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Abstract
The analysis of embodied and situated agents form a dynamical system perspective is often
limited to a geometrical and qualitative description. However, a quantitative analysis is necessary
to achieve a deep understanding of cognitive facts.
The field of embodied cognition is multifaceted, and the first part of this thesis is devoted to ex-
ploring the diverse meanings proposed in the existing literature. This is a preliminary fundamen-
tal step as the creation of synthetic models requires well-founded theoretical and foundational
boundaries for operationalising the concept of embodied and situated cognition in a concrete
neuro-robotic model. By accepting the dynamical system view the agent is conceived as highly
integrated and strictly coupled with the surrounding environment. Therefore the antireductionist
framework is followed during the analysis of such systems, using chaos theory to unveil global
properties and information theory to describe the complex network of interactions among the
heterogeneous sub-components.

In the experimental section, several evolutionary robotics experiments are discussed. This class
of adaptive systems is consistent with the proposed definition of embodied and situated cognition.
In fact, such neuro-robotics platforms autonomously develop a solution to a problem exploiting
the continuous sensorimotor interaction with the environment.

The first experiment is a stress test for chaos theory, a mathematical framework that studies er-
ratic behaviour in low-dimensional and deterministic dynamical systems. The recorded dataset
consists of the robots’ position in the environment during the execution of the task. Subsequently,
the time series is projected onto a multidimensional phase space in order to study the underlying
dynamic using chaotic numerical descriptors. Finally, such measures are correlated and con-
fronted with the robots’ behavioural strategy and the performance in novel and unpredictable
environments.
The second experiment explores the possible applications of information-theoretic measures for
the analysis of embodied and situated systems. Data is recorded from perceptual and motor
neurons while robots are executing a wall-following task and pairwise estimations of the mutual
information and the transfer entropy are calculated in order to create an exhaustive map of the
nonlinear interactions among variables. Results show that the set of information-theoretic em-
ployed in this study unveils characteristics of the agent-environemnt interaction and the functional
neural structure.
This work aims at testing the explanatory power and impotence of nonlinear time series analysis
applied to observables recorded from neuro-robotics embodied and situated systems.
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Chapter 1

Introduction

Understanding cognitive phenomena and intelligent behaviours is a challenging endeavour. Until

recently, cognition was exclusively studied from an anthropocentric perspective, focusing mainly

on high level cognitive functions typically found in humans. Traditional cognitive science con-

ceives the mind as a computational machine that operates exclusively over symbols using dis-

crete and rigid logical rules, abstracting away from the physicality of the agent and the environ-

ment (Fodor, 1975; Pylyshyn, 1986). Hence, cognition is essentially amodal and detached from

experience. Typically, the mind is described as a computer, capable of performing algorithmic

thinking with an extraordinary efficiency.

The field of embodied cognition, however, is opposing such perspective, underlining the impor-

tance of bodily experiences, physicality and biological grounds for constructing and structuring

concepts and knowledge (Wilson, 2002). This alternative explanation strongly rejects the onto-

logical separation between the abstract mind and the physical world defined by Descartes, thus

considering the abstract mind and the concrete agent as an indivisible entity.

By embracing this theoretical framework, cognitive scientists radically reconsider the approach

followed while studying cognitive facts (Parisi et al., 1990). The idea of a mind separated from

contextual information and biological reality is meaningless as the cogitating agents are con-

stantly immersed in a flow of sensorimotor interactions (Beer, 2008), where ecological properties

and environmental features are fundamental for explaining cognition (Francisco Varela & Rosch,

1991). Clearly, the embodied view extends the boundaries of cognitive science, formerly an

exclusive domain of psychologists, philosophers, linguists and computer scientists, to a larger

number of scientific fields. In fact, the reformulation proposed by the novel perspective opens

