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Abstract

In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth.

Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect

the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that sup-

press hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2

and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and

shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in pre-

mature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be impor-

tant in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and

mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with

HWS loss of function, corroborating epistatic relations between the miRNA pathway genes

and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or

gain of function mutants. Our data propose HWS as a new player in the miRNA pathway,

important for plant growth.

Introduction

Selective degradation of proteins is carried out via the ubiquitin-proteasome pathway which is

fundamental for many cellular processes, including development, hormonal signalling, abiotic

stress and immunity in plants [1, 2]. The abundance of key brakes and/or accelerators that

control these processes is regulated by the 26S proteasome using complex mechanisms to

avoid destruction of crucial proteins and the release of partially degraded polypeptides [2, 3].

E1, E2 and E3 enzymes sequentially attach the small soluble protein ubiquitin to the proteins
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destined for degradation [1, 4]. The E3 ligase enzyme provides the specificity when it binds to

the target substrate and the activated ubiquitin-E2 complex; the polyubiquitinated substrates

are then degraded by the 26S proteasome [1, 5]. The SCF E3 ligase is composed of four sub-

units: S-phase-kinase-associated protein-1 (Skp1), Cullin (Cul1), RING-finger protein (Rbx1/

Roc1) and F-box protein (SCF complex) [3, 6].

In Arabidopsis it has been shown that 21 SKP (or ASK- ARABIDOPSIS SKP1 RELATED)

genes are expressed [7] while 692 F-box genes proteins have been identified in the genome [8].

The targets for degradation for a few of the F-box proteins have been identified, such as the

receptor of auxin TRANSPORT INHIBITOR RESPONSE 1 (TIR) [9, 10]; the auxin response

regulators ABF1, 2 and 3 [9]; CORONATINE INSENSITIVE 1 (COI1) that targets ZIM-

domain (JAZ) proteins for degradation in response to JA perception [11]; AtSKIP18 and AtS-

KIP31 that target for degradation 14-3-3 proteins [12] and ZEITLUPE (ZTL) that targets for

degradation CRYPTOCHROME-INTERACTING basic helix–loop–helix 1 (CIB1) [13]. Even

though a considerable amount of information related to their function has been reported, the

targets for many F-box proteins remain elusive.

We have identified that the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS) has a key

role in regulating plant growth and flower development, cell proliferation and control of size

and floral organ number [14]. The hws-1 mutant is pleiotropic and its most conspicuous phe-

notype is the sepal fusion of flowers precluding floral organ shedding [15]. This phenotype is

similar to that of the double mutant cuc1/cuc2 [CUP-SHAPED COTYLEDON1 (CUC1) and 2

(CUC2)] [16] and to that of the Pro35:164B ectopic lines for the microRNA gene MIR164B [17,

18]. Recently we demonstrated that HWS controls floral organ number by regulating tran-

script accumulation levels of the MIR164. Very recently, we showed that, HWS indirectly regu-

lates accumulation of CUC1 and CUC2 genes mRNA [14].

Furthermore, the leaf and floral phenotypes in HWS overexpressing plants (Pro35:HWS) are

remarkably similar to mutants involved in the miRNA pathway, including leaf serration [15].

However, no direct link between HWS and miRNA biogenesis, nuclear export or function of

miRNAs has been described.

MicroRNAs (miRNAs) or small RNAs are sequence-specific guides of 19–24 nucleotides

that repress the expression of their target genes [1, 19]. In plants, miRNAs were shown to be

involved in vegetative and reproductive developmental processes, to be directly or indirectly

associated with various signalling pathways, such as auxin, CK, ABA hormonal pathways,

among others [17–18, 20–28].

The complexity of miRNA biogenesis has become apparent in recent years (for reviews see

29–33]. In plants, miRNAs originate from a primary miRNA transcript (pri-miRNA) tran-

scribed by RNA polymerase II, the miRNAs form foldback structures by imperfect pairing [19,

32, 34]. DAWDLE (DDL), a FHA domain-containing protein in Arabidopsis, interacts with

the endoribonuclease helicase with RNase motif DICER-LIKE1 (DCL1) to facilitate access or

recognition of pri-miRNAs [35]. STABLILIZED1 (STA1), a pre-mRNA processing factor 6

homolog modulates DCL1 transcription levels [36]. In the D-body, a complex that includes the

C2H2-zinc finger protein SERRATE (SE), the double-stranded RNA-binding protein HYPO-

