , j f ,dx ,dy 
common / g r i d / ngs,nsbc,ndal 
common / s tar t / k i e ,k i s ,nrun ,rr 



do 20 i = 2 ,ny- l 
do 20 j = 2,nx-1 

kslp = 1 
i f ( h e ( i , j ) . l t . - 6 . ) k s l p = 0 
i f ( (he( i / j ) .g t ,5 . .and.ngs . I t .3 ) .or . (he( i , j ) .ge .20 . .and. 

i ngs.eq.3))then 

un(i , j ) = 0. 
vn( i , j ) = 0. 
en( i , j ) = 0. 
go to 20 

endif 

To calculate surrounding elevations for plott ing purposes 

dtc = e ( i , j ) - deepp(i,j)-
dec( i , j ) = e ( i , j ) - he(i , j ) 
i f ( d e c ( i , j ) . l e . O . ) d e c ( i , j ) = 0. 
dee = e( i , j+l) - he(i,j+1) 
if(dee.le.O.)dee = 0. 
dew = e ( i , j - l ) - he(i ,j-1) 
if(dew.le.O.)dew = 0. 
den = e ( i - l , j ) - he(i-1,j) 
if(den.le.O.)den = 0. 
des = e(i+l ,j) - he(i+l,j) 
if{des.le.O.)des = 0. 

To evaluate water depths at the edges of the c e l l : 

if(kslp.eq.0)then 

without sloping facets; 

de = 0.5*(e(i,j) + e(i.,j+l) - h ( i - l , j ) - h ( i , j ) ) 
dw = 0.5*(e(i,j) + e ( i , j - l ) - h ( i , j - l ) - h ( i - l , j - l ) ) 
dn = 0.5*(e(i,j) + e ( i - l , j ) - h ( i - l , j - l ) - h { i - l , j ) ) 
ds = 0.5*(e(i,j) + e(i+l,j) - h{ i , j - l ) - h ( i , j ) ) 

else 

with sloping facets; 

eeg = 0.5*(e(i,j) + e(i , j+l)) 
ewg = 0.5*(e(i,j) + e ( i , j - l ) ) 
eng = 0.5*(e(i,j) + e ( i - l , j ) ) 
esg = 0.5*(e(i,j) +e( i+ l , j ) ) 

c a l l dedgec(eeg,h(i-1,j),h(i,j),de) 
c a l l dedgec(ewg,h(i,j-1) ,h(i-1,j-1),dw) 
c a l l dedgec(eng,h(i-1,j-1),h(i- l ,j) ,dn) 
c a l l dedgec(esg,h(i ,j-1),h(i ,j) ,ds) 

endif 

ddx = (de*un(i,j) - dw*un(i,j-1))/dx 
ddy = (dn*vn{i-l,j) - ds*vn(i ,j)) /dy 
af = 1 . 

if(kslp.eq.1)then 

c a l l a r e a f ( e ( i , j ) , h e ( i , j ) , h ( i - 1 , j ) , h ( i - 1 , j - 1 ) , 
i h ( i , j ) , h ( i , j - l ) , a f ) 

i f ( a f . l t .O .ODaf = 0.01 
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endif 

dedt = (-ddx-ddy)*af 
en(i , j ) = dedt*dt + e ( i , j ) 

i f {en(i, j) . le.deepp(i, j) .and.]cslp.eq.l)en(i, j) = deepp(i,j) 

i f ( i . e q . i f . and. j . , eq. j f) then 

c a l l focus(63,dee,dew,den,des,dec,e(i,j+1),e(i,j-1), 
& e ( i - l , j) ,e( i+l , j) , e ( i , j) ,un( i , j).,dudt ( i , j ) , 
& c o r x ( i , j ) , g d e d x ( i , j ) , f r i c x ( i , j ) , v n ( i , j ) , 
& dvdt'(i, j) , cory( i , j ) , gdedy ( i , j) , f r i cy ( i , j ) , 
& he(if, j f ) ,he( i f , j f+1) ,he( i f , j f -1 ) , 
& he ( i f - l , j f ) ,he ( i f+ l , j f ) ) 

endif 

20 continue 

return 
end 

subroutine calcu(dudt, corx,gdedx,fricx,kwet,e,he,un,v, 
& u, dudtl ,corxl ,gdedxl , fricxl ,h,kn) 

c 
c To calculate the u-component of the depth mean velocity 
c using the easterly direction ecjuation for the continuity 
c of momentum. 

dimension u (ny, nx), v.(ny, nx), un (ny, nx), 
& kwet(ny,nx), e(ny,nx), he(ny,nx), 
& h(ny,nx), dudt(ny,nx), corx(ny,nx), 
& gdedx(ny,nx), fricx(ny,nx), kn(ny,nx) 

common / l i m / ny, nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /coord/ i f , j f , d x , d y 
common / g r i d / ngs,nsbc,ndal 
common /cons/ fdl,hed,cdrag, f 

do 50 i = l , n y - l 
do 50 j = l , n x - l 

un(i , j) = 0. 
eddyx = 0. 
ududx = 0. 
vdudy = 0. 
dudt(i, j) = 0. 
corx(i , j) = 0. 
gdedx(i,j) = 0. 
f r i c x ( i , j) = 0. 

if(kwet(i ,j) .eq.O.and.ndal.ne.l)go to 30 
i f ( i . eq . l )go to 50 

depthx = 0.5*(-h(i,j+1) - h ( i , j ) + e ( i , j ) +e( i , j+ l ) ) 
if(depthx.le.0.)then 

i f (ndal .eq. l )kn(i ,3) = 0 
go to 30 

endif 



i f (ndal .eq . 1)then 

c a l l wdtest ( i , j , e ( i , j ) , he ( i , j ) , e.(i, j+1), he (i,. j+1), kn ( i , j) 
& ,un( i , j ) ) 

i f (kn( i , j ) . eq .0 .and.he( i , j) .gt.-6.)go to 30 

endif 

c i f ( e ( i , j ) . l e . h e ( i , j ) ) g o to 30 
if(depthx.It.fdl)depthx = f d l 

c Cor io l i s 

vatup = (v ( i - l , j ) + v ( i - l , j + l ) + v ( i , j ) + v(i,j+1))*0.25 
corx( i , j ) = f*vatup 

c Pressure Gradient 

gdedx(i,j) = 9.81*(e(i,j+1) - e ( i , j ) ) /dx 

c Eddy viscosity 

i f ( i .gt . (ny-1))go to 10 
i f ( j . eq . l . or . j . g t . (nx -2 ) )go to 10 

hedd = hed*depthx 
c a l l ceddyx(i,j,u,hedd,eddyx) 
c a l l cududx(i,j,u,ududx) 
c a l l cvdudy(i,j,u,vdudy,vatup) 

c Fr ic t ion 

10 ratex = sqrt (u( i , j )*u( i , j ) + vatup*vatup) 
f r i c x ( i , j ) = cdrag*u(i,j)*ratex/depthx 

Q Temporal 

dudt(i , j ) = - gdedx(i,j) - f r i c x ( i , j ) + eddyx - ududx - vdudy 
& + corx( i , j ) 

c New value of u 

un(i , j ) = u ( i , j ) + dt*dudt(i,j) 

30 dudtl = dudt( i f , j f ) 
corxl = corx( i f i j f ) 
gdedxl = gdedx(if,jf) 
f r i c x l = f r i c x ( i f , j f ) 

50 continue 

return 
end 

subroutine calcus(dudt,corx,gdedx,fricx,un,he,e,h,v, 
& u,dudtl ,corxl ,gdedxl , fricxl) 

c—-— 
c As for subroutine calcu but in case of sloping facets. 

dimension u(ny,nx), v(ny,nx), un(ny,nx), e(ny,nx), 
& he(ny,nx), h(ny,nx), dudt(ny, nx), 
& corx(ny,nx),gdedx(ny,nx), fricx(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 



common /coord/ i f , j f , d x , d y 
common / g r i d / ngs,nsbc,ndal 
common /cons/ fdl ,hed,cdrag,f 

do 50 i = l , n y - l 
do 50 j = l , n x - l 

eddyx = 0. 
ududx - - 0. 
vdudy - 0. 
dudt(i , j) = 0. 
corx( i , j ) = 0. 
gdedxd, j) = 0. 
f r i c x ( i , j ) - = 0. 
un(i , j) = 0. 

i f (he(i, j) ,ge .5. 
i f {he( i , j ) .ge .20 
i f ( i . e q . l ) g o to 

kslp = 1 
if{he{i ,j) .It .-6 

if(kslp.eq.0)then 

dg = 0.5*(e(i,j) + e{i,j+l) - h ( i - l , j ) - h ( i , j ) ) 

else 

eg = 0.5*(e(i,j) + e{i,j+l)) 
c a l l dedgec(eg,h(i-1,j) ,h(i ,j) ,dg) 
i f ( d g . l t . f d l ) d g = fd l 

endif 

i f (dg. le .O.)go to 30 

c Cor io l i s 

vatup = {v( i - l , j ) + v ( i - l , j+ l ) +v{ i , j ) + v(i,j+1))*0.25 
corx( i , j ) = f*vatup 

c Pressure Gradient 

gdedx(i,j) = 9.81*(e(i,j+1) - e ( i , j ) ) /dx 

c Eddy viscosity 

i f ( i .gt . (ny-1))go to 10 
i f ( j . eq . l . or . j . g t . (nx-2 ) )go to 10 

hedd = hed*dg 
c a l l ceddyx(i,j,u,hedd,eddyx) 
c a l l cududx(i,j,u,ududx) 
c a l l cvdudy(i,j,u,vdudy,vatup) 

c Fr ic t ion 

10 ratex = sqrt (u( i , j )*u( i , j ) '+ vatup*vatup) 
f r i c x ( i , j ) = cdrag*u(i,j)*ratex/dg 

c Temporal 

dudt(i , j ) = - gdedx(i,j) - f r i c x ( i , j ) + eddyx - ududx - vdudy 
& + corx(i , j ) 
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New value of u 

un{i,j) = u(i^j) + dt*dudt(i,j) 

30 dudtl 
corxl 
gdedxl 
f r i c x l 

50 continue 

return 
end 

dudt(if , jf) 
corx(if , jf) 
gdedx{i,j) 
f r i c x ( i , j ) 

subroutine calcv(vn,dvdt,cory,gdedy,fricy,kwet,e,he,u, 
& V,dvdt1,cory1,gdedy1,fricyl ,h, kn) 

To calculate the v-component of the depth mean velocity 
using the continuity of momentum equation (depth averaged) 
in the northerly direct ion. 

dimension u(ny,nx), v(ny,nx), vn(ny,nx), 
& kwet(ny,nx), e(ny,nx), he(ny,nx), 
& h(ny,nx), dvdt(ny,nx), cory(ny,nx), 
& gdedy(ny, nx), fricy(ny,nx), kn(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /coord/ i f , j f , d x , d y 
common / g r i d / ngs,nsbc,ndal 
common /cons/ fdl ,hed,cdrag,f 

do 50 i = l , n y - l 
do 50 j = l , n x - l 

vn( i , j ) = 0 . 
eddyy = 0. 
vdvdy = 0. 
udvdx = 0. 
dvdt( i , j ) = 0. 
cory( i , j ) = 0. 
gdedy(i,j) = 0. 
f r i c y ( i , j ) = 0. 

i f (kwet(i , j ) .eq.O.and.ndal .gt . l )go to 30 
if(j .eq.1)go to 50 

kn( i , j ) = 0. 

depthy = 0.5*(e(i,j) +e( i+ l , j ) - h ( i + l , j ) - h ( i , j ) ) 
if(depthy.le.0.)then 

i f (ndal .eq . l )kn( i , j) = 0. 
go to 30 

endif 

i f (ndal .eq. l)then 

c a l l wdte s t ( i , j , e ( i , j ) ,he ( i , j ) , e ( i+ l , j ) ,he ( i+ l , j ) ,kn ( i , j ) 
& ,vn( i , j ) ) 

i f (kn( i , j ) . eq .0 .and.he( i , j ) .g t . -6 . )go to 30 

endif 





c i f (e(i, j) . l e . h e d , j))go to 30 
if(depthy.It.fdl)depthy = f d l 

c Cor io l i s 

uatvp = (u( i , j - l ) + u(i+l,j-1) +u( i+ l , j ) + u(i ,j))*0.25 
cory( i , j ) = f*uatvp 

Q Pressure Gradient 

gdedy(i,j) = 9.81*(e(i,j) - e ( i+l , j ) ) /dy 

c- Eddy Viscosity 

i f ( i . I t . 2 .or . i . g t . (ny -2 ) .or . j . g t . (nx -1 ) )go to 10 
hedd = hed*depthy 
c a l l ceddyy(i,j,v,hedd,eddyy) 
c a l l cvdvdy(i, j,v,vdvdy) 
c a l l cudvdx(i, j,v,udvdx,uatvp) 

c Fr ic t ion 

10 ratey = sqrt(uatvp*uatvp + v ( i , j ) * v ( i , j ) ) 
f r i c y ( i , j ) = cdrag*v(i,j)*ratey/depthy 

c Temporal 

dvdt( i , j ) = - gdedy(i,j) - f r i c y ( i , j ) + eddyy - udvdx 
& - vdvdy - cory( i , j ) 

c- New value of v 

vn( i , j ) = v ( i , j ) + dt*dvdt(i,j) 

30 dvdtl = dvdt( i f , j f ) 
coryl = cory( i f , j f ) 
gdedy1 = gdedy(if,j f) 
f r i c y l = f r i c y ( i f , j f ) 

50 continue 

return 
end 

subroutine calcvs(dvdt,cory,gdedy,fricy,vn,he,e,h,u, 
& V,dvdt l , cory l ,gdedyl , f r i cy l ) 

c 
c As for calcv but in case of sloping facets 

dimension u(ny,nx), v(ny,nx), vn(ny,nx), e(ny,nx), 
& he(ny,nx), h(ny,nx), dvdt(ny,nx), 
& cory(ny,nx), gdedy (ny, nx),, f r i cy (ny,nx) 
common / l i m / ny, nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /coord/ i f , j f , d x , d y 
common / g r i d / ngs,nsbc,ndal 
common /cons/ fdl ,hed,cdrag,f 

do 50 i = l , n y - l 
do 50 j = l , n x - l 

eddyx = 0. 
udvdx = 0. 
vdvdy = 0. 





dvde(i,j) = 0 . 
cory( i , j ) = 0. 
gdedy ( i , j ) = 0-. 
f r i c y ( i , j ) = 0 . 
vn( i , j ) = 0. 

i f {he( i , j ) .ge .5 . .or .he( i+l , j ) .ge .5 . .and.nsbc. l t .3)go to 50 
i f (he(i, j) .ge.20. .or.he(i+l , j) .ge..20.)go to 50 

if(j .eq.1)go to 50 

kslp = 1 

i f ( h e ( i , j ) . l t . - 6 . . a n d . h e ( i + l , j ) . l t . - 6 . ) k s l p = 0 

if(kslp.eq.O)then 

dg = 0.5*(e(i,j) + e( i+l , j) - h ( i , j - l ) - h ( i , j ) ) 

else 
eg = 0.5*(e(i,j) + e(i+l ,j)) 
c a l l dedgec(eg,h(i, j ) ,h( i , j -1) ,dg) 
i f ( d g . l t . f d l ) d g = f d l 

endif 

i f (dg. le .O.)go to 30 

Corio l i s 

uatvp = (u( i , j - l ) + u(i+l,j-1) +u( i+ l , j ) + u(i ,j))*0.25 
cory( i , j ) = f*uatvp 

