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A 69-year (1948-2017) numerical weather and wave hindcast is used to in-

vestigate the interannual variability and trend of winter wave height along

the west coast of Europe. Results show that the winter-mean wave height,

variability and periodicity all increased significantly in the northeast Atlantic

over the last seven decades which primarily correlate with changes in the cli-

mate indices North Atlantic Oscillation (NAO) and West Europe Pressure

Anomaly (WEPA) affecting atmospheric circulation in the North Atlantic.

NAO and WEPA primarily explain the increase in winter-mean wave height

and periodicity, respectively, while both WEPA and NAO explain the increase

in interannual variability. This increase in trend, variability and periodicity

resulted in more frequent high-energy winters with high NAO and/or WEPA

over the last decades. The ability of climate models to predict the winter NAO

and WEPA indices a few months ahead will be crucial to anticipate coastal

hazards in this region.

Keypoints:

• Winter-mean wave height trend and variability along the entire west coast

of Europe can be explained by the NAO and WEPA indices

• Winter-mean wave height, variability and periodicity all increased over

the last seven decades

• Extreme winter-mean wave heights become more frequent as WEPA and

NAO positivity and variability increase
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1. Introduction

High-energy winter waves typically drive the largest amount of morphological variability

from the nearshore zone [Van Enckevort et al., 2004; Ruessink et al., 2007; Dubarbier et al.,

2015] to the subaerial beach [e.g. Ferreira, 2005; Masselink et al., 2016a; Splinter et al.,

2014; Karunarathna et al., 2014] and up to the coastal dune [Mull and Ruggiero, 2014;

Castelle et al., 2015]. Severe beach and dune erosion can be caused by one severe storm

or more commonly by the cumulative impact of a series of winter storms [Barnard et al.,

2011; Splinter et al., 2014; Karunarathna et al., 2014; Masselink et al., 2016a]. Winter

storm waves coinciding with high tides can also flood the hinterlands [Chaumillon et al.,

2017] and cause cliff failure [Katz and Mushkin, 2013; Earlie et al., 2015] or transport

boulder deposits inland [Autret et al., 2016]. In addition, winter storm waves carry much

more energy than during other seasons on most of the coastal regions worldwide, which

could become an important renewable and sustainable energy resource [Bromirski and

Cayan, 2015]. Large-scale changes in winter wave activity at the coast are therefore of

critical importance for coastal scientists and engineers.

Winter wave activity is greatly influenced by large-scale patterns of atmospheric and

oceanic variability on interannual and longer timescales. This variability can be explained

by teleconnections at the global scale [e.g. McPhaden et al., 2006], with climate oscillations

showing varying degrees of periodicity. For instance the El Nino Southern Oscillation

(ENSO) in the Pacific varies from 2-7 years, but the North Atlantic Oscillation (NAO)

shows no significant perdiodicity [Barbosa et al., 2006]. Winter wave energy in the Pacific

Ocean is strongly affected by the ENSO and further modulated by the phase of other
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climate indices such as the Pacific decadal oscillation [Mantua et al., 1997]. The ENSO

is therefore critical to winter wave energy across the Pacific [e.g. Bromirski et al., 2013],

with winter wave conditions in the northeast Pacific Ocean often opposite to those in

the western and southern Pacific [Barnard et al., 2015]. Extreme ENSO phases typically

drive outstanding large-scale coastal erosion [Barnard et al., 2017]. In addition to large-

scale interannual variability patterns in winter wave height, an overall increase in winter

wave energy has been captured since the 70s in many regions worldwide through both

direct observation and modelled hindcasts [e.g. Dodet et al., 2010; Young et al., 2011].

Such an upward trend of the mean winter wave height combined with stable or even

further increased decadal variability will inevitably result in increased coastal hazards

and vulnerability.

The west coast of Europe, which comprises a wide range of low-lying and/or populated

regions, is exposed to high-energy winter waves generated in the North Atlantic Ocean.