9



the field of cognitive science to several disciplines such as neuroscience, biology, robotics, and

physics, which are all involved in the attempt to explaining intelligence. However, transdiscipli-

narity naturally leads to fragmentations and numerous different ideas regarding the concept of

embodiment. In fact, every field of study is biases toward a peculiar aspect of the integrated

system brain-body-environment. This causes wide variations on the definition of embodied cog-

nition without reaching a substantial agreement concerning the foundation of the theory. Surely,

this dynamism within the field is positive, avoiding radicalisation and depicting the field as still at

its infancy, and thus with great potential for further development. However, this issue is of parti-

cular importance for roboticists, computer scientists and computational modelers. Recreating a

cognitive agent, either instantiated in a physical robot or a simulated scenario, requires a precise

definition that draws clear boundaries. Modelers build cognitive agents from scratch, and thus

the necessity of defining the subject of study is critical.

Embodied cognitive science is related to two other concepts, namely grounded and situated

cognition. Although there is no general consensus regarding the meaning of these concepts, the

existing literature allows an at least vague framing of the theory (Pezzulo et al., 2011; Fischer,

2012; Myachykov et al., 2014). Overall, embodiment refers to the agent’s peculiar body that

simultaneously shapes and constraints the cognitive abilities. The term embodied entails also

facts concerning specific phylogenetic developments, thus referring to the stable characteristics

that build a common ground among conspecifics, as well as idiosyncrasies that are the product

of the development of the single individual. The constant and immutable characteristics of the

physical world are instead the domain of grounded cognition. The surrounding environment is

the material that grounds concepts and structures knowledge. Typically, the subjects of study are

statistical regularities that are captured by the brain, somehow similarly to an associative engine.

The term situated cognition, instead, conveys two different meanings. Firstly, situatedness is

the unstable contextual knowledge, either available in specific spatiotemporal physical settings

or defined by the society where the agent lives in. From this perspective, situatedness includes

the concrete spatiotemporal instantiation of the physical world and social structures (Barsalou,

2008). Secondly, such concept is framed in the context of dynamical system theory, referring to

the continuous sensorimotor interaction between the agent and the environment (Beer, 2000).
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In this thesis, I embrace the second definition of situated cognition, stressing the importance of

a dynamical unfolding of cognitive facts, rather than emergent statistical structures that structure

our knowledge.

Embracing a dynamical system perspective requires a deep reformulation of the analytical met-

hods employed. In fact, the brain-body-environment system is studied from an integrative per-

spective. The network of concepts and the intelligent behaviours are global features that emerge

from nonlinear interactions among the heterogeneous sub-components of the system. The di-

sentanglement of such a holistic system during the analysis of embodied and situated agents

restricts the explanatory power of cognitive modeling, obscuring the underlying dynamics. Thus,

a scientific method based on reductionism may not suffice. A natural phenomenon is not al-

ways fully understood by studying single variables in isolation. The modern formulation of the

antireductionist philosophy of science developed from two distinct fields. In biology, Von Berta-

lanffy (1968) conceived a foundational framework named system science. Currently, science is

highly specialised and different disciplines study natural phenomena in isolation, decontextuali-

zing the subject of investigation. For example, biologists study themetabolic processes of a single

neuronal cell without considering the brain, neuroscientists focus on biological neural networks

excluding the metabolic processes of the organism, and so forth. According to the principles

established in the context of system thinking, biological or physical entities are open systems

capable of communicating with the external environment (Fang & Casadevall, 2011). Studying

the sub-components in isolation is not a wrong approach. However, such scientific method igno-

res global behaviours and properties that emerge from the interactions among different variables

that shape the system (Ahn et al., 2006b). Therefore, developing a method aimed at describing

the global characteristics that emerge from the interaction of several different layers of heteroge-

neous components is essential. At the same time, cybernetics was defining a novel approach

to system engineering based on the same idea of self-regulation and continuous and real time

interaction with the contextual information incoming from the environment (Wiener, 1961). Early

cyberneticists did not restrict the field to inanimate artefacts, claiming the applicability of the novel

science to any system, including biological organisms (Ashby, 1956).
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Recently, several fields are accepting the intrinsic limits of a purely antireductionist perspective (Ahn

