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Abstract Although, in most animals, brain connectivity varies between individuals, behaviour is

often similar across a species. What fundamental structural properties are shared across individual

networks that define this behaviour? We describe a probabilistic model of connectivity in the

hatchling Xenopus tadpole spinal cord which, when combined with a spiking model, reliably

produces rhythmic activity corresponding to swimming. The probabilistic model allows calculation

of structural characteristics that reflect common network properties, independent of individual

network realisations. We use the structural characteristics to study examples of neuronal dynamics,

in the complete network and various sub-networks, and this allows us to explain the basis for key

experimental findings, and make predictions for experiments. We also study how structural and

functional features differ between detailed anatomical connectomes and those generated by our

new, simpler, model (meta-model).

DOI: https://doi.org/10.7554/eLife.33281.001

Introduction
Information processing in the brain is based on communication between spiking neurons that are

embedded in a network of synaptic connections. Clarifying the interplay between network connectiv-

ity and functionality is a key part of understanding how the brain generates functional behaviours

(Sporns et al., 2005; Marder and Calabrese, 1996). Studying this relationship is difficult because

nervous system connectivity usually varies considerably between individuals. Despite this variation

each individual behaves in approximately the same way, especially in the case of simple animals.

This commonality of behaviour suggests that there are some fundamental organisational principles

that underlie the structure of a species’ nervous system. How can we identify these fundamental

properties that are shared across individuals and allow the nervous system to function correctly?

In this paper, we attempt to answer this question in the case of the hatchling Xenopus tadpole.

Whole cell recordings and anatomical measurements of neurons, combined with computational

modelling, have uncovered many important details regarding the neuronal network that controls

swimming in hatchling tadpoles (Roberts et al., 2010; Roberts et al., 2014). We have previously

shown how modelling of the neuronal connectivity in the tadpole spinal cord and caudal hindbrain is

possible through a ‘developmental’ approach, whereby connections between neurons are not pre-

scribed but appear as a result of the intersection between (simulated) growing axons with dendrites

(Borisyuk et al., 2014). This anatomical model mimics the realistic growth of axons in the spinal

cord. Following biological realism, the axon growth is guided by the concentration of chemical gra-

dients in the spinal cord. The properties of such gradients are controlled by model parameters that
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have been optimized to produce the same statistical characteristics as real measurements. Other

model specifications (including soma positions and dendritic extents) are assigned from the distribu-

tions of experimental data and from general biological knowledge. The model includes several sto-

chastic components (Borisyuk et al., 2014; Roberts et al., 2014); therefore, each model simulation

generates a different pattern of connectivity (‘connectome’). The connectivity can be mapped onto a

functional model composed of spiking units of Hodgkin-Huxley type, with parameters chosen to

match known tadpole electrophysiology (Sautois et al., 2007). The resulting functional model reli-

ably produces activity patterns like those seen during real swimming (Roberts et al., 2014). It is

important to note that the anatomical model provides a way of generating many different connec-

tomes, such that the random variation observed between generated connectomes has the same sta-

tistical properties as measurements taken from different individual animals. Here, we set out to

reveal the fundamental features of the neuronal connectivity that underlie the ability of the swim net-

work to function robustly.

We describe a new probabilistic model of connectivity, which is generalised from a large number

of connectomes generated by the anatomical model. This probabilistic model is a matrix that speci-

fies the probability of connection between each pair of neurons. Being derived from multiple biolog-

ically realistic (anatomical) connectomes, the probabilistic model reflects the anatomical structure of

the biological system. An important advantage of the probabilistic model is that it is simple enough

that we can analyse the properties of the model itself, rather than individual connectome realisa-

tions. We use the probabilistic model to calculate structural properties of the tadpole network.

These results are general, and therefore should reflect the fundamental organisational principles that

we aim to uncover here.

Graph and network theories (Rubinov and Sporns, 2010) are increasingly used to study connec-

tivity of different neuronal networks: C. elegans (Varshney et al., 2011; Kaiser and Hilgetag,

2006), zebrafish (Stobb et al., 2012), cat, rat and macaque cortical structures (Sporns et al., 2007;

Sporns and Zwi, 2004; Humphries et al., 2006). For example, it was shown that the C. elegans con-

nectome is heterogeneous and has a hub structure (Towlson et al., 2013): most neurons have a low

number of connections but there are several highly connected ‘hubs’. Hubs have been identified in

many brain networks and they are likely to be formed at an early stage of development (Varier and

Kaiser, 2011). However, not all brain circuits have hubs; for example, they have not been found in

the rat reticular formation (Humphries et al., 2006) or zebrafish nervous system (Stobb et al.,

2012).

Using the probabilistic model, we estimate the heterogeneity (Hu and Wang, 2008) and connec-

tion degree distributions (Barabasi and Albert, 1999; Sporns et al., 2007; Varshney et al., 2011)

of the tadpole’s spinal cord network. We found that the generalised tadpole network is not scale-

free and that hubs do not exist; therefore in this respect the generalised tadpole network differs

from the C. elegans connectome.

A second potential advantage of the probabilistic model is that it can be used to easily generate

connectome realisations by sampling from the probability matrix, without detailed simulation of neu-

ronal growth. This enhances its potential value as a tool for studying the functional properties of the

network when combined with an appropriate physiological model. Multiple functional simulations of

probabilistic connectomes demonstrated a reliable pattern of rhythmic activity, qualitatively like tad-

pole swimming and as seen in previous modelling (Roberts et al., 2014). Thus, the generalised

probabilistic model shares structural and functional properties with the real biological object. How-

ever, quantitative differences showed that caution is required to avoid pitfalls when employing the

probabilistic approach to study real biological activity.

Specifically, we found that the variance of the number of incoming connections (in-degree) or

out-going connections (out-degree) of each neuron is higher in anatomical rather than a probabilistic

connectomes. As a result of this finding, we observed that the period of the rhythm was longer in

probabilistic connectomes. We can explain why the generalisation process affects the swimming

period, and show how it is possible to accurately predict the period of swimming using only struc-

tural properties of the connectome. We then show how, by making suitable parameter adjustments,

we can match the functionality of the probabilistic connectomes to that of the animal and anatomical

connectomes. This makes it possible to use the probabilistic approach as a tool for studying real bio-

logical activity as well as structural properties of networks.
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Despite the differences between anatomical and probabilistic models, we demonstrate several

important advantages of using the probabilistic model in comparison to the anatomical one. For

example, we could predict the position of commissural interneurons (cINs) that are active during

swimming, which can be difficult to explain by the anatomical model. Specifically, our simulations

show that cINs in rostral positions are less likely to fire reliably than those in caudal positions. More-

over, the probabilistic model allowed us to easily design new computational experiments that

helped to clarify the following experimental findings.

By studying the connectivity of CPG neurons specifically, we show that the minimal swimming

subnetwork includes neurons of two types: inhibitory commissural interneurons (cINs) and excitatory

descending interneurons (dINs). Similar to experiments with the surgically isolated half semi-CNS

(Soffe, 1989), we found that the network of interconnected dINs on one body side could still gener-

ate rhythmic activity even without commissarial inhibition. It is known from experimental measure-

ments that some dINs have both descending and ascending axons (Roberts et al., 2010). Our

simulations of the model without ascending dIN axons show that the ascending connections play a

key role in swimming and their deletion leads to pathological activity.

To summarize, in this paper we design a simple probabilistic model (meta-model) which reflects

some structural features of anatomical connectomes. We also show that it can be used to study how

these features relate to real behaviour by making suitable adjustments in synaptic strengths. We

consider this investigation of the tadpole spinal cord as an important example of a technique that

can be widely applied to study the nervous system of other animals.

Materials and methods

Derivation of the probabilistic connectivity model
The probabilistic connectivity model is derived from multiple connectomes generated by our existing

anatomical model: a developmentally inspired model which is biologically realistic and incorporates

a large number of biological measurements (Borisyuk et al., 2014; Li et al., 2007a; Borisyuk et al.,

2011). The anatomical model simulates axon growth guided by chemical gradients, with model

parameters that are chosen by fitting the generated axons to experimental measurements. As the

growing axons intersect dendrites, which are allocated along the body according to experimental

measurements, synapses form and make connections between neurons.