The NAO is the dominant mode of atmospheric variability at mid-latitudes in the North

Atlantic region [Hurrell , 1995], and it has therefore long been known that interannual to

decadal variability of winter wave activity is strongly affected by the NAO [e.g. Bacon

and Carter , 1993; Dodet et al., 2010; Izaguirre et al., 2010; Martinez-Asensio et al., 2016].

However, the NAO primarily affects winter wave height variability in the northern lati-

tudes, say north of 50◦N. Recently, Castelle et al. [2017] developed a new climate index,

namely the West Europe Pressure Anomaly (WEPA), which outscores all the conventional

climate indices, including the NAO, in explaining winter wave height variability along the

west coast of Europe, from the UK (52◦N) to Portugal and even further south along the
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northwest coast of Africa. The WEPA index is defined as the normalized sea level pres-

sure (SLP) gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife

(Canary Islands). The WEPA positive phase reflects an intensified and southward-shifted

latitudinal SLP gradient across the east Atlantic, driving severe storms that funnel high-

energy waves towards the west coast of Europe southwards of 52◦N [Castelle et al., 2017;

Malagon Santos et al., 2017]. This atmospheric pattern is not captured by the NAO. For

instance the winter 2013/2014, which was characterized by a striking pattern of tempo-

ral and spatial extreme storm clustering [Davies , 2015] with the highest winter average

wave height since at least 1948 [Masselink et al., 2016b], was associated with an average

positive NAO, but with the highest WEPA over the period. In addition to flooding is-

sues in Western Europe [Thorne, 2014], these storms and associated storm waves caused

dramatic coastal erosion and coastal structure damages [e.g. Castelle et al., 2015; Suanez

et al., 2015; Masselink et al., 2016a, b; Pye and Blott , 2016; Autret et al., 2016].

Whether extreme winters such as that of 2013/2014 will repeat more frequently and/or

will further intensify in the future is a key issue for the coastal regions of west Europe.

It is therefore important to investigate if these extreme winters are already happening

with increasing regularity and increased intensity. Wave buoy measurements, satellite

altimeter measurements and numerical wave hindcasts all show a significant increase in

winter wave height over the last decades in the northeast Atlantic, north of 50◦N [e.g.

Bacon and Carter , 1991, 1993; Dodet et al., 2010; Young et al., 2011; Charles et al., 2012;

Bertin et al., 2013]. While trend magnitudes showed some variability between the studies,

these trends have been shown to be much greater in the last half century than in the whole
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last century and even beyond [Wang et al., 2012]. In contrast, the change in interannual

variability and periodicity of the winter wave activity has received much less attention.

Addressing the trend and variability of the primary climate indices explaining winter

activity in the northeast Atlantic (NAO and WEPA) provides a unique opportunity to

extensively examine winter wave height temporal patterns along the west coast of Europe.

In this paper, we use a 69-year numerical weather and wave hindcast to address the

trend, and interannual variability and periodicity of winter wave height along the Atlantic

coast of Europe and their link to WEPA and NAO. It will be shown that the positive trend

in winter wave height, primarily in the northern latitudes, together with the increased in

periodicity, primarily in the southern latitudes, resulted in an increase in extreme winter-

mean wave height along the west coast of Europe over the last decades. Whether or not

this will carry on in the future as climate changes will have major implications from a

coastal hazard perspective.