— Pressure Gradient 

gdedy(i,j) = 9.81*(e(i,j) - e ( i+l , j ) ) /dy 

Eddy Viscosity 

i f ( i . I t . 2 .or . i . g t . (ny -2 ) .or . j . g t . (nx -1 ) )go to 10 
hedd = hed*dg 
c a l l ceddyy(i,j,v,hedd,eddyy) 
c a l l cvdvdy(i , j , v,vdvdy) 
c a l l cudvdx(i,j,v,udvdx,uatvp) 

— Fr ic t ion 

10 ratey = sqrt(uatvp*uatvp + v ( i , j ) * v ( i , j ) ) 
f r i c y ( i , j ) = cdrag*v(i,j)*ratey/dg 

— Temporal 

dvdt( i , j ) = - gdedy{i,j) - f r i c y ( i , j ) + eddyy - udvdx 
& - vdvdy - cory( i , j ) 

— New value of v 

vn( i , j ) = v ( i , j ) + dt*dvdt(i,j) 

30 dvdtl = dvdt( i f , j f ) 
coryl = cory( i f , j f ) 
gdedyl = gdedy(if,j f) 
f r i c y l = f r i c y ( i f , j f ) 

50 continue 
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return 
end 

subroutine ceddyx(i,j,u,hedd, eddyx) 

To calculate eddy viscosity in the x-direction 

dimension u{ny,nx) 
common / l i m / ny, nx 
common /coord/ i f , j f , d x , d y 

d2udx2 = (u{i , j - l ) +u( i , j+ l ) - 2,*u(i,j))/(dx*dx) 
d2udy2 = (u( i - l , j ) + u(i+l ,j) - 2.*u(i,j))/(dy*dy) 

eddyx = hedd*{d2udx2 + d2udy2) 

return 
end 

subroutine ceddyy(i,j,v,hedd,eddyy) 

To calculate eddy viscosity in the y-direction 

dimension v(ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 

d2vdx2 = (v(i,j+l) + v( i , j -1) -2.*v(i,j))/(dx*dx) 
d2vdy2 = (v ( i - l , j ) + v( i+l , j ) -2.*v(i ,j))/(dy*dy) 

eddyy = hedd*(d2vdx2 + d2vdy2) 

return 
end 

subroutine chstab(en,un,vn) 

To check the s tab i l i ty of the model 

dimension en(ny,nx), un(ny,nx), vn(ny,nx) 
common / l i m / ny, nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /stab/ cd,cv,key 

key = 0 

do 1 i = l ,ny 
do 1 j = l ,nx 

i f ( e n { i , j ) . l t . - c d . o r . e n { i , j ) . g t . c d . o r . u n ( i , j ) . I t . - c v . 
& o r . u n ( i , j ) . g t . c v . o r . v n ( i , j ) . I t . - c v . o r . v n ( i , j ) . g t . c 
& )then 

key = 1 

write(*,20)i , j 
wr i te (* ,25)un( i , j ) , vn( i , j ) , en( i , j ) ,ps i 

return 



endif 

1 continue 

20 format (/' Incipient Instabi l i ty at i =',13,', j =',i3) 
25 format (/'un=',f9.3,' vn=',f9.3,'- en =',f7.3,' psi=',f5.0) 

return 
end 

subroutine cududx(i,j,u,ududx) 

c To calculate ududx 
c 

dimension u{ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 

small = 1. Oe-06 

if(abs(u(i , j-1)) .It .small .and.abs(u(i , j+1)) .It .small)then 

ududx = 0. 
return 

elseif(abs(u(i , j -1)) .It .small)then 

c To evaluate ududx near to an east-facing coastline 
c 

i f (u ( i , j ) . g t . 0 . ) then 

ududx = 0. 
return 

else 

c central and eastern point 

ududx = u(i ,j)*(u(i ,j+1) - u ( i , j ) ) /dx 
return 

endif 

elseif(abs(u(i,j+1)).It.small)then 

c To evaluate ududx near to a west-facing coastline 

i f ( u ( i , j ) . I t . 0 . ) t h e n 
ududx = 0. 
return 

else 

c central and western point 

ududx = u ( i , j )* (u ( i , j ) - u ( i , j - l ) ) / d x 
return 

endif 



else 

ududx = u ( i , j )*(u( i , j+1) - u ( i , j-1)) / (2.*dx) 
return 

endif 

end 

subroutine cudvdx(i,j,v,udvdx,uatvp) 

c To calculate udvdx 

dimension v(ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 

small = 1.Oe-06 

i f(abs(v(i , j -1)) .It .small .and.abs(v(i , j+1)) .It .small)then 

c 
c—— If the flow is through a channel then udvdx is zero, 
c 

udvdx = 0. 
return 

e lsei f (abs(v( i , j -1)) .It .small) then 

c To evaluate udv/dx for an east-facing coastline. 

udvdx = uatvp*(v(i,j+1) - v ( i , j ) ) / d x 
return 

elseif(abs(v(i ,j+1)).It .small)then 

c To evaluate udv/dx for a west-facing coastline. 
c 

udvdx = uatvp*(v(i,j) - v ( i , j - l ) ) / d x 
return 

else 

udvdx = uatvp*(v{i,j+1) - v(i ,j-1))/(2.*dx) 

endif 

end 

subroutine cvdudy(i,j,u,vdudy,vatup) 
c 
c To calculate vdudy 
c 

dimension u(ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 



small = 1. Oe-06 

i f (abs(u(i -1 , j ) ) .I t .small .and.abs(u(i+l , j ) ) .I t .small) then 

c 
c If the flow is through a channel then vdudy i s zero 
c 

vdudy = 0 . 
return 

elseif(abs(u(i+l , j)) .It .small)then 

c To evaluate vdu/dy for a north-facing coastline 

vdudy = vatup*(u(i-1,j) - u { i , j ) ) / d y 
return 

elseif(abs(u(i-1, j ) ) .It .small)then 

c To evaluate vdu/dy for a south-facing coastline 
c 

vdudy = vatup*(u(i,j) - u( i+l , j ) ) /dy 
return 

else 

vdudy = vatup*(u(i-1,j) - u(i+l,j))/(2.*dy) 
return 

endif 

end 

subroutine cvdvdy(i,j,v,vdvdy) 

c To calculate vdvdy 
c 

dimension v(ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 

small = 1.Oe-06 

i f (abs(v( i - l , j ) ) . I t . smal l .and.abs(v( i+l , j ) ) . I t . smal l ) then 

vdvdy = 0. 
• return 

e l se i f (abs(v( i - l , j ) ) . I t . smal l ) then 

c 
c To evaluate vdvdy for a south-facing coastline 
c 

i f ( v ( i , j ) . l t . O . ) t h e n 

vdvdy = 0. 
return 



else 

central and southern points 

vdvdy = v ( i , j )*{v( i , j ) - v( i+l , j ) ) /dy 
return 

endif 

e lseif(abs(v(i+l , j ) ) .It .small)then 

To evaluate vdvdy for a north-facing coastline 

i f (v ( i , j ) . g t .O . ) then 
vdvdy = 0. 
return 

else 

central and northern points 

vdvdy = v ( i , j ) * ( v ( i - l , j ) - v ( i , j ) ) / d y 
return 

endif 

else 

vdvdy = v ( i , j ) * ( v ( i - l , j ) - v(i+l,j))/(2.*dy) 
return 

endif 

end 

subroutine dedgec(eg,hi,h2,dg) 

To evaluate the depth along the edge of a c e l l 

if(eg.gt.hi.and.eg.gt.h2)then 

dg = eg - 0.5*(hi + h2) • 
return 

elseif(eg.le.hi .and.eg.le.h2)then 

dg = 0 . 
return 

elseif(hi .gt.h2)then 

dg = (eg - h2)*(eg - h2)*0.5/(hl - h2) 
return 

else 

dg = (eg - h i )* (eg - hl)*0.5/(h2 - hi) 
return 

endif 



end 

subroutine depths.(h,he,kwet) 

— To specify depths 

dimension he(ny,nx), h(ny,nx), kwet(ny,nx) 
common / l i m / ny,nx 
common / s t a r t / k i e , k i s , n r u n , r r 

i f (rr .gt .O)then 

To create a f la t sea-bed, with sl ight random variation 

do 50 i = l ,ny 
do 50 j = l ,nx 

h ( i , j ) = 0. 
he{i,j) = -50. + (drandO - 0.5) *rr 

50 h ( i , j ) = 0.25*(he(i,j) + he(i,j+l) + he(i+l,j) 
& + he(i+l,j+1)) 

else 

To create a Gaussian shoal 

do 60 i = l ,ny 
do 60 j = l ,nx 

r2he = (real(i-19.5))**2 + (real(j-19.5))**2 
he{i,j) = -50.*(1 - exp(-r2he*0.01)) 

r2h = (real((i+0.5) -19.5))**2 
& + (real((j+0.5) - 19.5))**2 

h( i , j ) = -50.*(1 - exp(-r2h*0.01)) 

i f (he ( i , j ) . I t . 0 . ) then 
kwet(i,j) = 1 

else 
kwet(i,j) = 0 

endif 

60 continue 

endif 

do 70 i = 15,25 

70 write(*,20)(h(i , j ) , j = 15,25) 

do 80 i = l ,ny 

write(13,30)(h(i ,j) , j = l,nx) 
80 write(13,30)(he(i,j), j = l,nx) 

20 format (llf7.2) 
30 format(10f8.2) 

return 
end 

subroutine dpoint(h,deepp,he) 





To establish the deepest point of a c e l l . 
(Based around the elevation point) . 

dimension he(ny,nx), deepp(ny,nx), h(ny,nx) 
common / l i m / ny,nx 
common /coord/ i f , j f , d x , d y 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common / g r i d / ngs,nsbc,ndal 

do 50 i = 2,ny-1 
do 50 j = 2,nx-1 

deepp(i,l) = he{i, l) 
deepp(i,nx) = h(i,nx) 
deepp(l,j) = h ( l , j ) 
deepp(ny,j) = h(ny,j) 
deepp(1,1) = he(1,1) 
deepp(l,nx) = h(l,nx) 
deepp(ny,nx) = h(ny,nx) 
deepp(ny,l) = h(ny,1) 

if(nsbc.eq.1)deepp(ny,1) = 5.0 

i f (h( i , j ) .ge .5 . .and.nsbc . l t .3) then 

deepp(i,j) = h ( i , j ) 

elseif(h(i ,j) .ge.20..and.nsbc.eq;3)then 

deepp(i,j) = h ( i , j ) 

else 

deepp(i,j) = h ( i , j ) 

i f (h ( i - l , j) . I t .deeppd, j) )deepp(i, j) = h ( i - l , j ) 
i f (h( i -1 , j -1) . I t .deepp(i , j ) )deepp(i , j ) = h ( i - l , j - l ) 
i f (h( i , j -1 ) . l t .deepp( i , j ) )deepp( i , j ) = h ( i , j - l ) 

endif 

50 continue 

To display depths of ce l l s taken for analysis 

i f ( i t s .eq .0)write(* ,200)h( i f , j f ) ,he( i f , j f ) 
200 formate h ( i f , j f ) = ' , f 6..2,'m', 9x,' he( i f , j f ) = ' , f 6 . 2 , 'm . ' 

i f ( i ts .eq.0)then 

write(*,*) 
write(*,*) 
write(*,*)' Deepest Points' 
write(*,*) 
write(*,*) 

do 15 i = 15,25 

write(*,16)(deepp(i,j),j = 15,25) 

15 continue 

write(*,*) 
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write ,(*,*) 
write(*,*)' H-values' 
write(*,*) 
write{*,*) 

dp 17 i = 15,25 

write{*,16){h{i,j),j = 15,25) 

i7 continue 

16 format(llf7.2) 

endif 

return 
end 

subroutine expluv(un,vn) 

c To extrapolate u and v on the boundaries 
c 

dimension un(ny,nx), vn(ny,nx) 
common / l i m / ny,nx 

do 1 j = 2,nx-2 

un(l , j ) = 2.*un(2,j) - un(3,j) 
un(ny,j) = 2.*un(ny-1,j) -un(ny-2 , j ) 

1 continue 

do 2 i = 2,ny-2 

vn( i , l ) = 2.*vn(i,2) - vn(i,3) 
vn(i,nx) = 2.*vn(i,nx-1) - vn(i,nx-2) 

2 continue 

c at the corners: 

un( l , l ) = 2.*un(2,2) - un(3,3) 
vn( l , l ) = 2.*vn(2,2) - vn(3,3) 
un(ny,1) = 2.*un(ny-1,2) - un(ny-2,3) 
vn(ny-l , l ) = 2.*vn(ny-2,2) - vn(ny-3,3) 
un(l,nx) = 2.*un(2,nx-2) - un(3,nx-3) 
vn(l,nx) = 2.*vn(2,nx-l) - vn(3,nx-2) 
un(ny,nx-l) = 2 .*un (ny-l,.nx-2) - un (ny-2,nx-3) 
vn(ny-l,nx) = 2.*vn(ny-2,nx-l) - vn(ny-3,nx-2) 

return 
end 

subroutine f o c u s ( n c , t l , t 2 , t 3 , t 4 , t 5 , t 6 , t 7 , t 8 , t 9 , t l 0 , t i l , t l 2 , 
& t l 3 , t l 4 , t l 5 , t l 6 , t l 7 , t l 8 , t l 9 , t 2 0 , 
& hx,hel,he2,he3,he4) 

o To focus on values in and surrounding the test c e l l 

common / g r i d / ngs,nsbc,ndal 
common / s tar t /k i e ,k i s ,nrun ,rr 

ta = tl*100. 



tb = t2*100. 
tc - t3*100. 
td - t4*100. 
te = t5*100. 
t f = t6*100. 
tg = t7.*100. 
th = t8*100. 
t i = t9*100. 
t j = tlO*100. 
tk = tl l*100. 
t l = tl2*1.0e+05 
tin = tl3*1.0e+05 
tn = tl4*1.0e+05 
to = tl5*1.0e+05 
tp = tl6*100 
tq = tl7*1.0e+05 
t r = tl8*1.0e+05 
ts tl9*1.0e+05 
t t t20*1.0e+05 

if(ndal.eq.4)then 

i f ( t lO. le .hx)then 

ta = 0. 
tb = 0. 
tc = 0. 
td = 0. 
te = 0. 
t j = hx*100,. 
tk = 0. 
t l = 0. 
tm = 0. 
tn = 0. 
to = 0. 
tp = 0. 
tq = 0. 
t r = 0. 
ts 0. 
t t 0. 

endif 

i f ( t6 .1e .he l ) t f = hel*100. 
if(t7.1e.he2)tg = he2*100. 
if(t8.1e.he3)th = he3*100. 
i f ( t9.1e.he4)t i = he4*100. 

endif 

wr i te (nc ,10) ta , tb , tc , td , te , t f , tg , th , t i , t j , tk, t l , tm, tn, to, tp, tq , 
& t r , t s , t t , n r u n 

10 format(l l f7.1,2f7.2,2(f8.3,Ix) ,f7.1, lx,2f7.2,2(f8.3,Ix) , i5) 

return 
end 

subroutine heron(xl,yl,x2,y2,x3,y3,area) 

