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John Lawrence - Cross-shore morphodynamics of coarse grained beaches and 

beach/structure interaction: Numerical modelling and large scale measurements 

Abstract 

Coastal defence systems are implemented in many countries for the stability of coastlines 

and prevention of erosion and flooding. The maintenance of such schemes includes the use of 

'soft' engineering techniques, which require accurate predictions of sediment transport and profile 

change. This thesis describes the development of a numerical model for coarse-grained cross-

shore transport for use in such schemes. The model combines a hydrodynamic model based on 

weakly non-linear Boussinesq equations, coupled to a sediment transport module and a 

morphology change module. Studies have been performed on the hydrodynamic and sediment 

models to assess the performance of the components for this purpose. 

The 1-D Boussinesq model has been validated with physical wave flume data. The model 

is shown to provide good predictions for shoaling and breaking waves near the coastline, and is 

also shown to provide good predictions for the properties of a reflected wave field. The model is 

then used to perfonn a study on the nature of wave shoaling and reflection with regard to the 

velocity field, and the development of the velocity skewness pattern is discussed. Recent sediment 

transport formulae have been reviewed, and a bed-load sediment transport model has been 

developed. A model for differential transport of different grain sized niaterial has also been 

introduced. Developed from a river sediment model, this is able to predict sorting of grain sizes 

over the cross-shore profile. Results of the combined model are shown for natural plane beaches, 

and for beaches coupled with sea walls. The model predicts reduced erosion patterns for irregular 

wave fields compared to regular waves, and for mixed sediment composition sea beds compared 

to homogeneous sea beds. These findings show agreement with features found in previous 

physical studies. A series of sensitivity studjes has also been performed with respect to 

hydrodynamic and sediment properties. The model shows a high degree of sensitivity for the profile 

changes to these parameters. The ability of the model to show predictions for an evolving beach 

profile subject to tidal water depth variation is also introduced. 
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1. Introduction 

1.1. Background 

The current philosophy of the coastal engineering profession for the construction 

and maintenance pf coastal defence systems is to use soft engineering techniques where 

appropriate. In the UK, and elsewhere, increasing use is made of coarse grained 

sediment (shingle) to replenish eroding beaches, often in conjunction with groynes or 

brealcwaters. Accurate, predictive models for both long-shore and cross-shore sediment 

transport are therefore needed for the use of such systems. Beach failures often occur 

during storm events, so the behaviour of a beach system during a storm is of particular 

interest. 

Most numerical models used to predict cross-shore beach evolution have 

concentrated on sand s ized sediment. However, the particular properties of a shingle 

beach have a number of consequences for the p rocesses of sediment transport, which 

mean that the sediment transport characteristics of a shingle beach are very different to 

those of a sand beach. Most notably, shingle can support a steep gradient (frequently as 

steep as 1:8) which al lows waves to progress much c loser inshore before breaking. 

Consequent ly , energy dissipation through breaking is concentrated over a much narrower 

region than on a sand beach. On plane beaches this results in an unsaturated breaker 

zone and a swash zone of similar width to the surf zone (see e.g. Baldock ef a/.,1998). 

Accordingly, the sediment transport within the swash z o n e is of more signif icance on a 

shingle beach than on a sand beach. 

Where a beach is terminated by a s e a wal l , there will be no swash zone , but still a 

narrow breaker zone . To reliably simulate the movement of sediment under these 

condit ions, it is first necessary to have a sufficiently accurate hydrodynamic description of 

the motions of breaking waves . The wave model must then drive a mobile sediment model 

to determine the beach morphological evolutions for a particular case . 
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Earl ier morphology models were simple empirical fits of beach profile to an 

equilibrium shape. Bruun, (1954) found the genera l shape of 

h = Yxr (1) 

where h is the s e a bed level and x is the cross shore distance from the still water line, for 

two parameters Y,n. This profile was later confirmed by Dean , (1977), who found the best 

fit for this profile was obtained using n = 2/3, with 7 as a sediment dependent dissipation 

parameter. 

This concept w a s then extended to consider in an empirical manner the evolution 

of the beach profile towards the equilibrium. Kriebel and Dean , (1985) developed a t ime-

varying model where the cross shore transport rate w a s a function of the deviation of the 

wave dissipation rate from Its equilibrium value. A s time evolved, this model was found to 

converge onto Dean's profile. Larson, (1988) was able to extend this concept to include 

barred profiles. Such models can be used to evaluate damage from storms of a limited 

duration. 

The next generation of models is the so-cal led process based model . These 

account for individual physical processes involved in morphological change. The first 

group of these models relied on phase-averaged numerical wave models for 

hydrodynamic information, rather than considering detailed intra-wave behaviour. F ive 

such models are reviewed by Roelvink and Br0ker, (1993). Phase-averaged models must 

treat long waves and wave asymmetry in an approximate manner. These earlier models 

also had poor descriptions of waves on steep s lopes and did not incorporate swash 

processes. 

Later process-based models have sought to improve the wave-sediment 

representation by explicit determination of quantities, rather than using averaged 

properties. A more recent model is given in Rakha etal., (1997), which includes a model 

of an evolving, variable thickness boundary layer. The majority of effort in this field 

however has still been in the direction of sand transport. 
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A particular feature of most coastl ines in the U K is the existence of significant tidal 

ranges. A n equilibrium profile does not really exist, as the sea bed is continually moving to 

adjust to the present tidal height. S e a levels may also be affected by storm surges. 

Therefore a model should seek to incorporate long term s e a level adjustments in its 

predictions. 

A predictive tool for engineers must be convenient to use. One measure of 

convenience is the time taken for a simulation. Therefore one goal of this study is to 

develop a model that can be run in a relatively short t ime. In this thesis the development 

of a coarse-grained sediment transport model in conjunction with a phase resolving 

hydrodynamic model is presented. The model is intended to simulate beach beviour 

during a nominal storm/tide event. 

1.2. Hydrodynamics 

Var ious techniques have been investigated in recent years to develop the 

understanding of near-shore wave fields. Approaches that study the depth-mean flow 

include the use of the non-linear shal low water (NLSW) equations as used by Glaister, 

(1987), Dodd, (1998), and Hudson etal., (2005), and the Bousss inesq equations (e.g. 

Madsen etal., (1991), Scha f fe re f a/.,1993, Madsen ef a/.,1997a, Kennedy ef a/.,2000). 

Studies of the full vertical flow include those using a Navier-Stokes solver, (e.g. Kothe et 

a/.,1991 and Barr ef a/.,2004) and more generally, approximate solutions of the Laplacian 

potential flow may be found, such as the Local Polynomial Approximation (e.g. Kennedy 

and Fenton, 1997). 

Each of these types of solver has its own limitations. The N L S W equations for 

example are only useful Inside the breaker zone , and have poor dispersion 

characteristics. Bouss inesq equations of low order can be computationally cheap to solve, 

but lose accuracy in highly non-linear situations (such as c lose to the breaker line). Higher 

order Bouss inesq equations (e.g. We i etal., (1995), Madsen etal., (2002)) are more 
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accurate but expensive. Navier-Stol<es solvers and potential flovi^ solvers again provide 

higher accuracy, but are computationally even more expensive. 

In fact, Bouss inesq , (1872) first introduced his equations a number of years ago. 

The equations are derived by incorporating low order dispersive effects in shal low water 

wave propagation. The first numerical implementation however was not until Peregrine, 

(1967). Abbott and Rodenhuis , (1972) studied the sensitivity of the equations to numerical 

errors, and establ ished the need for high accuracy difference schemes. Subsequent ly, 

Abbott e( a/., (1978) and Abbott etal., (1984) introduced a third order accurate scheme for 

a modified version of Peregrine's equations. Initial tests of these equations against 

analytical solutions and experimental data were also made, such as Abbott et al., (1978) 

and Madsen and Warren, (1984).,These showed satisfactory performance for the 

prediction of wave height for wave shoal ing, and also in 2 D models, refraction and 

diffraction. Accordingly Bouss inesq equations have now been used for many years for the 

simulation of harbour conditions due to incident waves . 

The study of wave-wave interactions in Bouss inesq equations w a s first made by 

Freil ich and G u z a , (1984). They derived a set of spectral evolution equations from the 

original Bouss inesq equations, that contained quadratic interaction terms. These terms 

al lowed energy transfer through the wave spectrum over short distances in shal low water. 

Tests of this model showed that the evolution of power spectra of shoal ing waves could 

be accurately predicted. 

Early versions of Bouss inesq equations were only weakly nonlinear, and only 

applicable for relatively long waves, and significant effort has been made in extending the 

applicability of the equations into shorter waves/deeper water Such efforts include Witting, 

(1984),McCowan, (1987), Madsen etal., (1991) and Nwogu, (1996). Bouss inesq 

equations may be derived for different choices of velocity variable, and a 'tuning' process 

may be applied to making this choice to make these deep water extensions. Dingemans, 

(1997) gives a good discussion of this process. Improved deep water performance is also 
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obtained by manipulation of the higher order terms of the equations, and again applying a 

'tuning' process. 

More recently, higher order Bouss inesq equations have been obtained by retaining 

more terms of the dispersive effects. Examples may be found in We i and Kirby, (1995), 

Gobbi and Kirby, (1999), Agnon etal., (1999) and Madsen etal., (2002). Gobb i and Kirby 

introduce a second velocity variable, thus considering some variation in the vertical profile, 

and Agnon et al., (1999) decouple the equation system into separate linear and nonlinear 

problems. E a c h improvement introduces more dependent variables to the equation set 

and therefore requires the use of more computational resources to provide a numerical 

solution. 

Ozanne , (1998) implemented a model after Madsen etal., (1991), and shov\/ed 

that while a low order model , it provided good representation of wave energy transfer in 

low order harmonics. Ozanne etal., (2000) subsequent ly showed the model provided 

good predictions of velocity statistics in the surf zone. This model w a s therefore chosen 

for this study as a base for a sediment transport model . Th is model has dispersion 

properties that are generally acceptable in the water depths considered. T h e numerical 

scheme of this model is also simple enough for the simulation of long periods of wave 

actions in a computationally acceptable time. Continual advances in computer speed may 

be expected to allow the use of the higher order models in a similar manner before long. 

1.3. Sediment transport 

The motion of s e a bed sediments under wave action has also been the subject of 

much study over the years. Bagnold, (1963) suggested the immersed weight bedload 

sediment transport rate in a stream flow was proportional to the time averaged energy 

dissipation rate. In oscillatory flow this may actually be restated that the sediment 

transport rate is proportional to the energy dissipation rate t imes the ratio of the net 

current velocity and the wave orbital velocity. Inman and Bowen, (1963) found the 

transport over a rippled bottom was rather more complex than this, probably due to phase 
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relationships between the waves and the sediments. However, the model has still been 

useful, with extensions by Ballard and Inman, (1981) and Bai lard, (1981) in the study of 

longshore transport. Later McDowel l , (1989) incorporated a fuller treatment of bed friction 

coefficient, bed shear stress, particle properties and unsteady flow properties. Chadwick, 

(1991) used this theory in a numerical model of wave driven sediment transport. Al l such 

energetics models however rely on a coefficient of proportionality between the dissipation 

rate and the transport rate, which can only be determined empirically. 

Previously, Shie lds, (1936) studied the mobilisation of sediment particles and 

introduced the wel l known mobility parameter. This work was parameterised and also 

extended for very fine grains by Sou lsby and Whitehouse, (1997). Var ious transport 

formulae have been proposed, from Meyer-Peter and Muller, (1948) to Engelund and 

Freds0e , (1976), to Nie lsen, (1992) as examples. These all derive a transport rate from 

the difference of the flow Shield 's parameter to the critical Shie ld 's parameter. Such 

formulae require a calculation of bed shear stress to determine the Shield 's parameter. 

In fact, the majority of these transport formulae were originally developed for 

steady flow in channels. T o apply them to oscillatory flow such as in waves , a wave 

oscillatory friction formulation must be found instead of a time independent channel friction 

formula. Rev iews of these models and others are in F reds0e and Deigaard, (1992) and 

van Rijn, (1993). A good summary also exists in Soulsby, (1997). 

Another feature of earlier models is that they are formulated for a homogeneous 

mix of sediment. In reality, sediment grains of a variety of s izes may be present in a s e a 

bed. Studies of steady flow in river channels have explored the differential transport rates 

that occur when such a mixed sediment exists. A n early example is found in Armanini and 

Di Si lvio, (1988). Another study of the differential flow rates is found in Pender and Li , 

(1995) and an example of a numerical model of channel mixed sediment transport is 

found in Pender and Li , (1996). The different s ized sediment fractions have separate (and 

varying) sediment flow rates. Modell ing the fractions individually then al lows numerical 

sediment sorting, which determines the time-varying composit ion of the sediment mix. 
20 



More information is avai lable in Kleinhans and van Rijn, (2002). S ince the mixed sediment 

formulae are derived from the homogeneous channel formulae descr ibed above, it is 

expected that they may extend to oscillatory flow in the s a m e way. The development of 

mixed grain models in coastal studies is desirable, and such an approach is made in this 

thesis. 

In general , sediment may be transported in two modes. The first.mode is the 

movement of sediment particles in contact with the bed, and is k n o w n a s bedload. This 

mode has a fast response to the hydrodynamic motions. The second mode is the 

transport of particles moving through the water column, and is known as the suspended 

load. One characteristic that governs this mode is the fall velocity of the sediment, and 

lighter sediments, having a lower fall velocity will spend more time in suspens ion. This can 

lead to sediment being mobil ised while the fluid moves in one direction, but then being 

actually transported after the fluid changes direction. This study is concerned with coarse 

grained sediments, which are sufficiently heavy that no suspended load transport occurs. 

S ince shingle beaches sustain a steep beach face, the sediment transport 

procedures are further modified by the beach s lope. Material c lose to the angle of repose 

is likely to move down the s lope more readily than material moving across a horizontal 

surface, because of the assistance of gravity. Similarly, movement up a s lope is retarded 

by the same process. This can be modelled by a variation in the critical fluid stress 

required to move a sediment particle, as found in Sou lsby (1997). Material lying on a 

s lope of half the angle of repose may in fact s e e a change in the critical stress of 

approximately 50%. Furthermore, material deposited such that the beach s lope is greater 

than the critical angle will s lump under gravity until a stable beach slope is regained. The 

model also includes these processes. 

S o m e studies of sediment transport on the beach face have suggested that 

in/exfiltration of s e a water through the beach face may modify the sediment p rocesses 

there. During infiltration events, the bed velocity may be increased, increasing the 

potential for sediment transport. A n alternative mechan ism is that excess pressure during 
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an uprush event may increase the effective weight of sediment, enhancing beach stability, 

while upwards pressure gradients during downwash exfiltration may reduce the effective 

sediment weight, destabil ising the bed. A sufficiently large gradient may lead to bed 

fluidising. Experiments including Horn etal., (1998),Butt and Russe l l , (1999), and R o m a n -

Bianco and Holmes, (2003) have studied some of these effects. Attempts to model the 

effect of in/exfiltration include Massel ink and Li , (2001) and Acuna , (2005). Massel ink and 

Li suggest another mechan ism, that the infiltration causes a change inrthe velocity 

asymmetry, which promotes onshore sediment transport, and that this can only happen 

for a sufficiently high beach permeability. A c u n a parameterised the infiltration by two 

different methods, firstly to enhance the bed friction during uprush, and secondly to 

include an efficiency factor m the sediment transport calculations, which differed for 

uprush and downwash stages Neither method could fully explain observed profile 

responses. Butt etal., (2001) find there is considerable uncertainty in the relative 

magnitude of the various mechanisms, finding that in/exfiltration can promote beach 

stability or instability depending on a number of factors. In the light of this uncertainty, the 

present study has not considered this further. 

1.4. Objectives 

In this thesis the applicability of the low order Bouss inesq model for driving 

sediment and morphology models of coarse-grained beaches is considered. This includes 

a study of the hydrodynamic mechanisms that drive morphology changes. 

In this thesis the applicability of recent sediment studies to include a sediment 

transport module and a morphology module is considered. The variability of the sediment 

models is also explored. 

In this thesis the ability of the model to respond to tidal changes is evaluated. 

In Chapter 2, a description of the hydrodynamic model will be given. A theoretical 

basis for validating some hydrodynamic results will be set out. In Chapter 3 the 

performance of the Bouss inesq model will be assessed against theoretical and 
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experimental data. The hydrodynamics of wave reflection in varying depth channels is 

a lso considered. In Chapter 4 a brief review of recent wave friction and sediment transport 

formulae is given. The coupling of the Bouss inesq model to the sediment model is 

descr ibed, and the mixed sediment differential transport model is introduced. In Chapter 

5, the performance of the model on plane beaches is assessed , and the sediment sorting 

model is introduced. In Chapter 6, the performance of the model on beaches with s e a 

walls is a s s e s s e d . The ability of the model to simulate tidal changes isralso demonstrated. 