2. Data and methods

2.1. Wind-wave model hindcast

The same approach as detailed in Masselink et al. [2016b] and Castelle et al. [2017] was

used to wind-wave model hindcast. In short, the 6-hourly SLP and 10-m wind fields ~u10

of the NCEP/NCAR reanalysis project [Kalnay et al., 1996] were collected from January

1948 to April 2017. The wind field was further used to force the spectral wave model

Wave Watch III V14.18 [Tolman, 2014] implemented on a 0.5◦ resolution grid covering the

whole North Atlantic (80◦-0◦W; 0◦-70◦N). Although the wave modelling was extensively

validated against wave buoys along the entire west coast of Europe in Masselink et al.
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[2016b], the trends found with our wave model hindcast were also compared with those

measured by some of the wave buoys and obtained through other reanalysese, namely

ERA-Interim [1979-2017 Dee et al., 2011] and ERA-20C [1900-2010 Poli et al., 2016],

which both do not include the period 2010-2017. Following the strategy developed in

Castelle et al. [2017], six virtual wave buoys were used to address the spatial distribution

of wave heights along the entire Atlantic coast of Europe from Scotland in the north to

Portugal in the south (Figure 1b): SC: Scotland; IR: Ireland; BR: Brittany; BI: Biscay;

GA: Galicia; PT: Portugal. Consistent with earlier studies [e.g. Ouzeau et al., 2011; Camus

et al., 2014; Martinez-Asensio et al., 2016; Castelle et al., 2017], winter was defined as the

period from December to March (DJFM). Winter averages of significant wave height Hs

and its 95%, 98% and 99.5% exceedance values (Hs95%, Hs98%, Hs99.5%) were computed,

resulting in 69 winters analyzed in this study, from the winter of 1948/1949 to that of

2016/2017. At each grid point, the normalized winter-mean significant wave height H̃s

was further computed to allow an objective comparison of winter wave height variability

in the different coastal regions of west Europe.

2.2. Climate indices

As detailed in Castelle et al. [2017], the winter WEPA was computed as the DJFM SLP

difference anomaly between the stations Valentia (Ireland) and Santa Cruz de Tenerife

(Canary Islands), see Fig. 1a. The SLP difference was further normalized over the

same 69 winters as for the winter Hs. Well-known climate indices such as the NAO

can be computed through the principal empirical orthogonal function (EOF) of surface

pressure derived from a numerical weather hindcast to give a physically-based expression of
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atmospheric structure [Rogers , 1981]. Instead, here we used the SLP difference definition

of the NAO to be consistent with the WEPA time series, given that it is well established

that the EOF- and SLP-based NAO indices show a very good agreement [Hurrell and

Deser , 2009]. We used the DJFM SLP difference between the stations Reykjavik (Iceland)

and Lisbon (Portugal) reflecting the variability between the Azores high and the Icelandic

low [Hurrell , 1995, see Fig. 1a]. The SLP difference was further normalized over the

69 studied winters. At this stage it is important to note that NAO and WEPA are

uncorrelated (correlation coefficient R of 0.02).

2.3. Wavelet analysis

We used the continuous wavelet transforms W z
n(s) on the climate indices and normalized

winterHs, defined as the convolution of a discrete sequence zn (n= 0,...,N -1) with a scaled

and normalized mother wavelet function ψ0 (here Morlet):

W z
n(s) =

(
dz

s

)1/2 N−1∑
n′=0

zn′ψ∗0

(
(n′ − n)dz

s

)
(1)

where dz is the uniform time step in zn, n is time, s is the timescale [Torrence and Compo,

1998] and ∗ is the complex conjugate. We also used the normalized bivariate extension of

the continuous wavelet transform for two discrete sequences zn and yn of the same size,

namely the wavelet-squared coherency R2
n(s) [Jevrejeva et al., 2003; Grinsted et al., 2004]:

R2
n(s) =

|S(s−1W zy
n (s))|2

S(s−1W z
n(s)).S(s−1W y

n (s))
(2)
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where S is a smoothing operator detailed in Torrence and Webster [1999] and Grinsted

et al. [2004]. The wavelet analysis was performed on both the climate indices and H̃s at

the 6 virtual buoys. W z
n(s) was used to detect the dominant temporal modes of variability

and how these modes vary in time, while R2
n(s) was used to measure the linear relationship,

at a given timescale, between a climate index and a wave height time series as a function

of time. A wavelet squared-coherency of 1 gives a perfect linear relationship between the

two time series at a specific timescale at a given time, whereas a null value reflects the

absence of linear correlation.