To f ind the area of a triangle using Heron's formula 

a = sqrt((x2 - xl)**2 + (y2 - yl)**2) 
b = sqrt((x3 - x2)**2 + (y3 - y2)**2) 
c = sqrt((xl - x3)**2 + (yl - y3)**2) 



s = 0.5*(a + b + c) 
d = s*(s - a)*(s - b)*(s - c) 

i f (d . le .OJthen 

area = 0. 
return 

else 

area = sqrt(d) 
return 

endif 

end 

subroutine intop(e,u,un,v,vn,em,um,vm) 

c Tp provide an interim output at the time horizon for e 

dimension u(ny,nx), v(ny,nx), un(ny,nx), 
& vn(ny,nx), e(ny,nx) 
integer um(ny,nx), vm(ny,nx), em(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common / s tar t / k ie ,k i s ,nrun ,rr 

do 1 i = l ,ny 
do 1 j = l ,nx 

em(i,j) = int(100.*e(i ,j)) 
um(i,j) = int(50.*(u(i , j) + un(i , j ) )) 
vm(i,j) = in t (50 .* (va , j) + vn( i , j ) ) ) 

1 continue 

j f = 40 
j i = j f - 6 

do 2 k = 1,1 

write(54,20)nrun,itc,ps i 
write(54,21) ( j , j , j = j i , j f ) 

do 2 i = 34,40 

write(54,22)i, (em(i , j ) ,um(i , j ) , j = j i , j f ) 
write(54,23)i , (vm(i ,j) , j = j i , j f ) 

2 continue 

20 format(Ihl,' run no. ' , 13 ,9x , 'T ida l Cycle no. ' , i2 ,9x , 
S'psi = ' , f6 .2 / / ) 

21 format(5x,2215/) 
22 format(13,2x,2215) 
23 format(i3,2x,ll(i5,5x)) 

return 
end 
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subroutine leenS(i,j,kwet,h,en,he) 

c——• to execute Leendertses' (1970) 3rd drying test 

dimension en(ny,nx), he(ny,nx), h(ny,nx), kwet(ny,nx) 
common / l i m / ny,nx 

if(kwet(i ,j) .eq.O)then 

return 

else 

kwet(i,j) = 1 
hn = 0.5*(h(i- l , j-1) + h ( i - l , j ) ) 
hmin = hh 
hs = 0.5*(h(i-, j-̂ 1) + h( i , j ) ) 

if(hs.gt.hmin) hmin = hs 

heast = 0.5*(h(i- l , j ) + h ( i , j ) ) 

if(heast.gt.hmin) hmin = heast 

hw = 0.5* (h(i-1, j-1) + h(i , j - l . ) ) 

if(hw.gt.hmin) hmin = hw 

ecr i t = 0.02 + hmin 

i f ( e n ( i , j ) . I t . e c r i t ) t h e n 

kwet(i,j) = 0 
en(i , j ) = he( i , j ) 

endif 

endif 

return 
end 

subroutine owen3(i,j,h,en,he,kwet) 

c to execute Owens' (1984) 3rd drying test 

dimension en(ny,nx), he(ny,nx), h(ny,nx), 
& kwet(ny,nx) 
common / l i m / ny,nx 

if(kwet(i ,j) .eq.O)then 

return 

else 

kwet(i,j) = 1 
hn = 0.5*(h(i-l ,j-1) + h ( i - l , j ) ) 
hmax = hn 

hs = 0.5*(h(i,j-1) + h ( i , j ) ) 

if(hs.It.hmax) hmax = hs 
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heast = 0.5*(h(i- l , j) +h{ i , j ) ) 

if(heast.It.hmax) hmax = heast 

hw = 0.5*(h(i-1,j-1) + h ( i , j - l ) ) 

if(hw.It.hmax) • hmax = hw 

ecr i t = 0.1+ hmax 

i f ( e n ( i , j ) . I t . e c r i t ) t h e n 

en( i , j ) = he(i , j ) 
kwet(i,j) = 0 . 

endif 

endif 

return 
end 

subroutine quiver(u,un,v,vn,e,he) 

To determine the magnitude and direction of the current 
vector for production of quivers 

dimension u(ny,nx), v(ny,nx), un(ny,nx), 
& vn(ny,nx), e(ny,nx), he(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /numb/ p i , r a d 

return 
end 

subroutine raise(h,he,deepp) 

To raise the sea-bed by 0.05m per time-step 

dimension he(ny,nx), deepp(ny,nx), h(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 

i f (psi .It .270. .or.psi .ge .350.)then 

return 

else 

do 1 i = l ,ny 
do 1 j = l ,nx 

h ( i , j ) = h ( i , j ) + 0.05 
he( i , j ) = he(i , j ) + 0.05 

1 continue 

do 2 i = l , n y - l 
do 2 j = l , n x - l 

deepp(i,j) = deepp(i,j) +0.05 



2 continue 

return 

endif 

end 

subroutine seten{en) 

To set en on the boundaries 

dimension en(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common / g r i d / ngs,nsbc,ndal 
common /numb/ p i , r a d 

ps ir = psin*rad 
wind = 1. 

if{itc.eq.0)wind = psin/360. 

if{ngs.eq.2)then 

North and South boundaries (1000m) 

pO = 0. 
do 1 j = l ,nx 

dp = (real(j) - 20.5)*0.005 
if{nsbc.eq.2)en(l,j) = 2.8*cos{psir - pO - dp)*wind 
en{ny,j) = 3.2*cos(psir - pO - dp)*wind 

1 continue 

Bast and West boundaries (1000m) 

if(nsbc.eq.1)then 

do 2 i = 20,40 

a = 3.+real(i-20)*0.01 
en(i,nx) = a*cos(psir - pO - 0.1)*wind 

2 continue 

return 

else 

do 3 i = 2,ny-1 

a = 3.+(real(i) - 20.5)*0.01 
if(nsbc.eq.2)en(i , l ) = a*cos(psir - pO + 0.1)*wind 

en(i,nx) = a*cos(psir - pO - 0.1)*wind 

3 continue 

return 
endif 



else 

c North and South boundaries (5000m) 

pO = 0. 
do 4 j = l ,nx 

dp = (real(j) - 20.5)*0.025 
if(nsbc.eq.2)en(l ,j) = 2.0*cos(psir - pO -dp)*wind 
en(ny,j) = 4.0*cos(psir - pO -dp)*wind 

4 continue 

c 

c East and West boundaries (5000m) 

if(nsbc.eq.1)then 

do 5 i = 10,40 

a = 3.+real(i-20)*0.05 

en(i,nx) = a*cos(psir - pO - 0.5)*wind 

5 continue 

return 

else 

do 6 i = 2,ny 
a = 3.+(real(i) - 20.5)*0.05 
en( i , l ) = a*cos(psir - pO + 0.5)*wind 
en(i,nx) = a*cos(psir - pO - 0.5)*wind 

6 continue 

return 

endif 

endif 

end 

subroutine sethhe(he,h) 
c ~ 
c To set h and he in case of hot-start 

dimension he(ny,nx), h(ny,nx) 
common / l i m / ny,nx 

common / g r i d / ngs,nsbc,ndal 

if(nsbc.eq.1)then 

do 100 i = l ,ny 

100 read{99,20)(he(i,j), j = l,nx) 

do 200 i = l ,ny 

200 read(99,20)(h(i,j), j = l , n x ) 



else 

do 500 i = l ,ny 

500 read(50,20)(he(i,j), j = l,nx) 

do 600 i = l ,ny 

600 read(50,20)(h(i,j), j = l,nx) 

endif 

20 format(5el6.5) 

return 
end 

subroutine setic(un,vn,en,e,u,v,h,he) 

To set i n i t i a l conditions 

dimension u(ny,nx), v(ny,nx), un(ny,nx), 
& vn(ny,nx), e(ny,nx), en(ny,nx), 
& he(ny,nx), h(ny,nx) 
common / l i m / ny,nx 
common / g r i d / ngs,nsbc,ndal 
common / s tar t /k i e ,k i s ,nrun ,rr 

do 50 i = l ,ny 
do 50 j = l ,nx 

en(i , j ) = 0. 
un(i , j ) = 0. 
vn( i , j ) = 0. 

50 continue 

i f (kis,eq..l)then 

Hot-start; e,u and v f ields read from euvstore 
and modified for dry ce l l s . 

do 60 i = l ,ny 

read(56,65) (e(i, j ) , j = l,nx) 

do 60 j = l ,nx 

i f (e(i, j) . l t . h e ( i , j ) ) e ( i , j) = he(i,.j) 

60 continue 

do 70 i = l ,ny 

read(56,65) (u(i, j ) , j = l,nx) 

do 70 j = l , n x - l 

i f ( ( e ( i , j ) - he( i , j)) . l t . l . 0e -06)u( i , j) = 0. 

i f ( (e ( i , j+ l ) - he( i , j+1)) . l t . l .0e-06)u( i , j ) = 

70 continue 





do 80 i = l , n y - l 

read(56,65)(v(i ,j) , j = l,nx) 

do 80 j = l ,nx 

i f ( ( e ( i , j ) - h e d , J)) . l t . l . 0e -06)v ( i , j) = 0. 
i f{{e(i+l,j) - hed+1, j)) . l t . l . 0e -06)v ( i , j) = 0. 

80 continue 

else 

Cold-start; e = u = v = 0 everywhere. 

do 150 i = 1, ny 
do 150 j = 1, nx 

e d , j) = 0. 
u d , j) •= 0. 
v ( i , j) = 0. 

continue 

i f(kie .eq.0)return 

c a l l setice(e) 
i f ( h d , j) .gt .5. . o r . h e d , j) .gt.5.)then 

do 160 i = l ,ny 
do 160 j = l ,nx 

e d , j ) = 0. 
u d , j ) = 0. 
v d , j ) = 0. 

160 continue 

endif 

endif 

65 format(5el6.5) 

return 
end 

subroutine setice(e) 

To set the i n i t i a l conditions on the boundaries. 

dimension e(ny,nx) 
common / l i m / ny, nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common / g r i d / ngs,nsbc,ndai 
common /numb/ p i , r a d 

ps i r = psi*rad 

do 100 i == l ,ny 

if(ngs.eq.l)da = real(i-20.5)*0.05 
if(ngs.eq.2)da = real(i-20.5)*0.01 



a = 3. + da 

do 100 j = l ,nx 

if(ngs.eq.l)dp = real(j-20.5)*0.025 
if{ngs.eq.2)dp = real(j-20.5)*0.005 

• p = (180.*rad) + dp 

e ( i , j ) = a*cos(psir - p) 

100 continue 

return 
end 

subroutine setwet(kh) 

To set everywhere wet 

dimension kn(ny,nx) 
common / l i m / ny,nx 

do 100 i = l ,ny 
do 100 j = l ,nx 

kn( i , j ) = 1 

100 continue 

return 
end 

subroutine s m o o l ( x , i s , j s , i i f , j j f ) 

To smooth a l ine of values 

dimension x(ny,nx), ws(70) 
common / l i m / ny,nx 

small = 1.Oe-06 

i f ( j s . eq . j j f ) then 

Meridional smoothing 

ws(is) = x ( i s , j j f ) 
ws(is+l) = 0.25*(x(is,jjf) + 2.*x(is+1,jjf) + x(is+2,jjf)) 
ws(i i f - l ) = 0.25*(x(i if-2,jjf) + 2 .*x( i i f -1 , j j f ) + 

& x ( i i f , j j f ) ) 
ws(iif) = X ( i i f , j j f ) 

do 8 1 = is+2,i i f-2 
do 6 i i = i-2,i+2 

i f (x ( i i , jjf) .g t .20 . .or .abs(x( i i , j j f ) ) .It.smalDgo to 7 

6 continue 

ws.(i) = {6.*x(i,jjf) + 4.*(x{i-l , j j f) + x( i+ l , j j f ) ) + 



& x{i-2 , j j f ) + x(i+2,jjf)) /16. 

go to 8 

7 ws(i) = x{ i , j j f ) 

8 continue 

do 9 i = i s , i i f 

x ( i , j j f ) = ws(i) 

9 continue 

return 

else 

Zonal smoothing 

i f { is .ne. i i f )return 

ws{js) = x{is,js) 
ws(js+l) = 0.25*(x(is,js) + 2.*x{is,js+l) +x(is,js+2)) 
ws(jjf- l) = 0.25*{x(is,jjf-2) + 2.*x(is , j j f-1) + x{ is , j j f ) ) 
ws(jjf) = x ( i s , j j f ) 
do 3 j = js+2,jjf-2 
do 1 j j = j-2,j+2 

i f (x(is, j j) .gt .20 . .or.abs (x(is, j j)) .It .smalDgo to 2 

continue 

ws(j) = {6.*x(is,j) + 4.*(x(is,j-1) + x(is ,j+l)) 
+ x( is , j -2) + x(is,j+2))/16. 

go to 3 

ws{j) = x ( i s , j ) 

continue 

do 4 j = j s , j j f 

x ( i s , j ) = ws(j) 

4 continue 

return 

endif 

end 

subroutine smooth(un,vn) 

c To smooth values of un and vn on the boundaries 

dimension un(ny,nx), vn(ny,nx) 
common / l i m / ny,nx 

c a l l smool(un,1,1,1,nx-1) 
c a l l smool(un,ny,l,ny,nx-1) 
c a l l smool(un,1,nx-1,ny,nx-1) 
c a l l smool(un,1,l,ny,1) 

1 

& 

2 

3 



c a l l smool(vn,1,1,1,nx) 
c a l l smool(vn,ny-1,1,ny-1,nx) 
c a l l smool.(vn, 1, nx, ny-1, nx) 
c a l l smool(vn,1,1, ny-1,1) 

return 
end 

subroutine stohhe(he,h) 

To store he and h at the end of the nth cycle 

dimension he(ny,nx), h(ny,nx) 
common / l i m / ny,nx 

rewind 50 

do 100 i = l ,ny 

write(50,200)(he(i,j) ,j = l,nx) 

100 continue 

do 150 i = l ,ny 

write(50,200) (h(i, j ) . , ' j = l,nx) 

150 continue 

200 format(5el6.5) 

return 
end 

subroutine store(he,e,u,v,hs) 

— To store e, u, v at the end of the nth cycle 

dimension e(ny,nx), he(ny,nx), u(ny,nx), 
& v(ny,nx), hs(ny,nx) 
common / l i m / ny,nx 

rewind 56 

do 10 i = l ,ny 
do 10 j = l ,nx 

hs( i , j ) = 0. 