In Chapter 7 a final d iscussion and conclusions are given. 
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2. Hydrodynamic Modelling 

2.1. Boussinesq equations 

The motion of an inviscid, incompressible Newtonian fluid may be descr ibed by the 

Euler equations, expressing the conservation of mass and momentum. Cons ider a 

channel containing fluid. Then x,y,z are the conventional space coordinates with an origin 

somewhere on the still water line, h is the still water depth at a point and jj is the 

instantaneous elevation at a point. 

Figure 1 Axes and deptfis 

S ince flow is being considered in the cross shore {x) direction, variation in they 

direction will not be considered, and the model will be considered as a 2-dimensional 

system. 

There are many forms of Bouss inesq type equations available. Th is is because 

there are multiple choices available for selecting dependent var iables. The velocity 

variable for example may be chosen as the surface velocity, the bed velocity, or the depth 

mean velocity. A good discussion of the choices available is found in Dingemans (1997). 

Early forms of the equations, such as Peregr ine (1967), were limited in application to 

relatively shal low water. M c C o w a n (1987) and Madsen etal., (1991) evaluated various 

forms of the equations for the ability to propagate waves with the correct celerity, and 
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found the best performance in this respect w a s found with the depth mean velocity as the 

variable of choice. 

For the two-dimensional flow in a vertical plane the equations are: 

a ^ ^ ' a T " (2.a) 
du du du I dp ^ 
— + u— + w— + — = 0 (2b) 
at dx dz p dx ^ ' ' 
dw dw dw I dp ^ - N 

— + u— + w— + — + g = Q (2.C) 
dt dx dz p dz 

where u,v,w are the fluid velocit ies in the corresponding directions, / is time, p is 

pressure, p is the fluid density and g is the acceleration due to gravity. 

For a model of cross-shore flow (or flow in a 2D channel) on a horizontal bed, the 

full system is a free-surface problem since the upper boundary of the flow is not fixed in 

space . The relevant boundary condit ions that must be appl ied are 

J A J ^aiz = v (2.d) 
\surface a* surface a „ ' 
surface surface 

Z = 7J p ^ = O a t z = 77 (2.e) 
surface ' 

bed bed 

where rj is the free surface elevation. 

This leads to a highly complex system. Computat ional solutions of the full set of 

Euler equations are computationally expensive. To reduce expense, a method of reducing 

the system Is sought. O n e approach (e.g. Kennedy and Fenton, (1997)) is to approximate 

the velocity profile in the vertical to a sum of a ser ies of shape functions. This is still a 

complex system, but brings some advantages. To seek a faster solution, the vertical 

variation of the flow may be approximated by some means, and the profile then descr ibed 

as some function of the depth mean flow. 

The vertical flow can be isolated by integrating through the vertical. Such a 

procedure is descr ibed by Schaffer et al., (1993). It is fol lowed here in a dimensional form. 

Use is made of Leibniz 's rule to transform integral properties: 
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B{x) 
'T{x,z)dz= \ •^T{x,z)dz + Y{x,B)^-Tix,A) 

AM 

d 

dx 

dB 

dx 

dA 

'dx 
(3) 

T h e scal ing quantities s, n will a lso be used, where 

s = A/h (4) 

tx = (h/Lf (5) 

s, is the ratio of wave amp l i t ude^ to water depth h, and is a measure of wave 

nonllnearity. n is the square of the ratio of water depth h to wavelength L, and is a 

measure of the degree of dispersion of the wave. 

Firstly the continuity equation is integrated throughout the vertical. The boundary 

conditions (Equations 2.d,2.f) are applied to the resulting vertical velocit ies 

' r fSw dw 
+ 

-h dx dz 
dz = 

rdu cdw 

-h dz 
dz 

dx 
Wz-«(77)^-«(-/2)^+[>v(77)-w(-/l)] 

dx dx 

udz+^ = 0 
dt 

dh 

-h 

— \ 
ax J , 

(6) 

The horizontal momentum equation is similarly treated, applying all the boundary 

conditions. The continuity equation is used to transform quantities of dw/dz to -duldx: -

"Adu du du 1 dp\^ "rdu 
•'—+u—-hw—+ —>dz = 

dt dx dz p dx] ~h 

, ^ du J 'r 9 " 7 
•dz+ \u—dz+ \w—dz 

i dx J ^ --h -h 
\ \ dp^ 

+ —dz 

-h dz 

dt-, 
udz+-

dx_i 
u dz + — 

1 a 
(7) 

pdxj. 
pdz 

P{-h)— = ^ 
p dx 

If the hydrostatic pressure condit ion p{z) = P-g(j] - z) is substituted in this 

equation, the non-l inear shal low water (NLSW) equations may be recovered. To develop 

the Bouss inesq equations however, the vertical momentum equation is also integrated: 
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Wdw dw dw I dp 
•'—+u—+w—+ —+g>ck = 

dt dx dz p dz 

''rdw , ''r dw . ''r dw . 
—az+ u—az+ \w—az 

z dt i dx I dz 

+ —dz+ gdz 
ipdz i 

(8) 

leading to a pressure equation: 

piz) = p 
Q 1 Q 1 

gi7j-z)+— wdz+— uwdz-w^(z) 
dt i dx J 

(9) 

It may be seen that the hydrostatic assumption of the N L S W equation is simply the 

first term of this expression. This in fact is assuming that all terms of vertical accelerat ion 

(which are of 0{jJ) or smaller) may be neglected. The N L S W equations do not admit a 

permanent wave solution. The phase celerity formula for these equations is = g(h+rj) 

which is independent of the wave number. Wave crests therefore travel faster than 

troughs, and a propagating wave continually s teepens as it travels. 

The Bouss inesq equations are obtained by retaining the first accelerat ion term of 

the pressure equation. 

p{z) = p 
d ' 

s(n-z)+—Wdz 
of: 

(10) 

which is equivalent to retaining terms of 0(s) and 0(p). A n integration of the continuity 

equation through a vertical section of a lower layer of water results in an express ion for w: 

^c\du dw 
-+ 

-h dx dz' 
dz' 

d ' 
w(z) = {udz' 

dxj„ 
(11) 

Equat ions 10 and 11 are substituted into Equat ion 7, and the following expression 

is noviA obtained: 

\udz+— u^dz + gh— + i// = 0 
i dx_i dx dt -h 

where 

(12) 
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^ = IT^AT Hzdzdz (13) 

with ail non-l inear contributions to ^ being neglected, ^ i s the dispersive contribution to 

the momentum equation. 

The depth integrated velocity P and the momentum flux JWare now def ined: 

P = udz,M= \u^dz = — (14) 

where d is the total water depth, h+rj. To evaluate y/, a uniform vertical distribution 

of horizontal velocity is assumed. This results in 

w = ^ V - ^ (15) 
^ 6 dx'dt 2 dx^dt 

Since y/\s taken to be linear, differences between d and h are neglected, so the 

term may also be expressed as 

tf8'(f/;,)_tf3^ (16, 

This gives the final form of the Bouss inesq Equations: 

(17.a) 

k , h l , , , ^ J L , ! L ^ 2 2 M . l L l P = o ( i7.b) 

dt dx ^ dx 6 dx^dt 2 dx^dt 

On a horizontal bed, these equations now describe a system where a permanent 

progressive wave is possible. For a slowly varying horizontal bed, higher order spatial 

derivatives of the bathymetry may be ignored, and the system further reduces to: 
dT] dP ^ 
^ ^ Y x = ' (^8.a) 

^A^^jL^^,,^JL.!LlPAj,^A^ = 0 (18.b) 
dt dx dx 3 dx^dt 3 dx dxdt 

This set of equations can be shown to have a permanent wave solution. Full 

details of this are shown in the appendix A . I . The form of this wave may be descr ibed by 

the formula 
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T) = 7j2 + HCr\'' 
IK, , ^ 

{x-ct),m 19 

where //^ is depth of water under a wave trough, H is the wave height and X is the 

wavelength. Cn is the (periodic) Jacob! elliptic function and K.m axe wave dependent 

properties as shown in the appendix. The Cn function was named Cnoidal by Korteweg 

and de Vries, (1895). Hence the waveform described by Equation 19 is now called the 

Cnoidal wave. S o m e examples of the wave profile are shown in Figure 2 

Cnoidal Profile 

1 n m = 0 

0 . 8 m = 0 . 5 

S 0 . 6 m = 0 . 7 

T 0 . 4 \ > m = 1 - 1 0 ^ 1 

^ 0 . 2 - m = 1 - 1 0 * - 2 

A m = 1 - 1 0 ^ 3 
U H 

m = 1 - 1 0 ^ 3 

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 m = 1 - 1 0 ^ 

( x - c t ) f l t m = 1 - 1 0 * - 1 0 

Figure 2 Cnoidal wave profiles 

The existence of this permanent wave provides a basis for verifying the 

performance of a hydrodynamic model. 

2.2. Boussinesq modelling 

The Bouss inesq equations now derived are only accurate to the order ( f , / / ) , and 

so are only weakly non-linear. A finite difference scheme is used to provide a numerical 

solution. Previous implementations of weakly non-linear equations have been made by 

Madsen etal., (1991), and Wei and Kirby, (1995). Madsen etal., (1991) followed the 

second order scheme of Abbott and Basco , (1989), and subsequent additions such as 

wave-breaking have later been included. The scheme is time centred implicit and spatially 

staggered. An update of the solution requires a single previous time-step, so its requires a 

low usage of computing resources. 

Wei and Kirby implemented a fourth-order predictor-corrector method for the 

Bouss inesq equations. The grid used here is non-staggered, and uses the information 
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from three previous t ime-steps to update the solution. Other more recent implementations 

are of higher order Bouss inesq models, e.g. W e i et al., (1995).ln general , the use of 

higher order s c h e m e s or higher order equations requires the use of more computer 

resources, either processing time or storage. 

Ozanne etal., (2000) showed the predictions of the Madsen etal., (1991) scheme 

gave acceptable predictions for velocity skewness, and as a computationally 'cheap' 

s cheme it was used for this study. A schemat ic of the computational grid is shown in 

Figure 3 

E 

n+1 

n-1 

Numerical S •cheme 

11 

P p p 

i-1 i+1 space 

Figure 3 Computational grid 

Subscr ipt i will be used to denote the spatial discretisation, thus x, = i.Ax, and 

superscript n to denote the time discretisation, thus x" = n.At. The full numerical scheme 

corresponding to Equation 18 is then: 
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A x 

A? A x 

= 0 
pn+l , pn pn+1 , pn 

2 2 

2 < 7I+I/2 
2 C 

n+1/2 + 

2Ax 
(20) 

A f ( k f ^ ^ " ' ' - 2 ^ " ' - ^ ^ t + 2 7 ^ . " - i ^ . : : , ) -

pn+I _ pn+I pn _ pri 
-̂ -1 -W+l -W-l 

2 A x 2Ax 
= 0 

3 2 A x 2Ax Ar 

In fact the Taylor ser ies that approximate flux and elevation variation in this 

numerical scheme are truncated after the 2nd order terms. The error Introduced by this is 

of the s a m e order of magnitude as the dispersion terms. Abbott et al., (1984) show that 

extra terms need to be added to the momentum scheme to eliminate these errors, and 

Ozanne (1998) finds these terms to be 

i^tf d'P jAxf d'n (Atf d'?j 
2 4 dt' ^ 2 4 dx' ^ 8 9 x 3 / ^ 

which after manipulation by the long wave equation (see Mel , 1989) are: 

. ( A Q ^ _ ( A x ) ^ ^ d'P 

1 2 2 4 dx^dt 

(21) 

(22) 

Th is is in a similar form to the fourth term in the momentum equation in Equation 

20, and may be discretised in the same manner. 

The full system of equations may be written in the following form. 

a,pr+b,7jr+c,p;::'=d, 
(23) 

which may be assembled as a matrix equation. This may be easi ly transformed into a 

form with a tri-diagonal matrix and has been solved by a double sweep method (a 

particular Implementation of Gauss ian elimination.). A n explanation may be found in Abbott 

and Basco , (1989) 
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The model is implicit, and nominally stable for any time step. In fact, the presence 

of intermediate terms in Equation 20 means that too high a time step leads to attenuation 

of wave energy at high n,. Further details may be found in Madsen etal., (1991). 

The model may be run in three modes. The offshore boundary is implemented as 

a source generating function as descr ibed by Kennedy etal., (2000) in all these modes, to 

provide the wave input. The first mode replaces the near-shore boundary with a run-off 

zone into a numerical sponge layer. This represents a transmissive flow in an ppen 

region. The second mode consists of a shorel ine tracking algorithm with a moving 

shoreline, representing a wave runup/dpwn on a (gentle) beach. The third mode consists 

of f ixed shoreward reflective (vertical) boundary, representing a reflecting flow against a 

solid structure such as a s e a wall . 

In fact the source generating boundary requires a sponge layer offshore from the 

model in all three modes. The sponge layer absorbs numerically all input waves, with no 

(or negligible) reflection. The elevation and flow fields are numerically damped by division 

by a ser ies of coefficients in the sponge layer at every time step. Larsen and Dancy, 

(1983) derived the damping field of the form: 

v" ,=( /"max- l ) + 1 (24) 

where //max,p are constants, JVis the number of grid cells in the sponge layer, and / 

is an index where /=1 is the terminal boundary cell . The general form of these damping 

coefficients is shown in Figure 4. For the model runs in this thesis, the parameter va lues 

of 1.8,1.3 were found to be suitable for //^arand p respectively. The length of the sponge 

layer is required to be of the order of two wavelengths, and care should be taken when 

choosing parameter values. 
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Sponge Layers 
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Model domain 

Figure 4 Sponge Layer Coefficients 

For the shorel ine tracking boundary, the slot method of Kennedy et al., (2000) has 

been implemented. The Bouss inesq equations are modified by a parameter representing 

the water depth at each point as fol lows: introduce a function ^ s u c h that 

r(,z) = 
X 

s + (l 

z>z, 

4 ^ (25) 

where zt is the physical seai bed depth, and ZB is the datum depth of the s lo t The slot 

represents a region of decreasing porosity below the s e a bed, and the datum is usually 

fixed to be the toe of the slope. / is unity in clear water, fi'isa parameter that governs the 

rate of decrease of porosity, and s'\s the minimum porosity. Th is function may now be 

used to compute an effective water depth A such that: 

A(x,y,t)= \r{z)dz (26) 

The porosity y\s now used in the continuity equation, and the effective depth A is 

substituted for the original depth in the momentum equation thus: 

r(n)-^+—=o 
dt dx 

dP dP^iA ^dTj 
—+ +gA—+... = 0 
dt dx dx 

(27.a) 

(27.b) 

Near the shorel ine the Bouss inesq terms are also switched off, the equation set 

reducing to the N L S W equation. In practice damping filters are also required to prevent 
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the growth of spurious oscillations in the solution. Further details may be found in, e.g. 

Kennedy etal., (2000) or Karunarathna etal., (2005). 

T h e third mode is included into the numerical model by applying the boundary 

condition of P=0 at the sea wall boundary. 

2.3. Frequency dispersion improvement 

o ther forms of the Bouss inesq equations may be developed, by using different 

reference velocit ies such as the bottom velocity or mean s e a level velocity Umwi instead 

of the depth mean velocity u in Equation 14. Further details may be found in Madsen et 

al., (1991). T h e s e forms lead to the following formulation of the dispersion relation: 

£ + 1 
3 

(28) 

with B = {0, 1/6, -1/3} for equations in { u, Ubed. m w } respectively. 

T h e s e are illustrated in Figure 5, and are compared against the exact linear wave 

solution 

_ tanh(M) 
gh~~^h~ ^^^^ 

It can be seen that errors in the dispersion relation increase with increasing kh. 

Since B appears to be an adjustable parameter, it may be chosen to give the closest 

relation between Equation 28 and the exact relation. Witting (1984) took a F a d e 

approximant of Equation 29 and compared it against Equation 28. For the [2,2] F a d e 

expansion of Equation 29, the form is in fact of Equation 28, with 5=1/15. This line is 

included in Figure 5, and shows good agreement with the linear relation. 
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Figure 5 Comparison of dispersion relations flips 

Madsen etal., (1991) found that the higher terms of the Bouss inesq equation may 

be manipulated, so that the dispersion relation of the set in question may be adjusted to 

fit this form. The linear long wave relation 

—+gh—^ = 0 
dt ^ dx 

30 

may used to manipulate higher order terms. Differentiating twice with respect to x, and 

ignoring higher terms, this yields 

d'P dhd^T] .d't] 
dx dt dx dx dx 

(31) 

Adding Bh^ t imes the L H S of Equation 31 to Equation 18.b yields the set of 

equations: 

dt dx 
dP dP^/d .dT] 
dt dx dx 

-+B 
3 

2 d'P . ^^,^d'r] 
dx^dt 

dh 

+Bgh 
dx' + (32) 

dx 
1 ^ „ , d^Tj 

+ 2Bgh- ' 2 dxdt dx' 

This new set has the dispersion relation required in Equation 28, and so a choice 

of 5 may be made in the equation to obtain the desired frequency response. The extra, 

higher order derivative terms are of a similar nature to the dispersive terms in the original 

equations, and their inclusion into the numerical scheme is made in a similar manner: 
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r-2 -—-+Bgh-{+2Bgh^—.—j-
dx^dt ax dx^ 

B 1 (r>n+\ 5̂ pn+1 , pn+1 P" i O P" P" \ 

, N3 , (33) 
V 2 , 

Bg 

2Bg 
A x 

-r^KVM-Vi-Vi-x+Vi-i) 
.n+I/2 

2(Ax)^ 

2.4. Wave reflection 

Accord ing to linear wave theory, a travelling wave may be descr ibed by the 

expression h(d) cos(k(d).x -cot), noting that in general A and k are depth dependent. If a 

wave is then fully reflected from a wal l , a returning wave takes the form 

k(d) cos(k(d).x +cot). The principal of superposit ion says the standing wave so formed 

may then be written as 2A(d).cos(k(d).x).cos{a>t). Isolating time and space dependencies, 

the standing wave is then of the form %(x,d)-cos(a)t) for some function j . 