NASTIC LEAVES-1 (HYL-1), DCL-1 and a nuclear cap-binding complex (CBC), process the

pri-mRNA to generate a pre-miRNA [37– 41]. PROTEIN PHOSPHATASE 4 (PP4), SUPPRE-

SOR OF MEK1 (SMEK1) [42], REGULATOR OF CBF GENE EXPRESSION (RCF3) and

C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 AND 2 (CPL1 and CPL2) control the

phosphorylation status of HYL-1 to promote miRNA biogenesis [43]. The mature sRNA

duplexes (miRNA/miRNA�) are either retained in the nucleus or exported to the cytoplasm

once they are stabilized by the S-adenosyl methionine dependent methyltransferase HUA

ENHANCER 1 (HEN-1) [44–46], which protects them from degradation by the SMALL RNA
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DEGRADING NUCLEASE (SDN) exonucleases [47]. HASTY (HST), the plant homolog of

Exportin-5 (Exp5), is involved in biogenesis or stability of some miRNAs and in transporting a

yet to be identified component in the miRNA pathway [48]. The guide miRNA strand is

merged into ARGONAUTE (AGO) proteins which carry out the post transcriptional gene

silencing reactions (PTGS) [48–49].

In animals, regulation of miRNA biogenesis occurs at multiple levels. It occurs at the tran-

scriptional level, during processing by Drosha (in the nucleus) and Dicer (in the cytoplasm), as

well as by RNA editing, RNA methylation, urydylation, adenylation, AGO loading, RNA

decay and by non-canonical pathways for miRNA biogenesis [50–51]. Although a vast amount

of information has emerged relating to the biogenesis of miRNAs in plants, the mechanisms

that modulate miRNAs and their generators in the canonical pathway, and/or the presence of

non-canonical pathways are yet to be elucidated.

Here, we describe the identification and mapping of two hws-1 suppressor mutants (hst-23
and hst-24) in which the hws-1 sepal fusion phenotype is suppressed. These mutants are new

mutant alleles of HASTY known to be involved in biogenesis or stability of some miRNAs and

transporting of an unidentified component in the miRNA pathway. We demonstrate that

mutation of HST as well as mutations of other genes in the miRNA biogenesis pathway and

function are able to suppress hws phenotypes and vice versa. In agreement with these findings,

the levels of miR163 and miR164 mature miRNAs in floral tissues are modified in lines that

exhibit a loss or gain of function for HWS. The data support the hypothesis that HWS is a pre-

viously unidentified regulator of the miRNA pathway.

Material and methods

Plant material

Seeds from Col-0 (N60000), ddl-2 (N6933), se-1 (N3257), hyl-1 (N3081), dcl1-9 (N3828), hen1-
5 (N549197), hst-1 (N3810) and ago1-37 (N16278) were obtained from the Nottingham Arabi-

dopsis Stock Centre. Homozygous lines were identified, when appropriate, before crossing

them to hws-1 or hws-2 as described in [52]. The hws-1 allele has a 28 bp deletion and has been

isolated from a neutron fast bombardment mutagenized population, whereas the hws-2 allele

has two T-DNA insertions inserted in opposite directions 475 and 491 bp downstream the

ATG [15]. All lines were grown in a growth room supplemented with fluorescent lights

(200 μmol m-2s-1: Polulox XK 58W G-E 93331). The hws-1 EMS populations grew in a green-

house, temperature 23±2˚C and photoperiod 16h light/8h darkness. All plants grew in plastic

pots containing Levington M3 (The Scotts Company).

The hws-1 EMS mutagenized seeds were generated, screened and confirmed to be true sup-

pressors by using specific primers to detect hws-1 mutation (S1 Table).

Map-based cloning

To map the shs-2 mutation, a F2 population was generated by selfing the F1 progeny from a

cross between shs-2/hws-1 (hst-24/hws-1) and hws-5 (ffo1). DNA was extracted from about 120

F2 plants displaying a suppression of the sepal fusion phenotype of hws-1 (Sigma-Aldrich,

GeneElute™ Plant Genomic DNA Miniprep Kit).

To identify the chromosome containing the shs-2 mutation, an AFLP-based genome-wide

mapping strategy [53] was used on a subset of 40 DNA samples. Further mapping with all sam-

ples was performed with InDels [54]. For fine mapping, an additional 600 F2 plants were used.

Once the region was narrowed down to a 59.4 Kb, candidate genes in the region were identi-

fied and a 6.927 Kb region of the HST gene was sequenced. A similar genomic region was

amplified from the shs-3/hws-1 line for sequencing. Allelism tests between shs-2/hws-1 and shs-
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3/hws-1 were carried out by reciprocal crossing between the mutants. Primers used for map-

ping and sequencing are summarized in S1 Table.