10 continue 

do 60 i = l ,ny 

write(56,65) (e(i, j) , j = l,nx) 

60 continue 

do 61 i = l ,ny 

write(56, 65) (u(i, j ) , j = l,nx) 

61 continue 



do 62 i = l ,ny 

write(56,65) (v{ i , j ) , j = l,nx) 

62 continue 

do 63 i = l ,ny 

write(56,65)(hs{i ,j) ,j = l,nx) 

63 continue 

write(*,20) 

20 foirmat (/'Data have been stored in f i l e newstore') 
65 format(5el6.5) 

return 
end 

subroutine wasen(e,a,p) 

c To specify e on the boundaries 

dimension e(ny,nx), a(ny,nx), p(ny,nx) 
common / l i m / ny,nx 
common /time/ i t c , p s i , i t s , d t , h o u r , p s i n 
common /numb/ p i , r a d 

wind = i . 
wm2 = 28.98410422 
t = 12.42*psin/360.. 

i f ( i tc .eq.0)wind = psin/360. 

do 1 j = 40,nx 

e ( l , j ) = aCl, j)*cos((wm2*t - p ( i , j))*rad)*wind 

1 continue 

do 2 i = 2,24 

e(i,nx) = a(i,nx)*cos({wm2*t - p(i,65))*rad)*wind 

2 continue 

return 
end 

subroutine washhe(h,he) 

c To read h and he from washhe in case of 
c a hot start . 

dimension h(ny,nx), he(ny,nx) 
common / l i m / ny,nx 

open(43,file='washhe') 

do 100 i = l ,ny 





read(43,75) (h{i, j)., j = l,nx) 

100 continue 

do 200 i = l ,ny 

read(43,75)(he(i ,j) ,j = l,nx) 

200 continue 

75 format(65f5.1) 

return 
end 

subroutine wasic(un,vn,en,e,u,v,a,p) 

c To set the i n i t i a l conditions for the Wash. 

dimension un(ny,nx), vn(ny,nx), en(ny,nx), 
& e(ny,nx) ,u(ny,nx), v(ny,nx), 
& a(ny,nx), p(ny,nx) 

common / l i m / ny,nx 
common /numb/ p i , r a d 

do 100 i = l ,nx 
do 100 j = l ,ny 

un(i , j) 
vn{i,j) 
u ( i , j) 
v ( i , j ) 
e{i, j) 

100 continue 

c a l l wasice ( i , j , e ,a ,p) 

return 
end 

subroutine wasice(i ,j ,e ,a,p) 

c To read the boundary values of a ( i , j ) and p ( i , j ) 
c for the Wash model. 

dimension e(ny,nx), a(ny,nx), p(ny,nx) 
real amp,phase 
common / l i m / ny, nx 

open(10,file='was-bcez') 

do 50 m = 1,49 

read (10,111)i,j,amp 
a ( i , j ) = amp*0.001 

50 continue 

rewind 10 

= 0. 
= 0. 
= 0. 
= 0. 
= 0. 



do 100 m = 1,49 

read(10,112)i,j,phase 
p ( i , j) = phase*0.,l 

100 continue 

111 format(3x, 12,3x,12,31x,f5.0) 
112 format(3x,12,3x,12,36x,f5.0) 

return 
end 

subroutine wdtest(i , j ,el ,hl ,e2,h2,kn,uv) 

Wet or dry test using: 
Flather & Heaps' (1975). drying algorithm 

dimension kn(ny,nx) 
common / l i m / ny, nx 
kn{i,j) = 0 
uv = 0. 

go to 1000 

i f{e2.gt .20. .or.el .gt .20.)then 
kn( i , j ) = 0 
return 

else 

d l = e l - h i 
d2 = e2 - h2 

endif 

i f (dl . le .O. .and.d2.1e.0 . ) then 
kn( i , j ) = 0 
return 

e l se i f (d l . l e .0 . ) then 

if((e2 - e l) . le .0 .1)then 
kn( i , j ) = 0 
return 

else 

kn( i , j ) = 1 
return 

endif 

elseif(d2. le .0.)then 

i f ( ( e l - e2).le.0.1)then 
kn( i , j ) = 0 
return 

else 

kn( i , j ) = 1 
return 



endif 

else 

kn(i,,j) = 1 
return 

endif 

return 

1000 i f ( (e2 .gt .20 . .or ,e l .gt .20 . ) )return 

d l = e l - h i 
d2 = e2 - h2 
i f ( (d l . l e .0 . .and .d2 . l e .0 . ) ) re turn 
i f (d l . l e .O . )go to 2 
if(d2.1e.0.)go to 3 
go to 5 

2 if((e2 - e l ) . le .0 .1)return 
go to 5 

3 i f ( ( e l - e2).le.0.1)return 
5 kn( i , j ) = 1 

return 
end 

subroutine wetest(i,j,kwet,e,he,dn,ds,de,dw) 
c 
c to test whether a dry c e l l has become wet (Leendertse 1970) 

dimension e(ny,nx), he(ny,nx), kwet(ny,nx) 
common / l i m / ny,nx 

kwet{i,j) = 0 
k4 = 0 
emean = 0. 

i f ( e ( i - l , j ) . g t . h e ( i - l , j ) . o r . d n . g t . 0 . ) t h e n 

k4 = k4 + 1 

emean = emean + e ( i - l , j ) 

endif 

i f (e ( i+ l , j ) .g t .he( i+ l , j ) .or .ds .g t .0 . ) then 

k4 = k4 + 1 

emean = emean + e(i+l ,j) 

endif 

i f (e(i, j+1) . g t . h e d , j+1) .or .de.gt. 0 .) then 

k4 = k4 + 1 
emean = emean + e(i , j+l) 

endif 

i f (e{ i , j -1) .gt .he( i , j -1) .or .dw.gt .0 . ) then 

k4 = k4 + 1 
emean = emean + e ( i , j - l ) endif 



if(k4.ne.0)tKen 

emean = emean/real(k4) 
i f (emeah.ge.e (i,. j)) kwet"(i, j) = 1 

endif 

return 
end 

subroutine wetowe(i,j,kwet,e,he,dn,ds,de,dw) 

c To test for a flooding c e l l using Owewns' (1984) 
c improved method 

dimension e(ny,nx), he(ny,nx), kwet{ny,nx) 
common / l i m / ny,nx 

kwet(i,j) =0 
kx =0 
emeah = 0. 

i f ( e ( i - l , j ) . g t . h e ( i - l , j ) . o r . d n . g t . O . . o r . ( - h e { i - l , j ) + e ( i - l , j ) ) . g t 
& . ( -he( i , j ) + e( i , j ) ) ) then 

kx = kx + 1 
emean = emean + e ( i - l , j ) 

endif 

i f ( e ( i+ l , j ) . g t .he ( i+ l , j ) . or .ds .g t .0 . . or . ( -he ( i+ l , j ) + e ( i+ l , j ) ) .g t 
& . ( -he( i , j ) + e( i , j ) ) ) then 

kx = kx + 1 
emean = emean + e(i+l , j) 

endif 

i f {e(i, j+1) . g t . h e d , j+1) ".or.de.gt.O. .or . (-he(i, j+1) + e ( i , j+1)) .gt 
& . ( -he( i , j ) + e( i , j ) ) ) then 

kx = kx + 1 
emean = emean + e(i , j+l) 

endif 
i f ( e ( i , j -1 ) .g t .he ( i , j -1 ) .or .dw.g t .0 . . or . ( -he ( i , j -1 ) + e{ i , j -1)) .gt 

& . ( -he( i , j ) + e{i ,j)))then 

kx = kx + 1 
emean = emean + e ( i , j - l ) 

endif 

if(kx.ne.O)then 

emean = emean/real(kx) 
if(emean.gt.e(i ,j))kwet(i, j) = 1 

endif 

return 
end 



APPENDIX 2 





c 
c 
c 

around an E-point .? (Y/N) 

, Would you like a plot of terms, obtained from:' 

*,'2: Leendertses (1970) method. 

or 
4: George & Striplings (1993) much improved method ?' 

10 

ioo 

150 

11 

200 

PROGRAM GPLOT 

To plot terms using GINOGRAF routines. 

DIMENSION TX.(360,21) ,KQ(5)/TE(360,11) 
CHARACTER FL0W*1 
CALL GINO 
CALL PLOTTR 
CALL DEVPAP(400.,300.,0) ' 
CALL SHIFT2(0.,50.) 
CALL PA4F 
NDAL=4 
PRINT *, ' ' 
PRINT *,'Would you like to analyse the flow' 
PRINT *,' ' 
PRINT *, 
PRINT *,'• 
READ(*,'(Al)')FLOW 
IF(FLOW.EQ.'Y')GO TO 1000 
PRINT *,' 
PRINT * 
PRINT * , ' l : Flather & Heaps (1975) method,' 
PRINT * 
PRINT 
PRINT 
PRINT *,'3: Owens (1984) improved method 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT * 
READ *,NDAL 
IF(NDAL.EQ.1)G0 TO 900 
IF(NDAL.EQ.2)GO TO 500 
IF(NDAL.EQ.3)GO TO 159 
OPEN(63,FILE='DDS') 
DO 100 1=1,360 
READ(63,10)(TX(I,J),J=l,10) 
FORMAT(10F7.1) 
DO 100 J=l,10 
TX(I,J)=TX(I, J)/100. 
READ (63, 150) NRUN 
FORMAT(148X,16) 
CALL M0VT02(100.,180.) 
CALL CHASIZ(3.,3.) 
CALL M0VBY2(10., 0.) 
CALL M0VT02 (70. , 185 .) 
CALL CHAINT(NRUN,3) 
CALL M0VT02(90.,185.) 
CALL CHAHOL(30HGEORGE & STRIPLING'S (1993) *.) 
CALL CHAH0L(18HDRYING ALGORITHM*.) 
REWIND 63 
DO 200 1=1,360 
REM)(63,11) (TX(I, J) , J=ll,15) 
FORMAT(70X,F7.1,2F7.2,F8.3,F9.3) 
TX(I,11)=TX(I,11)/lOO. 
IF(TX{I,5).LE.0.)TX(I,11)=0. 
TX(I,12)=TX(I,12)*10. 
IF(TX{I,5).LE.0.)TX(I,12)=0. 
TX(I,13)=TX(I,13)*10. 
IF(TX(I,5).LE.0.)TX(I,13)=0. 
TX(I,14)=TX(I,14)*10. 
IF(TX(I,5).LE.0.)TX(I,14)=0. 
TX(I,15)=TX{I,15)*10. 
IF(TX(I,5).LE.0.)TX(I,15)=0. 
CONTINUE 



REWIND 63 
DO 300. 1=1,360 
READ (63,12) (-TXd, J) , J=16,20) ,NRUN 

12 FORMAT{108X,F8.1,F8.2,F7.2,F8.3,F9.3,I6) 
TX(I,16)=TX(I,16)/lOO. 
IF(TX(I,5),LE.0.)TX(I,16)=O. 
TX(I,17)=TX(I,17)*10. 
IF(TX(I,5).LE.0,)TX(I,17)=0. 
TX(I,18)=TX(I,18)*10. 
IF(TX(i,5).LE.0.)TX(I,18)=O. 
TX(I,19)=TX(I,19)*10. 
IF(TX(I,5).LE.0.)TX(I,19)=0. 
TX(I,20)=TX(I,20)*10. 
IF (TXd,5) .LE.0.)TX(I,20)=0. 

300 CONTINUE 
C TO CALCULATE A B A S I C . TIDE-CURVE FOR NO SHOAL PRESENT 

DO 301 1=1,360 
A=REAL(I-1) 

301 TX(I,21)=2.*COS((A-180.)*0,0174532925) 
CALL SGE^EN(KQ,KHE,KUV,KAC) 
CALL AXISTT 
CALL AXISHE(KHE) 
CALL AXISUV(KUV,NDAL) 
CALL AXISAC(KAC) 
CALL SHIFT2(90.,100.) 
CALL DRA5L(TX,KQ,NDAL) 
GO TO 90 

500 OPEN(62,FILE='DDLS') 
DO 501 1=1,360 
A=REAL(I-1) 

501 TX(I,21)=2.*COS((A-180.)*0.0174532925) 
DO 600 1=1,360 
READ(62,16)(TX(I,J),J=l,10) 

16 FORMAT(10F7.1) 
DO 600 J=l,10 

600 TX(I,J)=TX(I,J)/lOO. 
READ(62,650)NRUN 

650 FORMAT(148X,16) 
CALL M0VT02(100., 180.) 
CALL CHASIZ(3.,3.) 
CALL M0VBY2(10.,0.) 
CALL M0VT02(70., 185.) 
CALL CHAINT(NRUN,3) 
CALL M0VT02(90.,185.) 
CALL CHAHOL(20HLEENDERTSES' 1970 *.) 
CALL CHAH0L(18HDRyiNG ALGORITHM*.) 
REWIND 62 
DO 700 1=1,360 
READ(62,18)(TX(I,J),J=ll,15) 

18 FORMAT(70X,F7.1,2F7.2,F8.3,F9.3) 
TX(I,11)=TX(I,11)/100. 
TX(I,12)=TX(I,12)*10. 
TX(I,13)=TX(I,13)*10. 
TX(I,14)=TX(I,14)*10. 
TX(I,15)=TX(I,15)*10. 

700 CONTINUE 
REWIND 62 
DO 800 1=1,360 
READ{62,19) (TXd, J) , J=16,20) ,NRUN 

19 FORMAT(108X,F8.1,F8.2,F7.2,F8.3,F9.3,I6) 
TX(I,16)=TX(I,16)/lOO. 
TX(I,17)=TX(I,17)*10. 
TX(I,18)=TX{I,18)*10. 
TX(I,19)=TX(I,19)*10. 
TX{I,20)=TX(I,20)*10. 

800 CONTINUE 



CALL SCREEN (KQ,KHE,KUV, KAC) 
CALL AXISTT 
CALL AXISHE(KHE) 
CALL AXISUV(KUV,NDAL) 
CALL AXISAC{KAC) 
CALL S.HIFT2 (90.,100.) 
CALL DRA5L(TX,KQ,NDAL) 
GO TO 90 

C- To plot terms from Owens (1984) algorithm. 
159 OPEN(64,FILE='DDOS') 

DO 156 1=1,360 
A=REAL(I-1) 

156 TX(I,21)=2.*COS((A-180.)*0.0174532925) 
DO 160 1=1,360 
READ(64,161)(TX(I,J),J=l,10) 

161 FORMAT(10F7.1) 
DO 160 J=l,10 

160 TX(I,J)=TX(I,J)/100. 
READ(64,162)NRUN 

162 FORMAT(148X,16) 
CALL MOVTO2(100.,180.) 
CALL CHASI2;(3.,3.) 
CALL M0VBY2(10.,0.) 
CALL M0VT02(70. , 185.) 
CALL CHAINT(NRUN,3) 
CALL M0VT02(90.,185.) 
CALL CHAHOL{23HOWENS' 1984 IMPROVED *.) 
CALL CHAH0L(18HDRYING ALGORITHM*.) 
REWIND 64 
DO 163 1=1,360 
READ(64,164)(TX(I,J),J=ll,15) 

164 FORMAT(70X,F7.1,2F7.2,F8.3,F9.3) 
TX(I,11)=TX(1,11)/lOO. 
TX(I,12)=TX(I,12)*10. 
TX(I,13)=TX(I,13) *10. 
TX(I,14)=TX(I,14) *10. 
TX(I,15)=TX(I,15) *10. 

163 CONTINUE 
REWIND 64 
DO 165 1=1,360 
READ(64,166)(TX(I,J),J=16,20),NRUN 

166 FORMAT(108X,F8.1,F8.2,F7.2,F8.3,F9.3,I6) 
TX(I,16)=TX(I,16)/100. 
TX(I,17)=TX(I,17)*10. 
TX(I,18)=TX(I,18) *10. 
TX(I,19)=TX(I,19)*10. 
TX(I,20)=TX(I,20)*10. 

165 CONTINUE 
CALL SCREEN(KQ,KHE,KUV,KAC) 
CALL AXISTT 
CALL AXISHE(KHE) 
CALL AXISUV(KUV,NDAL) 
CALL AXISAC(KAC) 
CALL SHIFT2(90.,100.) 
CALL DRA5L(TX,KQ,NDAL) 

900 OPEN(23,FILE='DDF') 
DO 904 1=1,360 
READ(23,902)(TX(I,J),J=l,10) 

902 FORMAT(10F7.1) 
DO 904 J=l,10 

904 TX(I,J)=TX(I, J)/100. 
READ (23, 950) NRUN 

950 FORMAT(148X, 16) 
CALL MOVTO2(100.,180.) 
CALL CHASIZ(3.,3.) 
CALL MOVBY2(10.,0.) 



CALL M0VT02(70;,185.) 
CALL GHAINT(NRUN,3) 
CALL. M0VT02 (90..., 185 .,) 
CALL CHAHOL(24HFLATHER & HEAPS' 1975 *.) 
CALL CHAHOLdSHDRYING ALGORITHM*.) 
REWIND 23 
DO 908 1=1,360 
READ(23,910) (TX(I,J),J=ll,15) 

910 FORMAT(70X,F7.1,2F7.2,F8.3,F9.3) 
TX(I,11)=TX(I,11)/100. 
TX(I,12)=TX(I,12) *10. 
TX(I,13)=TX(I,13)*10. 
TX(I,14)=TX(I,14)*10. 
TX(I,15)=TX(I,15)*10. 