On a flat bed, A.,k become constant, and so is;jf(i/)- It is therefore apparent that at 

t imes for which wt=7i/2,37i/2,Sn/2, the surface of the standing wave system will be 

horizontal. Comparab le behaviour in the Bouss inesq system is sought, and the Cnoida l 

wave is found to have a comparable standing wave solution. This solution is again the 

simple sum of left and right travelling Cnoida l waves . T h e full derivation is given in the 

appendix A . 2 . 

A time ser ies of such profiles through a half wave period is shown in figures 6 to 9, 

and compared to the comparable standing sinusoidal wave . The peaked nature of the 

Cnoidal standing wave relative to the sinusoidal wave can be seen. Figure 8 at the quarter 

wave period also shows the absence of the level water surface compared to the 

sinusoidal wave, and there is not a true nodal point for the Cnoidal type wave. Aga in , the 

existence of the standing wave profile is used as a basis for verification of the 

hydrodynamic model. 

36 



Cnoidal Profile 
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Sinusoid 

m=0.7 

(x-ct)/x 

Figure 6 Comparison of sinusoidal and Cnoidal standing wave profiles (a) 

Cnoidal Profile 
-c/T=0.1 

Sinusoid 

m=0.7 

0 0.1 0.2 0.3 0.4 0.5 

(x-ct)/). 

Figure 7 Comparison of sinusoidal and Cnoidal standing wave profiles (b) 

Cnoidal Profile 
t/T=0.25 

Sinusoid 

m=0.7 

0 0.1 0.2 0.3 0.4 0.5 

(x-ct)/;t 

Figure 8 Comparison of sinusoidal and Cnoidal standing wave profiles (c) 
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Cnoidal Profile 
1/7=0.5 

Sinusoid 

m=0.7 

0 0.1 0.2 0.3 0.4 0.5 

{x-ct)/x 

Figure 9 Comparison of sinusoidal and Cnoidal standing wave profiles (d) 

2.5. Wave breaking 

A s natural waves st ioal , t i ie crest accelerates and the wave steepens. If the water 

depth becomes sufficiently shal low, the wave crest then breaks and dissipates. A simple 

numerical simulation of this effect is also incorporated into the model. Schaffer et al., 

(1993) proposes a numerical roller of the following form. 

The principal wave consists of a body of water moving at a uniform velocity. The 

broken part of the wave consists of a significantly smal ler body of water, 'riding' the wave 

crest, and known as the roller. The roller travels at the wave speed . The velocity profile 

this Indicates is given in Figure 10 

u 

c 5 

Figure 10 Schematic of breaking wave and roller profile 
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Since ttie velocity profile under the roller is constant, the depth integrated velocity 

and momentum flux in Equation 14 may be written as : 

-h 

Rearranging Equat ion 34.a yields 

P-cS 
^ = - r ^ (35) 

and substituting this into Equation 34.b with further re-arranging yields 

P' 

R = 8 
" 1 

1 
. d) 

and Equation 17.b may now be written as 

dP dP'^ld OR ,dij h'd\Plh) d'P ^ 
—+ +—+gh—!-+ ^—<- = 0 (37) 
dt dx dx ^ dx 6 dx^dt 2 dx'dt 

It remains to determine values for the wave celerity c and the roller th ickness S, 

and determine a breaking criterion. 

Following Schaffer etal., (1993), the model assumes breaking occurs when the 

local water s lope reaches a threshold angle aj. Water lying above the s lope is in the roller, 

and (5 may be determined by simple geometry. T h e wave continues to break while the 

local s lope a is greater the breaking s lope as. 

- I „ 2 . f ^ l 
tan ag = tan + (tan a^. - tan a^)e^ (38) 

tr indicates the time that breaking initiated in that wave-front, and governs the 

decay of the breaking s lope. In fact, Schaffer et a / found (5 should be multiplied a shape 

factor /^ to give a reasonable model. The values l^ar, ao. t*,fs) =(20°, 10°, r /10,1 .5) are 

recommended by Schaffer et al and used by Ozanne (1998). 
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T h e roller is then implemented in the numerical code by the addition of the dR/dx 

term as follows: 

dx~ 

1 

A x 

n+1 n+1 

1 -
- V n ^ 

/+1 

A x 

srn , rn+l Z' on , <?n+l ^ 

pn , n 
2< ) 

p"+i , p ,n+l 
/+1 

2̂ ; n+l 

1 -jn+ 2«,-i n+l/2 2<i j 2cr 

Since this term does not contain any higher order derivatives, it may be included 

the extended numerical model for the linearly improved Bouss inesq equations, without 

any further treatment for the truncation error. 

Strictly, this formulation is only valid for progressive waves. In a standing wave 

situation the wave crest no longer travels at the shal low water wave speed , and the 

velocity assumptions are no longer val id. 
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3. Hydrodynamic Application 

3.1. Previous work 

Much work has been done by others on the validation of Bouss inesq numerical 

models. Madsen etal., (1991) demonstrated the propagation of mono-chromatic and bi-

chromatic waves with a model of the present type on a flat bed. Analys ing predictions of 

wave elevation an error in wave celerity and group velocity of the order of 3 % w a s 

obtained. Madsen and S0renson , (1992) demonstrated the shoaling properties of the 

equations in the present I D formulation, and also the comparable 2D formulation. For the 

I D c a s e an error of the order of 3 % w a s obtained comparing the numerical model to the 

shoal ing computed by a Stokes 1st order theory on a 1:25 s lope. For the 2 D case good 

agreement w a s shown with the experiment of Whal in, (1971) of wave propagation over a 

semi-circular shoal . Madseh etal., (1997a) demonstrated the use of the wave breaking 

mechan ism. Compar isons were made with experimental observations by Luth etal., 

(1993) and Beji and Battjes, (1993) of mono-chromatic waves breaking over submerged 

bars, and by St ive, (1980) and Ting and Kirby, (1994) of waves breaking on plane shal low 

s loped beaches . Aga in , good agreement w a s found with measured wave elevations. 

Tuning of the wave-breaking parameters was often found necessary for optimum results. 

Madsen et al., (1997b) further verified the performance of a Bouss inesq model against the 

experiment by Mase , (1994) of bi-chromatic waves on a plane sloping beach and the 

experiments by C o x etal., (1991) and Arci l la etal., (1994) of irregular waves breaking on 

sloping beaches . Aga in , good agreement with wave elevation profiles w a s found, and also 

good agreement with statistical properties of the wave elevation. In general , the dominant 

energy dissipation mechanism in the surf zone is found to be from the turbulence of wave 

breaking, with bed friction having little effect on the wave profiles. Bed friction may be 

important in determining wave runup, but the experiments of Madsen etal., (1997a) and 

Madsen etal., (1997b) suggest that friction may affect maximum runup by only 3%. B e d 

friction is accordingly omitted from the present model . 
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O z a n n e (1998) demonstrated further compar isons between a Bouss inesq model 

and the experimental observations by Kraus and Smith, (1994) of regular and irregular 

waves breaking on a non-uniform beach. This showed good agreement of model led and 

observed wave elevations, and also good agreement of depth-mean velocity statistics. B i -

spectral analysis w a s used to show energy transfer in low-order harmonics is well 

represented in a low-order model of this type. Kennedy etal., (2000) presented another 

Bouss inesq model with an alternative approach to wave breaking (represented by a 

vertical variation in eddy viscosity). This too has shown good agreement with experimental 

studies. 

Most earlier validations however have concentrated on the validity of elevation 

predictions for shoal ing waves . More recently, Ozanne et al., (2000) performed 

compar isons with the experiment by Ting and Kirby, (1994). Good agreement of velocity 

statistics w a s found, and the model also showed reasonable estimation of the vertical 

velocity profile from the modelled mean velocity. Lawrence and Chadwick, (2005) 

demonstrated further compar isons between a Bouss inesq model of reflecting waves , and 

the large sca le experiment by Bullock ef al., (2004) of waves in a strongly reflecting tank. 

G o o d agreement w a s found for calculations of the wave elevation in the resulting wave 

field. Further details of these last two compar isons are shown below. 

3.2. Constant channel 

The first numerical experiment is to confirm the behaviour of the present numerical 

model by reproducing a theoretical solution of a propagating Cnoidal wave. The model 

w a s run to simulate conditions in an open channel (i.e. mode 1) The channel profile was a 

constant water depth of 5m, with a wave height of 0.5m and a period of 10s. This 

corresponds to a value of m of approximately 0.75 for the Cnoidal wave. The grid spacing 

w a s 0.4m, and the time step was 0.78125s (o r 1/128th of the wave period). This grid 

spacing and time step are chosen to provide acceptable resolution for the later 

implementation of the morphology model . They are comparable to those used by Madsen 
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etal., (1991). T h e wave envelope is shown in Figure 11. The permanent nature of the 

propagating wave can be seen . 
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Figure 11 Cnoidal wave propagation - flat bed 

A Cnoida l wave can be shown to consist of a wave at the fundamental frequency, 

and diminishing components of the higher harmonics. Taking a fast Fourier transform 

(FFT) of the model results across the channel , the fundamental frequency and the first two 

higher harmonics are illustrated for this case in Figure 12. 
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Figure 12 Frequency propagation of Cnoidal wave 

The propagation of the fundamental frequency is seen to be good. There are 

slight variations in the propagation of the higher harmonics, but the magnitude of the 

variation is less than 1% of the magnitude of the fundamental frequency. 

Of interest for the sediment transport properties of a simulation is the velocity 

skewness . A s this travelling wave is of a constant form, the velocity skewness in this case 

is also constant. The theoretical value for this is 0.36, while the model led va lue is 0.33. 

3.3. Shoaling channel 

Another validation of the hydrodynamic model is descr ibed in Ozanne etal., 

(2000). The present author's contribution to this evaluation, of a compar ison against the 

experimental data of Ting and Kirby (1994), is descr ibed here. 

Ting and Kirby installed a sloping beach of gradient 1:35 in an experimental f lume. 

Regular waves of 6s period and 10s period were then run. This w a s to examine the 

behaviour of a spilling breaker and a plunging breaker respectively. 

Figure 13 shows the model performance in simulating the spill ing breaker case . 

Here the model is being run using the slot boundary. 
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This figure commences at the seaward part of the slope, with wave generation 

occurring some 25m distant. The figure shows the cross-shore profiles of the mean water 

level (?7mean), and wave crest and trough heights (7max-?7mean, ?7min- Vmeau). T h e agreement 

with wave crest and mwl rneasurements from Ting and Kirby (1994) is fairly good, and the 

discrepancy between the model led and experimental va lues of maximum wave crest 

height is a consequence of the weak non-linearity of the Bouss inesq equations. Th is is 

explained in Schaffer etal (1993). Figure 13 also shows the performance of the model in 

the swash zone by including the shore line boundary. 
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Figure 13 Model simulation of spilling breaker experiment 

Figure 14 shows the surface elevation time ser ies at the point indicated by the 

vertical line in Figure 13, through one wave period. At this point in the inner surf zone , the 

experimental skewness was calculated to be 0.61 and the model led skewness w a s 0.51. 

The experimental and model led kurtosis va lues are 1.76 and 1.65 respectively. 

Figure 15 shows the velocity measurements at the same point. T h e experimental 

skewness Is 0.26 and the model led value is 0.24. The experimental and model led kurtosis 
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values are 1.76 and 1.65 respectively. This demonstrates fair reproduction of the 

asymmetr ic properties of the wave, in peakedness and offshore or onshore dominant flow. 

If the experimental velocity is only integrated through the water column below the surface 

roller (estimated from the model led roller thickness) to determine the mean, the skewness 

va lue r ises to 0.31 and the kurtosis value rises to 1.82. 
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Figure 14 Elevation time series comparison - spilling breaker 
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In Figure 16 the cross-channel elevation results from a comparison of the model 

with the plunging breaker case are shown. The channel shape is identical. 
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Figure 16 Model simulation of plunging breaker experiment 

In this case the model w a s run using the sponge layer boundary. This causes a 

lowering in the mwl value of the model which can be seen in the figure. This is due a to 
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mass flux through the shorel ine boundary. It w a s found necessary to increase the value of 

fsfox this case , to reduce oscil lations that were found in the surface excursion time ser ies. 

In Figure 17 the elevation ser ies from the model and the experiment are 

compared, again for the point indicated with the vertical line in Figure 16. The 

experimental skewness for this case was found to be 0.36, wh i le the model skewness was 

0.53. The kurtosis values were found to be 2.06 and 2.5 

Velocity comparisons for the s a m e point are shown in Figure 18. The experimental 

skewness was 0.31 and the model skewness was 0.26. The kurtosis va lues were found to 

be 2.20 and 1.91. Aga in , if only the water column below the estimated surface roller is 

integrated, the skewness rises to 0.37 and the kurtosis r ises to 2.24. Although the roller 

construction is more suited to a spilling breaker, the results for the plunging breaker are in 

closer agreement for the plunging breaker. 
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Figure 18 Velocity time series comparison - plunging breaker 

3.4. Cnoidal wave reflection 

The numerical model was run to simulate reflection in a flat channel with a vertical 

s e a wal l , comparable to the case in section 3.1. Aga in , the channel w a s a constant 5m 

depth, with a wave height of .5m and a period of 10s. The model was run to a steady state 

to observe the developed 'standing' wave field. The wave envelope is shown in Figure 19. 

T h e profiles are of a similar nature to those in figures 6 to 9 T h e energy of the 

frequency components is shown in Figure 20. 

It can be seen the amplitude of all the harmonics shows considerable variation. 

Note also that the second harmonic shows a maximum at the fundamental 's minimum. In 

general the higher odd harmonics are aligned with common nodes, and the higher even 

harmonics are al igned with common-ant lnodes. S ince this is still an ideal ised case , with 

perfect reflection, the velocit ies are symmetr ical, and the skewness is zero. 
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3.5. Reflecting shoreline 

Another ser ies of wave tank experiments was performed by Bullock etal., (2004) 

in the Grosse Wel len Kana l , Hannover, Germany. A large number of wave tests were run, 

and some two regular wave c a s e s have been selected as suitable for compar ison with the 

numerical model . Figure 21 shows the physical arrangement of the wave tank. 
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Short packets of waves were run down the channel to investigate wave breaking 

on the s e a wal l . S ince the waves are fully reflected at the wall , a quasi-standing wave field 

developed in the channel for a few wave periods. The incident waves were not strictly 

Cnoidal in form, but were composed primarily of the fundamental and the first harmonic. 

The nature of reflection was slightly modified by the two sloping bed sect ions immediately 

before the wal l . This will be considered again later. Figure 21 shows the location-of wave 

gauges in the f lume. No velocity measurements were taken at these points however. The 

wave elevation data was analysed by F F T to consider the harmonic contributions to the 

wave field. 

Grosse Wellen Kanal Bathymmeby 

Cross Shore Distance (m) 

Figure 21 Sciiematic of GWK experiment 

The numerical model was setup to match the configuration of the G W K . W a v e 

input was at the location of the wave paddle, and corresponded to the input wave signal at 

the G W K . The first comparison was made with a wave sequence of 1m high 6s period 

waves . The elliptic parameter for a Cnoidal wave of these properties has the value 0.66. 

The case w a s designed by Bullock ef al. to be a case with no wave-breaking. The 

modelled wave profile is shown in Figure 22. 

Whi le the profile is somewhat noisy, there is ev idence of a standing wave In the 

figure. A n F F T of the wave evolution is shown in Figure 23, with the comparable 

experimental data. 
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The general structure of the nodes is apparent in this figure. This is of a similar 

pattern to the flat channel case , but there is some modification near the sloping bed. The 

locations and magnitudes of these nodes and anti-nodes in the fundamental.frequency 

are predicted fairly well by the model . The nodal structure of the second harmonic is less 

clear, however the general model led magnitude of this harmonic shows good agreement 

with the experiment. 
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The second compar ison was made against a similar wave but with only a 5s 

period. The corresponding elliptic parameter for this is 0.44. This wave then is of relatively 

low non-linearity. The wave profile for this is shown in Figure 24. 
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Figure 24 Elevation profile - GWK case (2) 

The nodal structure can again be made out, although it IS less clear than the 

previous case . T h e F F T analysis for this case is shown in Figure 25. 

