Response to Serrao and Goodchild

Sneyd, John

http://hdl.handle.net/10026.1/11376

10.1016/j.bja.2018.01.007
British Journal of Anaesthesia
Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
CORRESPONDENCE
Response to Serrao and Goodchild
J. Robert Sneyd
Plymouth University Peninsula Schools of Medicine and Dentistry,
The John Bull Building, Research Way,
Plymouth Science Park, Plymouth PL6 8BU, UK
E-mail: robert.sneyd@pms.ac.uk.

Editor

Serrao and Goodchild have correctly identified an author’s error for which I apologise. The lipid-free presentation of an i.v. anaesthetic is a sensible ambition, and their strategy of formulating alphaxalone in a 7-sulphobutyl ether b-cyclodextrin solution 13% is rational. Their preliminary publications confirm that, in this vehicle, alphaxalone maintains its characteristic of haemodynamic stability whilst being somewhat less lethal to rats than alphaxalone in Cremophor EL 20%.

I am also hopeful for new i.v. anaesthetics, but enthusiasm has to be grounded against the universal availability of lowpriced generic propofol. To achieve commercial success will require satisfying regulators that the vehicle is safe and persuading anaesthetists that the haemodynamic improvements are important.

Sulphobutyl ether b-cyclodextrin is already used as a vehicle for injectables, but in very different volumes to those required for total i.v. anaesthesia and intensive care sedation. Clinicians often administer medicines outwith their licensed doses and indications, so considering the extremes is appropriate. When alphaxalone formulated as Althesin (alphaxalone 9 mg ml\(^{-1}\) and alphadolone 3 mg ml\(^{-1}\)) was used for intensive care unit sedation, the average infusion rate for sedation was 0.079 ml\(_{1}\) kg\(_{-1}\) h\(_{-1}\), and one patient weighing 55 kg received a total of 4367 ml (79.4 ml kg\(_{-1}\)) infused at 0.2339 ml\(_{1}\) kg h\(_{-1}\). At present, the relative potencies of alphaxalone in sulphobutyl ether b-cyclodextrin 13% and Althesin have not been reported. Nevertheless, sulphobutyl
ether b-cyclodextrin 13%, 0.079 ml kg\(^{-1}\) h\(^{-1}\) would present a cyclodextrin dose of 246.5 mg kg\(^{-1}\) day\(^{-1}\). Sulphobutyl ether b-cyclodextrin 13%, 79.4 ml kg\(^{-1}\) is a dose of 10 322 mg kg\(^{-1}\).

Renal and hepatic toxicities have been described in rats receiving sulphobutyl ether b-cyclodextrin 3000 mg kg\(^{-1}\) albeit over a shorter period.

Haemodynamic stability with alphaxalone is certainly superior to propofol; however, virtually any patient may be safely anaesthetised with propofol in judicious doses. Bell and Goodchild have described the safety of i.v. anaesthesia with propofol in a patient with hypertrophic obstructive cardiomyopathy and aortic obstruction.

Declaration of interest
J.R.S. has received honoraria for advice on pharmaceutical development projects from The Medicines Company, Maruishi Pharmaceutical, and Altus Formulation.

References
2. Sneyd JR. Thiopental to desflurane anaesthetic journey. Where are we going next? Br J Anaesth 2017; 119: i44e52

Crown Copyright © 2018 Published by Elsevier Ltd on behalf of British Journal of Anaesthesia. All rights reserved.
For Permissions, please email: permissions@elsevier.com

1
British Journal of Anaesthesia, • (●): 1e2 (2018)