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Abstract 1 

Classifications of volcanic eruptions were first introduced in the early 20th century mostly based 2 

on qualitative observations of eruptive activity, and over time they have gradually been 3 

developed to incorporate more quantitative descriptions of the eruptive products from both 4 

deposits and observations of active volcanoes. Progress in physical volcanology, and increased 5 

capability in monitoring, measuring and modelling of explosive eruptions, has highlighted 6 

shortcomings in the way we classify eruptions and triggered a debate around the need for 7 

eruption classification and the advantages and disadvantages of existing classification schemes. 8 

Here we i) review and assess existing classification schemes, focussing on subaerial eruptions, ii) 9 

summarize the fundamental processes that drive and parameters that characterize explosive 10 

volcanism, iii) identify and prioritize the main research that will improve the understanding, 11 

characterization and classification of volcanic eruptions, and iv) provide a roadmap for producing 12 

a rational and comprehensive classification scheme. In particular, classification schemes need to 13 

be objective-driven and simple enough to permit scientific exchange and promote transfer of 14 

knowledge beyond the scientific community. Schemes should be comprehensive and encompass 15 

a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic 16 

density currents, gas emissions, and cinder cone or caldera formation. Open questions, 17 

processes and parameters that need to be addressed and better characterised in order to 18 

develop more comprehensive classification schemes and to advance our understanding of 19 

volcanic eruptions include: conduit processes and dynamics, abrupt transitions in eruption 20 

regime, unsteadiness, eruption energy and energy balance.  21 

Keywords 22 

Volcanism; Eruption dynamics; Eruption classification; Eruptive products; Eruptive processes; 23 

Eruptive styles 24 
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1. Introduction 25 

Eruptive style is primarily a function of magma composition and temperature, magma 26 

volatile content and crystallinity, exsolution and degassing processes, magma feeding and 27 

discharge rates, conduit geometry and mechanical strength, magma reservoir pressure and the 28 

presence of external water. Key processes and parameters that characterize explosive eruptions 29 

are only partially understood, generating confusion in the way that we classify and categorize 30 

eruptions, especially in the cases of small-moderate-scale eruptions which, owing to their high 31 

frequency, have significant economic impact. Conversely, the classification of eruptive activity is 32 

generally based on a small, selected set of parameters, directly observed during eruptions or 33 

measured from their deposits, that only partially represent the natural complexity of the activity 34 

(e.g. Walker et al. 1973; Newhall and Self 1982; Pyle 1989; Bonadonna and Costa 2013). For 35 

example, specific classification categories, such as violent Strombolian, Vulcanian or sub-Plinian, 36 

have often been attributed to small or moderate sized eruptions based only on the eruption size 37 

(from plume height or product dispersal), without full consideration of the eruption dynamics. 38 

The lack of understanding of the diagnostic signatures of these kinds of eruptions, and the 39 

processes involved, also leads to new attempts of describing explosive eruptions that vary from 40 

volcano to volcano, e.g. the delineation of lava/fire fountaining activity at Etna with respect to 41 

that in Hawaii, the distinction between major and paroxysmal eruptions at Stromboli, or 42 

between different types of Vulcanian activity at volcanoes dominated by silicic lava domes with 43 

respect to volcanoes characterised by more mafic magmas and ash emissions. This is all 44 

symptomatic of our limited current understanding of explosive volcanism, with obvious 45 

implications for assessing hazards. It is important to stress that explosive volcanism can also 46 

include effusive phases (e.g. lava flows, dome growth) and outgassing, which should also be 47 

considered in order to develop a comprehensive understanding of the diversity of eruptive 48 
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dynamics. Of concern is that limitations in our ability to categorize and classify eruptions may 49 

hinder our progress in understanding eruptions and communication of hazards. 50 

Early studies of physical volcanology, and proposals of classification schemes, were mainly 51 

based on visual observations of eruptive phenomena at specific volcanoes, and eventually 52 

evolved to take into account deposit quantification (e.g. Mercalli 1907; Lacroix 1908; McDonald 53 

1972; Williams and McBirney 1979; Walker 1973). In practice, due to its nearly ubiquitous 54 

presence in the different eruptive styles, tephra fallout is traditionally the main type of deposit 55 

investigated in order to provide insights into the eruptive dynamics (here tephra is considered in 56 

the sense of Thorarinsson (1944), i.e. collective term used to describe all particles ejected from 57 

volcanoes irrespective of size, shape and composition). However, by considering only the 58 

dispersal of tephra, and not, for example, the deposits' internal stratigraphy, the complex and 59 

unsteady source dynamics typical of small-moderate explosive eruptions cannot yet be fully 60 

captured post facto from the deposits. Many eruptions show hybrid features, starting with one 61 

eruptive style but terminating with another, resulting in a complex stratigraphic record that is 62 

difficult to classify. Yet, other eruptions have characteristics that are gradational between the 63 

defined eruptive styles, such as Strombolian and Vulcanian, reflecting transitions in physical 64 

phenomena that are as yet imperfectly understood and quantified. Some eruptions would be 65 

better described based on the analysis of all volcanic products (e.g. volume ratio between 66 

erupted lava and tephra, or volume ratio between fallout and pyroclastic density currents 67 

deposits), and especially of the products related to those phases of the eruption marking a shift 68 

in the eruptive style. Importantly, ignimbrite-forming eruptions, which include some of the 69 

largest on Earth, cannot be simply classified by our present schemes. Furthermore, when dealing 70 

with deposits from the rock record, there is often large uncertainty in associating a time-scale 71 