T h e model again locates the nodal structure fairly wel l . Agreement with the 

fundamental frequency amplitude is fair. The second harmonic is reproduced less clearly 

away from the wal l , but is still fairly good overal l . S ince the wave has low non-linearity, the 

wave length of the second harmonic is now very short; a Bouss inesq model is not 

expected to reproduce shor twave dynamics very wel l . 
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3.6. Wave reflection and superposition 

Recal l ing the linear standing wave, 2A{d) cos{k{cl).x).cos{cof). of section 2.4, the 

model has been appl ied to a study of the left and right travelling waves in the nonlinear 

system, and the interaction between them. Previous studies of wave shoal ing have shown 

transformation of higher harmonics as a wave travels over a changing bed. The numerical 

model was used to study a shoal ing wave, and then extend the situation to a reflecting 

wave. The initial c a s e (case I) for this study was a channel with a flat section of 5m, rising 

to a depth of 3m over a constant s lope. Beyond the crest the model w a s run into a flat 

channel and then a sponge layer. S lopes of gradient 1:40,1:20 and 1;10 were studied. 

The wave was a Cnoidal wave of 10s period and 0.5m wave height. This corresponds t o a 

value for the elliptic parameter of 0.75. The wave profile for the 1:40 case is shown in 

Figure 26. 

Figure 26 shows a degree of reflection from the s lope. Analys is shows the 

reflection co-efficient to be 2%. The Battjes empirical model for wave reflection predicts a 

value of 1%. 

A n F F T of the wave profile is shown in Figure 27. This again shows wave 

reflection in the fundamental frequency. The magnitude of the higher harmonics is 
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relatively constant until the sloping bed is reached, there is then a significant increase in 

this component up to the crest. Finally, the velocity skewness for this case is shown in 

Figure 28 
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This shovi/s a relatively constant skewness for the flat section of the channel , with 

an increasing skewness as the second harmonic magnitude increases. 

Figures 29 to 31 show the comparable figures for the 1:20 s lope c a s e . 
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Simi lar trends are seen as with the 1:40 case . T h e reflection coefficient from the 

numerical results is 3%, and the Battjes prediction is also 3%, while there is less growth in 

the higher harmonics. 

Resul ts for the 1:10 bed lope case are shown in Figures 32 to 34. For this case , 

the model reflection coefficient is found to be 8%, compared to the Battjes value of 12%. 

This is clearly visible in the profile figure and the F F T figure. The F F T also indicates 

57 



reflection occurring in the 2nd harmonic. The effect of reflection is also clearly seen in the 

velocity skewness results. 

Cnoidal Wave Shoaling (1:10) 
T = 10s H=0.5m X=67.9m m=0:75 

20 

40 60 
— 1 — 

80 

/ 
/ 

/ 
/ 

- -1 

--2 E 

Q . 
<U 

-3 Q 
0> c c 
(0 

100 120 

--4 

--5 

Cross Shore Distance (m) 
Figure 32 Crioidal wave siioaiing- 1:10 slope 

Channel Depth 
Max Wave Height 

FFT Cnoidal Wave Shoaling (1:10) 
T = 10s W=0.5m X=67.9m m=0.75 

20 40 60 80 100 120 

Cross Shore Distance (m) 
Figure 33 Frequency analysis of Cnoidal shoaling -1:10 slope 

58 



0.5 

0.4 -

0.3 

M 

I 0.2 

0.1 • 

0.0 

Cnoidal Wave Shoaling (1:10) 
Velocity Sl<ewness 

T = 10s W=0.5m A,=67.9m m=0.75 

N , \ _ . ^ - — 

/ 
/ 

/ 
/ 

- 0 

--1 

-2 t 
0) 
Q 

O 

•-4 

•-5 

20 100 120 

Channel Depth 
Velocity SItewness 

40 60 80 

Cross Shore Distance (m) 

Figure 34 Velocity skewness of Cnoidal shoaling - 1:10 slope 

The model was then extended by changing the shoal ing bed into a symmetr ical 

w e d g e with othenwise identical properties (case II). The wave propagated onward into a 

long flat bed region again, before finally dissipating into a sponge layer. T h e incident 

hydrodynamic conditions are the same as in the previous case , and of particular interest 

now are the downstream condit ions beyond the wedge. 

The results for the 1:40 case are shown in figures 35 to 37 
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The wave reflection is again apparent between the wave-maker and the wedge. 

Beyond the wedge the wave shows considerable spatial variation, the F F T showing that 

energy transfer between the harmonics is taking p lace over significant spatial sca les . Of 

particular note is the fact the incident wave is not recovered beyond the wedge. This is 

partly due to the energy transfer process, and partly due to the partial reflection of the 

incident wave. The effects of these changes are readily apparent in the velocity skewness 

figure. There are in fact minor differences between the previous c a s e and this wedge case 
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near the crest itself. T h e numerical model calculates a 3rd order spatial derivative of the 

bed profile; s ince this changes across the crest position this causes a change in the 

numerical simulation. A further difference is that a wave propagating from shal low water to 

deep water is also partially reflected by the bathymetry change. Such a reflection will not 

be present in the previous shoal ing case . 

The results for the 1:20 wedge are shown in figures 38 to 40 . 
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T h e s e show similar trends to the 1:40 case , with slowly varying energy exchange 

between the harmonics beyond the wedge, and a corresponding change of velocity 

skewness . 

T h e sequence of results for the 1:10 wedge are shown in figures 41 to 43 . 
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Figure 41 Cnoidal wave transmission - 1:10 slope 
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Figure 43 Velocity skewness of Cnoidal transmission -1:10 slope 

Aga in ti ie same general pattern is observed. Simi lar patterns of transformed flow 

have been found in other experiments, both physical and numerical, but these have 

studiesd a different profile for the submerged bar. The present profile is studied to gain 

insight into the processes involved in wave reflection. 

Returning to the f lume characteristics of case I in this sect ion, if instead of 

extending the model, the land boundary is replaced by a reflecting wall , the principle of 

superposit ion expects the resulting flow to the combination of the seaward s ide flow in 

case II with the (reversed) flow of the landward side. The model was then set up to study 
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this situation (case ill). In Figure 44 the elevation profile for the numerical model of the 

reflecting tank shown for the 1:40 s lope. 

0.8 

•53 X 
(U 
I 

0.6-

0.4 / \ 
I 1 

E 0,2- ' 

0.0-

-0.2 

Cnoidai Wave Reflecting Siioal (1:40) 
T = 10s H=0.5m X=67.9m m=0.75 

20 40 
—I— 

80 

--1 

--2 E, 

a. 
(U 

Q 

Channel Depth 
Max Wave Height 

--3 

--4 

- -5 

c c 

O 

60 80 100 120 140 160 180 

Cross Shore Distance (m) 
Figure 44 Cnoidal wave reflection - 1:40 slope 

This shows a standing wave-l ike pattern of similar form to the flat bed case . 

However the nodal points show development of profile features. In Figure 45 this result is 

repeated, and compared with the result predicted by superposit ion descr ibed above. Th is 

is referred to as the linear re-combination. 

A further comparison of non-linearity may be made by running the wedge model 

with two generated waves , one at the left and one at the right hand boundary. With a 

symmetrical profile and symmetrical wave generation, the leftward travelling wave after 

traversing the crest may be considered as the reflected wave of the right travelling 

counterpart in the reflecting model . This result is referred to as the non-l inear 

recombination. 
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There is c lose agreement between the models, but the difference at the extrema 

is quite visible. This indicates the effect of the non-l inear interactions between the waves . 

The F F T for this c a s e is shown in Figure 46. 

This shows clearly the standing wave of the fundamental f requency similar to 

Figure 20. T h e pattern of the second harmonic is rather different however. Simi lar 

oscil lations are seen , but have super- imposed on them the rise and fall of the transmitted 

second harmonic in the wedge model . The are also no true nodes in this pattern. 

0.6-
FFT Cnoidal Wave Reflecting Siioai (1:40) 

T = 10s W=0.5m >.=67.9m m=0.75 
- 5 

- 4 

Channel Depth 
fo 
2fo 

3fo 
Mean Bevation 

Cross Sliore Distance (m) 
Figure 46 Frequency analysis of Cnoidal reflection - 1:40 slope 
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T h e velocity skewness pattern arising from this model is shown in Figure 47. The 

apparent sp ikes in the velocity are an artefact of the statistical computation, occurring at 

locations where the velocit ies from the model are always very smal l . The skewness 

calculation requires division by the time mean velocity, which is therefore approaching 

zero at these points. S ince the actual velocit ies are low, in a sediment transport 

calculation there would be no sediment transport at these points. The general pattern 

shows a velocity skewness varying with the s a m e space sca le of the elevation standing 

wave. 
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Figure 47 Velocity skewness of Cnoidal reflection - 1:40 slope 

Figures 48 to 51 show the predictions of the reconstruction methods for the 1:20 

s lope case , with Figure 49 comparing them to the actual reflection profile obtained from 

the numerical model. 
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This also shows a similar set of trends. The difTerences between the linear and the 

non-linear interactions are seen in Figure 49. The frequency analysis again shows the 

modulation of the higher harmonics, and the length sca le of the skewness variation is 

clearly seen . 

Figures 52 to 54 show the predictions of the reconstruction methods for the 1:10 

slope case , and compares them to the actual reflection profile obtained from the numerical 

model. 
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In all cases the contribution to the wave profiles due to s lope reflection and non

linear interactions may be discerned. The changes in velocity skewness are also of 

considerable magnitude. 

A s the incident wave traverses the rising s lope of the reflecting boundary, it 

undergoes the same reflection/process as in the rising wedge of case I. Therefore not all 

the incident energy can be reflected at the s e a wal l . Accordingly, the reflected wave 

interference is modulated. The final pattern of the velocity skewness field is seen to have 
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a contribution from the wave component reflected off the slope, and separately the 

reflection off the s e a wal l . 
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4. Sediment Transport Modelling 

4.1. Bed shear stress calculations 

Sediment transport at t i ie sea bed is driven by tl ie transfer of energy and 

momentum from ttie fluid to the sediment. A principle mechanism for this transfer is the 

interaction of fluid shear stress and the sediment (Sou lsby , 1997). Therefore it is first 

necessary to estimate the magnitude of this shear stress before estimating the transport 

rate. Two approaches have been evaluated. The first is to use Manning's friction law to 

determine the bed shear stress. This assumes the flow is generally comparable to a 

uniform flow, such as over a river bed. The second approach is to consider the wave 

motion at the s e a bed, and uses a flow dependent wave friction factor. A variety of 

empirical laws have been suggested for this approach. 

The first approach. Manning's law, states that the bed shear stress Is given by 

where « is a changing parameter for different types of flow (e.g. open, river, pipe, 

channel), and is also a measure of the bed roughness. The principle physical rule of this 

law is that shear stress will increase as the water depth under a wave gets smaller. 

The second approach, a friction factor, has been considered by examining three 

available formulations for a wave friction factor. T h e s e calculate the bed shear stress from 

where/ , ; , is the friction factor and Uw is the bed velocity. In the model , l inear wave theory is 

used to derive w„ from u. 

Swart, (1974) suggests 

(40) 

(41) 

Nie lsen (1992) suggests 
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/«r = e('-^^''-"^ f o ra l l r , (42) 

and Sou lsby (1997) suggests 

/ . r = 0.237?-^-°"^ f o r a l l r (43) 

where 

Ae = wave semi orbital excursion 

iy=0.04/Cs^'^= Manning's n 

ks= 3dso = Nikuradse equivalent sand grain roughness 

dpo = 9 0 % grainsize 

These formulations , and others, are available in Sou lsby (1997). Packwood , 

(1980), and Chadwick (1991) have found that when considering f lows in the surf zone. 

Manning's n should be multiplied by a coefficient of the value 2~3. 

A compar ison of the bed shear s t resses given by these four methods is shown in 

figures 56 and 57. Shea r stress is shown as a function of grain s ize for combinations of 

fluid velocity and depth. Shear stress according to Manning's law is shown for coefficients 

of 1 (i.e. unaltered) and 2. To determine the wave friction factors, a wave orbital excursion 

is required. To establish equivalence between the Manning's formulation and the friction 

factor formulation, l inear shal low water theory is used. The wave amplitude for the given 

wavelength in the given total water depth is determined for which the maximum depth 

mean velocity is equal to the depth mean velocity of the Manning's calculation. 
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Figure 57 Comparison of friction factor results (b) 

It can be seen that agreement between the Manning's formulation and the friction 

factor formulations is dependent on the depth of the flow and can obviously be 'tuned' by 

Packwood 's factor. Manning's law directly includes a height dependency that calculates a 

higher shear stress In shallower water. Shoal ing waves generally increase in wave 

amplitude near the shore, and therefore have higher bed excursions and higher bed 

velocit ies. The wave fr ict ioniactor reduces as the bed excursion increases, but as the full 
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friction formula Is (friction factor)*(velocity squared), the final bed friction prediction also 

grows as the wave moves into shal lower water. 

4.2. Sediment transport calculations 

For shingle beaches , bed load sediment flow is found to predominate. T h e 

estimated sediment transport rate is determined as a function of the bed shear stress 

(estimated from the depth mean velocity) and the grain s ize. Initially, this is considered for 

a single grain s ize . The modification used in the presence of multiple grain s i zes is 

d iscussed in section 4.4. A variety of formulations are presented in Soulsby (1997). S o m e 

compar isons of their predictions were presented in Lawrence ef al., (2001). Particular 

choices are detailed below. 

Sh ie lds (1936) investigated the threshold of motion of sediments. The Shie lds 

parameter 

0 = . ^ 
g(Ps-p)dso 

is used to determine the onset of motion. This measures the ratio of frictional and 

gravitational forces acting on a grain. T h e critical value required for sed iment motion has 

been establ ished empirically, and the best expression for this is given by Sou lsby and 

Whi tehouse, (1997) as 

where d * is the dimensionless grain s ize given by 

Sediment flow occurs for d > 6^. 

The critical shear stress is modified for the bed s lope by correction factor of 

(45) 

^ ^ sm(J3±y/) 
46 
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where ^ is the angle of repose of the material, and y/ is the local angle of s lope for 

the beach. The sign of y is dependent on the direction of the slope and the instantaneous 

velocity, so that upslope transport is retarded and downslope transport Is enhanced. 

Two approaches for the sediment transport have also been evaluated. 

McDowel l (1989) uses a virtual stream power method as follows 

P = pu' 

Po=Pul (47) 

s„=llA{pgfN'vtd;l'\P-P,r' 

Nielsen and V a n Rijn have developed an alternative approach, based in part on a 

force balance. Defining <P as the dimensionless transport rate, and 

q. = qsi-^t,'^cr) = ^\.g<.s-\)dT (48) 

where van Rijn, (1984) uses 

0.005 "50 (49) 

and Nielsen (1992) uses the simpler 

O = n0"\O-0J (50) 

Figures 58 to 60 compare the results of these formulations. 
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Figure 59 Sediment transport estimated by Nielsen's formula 
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Figure 60 Sediment transport estimated by van Rijn's fomnuia 

There is clearly considerable variation between these formulations, in particular in 

the response of the transport prediction with regard to grain s ize . 

No account is taken by either the shear stress model or the transport model of 

enhanced stress and therefore transport due to increased turbulence from the breaking 

wave. 

4.3. Undertow 

In the hydrodynamic model mode without a shorel ine boundary there is a 'run off 

region of shal low water after the slope, ending in a numerical sponge layer. A s a 

consequence there is a net flow of water through the model, partly due to a Stokes drift

like mechanism, and partly due to onshore transport in the wave surface roller. In the 

physical situation, the net onshore hydrodynamic flux is zero, as onshore f luxes are 

matched by the wave undertow. Accordingly, the net flow through the model may be used 

as an estimate for the undertow. Compar isons are now made between ignoring and 

correcting for the undertow in the bed stress calculations. The undertow is estimated by 

determining the time averaged mass flux in the model at the edge of the sponge layer, 

and subtracting this from the instantaneous m a s s f luxes. These corrected m a s s f luxes are 

then used to calculate corrected depth mean velocit ies. 

The model has been run for a test case of a 1:20 bed slope from 5m depth to 0.3m 

depth, with input waves of 0.75m wave height, and wavelengths of 75m (Cnoidal wave), 
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35m (Cnoidal wave) and 22m(sinusoidal wave), with corresponding wave s teepnesses of 

0.01, 0.02, 0.04. T h e s e values have been restricted to those the hydrodynamic model has 

been able to run without showing signs of instability. This appears to be a restriction 

caused by the performance of the model in the shallow water 'run off region, which must 

remain deep enough to allow the incoming wave to propagate without the wave trough 

touching the s e a bed. 

To evaluate the bed shear stress according to Manning's law, the Instantaneous 

values of the depth averaged current are evaluated at each node. To evaluate the wave 

friction factors, the model t ime ser ies output has to be analysed to calculate the wave 

amplitude at each node. From the wave amplitude the wave orbital excursions may be 

calculated by using linear wave theory. 