Phenotypic analyses

The sepals and petals from twenty-five flowers (from six plants) from Col-0, hws-1, hst-24/hws-
1 and hst-24 in Col-0 were carefully dissected, counted and photographed. Mature siliques and

leaves dissected from 22 day-old plants from these lines were also recorded. Siliques from indi-

vidual mutants and crosses between hws-1, hws-2, ddl-2, se-1, hyl-1, dcl1-9, hen1-5, hst-1 and

ago1-37, were recorded following the same procedure.

All data obtained were used to perform statistical analyses and to create graphics. Regres-

sion analyses and ANOVA using generalized linear models were performed using GenStat

17.1. Graphics were created using Microsoft Excel 2016 and annotated using Adobe Photoshop

7.0.1.

miRNA Northern blots

Mature miRNAs were detected using the protocol described by [55]: total RNA was isolated

from a cluster of buds and young flowers (up to stage 12, [56]) from Col-0, hws-1, and Pro35:
HWS lines using TRIzol reagent (Life Technologies). Ten μg of total RNA from each line were

used for northern hybridisation. Antisense probes were constructed using mirVana™ miRNA

Probe Construction kit (Ambion) and radio labelled with γATP32P. Sequence information of

probes is included in S1 Table.

Yeast two-hybrid assay

ProQuest™ yeast Two-hybrid system (Invitrogen) was used to study protein-protein interac-

tion. The full length HWS coding region was cloned into pDEST32 and used to screen a sta-

men-specific tissue cDNA library [57]. Positive clones for Histidine bigger than 1mm in

diameter were isolated and subjected to X-gal filter assays following manufacturer’s instruc-

tions (Invitrogen). Plasmid DNA was isolated from selected individual clones, and then

sequenced to identify the corresponding genes. To confirm the interaction, X-gal assays were

repeated with the isolated clones.

Accession numbers

Sequence data from genes in this article can be found in the Arabidopsis Genome initiative or

GenBank/EMBL databases under the following accession numbers: HWS, At3g61590;HST,

At3g05040; DDL, AT3G20550; SE, AT2G27100; HYL-1, AT1G09700; DCL-1,AT1G01040; HEN-
1, AT4G20910; AGO-1, AT1G48410.

Results

The mutants shs-2 and shs-3 are novel alleles of HASTY and suppress

the sepal fusion phenotype of hws-1

To identify the substrate for the F-box HAWAIIAN SKIRT protein from Arabidopsis, we per-

formed a suppressor screen by EMS-mutagenizing the hws-1 mutant in a Columbia-0 (Col-0)

background. Screening of 308 individuals from 43 M2 populations resulted in the identifica-

tion of two suppressor lines shs-2/hws-1 (suppressor of hws-2) and shs-3/hws-1 (suppressor of
hws-3) that displayed no sepal fusion, suggesting suppression of the hws-1 phenotype (Fig 1I,

1J, 1K, 1M, 1Q, 1R, 1S and 1U). Reciprocal crosses between shs-2/hws-1 and shs-3/hws-1
yielded F1 individuals that displayed the same phenotype as the parents and restored the sepal

HWS, a miRNA pathway player
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Fig 1. The shs-2 and shs-3 mutants are alleles of HST. (A-H), Aerial and (I-P), lateral views of flowers at stage 15a; and

(Q-X), lateral view of mature green siliques from wild type in Col-0, hws-1, shs-2/hws-1 (hst-23/hws-1), shs-2 (hst-23), shs-

3/hws-1 (hst-24/hws-1), shs-3 (hst-24), hws-1xhst-1, hst-1. Bars = 1mm. (Y), Mapping strategy used to identify the hst-23

and hst-24 mutations. Structure of the gene and location of the transition substitution (C.G!T.A) at positions 4.587 Kb and

5.517 Kb in hst-23 and (G.C!A.T) at 0.583 Kb in hst-24 from the ATG are included, intragenic regions are represented by

thin lines and exons by dark boxes.

https://doi.org/10.1371/journal.pone.0189788.g001
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fusion phenotype of hws-1 (S1 Fig) demonstrating that these suppressor mutations are allelic.