Here, we explain some details of the anatomical model that are important for understanding the

new probabilistic model (for more details about the anatomical model, see Appendix 1). The ana-

tomical model includes N = 1382 neurons of the seven types known to generate the swimming

response. The network is divided between neurons in the sensory pathway (RB, dlc and dla), CPG

neurons (dIN, cIN and aIN), and output motor neurons (mn). Sensory pathway neurons deliver sen-

sory stimulation to CPG neurons. CPG neurons are responsible for the generation and maintenance

of the swimming activity pattern. Motor neurons (mn) deliver CPG output to muscles and generate

locomotion (Figure 1). The model is simplified by fixing the number of cells for each neural type,

with neurons of each type equally divided between the left and right body sides. Simulation of the

anatomical model results in a network with approximately 83,000 synapses on average. For a full

description of the anatomical model and its implementation, see (Borisyuk et al., 2014;

Roberts et al., 2014).

Importantly, the anatomical model includes stochastic components, so repeatedly running the

model produces different connectomes with different numbers of connections and connection distri-

butions. In particular, rostro-caudal coordinates of neurons can vary between connectomes. How-

ever, since the number of neurons of each type is kept constant it is possible to find a one-to-one

correspondence between any two generated connectomes. First, we ordered the cell types (RB, dla,

dlc, aIN, cIN, dIN, mn) and second, for each cell type we ordered neurons of that type according

their longitudinal position (or the rostro-caudal (RC) coordinate) in ascending order from head to

tail. For example, in any connectome neuron #1 is the most rostral RB neuron on the left side of the

body, while neuron #62 is the most caudal left-side RB; neurons #63–126 are the right-side RB neu-

rons; neurons #127–146 and neurons #147–174 are the dla neurons on the left and right sides

respectively, etc. This ordering of cells is universal and does not depend on a particular connectome;
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therefore, we can enumerate all neurons in a universal way, providing a one-to-one correspondence

between generated connectomes.

To define the probabilistic model we used the universal enumeration of neurons and considered

the matrix of probabilities P where pi;j is the probability that there is a synaptic connection from

neuron i to neuron j; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;N: Here N = 1382 is the total number of neu-

rons. We defined the random Bernoulli variable Xij 2 0; 1f g; where Xij ¼ 1 means that there is a

directed connection from i to j and the probability Pr Xij ¼ 1
� 	

¼ pi;j . To calculate an estimate of

this probability (p̂ij), we generated K ¼ 1000 connectomes and calculated the frequency of appear-

ance of this directed connection: p̂ij ¼ M
K
, where M is the number of connectomes with a connection

from neuron i to neuron j: The RC-coordinate of each neuron is defined by the averaging the RC-

coordinates across the K generated connectomes.

The central limit theorem provides the error estimation of each entry of the probability matrix pij:

the length of the binomial confidence interval with 95% confidence is given

by eij » 2
1:96
ffiffiffi

M
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ij 1� p̂ij
� �

q

. The maximum of this error’s estimate corresponds to p̂ij ¼ 0:5, therefore,

i;j
max eij

� �

» 0:06:

The probabilities of directed connections between all neurons of the swimming network are

shown in Figure 2A. All probabilities are between p̂ij ¼ 0 (no connections) and p̂ij ¼ 0:69. To visualize

these probabilities we use a greyscale, where black color corresponds to p̂ij ¼ 0 and bright pixels to

high probabilities. Note: here and below we use the same notation pi;j for the probabilities and their

estimates.

As an example, Figure 2B shows the sub-matrix corresponding to aIN-aIN connections. There is a

black diagonal line which results from the fact that neurons cannot make connections with them-

selves. In fact, similar almost-diagonal lines can be seen in all of the other sub-matrices due to a

Figure 1. Swimming network. (A) Left: Photo of a 5 mm long hatchling Xenopus tadpole. Middle: two-dimensional diagram showing the indicated

region of CNS seen from top with its subdivisions (midbrain, hindbrain and spinal cord). Right: Zoom of the indicated region of hindbrain and rostral

spinal cord after cutting the body in half along the midline and opening it like a book. The diagram shows examples of the position of cell bodies (filled

circles), dendrites (straight horizontal lines) and axons (lines extending also vertically). The floor plate separates left and right side of the CNS (grey

rectangle). (B) Diagram showing the different populations within the swimming network and the synaptic connections between them. Connections

ending on the border of each symmetrical half-centres (grey square) represent connections to any cell-type in the corresponding half-center.

Descending interneurons (dINs) are locally coupled by gap junctions. Note that neuronal populations in the sensory pathway are only shown for one

side of the body, but are present on both sides in the model. The table shows the colour coding and the number of neurons for each neuron type.

DOI: https://doi.org/10.7554/eLife.33281.002
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Figure 2. Visualization of the probability matrix P. (A) Image representation of the complete matrix P, where the greyscale intensity of the pixel in row i

and column j represents the value of the probability pij. Black intensity corresponds to connection probability zero and grey intensity close to white

corresponds to connection probability one. Rows and columns corresponding to neurons of each of the seven types are separated by solid blue lines.

These lines separate the matrix into symmetrical sub-blocks. Within each sub-block vertical and horizontal dotted lines separate the left body side (top

Figure 2 continued on next page
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feature of the growth model that prevents neurons contacting very nearby neurons. Close to the

diagonal line in Figure 2B the shading is very bright, but this fades to black away from the diagonal.

This results from the fact that the probability of two neurons being connected decreases with the

distance between them. For aINs, the shading is brighter below the diagonal line, which reflects the

fact that their axons are mainly in the ascending direction, making a given aIN more likely to contact

aINs that are located more rostrally. While the aIN-aIN example is relatively simple to understand,

neurons with more complicated growth patterns have sub-matrices with more complex structure –

for example in the case of dIN-dIN connections.

The matrix P can be used to generate a specific adjacency matrix of directed connections (con-

nectome) A ¼ aij
� �

where aij 2 0; 1f g and aij ¼ 1 indicates existence of the connection from neuron i

to neuron j. This matrix A is a particular realization of independent Bernoulli variables. We then used

these specific adjacency matrices (‘probabilistic connectomes’) to explore their functional properties

by mapping the connectomes onto our functional model to study the spiking activity in the swim

network in response to stimulation.

Functional model of spiking activity
To investigate the relationship between the network’s structure and functionality it was necessary to

simulate the spiking activity using the connectomes generated by the probabilistic model. We pro-

duced specific adjacency matrices from the probability matrix and used them in a functional model

to simulate responses to stimulation and study spiking activity patterns. The functional model

included conductance-based single-compartment neurons of Hodgkin-Huxley type with synaptic and

axonal delays. In addition to the chemical synapses that are generated by the anatomical or probabi-

listic models, we also included the effects of electrical coupling (gap junctions) between dINs that

are in close proximity to each other. We follow previous experimental (Li et al., 2009) and modelling

(Hull et al., 2015) studies that have suggested that these electrical connections are an important

functional property of the dIN network. Synaptic strengths, membrane channel conductances and

neuron capacitances were all based on experimental results and then randomised according to a

Gaussian distribution. A complete description of the functional model is given in (Roberts et al.,

2014).

Simulations were performed using NEURON 7.3 (Carnivale and Hines, 2006) (RRID:SCR_005393)

with a fixed time-step of 0.01 ms.

Details about the functional model and parameter values are given in the Appendix 2. The code

for the anatomical, probabilistic and functional models, and the code for reproducing all the figures

in this manuscript are available in Model DB from https://senselab.med.yale.edu/ModelDB/enter-

Code.cshtml?model=238332.

Results

In- and out-degrees derived from the probabilistic model
One way the structure of a network can be measured is by calculating the number of incoming and

outgoing connections each element in the network has. In this section, we use the probabilistic

model to calculate the mathematical expectation of the incoming connection number (in-degree)

and outgoing connection number (out-degree) (Bullmore and Sporns, 2009) for the whole network

and for different sub-networks.

Based on the assumption that the probability matrix P ¼ p̂ij
� �

consists of independent Bernoulli

random variables, the mathematical expectation of the in-degree Ij and the out-degree Oj for neu-

ron j are given by the following formulas:

Figure 2 continued

rows and left columns) from the right body side (bottom rows and right columns). In each sub-block neurons are ordered according to increasing

rostro-caudal position B. Zoom of the left body side aIN!aIN sub-block (marked by a red square in A).