The figures 61 to 63 show the maximum wave height in the mode l for the three 

cases , and the associated roller th ickness. 
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Figure 63 Cross shore wave amplitude - 22m wave length 

Figures 64 to 66 show the maximum and mean onshore and offshore velocit ies 

output by the model. These are shown as the values calculated directly from the model , 

and also the values with the undertow correction descr ibed above. By correcting for the 

undertow it can be seen the calculated onshore velocit ies are reduced, and the 

corresponding offshore velocit ies are increased. Onshore values are positive. 
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Figure 64 Cross sliore wave velocities- 75m wave length 
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Figure 65 Cross shore wave velocities - 35m wave length 
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Figure 66 Cross sliore wave velocities- 22m wave length 

The figures 67 - 72 show the maximum onshore and offshore bed shear s t resses 

for the long wave case with two values of rfjo, (= .02 and .001m), neglecting and including 

the undertow corrections. The figures now show the cross shore variation from a point 

50m from the left hand boundary, to show detail at the top of the s lope better. 

Compar isons of the instantaneous values of bed shear stress at a particular t imestep are 

also shown. 
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Figure 67 Cross shore uncorrected bed shear stress - dsQ=0.02m 
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Figure 68 Cross stiore corrected bed shear stress - d5o=0.02m 
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Figure 69 Cross shore instantaneous bed shear stress - (iso=0.02m 
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Figure 70 Cross stiore uncorrected bed shear stress - dso=0.001m 
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Figure 71 Cross shore corrected bed shear stress - d5o=0.001m 
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Instantaneous Stress, dfifty=0.001 wavelength=75m 
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Figure 72 Cross shore instantaneous bed shear stress - dsQ=0.001m 

It can be seen from the figures that before correcting for undertow the calculated 

onshore shear s t resses can be an order of magnitude greater than the calculated 

offshore. The undertow correction makes the onshore and offshore s t resses comparable. 

It can also be seen that the var ious stress formulations lead to similar calculated values, 

despite the different physical assumptions made. 

Figures 73 - 78 show the some of calculated transport rates for the long wave 

case with a dso of 0.02m. The instantaneous transport rates correspond to the timestep for 

the instantaneous s t resses. The net transport rates are the time integrated transport 

through each grid point in the model over a single wave period. Aga in , the f igures are 

calculated neglecting and including the undertow correction, and are from a point 50m 

from the left hand boundary. 
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Figure 73 Instantaneous transport rates, McDowell's formula 
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Figure 74 Wave period net transport rates, McDowell's formula 
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Instantaneous Transport Nielsen's Transport, d5o=0.02m Wavelength=75m 
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Figure 75 Instantaneous transport rates, Nielsen's formula 
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Figure 76 Wave period net transport rates, Nielsen's fonmula 
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Instantaneous Transport: Van Rijn's Transport, dsa=0.02m, Wavelength=75ni 
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Figure 77 Instantaneous transport rates, van Rijn's formula 
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Figure 78 Wave period net transport rates, van Rijn's formula 

Here the importance of the undertow correction can be seen . Without the 

correction essential ly all the transport is calculated as onshore, regardless of the 

hydrodynamic conditions. 

In fact, the McDowel l transport formula only calculates net transports comparable 

to Nielsen's and V a n Rijn's transport rated when used with Manning's stress formula and 

with the Manning enhancement factor of Packwood and Chadwick. 

Using Nielsen's or Van Rijn's transports. Manning's stress generally predicts the 

least magnitude of net transport, and Swart 's stress predicts the greatest. 
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There is no obvious optimum combination of these formulae from the physical 

point of v iew, as the overall predictions agree to an order of magnitude. |n v iew of this, in 

the final evolving bed numerical model, the simplest computational choices have been 

made for the shear stress and transport rate formulae, that is: Soulsby 's stress formulation 

and Nielsen's transport formulation. 

4.4. Multiple grain size transport 

To extend the sedinient transport model to a set of grain s izes , a hiding function' 

approach has been taken. This modifies the shear stress according to the relative 

presence of different grain s izes . A good introduction to this is given in Kle inhans and van 

Rijn, (2002). The procedure is outlined below. 

S ince the sediment mixture is in fact t ime varying, the critical shear stress is 

actually a function of t ime. That is to say . 

T h e critical shear stress for each sediment fraction may then be calculated 

according to 

r , (52) 
^ 5 0 . / 

^50 ( 0 

where r „ / i s the critical shear st ress for the f r ac t i on /and rfjo/indicates the dso of the 

f r ac t i on / c is an empirical parameter which takes a value between 0 and - 1 . Us ing the 

value c = 0 corresponds to not correcting the Shie lds va lues at all, and using the value 

c = -1 corresponds to using an identical critical bed shear stress for all s i ze fractions. 

Kleinhans and van Rijn, (2002) d iscuss previous works estimating va lues of c and report 

an average observed value of approximately -0.65. 

Finally, the volume transport rate for each f rac t i on /may be calculated from 
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which replaces Equation 48. 



5. Sloping Beach Morphology Application 

5.1. Previous work 

Roelvink and Broker, (1993) review a set of process based models. However, all 

these models are based on phase-averaged wave models. These are restricted by a 

number of inherent assumpt ions in the models chosen. Typically the models have no 

direct treatment of long-waves or wave asymmetry. Such a models reliability is also 

restricted to regions of quasi-uniform flow, whereas in the vicinity of the breakpoint the 

flow is highly non-uniform. This requires further (empirical) approximations to treat the 

transition zone inshore. 

R a k h a etal., (1997) descr ibed a model based on the Bouss inesq equations. A n 

oscillatory boundary layer model , based on an momentum integral method, formed the 

interface between the hydrodynamics and the sediment transport. The boundary layer 

was assumed to grow from a zero thickness at each velocity zero-crossing. Suspended 

sediment transport was included, coupled with an eddy-viscosity model. Long etal., 

(2005) descr ibe another Bouss inesq based model. Aga in a boundary layer model is 

included, this t ime derived from a Reynolds averaging of the Navier-Stokes equation at 

the boundary. Both of these models have been used to study sand beaches . 

This chapter descr ibes a coupling of a Bouss inesq based model to a sediment 

model for coarse grains. S ince the grain s ize is relatively large, the grains are larger than 

the boundary layer thickness, so boundary layer effects will be neglected. This will a lso 

Improve computational speed for the model. 

5.2. Single grain sized morphology model 

The fully developed, interacting numerical model is implemented by adding an 

evolving bed morphology routine. The bed evolution is calculated by applying the law of 

conservation of mass to the sediment transport rates descr ibed in the previous chapter. 

For the single grain model this may be written 
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+ ^ = 0 (54) 

where 

Z = depth of s e a bed, and 

n = sediment porosity. 

The depth Z need not be on the same origin as the fluid; providing the s e a bed 

with its own frame of reference allows a convenient representation for calculating bed 

level changes independently of tidal sea level changes. Th is equation is a type of 

advection equation, but the sediment velocities are never evaluated, just the overall mass 

transport rates. The bed evolution is solved by an upwinded implicit finite difference 

scheme. The morphology model has a single independent variable, the bed level, which is 

so lved alongside the Bouss inesq variables, making a coupled equation set. In the sloping 

beach version of the model (using the slot boundary condition), it has been found 

necessary to apply a numerical filter to the bed evolution to remove high frequency 

numerical noise from the calculations. This was applied in the form of a low pass 

numerical filter appl ied to the s e a bed depth changes. Th is is similar to the filter used by 

Kennedy et at., (2000) in their hydrodynamic model . 

Rakha etal., (1997) implemented a similar morphology routine, but used a 

modified Lax 's method for the bed update procedure. Th is also needed a filter for stability, 

with the filter was applied to the modified Lax's morphology routine. 

The first trial for the combined model studied the 1:20 beach s lope, commencing in 

a channel of 2m depth, with a 5mm grain s ize and a 3s period, 0.5m wave height The 

initial wave crest, wave trough and mwl positions are shown in Figure 79. The model w a s 

run to simulate 2 hours duration of wave action. 
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Cross shore distance (m) 

model crest model trough 
model mwl model bathymetry 

Figure 79 Initiai iiydrodynamic conditions, 3s, 0.5m wave, 1:20 slope 

A sequence of bed profiles through the 2 hour simulation is given in Figures 80 

and 81 . In Figure 80 the evolution in the first hour is show at 15 minute intervals, with the 

graphs vertically staggered for clarity. The initial profile is also shown against each 

evolved profile to show the changes. 

Cross shore distance (m) 
Initial Bathymetry 
Bed evolution after 15 min 
Bed evolution after 30 min 
Bed evolution after 45 min 
Bed evolution after 60 min 

Figure 80 Evolution of 1:20 slope bed, first hour 
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In the first hour a bar is seen developing before moving offshore. The bar is 

generally located under the surf zone. 

In Figure 81 the bed evolution over the second hour is shown in a similar manner. 

The bed continues to evolve and In this run does not seem to be approaching a steady 

state. 

Th is is qualitatively similar to a result of Rakha etal., (1997), w h i c h a l s o generates 

a bar migrating offshore, however the substantive cases studied are very different. 

Cross shore distance (m) 
Initial bathymetry 
Bed evolution after 75 m in 
Bed evolution after 790 min 
Bed evolution after 105 min 
Bed evolution after 120 min 

Figure 81 Evolution of 1:20 slope bed, second hour 

To illustrate the changing nature of the sediment transport rates as the s e a bed 

evolves, net transport rates over a single wave period are shown in figures 82 and 83. 

Figure 82 shows the net rate over the time interval of 29s - 32s, and Figure 83 shows the 

net rate over the interval 70s - 73s . 
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Figure 82 Net sediment transport rate, 29s - 32s 
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Figure 83 Net sediment transport rate, 70s - 73s 

In Figure 82 the onshore accretion is significantly larger than in Figure 83 and 

exists c loser to the still water line. This illustrates the signif icance of changes that may 

occur in the sediment transport regime over short time sca les . 

A second run was performed with a 1:10 sloped beach and a 6mm grain s ize. The 

bed evolution from this run is shown in Figure 84. 
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Single grain size profile 
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Cross sliore distance (m) 

Profile aner 50 waves 
Profile after 20 waves 
Initial profile 

Figure 84 Evolution of 1:10 slope bed, single grain size 

This shows accretion nearer the shore, leading to steepening of the beach face. It 

is also approaching a steady state much faster than the previous case . 

5.3. Multiple grain sized morptiology model 

The multiple grain s ized morphology model integrates the sediment transport rates 

in a similar manner to the single grain s ized model , but now summing over all the 

transported fractions. Changes in seabed level are therefore calculated by 

dt (l-n)J dx 

w h e r e / = fraction index, and other quantities are with the s a m e notation as before. For the 

mix of grain s izes considered here the sediment porosity n is taken as a constant, but for a 

mix of sand and shingle this should be time varying. 

The sediment fractions are also individually sorted by also considering the 

conservation of mass of the separate fractions. The morphodynamic now model consists 

pf a layer of sediment available for transport, cal led the active layer, of th ickness S which 

rests on the sediment substrate. 5 is an adjustable parameter. Sediment becomes mobile 
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by erosion from tl i is active layer, and is deposited onto tfiis layer. The full expression for 

the calculation is given in Equation 56. 

d 
Pf 

fdZ 
u 

(dZ a s " ! 

[dt dtj [dt dt) 
fdZ d8^ u 

r dZ d^\ 
+ — 

[dt dtj \ dt dt) 
(56) 

dt 

+ P^J 

dx 

/ y a n d j9o/denote the percentage e f f rac t ion /p resen t in the active layer and the 

substrate respectively. A model of this type has been used by Pender and Li (1996) to 

study river sediments. (It is not strictly conservative, as the substrate sediment ratios 

never change. Th is can be improved by a multi-layer approach, but with a consequent 

increase in computational time.) 

The exchange rate of sediment between the active layer and the mobile sediment 

is the second term of Equation 56. This is determined by the rate of change of the s e a bed 

level, and the erosion rate of the sed iment A s the depth of the seabed changes, the 

interface between the substrate and the active layer moves accordingly. Sediment 

therefore numerically migrates between the substrate and the active layer, and this 

exchange rate is the third term of Equation 56. A schemat ic of the sediment layers is 

shown in Figure 85. 
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Sediment transport sediment exchange 
schematic across cells 

Figure 85 l\^uitiple grain size sorting scfiematic 

The model was run with an initial sediment composit ion with a mean dso of 6mm, 

and with the initial grain s i ze distribution shown in Figure 86 applied throughout the model . 

The bed s lope was 1:10 and the wave was a 3s period, 0.5m wave height as in the single 

grain s ize case above. 

Initial sediment composition 

0.51 

2 mm 4 mm 6 mm 8 mm 10 mm 

Figure 86 l\/Iultipie grain size initial distribution 

The evolved profile for this case is shown in Figure 87. 
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Multiple grain size profile 
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— Profile after 50 waves 

Profile after 25 waves 
Initial profile 
Profile alter 50 waves (single grain size) 

Figure 87 Evolution of 1:10 slope bed, multiple grain sizes 

Wfii le showing similar characteristics to the single grain s ize run, it is clear that the 

overall movement of sediment is much reduced for this case . This agrees with the finding 

of Roman-B ianco and Holmes, (2003) in a large sca le experiment. 

For the multiple grain s ize runs the changes of sediment composit ion through the 

run may also be examined. The cross shore profiles of relative sediment presence (e.g. a 

presence of 0.1 indicates 10% of the material is within that fraction) are shown in Figure 

88, after 25 and 50 waves , corresponding to the bed profiles In Figure 87. The initial 

condition from Figure 86 is shown as the horizontal dotted lines. 
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Figure 88 Sediment composition, final distribution 

This figure shows the change in sediment composit ion increasing with time. There 

is an increase in the quantity of the coarse grains present in the onshore direction, and a 

corresponding derease in the quantity of fine grains present. There is also a decrease in 

the quantity of the coarse grains present in the offshore direction, and a corresponding 

increase in the quantity of fine grains present. 

These runs show the types of prediction possible with the s loped beach model . 

However, the shoreline boundary is rather problematic. In practice, the slot parameters 

and filtering necessary to study a particular beach case must be found by trial and error, 

which is very time consuming. The use of filtering also causes inaccuracies in the evolved 

profile calculations, smoothing out short sca le bed forms that may evolve. In particular, 

much detail is lost at the swash zone. 

The model may also be applied to the study of beaches terminated by a 

submerged seawal l , by changing the appropriate boundary conditions. In fact, a major 

limitation of the present model is the behaviour in very shal low water. The numerical 
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scheme is stable in deep water, and so may applied to the s e a wall c a s e without the need 

for any smoothing. The use of such a model is descr ibed in the next chapter. 
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6. Beach Morphology with a Sea Wall 

6.1. Previous work 

A s e a wall may be placed on a beach to prevent landward retreat of the shorel ine, 

or to prevent flooding due to high s e a levels. The wave regime on the beach is then 

considerably modified. If the beach material adjacent to the wall is removed by wave 

action is removed, then the wa l lmay fail. A number of physical experiments have been 

carried out over the years to understand this case . Russe l l and Inglis, (1953) provide one 

of the earliest, and this appears to be the only study that considered the effects of t ides. 

They suggested scour would stop at about one wave-height below low water. Irie and 

Nadaoka , (1984) and X ie , (1985) found two pattems of sediment evolution under standing 

wave fields, that are now cal led P-type and N-type. For fine sediments, the P-type 

transport from the wave nodes to the antinodes has been observed and for coarser 

sediments the N-type pattern of transport from the antinodes to the nodes has been 

observed. There is also the S U P E R T A N K experiment reported by Kraus and Smith, 

(1994), and many others. A good review of the subject is found in D E F R A , (2003). 

A s with plane beaches, more work has been performed on sandy beaches than 

shingle beaches. Powel l and Lowe, (1994) investigated toe scour in a physical model for 

nominally coarse sediment (actually graded anthracite) that w a s sca led to a dso of 5mm < 

d < 30mm, and measured the response of a beach to a number wave fields. The wave 

flume was physically sca led at 1:17, They found a zone of erosion associated with wave 

reflection generally within the space of 

1 < DJHs < 3 (57) 

where A . , is the depth of water at the structure toe, and is the significant wave height. 

Their results are reproduced in Figure 89 
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Figure 89 Experimental contours of toe scour, Powell and Lowe, (1994) 

A theoretical study of wave reflection was made by Longuet-Higgins, (1953) where 

rotating cells develop in a boundary layer. The main body of fluid then rotates in the 

opposite sense above this boundary. A schemat ic Is shown In Figure 90 

Bed load transport within the boundary has been suggested as a mechan ism for 

the development of the N-type flow, and suspended load sediment in the main flow has 

been suggested as a mechan ism for the P-type flow. 

A numerical model with no boundary layer cannot reproduce these rotating cel ls. 