The suppressor shs-2/hws-1 (in Col-0) was crossed to hws-5 (ffo-1, Landsberg erecta, Ler back-

ground) to generate a mapping population. The F1 individuals from this cross showed the

sepal fusion phenotype suggesting that the mutant is recessive. The F2 population was then

used for gene mapping. The shs-2 mutation was located in a 59.4 Kb region at the top of chro-

mosome 3 (Fig 1Y). This region contains 19 genes, including At3g05040 (HASTY-HST), a gene

known to be involved in the export of mature miRNA molecules from the nucleus to the cyto-

plasm [48–49]. Analyses of the genomic region containing the HST gene in shs-2/hws-1 identi-

fied two transition mutations at positions 4.587 Kb and 5.517 Kb downstream from the ATG

in shs-2/hws-1 line, resulting in a silent (ATC! ATT ~Ile) and a premature termination

(CAG! TAG; Gln!amber stop codon), respectively. In the shs-3/hws-1 line a transition

mutation was located 0.583 Kb downstream of the ATG, introducing an earlier termination

(GTG!GTA; Val!amber stop codon; Fig 1Y). Consequently, the shs-2 and shs-3 mutants

were renamed hst-23 and hst-24. These mutations generate truncated versions of HST of 924

and 57 amino acids respectively, compared to the wild type HST protein consisting of 1202 aa.

The double mutants hst-23/hws-1 and hst-24/hws-1were back-crossed with Col-0 to obtain

hst-23 and hst-24 single mutants for subsequent analyses (Fig 1D, 1F, 1L, 1N, 1T and 1V). The

F2 progenies displayed a segregation ratio 3:1 confirming that these are single, recessive

nuclear mutations. The hst-23 allele displayed relatively more severe floral and vegetative phe-

notypes compared to hst-24 allele (Fig 1 and S1 Fig).

To confirm that mutation of HST is responsible for the suppression of hws phenotype, we

crossed hws-1 with hst-1, an independent mutant that harbours a mutation in the HST coding

region that generates a truncated protein of 521 amino acids with the last 18 aa differing from

the wild type protein [58]. As shown in Fig 1G, 1O and 1W, flowers from F2 individuals dis-

played no sepal fusion, thus corroborating that mutation in HST is able to suppress the pheno-

type of hws-1. Taken together these data demonstrate that mutations in HST suppress the hws
phenotype, thus suggesting a putative role of HWS function in miRNA transport pathway.

HWS has a role in the miRNA pathway

HST is the Arabidopsis orthologue of Exp-5 from mammals, a protein involved in small RNAs

export from the nucleus to the cytoplasm [48]. We previously showed that overexpression of

HWS (Pro35:HWS) leads to phenotypes resembling those of mutants in miRNA pathway. This

knowledge together with the fact that the HWS loss of function phenotype is suppressed by

mutation in HST, prompted us to address if the HWS plays a role in miRNA biogenesis and

function.

The hws-1 and hws-2 mutants [15] were crossed with lines mutated in genes known to act

in the miRNA biogenesis pathway, and function, including ddl-2, se-1, hyl-1, dcl1-9, hen1-5,

hst-1 and ago1-37. Mutations in these genes are known to affect floral and vegetative develop-

ment, including delayed growth, reduced fertility, defects in root, shoot and flower morphol-

ogy, highly serrated leaves, severe leaf hyponasty, curling up of leaves and extra sepals and

petals [35, 37– 41, 59–60].

F2 plants were isolated and the double mutants identified by PCR. The genetic interactions

showed that all tested miRNA biogenesis and function pathway mutants, were able to suppress

the sepal fusion phenotype in the hws-1 and hws-2 independent mutants (Fig 2A, 2B, 2C, 2D,

2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T and 2U) the hws-2 allele harbour

two T-DNAs inserted in opposite directions 465 and 491 bp downstream the ATG of HWS
[15]. Interestingly, the hws mutants were also able to suppress the phenotypes of these mutants

in some instances. It is particularly noticeable that the hws mutant was able to suppress the

HWS, a miRNA pathway player

PLOS ONE | https://doi.org/10.1371/journal.pone.0189788 December 15, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0189788


Fig 2. miRNA pathway and co-suppression between hws-1 and miRNA pathway mutants. Single (A, G, J, M, P, S) hws-1, (D)

hws-2, (B) ddl-2, (E) se-1, (H) hyl-1, (K) dcl1-9, (N) hen1-5, (Q) hst-1, (T) ago1-37, and double (C) hws-1Xddl-2, (F) hws-1Xse-1, (I)

hws-1Xhyl-1, (L) hws-1Xdcl1-9, (O) hws-1Xhen1-5, (R) hws-1Xhst-1, (U) hws-1Xago1-37, mutants showing co-suppression of

phenotypes. Bars = 1mm. The (V) miRNA pathway (modified from [32, 36, 61]) has been included for reference.

https://doi.org/10.1371/journal.pone.0189788.g002
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delayed or arrested development from siliques of the mutants ddl-2 (Fig 2A, 2B and 2C), dcl1-9
(Fig 2J, 2K and 2L) and hen1-5 (Fig 2M, 2N and 2O). It should be noted that in older plants,

towards the end of the production of siliques, the reciprocal suppression of phenotypes

between hws and the biogenesis pathways mutants was less apparent (data shown for hws-1/
ddl-2; Fig 2C). These data support the proposal that HWS is an important regulator in the

miRNA pathway.