3. Results

Fig. 1 shows the spatial distribution of the correlation R between the winter-mean

Hs and NAO (Fig. 1c) and WEPA (Fig. 1d). Consistent with earlier studies [e.g. Dodet

et al., 2010; Shimura et al., 2013; Bromirski and Cayan, 2015; Castelle et al., 2017], winter

wave height variability at the northern latitudes is strongly correlated with NAO, where

the winter-mean Hs is the largest (Fig. 1b). This relationship dramatically drops south

of 52◦N, that is, south of the Irish coast, to further weakly increase south of 40◦N as

winter-mean Hs and NAO become negatively correlated. In contrast, the WEPA index

shows high correlation at the southern latitudes, with systematically R > 0.8 along the

French, Spanish and Portuguese coasts (Fig. 1d). NAO and WEPA are therefore the two

primary climate indices explaining winter wave height variability along the west coast of

Europe, with WEPA giving the highest correlation from the south coast of Ireland and

south west UK down to Morocco.
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Fig. 2 provides insight into the time evolution of the NAO and WEPA indices as well as

of the normalized winter wave height H̃s at the six virtual buoys. A remarkable feature

of the NAO is its trend toward a more positive phase over the last decades (positive

trend of +13.0x10−3 per year, see dashed line in Fig. 2a). The NAO also shows some

low-frequency variations although no preferred mode of variability can be depicted (Fig.

2b). In contrast, WEPA shows a much slower positive long-term trend (+4.6x10−3, Fig.

2c) but shows large interannual variability with increased periodicity during the last three

decades at a timescale of approximately 7 years (Fig. 2d). The winter wave variability

at the 6 buoys is strongly affected by the trend and variability in NAO and WEPA. The

long-term trend in normalized winter wave height increases from south to north (left-

hand wave panels in Fig. 2) as the winter Hs increasingly correlates to the NAO. The

two northern (SC, IR) and four southern (BR, BI, GA, PT) buoys best correlate with

NAO (R is 0.80 - 0.92) and WEPA (R is 0.80 - 0.91), respectively. An important pattern

is the systematic high wavelet power at the 7-year timescale since 1990 for the buoys BR,

BI, GA and PT, and to a lesser extent the Irish buoy IR, together with a systematic high

statistically significant coherency-squared values with WEPA at these timescales (see the

four bottom panels of the right-hand column in Fig. 2). This shows that the atmospheric

circulation changes explained by WEPA in the NE Atlantic have a profound influence on

winter wave height variability and periodicity along the west coast of Europe south of

52◦N, including a striking recent 7-year periodicity.

The overall recent increase in high wavelet power at most of the virtual buoys reveals

an increase in winter wave height interannual variability which, together with an increase
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in the mean, results in more extreme winters. Fig. 3 shows the spatial map of linear

trend in winter-mean Hs (Fig. 3a), winter-mean Hs98% (Fig. 3b) and of winter-mean

Hs interannual variability (Fig. 3c). For the latter the time evolution of the 10-year

moving standard deviation of local winter averaged Hs was linearly regressed. The choice

of this 10-year period was motivated by the presence of most of local wavelet energy on

the timescales shorter than 10 years (see second column of Fig. 2). Results show a large

increase in winter average Hs over the last 69 years exceeding 10 mm/year offshore of