with the internal stratigraphy, so that layering and stratification could be related to changes of 72 
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dynamics during a rather continuous event but also to quite distinct eruptive pulses (e.g. 1707 73 

eruption of Fuji volcano, Japan). 74 

Progress in physical volcanology combined with the increased capability in monitoring and 75 

measuring explosive eruptions and in the experimental simulation and numerical modelling of 76 

the related physical processes, have highlighted how the description of eruptive behaviour 77 

should be based on a combination of deposit features, including deposit thinning, deposit grain-78 

size, textural features, componentry, density and porosity of products (and their variation 79 

through time), together with geophysical measurements (e.g. volcanic tremor, acoustic 80 

measurements) and visual observations (e.g. explosion frequency, plume/jet description) of the 81 

eruption itself. The development of a comprehensive understanding of the parameters driving 82 

explosive volcanism covering the whole range from weak to powerful explosions, from small to 83 

lava-forming events, and from simple to complex, hybrid eruptions, represents one of the main 84 

challenges faced by the volcanological community. Present classifications are mainly based on 85 

the characteristics of tephra dispersal, or on direct observations, while relatively little attention 86 

is paid to the entire dynamics and time-related variability of different eruptions. 87 

A comprehensive approach to the description of explosive volcanic eruptions can only result 88 

from the combined efforts of many scientists working in various sub-disciplines. A 89 

multidisciplinary group of the international volcanological community gathered at the University 90 

of Geneva on 29-31 January 2014 under the sponsorship of the MeMoVolc Research Networking 91 

Programme of the European Science Foundation and the Department of Earth Sciences of the 92 

University of Geneva in order to: i) review existing classification schemes and discuss the needs 93 

of eruption classification; ii) fill the gap between recent advances in geophysical, modelling and 94 

field strategies and current classification schemes; iii) investigate how the contributions from 95 

different sub-disciplines can be combined. Specific objectives were to: i) review new advances in 96 

our mechanistic understanding of a broad range of eruptive styles and their relation to eruption 97 
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classification; ii) identify the critical parameters that drive and characterize explosive volcanism 98 

of different types; iii) determine the main processes that control the temporal evolution of 99 

eruptions, and the frequently observed changes in eruptive style; iv) select research priorities 100 

that could allow new advances in the characterization, understanding and classification of 101 

volcanic eruptions; v) suggest a roadmap for producing a rational and comprehensive 102 

classification scheme. This consensual document attempts to summarize the outcome of two 103 

and a half days of talks, posters, break-out sessions, and plenary discussions (see also the 104 

workshop website for Program details: http://www.unige.ch/hazards/MeMoVolc-105 

Workshop.html).  106 

 107 

2. Main general classification schemes used to characterize volcanic eruptions  108 

We can distinguish between “general” (those not based on specific volcanoes) and “local” 109 

classification schemes (those that mainly consider local eruptive features at specific volcanoes). 110 

General schemes are needed to make global comparisons, to better understand the general 111 

trends of explosive volcanoes, and to better identify the key processes that distinguish eruptive 112 

styles. Local classifications can capture local trends and specific eruptive patterns and, therefore, 113 

are crucial to local hazard assessments. Here we summarize the main general classification 114 

schemes used in the literature and identify some of their shortcomings. 115 

The first general classification schemes of volcanic eruptions identified “type volcanoes”, 116 

made associations with specific eruptive features, were mostly qualitative, and were biased 117 

towards the more frequent small to moderate eruptions (e.g. Mercalli 1907; Lacroix 1908; 118 

Sapper 1927; Perret 1950). They were eventually replaced by schemes based on processes and 119 

quantitative descriptions, with special focus on the characteristics of tephra deposits (e.g. 120 

Walker 1973, 1980; Self and Sparks 1978; Wright et al. 1980). Five parameters were introduced 121 

for estimating the scale of explosive eruptions (e.g. Walker 1973): i) magnitude (volume of 122 

http://www.unige.ch/hazards/MeMoVolc-Workshop.html
http://www.unige.ch/hazards/MeMoVolc-Workshop.html
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erupted material typically converted to Dense Rock Equivalent, DRE); ii) intensity (volume of 123 

ejecta per unit time); iii) dispersive power (related to the total area of dispersal and, therefore, 124 

to plume height); iv) violence (related to kinetic energy); v) destructive potential (related to the 125 

extent of devastation). Eruptive styles (Table 1) were determined based on two parameters: F, 126 

fragmentation index (indicator of the explosiveness of the eruption) and D, area of pyroclastic 127 

dispersal (indicator of the column height). Specifically, D is the area enclosed by an isopach 128 

contour representing 1% of the maximum thickness (0.01 Tmax) and F is the percent of tephra 129 

<1mm, measured along an axis of dispersal where the isopach is 10% of Tmax (0.1 Tmax). 130 

Eventually the styles representing violent Strombolian, ash emissions, Vesuvian and the silicic 131 

equivalent of surtseyan were discarded and new terms such as phreatoplinian and ultra-Plinian 132 

were introduced (Walker 1980; Self and Sparks 1978; Cas and Wright 1988). However, the term 133 

violent Strombolian has remained in the literature and has been preferred by Valentine and 134 

Gregg (2008) to the new term introduced by Francis et al. (1990) (i.e. microplinian) mostly 135 

because of its widespread use and because it does not suggest the injection above the 136 

tropopause as does the term Plinian. 137 

This new approach to eruption classification was pioneering by linking volcanic eruptions 138 

and pyroclastic deposits, and it allowed for significant progress in physical volcanology based on 139 

the identification and analysis of common features of eruptions having similar characteristics. 140 