908 CONTINUE 
REWIND 23 
DO 915 1=1,360 
READ(23,912)(TX(I,J),J=16,20),NRUN 

912 FORMAT(108X,F8.1,F8.2,F7.2,F8.3,F9.3,I6) 
TX(I,16)=TX(I,16)/100. 
TX(I,17)=TX(I,17) *10. 
TX(I,18)=TX(I,18)*10. 
TX(I,19)=TX(I,19)*10. 
TX(I,20)=TX(I,20)*10. 

915 CONTINUE 
C TO CALCULATE A BASIC TIDE-CURVE FOR NO SHOAL PRESENT 

DO 920 1=1,360 
A=REAL(I-1) 

920 TX(I,21)=2.*COS((A-180.)*0.0174532925) 
CALL SCREEN;(KQ,KHE,KUV,KAC) 
CALL AXISTT 
CALL AXISHE(KHE) 
CALL AXISUV(KUV,NDAL) 
CALL AXISAC(KAC) 
CALL SHIFT2(90.,100.) 
CALL DRA5L(TX,KQ,NDAL) 

1000 OPEN(64,FILE='DDSE') 
DO 1010 1=1,360 

1010 READ(64,1020)(TE(I,J),J=l,10) 
1020 FORMAT(10F6.1,F5.2) 

REWIND 64 
READ(64,1030)NRUN 

1030 FORMAT(65X,15) 
CALL MOVTO2(100.,180.) 
CALL CHASIZ(3.,3.) 
CALL M0VBY2(10.,0.) 
CALL M0VT02(70.,185.) 
CALL CHAINT(NRUN,3) 
CALL M0VT02(90., 185.) 
CALL CHAH0L(24HFL0W AROUND 'E' POINT *.) 

C CALL CHAINT(IF,3) 
C CALL •CHAINT(JF,2) 

CALL SCRNE(KQ,KHE,KUV) 
CALL AXISTT 
CALL AXISHE{KHE) 
CALL AXISUV(KUV,NDAL) 
CALL SHIFT2(90.,100.) 
CALL DRA5LE(TE,KQ) 

90 CALL GINEND 
STOP 
END 

SUBROUTINE PA4F 
C to draw an A4 frame horizontally. 

CALL MOVTO2(0.,0.) 
CALL LINBY2(297.,0.) 





CALL L INBY2(0 . , 210 . ) 
CALL LINBY2(-29 ,7 . ,0.) ' 
CALL L I N B Y 2 ( 0 . , - 2 1 0 . ) 
RETURN 
END 

SUBROUTINE SCREEN(KQ,KHE,KUV,KAC) 
C- t o c h o o s e t e r m s f r o m t h e SCREEN. 

DIMENSION KQ(5) 
KHE=0 
KUV=0 
KAC=0 
WRITE(1,20) 

20 FORMAT(/ 'The t e r m s a v a i l a b l e a r e as f o l l o w s : ,0 = no c u r v e ' ) 
PRINT * 
PRINT * , ' l : D e p t h e a s t o f t h e t e s t - c e l l ' 
PRINT * , ' 2 : D e p t h w e s t o f t h e t e s t - c e l l ' 
PRINT * , ' 3 : D e p t h n o r t h o f t h e t e s t - c e l l ' • 
PRINT * , ' 4 : D e p t h s o u t h o f t h e t e s t - c e l l ' 
PRINT * , '5 : D e p t h o f t h e t e s t - c e l l ' 
PRINT * , ' 6 : E l e v a t i o n e a s t o f t h e t e s t - c e l l ' 
PRINT * , ' 7 : E l e v a t i o n w e s t o f t h e t e s t - c e l l ' 
PRINT * , ' 8 : E l e v a t i o n n o r t h o f t h e t e s t - c e l l ' 
PRINT * , '9 : E l e v a t i o n s o u t h o f t h e t e s t - c e l l ' 
PRINT * , ' 1 0 : E l e v a t i o n i n t h e t e s t - c e l l ' 
PRINT * , ' l l : E a s t w a r d v e l o c i t y component ' 
PRINT *f'12: E a s t w a r d t e m p o r a l a c c e l e r a t i o n ' 
PRINT * , ' 1 3 : E a s t w a r d C o r i o l i s a c c e l e r a t i o n ' 
PRINT * , ' 1 4 : E a s t w a r d p r e s s u r e f o r c e / m a s s ' 
PRINT * , ' 1 5 : E a s t w a r d f r i c t i o n a l f o r c e / m a s s ' 
PRINT * , ' 1 6 : N o r t h w a r d v e l o c i t y component ' 
PRINT * , ' 1 7 : N o r t h w a r d t e m p o r a l a c c e l e r a t i o n ' 
PRINT * , ' 1 8 : N o r t h w a r d C o r i o l i s a c c e l e r a t i o n ' 
PRINT * , ' 1 9 : N o r t h w a r d p r e s s u r e f o r c e / m a s s ' 
PRINT * , ' 2 0 : N o r t h w a r d f r i c t i o n a l f o r c e / m a s s ' 
PRINT * , ' 2 1 : Base c u r v e f o r e l e v a t i o n s ' 
WRITE(1,10) 

10 FORMAT(/' Type t h e code numbers f o r 5 v a r i a b l e s ' ) 
READ(1,* )KQ 
DO 1 K = l , 5 
IF (KQ(K) .EQ.O)GO TO 1 
IF (KQ(K) .LE .10)KHE=1 
I F ( (KQ(K) . E Q . l l ) .OR. (KQ(K) .EQ.16) ).KUV=1 
I F ( ( K Q ( K ) . G E . 1 2 ) , A N D . ( K Q ( K ) . L E . 1 5 ) ) K A C = 1 
IF( . (KQ(K) .GE.17) .AND. (KQ (K) . LE . 20) ) KAC=1 

1 CONTINUE 
RETURN 
END 

SUBROUTINE AXISTT 
C t o p l o t a x i s f o r T i d a l Time ( d e g r e e s ) 

CALL S H I F T 2 ( 9 0 . , 1 0 0 . ) 
GALL A X I P O S ( 1 , 0 . , 0 . , 1 8 0 . , 1 ) 
CALL A X I S C A ( 2 , 3 6 , 0 . , 3 6 0 . , 1 ) 
CALL A X I D R A d , 1,1) 
CALL AXNSTRCTIDAL TIME ANGLE ( d e g r e e s ) ' , - 9 0 . , 1 , 0) 
CALL S H I F T 2 ( - 9 0 . , - 1 0 0 . ) 
RETURN 
END 

SUBROUTINE AXISAC(KAC) 
C t o p l o t AXIS f o r A c c e l e r a t i o n s 

IF(KAC.EQ.O)RETURN 
CALL S H I F T 2 ( 3 0 . , 1 0 0 . ) 
CALL A X I P O S ( 1 , 0 . , - 7 5 . , 1 5 0 . , 2 ) 
CALL A X I S C A ( 2 , 6 , - 0 . 0 0 3 , 0 . 0 0 3 , 2 ) 



CALL AXIDRA{-2,-^l,2) 
CALL AXNSTR ('ACCELERATION (m/s**.**2) ',-15 . , -2 , 0) 
CALL SHIFT2 (-30.,-100..) 
KAC=0 
RETURN 
END 

SUBROUTINE AXISHE(KHE) 
C to plot AXIS for water depth 

IF(KHE.EQ.0)RETURN 
CALL SHIFT2(90.,100.) 
CALL AXIPOS(1,0.,-75.,150.,2) 
CALL AXISCA(2,8,-4.0,4.0,2) 
CALL AXIDRA(-2,-l,2) 
CALL AXNSTR('WATER DEPTH, (m)' ,-15.,-2,0) 
CALL SHIFT2(-90.,-lO0.) ' 
KHE=0 
RETURN 

• END 

SUBROUTINE AXISUV(KUV,NDAL) 
C ~ — to plot AXIS for plot Of velocity 

IF(KUV.EQ.0)RETURN 
CALL SHIFT2(60.,100.) 
CALL AXIPOS(1,0.,-75.,150., 2) 
IF(NDAL.EQ.1)CALL AXISCA(2,20,-1.0,1.0,2) 
IF((NDAL.EQ.2).OR.(NDAL.EQ.3))CALL AXISCA(2,20,-2.0,2.0,2) 
CALL AXIDRA(-2,-l,2) 
CALL AXNSTR('VELOCITY, (m/s)',-15.,-2,0) 
CALL SHIFT2(-60i,-100.) 
KUV=0 
RETURN 
END 

SUBROUTINE DRA5L(TX,KQ,NDAL) 
C to DRAw up to 5 Lines 

DIMENSION TX(360,21) ,KQ̂ (5) ,Q(360) ,MCOL(30) 
CHARACTER*50 TITEL(30) 
DATA MCOL /6,5,7,2,9,6,5,7,2,9,2,2,4,5,6,7,9,1,0,0,2,2,4,5,6,7,9,0, 

+0,0/ 
DO 1 L=l,30 

1 TITEL(L)=' ' 
TITEL(l)='Depth east of the t e s t - c e l l ' 
TtTEL{2)='Depth west of the t e s t - c e l l ' 
TITEL(3)='Depth north of the t e s t - c e l l ' 
TITEL(4)='Depth south of the te s t - c e l l ' 
TITEL(5)='Depth of the t e s t - c e l l ' 
TITEL(6)='Elevation east of the t e s t - c e l l ' 
TITEL(7)='Elevation west of the t e s t - c e l l ' 
TITEL(8)='Elevation north of the t e s t - c e l l ' 
TITEL(9)='Elevation south of the te s t - c e l l ' 
TITEL(10)='Elevation in the t e s t - c e l l 
TITEL(11)='Eastward velocity component ' 
TITEL(12)='Eastward temporal acceleration ' 
TITEL(13)='Eastward Coriolis acceleration ' 
TITEL(14)='Eastward pressure force/mass ' 
TITEL(15)='Eastward f r i c t i o n a l force/mass ' 
TITEL(16)='Northward velocity component ' 
TITEL(17)='Northward temporal acceleration ' 
TITEL(18)='Northward Coriolis acceleration ' 
TITEL(19)='Northward pressure, force/mass ' 
TITEL(20)='Northward f r i c t i o n a l force/mass ' 
TITEL(21)='Base curve for elevations ' 
DO 2 K=l,5 
LQ=KQ(K) 
IF(LQ.EQ.0)GO TO 2 



DO 3 1=1,360 
3 Q ( I ) = T X ( I , L Q ) 

F=19 .5 
I E ( L Q . G T . 1 0 ) F = 0 . 1 2 5 
I F . ( ( L Q . E Q . l l ) ..OR., ( L Q . E Q . 1 6 ) ) F = 7 5 . 
I F ( L Q . E Q . 2 1 ) F = 1 9 . 5 
C A L L D E L L I N ( Q , F , M C O L ( L Q ) ) 
Y = - 6 0 . - R E A L(K - 1 ) * 6 . 
C A L L M O V T O 2 ( 1 0 . , Y ) 
C A L L L I N B Y 2 ( 1 5 . , 0 . ) 
C A L L M O V T O 2 ( 3 0 . , Y ) 
C A L L C H A S I Z ( 2 . , 2 . ) 
C A L L C H A S T R ( T I T E L ( L Q ) ) 

2 CONTINUE 
RETURN 
END 

SUBROUTINE DELLIN(Q,F,NCOL) 
DIMENSION Q(360)" 
CALL LINCOL(NCOL) 
DO 2 1=1,360 
Y=Q(I)*F 
X=REAL(I-1)*0.5 
IF{I.GT.1)G0 TO 1 
CALL M0VT02(X,Y) 
GO TO 2 

1 CALL LINT02(X,Y) 
2 CONTINUE 
RETURN 
END 

C 

20 

10 

SUBROUTINE SCRNE(KQ,KHE,KUV) 
to choose terms from the SCREEN. 

DIMENSION KQ(5) 
KHE=0 
KUV=0 
KAC=0 
WRITE(1,20) 
FORMAT(/'The terms available are as follows: 
PRINT * 

* , ' l : U ( i , j ) ' 
*,'2: U(i,j-1)' 
*,'3: V ( i , j ) ' 
*,'4: V ( i - l , j ) ' 
*,'5: Depth at the U-point 

Depth at the V-point 
Depth at the U-point 
Depth at the V-point 
Depth at the E-point' 

,0 = no curve') 

'6: 
' 7 : 

*,'8: 
9: 

PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT *,'1C 
WRITE(1,10) 
FORMAT(/' Type 
READ(1,*)KQ 
DO 1 K=l,5 
IF(KQ(K) .EQ.O)GO TO 
IF(KQ(K) .LT.5)KUV=1 
IF(KQ(K) .GT.4)KHE=1 
CONTINUE 
RETURN 
END 

east of the E-point' 
south of the E-point' 
west of the E-point' 
north of the E-point' 

Computational depth of the c e l l ' 

the code numbers for up to 5 variables') 

SUBROUTINE DRA5LE(TE,KQ) 
C to DRAW up to 5 Lines 

DIMENSION TE(360,11),KQ(5),Q(360),MCOL(30) 
CHARACTER*50 TITEL.(30) 
DATA MGOL/6,5,7,2,9,6,5,7,2,9,2,2,4,5,6,7,9,1,0,0,2,2,4,5,6,7,9,0, 



+0,0/ 
DO 1 L=l,15 

1 TITEL(L)=' 
TITEL(l)='U(i, j) 
TITEL{2)='U(i,j-1) 
TITEL(3)='V(i,j) 
TITEL(4)='V(i-l , j) 
TITEL(5)='Depth at the U-point east of the E-point 
TITEL(6)='Depth at the V-point south of the E-point 
TITEL(7)='Depth at the U-point west of the E-point 
TiTEL{8)='Depth at the V-point north of the E-point 
TITEL(9)='Depth at the E-point 
TITEL(10)='Computational depth of the c e l l 
DO 2 K=l,5 
LQ=KQ(K) 
IP{LQ.EQ.0)GO TO 2 
DO 3 1=1,360 

3 Q(I)=TE(I,LQ) 
F=0,195 
IF( (LQ.GE.l) .AND. (LQ.LT-.5) )F=0 .75 
CALL DELLIN(Q,F,MCOL(LQ)) 
Y=-60.-REAL(K-1)*6. 
CALL M0VT02(10.,Y) 
CALL LINBY2(15.,0.) 
CALL M0VT02(30.,Y) 
CALL CHASIZ(2.,2.) 
CALL CHASTR{TITEL(LQ)) 

2 CONTINUE 
RETURN 
END 



APPENDIX 3 



TIME DEPTH VEL. 