et al., 2006b,a). The more evident example is the mapping of the human genome. Genetics and

biologists realised that a static mapping of the DNA does not suffice at predicting the ontogenetic

development of a biological organism (Fang & Casadevall, 2011). Phenotypic gene expressions

are explained by a complex network of interactions between genes that are contextualised in a

specific environment, rather than considering the genome as an array of switches that activates-

deactivates certain features of the organism. Similarly, functional connectivity in biological neuro-

nal networks is understood in terms of complex nonlinear interactions among neurons, metabolic

processes and environmental influences (Stam, 2005). Clearly, proposing a profound reformula-

tion of the scientific methodology is extremely problematic. In fact, mathematical tools normally

utilised the reductionist framework are not applicable. Reductionism avoids complexity simpli-

fying the system by assuming linear relationships and homogeneity among variables. On the

contrary, antireductionism stresses the importance of nonlinearities and interactions among he-

terogeneous components forming the sub-system, focusing also on the temporal evolution of the

system. Typically, the mathematical tools developed in the context of nonlinear dynamical system

theory are employed by scientists following the antireductionist philosophy of science. However,

this field of applied mathematics is still at an early stage of development and many aspects are

not fully understood. Moreover, the application of dynamical system theory to empirical data is of-

ten qualitative and geometrical, rather than quantitative (Beer, 1995; Carvalho & Nolfi, 2016). In

this thesis, I propose a quantitative and analytical explanation of embodied and situated systems

employing data-driven approaches developed in the field of nonlinear time series analysis (Kantz

& Schreiber, 1997), strictly following the antireductionist perspective. The embodied and situated

systems are modelled with evolutionary robotics (Nolfi & Floreano, 2000), an established method

for the study of minimal cognitive agents (Harvey et al., 2005). The evolved robots are testbeds for

chaos theory (Kaplan & Glass, 2012) and information theory (Shannon & Weaver, 1949), models

of scientific explanations that capture global properties of the systems and complex relations-

hips among the sub-components. The scientific tools utilised in this thesis are simulated robotic

platforms, as synthetic models of cognitive agents abstract away from the complexity of a biolo-

gical living system by providing a fully controllable experimental environment (Nolfi & Gigliotta,
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1.1. AIMS AND OBJECTIVES

2010). For example, a simulated robotic platform overcomes the problem of collecting spurious

data resulting from noisy environments. Similarly, a robot develops concepts that are unbiased

by previous knowledge or personal experiences. Furthermore, a robotic platform easily allows

for invasive interventions on the agent, such as synaptic lesions or significant impairments on

the bodily functionalities (Nolfi & Floreano, 2000). Therefore, cognitive neuro-robotics provides a

valuable experimental practice for studying embodied and situated systems (Harvey et al., 2005).

1.1 Aims and objectives

In what follows, I summarise the motivations and theoretical foundations that guide this disser-

tation. During the design of the robotic experiments, as well as the subsequent data analysis,

the author is inspired by the following principles. Firstly, embodied and situated cognition is con-

ceived according to the dynamical system perspective, and thus the triadic system brain-body-

environment is strictly coupled and indivisible. Secondly, the operationalisation of the definition of

embodied cognition, as well as the analytical framework aimed at understanding such systems,

are consistent with an antireductionist philosophy of science, thus avoiding disentanglements of

the sub-components of the system. Thirdly, the mathematical tools employed during data ana-

lysis are developed in the field of nonlinear time series analysis, which provides a numerical

description of the embodied and situated system, rather than a solely qualitative and geometrical

characterisation concerning the temporal evolution of the dynamic. The aim of this work is to

investigate nonlinearities in embodied and situated systems from an antireductionist perspective,

addressing the following scientific questions:

• Are chaotic measures (i.e. level of chaos and fractal dimensions) correlated to the robots’

performance?

• Do information-theoretic measures (i.e. mutual information and transfer entropy) detect

functional relationships among artificial neurons and/or between the agent and the envi-

ronment?