However, shortcomings included: i) the difficulty in determining F and D, ii) the definition of 141 

fragmentation index, which is not only controlled by magma fragmentation but also by 142 

premature fallout of fine ash due to aggregation processes; iii) the inability to coherently 143 

represent eruptions fed by low-viscosity magmas (e.g. Andronico et al. 2008; Houghton and 144 

Gonnermann 2008); iv) the difficulty of classifying eruptions with poorly preserved deposits; v) 145 

the inability to account for volcanic products other than tephra (e.g. Pioli et al. 2009); vi) the 146 

difficulty of discriminating the wide range of mid-intensity eruptions (small-moderate eruptions 147 
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of Bonadonna and Costa (2013)); vii) the usual association between hydromagmatism and ash-148 

dominated eruptions and viii) the absence of hybrid and multi-style eruptions.  149 

Williams and McBirney (1979) suggested that a rigid classification of eruptions is impossible, 150 

mainly because eruptive style and products might change significantly during a single eruption, 151 

but that nevertheless classifications provide a common vocabulary for communication and 152 

comparing eruptions. They also thought that most of the existing classification schemes at the 153 

time were too complex to be used, and tried to better define existing terms in order to simplify 154 

the schemes (e.g. Table 1). Pyle (1989) and Bonadonna and Costa (2013) introduced new 155 

schemes based on the characterization of tephra deposits, which were easier to apply and 156 

mostly concerned small-moderate, sub-Plinian, Plinian and ultra-Plinian eruptions (Table 1). In 157 

fact, small-moderate eruptions and eruptions characterized by magma/water interaction were 158 

recognized as impossible to distinguish solely on the basis of the parameters considered (i.e. 159 

plume height, Mass Eruption Rate - MER, deposit thinning and grain-size decrease). These new 160 

classification schemes still neglected volcanic products other than tephra, as well as hybrid and 161 

multi-style eruptions. General shortcomings of all process-based classification schemes 162 

described above include: i) the difficulty of representing all eruptions on one single diagram (in 163 

particular effusive together with explosive events, and large explosive eruptions together with 164 

small-moderate explosive eruptions), ii) the incomplete accounting of all volcanic behaviours, 165 

duration and products (i.e. schemes are based on tephra deposits and typically neglect 166 

important other products and processes, such as pyroclastic density currents - PDCs, lava flows, 167 

gas), and iii) the impossibility of fully describing complex eruptions with variable styles. 168 

Newhall and Self (1982) introduced a classification strategy that assigned a certain erupted 169 

volume and plume height range to the most common eruptive styles: the Volcanic Explosivity 170 

Index, VEI. This logarithmic scale ranges from “non-explosive” Hawaiian eruptions (VEI 0; volume 171 

<10,000 m3; plume height <100m) to “very large” ultra-Plinian eruptions (VEI 5-8; volume >1 172 
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km3; plume height>25 km). This scale is widely used in global databases (e.g. GVP, 173 

http://www.volcano.si.edu; Siebert et al. 2010) and hazard/risk assessments because it offers a 174 

comforting analogue to the more widely used earthquake magnitude scale. The main 175 

shortcomings of this approach include: i) the implicit assumption of a link between magnitude 176 

and plume height, and, therefore, intensity; ii) a gap between modern eruptions that are 177 

typically defined by plume height, versus ancient eruptions that are typically defined by erupted 178 

volume; iii) impossibility of classifying effusive (lava) eruptions, which by default are assigned a 179 

VEI of 0 or 1; iv) ambiguity in the definition of VEI 0 that covers at least six orders of magnitude 180 

of eruptive volume (e.g. Houghton et al. 2013); v) ambiguity in the definition of erupted volume 181 

that in the global databases sometimes includes deposits of PDCs (as per the original definition 182 

of VEI) and sometimes only tephra-fall deposits; vi) the difficulty of characterizing long-lasting 183 

eruptions associated with multiple phases of varying style and intensity; vii)  the difficulty of 184 

estimating the tephra volume of the cone edifice built during small-moderate eruptions that 185 

usually is not considered in the calculation of the total erupted mass (in fact, in this type of 186 

eruptions, the volume of the material forming the cone may be several times larger than the 187 

mappable medial to distal tephra-fall sheets).  188 

Regardless of their shortcomings, some categories have been used by many classification 189 

schemes, while others have been abandoned in more recent works (Table 1). It is clear how 190 

classification schemes have been simplified with time, trying also to avoid nomenclature based 191 

on specific volcanoes (as suggested long ago by Rittmann 1944). Plinian is clearly universally 192 

accepted, as it is used in all classification schemes proposed, demonstrating the comparative 193 

ease of classifying relatively large eruptions. Hawaiian, Strombolian, Vulcanian, sub-Plinian and 194 

ultra-Plinian have also been used by most authors, even though their definitions can be complex 195 

and ambiguous. As an example, lava fountains frequently observed in recent years at Etna 196 

typically have been characterised by the formation of eruption columns > 2 km above the cone, 197 
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and so mostly fit in the violent Strombolian to sub-Plinian field of Walker (1973) rather than in 198 

the Hawaiian to normal Strombolian spectrum (e.g. Andronico et al. 2014). Finally, even though 199 

ultra-Plinian was used by many authors, we consider this category as a special case because it 200 

was based on only one eruption (i.e. Taupo 1800a; Walker 1980) and recent evidence shows that 201 

the large footprint of this apparently single fallout layer is an artefact of a previously 202 

unrecognized shift in the wind field during a fairly complex eruption, rather than indicating 203 

extreme eruptive vigour. When the associated deposit is subdivided into subunits, the Taupo 204 

eruption is better classified as Plinian (Houghton et al. 2014). Additional field evidence for 205 

possible ultra-Plinian deposits has been recently published for the 1257AD Samalas eruptions 206 