Station 0 

8.65 
8.67 

8.7 
8.72 
8.75 
8.78 

8.8 
8.82 
8.83 
8.87 
8.88 
8.93 
8.95 
8.97 

9 
9.25 
9.5 

9.75 
10 

10.25 
10.5 

10.75 
10.97 
11.02 
11.05 

11.1 
11.12 
11.13 
11.15 
11.17 
11.18 
11.19 
11.21 
11.24 
11.26 
11.28 
11.29 
11.31 
11.33 

24.6.93 

0.92 0.047 
0.95 0.065 
1.06 0.093 
1.11 0.112 
1.14 0.102 
1.19 0.064 
1.22 0.072 
1.25 0.07 
1.27 0.071 
1.3 0.057 

1.32 0.058 
1.36 0.054 
1.39 0.054 

0.052 
1.48 0.058 

1.6 0.06 
1.7 0.081 
1.8 0.075 
1.8 0.064 
1.6 0.06 

1.54 0.053 
1.25 0.022 
1.24 0.047 
1.16 0.047 
1.12 0.063 
1.08 0.088 
1.06 0.081 
1.05 0.082 
1.03 0.105 
1.02 0.085 

1 0.088 
0.97 0.151 
0.96 0.135 
0.94 0.197 
0.93 0.125 
0.92 0.125 
0.91 0.117 

0.9 0.128 
0.89 0.124 



11.34 0.85 0.102 

STAT 1 21.6.93 

TIME DEPTH VEL. 

6.67 1.2 0.192 
6.75 1.25 0.113 

7 1.5 0.071 
7.25 1.6 0.082 
7.5 1.8 0.07 

7.75 1.8 0.063 
8 1.7 0.057 

8.25 1.6 0.05 
8.5 1.4 0.05 

8.75 1.2 0.082 
9 1.15 0.147 

9.25 1.1 0.18 

STAT 3(b) 23.6.93 

TIME DEPTH V E L SET 

20.05 0.86 0.311 
20.07 0.9 0.417 

20.1 1 0.247 
20.13 1.05 0.196 
20.15 1.1 0.146 
20.17 1.13 0.149 
20.18 1.2 0.182 
20.22 1.25 0.157 
20.23 1.27 0.173 
20.25 L34 0.166 
20.5 1.6 0.154 350 

20.75 1.9 0.155 
21 2.1 0.122 340 

21.25 2.3 0.069 
21.5 2.4 0.071 10 

21.75 2.4 0.06 
22 2.3 0.058 30 

22.25 2.2 0.041 



22.5 2.17 0.047 40 
22.75 1.9 0.047 

23 1.6 0.075 50 
23.25 1.4 0.122 
23.5 1.25 0.167 90 

23.58 1.15 0.149 
23.6 1.1 0.134 

23.62 1.06 0.13 
23.63 1.05 0.13 
23.65 1 0.142 
23.68 0.95 0.158 
23.7 0.93 0.116 70 

23.72 0.9 0.098 

STAT 4 19.6.93 

TIME DEPTH VEL. SET 

17.25 1.1 0.135 
17;5 1.5 0.115 

17.75 1.8 0.146 310 
18 2 0.144 340 

18.25 2.1 0.19 
18.5 2.15 0.155 330 

18.75 2.2 0.229 
19 2.1 0.076 10 

19.25 2 0.044 
19.5 1.9 0.078 40 

19.75 1.7 0.102 
20 1.5 0.108 60 

20.25 1.3 0.044 

STAT 5a 21.6.93 

TIME DEPTH VEL. 

18.43 0.88 0.162 
18.45 0.93 0.351 
18.47 0.98 0.256 
18.48 1.02 0.275 
18.53 1.08 0.273 





18.57 1.12 0.177 
18.58 1.15 0.138 
18.67 1.29 0.145 
18.92 1.6 0.168 
19.25 2.05 0.149 
19.5 2.3 0.159 

19.75 2.35 0.147 
20 2.45 0.177 

20.25 2.48 0.175 
20.5 2.37 0.127 

20.75 2.33 0.095 
21 2.15 0.09 

21.25 1.95 0.091 
21.5 1.75 0.123 

21.75 1.5 0.126 
22 1.28 0.123 

22.12 1.1 0.118 
22.13 1.08 0.104 
22.15 1.05 0.107 
22.17 1.03 0.115 
22.18 1.01 0.11 

22.2 0.99 0.114 
22.22 0.97 0.101 
22.23 0.95 0.114 
22.25 0.93 0.154 
22.26 0.91 0.119 
22.28 0.9 0.154 
22.3 0.88 0.079 

22.32 0.86 0.173 
22.33 0.84 0.088 

STAT 5b 19.6.93 

TIME DEPTH VEL. 

4.75 1 0.14 
5 1.4 0.153 

5.25 1.6 0.136 
5.5 1.9 0.172 

5.75 2 0.16 
6 2.1 0.19 

6.25 2.2 0.183 



6.5 2.2 0.113 
6.75 2.1 0.117 

7 2 0.104 
7.25 1.8 0.101 
7.5 1.7 0.1 

7.75 1.5 0.094 
8 1.3 0.091 

STAT 6 22.6.93 

TIME DEPTH VEL. 

18.8 0.82 0.298 
18.82 0.87 0.318 
18.83 0.96 0.315 
18.85 0.97 0.438 
18.87 1.03 0.432 
18.88 1.05 0.399 

18.9 1.09 0.444 
18.92 1.16 0.424 
18.93 1.22 
18.95 1.29 
18.98 1.31 

19 1.37 0.399 
19.08 1.41 0.373 
19.17 1.57 0.35 
19.25 1.8 0.345 
19.33 1.97 0.323 310 
19.42 2.05 0.298 

19.5 2.2 0.275 
19.75 2.65 0.198 300 

20 2.8 0.163 
20.25 3.2 0.126 10 
20.5 3.3 0.116 

20.75 3.35 0.168 40 
21 3.38 0.179 

21.25 3.3 0.189 60 
21.5 3.25 0.163 

21.75 3.05 0.136 60 
22 2.9 

22.33 2.7 0.123 80 
22.5 2.55 0.103 





22.75 2.28 0.122 
23 2.02 0.149 

23.25 1.64 0.208 
23.5 1.35 0.229 

23.67 1.13 0.203 
23.75 0.99 0.163 

23.8 0.93 
23.83 0.91 
23.85 0.89 
23.87 0.87 
23.88 0.84 
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0,4 53 12,00 0-12, L 
0.4 53 06,00 0-12. L 
0.4 53 00.00 0-12. L 
0.4 52 54.00 0-12. Welland 

-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 -70 -70 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 -70 -70 -70 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 -70 -70-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-260-200-200-200-200-200-200-200-200-200-200-200-200 
-200-260-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-260-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 

0.4 52 48.00 0-12. L 
0.4 53 12.00 00 00. North of Boston L 
0.4 53 06.00 00 00. Boston 

-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -72 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -64 -71-069 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -57 -65 -60 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -56 -56 -57 -59 -54 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -57 -57 -55 -53 -49 -38 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -57 -57 -57 -46 -35 -32 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -51 -47 -45 -43 -35 -33 

0.4 53 00.00 00 00. (TO BE NAMED) 
-200-200-200-200-200-200-200-200-200-200-200-200-200 -67 -55 -49 -45 -42 -28 -24 
-200-200-200-200-200-200-200-200-200-200-200-200 -67 -66 -50 -40 -33 -32 -23 -18 
-200-200-200-200-200-200-200-200-200-200-200 -66 -68 -56 -49 -38 -27 10 53 50 
-200-200-200-200-200-200-200-200-200-200 -65 -65 -55 -50 -48 -50 42 72 50 55 
-200-200-200-200-200-200-200-200-200-200-066-053-051-049-043 56 71 26 31 01 
-200-200-200-200-200-200-200-200-200 -67-061-050-044-050 022 55 05 -08 -22 -18 
-200-200-200-200-200-200-200-200 -68-055-050-046-039 023 061 01 -09 -16 -32 -28 
-200-200-200-200-200-200-200-200-068-046-047-021 008 019 009 -22 -14 -35 -26 -18 
-200-200-200-200-200-200-200 -67-059-046-024-018-007-003-010 -23 -35 -28 -20 -05 
-200-200-200-200-200-200-200-067-038-010-015-015-014 000-027 -35 -28 29 61 92 
-200-200-200 -70-067-066-068-037-023-044-047-044-019-017-015 08 22 09 02 -22 
-200-200 -72-070-068-066-035-044-040-041-040-041-006-018 016 -10 -21 -35 -30 -28 
•200 -69-071-072-066-027-030-041-055-041-034-005-030 000-030 -28 -30 -26 -21 -06 
•200 -70-070-064-047-039-048-049-040-046-008-034-031-027-035 -40 -36 -15 -19 06 
-71-071-066-058-064-055-045-047-044-033-044-042-035-036-037 -38 -38 -39 -33 -34 

0.4 52 54. 00 00. WELLAND CUT 
-073-068-052-060 -64 -62 -60-059-057-044-053-051-045-042-045 -45 -38 -43 -39 -28 
•070 -70 -67-200-200-200-200 -58 -57-055-066-065-056-050-044 -50 -43 -44 -38 -26 
-70-200-200-200-200-200-200-200-200 -68-067-069-068-067-066 -58 -49 -49 -40 -33 
•200-200-200-200-200-200-200-200-200-200-200 -68 -67-072-067 -65 -60 -55 -49 -35 
-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 -67 -68 -69 -59 -55 -38 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -70 -69 -66 -47 -41 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -69 -68 -64 -47 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -69 -67 -65 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -65 -53 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -65 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -66 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 





200--200--200--200-200--200--200--200-200-200^ -200--200--200--200--200-200-200--200--200--200 
200--200--200--200--200--200--200-200-200-200--200--200--200--200--200-200--200--200-200-200 
200--200--200--200--200--200--200--200-200-200--200--200--200--200--200--200--200--200--200--200 

0 .4 52 48.00 00 00. Holbeach L 
0 .4 53 12. 00 12. SKEGNESS 

•200--200--200--200--200--200--200--200-200-200-200--200--200--200-200 -27 39 40 46 49 
200--200--200--200--200--200--200̂  -200-200-200--200--200--200--200--200 -2 6 34 39 43 49 
•200--200--200̂  -200--200--200--200--200-200-200--200--200--200--200--200 -25 05 40 50 46 
•200--200--200--200--200--200-200--200-200-200--200-200--200--200--200 -24 20 40 50 52 
•200--200--200̂  -200--200--200--200--200-200-200-200--200-200--200--200 -10 37 36 42 49 
•200--200--200--200--200--200--200--200-200-200-200-200-200- -200--200 -10 32 33 42 45 
200--200--200--200--200--200--200--200-200-200--200-200--200--200--200 -10 33 35 42 47 
200-200--200--200--200--200--200--200-200-200--200--200--200--200--200 -13 14 36 39 48 
•200--200--200--200--200--200--200--200-200-200--200--200--200--200--200 -13 23 31 42 51 
•200--200--200--200--200-200--200--200-200-200--200--200--200--200-200 -23 02 21 45 50 
200--200--200--200--200--200-200--200-200-200--200--200--200--200 -28 06 10 24 57 62 
•200--200--200--200--200--200--200--200-200-200--200-200-200-200 -29 02 26 25 47 54 
•200--200--200--200--200--200--200--200-200-200--200--200--200--200 -31 08 42 36 25 07 
•200--200--200--200--200--200--200--200-200-200--200-200--200-200 -30 35 32 20 22 59 
•200--200--200--200--200--200-200--200-200-200--200--200--200 -16 -03 31 03 04 00 60 

0 .4 53 06.00 00 12. Friskney Flats 
200--200--200--200--200--200--200--200-200 -37--037--037 -35--034 008 14 02 00 07 72 
200-200--200-200--200--200--200 -40 -37-037--037--037--032--012 017 21 17 38 28 61 
200--200-200--200--200--200 -46--043-041-036--035--033--027 030 002 30 40 13 60 43 
200--200--200--200--200 -53--050--047-046-043-038--035--016 021 040 45 21 45 38 58 
200--200--200--200 -55--052-048--047-045-050--042--039--001 035 060 60 41 19 18 53 
200--200--200 -57-053--050--047--045-044-040--041--037 000 065 056 30 -04 -36 02 66 
200--200 -60--056--051-050--045--042-040-037--036--029 030 094 067 09 -31 -50 08 96 
-76 -77--059--055--051--046--040--038-038-034--026-020 047 106 048 -12 -23 -23 31 120 
•075--069--057̂  -053--050--045--039--035-030-025--020 001 088 090 019 -23 -25 06 113 92 
059-062--055--050--046--042--038--029-024-001 030 099 104 045-005 -10 24 77 65 113 
054--055--050--048--041--039--039--023 029 081 101 100 077 029 032 15 27 29 27 178 
046--039--040--040--030--020--004 036 084 070 077 044 013--019--023 00 -05 07 115 274 
038--038--032--027--008 030 0 63 055 073 098 041--006--020--023--025 -19 -01 114 260 327 
029--029--023 011 015 071 104 098 039 005--010--013--017 000 019 70 134 262 333 330 
040--041--026--006 050 091 117 050-010-020--019--019-006 015 060 120 210 260 320 330 

0 .4 53 00. 0 12. Roaring Middle 
013 013 058 088 100 099 020--025-026-014--014--004 026 080 120 200 270 260 270 240 
057 075 099 063 037--020--019--024-015-008 023 058 100 150 190 230 280 210 250 160 
086 058 018--022--010--015--008 Oi l 032 050 080 100 140 180 210 220 230 210 200 180 
054 020-005--010 004 010 018 028 049 060 120 150 200 220 190 150 200 200 180 150 
•025--008 037 027 017 021 030 047 069 100 160 210 220 120 090 150 160 150 140 150 
027-032--016 019 031 030 046 060 070 120 190 190 150 100 100 140 150 150 110 150 
•029--022--011--009--001 015 042 070 150 180 170 140 100 080 100 130 130 120 100 140 
012--010-019--011 009 037 051 060 160 160 120 140 080 060 140 140 110 90 110 100 
•002 000--019--006 008 032 071 110 130 110 100 070 070 090 130 120 80 70 80 110 
093 052 023 036 049 070 110 130 120 010 070 045 060 110 110 70 60 60 60 90 
020 006 036 034 030 060 100 100 080 080 070 032 080 110 070 60 50 49 149 70 
028--010 004 005 037 070 100 080 070 090 043 061 095 081 051 44 41 26 25 55 
006--012--002 017 039 080 060 050 090 050 028 075 072 062 040 25 22 06 26 37 
019--016 007 022 058 045 037 060 085 027 057 055 058 030 019 10 41 02 21 32 
012 015 020 033 046 028 050 090 048 050 041 051 037 007 006 08 30 00 12 13 

0 .4 52 54. 0 12. (north of Breast Sand] 
020--010 008 020 030 009 065 073 022 030 033 041 004--007--010 28 05 -08 22 04 
019--016--006 041 013 015 099 059 023 Oi l 030 002--021--020--022 28 -16 -20 14 00 
028--Oi l 045--002 003 033 063 062-005 000 039-010--039--032--045 23 -15 19 -25 14 
025--019 027--005 000 057 035 050-024-029 038--027--037--041--041 06 -03 16 -13 10 
027-022 023--013--009 052--002 038 004-018 027--028--040-041--027 -10 11 -10 -05 -14 
031--022 010--010-003 025 022 009 009-017 020--040--039--040--028 -08 -08 07 -14 -15 
033-022--008 005-022--018 022 000-003-010 011--037-•036--035--023 -09 -26 -12 -14 -19 
044--010--010--013--022--033--008 010-016 000 012-•026-•034--034--025 -14 -20 -17 -38 -45 
053--015--022--023-•018--031--032--018-020-030--001-•011-•012--028--027 -24 -21 -28 -30 -46 
077--028-031-035-•030--031--032--033-025-031-027-014- •007--007--028 -14 -16 -33 -43 -51 
063--044--039--042-037-037-•040--031-016-034--034-•030-•033-•018-037 -14 -29 -38 -52 -56 
-64--063--049--047-•047-046-042--041-037-046-•042-•037-•040-•040--023 -20 -37 -50 -58 -66 
200--056--061-057-•058-•050-•056--049-048-061--060-•047-•051-•025-032 -15 -45 -55 -64 -65 