To further address this conclusion, we evaluated the levels of mature miRNAs from

MIR163 and MIR164 in developing flower buds, up to stage12 [56]. Compared to the Col-0,

significant over-accumulation of miR163 and miR164 was observed in the hws-1 mutant,

while reduction was observed in the Pro35:HWS line. (Fig 3). These results support our hypoth-

esis that HWS regulates levels of miRNAs in flowers, and likely in other tissues where the HWS
gene is expressed.

The HWS protein contains an F-box and a Kelch-2 repeat in its C-terminus [15]. F-

box proteins are important elements of the E3 SCF complex (from SKP1, Culling and F-box)

that catalyse the ubiquitination of proteins to be degraded by the proteasome [62]. It is therefore

likely that HWS forms a part of an SCF complex and identifies for targeted degradation protein

(s) that are in the miRNA pathway. We performed a yeast-two hybrid screen using a cDNA

Fig 3. Analysis of mature miRNA accumulation. Northern analyses in a mix of young buds and flowers (up to stage12, [56])

in Col-0 wild type (WT), hws-1 and Pro35:HWS using probes for miR163, miR164, and snRNA U6 as internal control. Graphs to

the left of the miRNA blots indicate the relative abundance of miRNAs compared to the Col-0.

https://doi.org/10.1371/journal.pone.0189788.g003
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library generated from stamen tissue from Arabidopsis flowers. A total of 1,280,000 clones were

screened. From these, 66 histidine positive colonies were isolated. X-gal assays showed that

among the 66 histidine positive colonies, 56 were positive for X- gal. From the 56 X-gal positive

clones, 55 contained Arabidopsis SKP1 protein; among which, 36 contained only SKP1; 10 con-

tained both SKP1 and PRXR1 (a protein involved in catabolism of hydrogen peroxide), and 9

contained SKP1 and FLA3 (Fasciclin-like arabinogalactan protein 3 precursor). One of the

clones contained only SKP4. However, independent X-gal assays could only confirm the inter-

actions between HWS and SKP1 or SKP4, suggesting that the isolated clones may not interact

directly with HWS or alternatively interaction of HWS with other proteins require the presence

of SKP1 (S2 Fig). These results confirm that the F-box protein HWS is part of an SCF complex

likely targeting for degradation protein(s) involved in the miRNA pathway.

hws-1 and hst mutants reveal epistatic interactions and independent

roles of HWS and HST during plant development

Previously, it was reported that mutation of HST induces pleiotropic effects during plant devel-

opment, which include curling of leaf blades, reduction of leaf numbers, faster production of

abaxial trichomes, reduction of leaf, sepals and petals size, laterally expanded stigma, inflores-

cence phyllotaxy defects and reduced fertility [58, 63–64]. We show here that mutations in

HST are able to suppress the sepal fusion of hws-1.

To understand the biological role of HWS-HST interaction and its role in nuclear export,

we addressed if HWS also affects the phenotypic variations associated with hst mutants, we

performed phenotypic analyses in simple and double mutant lines hws-1, hst-1 and hst-24/
hws-1, hst-23/hws-1. Indeed, a reciprocal complementation of hst phenotypes by mutating

HWSwas observed when analysing hst-23/hws-1 and hst-24/hws-1 double mutants. Mutation

of HWS (hws-1) was able to suppress phenotypes associated with hst mutations, such as the

curling up of the leaf blades, the reduction of leaf numbers, the reduction of silique dimensions

and fertility, the reduction of the expansion of stigmas and the disorientation of petals (Figs

1Q, 1R, 1S, 1T, 1U, 1V, 1W, 1X, 4D and 4E and S1 Fig). These results are in agreement with

the data above and corroborate that HWS acts in the miRNA pathway.

However, mutation of HWS could not supress other phenotypes associated with the hst
mutation. Sepals and petals from hst-24were reduced in size compared to that of Col-0

andhws-1 (Fig 4B). Sepals and petals of double mutant hst-24/hws-1were comparable in size to

the ones from the hst-24 single mutant demonstrating that loss of function of HWSwas not

able to supress the reduced petal size phenotype associated with the hst mutation (Fig 4B).