However, such cells are derived for a fully developed flow, whereas in most c a s e s of 

interest, an constantly varying incident wave field does not allow a steady state to 

develop. Wave asymmetry- induced transport however does not require the flow to be fully 

developed, and may be present for any non-l inear or partial reflection case . Accordingly it 

may be a complementary mechanism for sediment transport. 
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Figure 90 Boundary iayercurrents understanding wave 

Numerical models for the sea-wal l case are again sparse. Recently, McDouga l et 

al., (1996) have presented a wave-averaged model for a sandy sediment, and R a k h a and 

Kamphuis, (1997) have presented a model driven by a Navier-Stokes solver also for a 

sandy sediment. Lawrence et al., (2003) have presented a coarse grained sediment 

transport model coupled with a Bouss inesq hydrodynamic model, and further results from 

this model are given in this chapter. 

6.2. Sea wall model 

Combining the numerical sediment techniques of the previous chapter to a 

reflecting wall hydrodynamic model such as in section 3.4 al lows a simulation of the wave 

flow and beach evolution for a sloping beach with a s e a wall located seaward of the 

natural still water line. In this case there is very little need for numerical filtering. S o m e 

high frequency noise has been observed in the Bouss inesq model, but a filter at every 

hour of simulated time is sufficient to remove it. 
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The combined numerical model was set up with a deep channel sect ion of a still 

water depth of 10m. At the shoreward end of the tank, a plane slope of 1:10, rising to a 

depth of 3m was p laced, ending with the vertical wal l . A regular Cnoidal wave ser ies of 

period 8s was run, with a grain s ize of 15mm. This was al lowed to run to a steady state 

sea-bed profile, taking approximately 2500s. A series of the resulting profiles is shown in 

Figure 91 

Single grain size profile 
Monochromatic 8s wave 

110 115 120 

Cross shore distance (m) 

Figure 91 Evolution of 1:10 slope bed, 8s monochromatic wave 

This shows a region of accretion c lose to, but not adjacent to the s e a wal l . There is 

then a wider zone of erosion further offshore, and also a corresponding zone of accretion 

offshore, The pattern is generally of N-type motion. S ince the hydrodynamic model 

assumes a zero flow condition at the s e a wall, the model led velocit ies adjacent to the s e a 

wall are low. In accordance with the standing wave profile. Therefore, the bed shear st ress 

predicted is always less than the critical shear stress, and no sediment motion due to 

wave action is modelled in this zone . However, sediment is still able to move due to 

slumping, to preserve s lope stability. 
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A similar case but for a wave period of 5s was also run. The resulting profile is 

shown in Figure 92 

Single grain size profile 
Monochromatic 5s wave 

Initial profile 
Profile 500s 

— Profile 1000s 
Profile 1500s 
Profile 2000s 

Cross shore distance (m) 

Figure 92 Evolution of 1:10 slope bed, 5s monochromatic wave 

Here there is no accretion near the s e a wal l . S ince the 5s wave has a shorter 

wavelength, the morphological 'cell ' in which the bed moves has a narrower width. Overal l 

this run shows lower amounts of sediment movement, but is otherwise showing the s a m e 

general features as seen in Figure 91 . 

A random wave ser ies was also chosen for a compar ison. A n irregular wave ser ies 

of mean period 8s was run in a similar manner in the same numerical wave tank. The 

friction factor formula (Equation 43) used above could no longer apply; this formula 

requires constant orbital motion, and therefore constant wave period. Instead, the friction 

factor was held fixed at the value of =0.04. This corresponds to the regular wave 

motion at a depth of approximately 4m. The bed profile from this run is shown in Figure 

93. 
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Figure 93 Evolution of 1:10 slope bed, 8s mean period irregular waves 

The s a m e general characterist ics as the regular wave can be seen , although the 

overall change in bed profile is less significant. This is in agreement with the finding of 

Hughes and Fowler, (1991) that irregular waves caused less erosion than regular waves . 

The physical d imensions of the coastal situation sugges t two families of 

parameters for more detailed study. The first family descr ibes the wave field, and consists 

of the wave height, wave period, bed s lope and the toe-depth of the sea wal l . A second 

family of parameters may be grouped by the flow characterist ics of the sediment, in 

particular the friction factor and the grain s ize . Ser ies of experiments have therefore been 

performed to study the behaviour of these parameter famil ies. Further tests have a lso 

been made to show the capability of the s e a wal l model in the multiple grain s ize case , 

and in its use for simulating tidal situations. 

6.3. Variation of wave ciiaracteristics 

The irregular wave run referred to previously was taken as the base line run. The 

first comparison was made by varying the depth of the wall toe and the wave period. A set 

of model runs was generated for wave periods between 5s and l 4 s at 0.5s intervals, and 
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for toe depths varying from 1m to 6m in 0.25m intervals. A second comparison was then 

made by fixing the toe depth; but changing the bed s lope to a value of 1:7. Figure 94 

shows more illustrative patterns of the behaviour found, with an example of changed toe 

depth, and an example of changed bed slope. The depth axis for this figure has been 

normalised to indicate a toe depth equal to zero for all cases . 

Th is shows clear differences in the sea-bed response to the variations'in the bed 

s lope. The magnitude of accretion adjacent to the toe (when it exists) is particularly 

sensit ive to such changes. In this figure, the 2.5m toe depth run has the overall shal lowest 

water depths, and shows the largest morphological changes. For the 3.5m toe depth runs, 

the 1:10 slope case and 1:7 slope case result in similar erosion/deposit ion patterns, and 

have distinct final steady states. 

Slope Parameter Variation 
8s 1m wave fw=0.03 D5o=0.025 

-40 -30 -20 -10 0 

Cross Shore Distance (m) 

Figure 94 Wave ctiaracteristic comparison: 8s mean period irregular waves 

The contour graph of the maximum relative erosion (erosion depth divided by 

significant wave height) across the numerical model profile while varying the wave period 

and toe depth for a 1:10 s lope is presented in Figure 95.This figure is sca led to the same 

dimensionless parameters as in Powel l and Lowe, (1994) (Figure 89). 
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A decrease in relative erosion is seen across this chart for increasing iZ/ i™. 

Another contour graph of the maximum relative erosion for varied toe depth and v/ave 

period with a bed slope of 1:7 is presented in Figure 96. Aga in , a decrease in relative 

erosion is found with increasing HJL„,. The general s lope of the contours is similar to the 

corresponding region of Figure 89. 

In both cases , the model is unable to make predictions for the full range of wave 

period and toe depth cases stated above. A s the bed evolves, wave troughs touch the s e a 

bed away from the sea wal l , and further numerical code is required to handle these c a s e s . 

For such regions of shal low water, the assumption of smal l s (wave height divided by 

water depth) for the Bouss inesq equations is in fact broken. 

109 



110 



Random wa\es &ic~0.03 slope=1:7 
1 i I I [ i I I T 

5.5 -

5 -

4.5 -

ll 1 1 I 1 I 1 I ! ! I 
0.01 0.015 0.02 0.025 003 0.035 0.04 0.04S 0.05 0055 0.06 

Figure 96 Contour grapli of maximum toe erosion, 1:7 slope. 

6.4. Variation of sediment ciiaracteristics 

Similar runs were then performed to compare the effect of changing the friction 

factor and the sediment s ize . Changing the friction factor directly changes the shear 

stress acting on a grain, and therefore changes transport initiation and transport rates, 

according to Equations 40 and 50. Changing sediment grain s ize alters transport initiation 
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by altering the Shie lds parameter for the flow case . A n illustrative figure for these changes 

is given in Figure 97. 

Sediment Parameter Variation 
8s 1m Waves 2.5m Toe 

fw=0.03 D50=0.025 

.« .» .10 0 
Cross Stiore Distance (m) 

Figure 97 Variation of sediment flow ctiaracteristics 
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Figure 99 Contour grapfi of maximum toe scour, dso = 0.015. 

Figure 98 s l iows the erosion contour diagram for the increased friction factor case 

of/,.=0.04. Figure 99 shows the erosion diagram for the smal ler dso case of dso =0.015. 

Aga in there is clearly variation across these parameters, but the overall pattern looks 

similar to that in Figure 89. 
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6.5. Multiple grain sizes 

A single compar ison run for the multiple grain s ize case was run, comparing to the 

basel ine run in section 6.1 with the multiple s ize fractions as shown in Figure 100. 

Initial sediment 
composi t ion 

0.45 -] 
^ 0.4-
§ 0.35-
S 0.3 -
Q. 0.25 -
1 0.2 -
•g 0.15 -
2 0.1-

0.05 -

Figure 100 Initiai sediment distribution. 

The evolution of the bed profile with this sediment composit ion is shown in Figure 

101, and is compared to the single grain s ize case . Figure 102 shows the final cross 

shore profile of the sediment fraction distribution. 
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Figure 101 Comparison of single grain size and mixed grain sizes evolution 
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Figure 102 Cross shore distribution of sediment composition. 

The magnitude of the bed change is reduced with the mixed sediment. After the 

run has reached a steady profile, the relative change in composit ion shows a 

predominance of the larger grains in the onshore erosional region, and a predominance of 

the smal ler grains in the offshore deposit ional region. 

116 



6.6. Tidal effects 

A final ser ies of runs l ias been made to study ttie effect of tidal cyc les on the 

erosion patterns. This is achieved by changing the still water level component of the 

model at success ive t imesteps, according to the tidal s ignal . A tidal range of 1m with a 

period of approximately 12.5 hours has been added to the conditions for the base line run. 

The model was run for 3 tidal cyc les, and approached 'convergence' af terabout 1 cycle. A 

sequence of bed profiles is shown in figures 103 and 104, starting at highiWater for the 

third cycle. 

Tidal Variation 

-1 -

a 
a 

I f ' 

a. 

High Water (2.5m) 
Tide = 2.33m 
Tide = 1.94m 
Tide = 1.58m 

-30 -20 -15 -10 

Cross Shore Distance (m) 

Figure 103 Bed evolution profiles - falling tide. 
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Figure 104 Bed evolution profiles - rising tide. 

The maximum erosion is seen at low water, when the shorel ine wavelength is 

shortest, and the profile responds relatively swiftly to the tidal changes. A s the tide falls, 

material is moved both on and offshore from the maximum erosion position. A s the tide 

subsequent ly r ises, material returns from the on and offshore bars. The location of the 

offshore bar can also be seen changing its cross-shore position as the shorel ine 

wavelength changes. 
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7. Conclusions 

7.1. Summary 

Bouss inesq models for non-breal<ing waves are now well developed, and find 

good application for engineering applications. There are a number of higher order models 

now available. T h e performance of the present low order model is shown in Chapter 3, 

and is evaluated against the theory shown in Chapter 2. The hydrodynamic model is 

shown to reproduce observed wave elevations in a number of cases , and also to 

reproduce the depth mean velocit ies observed in the surf zone of a breaking wave. The 

model has also been applied to the case of a reflecting wave, and the accuracy of the 

predictions is shown with regard to the G W K experiment. 

The model has then been used to study the interaction of wave shoal ing and 

reflection in a ser ies of numerical experiments. This demonstrates the effect of partial 

reflection occurring on a sloping bed and the transfer of energy between the higher 

harmonics in the resulting wave field. The consequent interactions between shoal ing and 

reflection are then shown to generate a highly varying velocity skewness in the wave field, 

quite unlike that of either the incident or reflected wave, which must be taken into account 

in the development of a morphological response. 

The experiments also show the contribution of wave non-linearity to the wave crest 

heights in the reflected field. The study of wave reflection with the Bouss inesq model also 

shows very good performance at predicting the distribution of a standing wave. Whi le 

there is no velocity data to confirm the model velocit ies, in the absence of wave breaking 

the predictions for the model led velocity statistics are expected to be as good as for a 

progressive wave case . 

In Chapter 3 a review of recent sediment transport formulae is given, and their 

predictions of sediment transport rates are compared. Predict ions of friction made using 

Manning's law are shown to be significantly different from those using the friction factor 

laws for certain f lows, partly due to the independence of Manning's law from the wave 
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characterist ics. The flow predictions of McDowel l 's energetics approach are also shown to 

be different from the others given. 

The influence of undertow is then shown on a set of wave fields, and the 

corresponding effect on bed shear stress and sediment transport rates is shown. The 

signif icance of this process is confirmed. 

The morphology model is introduced in Chapter 5, applied to a sloping beach. T h e 

model is shown having a rapid response in the coupling of the morphology model to the 

hydrodynamic model , with the modified bed forms leading to changes in the transport 

rates and velocity field. The model is also shown making predictions of bed response over 

a long term simulation. 

The extension of the model to a multiple grain s ize form is also shown, and a 

reduction in profile response due to mixed sediments is observed. This is consistent with 

experimental f indings by Roman-Bianco and Holmes, (2003). The ability of the model to 

track differential motion of sediment fractions is also demonstrated. 

The morphology model is applied to the s e a wall case in Chapter 6. The model is 

again shown providing long term simulations of the s e a bed response. In general , the 

results show well defined N-type morphology patterns, with clear nodal zones of negligible 

sediment transport. The model is found to agree with the observation of Hughes and 

Fowler, (1991) that erosion is reduced under an irregular wave field compared to a regular 

wave field. The model also shows some agreement with the results of Powel l and Lowe, 

(1994) in the trend of the erosion patterns. A ser ies of sensitivity tests has then been 

performed with model , studying the behaviour of the model with regard to the incident 

wave field characteristics, and also with regard to changes in sediment characterist ics. 

The model shows high variation with regard to all these properties. 

The mixed grain-size model also demonstrates differential motion of sediment 

fractions for the sea wall case . A s with the sloping beach model, the s e a wal l model 

predicts a reduction in profile change for a sediment mixture for nonbreaking waves . 
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The tidal model shows a consistent profile adjustment with tidal changes. The 

width of the morphological cell responds to changes in nearshore wave length, and the 

depth of scour responds directly to the tidal height. The profile is adjusting between the 

two extreme profiles that correspond to constant water depth for the high and low water 

values. The profile does not reach those limits, although it approaches them at s lack 

water. 

7.2. Discussion 

The hydrodynamic model provides good est imates for the wave height in most of 

the cross-shore domain for waves of interest. The most significant shortcoming is the 

under-prediction of the breaking wave elevation, although the location of the breakpoint is 

well represented. The importance of the breaking wave elevation is dependent on the 

sediment model chosen . The McDowel l formula uses an explicit wave height, whereas the 

friction factor approach is based on the wave orbital velocit ies. The velocity predictions of 

the model are generally overestimated near the break-point, but the skewness of the 

depth mean velocity is in good agreement with the physical data. 

In general , higher order Bouss inesq models can be expected to improve 

performance in hydrodynamic predictions. It will require further study to determine the 

relative benefits of computer time versus accuracy. T h e computational complexity of a 

Bouss inesq model increases with the order. The numerical stencil of the present model 

covers 5 grid points (3 velocity and 2 elevation), but can be algebraically reduced to a tri-

diagonal system. It only requires the storage of 2 time steps. The earlier higher order 

model of We i etal., (1995) requires storage of 3 time steps to fit a tri-diagonal sys tem. 

The solver of Madsen etal., (2002) uses a stencil of seven points and requires the 

solution to a banded matrix of 7 bands, requiring significantly more resources. 

The development of the sediment model in Chapter 5 shows some useful initial 

results. The performance of the swash zone is disappointing however, and clearly much 

work need to be done to improve this. The results here are strongly affected by the 
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numerical filtering applied to the model , and a good choice of model will require the 

elimination of such filters. Otta and A c u n a , (2005) show improved results in this area 

using a shoreline-fitting procedure. Other possibil it ies are a moving grid model such as 

that presented by Zhang, (1996), although this would need extending from the N L S W to 

the Bouss inesq equations. Such a model would however provide an exact solution to the 

shorel ine flow. 

The morphbdynamic predictions made so far with this model are.sparse. It shows 

a capability of generating similar features as a more complex model , but no extensive 

comparison has been made. The models are not applied to similar cases . 

The predictions from the s e a wall model in Chapter 6 are significantly improved. 

With the absence of filtering, there is no damping of the morphological evolution, and the 

bed features are clearly seen . 

For the wave cases that the model is able to run, it has provided a general 

agreement with the erosion patterns shown by Powel l and Lowe. There is clearly much 

variation within the model results. Unlike the algebraic model of Dean (1977), these 

experiments predict different steady state profiles for different initial bed s lopes but 

othenwise identical incident waves . S ince the bed further offshore has retained the initial 

bed s lope, this can be expected to give each s lope a unique wave shoal ing response. 

Therefore the wave spectrum in the morphology cell adjacent to the sea wall is not 

uniform across all the profile tests, and so a uniform sediment response is not expected. 

Th is situation may change when more energetic waves , or a broader band wave spectrum 

is used, as this could widen the morphological cel ls. This is expected to result in changes 

further out in the seaward part of the bed profile. 

The response of the model to the variation of sediment s ize and friction factor 

al lows a tuning of the model to the Powel l and Lowe findings. This has not been 

performed. The extent to which the Powel l and Lowe Figure is really applicable is not 

clear. The diagram is based on sca led results, and the results may be true for a more 

restrictive band of dso than stated. Powel l and Whi tehouse, (1998) provide a scour 
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diagram (from anotfier numerical model) comparable to Powel l and Lowe for a sandy 

sediment, and this is very different. Powel l and Whi tehouse also do not provide accretion 

predictions, due to limitations in the model they have used. 