•200-200-200-200 -63 -^60-059-061 -60 -65-200 -66 -63-064-:047 -41 -55 -58 -66-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200 -64-064 -47 -48 --62-200-200 

0.4 52 48. 0 12. King's Lynn (Ouse) 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -61 -55 -63-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 -68 -68-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
•200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 

0.4 53 12. 0 24. east of Skegness 
52 56 60 63 67 68 70 72 76 103 116 150 171 171 171 150 113 124 131 101 
49 49 52 61 67 68 72 90 110 110 116 150 165 200 200 175 150 140 125 82 
40 50 57 63 67 68 74 75 105 111 116 114 160 195 210 200 163 140 124 110 
49 55 61 63 67 71 79 90 97 106 112 135 171 171 162 175 195 150 116 130 
58 56 62 62 67 72 79 90 92 101 101 120 140 175 150 200 158 155 121 121 
47 48 55 63 67 72 79 81 100 106 103 118 120 179 148 220 150 155 167 161 
48 51 56 63 68 74 80 82 106 112 130 151 139 140 145 230 188 230 190 210 
49 53 56 63 75 78 84 84 100 112 140 158 160 180 200 220 192 210 187 170 
52 54 57 65 84 84 88 90 104 136 136 140 150 148 205 210 210 210 165 140 
55 57 63 77 87 91 94 100 112 134 140 150 155 200 232 241 270 227 158 118 

060 060 072 078 090 093 101 103 115 133 142 163 200 250 246 242 242 214 151 150 
0 67 067 078 083 088 098 103 103 129 142 148 171 230 234 249 230 198 169 132 122 
087 069 066 090 100 108 102 122 142 146 176 200 270 270 235 188 150 124 114 104 
066 057 054 077 088 087 096 123 137 150 195 240 270 225 205 176 151 78 84 72 
060 060 059 071 079 105 113 121 136 150 241 248 247 220 200 180 166 88 148 18 

0 .4 53 06. 0 24. Lynn Knock 
074 076 064 060 090 105 117 128 167 200 260 249 250- 215 186 178 143 74 42 22 
070 079 064 057 094 102 124 143 184 247 250 225 215 195 180 175 116 66 50 26 
072 077 081 110 046 107 152 173 210 235 250 208 200 180 173 155 119 68 33 30 
109 066 078 087 048 102 200 200 230 270 230 189 170 180 140 146 118 83 27 33 
099 092 093 120 112 160 216 250 245 240 200 151 154 158 106 143 113 43 20 26 
100 104 098 150 174 206 238 270 290 200 150 154 165 157 130 120 75 20 02 09 
123 123 120 182 222 220 269 285 247 148 120 159 163 137 100 74 15 08 02 05 
097 155 205 260 311 312 297 250 172 118 162 161 140 057 052 30 30 20 02 02 
129 184 300 300 300 265 242 181 147 139 153 127 075 019 039 78 53 32 35 25 
165 265 317 322 270 248 174 157 146 148 131 125 020 014 027 40 45 49 20 43 
335 357 306 253 220 182 150 118 140 133 114 080 006 008 019 20 23 28 20 22 
371 375 277 250 216 150 125 110 105 099 093 023 000 006 008 15 21 26 20 19 
340 276 215 225 200 130 114 103 094 082 052--007- -009 000 014 14 14 18 21 21 
287 250 223 203 148 120 097 093 078 058 054--008- -016- -010 001 08 04 07 02 16 
250 210 230 200 120 090 080 060 044 035 045--004--013- -008- -003 00 02 -13 01 11 

0 4 53 00. 0 24. Sunk Sand 
230 200 250 200 090 110 060 035 Oi l 024 024 020 020 025 024 18 22 22 20 16 
180 220 250 110 100 084 051--004 002 004 000 003 020 170 010 04 10 15 09 11 
150 230 150 100 100 025- -023- -015 002 001-002 014 007- -003- -010 -27 -30 -35 -20 -10 
170 180 110 100 029- -020- -011- -017- -004 006 008 006- -012- -020 -30 -30 -37 -40 -37 -40 
180 160 110 085- -018- -009- -012- -017 001 004 003--011- -025- -200- -200- -200- -200- -200- -200- -200 
150 100 090 050- -011- -010-011 020 005 005- -008- -046 -57- -200- -200- -200- -200- -200- -200- -200 
120 054 063 043 000- •012- •005 033 001--030- -045 -45- -200- -200- -200-200-•200--200-200--200 
055 024 044 018 040- -006 000 009- -006- -046- -200- -200- •200--200- -200- -200- •200--200- -200- -200 
033 020 012 008- •018 008- •006 006- -016- -200- -200- -200- -200- -200- -200- -200- -200- -200- -200- -200 
014 006- -006- -003- -011- •006-•005 007- •025--200- -200- -200- -200- -200- -200- -200- •200--200- -200- -200 
025 013-001-•019 008- -007 001-•010 -30- •200--200- -200- -200- •200-•200--200- •200--200- -200- -200 
037 012 003- •002--002- -004-014-•023-•200-•200--200- -200- -200- -200- -200- -200-200--200- -200- •200 
045 034 004-•006-•008--005- •010-030-200-200--200-200-•200-200-200-200-200-200-200-200 
041 032 005- •013- -011- -020- •028 -38- •200-•200--200- -200- -200- •200--200- -200- •200.-200-•200-•200 
032 029-001-•011- •015- -021- •037 -40- •200--200- -200- -200- •200--200- -200- -200- •200--200- -200-200 



/ 



0.4 52 54. 0 24. Bulldog Channel 
025 015-010T-009--016-025-037-200r-200-200-200-200-200-200-200-200-200-20.0-200-200 
026 001-015-013-022-027 -32-200-200-200-200-200-200-200-200-200-200-200-200-200 
005-017-017-013-029-030-200-200-200-200-200-200-200-200-200-200-200-200-200-200 

-026-032-025-028-030 -45-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-035-045-041-023-037-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-045-049-041-036-043-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-047-050-046-049-050-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-049-052-055-056-059-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-053-053-058-062-065-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-055-065-069 -70-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-062-072 -72-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-64-200-200-200-200-200-200-200-200-200-200-200-200-200-200--200-200-200-200-200 

-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 

0.4 52 48. 0 24. (land) L 
0.4 53 12. 0 36. Docking Shoal 

90 150 200 200 210 220 200 100 60 55 60 65 70 64 70 94 122 155 150 160 
110 186 200 200 210 210 150 55 55 55 58 60 75 70 75 90 95 113 124 145 
104 186 200 210 210 200 140 55 54 40 50 65 81 70 50 72 58 49 61 100 
130 200 200 210 210 200 100 55 57 60 72 50 45 56 60 44 52 60 72 94 
153 205 210 200 200 110 42 36 40 45 50 45 50 37 40 41 57 72 85 127 
194 210 170 164 150 100 42 45 42 40 39 42 50 54 54 54 56 60 80 110 
195 210 120 100 91 54 51 50 50 54 55 60 55 52 51 56 54 62 72 100 
200 167 060 91 148 110 51 55 63 65 60 60 55 54 55 57 49 47 45 78 
164 110 60 90 100 110 118 100 63 65 66 60 65 70 60 54 40 58 68 84 
130 50 60 70 90 110 110 105 80 65 72 72 75 75 50 49 50 60 70 75 
60 51 60 70 84 90 95 107 105 103 110 110 84 75 75 75 52 63 69 69 
17 33 50 54 70 70 70 60 70 75 100 110 80 75 72 74 84 84 70 59 
23 35 40 50 60 63 65 65 65 69 60 65 70 75 74 74 78 72 60 51 
14 30 42 42 42 63 65 65 70 75 70 55 70 75 76 78 80 65 54 52 
15 20 27 30 45 50 63 65 78 80 81 60 51 50 55 60 84 80 62 54 

0 .4 53 06. 0 36. Burnham Flats 
16 23 25 27 48 50 56 60 60 70 70 65 65 55 44 51 71 80 73 75 
20 23 23 31 29 50 47 60 60 63 63 65 67 72 50 54 63 70 84 70 
39 35 33 36 36 40 42 50 57 57 48 50 70 75 60 51 60 60 75 92 
30 33 33 33 31 33 36 39 40 40 50 42 42 50 52 54 57 63 70 94 
20 23 30 25 20 28 25 23 36 36 45 35 30 35 50 50 54 68 65 78 
15 20 25 20 20 23 20 20 27 30 36 36 32 37 25 34 50 55 60 62 
09 13 14 22 20 20 20 20 27 25 23 30 36 39 45 35 41 33 34 36 
07 11 14 20 17 20 20 20 27 25 20 23 30 40 50 60 63 64 63 52 
10 12 20 20 14 20 20 36 30 30 31 33 37 42 50 52 62 78 70 65 
33 33 26 17 30 24 21 28 30 30 32 40 50 58 64 69 68 66 74 78 
23 22 20 20 24 27 24 23 30 30 50 55 60 72 64 70 42 40 41 35 
14 16 12 14 20 27 24 23 24 24 55 66 38 35 30 27 24 20 23 23 
24 23 20 20 18 18 23 23 20 23 31 34 20 20 20 36 34 36 40 42 
33 38 28 23 41 34 50 45 45 50 27 28 17 20 05 20 24 32 45 57 
20 30 45 39 45 45 63 63 60 57 60 49 35 19 11 16 21 27 36 36 

0 4 53 00 . 0 36. Scolt Head 
16 23 29 36 50 44 50 30 35 20 25 30 20 14 20 26 25 24 36 33 
16 16 20 22 16 01 -10 01 -10 -19 05 05 10 14 14 14 17 23 34 31 
05 06 08 12 -15 -10 -25-200--200--200--200 -19 -19 -16 -13 -03 -04 -10 10 07 

-20 -34 -19 -16 -15 -10 -25--200-200--200-•200-200-•200-•200-•200 -24 -23 -22 -14 -09 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200^200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 
200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200-200 

0.4 52 54. 0 36. (land) L 



0.4 52 48.. 0 36: (land) 



J 

APPENDIX 5 



File H W C - B C E Z 

i j lat. long. H of M2 (mm) g 

03 06 8 54 08 0-03. 1780 1230 
03 07 8 54 08. 0 00. 1760 1235 
03 08 8 1740 1240 
03 09 8 1720 1245 
03 108 1700 1250 
03 11 8 1680 1255 
03 12 8 54 08. +0 15. 1660 1260 
03 138 1640 1265 
03 148 1620 1270 
03 158 1600 1275 
03 16 8 1580 1280 
03 178 54 08. +0 30. 1560 1285 
03 188 1540 1290 
03 19 8 1520 1295 
03 20 8 1500 1300 
03 21 8 1480 1305 
03 22 8 54 08. +0 45. 1460 1310 
03 23 8 1440 1315 
03 24 8 1420 1320 
03 25 8 1400 1325 
03 26 8 1380 1330 
03 27 1 54 08. +1 00. 1360 1335 
04 27 2 54 06. +1 00. 1368 1350 
05 27 2 54 04. +1 00. 1376 1365 
06 27 2 54 02. +1 00. 1384 1380 
07 27 2 54 00. +1 00. 1392 1395 
08 27 2 1400 1410 
09 27 2 1408 1425 
10 27 2 1416 1440 
11 27 2 1424 1455 
12 27 2 53 50. +1 00. 1432 1470 
13 27 2 1440 1485 
14 27 2 1448 1500 
15 27 2 1456 1515 
16 27 2 1464 1530 
17 27 2 53 40. +1 00. 1472 1545 
18 27 2 1480 1560 
19 27 2 1488 1575 
20 27 2 1496 1590 
21 27 2 1504 1605 
22 27 2 53 30. +1 00. 1512 1620 





23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 
27 2 

53 20. +1 00. 

53 10. +1 00. 

53 00. 
52 58. 

+1 00. 
+1 00. 

1520 1635 
1528 1650 
1536 1665 

1544 1680 
1552 1695 

1560 1710 
1568 1725 
1576 1740 
15841755 
1592 1770 

1600 1785 
1608 1800 

1616 1815 
1624 1830 
1632 1845 
1640 1860 

File HWG-BCE2 

i J lat. long. H of Sg g of S2 H of N2 g of 

03 06 8 54 08 0-03. 668 1730 356 1030 
03 07 8 54 08. 0 00. 660 1735 352 1035 
03 08 8 652 1740 348 1040 
03 09 8 645 1745 344 1045 
03 10 8 638 1750 340 1050 
03 11 8 630 1755 336 1055 
03 12 8 54 08. +0 15. 622 1760 332 1060 
03 13 8 615 1765 328 1065 
03 14 8 608 1770 324 1070 
03 15 8 600 1775 320 1075 
03 16 8 592 1780 316 1080 
03 17 8 54 08. +0 30. 585 1785 312 1085 
03 18 8 • 578 1790 308 1090 
03 19 8 570 1795 304 1095 
03 20 8 562 1800 300 1100 
03 21 8 555 1805 296 1105 
03 22 8 54 08., +0 45. 548 1810 292 1110 
03 23 8 540 1815 288 1115 
03 24 8 532 1820 284 1120 
03 25 8 525 1825 280 1125 
03 26 8 518 1830 276 1130 
03 27 1 54 08. +1 00. 510 1835 272 1135 
04 27 2 54 06. +1 00. " 513 1850 274 1150 
05 27 2 54 04. +1 00. 516 1865 275 1165 
06 27 2 54 02. +1 00. 519 1880 277 1180 



07 27 2 54 00. +1 00. 522 1895 278 1195 
08 27 2 525 1910 280 1210 
09 27 2 528 1925 282 1225 
10 27 2 531 1940 283 1240 
11 27 2 534 1955 285 1255 
12 27 2 53 50. +1 00. 537 1970 286 1270 
13 27 2 540 1985 288 1285 
14 27 2 543 2000 290 1300 
15 27 2 546 2015 291 1315 
16 27 2 549 2030 293 1330 
17 27 2 53 40. +1 00. 552 2045 294 1345 
18 27 2 555 2060 296 1360 
19 27 2 558 2075 298 1375 
20 27 2 561 2090 299 1390 
21 27 2 564 2105 301 1405 
22 27 2 53 30. +1 00. 567 2120 302 1420 
23 27 2 570 2135 304 1435 
24 27 2 573 2150 306 1450 
25 27 2 576 2165 307 1465 
26 27 2 579 2180 308 1480 
27 27 2 53 20. +1 00. 582 2195 310 1495 
28 27 2 585 2210 312 1510 
29 27 2 588 2225 314 1525 
30 27 2 591 2240 315 1540 
31 27 2 594 2255 317 1555 
32 27 2 53 10. +1 00. 597 2270 318 1570 
33 27 2 600 2285 320 1585 
34 27 2 603 2300 322 1600 
35 27 2 606 2315 323 1615 
36 27 2 609 2330 325 1630 
37 27 2 53 00. +1 00. • 612 2345 326 1645 
38 27 2 52 58. +1 00. 615 2360 328 1660 