Scotland and Ireland, i.e. an increase by more than 0.7 m over the study period. The rate

of increase in winter average Hs decreases southwards to approximately 5 mm/year and 1

mm/year along the French and Portuguese coasts, respectively, although the trend is not

statistically significant at the 95% level along the Spanish and Portuguese coasts. These

patterns are essentially similar for the extreme wave heights Hs95%, Hs98% and Hs99.5%

although the rates of increase are larger and the coverage of statistically significant trends

is reduced. For instance for Hs98% (Fig. 3b), which corresponds to approximately 58

hours of data per DJFM season, the increase in Hs98% peaks at 24.8 mm/year (21.1

mm/year and 27.7mm/year for Hs95% and Hs99.5%, respectively) meaning that Hs98%

increased by more than 1.7 m in 69 years off the Irish coast. Of note, removing the

outstanding 2013/2014 does not alter these rates off the Irish coast, but substantially

decrease those further south. For instance, an although the trends are not statistically

significant at the 95% level, the increase in Hs98% decreases by approximately 25% in

the Bay of Biscay when ignoring the 2013/2014 winter. The patterns of the linear trend

in winter Hs interannual variability are substantially different. Although the maximum
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increase is located along the Irish coast (+ 1.2-1.4 %/year), most of the west coast of

Europe also shows a large increase (+ 0.6-1 %/year). This large increase along all the

west coast of Europe is largely due to the increased range in normalized winter Hs since

the early 90s (see the 6 bottom left-hand panels in Fig. 2). Interestingly, both NAO

and WEPA show the same rate of increase in interannual variability of +0.5 %/year (not

shown).

4. Discussion and conclusions

The increase in winter Hs across the northeast Atlantic Ocean during the second half

of the 20th century has long been studied [e.g. Bacon and Carter , 1991; Charles et al.,

2012; Bertin et al., 2013]. Results show a maximum increase offshore of Ireland and

Scotland with a gradual decrease southwards, similar in patterns with the peak wave

period trend peaking at 0.01 s/year (not shown). Of note, no significant shift or trend

in wave direction was found, as the trend in winter-mean wave direction is systematically

smaller than 0.05◦/year and not statistically significant at the 95% level along the entire

Atlantic coast of Europe (not shown). This result corroborates the findings of Dodet [2013]

and means that this change in winter-mean wave height was not associated with a distinct

shift in the wave generation location. A salient result is the clear increase in winter wave

height interannual variability, which shows different patterns to those of the increase in

the mean (Fig. 3c). Although peaking offshore of Ireland, the entire Atlantic coast of

Europe has been exposed to an increase in winter wave interannual variability. While

the most northern buoy (Scotland: SC) shows high and small correlation with NAO and

WEPA, respectively, it is the opposite for the southern buoy of Galicia (GA). In fact the
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west coast of Europe forms a continuum where winter wave height variability, from north

to south, is decreasingly and increasingly correlated with NAO and WEPA, respectively.

This is also reflected in the mean trend, with the northern buoys showing large increase

in the mean over the last decades, consistent with the long-term trend of the NAO. In

contrast, the southern buoys show a striking increase in periodicity of approximately 7

years over the last 3 decades, which is essentially controlled by the WEPA index.

The increase in the mean (primarily linked to NAO) together with the increased vari-

ability and periodicity (primarily linked to WEPA) resulted in more extreme positive

climate index phases and, in turn, in more extreme winter waves. For instance, 11 out

of the 12 largest NAO values are found in the second half of the time series from the

1988/1989 to the 2016/2017 winters (Fig. 2a). For WEPA, four out of the five largest

WEPA (> 1.6) are found during the same period. This is further emphasized in Fig. 4

(see the largest circle size in the last 3 decades) which shows that, while the NAO and

WEPA are clearly uncorrelated, the respective contribution of WEPA and NAO to winter

Hs varies from north to south with winter Hs quasi-independent of WEPA and NAO at

the northern and southern latitudes, respectively (left-hand panels in Fig. 4). It is clear

that there has been an increased number of extreme winters along most of the coast with

high values of either NAO and/or WEPA index.

Fig. 4 also provides physical insight into the atmospheric and wave height expression

of the two winter with the highest Hurrell-definition NAO index (winter 1988/1989, Fig.