Less sediment sorting is observed in the mixed grain model for the s e a wall case , 

compared to the sloping beach. However, the sediment is reacting to lower flow velocit ies 

in much deeper water. There are no indications of numerical instability in the sediment 

sorting. 

There is scope for improvement of the s e a wall model in two important aspects . 

Firstly the model does not accurately handle sediment transport immediately adjacent to 

the sea wal l , due to the hydrodynamic assumpt ions. A full treatment of this is likely to 

need a turbulence ndodel to account for sediment motion in this region. 

Secondly , the model needs to handle a fuller range of incident wave fields and toe 

depths. Th is is related to the moving shorel ine problem of the sloping beach model , and is 

expected to be solvable by similar methods. 

The sediment model of Chapter 4 is based on recent work by var ious authors, but 

is not definitive. Recent studies of sediment transport suggest that flow acceleration may 

have a contribution to sediment transport. Watanabe and Sato, (2005) suggest such an 

improvement for sheet flow formulae. Other studies suggest a contribution to sediment 

mobility is caused by sediment pore-pressure variations, and flow in/exfiltration events. 

Karambas, (2005) suggests an improvement to the Meyer-Peter and Muller formula to 

account for such p rocesses in fine sediments. Another possible contribution to the 

sediment model is the variation of turbulence or friction between the uprush and downrush 

phases. 

The model still requires a full calibration against field data. Only one data set is 

known to the author for the sloping beach model , which is the G W K experiment of 

Roman-B ianco and Holmes, (2003). A satisfactory shore-l ine is required for this. 
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Suitable field data for the sea wall model is also sparse. The most extensive data 

set is the Powel l and Lowe experiment of a sca led flume d iscussed above. Ideally, an 

experiment of the magnitude of Roman-B ianco and Holmes would provide such data. 

7.3. Further work 

Further work for the numerical model should consider the relative importance of 

the suggested modifications for flow turbulence and in/exfiltration. S u c h work may be 

directed to finding a suitable parameterisation, or incorporating an analytical treatment. 

Further work for the numerical model should also consider an appropriate means 

of modell ing wave breaking on reflected and standing waves . 

For the sloping beach model , a robust shorel ine routine needs to be found. 

Examp les have been presented with the N L S W equations (e.g. C h a d w i c k , 1991). There 

s e e m s to be more success with these techniques in a non-conservative form however. 

A suitable data set for verification remains to be identified, and a new ser ies of 

experiments may well be beneficial for this. This would have the benefit of providing a 

consistent data set with regard to sediment s ize and scal ing factors. 

124 



References 

Abbott.M.B. and Basco.D.R.i (1989) Computational Fluid Dynamics: An 
Introduction for Engineers, Longman Scientific & Technical, Harlow. 

Abbott,M.B., McCowan,A.D., and Warren,I.R., (1984). "Accuracy of short wave 
numerical models". Journal of Hydraulic Engineering, 110(10): 1287-1301. 

Abbott.M.B., Petersen,H.M., and Skovgaard,0., (1978). "On the numerical 
modelling of short waves in shallow water", Journal of Hydraulic Research, 16(3): 
173-204. 

Abbott.M.B. and Rodenhuis,G.S., (1972). "A numerical simulation of the undular 
hydraulic jump". Journal of Hydraulic Research, 10(3): 239-257. 

Abramowitz,M. and Stegun.l.A., {^Q65) Handbook of Mathematical Functions, 
Applied Mathematics Series, 55. National Bureau of Standards, US Department of 
Commerce, Washington, D.C., USA. 

Acuna.A.P., 2005. Concerning swahs on steep beaches. Ph.D. Thesis, University 
of Plymouth, UK. 

Agnon,Y., Madsen,P.A., and Schaffer,H.A., (1999). "A new approach to high-order 
Boussinesq models", Journal of Fluid Mechanics, 399: 319-333. 

Arcilla.A.S., Roelvink.J.A., O'Connor.B.A., Reniers.A., and Jimenez,J.A. (1994) 
"The Delta flume '93 experiment". Proceedings of the Coastal Dynamics 
Conference, UPC, Barcelona. pp488-502. 

Armanini,A. and Di Silvio,G., (1988). "A one-dimensional model for the transport of 
a sediment mixture in non-equilibrium conditions", Journal of Hydraulic Research, 
26(3): 275-292. 

Bagnold,R.A., (1963). "Mechanics of marine sedimentation". In: The Sea, M.N.Hill 
(Editor), Interscience, New York. 

Bailard,J.A., (1981). "An energetics total load model for a plane sloping beach". 
Journal Of Geophysical Research, 86(011): 10938-10954. 

Bailard,J.A. and Inman,D.L., (1981). "An energetics bedload model for a plane 
sloping beach: local transport". Journal Of Geophysical Research, 86(03): 2035-
2043. 

Baldock,T.E., Holmes,P., Bunker,S., and Van Weert.P., (1998). "Cross-shore 
hydrodynamics within an unsaturated surf zone". Coastal Engineering, 34(3-4): 
173-196. 

125 



Barr.B-C., Slinn.D.N., Pierro.T., and Winters,K.B., (2004). "Numerical simulation of 
turbulent, oscillatory flow over sand ripples". Journal Of Geophysical Research -
Ocearis, 109(C9): C09009. 

Beji,S. and Battjes,J.A., (1993). "Experimental investigations of wave propagation 
over a bar". Coastal Engineering, 19(1-2): 151-162. 

Boussinesq,J., (1872). "Theorie des ondes et des remous qui se propagent le long 
d'un canal rectangulaire horizontal". Journal de Mathematique Pares et 
Appliquees, deuxieme serie, 17: 55-108. 

Bruun, P. (1954) Coast Erosion and the Development of Beach Profiles, Technical 
Memo, No. 44, U.S. Army Corps of Engineers, Beach erosion board. 

Bullock.G., Obhrai,C., Muller.G., Wolters,G., and Peregrine.D.H. (2004) 
"Laboratory measurement of wave impacts", Ed. Melby, J. A. Proceedings of the 
3rd International Conference on Coastal Structures., A.S.C.E., Portland OR,USA. 
pp343-355. 

Butt,T. and Russell,P., (1999). "Sediment transport mechanisms in high energy 
swash". Marine Geology, 161: 361-375. 

Butt.T., Russell,P., and Turner,!., (2001). "The influence of swash infiltration-
exfiltration on beach face sediment transport: onshore or offshore?". Coastal 
Engineering, 42(1): 35-52. 

Chadwick,A.J., (1991). "An unsteady flow bore model for sediment transport in 
broken waves, Part I: The development of the numerical model". Proceedings of 
the Institution of Civil Engineers, Part 2, 91: 719-737. 

Cox,D.T., Mase.H., and Sakai,T. (1991) An Experiment on the Effect of Fluid 
Acceleration on Seabed Stability, Report 91-HY-01, Kyoto University. Japan. 

Dean,R.G. (1977) Equilibrium Beach Profiles: US Atlantic and Gulf Coasts., Ocean 
Engineering Report No. 12, University of Delaware, Department of Civil 
Engineering. Newark (Delaware). 

DEFRA, (2003) Beach Lowering in Front of Coastal Structures, Report 
FD1916/TR1. 

Dingemans,M.W., (1997) Water waves propagation over uneven bottoms. Part 2-
Nonlinear wave propagation, Wiley, New York. 

Dodd,N., (1998). "A numerical model of wave run-up, overtopping and 
regeneration.". Journal of Waterway Port Coastal and Ocean Engineering - A. S. 
C. E., "XlAil): 73-81. 

Engelund,F. and Freds0e,J., (1976). "A sediment transport model for straight 
alluvial channels", Nordic Hydrology, 7: 293-306. 

126 



F r e d s 0 e , J . and Deigaard,R., (1992) Mechanics of Coastal Sediment Transport, 
World Scientific Press, Singapore. 

Freilich.M.H. and Guza,R.T., (1984). "Nonlinear effects on shoaling surface gravity 
waves". Philosophical Transactions of the Royal Society, Series A, 311:1-41. 

Glaister.P. (1987) Difference Schemes for the Shallow Water Equations., Vol. 
9/97. Numerical Analysis Report, University of Reading. 

Gobbi.M.F. and Kirby.J.T., (1999). "Wave evolution over submerged sills: tests of 
a high-order Boussinesq model". Coastal Engineering, 37(1): 57-96. 

Horn.D.P., Baldock,T.E., and Baird.A.J. (1998) "Field measurements of swash 
induced pressure gradients within a sandy beach". Proceedings 26th International 
Conference Coastal Engineering, A.S.C.E. pp2812-2825. 

Hudson,J., Damgaard.J., Dodd,N., Chesher,T.. and Cooper.A., (2005). "Numerical 
approaches for 1D morphodynamic modelling", Coastal Engineering, 52(8): 691-
707. 

Hughes.S.A. and Fowler,J.E. (1991) "Wave indeed scour prediction at vertical 
walls.", Ed. Kraus, N. C, Gingerich, K. J., and Kriebel. D. L. Coastal Sediments 
'91, A.S.C.E. ppl 886-1900. 

Inman.D.L. and Bowen.A.J. (1963) "Flume experiments on sand transport by 
waves and currents". Proceedings of the 8th Conference on Coastal Engineering, 
A.S.C.E.. New York. 

Irie.l. and Nadaoka.K. (1984) "Laboratory reproduction of seabed scour in front of 
breakwaters". Proceedings of the 19th International Conference on Coastal 
Engineering, Houston, pp1715-1731. 

Karambas,Th.V. (2005) "Prediction of sediment transport in the swash zone by 
using a nonlinear wave model". Coastal Engineering 2004: Proceedings of the 
29th International Conference, Vol 2, Lisbon.World Scientific. Singapore, ppl 959-
1970. 

Karunarathna.H.. Chadwick.A.J., and Lawrence,J., (2005). "Numerical 
experiments of swash oscillations on steep and gentle beaches". Coastal 
Engineering, 52(6): 497-511. 

Kennedy,A.B., Chen.Q.. Kirby.J.T., and Dalrymple.R.A., (2000). "Boussinesq 
modeling of wave transformation, breaking, and runup. 1:1D", Journal of Waterway 
Port Coastal and Ocean Engineering - A. S. C. E., 126(1): 39-47. 

Kennedy,A.B. and Fenton,J.D., (1997). "A fully-nonlinear computational method for 
wave propagation over topography". Coastal Engineering, 32(2-3): 137-161. 

Kleinhans.M.G. and van Rijn,L.C., (2002). "Stochastic Prediction of Sediment 
Transport in Sand-Gravel Bed Rivers", Journal of Hydraulic Engineering, 128:412-
425. 

127 



Korteweg,D.J. and de Vries,G., (1895). "On tfie change of form of long waves 
advancing in a rectangular canal, and on a new type of long stationary waves.". 
Philosophical Magazine, Ser ies 5(39): 422-433. 

Kothe,D.B., Mjolsness,R.C., and Torrey,M.D. (1991) Ripple: A Computer Program 
for Incompressible Flows with Free Surfaces., LA-12007-MS. Los Alamos National 
Laboratory Report, University of California, U.S. Dept. of Energy. 

Kraus,N.C. and Smith,J.M. (1994) SUPERTANK Laboratory Data Collection 
Project, TR CERC-94-3, US Army Corps of Engineers, Watenways Experimental 
Station. 

Kriebel,D.L. and Dean.R.G., (1985). "Numerical simulation of time-dependent 
beach and dune erosion". Coastal Engineering, 9(3): 221-245. 

Larsen, J. and Dancy,H., (1983). "Open boundaries in shortwave simulations - A 
new approach". Coastal Engineering, 7: 285-297. 

Larson, M. (1988) Quantification of beach profile change. Report 1008, Department 
of Water Resources, University of Lund. Lund, Sweden. 

Lawrence.J. and Chadwick,A.J., (2005). "Modelling wave reflection on sloping 
foreshores with sea walls". Proceedings of the Institution of Civil Engineers -
Maritime Engineering, 158:15-24. 

Lawrence.J., Chadwick,A.J., and Fleming,C. (2001) "A phase-resolving model of 
sediment transport on coarse grained beaches", Ed. Edge, B. L. Coastal 
Engineering 2000, Proceedings of the 27th International Conference, Vol. 1, 
Sydney, Australia.A.S.C.E. pp624-636. 

Lawrence,J., Karunarathna.H.. Chadwick.A.J., and Fleming.C. (2003) "Cross-
shore sediment transport on mixed coarse grain sized beaches: Modeling and 
measurements", Ed. Smith, J. M. Coastal Engineering 2002: Proceedings of the 
28th International Conference, Vol 3, Cardiff,World Scientific, Singapore. pp2565-
2577. 

Long,W.. Hsu,T.-J., and Kirby.J.T. (2005) "Modeling cross-shore sediment 
transport processes with a time domain Boussinesq model", Ed. Smith, J. M. 
Coastal Engineering 2004: Proceedings of the 29th International Conference, Vol 
2, Lisbon.World Scientific. Singapore. pp1874-1886. 

Longuet-Higgins.M.S.. (1953). "Mass transport in waver waves". Philosophical 
Transactions of the Royal Society, Series A, 245(903): 535-581. 

Luth.H.R.. Klopman.G., and Kitou.N. (1993) Kinematics of Waves Breaking 
Partially on an Offshore Bar, HI573, Delft Hydraulics. 

Madsen.P.A., Bingham.H.B.. and Liu.H.. (2002). "A new Boussinesq method for 
fully nonlinear waves from shallow to deep water", Journal of Fluid Mechanics, 
462: 1-30. 

128 



Madsen,P.A., Murray.R., and S0rensori ,O.R., (1991). "A new form of the 
Boussinesq equations with improved linear dispersion characteristics". Coastal 
Engineering, 15: 371-388. 

Madsen,P.A. and S0renson ,O.R. , (1992). "A new form of the Boussinesq 
equations with improved linear dispersion characteristics. Part 2: a slowly varying 
bathymetry". Coastal Engineering, 18:183-204. 

Madsen,P.A., S0renson ,O.R. , and Schaffer.H.A., (1997a). "Surf zone dynamics 
simulated by a Boussinesq type model. Part I. Model description and cross-shore 
motion of regular waves". Coastal Engineering, 32(4): 255-287. 

Madsen,P.A., S0renson ,O.R. , and Schaffer,H.A., (1997b). "Surf zone dynamics 
simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for 
wave groups and irregular waves". Coastal Engineering, 32(4): 289-319. 

Madsen,P.A. and Warren,I.R., (1984). "Performance of a numerical short-wave 
model", Coastal Engineering, 8(1): 73-93. 

Mase.H. (1994) "Uprush-backrush interaction dominated and long wave 
dominated swash oscillations". Proceeding of International Symposium: Waves -
Physical and Numerical Modelling, Vancouver. pp316-325. 

Masselink,G. and Li,Q., (2001). "The role of swash infiltration in determining the 
beachface gradient: a numerical study", Marine Geology, 176:139-156. 

McCowan,A.D. (1987) "The range of application of Boussinesq type numerical 
shortwave models", 22ndlAHR Congress, Lausanne, pp378-384. 

McDougal,W.G., Kraus,N.C., and Aj"ibowo,H., (1996). "The effects of seawalls on 
the beach: Part II, Numerical modeling of SUPERTANK seawall tests". Journal of 
Coastal Research, 12(3): 702-213. 

McDowell,D.M., (1989). "A general formula for estimation of the rate of transport of 
non-cohesive bed-load". Journal, of Hydraulic Research, 27(3): 355-361. 

Mei.C.C, (1989) The Applied Dynamics of Ocean Surface Waves, 2nd Edition, 
World Scientific Press, Singapore. 

Meyer-Peter,E. and Muller,R. (1948) Formulas for Bed-load Transport, Report of 
2nd Meeting, International Association for Hydraulic and Structural Research, 
Stockholm. 

Nielsen,P., (1992) Coastal Bottom Boundary Layers and Sediment Transport, 
World Scientific Publishing, Singapore. 

Nwogu,0., (1996). "Alternative forms of Boussinesq equations for nearshore wave 
propagation". Journal of Waterway Port Coastal and Ocean Engineering - A. S. C. 
£. , 119(6): 618-638. 

129 



Otta.A.K. and Acuna.AP- (2005) "Swash boundary and cross-shore variation of 
horizontal velocity on a slope", Coastal Engineering 2004: Proceedings of tiie 29th 
International Conference, Vol 2, World Scientific, Singapore. pp1616-1628. 

Ozanne,F., 1998. Performance of a Boussinesq model for shoaling, and breaking 
waves. Ph.D. Thesis, University of Plymouth, UK. 

Ozanne,F., Chadwick,A.J., Huntley,D.A., Simmonds,D.J., and Lawrence,J., 
(2000). "Velocity predictions for shoaling and breaking waves with a Boussinesq-
type model". Coastal Engineering, 24(1-2): 51-80. 

Packwood.A.R., 1980. Surf and run-up on Beaches. Ph.D. Thesis, University of 
Bristol. 