DOI: https://doi.org/10.7554/eLife.33281.003
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<Ij>¼
XN

i¼1
pji <Oj>¼

XN

i¼1
pij: (1)

These formulas follow from the fact that the random variables Ij and Oj have the Poisson binomial

distribution (Sprott, 1958). Similarly, the formulas for the standard deviation of these random varia-

bles are the following:

std Ij
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
pjið1� pjiÞ

r

std Oj

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
pijð1� pijÞ

r

: (2)

Figure 3A shows the mathematical expectation and standard deviation (calculated using formula

(1) and (2)) of the in-degree (upper panel) and out-degree (lower panel) for each neuron on each

body side according the RC-coordinate (the equivalent figure for the right side is very similar and

omitted here). For each cell type, the shape of the in- and out-degree distribution is very specific

and depends on the soma position. For example, motor neurons (green), have high in-degree and

very low out-degree. Almost all shapes are unimodal with a skewed position of the maximum. This is

Figure 3. In- and out-degrees. (A-B) Average in/out-degree and standard deviation for each cell in anatomical (A) and probabilistic (B) connectomes.

Neurons are divided by cell type and their degrees are plotted as a function of their rostro-caudal (RC) position. (C) Scatter plots of in- vs out-degree

for CPG neuron cINs and dINs (top) and cINs (bottom): light-blue and brown dots correspond to cIN and dIN neurons, respectively. Black line shows

the linear regression model for dINs (r = 0.99).

DOI: https://doi.org/10.7554/eLife.33281.004
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a consequence of the interplay between primary and secondary axons in the developmental model

and the RC-coordinate distributions of their somata. The absence of descending axons for dla neu-

rons (pink) and their ‘parallel’ pattern of growth leads to almost linear increase of their out-degree.

A similar explanation applies to the linearly decreasing shape of in- and out-degrees for dINs near

the tail, with RC-coordinates more than 1400 �m, which have only descending axons. Interestingly,

aINs have high in- and out-degrees, suggesting that, on grounds of connectivity, they could play a

significant role in the network activity; however, both experiments and simulations of the functional

model revealed that aINs are rarely active during swimming. This emphasises the key importance of

considering both structural and functional properties in network activity.

Figure 3B shows estimates of the mean and the standard deviation for the connectomes which

are generated by the anatomical model; we numerate them by index a a ¼ 1; 2; . . . ; 1000ð Þ. For each
neuron i of generated connectome a, we consider samples of in- and out-

degrees:Iai ; Oa
i i ¼ 1; 2; . . . ; N ¼ 1382ð Þ. We use these samples to calculate the estimates of the mean

and the standard deviation. Obviously, the average in- and out- degrees for anatomical connec-

tomes (black dots in Figure 3A) are exactly the same as the mathematical expectations of the proba-

bilistic model shown by black dots in Figure 3B. However, the estimates of standard deviation for

anatomical model are significantly larger for many neurons. In case of dla and dlc cell types the stan-

dard deviation of incoming connections is similar for both anatomical and probabilistic models. The

reason is that the neurons of these cell types receive connections from sensory rb neurons and the

number of incoming connections to dla and dlc neurons has a very low variability.

The independence of in- and out-degrees when the whole network is considered together is char-

acterised by a small value of the correlation coefficient r ¼ �0:07. However, some sub-nets showed

strong dependencies. Scatter plots (pairs Ij; Oj

� �

; j ¼ 1; 2; . . . ;N; where N is the number of pairs)

for cINs and dINs (Figure 3C) showed the linear dependence for dINs (r ¼ 0:99). Other neuron types,

for example cINs, show some more complicated dependence.

A key structural property of a network is whether or not it is scale-free. A scale-free network con-

tains some ‘hub’ nodes with large numbers of connections in comparison to other nodes, and is par-

ticularly robust to removal of random nodes (Barabasi and Albert, 1999). In line with the standard

approaches used for analysing scale-free structures, we calculated the distributions of in- and out-

degrees. We found that all these distributions are localized around the mean and they have no tail

(for this reason, we do not show these distributions here). Therefore, all these networks are not

scale-free. One way in which a network can be categorised as scale-free or not is by quantifying the

heterogeneity of its nodes’ in- or out-degrees. We calculated the so-called heterogeneity index H

(Hu and Wang, 2008) for in- and out-distributions to estimate the variability of in and out-degrees.

We compute this index to confirm that it is less than the threshold for scale-free networks (Hu and

Wang, 2008). The heterogeneity is given by the following formula:

H ¼

P

N

i¼1

P

N

j¼1

di� dj
�

�

�

�

2N2d
� ;

Here di is either in- or out-degree of neuron i, d
�
¼ i

P

di is the average degree (either in- or out-),

and N is the number of neurons. Note, we calculate the heterogeneity index using the probabilistic

model without considering any particular connectome.

Figure 4A and B show the value of H for each cell-type and for in- and out-degrees respectively.

A standard approach for determining whether or not a network is scale-free is to compare its hetero-

geneity index with that of a known scale-free random network. It is known that random scale-free

networks with power 2 � a � 3 have H � 0:3 (Hu and Wang, 2008). In contrast, all heterogeneity

indices that were calculated (Figure 4) were relatively low (for in-degrees: H<0:2, for out-degree:

H<0:3); therefore, all degree distributions in the probabilistic model were rather homogeneous.

From this we concluded that for each cell type the network is not scale-free, and therefore does not

contain hub neurons. Thus, the connectivity of the whole tadpole spinal cord network appears orga-

nized in such a way that there are no hubs.

Another standard approach for detecting the heterogeneity and the presence of hubs is to ana-

lyse the decay of the tail of the degree distributions and compare the rate of decay with various

standard functions: typically the Power Law, Exponential or Weibull distributions (Clauset et al.,
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2009). As previously said, in case of the probabilistic model the in- and out- degree histograms have

no tail and therefore they differ from each of these distributions. Thus, this method for heterogeneity

estimation is not applicable.

Functional properties of the model: reliable swimming
The next stage was to investigate the spiking activity of connectomes to see whether they behaved

like those generated anatomically (Borisyuk et al., 2014) and as described behaviourally

(Roberts et al., 2014). This was necessary to evaluate whether the probabilistic approach provided

a useful tool for exploring biological function.

To investigate the spiking activity of connectomes generated by the probabilistic model, we

mapped them onto a functional model composed of single compartment Hodgkin-Huxley type neu-

rons, following the approach described in Roberts et al. (2014). To simulate the basic experiment

where brief stimulation of the trunk skin initiates swimming in the tadpole, we excited two adjacent

sensory RB neurons on one side of the body at a randomly selected RC position. The RB activity

propagates along their own axons and then in the sensory pathway (via dla and dlc neurons) to

deliver excitation to CPG neurons on both sides of the body. These CPG neurons (cIN, dIN, aIN)

generate a pattern of rhythmic spiking alternating between the left and right body sides suitable to

drive swimming movements. We repeated this experiment 100 times using different generated adja-

cency matrices. We found that in all simulations the functional model produced a swimming-like pat-

tern where: firing was rhythmic; neurons that were active fired once per cycle; firing alternated

between the two sides; and firing on each cycle was most delayed towards the tail.

However, although connectomes from both the anatomical and probabilistic model produced

qualitatively similar swimming activity, the probabilistic model produced a rhythm with significantly

longer cycle periods (68.6 ± 0.8 ms (mean ±SD), range from 65 to 70 ms) than the anatomical con-

nectomes (58 ± 1.8 ms), as shown in Figure 5A. We investigated the underlying cause of this differ-

ence, and in doing so gained an insight into how the structure of the network affects swimming

period, a key characteristic of the system’s behaviour.

What determines the period of one swimming cycle? A swimming cycle starts when dINs on one

side of the body spike. These excite cINs on the same side, which then spike and inhibit dINs on the

Figure 4. Heterogeneity index of the in-degree and out-degree distributions of each of the seven cell types.

DOI: https://doi.org/10.7554/eLife.33281.005
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Figure 5. Investigating the difference in swimming cycle period between anatomical and probabilistic connectomes. (A) Swimming period (as defined

by median motoneuron spiking period) for 200 anatomical connectomes (grey), for 200 probabilistic connectomes (black) and 200 probabilistic

connectomes where cIN to dIN synaptic strength is reduced (see text for details). (B) Example membrane potentials of example dINs (brown) and cINs

(blue) on the left and right side during one swimming cycle. The swimming period is a sum of (twice) the delay between dIN and cIN spiking (DCD and

Figure 5 continued on next page
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opposite side, leading to delayed spiking of dINs on the opposite side through post-inhibitory

rebound (PIR). Thus, the swimming period can be approximated as T ¼ 2 DDC þ DCDð Þ, where DDC is

the delay between spiking of dINs and the subsequent spiking of the ipsilateral cINs they excite, and

DCD is the delay between spiking of cINs and the subsequent PIR spiking of the contralateral dINs

they inhibit (Figure 5B). Both DDC and, particularly, DCD were significantly larger with the probabilis-

tic connectome (anatomical model: DDC ¼ 5:3ms� 0:4; DCD ¼ 23:7ms� 0:9; N ¼ 100; probabilistic

model: DDC ¼ 6:2ms� 0:3; DCD ¼ 28:2ms� 0:4; N ¼ 100). Together these two differences account for

the overall slower swimming rhythm seen with the probabilistic model, and this is largely as a result

of the increased time it takes for dINs to fire PIR spikes in response to contralateral cIN input.