This observation suggests that HST must perform other functions independently of HWS.

Phenotypic analyses of flower organ number in hst-24mutant showed the characteristic

four sepals and four petals (Fig 4C and Table 1). However, a statistically significant (p<0.0001)

increase of sepals and petals number of 10% was observed in the double mutant hst-24/hws-1
(Figs 1E, 4A, 4B and 4C and Table 1). Interestingly, the increments were only observed in the

first ten flowers of each plant analysed, the subsequent fifteen flowers analysed displayed floral

organ number comparable to the wild type. Approximately 58% of the flowers had an increase

of both sepals and petals within a single flower. Taken together these data suggest that HWS

interacts with HST in the miRNA pathway to control some biological functions, but must also

act in an independent pathway to control others.

Discussion

Although plenty of knowledge has been generated since the discovery of the first miRNAs in

1993 [65–67], the complexity of mechanisms regulating their biogenesis, expression and mode
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Fig 4. Phenotypic characterisation of hst-24. (A) Dissected flower from developmental stage 15a from hst-

24/hws-1. (B) Comparative analyses of sepal and petal sizes from flowers (stage 15a) of Col-0, hws-1, hst-24/

hws-1 and hst-24. (C). Twenty-five flowers from six plants of Col-0, hst-24/hws-1 and hst-24 were dissected

and their sepals and petals quantified and statistically analysed by regression analyses using generalized

linear models. Stars indicate a significant difference in the mean at P�0.001 n = 450. Bars indicate SD. (D)

Rosettes, and (E) Dissected leaves from 22-day-old plants from Col-0, hws-1, hst-24/hws-1 and hst-24. Bars

in A, B = 1mm; and in D, E = 1 cm.

https://doi.org/10.1371/journal.pone.0189788.g004
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of action is not fully elucidated. Here we demonstrate a role for HWS in the miRNA pathway.

Our first line of evidence comes from the isolation of two new HST alleles, hst-23 and hst-24,

from a screening of EMS hws-1 mutant suppressor lines. These alleles were able to suppress

the sepal fusion phenotype from hws-1. HST has been implicated in the export of an unidenti-

fied component of the miRNA pathway, miRNA biogenesis or miRNA function [48]. Our sec-

ond line of evidence comes from our genetic crosses between hws-1 or hws-2 and ddl-2, se-1,

hyl-1, dcl1-9, hen1-5, hst-1 and ago1-37 mutants from known genes regulating the biogenesis

and function of miRNAs, that show suppression of the sepal fusion from hws-1, demonstrating

that HWS has a role in biogenesis, stability and/or function of miRNA in addition to their

transport involving HST. Interestingly, there was a noticeable reciprocal suppression of pheno-

types between the hws and ddl-2, dcl1-9 and hen1-5mutants in floral development, fertility and

flower morphology, suggesting epistatic interactions. Suppression of phenotypes towards the

end of flower production was less apparent, suggesting that the regulatory mechanisms

becomes altered in a spatiotemporal way, or that HWS is targeting for degradation a yet to be

identified protein that regulates genes of the miRNA pathway in a spatiotemporal fashion

upstream of the miRNA biogenesis process. Alternatively, a compensatory mechanism to reg-

ulate microRNA biogenesis could be present; in agreement with this hypothesis, it has been

previously demonstrated that such mechanisms exist to compensate cell number and associ-

ated organ sizes defects in plants [68]. Our third line of evidence comes from our Northern

blot analyses where differential accumulation of mature miR163 and miR164 in floral tissues

in the hws-1 mutant and the Pro35:HWS line were observed, suggesting that during develop-

ment a differential regulation of mature miRNAs is required, and this is achieved by a pathway

implicating HWS. It is known that miR163 negatively regulates mRNA levels of PMXT1, a

member of the S-adenosyl-Met dependent carboxyl methyltransferase family, to modulate

seed germination, seedling de-etiolation and root architecture in response to light [69]. While

miR164 negatively regulates mRNA levels of CUC1 and CUC2 genes to modulate boundary

formation in flowers [14, 17–18]. Our Northern blot results provide further evidence for a role

of HWS in miRNA pathway and suggest that the sepal fusion phenotype observed in hws-1
maybe due to the over accumulation of miR164 which in turn modulates mRNA levels of

CUC1, and CUC2.