1.2 Contribution to knowledge

The contributions to knowledge consists of:
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• A preliminary review of the current definitions of embodied cognition, underlining the dif-

ferent conceptualisations of the term situatedness. In particular, I individuate two main

perspectives, where situated cognition refers either to opaque contextual information or the

dynamical and real time interaction of the agent with the environment. Following the second

approach, derived from a dynamical system view of cognition, I propose an antireductionist

and systemic view of scientific investigation, which may overcome current limits that affect

the analysis of embodied and situated systems.

• The first experimental part of the dissertation investigates the efficacy of chaos theory on the

study of global properties that autonomously emerge in complex systems. The evolutionary

robotic model is an operationalisation of the more general class of biological and artificial

embodied and situated systems, and thus the study aims at showing the potentials and limits

of a formal quantitative method that is applicable to a great number of different experimental

scenarios. Furthermore, I contribute to debate surrounding the field of chaos theory, which

is affected by issues concerning the applicability of chaotic measures to empirical data.

• The second experimental part focuses on the complex network of interactions among the

sub-components of the system. Themathematical tools employed are developed in the field

of information theory, showing that nonlinear time series analysis unveils characteristics

of the underlying functional neural architecture, as well as characteristics of the agent-

environment interaction.

1.3 Thesis outline

This section summarises the content of the chapters, following the outline of the thesis.

• Chapter 2 provides the necessary background to motivating and understanding the ex-

periments described in later sections. This chapter develops covering three main topics.

Firstly, the history of cognitive science is briefly discussed, explaining the transition from

the computational tradition to the embodied view. Several definitions of embodied cogni-

tion proposed in the existing literature are reviewed from a theoretical point of view, focusing

in particular on the different meanings of term situatedness. The topic is further clarified
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and supported with examples of cognitive neuro-robotics models. Secondly, the differen-

ces between the reductionist and antireductionist approach to scientific investigation are

discussed, covering the topic of system science and cybernetics. Finally, this chapter un-

derlines the lack of quantitative measures for the analysis of embodied and situated system

from a dynamical system and holistic perspective. The solution proposed is nonlinear time

series analysis, in particular chaos theory and information theory.

• Chapter 3 describes the machine learning method applied to neuro-robotics systems and

the set of nonlinear mathematical tools utilised during data analysis. Evolutionary robo-

tics, a machine learning technique inspired by biological evolution, is employed for deve-

loping minimal cognitive abilities in mobile robots controlled by artificial neural networks.

In the second part, concepts of nonlinear time series analysis are explained, including the

set of chaotic tools that are applied to attractors reconstructed from recorded data and

information-theoretic measures.

• Chapter 4 investigates the possible applications of chaotic analysis in miniature mobile

robots executing a temporal task. The aim of the experiment is twofold. Firstly, investigate

the possibility of applying chaotic measures to embodied and situated systems. Secondly,

the study provides evidence to the controversial topic concerning the application of chaos

theory to empirical data by providing a large dataset. Compared with similar works, the

experiment tests the capability of chaotic measures at unveiling minor differences that are

the product of the evolutionary process in different populations of robots performing the

same task, rather than manipulating macroscopic variables.

• Chapter 5 describes a wall-following scenario where robots autonomously develop a be-

havioural strategy to navigating in a simple squared maze. Similarly to the experiment

of the previous chapter, macroscopic variables, e.g. body morphology or environmental

properties, are not manipulated. However, evolution produces significant differences in the

resulting behavioural strategies and functional neural structures. Time series recorded from

perceptual and motor neurons are analysed with mutual information and transfer entropy

in order to unveil underlying characteristics of the artificial brain and peculiarities of the
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agent-environment interaction in different populations of robots.