Pender,G. and Li,Q., (1995). "Comparison of two hiding function formulations for 
non-uniform sediment transport calculations". Proceedings of the Institution of Civil 
Engineers - Water, Maritime & Energy, 112:127-135. 

Pender,G. and Li,Q., (1996). "Numerical prediction of graded sediment transport". 
Proceedings of the Institution of Civil Engineers - Water, Maritime & Energy, 118: 
237-245. 

Peregrine,D.H., (1967). "Long waves on a beach", Journal of Fluid Mechanics, 
27(4): 815-827. 

Powell,K. and Lowe,J.P. (1994) "The scouring of sediments at the toe of sea 
walls". Proceedings of the Hornafjordor International Coastal Symposium, Iceland. 

Powell,K. and Whitehouse,R.J.S. (1998) "The occurrence and prediction of scour 
at coastal and estuarine structures.", 33rd MAFF conference of River and Coastal 
Engineers, Keele University, UK. 

Rahman,M., (1995) Water Waves: Relating Modern Theory to Advanced 
Engineering Applications, Clarendon Press, Oxford. 

Rakha,K.A., Deigaard,R., and B r0ker , l . , (1997). "A phase-resolving cross shore 
sediment transport model for beach profile evolution.", Coastal Engineering, 31: 
231-261. 

Rakha,K.A. and Kamphuis,J.W., (1997). "A morphology model for an eroding 
beach backed by a seawall.", Coastal Engineering, 30: 53-75. 

Roelvink,J.A. and B r0ke r , l . , (1993). "Cross-shore profile models". Coastal 
Engineering, 21(1-3): 163-191. 

Roman-Bianco,B.L.d.S. and Holmes,P. (2003) "Further insight on behaviour of 
mixed snad and gravel beaches - Large scale experiments on profile 
development", Ed. Smith, J. M. Coastal Engineering 2002: Proceedings of the 28th 
International Conference, Vol 3, Cardiff,World Scientific, Singapore. pp2651-2663. 

130 



Russell.R.C.H. and Inglis,C. (1953) The influence of a vertical wall on a beach in 
front of it, Hydraulics Research Station. Wallingford. 

Schaffer,H.A., Madsen,P.A., and Deigaard,R., (1993). "A Boussinesq model for 
waves breaking in shallow water", Coastal Engineering, 20:185-202. 

Shields,A. (1936) Anwendung der Ahnlichkeitsmechanik und der 
Turbulenzforschung aufdie Geschiebebewegung. Mitteilungen der PreuHischen 
Versuchsanstalt fur Wasserbau und Schiffbau, Berlin. 

Soulsby, R., (1997) Dynam/cs of Marine Sands: A Manual for Practical 
Applications, Thomas Telford Publications, London. 

Soulsby,R. and Whitehouse.R.J.S. (1997) "Threshold of sediment motion in 
coastal environments". Proceedings of Pacific Coasts and Ports '97 Conference, 
Centre for Advanced Engineering, Christchurch, NZ. pp149-154. 

Stive,M.J.F. (1980) "Velocity and pressure field of spilling breakers", Proceedings 
of the 17th Coastal Engineering Conference, pp547-566. 

Swart,D.H. (1974) Offshore sediment transport and equilibriuni beach profiles. 
Publication 131, Delft Hydraulics Laboratory. 

Ting,F.C.K. and Kirby.J.T., (1994). "Observation of undertow and turbulence in a 
laboratory surf zone". Coastal Engineering, 24(1 -2): 51-80. 

van Rijn,L.C., (1984). "Sediment Transport, Parti: Bedlpad Transport", Journal of 
the Hydraulics Division, Proceedings of the A. S. C. E., 110(HY10): 1431-1456. 

van Rijn,L.C., (1993) Principles of Sediment Transport in Rivers, Estuaries and 
Coastal Seas, Aqua Publications, Amsterdam. 

Watanabe,A. and Sato,S. (2005) "A sheet-flow transport rate formula for 
asymmetric, forward-leaning waves and currents". Coastal Engineering 2004: 
Proceedings of the 29th International Conference, Vol 2, World Scientific, 
Singapore, ppl703-1714. 

Wei,G. and Kirby,J.T., (1995). 'Time-dependent numerical code for 
extended Boussinesq equations", Journa/of H/afemayPo/fCoasfa/and 
Ocean Engineering - A. S. C. £ . , 121(5): 251-261. 

Wei.G., Kirby,J.T., Grilli.S.T., and Subramanya,R., (1995). "A fully nonlinear 
Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves". 
Journal of Fluid Mechanics, 294: 71-92. 

Whalin,R.W. (1971) The limit of applicability of linear wave refraction theory in a 
convergence zone, H-71-3, U.S. Army Corps of Engineers, Watenways 
Expeimental Station, Vicksburg MS, USA. 

Witting.J.M., (1984). "A unified model for the evolution of nonlinear water-waves". 
Journal of Computational Physics, 56(2): 203-236. 

131 



Xie.S., (1985). "Scouring patterns in front of vertical breakwaters", Acta 
Oceanologica Sinica, 4(1): 153-164. 

Zhang.J.E., 1996. /. Run-up of ocean waves on beaches. Ph.D. Thesis, California 
Institute of Technology. 

132 



A. Appendix 
A . 1 . Cnoidal wave theory 

Unlike the NLSW equations, the Boussinesq equations have a permanent wave 

solution. Rahman, (1995), describes the following process. It is convenient to transform 

the Boussinesq equations (Equations 18) by applying P = u.d =u(h+Tj) which gives the 

following set of equations: 

f+(''+'7)^ = <' (AD 
du du dn h' d'u 
—+u—+g— = 0 
dt dx ^ dx 3 dx^dt 

These in turn may be non-dimensionalised by taking a series of scalings: 

X = kx 

T = kCt 

h = a.h' 

u=^Cu' 
h 

where = gJi 

(A2) 

where k = 27c/L is the wave number and -gh is the wave celerity squared, h', u' are 

scaled water depth and velocity, which results in the following formulae: 

du' ,du' drj' f d'u' (A3) 
• + SU— + ——- = 0 

dT dX dX 3 dX^dT 

where 77'is the scaled elevation, s = A/h and y=k.h. s\s the same as in Equation 4, and ;'is 

related to the // of Equation 5 by '^=^I^ijl. 

Substituting u' = d^fSK (i.e. describing u' with a velocity potential), and eliminating a 

single equation for ^ may be obtained: 
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S' 
dT^ dx^ 3 a z ^ a r ^ a r KdX, +— 

2 
v a r ^ 

= 0 (A4) 

For a progressive wave, a solution is sought of the form ^=f(0 where ^=X-cT. 

Substituting for ^ in the above, the following ordinary differential equation is obtained 

(using a subscript notation to denote differentiation thus -;;^ = ) 
a y 

f „2 (A5) 

This equation implies c = 1+0(ff,/), so terms in c on the RHS may be 

approximated by 1. This equation may then be integrated to yield the following: 

(ĉ  -1 ) / , + 4 - ^ f , , , +4|l(//)= 0 (A6) 

The substitution 77 - = /• may now be made. For clarity however, the dash will 

however be omitted until Equation A19. The equation becomes: 

/3N 

This may be multiplied by 77̂  and integrated again to yield: 

(c^-1)^+4^+4- / |V)=4^^ 
2 \1) 6 

(A7) 

(A8) 

or 

-77^ + (A9) 

noting the change in the integration constants. The LHS of this is simply a cubic 

polynomial in 77, so the equation may be represented as 

(A10) 
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Since s, yand TJ' are always real, the RHS of this always positive or zero. 

Accordingly, •ni,r]2.ri3 may be chosen such that 7]3>T]2>T],, noting the sign of 77̂ . A general 

sketch of the cubic is show in Figure A1. It can be seen that 77 must lie between 772 and 77̂ , 

inferring that 775-772 is in fact the wave height. 

Figure A1 Roots of cubic equation 

To find the expression for 77, the substitution 

77 = 773 coŝ  ^+7/2 sin^ ̂  
0 = diC) 

is made, leading to: 

7f = (73 - % )(-2 cos 9 sin d) 0^ 

Substituting Equations A11 and A12 into Equation A10 yields: 

4 0/ (773 - 772 )̂  (coŝ  ^ sin^ ^) = ^ (773 coŝ  ^+772 sin^ ^ - 77,) 
/ 

.(% coŝ  <9+772 sm^0- 772 )(773 - 773 coŝ  ^+772 sin^ ^) 

= p-((%-Vi)-i% -72)sin̂  ^)(773 -TJihos" 0.{TJ3 -772)sin^ 0 

Cancelling common factors, and defining m=(r]3-r]2)/(m-Vi) yields 

d,"~{v^-V,t-msm'0) 

(A11) 

(A12) 

(A13) 

(A14) 
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Since r]2>rii, 1 > ??2 > 0. Tiiis expression may be solved by a separation of 

variables, and leads to an incomplete elliptic integral of the first kind. (Abramowitz and 

Stegun,1965) 

J ^ ^ ^ = ± ^ f e - ' 7 , ) ' " ( f - f . ) (A15) 

This equation arises in the calculus of elliptic equations, and may be solved using 

elliptic theory. For 

^ = nv^,m)=lj (A16) 

0 (l-ff7sm cr) 

define 

i// = F-\i,m) = am(4,m) (A17) 

'am' is known as the Jacobi amplitude, and'm' is the modulus. Furthermore 
sin({i/) = sin(am(^,w)) = Sn(^,OT) | ^ ^ ^ ^ 

cos(y/) = cos(am(̂ , w)) ~ Cn (^ ,7«)J 

where 'Sn, Cn' are the Jacobi elliptic functions. These functions are clearly periodic. The 

period is in fact 4ii: where K = K(m) = F(7i/2,m) is known as the complete elliptic integral of 

the first kind. Also Sn^(u) + CnYw; = 1-
For the Boussinesq equations then. Equation A15 is solved to give 

^ = am (A19) 
2r 

This may be substituted into Equation A11 and the following is obtained (reverting 

now to 7]' notation): 

1 
2y 

(A20) 

T]'}- r]'2 is the wave height, H, but 77'y and m are still to be determined. 

Since the Cn function is periodic, it can be seen that the wavelength of the non-

dimensional formulation is given by 
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AyYi{m) 
(A21) 

ni/2 

Over a wavelength, s ince rj' is the perturbation of fluid depth from the mean, it is 

known that 

X 
J7j'dC = 0 
0 

Substituting from Equation A11 gives 

1(77̂  coŝ  ^+77; sin^ 0)^d0 = 0 
dd 

(A22) 

By using symmetry of the sin function, this can be rewritten as 

(A23) 

B-/2 

( l - « . s i n ^ ^ ) - ^ ^ - ^ 

However, 

(A24) 

3r/2 
(l-msm^0)d0 = Eim) (A25) 

is simply the compiete eiiiptic integral of the second kind, (Abramowitz and Stegun,1965) 

so Equation A 2 4 may be written as 

77;K(7«) + (77;-77;)E(»7) = 0 (A26) 

and so 

„' = ^ (Jl's-V2) E(m) ^ HE(m) 
' K ( » 7 ) m K(m) m K(m) 

This may be substituted into Equation A21 to give. 

(A27) 

, 4yKim)f-^ 
1' = 

(3s) 1/2 
m (A28) 

Substituting also back into Equation A 2 6 , 
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fK(m) 
-1 

[E{m) m I K(/«)j 

and also it can be found that 

(A29) 

H 
m 

1 - K(7n), AM K(m)j (A30) 

c = 

c = 

Equation A9 gives an expression fore which can be restated'as 

and now substituting into Equations A27, A29, A30 yields 

(A31) 

\ + s— 
m 

2-m-'-
K(7«) (A32) 

Knowing c and X', the dimensionless wave period p' can also be found: 

Ay 

c 

111 H) 

1/2 

\ + S 
m 

2-m-
3E(m) 
Kim) 

-ll/2 (A33) 

Reversing the scaling of Equation A2 can now recover the physical forms of these 

equations. 

Equation A20 in physical dimensions has the form: 

V =?72+(%-'72)Cn' ,3/2 -{x-ci),m 

2K 
= T]2 + HCrr (x-ct),m 

(A34) 

Z = 4Kim)H 

The wavelength is now 

mh'^^'^ 

The celerity is given by 

(A35) 

c'=gh 
h m 

2-m-
3E(w) 
K(m) I 

and lastly the period may be written as 

(A36) 
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h 4K(m)(mh/3H) Ml 

' 4 -
h m 

2-m- 3E(/») 
Kim) 

(A37) 

Equation ASS relates Z,h,Hand m. In practice, m must be found using an iterative 

method to satisfy this equation, given the wave case of interest. The necessary elliptic 

integral evaluations are available in software such as MAT1_AB and MAPLE. Considering 

Equation A36, the RHS of this equation will be negative for the range 0 <m< Wi/^for 

some muM < 1 • Accordingly, m must be sufficiently large (or the wavelength must be 

sufficiently long) for the celerity equation to have a real solution. Another consequence of 

this equation is that wave celerity is now a function of wave height, water depth and 

wavelength. 

Considering the case of TM - > 0. Then H= ?j3-7j2 0, and gh. Also, 

Cn(M,0) = cos(w), and K(0)=;z/2. Therefore Equation A34 reduces to: 

^(x-ct) (A38) 

which, since 772 = -a = -H/2, may be written: 

H 
7] = — c o s 2^ 

U 
ix-ct) (A39) 

and the waveform is the linearised sinusoidal wave with wavespeed c=V(gh) and 

amplitude H/2. 

A.2 . Gnoidal wave reflection 

Left and right travelling linear waves may be combined to form the well known 

standing wave solution. Similar behaviour for a Cnoidal wave may also found. The 

following is developed in Mel (1989). 

Considering again Equation A4: 

ay ay ^ f ay _a_ 
dT 

'd£ 
.ax J 

1 
+— 

2 

'd£^' 
ydTy 

= 0 (A40) 
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Firstly, introduce the change of scale T=ST, (J=X-T. MS\S the (dimension-less) 

scale of time variation. The equation may now be rewritten as 

iK\ + 7 ( ^ / ) . = 0{s,r') (A41) 4 6s 

Seeking a potential flow solution for this, may be replaced by ̂  and this may 

now be written as: 

C + | C C + | J C . . = 0 (A42) 

This is the well known Korteweg-de Vries equation. Since the Cnoidal wave is a 

solution of Equation A4, it must also be a solution of the Korteweg de-Vries equation. 

Still considering Equation A4, a solution ofthefomi 0=^°^(x,t;z)+sf^(x,t;r) is 

sought. This leads to the equations: 

? 5 f - ^ r = 0 (A43) 

-2{^r (A44) 

Equation A43, being the wave equation has a general solution of 

^W=ĵ +(o-̂ ;r) + ^-(o--;T) (A45) 

for (X* =X-T, a-'=X+T. These are the low order left and right waves of the solution. 

Equation A44 may be expanded in terms of and becomes 

- 2 ^ ^ - 3 - ^ ^ - ^ ^ ^ (A46) 

da'^da- dt da* da* da*^ 3 s Q^*^ 
d df ^ df dY 1 f aV" 
dr da~ da~ QQ--^ 3 s go-

dY 9f aV" df 
da*^ do-' da-^ da* 

It is required that the solution for this does not grow linearly for a* or <f. Such a 

solution is found if the first and second lines of Equation A46 are zero independently. That 

is to say: 
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dr da* 2 da* da*^ 6 s da*^ 
d df ^3 df dY 11 f aV" 

dr da~ 2 da~ QQ-^^ 6 s da~^ 

(A47) 

Now applying ̂ =-fi=fa^ and C=-fi=fc.,'^^ set of equations 

dC ^3 dC d'C _ 
9. f, ^ a _ + 2 

0 
(A48) dr 2 da* 6 s ao-

5 T 2 acr" 6 5- a«x 

is obtained, showing that each wave separately satisfies the Korteweg-de Vries equation. 

The wave may therefore be constructed by superposition, which is 

accurate again to the leading order. 

Considering a wave tank in the domain 0 <X<ii:, the elevation solution given by 

C=F(-a*;t), C=F(<J-,r), (A49) 

has the corresponding velocity solution 

u(0)=-F(-a*;t)+F(a-,T). (A50) 

Since the wave reflects at the tank wall, the solution requires that u^"^ vanishes at 

X=7r, OX-F(t-7i:;r)+F(t+n;r)=Q. This is satisfied when î " is periodic in o-(or^ with a period 

of 27t. The Cnoidal wave of unit height satisifies these requirements, and in the form of 

Equation A20 may be written: 

I 2r 
(A51) 

Comparing with Equations A27, A28 it is found that 

fi= ^ 7 ^ . and 

Q = ~— 
m 1 - 3 E (m) 

2K(7w) 
— , and 

2 

(A52) 

(A53) 
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(3s) ^ ^ 

s 4mK(mf (A54) 

f 3n^ 

Since this formulation is in dimensionless units, a reverse scaling must again be 

applied. Knowing the Ursell number 

1 
h (A55) 

Equation A53 may be used to find /3, and Equation A54 to find m. 
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