(Lombok, Indonesia; Vidal et al. 2015). Separate from specific examples, but in accord with the 207 

Bonadonna and Costa (2013) classification, the upper limit of ultra-Plinian eruptions can be 208 

defined on the basis of MER, based on the conditions for column collapse (i.e. greater than 109 209 

kg s-1; e.g. Koyaguchi et al. 2010).  210 

 211 

3. Critical processes and parameters that drive and characterize explosive volcanism of 212 

different types 213 

A list of processes and parameters that drive and characterize explosive volcanism of 214 

different types is compiled in Table 2. All these processes are significant in controlling and 215 

defining eruption dynamics, and many of them are considered when studying the products of 216 

explosive eruptions. Despite this, a systematic and complete study of these parameters and of 217 

their interrelationships is presently lacking. 218 

4. Research priorities 219 

Based on Table 2, we have identified a number of key phenomena whose processes and 220 

parameters require more investigation and research. These include:  221 
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Conduit processes and dynamics 222 

Processes and parameters that require a better understanding and characterization include: 223 

multiphase magma rheology (non-linearity on different spatial and temporal scales), volatile 224 

exsolution and vesiculation processes (kinetics, disequilibrium, and the interaction between 225 

different volatile phases), fragmentation dynamics and their relationship to pyroclast size 226 

distribution and shape, vent and conduit geometric complexity and changes to it during 227 

eruption, magma-water interaction, magma interaction with country rock, and the effects of 228 

crustal and local stresses on conduit dynamics (e.g. Costa et al. 2009; 2011; de’ Michieli Vitturi et 229 

al., 2013; Woods et al. 2006). 230 

Abrupt transitions in eruption regime 231 

Specific parameters causing abrupt transitions (e.g., major changes in magma composition and 232 

rheology; degassing behaviour, groundmass crystallization, dramatic changes in conduit/vent 233 

geometry) should be investigated and better defined - for example, through perturbation 234 

analysis – with the aim of identifying dimensionless scaling relationships that could characterize 235 

controls on instability. Similarly, uncertainty quantification and sensitivity analysis investigations 236 

of the effect of conduit processes on the eruptive style should be extended to identify the key 237 

controls on eruptive dynamics (e.g. Colucci et al., 2014). 238 

Unsteadiness  239 

Many eruptions are characterized by unsteadiness, involving fluctuations of eruption intensity 240 

on a wide range of length scales and time scales (sub-second to hours or days). For example, the 241 

scale of unsteadiness (periodicity and amplitude of fluctuations) increases when passing from 242 

Plinian (quasi-steady), through sub-Plinian (oscillating, sustained, short-lived column), to violent 243 

Strombolian (lava fountain-fed, discontinuous, pulsating column) to Vulcanian (discrete 244 

explosions separated by pauses). Unsteadiness should be quantified with continuous 245 
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measurements of MER, plume height and meteorological conditions at the highest possible 246 

resolution, or with indirect measurements of tephra bedding and grain-size variations (in 247 

particular for post-eruption analysis).  248 

Open questions that cannot be answered until a better understanding is acquired include:  249 

- How do we define unsteadiness (e.g. cyclic vs. irregular pulsating activity; steady, quasi-250 

steady or highly unsteady)? 251 

- How do we quantify unsteadiness (e.g., could we quantify unsteadiness using measurements 252 

of plume/jet height, geophysical observations and/or gas emissions? How can unsteadiness 253 

be characterized in a deposit?)? 254 

- How do we distinguish between source-generated unsteadiness related to eruptive 255 

fluctuation at the vent and process-generated unsteadiness generated for example by 256 

changes in wind direction and speed (e.g., Houghton et al. 2014)? 257 

- What are the causes of unsteadiness (e.g., ascent rate too low to sustain gas supply; ascent 258 

rate too low to keep pace with discharge; transition from open to closed system degassing; 259 

magma-water interaction; syn-eruptive changes in magma rheology or magma permeability 260 

able to modulate magma discharge; interaction with country rock; interaction with the 261 

atmosphere; unsteady dynamics of the column; unsteady sedimentation processes due to 262 

local instabilities)? 263 

- What are the relevant time scales for unsteadiness? Which timescales can be measured and 264 

quantified? Can the characteristic timescale of conduit processes be defined and compared 265 

with the characteristic time of plume ascent?  266 

Eruption energy and energy balance  267 

The possibility of defining eruptive styles in terms of energy balance (partitioning between 268 

thermal, kinetics, fragmentation energy) and energy flux (rather than total energy) has been 269 

identified as a potential alternative to classifications based on erupted mass and plume height 270 
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but requires further investigation (e.g. Yokoyama 1956; 1957a,b; Hedervari 1963; Garces 2013). 271 

It is not yet practical to derive energy from deposits of past eruptions.  272 

5. Objectives of eruption classification 273 

The objectives of modern eruption classifications include: i) scientific understanding (i.e. to 274 

simplify a complex system by identifying leading-order processes, and to aid comparison 275 

between different eruptions or volcanoes), ii) eruption scenario reconstructions for hazard and 276 

risk assessment and iii) facilitation of science and hazard communication (i.e. communication 277 

with the scientific community, the public and civil defence institutions). In all cases, eruptions 278 

can be described differently depending on whether they are observed in real time or 279 

characterized based only on their deposits. Hazard communication should be a simple 280 

phenomenological description based on the simplification of scientific understanding. An ideal 281 

approach would be to have classification systems based on fairly easily and rapidly measured 282 

parameters, so that the system could be applied even in near-real time during an ongoing event. 283 