• Chapter 6 summarises the results of the experiments reported in this thesis, drawing overall

conclusions regarding the application of nonlinear time series analysis from an antireducti-

onist perspective to embodied and situated agents. Furthermore, limits and future works

are discussed.
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Chapter 2

Background

2.1 Embodied and situated cognition

The aim of this section is to provide a historical and conceptual overview about the field of cogni-

tive science and artificial intelligence. The endeavour of building intelligent machines challenged

the scientific community since the development of computers (Turing, 1950). However, cognitive

processing is conceived in two different senses. The computational tradition defines the mind as

a computational amodal machine that manipulates abstract symbols according to precise logical

rules (Newell & Simon, 1976). This perspective developed from the field of mathematical logic,

linguistics and the tradition of analytical philosophy (Fodor, 1975). The consequence of such

theory of cognition is the study of the mind detached from the physical instantiation of the agent’s

body and decontextualized from the external world (Pylyshyn, 1986). Conversely, the embodied

and situated view stresses the importance of contextual information defined by the environment

and the peculiarities determined by the body (Francisco Varela & Rosch, 1991). Thus, cognition

develops from real time and modality-specific interactions with the world (Barsalou, 2008).

2.1.1 Computationalism and symbolic artificial intelligence

Through the centuries, countless philosophers and scientists have tried to answer fundamental

questions concerning the way we think. What is intelligence? What is the relationship between

the mind and the body? What is the relationship between the external world and the subjective

experience? These deep and theoretically challenging questions still struggle to receive a unique

answer leaving the debate still open. Crucial to understanding the perspective of embodied cog-

nitive science is the mind-body problem, including its extension, which entails comprehending

how perception and action relate to our intelligence.
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Although the dispute about the relation between mind and body can be traced back to the ancient

Greek philosophy and medieval scholastic tradition, Descartes is the first author that frames the

problem in modern terms. He supports the idea of substance dualism, giving to mind and body

two different ontological statuses: the material res extensa, a mechanical body subjected to the

laws of physics, and the abstract res cogitans, realm of the laws of thought. Clearly, this position

has deep epistemological implications. By defining res cogitans as persistent and indivisible

the study of the empirical world is now freed of any religious implications, making the theory

consistent with the scholastic tradition and the idea of a soul.

There are strong implications following the acceptance of an ontological dualism, and the most

important for the field of cognitive science is an idealistic view of cognition. The central element for

understanding intelligence is the mind, abstracted from any physical instantiation. The physical

traits of the cogitating agent, including brain, body, and perceptual system, are marginal for the

study of cognitive facts.

One of the most revolutionary inventions of the last century was the development of computers,

which is rooted in the a-machine (Turing, 1936), also known as Turing machine. In 1928, Da-

vid Hilbert challenged the community of mathematicians with the Entscheidungsproblem, asking

whether a function on the natural numbers is computable. The solution of the problem addresses

the notion of effective computability, which requires an algorithm for solving the given function,

that is, a mechanical procedure based on a finite set of rules. The concept of algorithm was still

lacking of a formal definition and Alan Turing proposed an anthropocentric explanation, finding

the necessary and sufficient mental abilities that a human uses when solving a logical problem.

The Turing machine has a tape of infinite length divided into discrete cells that can store one of

the three symbols of the simple alphabet {0; 1;B}, where B is blank. The machine reads the

content of a cell and according to a table that defines deterministic logical rules. The possi-

ble (computational) actions are writing a symbol, moving to another cell and halting. The latter

command solves the algorithm without entering in an infinite loop. The architecture of modern

general-purpose digital computers has been developed by John von Neumann at Princeton and

is explicitly based on Turing’s theoretical work. The machine, now physical, has a central pro-
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cessing unit, a memory, and it is capable to receiving inputs from and showing some outputs to

the user.

During the second half of the last century, classic cognitivism (Fodor, 1975) and computational

theories of mind (Pylyshyn, 1986) developed a framework which bases the study of cognition

and intelligence on the analogy between a computer and any form of mental activity, extending

the original operationalisation of human algorithmic thinking to every domain of cognition. From

this perspective, the mind operates over abstract symbols following syntactical rules and the

experience of the bodily-self, as well as the external environment, is a mere source of inputs.