What, then, determines the delay between cIN spikes and contralateral dIN rebound spiking?

During swimming dINs are held depolarized by summation of NMDA-receptor-mediated excitation

from other dINs, and in this state inhibition from cINs can result in delayed dIN spiking as a result of

PIR. Intuitively, and from past investigations, we know that this spiking delay depends on the relative

strength of inhibitory and excitatory input from cINs and other dINs, respectively. We characterised

the relative strength of inhibition and excitation for a given connectome by calculating the average

in-degree from cINs and from other dINs. Any cINs that received fewer than 13 connections from

dINs were excluded from this calculation, since, as we shall demonstrate, such cINs are likely to be

inactive. We used a linear regression model where cIN-dIN and dIN-dIN in-degrees (independent

variables are IcIN>13 and IdIN ) correlate very strongly with the period of swimming:

T ¼ 2:5 � IcIN>13� 3 � IdIN ;

where T is the period. The coefficient of determination R2 ¼ 0:96.

We used this linear regression model to predict firing period for 200 new connectomes (100

probabilistic, 100 anatomical). The accuracy estimated using the coefficient of determination is R2 ¼
0:94 (Figure 5C). We were therefore able to predict with good accuracy a key characteristic of the

network’s behaviour based only on its connectivity. Note that this prediction is universal, since it

does not require knowledge of whether the connectome was generated using the probabilistic or

anatomical model.

Why is inhibition from cINs stronger relative to excitation from dINs, and therefore swimming

slower, in connectomes generated by the probabilistic model? This is a difficult question to answer

completely, but much of the difference is due to the fact that anatomical connectomes have more

cINs that receive fewer than 13 connections from dINs and are thus inactive during swimming (ana-

tomical model: 168 ± 11 inactive cINs, N = 100; probabilistic model: 101 ± 8 inactive cINs, N = 100).

Although the mean dIN-cIN in-degree is very similar between anatomical and probabilistic connec-

tomes (and above the threshold of 13), the variance is much higher in the anatomical case

(Figure 5D).

Therefore, in anatomical connectomes there are more inactive cINs. The underlying reason for

this difference in variance is that in the anatomical model neurons have randomly chosen dendritic

extents, sampled from the distribution of experimentally measured dendrites (see Appendix 1). This

means that some neurons have small dendrites and receive very few connections, while others have

large dendrites and receive very many connections. In the probabilistic case this detail is lost, as all

incoming connections to a neuron are chosen completely independently of each other.

While we can explain the quantitative difference between anatomical and probabilistic models,

this difference clearly illustrates that there are potential pitfalls in applying the probabilistic approach

to a particular biological question, and it must be used with caution. In this specific case, there is a

Figure 5 continued

(twice) the delay between cIN and contralateral dIN spiking (DCD). (C) Network structure allows us to predict swimming period. Each point shows for

one connectome (different from those used in part C and for linear regression) the predicted period based on the connectivity, with the actual period

from simulation plotted on the vertical axis. The blue line shows the case where the prediction perfectly matches the simulation. (D) More cINs are

inactive in anatomical connectomes than in probabilistic connectomes. Although the average in-degree (black line) is similar under both conditions, the

standard deviation (blue area) is much higher for anatomical connectomes. This increased variance in anatomical connectomes means that more cINs

receive fewer than the 13 connections from dINs that are required for reliable spiking.

DOI: https://doi.org/10.7554/eLife.33281.006
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problem because the reduction in dIN to cIN in-degree variance produced by the generalization pro-

cess used to generate the probabilistic connectomes has asymmetric consequences. The decreased

number of cINs failing to fire because of weak excitatory input (low in-degree number) is not bal-

anced by the effect of reducing the number of cINs with very strong excitatory input (high in-degree

number). This is because, above a threshold input strength, cINs only fire a single spike per cycle

(see the section entitled "Reliability of cIN spiking depends on their RC-coordinate"); changing the

level of excitation above the threshold value does not alter this. The result of this asymmetry is the

overall increase in the number of cINs firing with the probabilistic model and hence the lengthened

cycle period. To offset this consequence of the probabilistic approach, we therefore reduced the

strength of cIN to dIN inhibition (from 0.435 to 0.2 nS). As predicted, this reduced the cycle period

to a range overlapping the distribution produced by anatomical connectomes and matches periods

seen in the real swimming behaviour (see orange histogram of swimming periods for the modified

probabilistic connectomes in Figure 5A).

A core dIN-cIN sub-network can generate swimming
The probabilistic approach allows us to test the reliability of network function after removal of

selected connections. As an illustration, we considered a sub-network comprising only the sensory

pathway (which is not active during swimming), and dIN and cIN CPG neurons. We excluded aINs

and mns simply by setting the probability of connections to and from them to zero. Figure 6 shows

one simulation of the functional model containing only this sub-network. Figure 6A,D shows exam-

ples of voltage dynamics for individual dIN and cIN neurons on the right and left body sides, respec-

tively; Figure 6B,C shows raster plots of spiking activity for all neurons on the right and left sides of

the body, respectively.

The brown and light blue dots in Figure 6B,C show a typical pattern of anti-phase, left-right

swimming activity in the dIN-cIN sub-network. We found that in 100 independent simulations (with

different reduced network connectomes) swimming activity was generated that was similar to that in

Figure 6. The swimming period in these simulations was 57 ± 0.9 ms. These values are again within

the physiological range observed in experimental recordings of swimming.

Figure 6. Alternating firing (‘swimming’) in one realization of the dIN-cIN subnetwork in a 300 ms simulation, showing activity on the right (A–B) and

left (C–D) sides of the spinal cord. B and C show spike times, where the vertical position of each spike corresponds to the rostro-caudal position of the

associated neuron. A and D show voltage trace examples for single selected dINs (brown) and cINs (blue) on the right (A) and left (D). Simulated

sensory stimulation at 50 ms causes an RB neuron (yellow) to spike, which excites dlas and dlcs (pink and red, respectively). Excitation from these

sensory pathway neurons causes the dIN and cIN neurons that form the CPG to generate an alternating rhythm.

DOI: https://doi.org/10.7554/eLife.33281.007
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Previous experiments have shown that the swimming CPG includes dINs, cINs and aINs

(Roberts et al., 2010). However, it is known that aINs have a low probability of firing during swim-

ming, suggesting that their contributions during swimming are minimal and their role in the network

is still unclear (Li et al., 2004). Our simulation results confirm these experimental findings by showing

that the dIN-cIN subnetwork generates reliable swimming.

Removal of commissural connections allows rhythmic firing on the
stimulated body side
Experiments have revealed that an isolated side of the tadpole spinal cord without commissural con-

nections can generate regular rhythmic spiking activity in motoneurons, with period that is lower

than that of swimming (Soffe, 1989).

Once again, the probabilistic model readily allowed us to simulate these experimental findings by

setting the probability of commissural connections from cINs and dlc neurons to zero to disconnect

the two body sides. This is equivalent to a sagittal midline lesion experimentally. Figure 7A shows a

raster plot of steady oscillatory spiking in motoneurons (green) and dINs (brown), demonstrating

that the rhythmic activity was maintained and stable.

It is important to note that the mechanism that generates this single-sided rhythm is different to

that which generates swimming. In swimming, inhibition from cINs causes contra-lateral dINs to fire

post-inhibitory rebound spikes. In the case of separated body sides there is no cIN input to dINs,

and the only other inhibitory CPG neurons, the aINs, are inactive. Instead, the rhythmic activity is

caused by feedback NMDA excitation within the dIN population, as has been previously observed

experimentally (Li et al., 2010) and in modelling (Hull et al., 2016). Within one simulation dINs fell

into a number of different groups, based on their spiking period. In most simulations, the majority of

dINs spiked rather quickly, with period approximately 24 ms (41 ± 16 dINs, N = 100 connectomes),

Figure 7. Oscillatory activity on one side of the body after removal of commissural connections. (A) Raster plot of spiking activity during swimming,

showing dINs (brown) and motoneurons (green) on the left side of the spinal cord after removal of commissural connections. (B) The same dIN spiking

activity as in (A), but with the spike trains sorted vertically based on increasing firing rate. In both cases, activity is shown between 1500 and 1800 ms

post-stimulation, when the system has settled down into a stable oscillatory state.