Tables 3 and 4 summarize the relevant parameters that can be observed, measured and derived 284 

and might be related to the scale of eruptions. 285 

6. A roadmap for a more comprehensive approach to eruption classification  286 

Shortcomings of current systems of classification, in particular associated with the small-287 

moderate eruptions and the diversity of phenomena that can occur within a single event (e.g. 288 

PDCs, lava), can be addressed by making these systems adaptable to multiple levels of detail and 289 

multi-parameter space, particularly including unsteadiness and duration. In fact, it maybe be 290 

useful to describe volcanic eruptions using a qualitative classification with numerical information 291 

(i.e. an eruption descriptor plus numerical information) following an “event-tree” approach. 292 

From the identification and analysis of common features using this kind of categorization we 293 

may find a way to classify rationally a spectrum of eruption styles using a minimal number of 294 
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descriptors. Critical parameters include: deposit geometry, dispersal, plume height, eruption 295 

duration, mass associated with each phenomenon, grain-size, presence of unsteadiness, types 296 

and characteristics of juvenile material, abundance of wall-rock fragments.  297 

In particular, in real time, classification should be based on observations of phenomena (e.g. 298 

Table 3), while, for post-eruption descriptions, classification should be based on the 299 

quantification of volcanic products (e.g. presence of tephra deposits/PDC deposits/lava, 300 

maximum clast size, thickness distribution, layering/bedding of deposit) and deposit-derived 301 

parameters (e.g. plume height, volume, total grain-size distribution) (Table 4). In both cases, 302 

phases or layers need to be described based on an event-tree approach and to include all 303 

primary processes known, in the greatest detail possible (e.g. plume/no plume, lava flow/no lava 304 

flow, PDCs/no PDCs).  305 

Given the limitations of current eruption classification schemes, the workshop participants 306 

emphasized the importance of continuing the practice of providing clear, objective descriptions 307 

of eruption phenomena and products, thereby avoiding the issue of pigeonholing. When 308 

available, parameters indicated in Tables 3 and 4 should be provided as a priority. The strategy 309 

used to derive these parameters and the classification scheme used (if the eruption was 310 

classified) should also be indicated. When possible, real-time and post-eruption deposit-based 311 

descriptions should be integrated, because they often provide different and complementary 312 

information. Some detailed examples are provided in Appendix A. 313 

7. Concluding remarks and open questions 314 

This workshop allowed participants to assess the main advantages and shortcomings of 315 

existing eruption classification schemes and to identify open questions and research priorities 316 

that could help improve our understanding of volcanic explosive eruptions. Based on our 317 

thematic break-out sessions and plenary discussions we reached a number of conclusions: 318 
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1) All existing classification schemes fail to collate all volcanic eruptions in one simple 319 

diagrammatic form, and do not account for all volcanic behaviours and products. In addition, 320 

we identified that eruption categories used by most schemes include: Hawaiian, Strombolian, 321 

Vulcanian, sub-Plinian, Plinian and ultra-Plinian. There is a need for the community as a whole 322 

to work collectively towards improved classification of eruptions and their deposits. 323 

2) The main parameters and processes characterizing volcanic eruptions include: initial 324 

conditions, conduit-related magma dynamics, and external factors (see Table 2). 325 

3) Classification schemes need to be objective, focused and designed for specific goals (e.g. 326 

scientific understanding, hazard/risk assessment, communication with the public, civil 327 

defence institutions and the scientific community) and sufficiently clear and simple to 328 

promote accurate transfer of knowledge and scientific exchange.  329 

4) Classification should be based on clearly defined observables, and aimed at identifying the 330 

main processes. We found that most existing classification schemes are based on processes 331 

(e.g. Walker 1973, 1980; Pyle 1989; Bonadonna and Costa 2013) but the parameters do not 332 

capture all relevant volcanic phenomena and are too broad to distinguish between transient 333 

versus sustained eruptions or steady versus unsteady behaviours. 334 

5) Classification schemes should be comprehensive and encompass a variety of eruptive styles 335 

and volcanic products, including for example, lava flows, PDCs, gas emissions and cinder cone 336 

or caldera formation. While we have focussed on subaerial eruptions, classification should 337 

extend to submarine eruptions. 338 

6) Real-time classifications should be based on quantitative observations of phenomena (Table 339 

3), whereas post-eruption classifications should be based on the quantification of volcanic 340 

products and deposit-derived parameters (Table 4). Both real-time and post-eruption 341 

descriptions should include uncertainty estimates. When possible, real-time and post-342 
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eruption descriptions should be integrated because they often provide different and 343 

complementary information. 344 

7) Currently we do not have a system that can be used for all eruptions. It might be possible in 345 

the future to have a more comprehensive classification scheme, but it is likely that it will be 346 

associated with a different way of measuring eruptions (e.g. energy balance) instead of 347 

evolving from existing schemes. 348 

8) None of the existing schemes consider the distinction between steady and unsteady 349 

processes. We identified that unsteadiness is, in fact, a key factor for describing volcanic 350 

eruptions, but also concluded that we do not yet have effective means of classifying 351 

unsteadiness itself. Future eruption classification schemes should incorporate the concept of 352 

unsteadiness.  353 

9) Classification schemes should also describe eruption duration to distinguish between short-354 

lived and long-lasting eruptions (e.g. Calbuco 2015, Chile versus Cordón Caulle 2011, Chile). 355 