Perception is passive and action is just an effect of the cognitive outcome our inner thoughts.

Therefore, the concepts developed throughout the process of thinking are abstract and amo-

dal. One of the most notable examples of computational theory of mind is the physical symbol

system hypothesis proposed by Allen Newell and Herbert Simon (Newell & Simon, 1976). A phy-

sical symbol system is a formal language capable of combining meaningful symbols to generate

expressions that, in turn, can be manipulated in a combinatorial way to generate new expressi-

ons. According to Newell and Simon, such system is necessary and sufficient for describing, and

thus replicating, general intelligence. Defining intelligence as the ability of manipulating symbols

implies that machines based on computers may rightfully be consider as intelligent agents, since

they are able to process a logical formal system. However, robots controlled by a system of first-

order logic acting in an environment is a contradiction. In fact, such system operates robustly

only if the logical system includes a number of axioms that exclude any arbitrary change in the

environment (McCarthy & Hayes, 1969).

2.1.2 Connectionism and the sub-symbolic representation of knowledge

The year 1943 saw the birth of artificial neural networks. In a seminal paper, McCulloch & Pitts

(1943) developed a model of a biological brain, showing that neuronal ensembles are capable of

solving propositional logic. The authors propose amathematical formalisation that captures some

essential characteristics of the existing physiological model of biological neurons. The building

block of the computational model is an artificial neuron, and the artificial brain is a network of

interconnected basic units. The information is processed hierarchically and serially, the lower
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layers sending output to the higher layers. In those years, the neuron was conceived as an

all-or-none functional unit, which is either active or inactive. Therefore, the artificial neuron is

represented by a step function that returns 1 if the input is above a predefined threshold. Today,

binary units are seldom employed and are substituted by nonlinear activation functions (e.g.

logistic function). Further details on the artificial neural networks utilised in this thesis are provided

in Section 3.1.1. Each unit in the higher layers receives inputs from several artificial neurons of

the lower layers. The connections between neurons, which represent artificial synapsis, are

weighted and may strengthen or weaken the incoming signal. A neural network may also be

provided with an internal memory by designing architectures with recurrent connections (Elman,

1990). A hidden or output neuron receives as input its activation during the previous time step,

thus storing the internal states that characterised the past activity of the network.

The term connectionism was first introduced by Hebb (Elman, 1998b). However, the prevai-

ling direction of research is based on the work of the parallel and distributed processing appro-

ach (McClelland & Rumelhart, 1987; Rumelhart & McClelland, 1988), which grows in opposi-

tion to the computational and symbolic view of cognition. The fundamental concepts that distin-

guish the connectionist view are the followings. Firstly, cognitive processing develops in parallel,

there is no functional modularity as in the abstract model of the mind, with the analogous of a

central computational unit and a memory reservoir; instead, nature provides a large number of

simple interconnected units that work simultaneously. Secondly, knowledge representation is

sub-symbolic and distributed within the network of synaptic weights. Thirdly, cognition is robust

towards malfunction of the system, e.g. lesions of synaptic weights, and noise. The imprinting

of a biologically inspired perspective on intelligence and cognition is evident, and the decades

that follow the rebirth of neural computation lead to a critique towards the centrality of high-level

cognitive functions and abstract reasoning, typically found in humans.

Artificial neural networks and learning

Like a biological neural system, artificial neural networks are capable to learn from experience (Hebb,

1949). In fact, the strength of the synaptic weights is subjected to modifications throughout the

learning process. The learning methods to adjust the set of values are classified into three distinct
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groups.

Supervised. The desired answer is known, and thus themapping f(x, y) between definite values

of input x and output vectors y constructs a training set. An example is the gradient descent

method of the backpropagation algorithm (Rumelhart et al., 1986). This learning method is often

used in top-down modeling in cognitive robotics and connectionism (McClelland & Rumelhart,

1987; Rumelhart & McClelland, 1988; Flusberg et al., 2010; Stramandinoli et al., 2012), where

input output patterns are linguistic labels.

