PEARL

Faculty of Science and Engineering

https://pearl.plymouth.ac.uk

University of Plymouth Research Data

2018-04-27

180427_dataset_ECM

Perez Collazo, Carlos

Perez-Collazo, C. et al (2018). <i>180427_dataset_ECM</i>. PEARL Research Repository https://doi.org/10.24382/bnwm-qd79 http://hdl.handle.net/10026.1/11373

https://doi.org/10.24382/bnwm-qd79

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

PEARL Dataset — metadata capture template See notes and example. Fields marked * are mandatory. Fields in grey are completed by PEARL / PEARL Admin.

Title*	Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave
	energy converter
Authors*	Carlos Perez-Collazo; Deborah Greaves; Gregorio Iglesias
Publication date*	ТВС
Material type*	Dataset
Publisher*	University of Plymouth
Subject keywords	Wave Energy;
	Offshore Wind;
	Hybrid wind-wave;
	Physical modelling;
	Hydrodynamic response
Abstract	Multiple marine resources are usually available in the same area and synergies
	between the different users of these resources exist. Multipurpose platforms, which
	combine more than one of these renewable resources, have been proposed as a
	sustainable approach. One type of multipurpose platforms is the hybrid wind-wave
	systems, in which a single platform combines the exploitation of offshore wind and
	wave energy. In this paper a novel hybrid system that integrates an oscillating
	water column (OWC) wave energy converter (WEC) with an offshore wind turbine
	on a monopile substructure is considered. The main objective of this paper is to
	define and test a simplified version of the WEC sub-system of this hybrid energy
	converter. An experimental campaign was carried out to characterise the
	hydrodynamic response of a 1:37.5 scale model of the WEC sub-system under
	regular and irregular waves. On the basis of the data from the experimental
	campaign, the hydrodynamic response of the WEC sub-system is characterised in
	four steps: (i) through an incident and reflected wave analysis (IRWA), to
	characterise the interaction between the device and the waves; (ii) through the
	capture width ratio, to study the performance of the device; (iii) through response
	amplitude operators (RAOs) of the free surface elevation and pneumatic pressure
	inside the OWC chamber, to study the effects of the incident waves on the device
	response; and (iv) through the wave run-up on the device. The results from this
	multifaceted analysis lead to the proof of concept of this novel hybrid system,
	supporting its feasibility to be combined with offshore wind substructures; but also
	to characterise its behaviour and interaction with the wave field, essential to full
	understanding of the benefits of hybrid systems.
	understanding of the benefits of hybrid systems.
Additional information	This metadata are supplementary to the journal paper "Hydrodynamic response of
	the WEC sub-system of a novel hybrid wind-wave energy converter"
	the wee sub-system of a novernybrid wind wave energy converter
Language	English
Funder	School of Engineering of the University of Plymouth
	Hydraulic Engineering research area of the University of Santiago de Compostela
Project	· · · ·
Sponsors / Commisioning bodies	
DOI	
Citation	[PEARL Admin will complete]
Related publications	
Links to related publications	
· · ·	Attribution 4.0 International (recommanded)
License	Attribution 4.0 International [recommended]

License URI	http://creativecommons.org/licenses/by/4.0/ [recommended]
Embargo end date	
Embargo reason	