10) Open questions, processes and parameters that need to be addressed and better 356 

characterised in order to develop more comprehensive classification schemes and to progress 357 

in our understanding of volcanic eruptions include: conduit processes and dynamics, and of 358 

abrupt transitions in eruption regime, unsteadiness, eruption energy, and energy balance. 359 

Finally, we note the advice of Williams and McBirney (1979) who recognised that, even though 360 

some specific nomenclature to classify volcanic eruptions is poorly defined, it has become too 361 

firmly entrenched in volcanological literature to abandon. The best improvements are to define 362 

old terms more clearly, and introduce new ones only when necessary. As a result, we envisage 363 

that a future classification scheme will retain some existing terms, but will need to better define 364 

them based on the parameters we identify for the classification of eruptions in real time and for 365 

post-eruption classification (Tables 3 and 4). Based on the frequency of use (Table 1), we expect 366 



15 
 

terms such as Hawaiian, Strombolian, Vulcanian, sub-Plinian, Plinian and ultra-Plinian to be part 367 

of future classification, but we suggest that they be combined with a phenomenological and 368 

quantitative description (possibly including uncertainty estimates), such as that reported in 369 

Appendix A, which provides key parameters including: i) plume/jet height, duration, MER, 370 

erupted mass/volume, energy, exit velocity, gas flux and composition, atmospheric conditions 371 

and unsteadiness for real-time classification and ii) thickness and maximum clast size 372 

distribution, deposit density, deposit componentry, shapes of juvenile clasts, deposit layering, 373 

pyroclast composition/crystallinity, erupted mass/volume of different volcanic products, total 374 

grain-size distribution, plume height, MER, duration, exit velocity, and wind direction and speed 375 

for post-eruption classification. In addition, information to identify magma/water interaction and 376 

quantify componentry should be provided together with the key parameters listed above. We 377 

also conclude that a few additional eruption categories might need to be added, because some 378 

eruptions cannot be described by the five most commonly used categories identified in Table 1, 379 

e.g. non-explosive, phreatic, continuous ash emissions /ash venting.  380 
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Appendix A 388 

Examples of descriptions and classifications of volcanic eruptions 389 

Eruption classification needs to be fit-for-purpose (e.g. scientific understanding, hazard/risk 390 

assessment, communication with public, civil defence institutions and scientific community) and 391 

clear and simple enough to promote accurate transfer of knowledge and scientific exchange. It 392 

might vary depending on whether the classification is based on direct observations (i.e. real 393 

time) or on volcanic deposits (i.e. post eruption). In particular, in real time, classification should 394 

be based on quantitative observations of phenomena (Table 3), while, for post-eruption 395 

descriptions, classification should be based on the quantification of volcanic products and 396 

deposit-derived parameters (Table 4). Here we present some concrete examples developed by 397 

workshop participants. For two eruptions (i.e., Montserrat, 17th September 1996; Etna, 12th 398 

January 2011) we provide both types of descriptions (real time and post-eruption). 399 

A.1 Examples of real-time descriptions 400 

A.1.1 Gas Piston event at Pu'u 'O'o, Hawaii (23rd February 2002)  401 

Basaltic lava flow from vent at foot of Pu'u 'O'o south wall begins at 19:59 and extends 100 m 402 

east by 20:15 (5 m wide proximally).  A bulk volume flow rate of 0.26 m3 s-1 for the lava flow was 403 

derived based on an emplacement duration of 16 minutes, which can be converted into a MER 404 

value of 414 ± 219 kg s-1 using the vesicle corrected density of Harris et al. (1998) (i.e. 1590 ± 840 405 

kg m-3). Continuous spattering at vent was observed throughout emplacement.  Spattering 406 

transits to bubble bursts at 20:41.  Bursts increase in frequency to more than 1 per second by 407 

20:45.  At 20:45 bubble bursting and lava emission terminated by onset of gas jet with loud roar 408 

to 25(?) m.  Waning gas jet until 20:15.  Vertical blue gas jet with few diffuse, small (cm-sized) 409 

incandescent particles.  Spatter-bubble-jet cycle recommences; next jet at 21:16. It was classified 410 

as gas piston event type “c” according to Marchetti and Harris (2008). Gas flux was not 411 

measured. 412 
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A.1.2 Montserrat, West Indies (17th September 1996) 413 

A major phase of lava dome collapse began at 11:30 am on the 17 September 1996, continued 414 

for 9 hours and waned after 8:30 pm. The explosive eruption began at 11:42 pm and had 415 

finished by 00:30 am on 18 September. Seismic energy on the RSAM record peaked at about 416 

midnight and then declined exponentially. A vertical plume was intercepted by a commercial jet 417 

at 11.3 km, which is associated with a Dense Rock Equivalent (DRE) discharge rate of magma of 418 

1300 m3 s-1 (based on Sparks et al. 1997). Assuming a constant discharge rate over the whole 48-419 

minute duration, a DRE volume of about 3.7 x 106 m3 was obtained. From weather satellite 420 

images (Satellite Analysis Branch of NOAA/NESDIS) plume transport was both to the west and to 421 

the east by regional trade and antitrade winds with a maximum speed at tropopause of 17 m s-1. 422 

Pumice and lithic lapilli fell widely across southern Montserrat. Classified as small-moderate 423 

based on plume height and MER according to Bonadonna and Costa (2013). 424 

A.1.3 Etna, Italy (12th January 2011)  425 

The eruption began with intermittent bubble explosions with increasing frequency and intensity 426 

from the evening of 11th January to 21:40 GMT of 12th January and intermittent fountains from 427 