APPENDIX 6 





M O D E L PREDICTIONS FOR 1993 6 19 

All times are in G.M.T. 
52 56 N 0 06 E 

D A T E AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/19 00:00 -1.13 0. .00 
1993/06/19 00:30 -1.13 0. .00 
1993/06/19 01:00 -1.13 0. .00 
1993/06/19 01:30 M.13 0. .00 
1993/06/19 02:00 -1.13 0. .00 
1993/06/19 02:30 -.51 305. .45 
1993/06/19 03:00 .33 229. .46 
1993/06/19 03:30 1.02 239. .36 
1993/06/19 04:00 1.68 • 237. .26 
1993/06/19 04:30 2.15 233. .18 
1993/06/19 05:00 2.42 227. .14 
1993/06/19 05:30 2.60 225. .11 
1993/06/19 06:00 2.70 212. .03 
1993/06/19 06:30 2.58 57. .10 
1993/06/19 07:00 2.26 56. .15 
1993/06/19 07:30 1.91 58. .18 
1993/06/19 08:00 1.45 57. .25 
1993/06/19 08:30 .92 56. .32 
1993/06/19 09:00 .36 57. .38 
1993/06/19 09:30 -.19 53. .39 
1993/06/19 10:00 -.71 45. .43 
1993/06/19 10:30 -1.13 0. .00 
1993/06/19 11:00 -1.13 0. .00 
1993/06/19 11:30 -1.13 0. .00 
1993/06/19 12:00 -1.13 0. .00 
1993/06/19 12:30 -1.13 0. .00 
1993/06/19 13:00 -1.13 0. .00 
1993/06/19 13:30 -1.13 0. .00 
1993/06/19 14:00 -1.13 0. .00 
1993/06/19 14:30 -1.13 0. .00 
1993/06/19 15:00 -.31 298. .44 
1993/06/19 15:30 .55 228. .48 
1993/06/19 16:00 1.28 240. .34 
1993/06/19 16:30 1.94 • 238. .25 
1993/06/19 17:00 2.37 230. .18 
1993/06/19 lf:30 2.63 227. .14 
1993/06/19 18:00 2.81 228. .09 



1993/06/19 18:30 2.86 75. .02 
1993/06/19 19:00 2.64 59. .13 
1993/06/19 19:30 2.29 56. .15 
1993/06/19 20:00 1.88 59. .21 
1993/06/19 20:30 1.36 57. .28 
1993/06/19 21:00 .80 55. .35 
1993/06/19 21:30 .21 56. .40 
1993/06/19 22:00 -.34 51. .42 
1993/06/19 22:30 -.86 44. .46 
1993/06/19 23:00 -1.13 0. .00 
1993/06/19 23:30 -1.13 0. .00 

M O D E L PREDICTIONS FOR 1993 6 20 

All times are in G.M.T. 
52 56 N 0 06 E 

DATE AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/20 00:00 -1.13 0. .00 
1993/06/20 00:30 -1.13 0. .00 
1993/06/20 01:00 -1.13 0. .00 
1993/06/20 01:30 -1.13 0. .00 
1993/06/20 02:00 -1.13 0. .00 
1993/06/20 02:30 -1.13 0. .00 
1993/06/20 03:00 -1.13 0. .00 
1993/06/20 03:30 -.06 283. .41 
1993/06/20 04:00 .79 231. .46 
1993/06/20 04:30 1.56 240. .32 
1993/06/20 05:00 2.20 236. .23 
1993/06/20 05:30 2.58 230. .18 
1993/06/20 06:00 2.83 227. .14 
1993/06/20 06:30 3.01 231. .06 
1993/06/20 07:00 2.96 58. .08 
1993/06/20 07:30 2.65 58. .14 
1993/06/20 08:00 2.29 58. .17 
1993/06/20 08:30 1.80 58. .24 
1993/06/20 09:00 1.24 57. .32 
1993/06/20 09:30 .66 56. .38 
1993/06/20 10:00 .06 55. .41 
1993/06/20 10:30 -.50 49. .45 
1993/06/20 11:00 -1.02 43. .48 
1993/06/20 11:30 -1.13 0. .00 
1993/06/20 12:00 -1.13 0. .00 



1 

\ 



1993/06/20 12:30 -1.13 0. .00 
1993/06/20 13:00 -1.13 0. .00 
1993/06/20 13:30 -1.13 0. .00 
1993/06/20 14:00 -1.13 0. .00 
1993/06/20 14:30 -1.13 0. .00 
1993/06/20 15:00 -1.13 0. .00 
1993/06/20 15:30 -.89 310. .61 
1993/06/20 16:00 .22 256. .42 
1993/06/2016:30 1.05 235. .43 
1993/06/20 17:00 1.83 240. .30 
1993/06/20 17:30 2.43 232. .21 
1993/06/20 18:00 2.78 227. .18 
1993/06/20 18:30 3.03 228. .13 
1993/06/20 19:00 3.17 217. .02 
1993/06/20 19:30 3.00 58. .11 
1993/06/20 20:00 2.63 57. .15 
1993/06/20 20:30 2.23 60. .19 
1993/06/20 21:00 1.69 58. .27 
1993/06/20 21:30 1.09 56. .34 
1993/06/20 22:00 .50 56. .40 
1993/06/20 22:30 -.11 54. .43 
1993/06/20 23:00 -.67 48. .47 
1993/06/20 23:30 -1.17 43. .50 

M O D E L PREDICTIONS FOR 1993 6 21 

All times are in G.M.T. 
52 56 N 0 06 E 

DATE AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/21 00:00 -1.13 0. .00 
1993/06/21 00:30 -1.13 0. .00 
1993/06/21 01:00 -1.13 • 0. .00 
1993/06/21 01:30 -1.13 0. .00 
1993/06/21 02:00 -1.13 0. .00 
1993/06/21 02:30 -1.13 0. .00 
1993/06/21 03:00 -1.13 0. .00 
1993/06/21 03:30 -1.13 0. .00 
1993/06/21 04:00 -.59 307. .59 
1993/06/21 04:30 .51 236. .50 
1993/06/21 05:00 1;33 238. .39 
1993/06/21 05:30 2.12 240. .28 
1993/06/21 06:00 2.63 232. .20 





1993/06/21 06:30 2.96 227. .17 
1993/06/21 07:00 3.21 230. .10 
1993/06/21. 07:30 3.26 64. .04 
1993/06/21 08:00 2.99 59. .14 
1993/06/21 08:30 2.61 56. .16 
1993/06/21 09:00 2.13 60. .22 
1993/06/21 09:30 1.55 58. .30 
1993/06/21 10:00 .93 55. .37 
1993/06/21 10:30 .32 56. .43 
1993/06/21 11:00 -.28 52. .45 
1993/06/21 11:30 -.84 46. .49 
1993/06/21 12:00 -1.13 0. .00 
1993/06/21 12:30 -1.13 0. .00 
1993/06/21 13:00 -1.13 0. .00 
1993/06/21 13:30 -1.13 0. .00 
1993/06/21 14:00 -1.13 0. .00 
1993/06/21 14:30 -1.13 0. .00 
1993/06/21 15:00 -1.13 0. .00 
1993/06/21 15:30 -1.13 0. .00 
1993/06/21 16:00 -1.13 0. .00 
1993/06/21 16:30 -.26 299. .53 
1993/06/21 17:00 .79 231. .52 
1993/06/21 17:30 1.61 • 240. .36 
1993/06/21 18:00 2.38 236. .25 
1993/06/21 18:30 2.83 230. .20 
1993/06/21 19:00 3.13 228. .16 
1993/06/21 19:30 3.36 235. .06 
1993/06/21 20:00 3.28 59. .09 
1993/06/21 20:30 2.93 59. .14 
1993/06/21 21:00 2.54 60. .18 
1993/06/21 21:30 2.00 58. .25 
1993/06/21 22:00 1.38 57. .33 
1993/06/21 22:30 .77 55. .39 
1993/06/21 23:00 .14 56. .44 
1993/06/21 23:30 -.45 51. .47 

M O D E L PREDICTIONS FOR 1993 6 22 

All times are in G.M.T. 
52 56 N 0 06 E 

DATE AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/22 00:00 -.99 45. .50 



1993/06/22 00:30 -1.13 0. .00 
1993/06/22 01:00 -1.13 0. .00 
1993/06/22 01:30 -1.13 0. .00 
1993/06/22 02:00 -1.13 0. .00 
1993/06/22 02:30 -1.13 0. .00 
1993/06/22 03:00 -1.13 0. .00 
1993/06/22 03:30 -1.13 0. .00 
1993/06/22 04:00 -1.13 0. .00 
1993/06/22 04:30 -1.13 0. .00 
1993/06/22 05:00 .09 279. .46 
1993/06/22 05:30 1.06 232. .48 
1993/06/22 06:00 1.89 242. .33 
1993/06/22 06:30 2.58 232. .23 
1993/06/22 07:00 2.99 227. .20 
1993/06/22 07:30 3.28 229. .14 
1993/06/22 08:00 3.45 215. .01 
1993/06/22 08:30 3.25 57. .12 
1993/06/22 09:00 2.86 57. .15 
1993/06/22 09:30 2.42 61. .20 
1993/06/22 10:00 1.84 58. .28 
1993/06/22 10:30 1.20 56. .35 
1993/06/22 11:00 .59 56. .41 
1993/06/22 11:30 -.04 54. .45 
1993/06/22 12:00 -.63 49. .49 
1993/06/22 12:30 -1.13 0. .00 
1993/06/22 13:00 -1.13 0. .00 
1993/06/22 13:30 -1.13 0. .00 
1993/06/22 14:00 -1.13 0. .00 
1993/06/22 14:30 -1.13 • 0. .00 
1993/06/22 15:00 -1.13 0. .00 
1993/06/22 15:30 -1.13 0. .00 
1993/06/22 16:00 -1.13 0. .00 
1993/06/22 16:30 -1.13 0. .00 
1993/06/22 17:00 -.81 308. .65 
1993/06/22 17:30 .43 248. .47 
1993/06/22 18:00 1.32 235. .43 
1993/06/22 18:30 2.16 242. .30 
1993/06/22 19:00 2.74 233. .22 
1993/06/2219:30 3.11 227. .19 
1993/06/22 20:00 3.39 231. .11 
1993/06/22 20:30 3.46 63. .05 
1993/06/22 21:00 3.16 59. .14 
1993/06/22 21:30 2.77 57. .16 
1993/06/22 22:00 2.27 60. .23 
1993/06/22 22:30 1.66 58. .31 
1993/06/22 23:00 1.02 55. .37 



1993/06/22 23:30 .40 56. .43 

M O D E L PREDICTIONS FOR 1993 6 23 

All times are in G.M.T. 
52 56 N 0 06 E 

DATE AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/23 00:00 -.22 53. .46 
1993/06/23 00:30 -.79 47. .50 
1993/06/23 01:00 -1.13 0. .00 
1993/06/23 01:30 -1.13 0. .00 
1993/06/23 02:00 -1.13 • 0. .00 
1993/06/23 02:30 -1.13 0. .00 
1993/06/23 03:00 -1.13 0. .00 
1993/06/23 03:30 -1.13 0. .00 
1993/06/23 04:00 -1.13 0. .00 
1993/06/23 04:30 -1.13 0. .00 
1993/06/23 05:00 -1.13 0. .00 
1993/06/23 05:30 -.43 303. .59 
1993/06/23 06:00 .72 233. .53 
1993/06/23 06:30 1.57 238. .38 
1993/06/23 07:00 2.39 237. .27 
1993/06/23 07:30 2.88 231. .21 
1993/06/23 08:00 3.21 228. .18 
1993/06/23 08:30 3.46 235. .07 
1993/06/23 09:00 3.40 60. .09 
1993/06/23 09:30 3.05 60. .14 
1993/06/23 10:00 2.65 60. .17 
1993/06/23 10:30 2.10 59. .25 
1993/06/23 11:00 1.47 57. .33 
1993/06/23 11:30 .84 • 55. .39 
1993/06/23 12:00 .22 56. .44 
1993/06/23 12:30 -.39 51. .47 
1993/06/23 13:00 -.95 45. .51 
1993/06/23 13:30 -1.13 0. .00 
1993/06/23 14:00 -1.13 0. .00 
1993/06/23 14:30 -1.13 0. .00 
1993/06/23 15:00 -1.13 0. .00 
1993/06/23 15:30 -1.13 0. .00 
1993/06/23 16:00 -1.13 0. .00 
1993/06/23 16:30 -1.13 0. .00 
1993/06/23 17:00 -1.13 0. .00 



1993/06/23 17:30 -1.13 0. .00 
1993/06/23 18:00 -.05 290. .50 
1993/06/23 18:30 .97 231. .50 
1993/06/23 19:00 1.81 241. .34 
1993/06/23 19:30 2.54 233. .24 
1993/06/23 20:00 2.97 228. .21 
1993/06/23 20:30 3.27 229. .15 
1993/06/23 21:00 3.47 234. .03 
1993/06/23 21:30 3.29 57. .11 
1993/06/23 22:00 2.91 58. .14 
1993/06/23 22:30 2.49 61. .19 
1993/06/23 23:00 1.92 58. .27 
1993/06/23 23:30 1.28 56. .34 

M O D E L PREDICTIONS FOR 1993 6 24 

All times are in G.M.T. 
52 56 N 0 06 E 

DATE AND TIME HEIGHT S E T R A T E 
(m) (degT) (m/s) 

1993/06/24 00:00 .66 55. .41 
1993/06/24 00:30 .04 55. .44 
1993/06/24 01:00 -.55 49. .48 
1993/06/24 01:30 -1.08 0. .00 
1993/06/24 02:00 -1.13 0. .00 
1993/06/24 02:30 -1.13 0. .00 
1993/06/24 03:00 -1.13 0. .00 
1993/06/24 03:30 -1.13 0. .00 
1993/06/24 04:00 -1.13 0. .00 
1993/06/24 04:30 -1.13 0. .00 
1993/06/24 05:00 -1.13 0. .00 
1993/06/24 05:30 -1.13 0. .00 
1993/06/24 06:00 -.98 309. .67 
1993/06/24 06:30 .28 261. .45 
1993/06/24 07:00 1.19 234. .45 
1993/06/24 07:30 2.02 242. .31 
1993/06/24 08:00 2.63 232. .22 
1993/06/24 08:30 3.01 226. .19 
1993/06/24 09:00 3.28 229. .12 
1993/06/24 09:30 3.41 70. .02 
1993/06/24 10:00 3.16 58. .13 
1993/06/24 10:30 2.77 56. .15 
1993/06/24 11:00 2.31 61. .21 



! 



1993/06/24 11:30 1.73 58. .29 
1993/06/24 12:00 1.10 56. .36 
1993/06/24 12:30 .49 56. .42 
1993/06/24 13:00 -.13 54. .45 
1993/06/24 13:30 -.71 48. .49 
1993/06/24 14:00 -1.13 0. .00 
1993/06/24 14:30 -1.13 0. .00 
1993/06/24 15:00 -1.13 0. .00 
1993/06/24 15:30 -1.13 • 0. .00 
1993/06/24 16:00 -1.13 0. .00 
1993/06/24 16:30 -1.13 0. .00 
1993/06/24 17:00 -1.13 0. .00 
1993/06/24 17:30 -1.13 0. .00 
1993/06/24 18:00 -1.13 0. .00 
1993/06/24 18:30 -.59 307. .61 
1993/06/24 19:00 .55 236. .50 
1993/06/24 19:30 1.38 237; .39 
1993/06/24 20:00 2.18 240. .28 
1993/06/24 20:30 2.69 232. .20 
1993/06/24 21:00 3.01 227. .17 
1993/06/24 21:30 3.25 231. .10 
1993/06/24 22:00 3.29 63. .06 
1993/06/24 22:30 2.99 59. .14 
1993/06/24 23:00 2.62 57. .16 
1993/06/24 23:30 2.13 59. .23 