DOI: https://doi.org/10.7554/eLife.33281.008
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while most of the remaining dINs spiked with approximately double this period, approximately 53

ms (24 ± 4 dINs). A much smaller group fired twice as slowly again, with a period of approximately

101 ms (2 ± 3 dINs). Figure 7B makes these groups clear, by showing the same set of dIN spikes as

Figure 7A but with the neurons sorted according to firing rate. Interestingly, motoneurons tended

to fire in-phase with the intermediately sized group of dINs that spiked at approximately 53 ms (as

shown in Figure 7A), although in some simulations some motoneurons did also spike in-phase with

the faster group of dINs; further investigation is required to understand why more mns are not able

to fire with the dINs in this group.

We have no direct experimental recordings of dINs following separation of the two body sides,

only ventral root recordings showing motor neuron activity. In these experiments (Soffe, 1989), it

was found that single-sided rhythmic activity was significantly faster than that seen during swimming

(initial average cycle period 60 ms vs 43 ms). This was also the case with our simulations, where most

mns spiked at approximately 53 ms in the single-sided cases, versus approximately 69 ms in normal

swimming. From our results, we predict that recordings from dINs during single-sided rhythm gener-

ation would reveal a relatively large group of dINs that spike much more quickly than ventral root

activity, and another much smaller group of dINs that fire much more slowly.

Reliability of cIN spiking depends on their RC-coordinate
Experiments have shown that during swimming the reliability of spiking of some neuron types can

vary from cell to cell (Soffe, 1993; Li et al., 2007). In simulations of connectomes generated by the

anatomical model approximately 50% of cINs fire reliably, whereas in connectomes from the proba-

bilistic model approximately 70% of cINs were reliable. Other cINs were either completely inactive

or only fire on some swimming cycles. We investigated the cause of this unreliability by analysing the

probabilistic model.

In the functional model, for each pair of cell types, the mean value of synaptic strength was

selected in line with experimental data (Roberts et al., 2014) and randomised by addition of the

Gaussian random variable with zero mean and relatively small variance (see Appendix 2, Synaptic

Currents). In the case of synchronous bombarding, the total input to the neuron depends on both

the connection strength and the number of incoming connections, therefore, the degree is an impor-

tant measure. For the reliability study, we approximate the total input to cIN by the mean dIN to cIN

connection strength multiplied by the mean in-degree from dINs to cINs, because dIN spike reliably

and synchronously during each swimming cycle.

From simulations of 100 different connectomes, we found that the probability that a cIN spikes

reliably depends on the dIN-cIN in-degree (IdIN ). If IdIN>15 then a cIN fires once on each swimming

cycle, approximately in phase with dINs and mns on the same side; we call this a ’reliable’ cIN. If

13 � IdIN � 15 then firing is irregular, meaning the cIN fires approximately in-phase with dINs and

mns but on only some swimming cycles; we call this an ’unreliable’ cIN. Those cINs that have IdIN<13

do not fire at all during swimming.

The probabilistic model allowed us to calculate the expected dIN-cIN in-degree as a function of

its rostro-caudal position (Figure 8A). Note that this result was based only on analysis of the general

probability matrix, not individual connectome realisations. The relationship allowed us to hypothe-

sise: (1) it is likely that rostral cINs will not fire; (2) it is likely that cINs with RC-coordinate near 900

mm are unreliable, and (3) it is likely that caudal cINs will fire reliably.

To confirm these hypotheses in the model we used the results of 100 spiking simulations to calcu-

late the probability that a cIN in a certain position will fire reliably. In Figure 8B we show the reliabil-

ity proportion (the fraction of simulations where the cIN fires reliably) vs RC coordinate. From this, it

was clear that cINs at more rostral positions have a significantly lower probability of reliable spiking

than cINs in more caudal positions. Using a linear regression model, we determined a strong correla-

tion between the cIN reliability proportion (x) and the average dIN-cIN in-degree (y) given by the lin-

ear relationship y ¼ 0:07 � x� 0:4 (Figure 8C). Note that there is currently not enough experimental

data about the reliability of cIN spiking during swimming in vivo to say whether the level of cIN reli-

ability in our simulations was realistic. However, our general results from the probabilistic model sug-

gest that it is important that any experimental measures of cIN spiking reliability (or that of other

neuron types) should take into account the rostro-caudal position of the measured cell.
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Ascending axons of dINs are important for swimming
It is a defining feature of dINs in the tadpole that they all have a descending axon, but some dINs

which are located more rostrally have a second axon growing in the ascending direction

(Borisyuk et al., 2014; Roberts et al., 2014). Simplified computational models (Li et al., 2006;

Wolf et al., 2009) have shown that the swimming activity fails to self-sustain unless some excitatory

interneurons have ascending connections. We used the probabilistic model to further clarify the role

of ascending dIN axon branches, taking advantage of the fact that our new model allows us to run

large numbers of simulations and to study the generalised connection structure. Using the probabi-

listic model, we removed all ascending connections from dINs and generated a modified adjacency

matrix (connectome), which we then used to simulate spiking activity.

Figure 9A shows the in-degrees for the dIN sub-network (i.e. the number of incoming connec-

tions to each dIN from other dINs) for the standard connectome (black) and one lacking ascending

dIN axons (red). In the figure, the horizontal and vertical axes show the in-degrees and the RC-coor-

dinate of dINs, respectively. We consider here only rostral and mid-body dINs in the range of RC-

coordinates from 500 to 1400 mm; more caudal dINs do not receive any synapses from ascending

dIN axon collaterals, so the in-degrees are the same for both connectomes.

From Figure 9A it is clear that the dIN in-degrees in both cases are similar in the middle body

part but are increasingly different for neurons in the rostral part. For the modified connectome, the

in-degree (red dots) decays to zero in a linear way as the RC-coordinate approaches 500 mm because

the dINs in the most rostral locations have a few if any connections from descending axons. As a

result, the most rostral dINs in the modified connectome can only fire due to electrical coupling

between dINs, resulting in the appearance of some unusual patterns of spiking activity not observed

experimentally. We repeated 100 simulations of the functional model after removing ascending dIN

connections. The resulting spiking activity patterns can be divided into three cases:

Figure 8. Firing reliability of cINs. (A) Plot of the average cIN in-degree from pre-synaptic dINs as a function of rostro-caudal position. Blue dots

represent cINs that have on average 15 or more incoming connections from dINs, while red dots represent cINs that have on average fewer than 15

incoming connections from dINs. The cINs with 13–15 incoming connections (green shaded area) are most likely to fire unreliably, whereas those with

fewer than 13 connections are likely to be completely inactive. (B) cIN reliability proportion vs cIN rostro-caudal position; for each cIN the reliability

proportion is the fraction of 100 simulations where the cIN fires reliably. (C) Scatter plot of the cIN reliability proportion vs the average in-degree from

dINs. The figure shows the linear regression line between these two variables and the corresponding R2 value.
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Case 1 (63/100): In most simulations, the swimming activity was initiated but failed to persist.

Swimming failures begin with rostral dINs failing to spike due to reduced excitatory drive from other

dINs (ascending dIN connections are missing); this reduced excitation from the rostral dINs prevents

slightly more caudal dINs from firing, and so on, as can clearly be seen in Figure 9B. This result is in

line with previous modelling that showed that feedback excitation is a mechanism that contributes

to generating persistent motor activity in a simpler model (Li et al., 2006).

Case 2 (36/100): In 33 of 36 simulations one side only was active. In 3 of 36 simulations both sides

were rhythmically active for the total length of the simulation but they do not fire in antiphase. The

pattern of spiking activity on one side is similar to the one shown in Figure 7A.

Case 3 (1/100): Only one simulation generated sustained swimming alternating firing between

left and right sides, but the period of the oscillations was shorter than for the standard connectome

(50 ms).

Discussion
The study of neuronal connectivity is a challenging problem in contemporary neuroscience. One

popular and effective method for finding cortical connectivity involved detailed tracing of a small

number of individual neurons of each identified type, and then using estimates of the number of

location of the different cell types to estimate complete connectivity (Binzegger et al., 2004).

Recent development of new brain imaging techniques allows generation of 3D images of single neu-

rons, tracing their connections and, for example, making progress towards a complete Drosophila

connectome (Lin et al., 2015; Shih et al., 2015; National Center for High-performance Computing

and National Tsing Hua University, 2009). Similar progress has been made by combining molecu-

lar, anatomical and physiological techniques to find the neuronal cell types, and connections

between them, in mouse retina (Seung and Sümbül, 2014; Kim et al., 2014). Computational model-

ling has been successfully applied to find a sensorimotor connectome in larval Zebrafish

(Stobb et al., 2012). In this paper, available neurobiological data have been used to describe neuro-

nal cell types and formulate a stochastic model of connectivity, which was studied using a graph the-

ory approach.