21:40 to 21:50 GMT (first phase). From 21:50 to 23:15 GMT a transition to sustained fountains 428 

was observed with a peak magma jet height of 800 m and tephra plume height 9 km (second –429 

paroxysmal- phase); a lava flow was also observed in the evening of 12th January. Small 430 

intermittent bubble explosions were again observed from 23:15 to 23:30 GMT and low-intensity 431 

effusive activity and irregular low-frequency bubble explosions were observed up to 04:15 GMT 432 

(third phase).  433 

A.2 Examples of post-eruption descriptions 434 

A.2.1 Montserrat, West Indies (17th September 1996)  435 

On 17 September 1996 the Soufriere Hills Volcano started a period of dome collapse involving 436 

about 12 x 106 m3 (DRE) of andesitic lava.  A peak plume height of 14-15 km was derived based 437 
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on the largest pumice clasts (from the model of Carey and Sparks 1986). The height estimate 438 

indicates a DRE discharge rate of magma of 4300 m3 s-1 (based on Sparks et al. 1997). Wind 439 

speed averaged over plume rise was about 6-8 m s-1. An approximate DRE volume of andesitic 440 

tephra of about 3.2 x 106 m3 was derived assuming a peak discharge rate of 4300 m3 s-1 and an 441 

exponential decay of discharge rate with a decay constant of 12 ± 3 minutes. Magma water 442 

content was of 2.5-5%. Ejecta consists of moderate (density = 1160 kg m-3) to poorly (density = 443 

1300 to 2000 kg m-3) vesicular juveniles, dense non-vesicular glassy clasts (density = 2600 kg m-444 

3), breccias cut by tuffisite veins and hydrothermally altered lithics (mean density = 2480 kg m-3). 445 

A maximum launch velocity of 180 m s-1 is estimated for 1.2 m diameter dense blocks ejected to 446 

2.1 km distance using projectile models (Fagents and Wilson, 1993; Bower and Woods, 1996). 447 

Based on plume height and magma discharge rate, the explosive eruption can be classified as 448 

small-moderate to sub-Plinian based on plume height and MER according to Bonadonna and 449 

Costa (2013).   450 

More details in Robertson et al. (1998) 451 

A.2.2 Etna, Italy (12th January 2011 – paroxysmal phase)  452 

Sustained fountains of potassic trachybasaltic magma occurred between 21:50 to 23:15 GMT on 453 

12th January 2011 that were associated with a peak magma jet height of 800 m, a tephra plume 454 

height 9 km and the emplacement of a lava flow. A mass of erupted tephra of 1.5±0.4 x 108 kg 455 

was derived averaging values obtained from the method of Pyle (1989), Fierstein and Nathenson 456 

(1992), Bonadonna and Houghton (2005) and Bonadonna and Costa (2012) (without considering 457 

the cone fraction) and a MER of 2.5±0.7 x 104 kg s-1 was obtained dividing the erupted mass by 458 

the duration of the paroxysmal phase (100 minutes). The total grain-size distribution peaked at -459 

3 with a range between -5 and 5 was derived applying the Voronoi Tessellation of 460 

Bonadonna and Houghton (2005). Winds were blowing with almost constant direction from the 461 

NNE and intensity of 16, 15, 86, and 95 knots, at 3, 5, 7, and 9 km a.s.l. 462 
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(http://weather.uwyo.edu/). It was classified as violent Strombolian based on Walker (1973) and 463 

small-moderate based on plume height and MER according to Bonadonna and Costa (2013). 464 

More details in Calvari et al. (2011), Andronico et al. (2014) and Viccaro et al. (2015) 465 

A.2.3 Vesuvius, Italy (Plinian phase of the AD 79 Pompeii eruption)  466 

The fallout deposit associated with the AD 79 Pompeii eruption consists of two main units, 467 

compositionally zoned and south-easterly dispersed, intercalated with PDC deposits in proximal 468 

areas. Deposit density for both units is: 490 kg m-3 in proximal area (<20km, Mdphi<-2) and 1020 469 

kg m-3  in distal area (>20km, Mdphi>-1). A polymodal cumulative total grain-size distribution 470 

was derived based on the integration of isomass maps of individual size categories and on the 471 

method of crystal concentration of Walker (1980). Mode values of individual grain-size 472 

populations are -2.8, -0.8 and 5 , respectively. 473 

White pumice fallout: simple, massive, reversely graded, bearing accidental lithic fragments 474 

(mainly limestone and marbles) from the volcano basement, and cognate lithics (mainly lava) 475 

(wt% lithics averaged over the whole deposit=10.3). Magma composition= K-phonolite; 10-15 476 

vol% phenocrysts; peak plume height= 26 km (based on the method of Carey and Sparks 1986); 477 

MER=8x107 kg s-1 (derived from plume height applying the model of Sparks 1986); tephra 478 

volume=1.1 km3 (applying the method of Fierstein and Nathenson 1992); wind direction= N145; 479 

wind speed=28 m s-1 (based on the method of Carey and Sparks 1986); maximum measured 480 

thickness= 120 cm at 10 km from vent. Classified as Plinian based on the diagram of Walker 481 

(1973). 482 

Grey pumice fallout: simple stratified pumice-rich deposit with four ash-bearing, plane to 483 

cross laminated, PDC beds interlayered (wt% lithics averaged over the whole deposit=11.8). 484 

Magma composition= K-tephritic phonolite; 16-20%vol phenocrysts; peak plume height= 32 km 485 