Our data point to the hypothesis that putative target proteins of HWS, act upstream of the

miRNA biogenesis pathway, or affect miRNA stability or function, or a combination of all of

these. The HWS protein holds an F-box and a Kelch-2 repeat in its C-terminus [15]. It is likely

that the interaction between HWS and its targets involves the Kelch-2 repeat. In agreement

with this proposal, in our yeast-two-hybrid experiments we were able to demonstrate that

HWS interacts with ASK1 and ASK4, two proteins that are part of the SCF complex, support-

ing the idea that HWS role in the miRNA pathway may be by targeting proteins for degrada-

tion through the SCF complex.

Table 1. Mean of sepal and petal numbers in Col-0, hws-1, hst-24/hws-1 and hst-24 in Col-0 from the first 25 flowers of the inflorescences, (flowers

n = 200).

GENOTYPE Sepals Petals

Mean±SD Mean±SD

Organ number (Min-Max) Organ number (Min-Max)

Col-0 4±0 (4–4) 4±0 (4–4)

hws-1 4±0 (4–4) 4.1±0.31 (3–5)

hws-1/hst-24 4.4±0.5 (4–5) 4.4±0.7 (4–6)

hst-24 4±0 (4–4) 4±0 (4–4)

https://doi.org/10.1371/journal.pone.0189788.t001
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Although these targets remain to be identified, putative candidates could be PROTEIN

PHOSPHATASE 4 (PP4), SUPPRESOR OF MEK1 (SMEK1) [42], REGULATOR OF CBF

GENE EXPRESSION (RCF3) or C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 AND 2

(CPL1 and CPL2), that are known to be involved in controlling the phosphorylation status of

HYL-1 to promote miRNA biogenesis [43]. Alternatively, the CAP-BINDING PROTEINS 20

and 80 (CBP20 and CBP80, also known as ABH1), important proteins during the biogenesis of

miRNAs and ta-siRNA biogenesis [70]. It has been demonstrated that ABH1 (CBP80) is also

able to suppress the hws-1 sepal fusion phenotype [71]. Therefore, CPB20 and CBP80 are

strong candidates for targeted degradation through HWS. In the literature, some redundancy

and cross-talk between known pathways generating miRNAs, ta-siRNAs and siRNAs, and

other pathways that remain to be discovered, has been reported [72]. The role of HWS in the

regulatory events during ta-siRNAs and siRNAs biogenesis pathways, among others, remains

to be elucidated. Testing interactions of these proteins will shed light of the putative role of

HWS in controlling the phosphorylation status of key players in the miRNA pathway.

It has been suggested that the AUXIN SIGNALING F-BOX 2 (AFB2) gene is post-transcrip-

tionally negatively regulated by miR393, and a regulatory mechanism where miRNAs prevent

undesired expression of genes involved in miRNA production has been proposed [73]. An

alternative to this suggestion comes from the finding of numerous siRNAs in the proximity of

the MIR393 target site for the F-boxes TIR1, AFB2, and AFB3 genes [74]. [74] suggested that

the regulation of their transcripts occurs via siRNAs rather than MIR393. Further experiments

will establish if this regulatory mechanism holds true for HWS.

We revealed that the hws-1 is able to suppress the curling up of leaf blades, reduction of leaf

numbers, reduction in leaf size, expansion of stigma, petal orientation, and reduced fertility

phenotypes characteristic of hst mutants [58, 63–64]. However, HWS and HST seem to also

have independent roles as the hws mutation could not supress some phenotypes associated

with the hst knockout. Moreover, the double mutant hst/hws exhibited increased sepals and

petal number in the first ten formed flowers, a phenotype not seen in the hst-24 or hws-1 single

mutants. The underlying mechanisms of the increased number of sepals and petals in the dou-

ble mutant remain unknown. It has been reported that HST affects bolting and floral matura-

tion timing [63], but there are no reports of HST affecting floral organ numbers. These

findings suggest epistatic interactions between HWS and HST to fine tune development in

plants, in a spatiotemporal way, in addition to independent roles for HWS and HST in plant

development.

Previous findings point to the fact that genes involved in the miRNA pathway must have

other roles in addition to miRNA biogenesis, transport or function. For example, ddl mutants

have more severe morphological phenotypes than these of the dcl1-9mutants; but the miRNA

levels are reduced in the dcl1-9 compared to the ddl mutants [35]. Moreover, it has been dem-

onstrated that DDL regulates plant immunity by poly(ADP-ribosyl)ation (PARylation) of pro-

teins; and regulates plant development via the miRNA biogenesis pathway [75]. Another

example is illustrated by CBP20 and CBP 80. It has been demonstrated that in addition to their

role in miRNA biogenesis these proteins also act during the formation of a heterodimeric com-

plex that binds the 5’ cap structure of a newly formed mRNA by Pol II, aid in the pre-miRNA

splicing and act during polyadenylation and during the export of RNA out of the nucleus [70,

76–80]. Therefore, it is likely that both HWS and HST have additional roles to that of miRNA

pathway.