It is known that brain development involves multiple stochastic processes and that, in most spe-

cies, individuals’ connectomes are different (Seung, 2012). Despite differences in connectivity, most

individuals under normal conditions are able to demonstrate similar functionality. This means that

different connectomes include sufficient key structural features to produce a common repertoire of

functionalities and behaviours. What are the key connectivity properties that define the network

functionality?

Figure 9. Comparison of spiking activity in the normal case and when dIN ascending axons are removed. (A) Average in-degree from dINs to other

dINs at different rostro-caudal positions in the standard connectome (black dots) and after removal of ascending dIN axons (red dots). (B) Example of

typical spiking activities from connectomes with ascending dIN axons removed (case 1, see text for details).
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Motivated by this question, we derive a probabilistic model of connectivity in the Xenopus tad-

pole CNS (caudal hindbrain and spinal cord) to study the relationship between the structure and

function of the network. To derive the probabilistic model we generate 1000 connectomes using a

biologically realistic anatomical model based on the ‘developmental’ process of axon growth

(Li et al., 2007a; Borisyuk et al., 2011; Borisyuk et al., 2014; Roberts et al., 2014). A similar

approach to generating connectivity from a developmental process was used by Bauer et al.

(2014); in this case, a reaction-diffusion model was applied to generate connectivity in a network of

excitatory and inhibitory neurons with winner-takes-all functionality.

Using a universal ordering of neurons in the tadpole, we have calculated the probability of con-

nection from each neuron ( i ) to neuron ( j ) as the frequency at which a connection exists among

the thousand generated connectomes. In this way, our probabilistic model ‘generalizes’ structural

properties of networks produced by the anatomical model.

Using the probabilistic model, we can generate an adjacency matrix representing a particular real-

isation of neuronal connectivity. Mapping the adjacency matrix to a functional model of spiking neu-

rons of Hodgkin-Huxley type enables us to simulate spiking activity. We compare these simulations

of the functional model to the experimental results on swimming initiated by skin touch. All gener-

ated adjacency matrixes (connectomes) mapped to the functional model generate similar swimming

activity. It seems, then, that the probabilistic model contains some fundamental features of the net-

work connectivity (‘proper structure’) which ensure correct functioning of the system. For example,

experimental recordings show that apparently-pathological activity (synchrony) can sometimes

appear soon after swimming initiation: the two body sides spike synchronously during several cycles

before then switching to normal anti-phase swimming activity (Li et al., 2014). This synchronous

activity appears also in model simulations with connectivity generated by both the anatomical and

the probabilistic models. However, the number of synchronously firing neurons is significantly

reduced in probabilistic connectomes.

A second type of apparently pathological activity is the additional firing of some dINs near the

middle of the swimming cycle (mid-cycle dINs) (Li et al., 2014). Mid-cycle dINs appear in model sim-

ulations with both anatomical and probabilistic connectivity. However, the number of such mid-cycle

dINs is significantly reduced in probabilistic connectomes: 0.8 and 6.3 for probabilistic and anatomi-

cal connectomes, respectively (average according to swimming cycles and 100 simulations).. These

results suggest that synchrony and mid-cycle dINs arise from connectivity imperfections and that the

generalised connectivity encapsulated in the probabilistic model improves on the imperfection of

some individual realisations.

To design the probabilistic model, we use a minimalistic approach. We use the assumption that

directed connections are represented by the matrix of independent Bernoulli random variables. One

of the strengths of this approach is that it allowed us to analytically calculate some of the graph’s

characteristics (the mean and standard deviation of in- and out-degrees, heterogeneity coefficients)

directly from the probability matrix, without considerations of a particular (generated) connectome.

In the case of the anatomical model, we can only compute graph characteristics for a connectome

realization. Here, we study how these characteristics relate to particular functional properties of the

network. For instance, the average in- and out-degrees were used to predict the swimming period

and to find the positions of reliably firing cINs.

The assumption that the Bernoulli variables are independent is a significant limitation of the prob-

abilistic model. One way to overcome this limitation might be the use of more sophisticated proba-

bilistic processes where the random variables corresponding to different connections become

dependent (e.g. random Markov field approach).

Computational modelling of the tadpole spinal cord reveals the fundamental features of neuronal

connectivity that are responsible for robust swimming generation. Unlike simpler organisms such as

C. elegans, tadpoles have the potential for significant variation between individuals in terms of neu-

ronal connectivity, as a result of the large number of random processes involved in their develop-

ment. Despite this variation, the behaviour of individuals is approximately the same, suggesting

some fundamental organisational principles common across the species. We adopt the philosophy

that, for tadpoles at least, there is a theoretical ‘perfect’ version of the nervous system with individ-

ual random variations from this ideal. Although, the probabilistic model arises from ‘averaging’ of

many anatomical connectomes, this model still generates connectomes that reliably swim and this

fact presumably reflects the fundamental organisational principles of the system. An interesting
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property of connectomes generated by the probabilistic model is that their anatomical and func-

tional characteristics are considerably less variable than those generated by our anatomical model

(and on whose properties the probabilistic model was based). We hypothesise that due to the ‘aver-

aging’ process of the probabilistic model, the connectomes generated from it are closer to the theo-

retical ‘ideal’ network. Some characteristic features of the connectivity are not clear from an

individual realisation, but become evident from the probabilistic model. For example, the shape of

degree distributions as a function of cell position cannot be clearly seen from analysing an individual

connectome – these shapes are irregular. They are much clearer when calculated directly from the

probabilistic model itself. In addition to this, connectomes generated by the probabilistic model

generate spiking activity that is considerably less variable and ‘messy’ than anatomical connectomes,

which makes it easier to see and quantify phenomena such as irregularly spiking cINs.

Finding neural connection probabilities under biological constraints is a difficult problem. In the

case of the tadpole spinal cord, the system is simple enough that it is possible to reconstruct biolog-

ically realistic connectivity (Roberts et al., 2014) (an anatomical connectome) and to define neuronal

connection probabilities (probabilistic model). We believe that this is a promising general approach

that could be used beyond the particular case of tadpoles. Similar probabilistic approaches have

been used for modelling the development of neural networks using limited experimental data

(Binzegger et al., 2004; Zubler and Douglas, 2009). Another possible approach for finding connec-

tion probabilities is to minimize an appropriate cost function which reflects both anatomical and

functional properties. A combination of these approaches has been used in pilot studies that aim to

incorporate into the tadpole connectome a new group of neurons recently found in the hindbrain

(Buhl et al., 2015). We will report this result in a separate publication.

Conclusion
We study the structure and function of the spinal cord neuronal network using experimental data

and computational modelling. Our anatomical model generates multiple highly variable and nonho-

mogeneous connectomes and to deal with this large and complex data we design a very simple

mathematical meta-model expecting that this new probabilistic model will reflect (generalise) struc-

tural properties of anatomical connectomes and show proper functioning.

The crucial question is: ‘Can probabilistic connectomes produce swimming’? The answer to this is

not obvious. Our earlier paper (Li et al., 2007a) showed that a graph of connections based on prob-

abilities derived from small number of pairwise recordings provides swimming in about 60% of cases

only. On the other hand, this new study shows that probabilistic connectomes that include some of

the structure of anatomical connectomes reliably swim in all cases. Thus, we can derive an important

conclusion that the two properties of the probabilistic model inherited from anatomical connec-

tomes: (1) position of neurons along the rostro-caudal coordinates and (2) frequency of connection

appearance, are sufficient for swimming generation.

Also, it is easy to use the probabilistic approach to generate connectomes compared to the need

to ‘grow’ them using the anatomical model: all traditional characteristics of the connectivity graph

can be calculated directly from the probability matrix without consideration of particular connec-

tomes. Some characteristics of the probabilistic connectomes (e.g. the mean of in- and out-degrees)

coincide with equivalent characteristics of the anatomical connectomes but some differ (e.g. the var-

iances of in- and out-degrees are significantly smaller for probabilistic connectomes). Although there

are some differences between the behaviour of anatomical and probabilistic connectomes, even

studying these differences can provide important insights into the relationship between the structure

and function of the network. Our investigation in the reasons underlying a difference in swimming

frequency between the two types of connectome (see result section) is an example of this, where we

found that it was the degree of variance of cIN in-degree from dINs that largely caused the differ-

ence. It would have been hard to observe this interesting phenomenon without having the probabi-

listic model (where in-degree variance is much lower) to compare with the anatomical one.