4b,c) and the winter with the highest WEPA index (winter 2013/2014, Fig. 4e,f), which

are representative of recent extreme winter-mean Hs situations along the west coast of
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Europe. During the winter 1988/1989 (NAO index of +2.19), the widening and strength-

ening of the anticyclone centered on the Azores and the lowering pressures in high latitudes

resulted in increased W-SW winds around 60◦N. This atmospheric pattern drove larger

winter waves at northern latitudes (Irish and Scottish coast, Fig. 4b), with an increase

with respect to the mean peaking at 1.60 m offshore of the Scottish coast (Fig. 4c).

During the winter 2013/2014 (WEPA index of 2.66), the latitudinal atmospheric dipole of

anomaly resembled the 15◦ southward-shifted 1988/1989 pattern together with a substan-

tial longitudinal anomaly driving increased W-NW winds around 45◦N funneling towards

the west coast of Europe (Fig. 4e). This generated larger waves along the entire coast

of Europe, down to northwest Africa, peaking at +1.62 m at approximately 50◦N (Fig.

4f). This situation may become more common during the next decades if the trend in

both winter-mean wave height trend and interannual variability continues. In contrast

with the recent increased in extreme winter along most of the coast with high values of

either NAO and/or WEPA index, fewer occurrences in the lower-left quadrant (WEPA

and NAO both negative) are observed. These correspond to low winter wave height along

most of the west coast Europe. This configuration is increasingly rare as more than half

these winters were observed during the 20 first years of the 1949-2017 time series. For

more information on storm track and atmospheric circulation changes related to NAO

and WEPA, the reader is referred to Castelle et al. [2017].

Increasing winter wave height and interannual variability and periodicity is highlighted

in this study, while the climate has already changed over the last decades. This suggests

that this evolution could continue over the next decades, with more extreme winters as
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described in the right-hand panels of Fig. 4. However, most of the existing climate models

indicate that there will be no increase in winter Hs in the northeast Atlantic, or even a

decrease as stated in Hemer et al. [2013], in the frame of climate change even for the worst-

case emission scenario [e.g. Wang et al., 2014; Aarnes et al., 2017]. A notable exception

is the study of Zappa et al. [2013] who showed a systematic increase in the number of

European extratropical cyclones with increasing emission. In other words, the variability

and trend described in this study go against most of the existing long-term wave model

forecasts. It will therefore be critical to address the evolution of the winter wave height

over the next years and decades to explore if the recent increase in the mean, variability

and periodicity is related to a natural anomaly or if it is the expression of climate change.

Trend magnitudes computed from wind-wave model hindcasts must be used carefully as

the progressive or abrupt assimilation of new field and satellite data is known to impact

surface winds and, in turn, wave characteristics [Sasaki , 2016]. Although not shown

here, comparison with other reanalyses indicate that, over the period 1980-2010, our

wind-wave model hindcast gives very similar trends in both pattern and magnitude to

the most recent ERA-20C, while ERA-Interim yields spurious trends in wave height, as

already noted by Aarnes et al. [2015]. Running the same analysis over 1948-2010 shows

that ERA-20C gives slightly smaller positive trends in winter-mean wave height, with for

instance a decrease up to approximately 50% in trend offshore of the Irish coast. ERA-

20C also shows a southward shift of the maximum increase in winter-mean wave height

variability by approximately 5◦. Comparison with winter-mean wave height measured at

the wave buoys GA (WMO62001) and K1 (WMO62029) (Fig. 1a), which are the longest
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wave records in this region, also show similar magnitude trends with our model hindcast.

Our wave hindcast even slightly underestimates the increase in winter-mean wave height.

However, the winter-mean wave height trends are not statistically significant at the 95%

level owing to data gaps and the relatively short time series (¡20 years). It is now well

established that winter-mean wave height variability is correlated with a combination of

WEPA and NAO. Here, WEPA and NAO indices, which are computed with reliable in

situ SLP measurements, consistently show this increase in the mean (primarily NAO)

and in variability and periodicity (primarily WEPA). The authors therefore believe that

this increase is reliable but that magnitude in winter-mean trend and the patterns of

the increased variability can be further improved using more advanced wind-wave model

hindcasts.