Our data shed light on the complexity of mechanisms regulating miRNA pathway, and

place HWS as a new regulator in this pathway. In support of our findings, [71] have proposed

HWS as a regulator of miRNA function in their screening studies for negative regulators of

MIR156 activity.
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Due to the impact on development that HWS exerts, this research is relevant for identifying

novel strategies to generate more productive and resilient crops. As support to this, recently

we showed that a mutant from the ERECTA PANICLE3, the HWS rice orthologue gene in rice,

has decreased photosynthesis due to reduced stomatal conductance and attenuated guard cell

development [81]. Moreover, [82], demonstrated that Arabidopsis mutants and a knock down

line of OsFBK1, a second HWS rice orthologue gene, germinate better and have root systems

that are more robust on exposure to ABA than wild type, important for drought tolerance.

Supporting information

S1 Fig. Phenotypic characteristics of hst-23. (A) F1 progeny and (B) flower from a cross

between shs-2/hws-1 and shs-3/hws-1 demonstrating that shs-2 and shs-3 are allelic. (C) Dis-

sected rosette and cauline leaves from 22-day-old plants from: Col-0, hst-23/hws-1, hst-23, hst-
1xhws-1 and hst-1. Bars in A, C = 1 cm, in B = 1mm.

(TIF)

S2 Fig. Yeast-two-hybrid interactions. (A-E) Sixty-six histidine positive clones, identified

from a screening using a stamen cDNA library from Arabidopsis flowers, were analysed for β-

galactosidase activity. (F) Individual clones tested for protein-protein interactions: (1) SKP1,

(2) SKP4, (3) PRXR1 and (4) FLA3. Positive clones are shown in blue. Ac-Ec, are positive con-

trols where A is the weakest control and E is the strongest control.

(TIF)

S1 Table. Primers and probes used in this study. Marker, sequencing, screening, yeast-two-

hybrid primers and probes used in Northern blots are included.
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81. Yu H, Murchie EH, González-Carranza ZH, Pyke KA, Roberts JA. Decreased photosynthesis in the

erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated

guard cell development J Exp of Bot. 2015; 66: 1543–1552.

82. Borah P, Sharma E, Kaur A, Chanfer G, Mohapatra T, Kapoor S, et al. Analysis of drought-responsive

signalling network in two contrasting rice cultivars using transcriptome-based approach. Scientific

Reports| 2017; 7: 42131| https://doi.org/10.1038/srep42131 PMID: 28181537

HWS, a miRNA pathway player

PLOS ONE | https://doi.org/10.1371/journal.pone.0189788 December 15, 2017 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/8252621
https://doi.org/10.1038/35002607
https://doi.org/10.1038/35002607
http://www.ncbi.nlm.nih.gov/pubmed/10706289
http://www.ncbi.nlm.nih.gov/pubmed/8252622
https://doi.org/10.1093/emboj/cdf614
http://www.ncbi.nlm.nih.gov/pubmed/12426376
http://www.ncbi.nlm.nih.gov/pubmed/26768601
https://doi.org/10.1093/pcp/pcn146
https://doi.org/10.1093/pcp/pcn146
http://www.ncbi.nlm.nih.gov/pubmed/18829588
https://doi.org/10.1104/pp.17.01313
https://doi.org/10.1104/pp.17.01313
http://www.ncbi.nlm.nih.gov/pubmed/29114080
https://doi.org/10.1016/j.tplants.2006.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16893673
https://doi.org/10.1126/science.aae0382
https://doi.org/10.1126/science.aae0382
http://www.ncbi.nlm.nih.gov/pubmed/16627744
https://doi.org/10.1073/pnas.0911967106
https://doi.org/10.1073/pnas.0911967106
http://www.ncbi.nlm.nih.gov/pubmed/20018756
https://doi.org/10.15252/embr.201642486
https://doi.org/10.15252/embr.201642486
http://www.ncbi.nlm.nih.gov/pubmed/27797852
http://www.ncbi.nlm.nih.gov/pubmed/9342333
http://www.ncbi.nlm.nih.gov/pubmed/8069914
http://www.ncbi.nlm.nih.gov/pubmed/8682298
http://www.ncbi.nlm.nih.gov/pubmed/2440046
https://doi.org/10.1038/srep42131
http://www.ncbi.nlm.nih.gov/pubmed/28181537
https://doi.org/10.1371/journal.pone.0189788