The probabilistic model provides a different way to look at the information generated by the ana-

tomical model. It is grounded in the previous anatomical model as the anatomical model is

grounded in the biological anatomy. It provides a different perspective on data generated by many

anatomical models, and it is this different perspective that makes the probabilistic model an

advance.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.33281.012

Anatomical model
The anatomical model generates the complete neural connectivity in the spinal cord using a

‘developmental’ approach that mimics axon growth (Borisyuk et al., 2014). The axon growth

model is based on numerous anatomical data of Xenopus tadpole spinal cord neurons. Our

attempt is to include in the model as much biological information as possible. Here, we give a

brief description of the model, but full details can be found in (Borisyuk et al., 2014; 5, 4).

The model spatial structure
Tadpole’s spinal cord is approximated as a 2D rectangular plate where neuronal bodies,

dendrites and axons are located (Figure 1 in the main text). The third dimension (i.e. the

thickness of the spinal cord ‘tube’) was ignored as this is very thin (10 mm thick). In the model

description, variables x and y correspond to the rostro-caudal distance (RC) from the midbrain-

hindbrain border and the dorso-ventral distance (DV) from the ventral mid-line, respectively.

Positive (Negative) values of y correspond to positions on the left (right) side of the body. We

consider a limited area of the spinal cord, where x; yð Þ 2 500 �m; 2000 �m½ � � �145�m; 145�m½ �.

Axon growth model
We describe the axon growth using discrete time iteration map (with time step 1 ms). The

map is described by three variables xn ; yn; �nð Þ, where xn represents RC coordinate, yn the DV

coordinate and �n the growth angle of the axon at each time step n n ¼ 0; 1; . . . ;Nð Þ. The map

for the growth angle depends on a ‘stiffness’ term, which is the tendency of the growth angle

to grow straight, and by the influence of environmental cues (according to chemical

gradients), which deviate the growth cone from a straight path. The chemical gradients

functions GRC x; yð Þ and GDV x; yð Þ depend on the current position of the axon and that will

determine the change of the growth angle at each time step on the RC and DV axis,

respectively. Additionally, a uniform random variable �n is included to provide an additional

degree of freedom at each time step. The map is described by the following equations:

xnþ1 ¼ xn þDcos �n (1a)

ynþ1 ¼ yn þDsin �n (1b)

�nþ1 ¼ �n �GRC xn;ynð Þsin �n þGDV ðxn; ynÞcos�nþ2n (1c)

Here, the elongation parameter D ¼ 1�m; �n uniformly distributed in the interval �a;a½ �. To
start the axon growth simulation we assume that the axon initial positions x0; y0ð Þ coincide with

the soma positions. The initial value for the growth angle �0 and the axon length L ¼ N � D
(which will determine the number of iterations of the map) are randomly selected from the

distribution of experimentally measured initial angles and axon lengths.

The gradient functions GRC and GDV depend on various parameters that describe the

properties of the chemical gradients in the 2D space. Previous studies revealed that the axons

of the same neuron type tend to grow in specific regions of the spinal cord, suggesting that

such axons could be controlled by the same gradients. Thus, the parameters of the gradient

functions in the model were selected to reproduce the statistical properties of the axons of

each specific cell type separately. Some of these parameters were selected according to

general biological knowledge on the distribution and properties of the chemical gradients.

The remaining parameters were estimated using an optimization technique that minimizes a

custom cost function that measures the similarity between statistical properties of simulated
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and experimentally measured axons. For a detailed description of the gradient functions GRC

and GDV , the cost function and the optimization technique see (Borisyuk et al., 2014.

Anatomical and physiological studies in tadpoles have revealed that there are physical

constraints to the axons growth, and these have been added in the anatomical model. In

particular, longitudinal barriers delimited by DV coordinates y ¼ �125 delimit the area where

axons of all neuron types except RBs grow (called marginal zone). Coordinates y 2 127; 137ð Þ
on the left body side (y 2 �137;�127ð Þ for the right body side, respectively) delimit the region

where RB axons can grow (called dorsal tract area).

Branching and commissural axons
The axon of tadpole spinal neurons typically splits into two branches during its growth. We call

primary axon the branch that starts from the soma and continues to grow following the

growth direction before the branching point. Secondary axons grow from the branching and

grow towards the opposite direction of the primary axon (rostro-caudally).

The RC direction of primary axon of each neuron type is known from anatomy of neurons.

In the model we thus consider growth of primary axons and secondary axons as two

consecutive processes. All primary axons grow first, and after that secondary axon growth

starts at a specified branching point. The coordinates of branching points are selected

randomly from the distribution of available experimental data for each neuron type.

The axon of commissural neurons (dlcs and cINs) starts to grow on the cell body side and

then rapidly navigates on the opposite body side after crossing the floor plate due to the

influence of strong DV gradients. After crossing, DV gradients change their sensitivity and

become weak, and the axon starts to deviate towards ascending direction. Secondary axons

are positioned on the contralateral side and grow in the descending direction. At the

beginning, commissural neurons grow in the ventral direction according to the axon growth

equations with specially adjusted parameter values. After crossing the boundary of the ventral

plate on the opposite side the axon growth is described by the same equations but with

another regular set of parameter values (for details see (Borisyuk et al., 2014)).

Synapses and full connectome
Dendrites are assumed to be fixed bars extending dorso-ventrally. Thus, each dendrite is

represented by a pair of DV positions, one corresponding to its lower (ventral) bound and on

to its upper (dorsal) bound. For each neuron, cell body positions and dendritic bounds are

sampled from the distributions of experimentally measured data for each specific cell type.

In model simulations the number of neurons of each type is fixed and it is the same for

both sides of the body (see methods section in the main text). In reality, although biological

data are limited, total numbers of spinal neurons and the population sizes of individual neuron

types do not appear to vary greatly between animals (perhaps ±10–15% at most) at this early

stage of development. Any variation that there is in numbers is small compared to the

differences from the previous developmental stage and the following stage, both of which

swim in the same way.

For each pair of pre- and post- synaptic neurons, a connection is generated whenever the

pre-synaptic axon crosses the dendritic bar of the post-synaptic neuron with some probability.

Such probability depends on pre and post synaptic cell types and was estimated from various

experimental pairwise recordings (for details see (Borisyuk et al., 2014)). During the initial

pre-crossing stage we assume that the axon of commissural neurons cannot produce synapses.

Since the model uses several number of random variables, each simulation of the

anatomical model generates a different connectome.
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Appendix 2
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Functional model
The probabilistic and anatomical connectomes provides detailed information on connectivity

in the spinal cord – specifically a list of synaptic connections between neurons. We use this

information to build a functional model that simulates the spiking activity of spinal cord

neurons. This allows us to study one of the fundamental problems of neuroscience: the

relationship between connection structure and functionality.

Overview
To simulate the activity in the generated connectomes we represent each cell as a single

compartment conductance based neuron of Hodgkin-Huxley type. The equation governing the

membrane potential (V) for neuron i is:

C
dVi

dt i
¼ Ilk þ INaþ IKf þ IKs þ ICa þ Isyn þ Igjþ Iext (2)

The capacitance C of all neurons is 10pF, which corresponds to a density of 1:0�F=cm2 for a

total surface area of 10�5cm2. The terms Ilk, INa, IKf , IKs and ICa represent transmembrane

currents mediated by different ions, respectively: non-specific leak, sodium, fast potassium,

slow potassium and calcium. The terms Isyn and Igj represent the summed inputs from chemical

synapses (Isyn) and gap junctions (Igj), while Iext is an externally-injected current. Although the

different neuron types in the tadpole spinal cord have different electrophysiology, for

simplicity we use the model of a motoneuron from for most model neurons, as this shows

characteristics (e.g. repetitive firing in response to injected current) that are broadly shared by

all of the neuron types. The exception to this is dINs, which have special properties such as

only firing a single spike in response to current injection and the ability to fire post-inhibitory

‘rebound’ spikes. Model dINs differ from non-dINs in the following ways:

. The parameter values governing the membrane properties are different (Appendix 2—table

2).
. Only dINs contain a calcium current. For non-dINs, we set ICa ¼ 0.
. Only dINs make gap junction connections (and only with other dINs).