Winter wave height variability was addressed here because winter storm wave height is

the primary parameter affecting dune erosion and cliff failure [e.g. Earlie et al., 2015], and

coastal hazards overall. In addition, wave height variability alone can explain 70-80% of

shoreline variability along open sandy coasts [e.g. Yates et al., 2009; Castelle et al., 2014].

However, changes in winter-mean wave period and direction and/or local winds can also

affect sediment transport pathways and resulting coastal hazards through for instance

beach rotation in coastal embayments [e.g. Harley et al., 2011]. Such investigation is

site specific and requires the use of nested and high-resolution wave, flow and sediment

transport and wind models, which is beyond the scope of this study.

Increasing winter wave height and interannual variability and periodicity along the

Atlantic coast of Europe is controlled by changes in atmospheric circulation primarily
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described through WEPA and NAO. Although chaotic and unpredictable variability still

dominates in many cases, recent research has provided evidence of increased skill in sea-

sonal seasonal predictability of the NAO using the latest generation forecasting systems

[Scaife et al., 2014; Dunstone et al., 2016; Scaife et al., 2017]. The seasonal predictability

of WEPA using these latest forecast systems had not yet studied in detail. Given that the

combination of NAO and WEPA allows the determination of winter-mean wave height

along the entire west coast of Europe, the ability of the Climate models to predict the

winter NAO and WEPA climate indices a few months ahead will be crucial to anticipate

coastal hazards in this region of the world.
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Figure 1. Top panels: winter-mean (DJFM, 1949-2017) (a) SLP and (b) Hs; bottom panels: spatial
correlation of the winter-mean Hs against the winter(DJFM)-averaged (c) NAO and (d) WEPA indices.
The NAO and WEPA indices defined as the normalized SLP difference measured between 2 stations are
indicated by the dark and light grey circles in panels (a,c,d). The two white squares in (a) K1 and GA
indicate the location of two relevant operated wave buoys used for validation. The 6 virtual wave buoys
along the west coast of Europe are shown in panel (b), with SC: Scotland; IR: Ireland; BR: Brittany;
BI: Biscay; GA: Galicia; PT: Portugal. The hatched zones are the areas where correlations are not
significant at the 95% confidence level.
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Figure 2. First column: time series of (a) NAO and (b) WEPA indices, with the 6 bottom panels
showing, for the 6 virtual buoys, the time series of the normalized winter-mean Hs anomaly (black line)
and its linear trend (dotted black line) superimposed onto the climate index (gray bars) with which
the best correlation is found: (e,i): NAO; (m,q,u,y): WEPA. Second column: local wavelet spectrum
normalized by the variance of the (b) NAO and (d) WEPA indices and, for the 6 bottom panels, of the
normalized winter Hs anomaly. Third and fourth columns show the wavelet coherency-squared diagram
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indices, respectively. In all wavelet panels, the 5 % significance level against red noise is contoured in
thick black, and the cone of influence is delimited by the dashed black line.
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Figure 3. Linear trend of (a) winter-mean (1949-2017) Hs and (b) its 98% exceedance values

Hs98%in mm/year, and of (c) winter-mean (1949-2017) Hs interannual variability in %/year. The

hatched zones are areas where trends and correlations are not significant at the 95% confidence

level.
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Figure 4. Left-hand panels: WEPA index versus NAO index for the 69 DJFM winters (1949-2017)
with the winter year colored and the circle size proportional to the normalized winter-mean Hs anomaly
at the buoys (a) SC: Scotland; (d) BI: Biscay and (g) PT: Portugal. The 4 right-hand panels show the
atmospheric and wave height expression of the 2 winters with (b,c) the highest Hurrell-definition NAO
index (1988/1989) and (e,f) the highest WEPA index (2013/2014) with (b,e) the winter-mean SLP
anomaly with superimposed ~u10 field and (c,f) the winter-mean Hs anomaly.
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