(based on the method of Carey and Sparks 1986); MER=1.5x108 kg s-1 (derived from plume 486 

height applying the model of Sparks (1986)), tephra volume=1.8 km3 (applying the method of 487 

http://weather.uwyo.edu/
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Fierstein and Nathenson 1992); wind direction= N145; wind speed=31 m s-1 (based on the 488 

method of Carey and Sparks 1986); max measured thickness= 160 cm at 10 km from vent. 489 

Classified as Plinian based on the diagram of Walker (1973). 490 

More details in Carey and Sigurdsson (1987) and Cioni et al. (1992; 1995; 1999)  491 
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Table captions 627 

 628 

Table 1. Categories used to classify explosive volcanic eruptions as reported in main “general” 629 

classification schemes (the most used categories are highlighted in grey). 630 

Mcdonald (1972) is adjusted from Mercalli (1907), Lacroix (1908) and Sapper (1927); Williams and 631 

McBirney (1979) is a simplification of Mercalli (1907), Sonder (1937), Rittmann (1962), Gèze (1964) 632 

and Walker (1973); Francis (1990*) indicates Francis et al. (1990). 633 

 634 

Table 2. Main processes and parameters characterizing volcanic explosive eruptions 635 

 636 

Table  3. Relevant parameters to be described in real-time analysis (observation/monitoring based) 637 

and to be possibly associated with uncertainty estimates. 638 

 639 

Table  4. Relevant parameters to be described in post-eruption analysis (deposit based) and to be 640 

possibly associated with uncertainty estimates. Derived parameters are estimated based on 641 

dedicated models. 642 
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� � 

Krakatoan 

� � �  � 

Ultraplinian  �  � � �  � 

Rhyolitic flood  �        

Ash emission  � 

conduit 

clearing 

      

Ultravulcanian � 

no magma 

       

Gas eruption  � 

no magma 

       

Fumarolic  � 

no magma 

       

Phreatic   � 

steam 

blast 

�     

Surtseyan  �   � �   

Phreato-

magmatic 

  � 

including 

Surtseyan 

     

PhreatoPlinian  �    �   

Shallow 

submarine 

eruptions 

�        

Subglacial      �   

 

Table 1



Initial conditions  

1. Magma reservoir size, shape and overpressure and evolution with time 

2. Magma properties (e.g., composition, temperature, phenocryst content, dissolved volatiles, exsolved 

gas) and their evolution with time 

3. Magma mixing and mingling 

Conduit magma dynamics 

4. Conduit width, length, shape, pressure and their evolution with time 

5. Magma supply rate and relationships with magma reservoir dynamics 

6. Magma decompression rate 

7. Magma crystal content and crystallization kinetics 

8. Magma outgassing (through the conduit walls or at the vent) 

9. Porosity and permeability and their evolution with time 

10. Dynamic changes in magma rheology (e.g., shearing, degassing, crystallization, viscous heating)  

11. Fragmentation level, mechanisms and efficiency 

12. Plug formation (shallow viscosity and pressure gradients) 

Eruptive processes and parameters 

13. Crater/vent geometry and its evolution with time  

14. Pressure, velocity, gas content, temperature and density of erupted mixture at vent and their 

evolution with time 

15. Mass eruption rate and its evolution with time 

16. Total grain size distribution and its evolution with time 

17. Equilibrium or non-equilibrium between particles and gas (controls generation of shocks, thermal 

structure and time scale) 

18. Plume height, temperature, density and collapse conditions 

19. Partitioning of mass into plume, pyroclastic density currents and lava flows 

External factors 

20. Atmospheric conditions (e.g., wind direction and speed, air entrainment, humidity, temperature, 

density) 

21. Magma/water-ice interaction 

22. Crustal stress/earthquakes 

23. Thermo-mechanical interaction with country rock (including country rock entrainment and conduit 

wall collapse) 

24. Caldera collapse timing, mechanism and extent 
 

 

Table 2



 

Eruption onset and duration observed 
Plume/jet height measured/derived from geophysical 

monitoring , remote sensing and video 
recording 

Mass Eruption Rate (MER) derived from either plume height 
(depending on observed atmospheric 
conditions) and/or from geophysical 
monitoring and remote sensing. MER of lava 
flows could be directly measured. 

Erupted volume/mass mostly tephra mass derived from MER and 
duration; pyroclastic density currents and 
lava masses derived from remote sensing 

Exit velocity derived from geophysical monitoring and 
video recording 

Energy (seismic, infrasonic, thermal, potential/ 
kinetic),  energy flux and ratios between the different 
types of energy 

measured/derived from geophysical 
monitoring and remote sensing 

Unsteadiness (number/frequency of pulses) observed/derived from geophysical 
monitoring and video recording 

Relevant atmospheric parameters (e.g., wind, 
humidity, lightning) 

measured/derived 

Sedimentation rate measured 
Gas flux and composition measured 

 

 

 

Table 3



 

Erupted volume/mass of different volcanic products derived (from deposits) 
Plume height derived (from tephra deposits) 
Mass Eruption Rate (MER) derived (mostly from plume height) 
Duration derived (from combining MER and mass) 
Exit velocity derived (from proximal ballistic) 
Total grain-size distribution derived (from deposits) 
Thickness and maximum clast size distribution derived from measurements at individual sites 
Deposit density measured per site  
Componentry measured per site  
Shape, texture, cristallinity and density of juvenile clasts Measured on selected clasts 
Unsteadiness derived  (from bedding/grading ) 
Wind direction and speed derived (from tephra deposits) 
Magma composition measured on selected clasts 
Magma rheology measured or derived from data on composition 

and cristallinity 
 

 

 

Table 4 (revised)