Membrane channels
The leak, sodium and potassium channel currents are given by the following equations:

INa tð Þ ¼ hm3g
�
Na Vi�ENað Þ (3)

IKf tð Þ ¼ n4f g
�
Kf Vi �EKð Þ (4)

IKs tð Þ ¼ n2s g
�
Ks Vi�EKð Þ (5)

The parameters Elk, ENa and EK give the reversal potential for the leak, sodium and

potassium channels respectively, and the parameters g
�
lk, g

�
Na, g

�
Kf and g

�
Ks give their maximum

conductances (these parameter values are given in Appendix 2—table 1). The gating

variables h, m, nf and ns are governed by equations (Equation 6; Equation 7; Equation 8;

Equation 9), where X ¼ h;m; nf ; ns.

tX Vð ÞdX
dt

¼ X¥ðVÞ�Xð Þ (6)
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X¥ðVÞ ¼ aXðnÞðaXðnÞþbXðnÞÞ�1 (7)

tX Vð Þ ¼ aX vð ÞþbX vð Þð Þ�1 (8)

aX Vð Þ;bX Vð Þ ¼ AþBV

Cþ exp DþV
E

� � (9)

The values of the parameters A, B, C, D and E in the functions aX Vð Þ;bX Vð Þ were taken

from Sautois et al. (2007) for non-dINs and from (Roberts et al., 2014) for dINs, and are

shown in Appendix 2—table 2.

As in (), model dINs contain a calcium-mediated current which is modelled according to the

Goldman-Hodgkin-Katz equation. This current is calculated as:

ICa ¼ h2CapCazFx
Sin � Sout expð�xÞ

1� expð�xÞ (10)

x¼ zFVi

RT
(11)

Here, pca is the permeability of the membrane to calcium ions (analogous to maximum

conductance) and z is their ionic valence (+2). Sin and Sout are the concentration of calcium in

and outside of the cell, respectively. F is Faraday’s constant, and R is the ideal gas constant,

while T is the temperature in Kelvin. Parameters of the calcium current are pca ¼ 14:25 cm3=ms,

F ¼ 96485 C=mol, R ¼ 8:314J= K molð Þ, T ¼ 300 K, Ca2þ½ �i¼ 10
�7 mol=cm3,

Ca2þ½ �o¼ 10
�5 mol=cm3. Finally, hCa is the gating variable associated with the calcium current,

which is governed by the standard gating equations (Equation 6; Equation 7; Equation 8;

Equation 9) – although note from Appendix 2—table 2 that two different sets of parameters

are used for this equation based on whether the membrane potential is above or below �25

mV.

Appendix 2—table 1. Maximal conductance (in nS) and equilibrium potential (in mV) of each

ionic channel in the model neurons.

glk elk gNa eNa gKf eKf gKs eKs

dIN 1.4 �52 240.5 50 12 �80 9.6 �80

non�dIN 2.47 �61 110 50 8 �80 1 �80

DOI: https://doi.org/10.7554/eLife.33281.014

Appendix 2—table 2. Parameters defining the rate functions of the model neurons rounded

to the first decimal digit for dINs and non-dIN neuronal types (� sign that the cell type has no

contribution of the specific channel variable, units of measures are given in the first row of

each parameter; parameter C is dimensionless).

dIN / non�dlN Rate Function A (ms -1) B (ms�1mV�1) C (�) D (mV) E (mV)

Ca

ar 4/� 0/� 1/� �15.3/� �13.6/�
brðv<� 25mVÞ 1.2/� 0/� 1/� 10.6/� 1/�
brðv>� 25mVÞ 1.3/� 0/� 1/� 5.4/� 12.1/�

K�fast
af 5.1/3.1 0.1/0 5.1/1 �18.4/�27.5 �25.4/�9.3

bf 0.5/0.4 0/0 0/1 28.7/9 34.6/16.2

K�slow
as 0.5/0.2 8.2e � 3/0 4.6/1 �4.2/�3 �12/�7.7

bs 0.1/0.05 �1.3e � 3/0 1.6/1 2.1e5/�14.1 3.3e5/6.1

Appendix 2—table 2 continued on next page
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Appendix 2—table 2 continued

dIN / non�dlN Rate Function A (ms -1) B (ms�1mV�1) C (�) D (mV) E (mV)

Na

am 8.7/13.3 0/0 1/0.5 �1/�5. 12.6/�12.6

bm 3.8/5.7 0/0 1/1 9/5 9.7/9.7

ah 0.1/0.04 0/0 0/0 38.9/28.8 26/26

bh 4.1/2 0/0 1/1e�3 �5.1/�9.1 �10.2/�10.2

DOI: https://doi.org/10.7554/eLife.33281.015

Synaptic currents
The synaptic current that arises in a neuron is the combination of three different sub-types of

synaptic receptor: excitatory AMPA and NMDA and inhibitory glycine:

Isyn ¼ Iampaþ Inmdaþ Iinh (12)

Each synaptic current is calculated using the following equation, where

X ¼ ampa; nmda; inh:

Ix ¼
X

j

g
�X

i;j fXðViÞ
X

s2SjðtÞ
DX exp

sþ di;j � t

t

X
c

� �

� exp
sþ di;j� t

t

X
o

� �� �

8

<

:

9

=

;

(13)

Here, g
�X

i;j is the maximum conductance (‘strength’) of synaptic connection of type X from

neuron i to neuron j. If the connectome does not include a connection from i to j then

g
�X

i;j ¼ 0, otherwise it is selected according to the type of the pre- and post- synaptic neurons,

based on paired recordings. Pre-synaptic neuronal type determines the synapse type X.

Inhibitory neuron types are cIN and aIN; excitatory ones are the remaining cell types. The

synaptic strengths used in the model are typically the ones given in Appendix 2—table 3,

except for few values that were modified to match the physiology of neurons and synapses

(details are given in (Roberts et al., 2014)). Specifically, the maximal conductance of AMPA

synapses from RBs to dli neurons are set to 8nS, the maximal conductance of AMPA synapses

from dINs to aINs are set to 0:1nS, the maximal conductance of NMDA synapses from dIN to

dINs are set to 0:15nS, and the maximal conductance of NMDA synapses from RB to dlc are

set to 1nS..

The set Sj tð Þ contains the times of all the spikes that neuron j has fired up to the current

time t. Each spike generates a post-synaptic current (PSP) that rises according to the time

constant tXo and decays according to t

X
c . The normalizing constant DX is set such that the

peak of the sum of the exponentials is 1, meaning that following a spike the conductance

rises to a maximum of g
�X

i;j. The values selected for the time and normalizing constants are

given in Appendix 2—table 3 and they are based on previous modelling (Roberts et al.,

2014. To mimic synaptic strength variability, Gaussian noise with standard deviation 5% of

the mean was added to the maximum conductance of each individual synapse.

Appendix 2—table 3. Parameters of the synaptic models.
X NMDA AMPA INH

t

X
o ðmsÞ 0.5 0.2 1.5

t

X
c ðmsÞ 80 3.0 4.0

DXð�Þ 1.25 1.25 3.0

EXðmVÞ 0 0 �75

gXðnSÞ 0.29 0.593 0.435

DOI: https://doi.org/10.7554/eLife.33281.016
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The synaptic delay between two neurons, di;j, consists of a constant and distance-

dependent part:

di;j ¼ dC þ dD Pi �Pj

�

�

�

�

Here, Pi and Pj are the positions of neurons i and j along the rostro-caudal axis, dC is the

constant delay and dD is the speed of synaptic transmission. We set dC ¼ 1ms and

dD ¼ 0:0035ms=�m.

Finally, the function fX Vð Þ determines how the synaptic current depends on the post-

synaptic voltage. For AMPA and inhibitory synapses this has a simple linear (Ohmic) form:

fX Vð Þ ¼ EX �V

Where X ¼ ampa; inh and EX is the equilibrium (reversal) potential of the synapse type

(Appendix 2—table 3). As a result of magnesium block, NMDA synapses have an additional

non-linear voltage dependence, which we include by adding a sigmoidal scaling term to

fNMDA:

fNMDA Vð Þ ¼ Enmda�Vð Þ 1þ 0:05 � exp �0:08 �Vð Þð Þ�1

Gap junctions
Descending interneurons (dINs) are electrically coupled to other nearby dINs via gap

junctions. For dINs only, the gap junction current is calculated using a simple Ohmic

relationship:

Igj ¼
j2Gi

P

g
�
gj Vj �Vi

� �

Here Gi is the set of indexes of all dINs that are on the same side of the body as neuron i

and are located within Dgj of neuron i on the rostro-caudal axis, where we set Dgj ¼ 100�m.

The parameter g
�
gj gives the conductance of gap junctions, and we use the value g

�
gj ¼ 0:2nS.
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