Semi-supervised. Although there is general knowledge about the appropriate outputs, the spe-

cific set of output values is unknown. Algorithms within this class are reinforcement learning (Sut-

ton & Barto, 1998) and artificial evolution (Nolfi & Floreano, 2000) that adjust synaptic weights

according to a reward policy or a global utility function. These methods are widely employed in

autonomous robotics where the researcher studies the necessary and sufficient condition for the

emergence of a desired behaviour. For example, if a robotic platform has to approach a light

source (Tuci et al., 2004), the mapping f(x, y) of the sensorimotor flow at every time step is not

known. By exploiting the mechanism of artificial evolution, a fitness function defines the desired

behaviour and the space of the solution is explored in order to find a maximum.

Unsupervised. The network is trained to autonomously extract generalities in given dataset. A

widely used training method is based on Kullback-Leibler divergence and Gibbs sampling, fra-

ming the neural network in the class of generative models. Recently, a neural system that gained

popularity is the restricted Boltzmann machine, which forms the building block for deep architec-

tures (Ackley et al., 1985). In its basic formulation, the neural network has one input layer and

one hidden layer connected with bidirectional connections. The units are binary and stochas-

tic, and the probability of being active is defined by a logistic activation function that processes

the incoming signal. The input layer in a trained neural network reproduces the vector originally

clamped at the beginning of the bidirectional and recursive propagation. In a restricted Boltz-

mann machine the output layer is absent (Hinton et al., 2006), and thus the neural network does

not provide an explicit response to a given input. Rather, the hidden layer autonomously extracts

common features of different classes of elements included in the training set.
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Genetic algorithms

The genetic algorithms are a class of machine learning methods that explore the space defined

by a complex problem, the so-called fitness landscape, searching for the optimal solution. The

idea of Evolutionsstrategie (evolutionary strategies) was developed by Eigen (1973) during the

1960s, in order to create software capable of adjusting autonomously its own parameters. The

author takes inspiration from the Darwinian evolutionary theory, creating a parent characterized

by a genotype, which generates an offspring with random mutations. Simultaneously, John Hol-

land begun his effort in creating a formal model aimed at studying the theory of evolution from

a computational perspective. A decade later, the genetic algorithm was a fully developed and

functional theory (Holland, 1992). Similarly to the early mathematical model of the brain, which

started the field of the artificial neural networks, the genetic algorithm operationalises the concept

of Darwinian evolution. From a structural point of view, a vector represents a haploid genome,

where each element is an allele, that is, a specific instantiation among the several mutually exclu-

sive variants of a single locus in the sequence. The functional aspects of the algorithm follow few

simple steps. The biological principle known as survival of the fittest that underlies the evolution

of biological species is founded on two mechanisms:

• Vitality: an individual is able to survive for a period of time sufficient to reach a reproductive

stage.

• Fertility an individual replicates the genome which will populate future generations.

In natural environments, defective genomes do not live long enough to fully develop and repro-

duce. Furthermore, weak individuals are more likely to generate a small number of offspring. In

the mathematical model, the concepts of vitality and fertility which guide the natural process of

evolution are substituted with a precise fitness function that defines ad hoc objectives. Each solu-

tion produced by different genomes is numerically quantified according to the fitness function, and

the best individuals are selected for generating offspring, and thus transmit the genetic heritage

to future generations. There are several criteria for selecting the genotypes that will reproduce.

The simplest and most commonly used are:
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• Rank based: in a population of N individuals, the n genotypes that achieved the largest

fitness score generate m offspring in order to create a new population of N individuals.

• Roulette-wheel selection: each genotype has a probability proportional to the associated

fitness score to generate offspring.

• Tournament selection: the genotypes are randomly paired; a random number is associa-

ted to each pair and if the value is above an arbitrary threshold, the weakest individual is

selected for reproduction.

The evolutionary process explores the fitness landscape by means of random genetic mutati-

ons. While generating offspring, single values in the artificial genomes have a small probability

to change value, thus slowly moving on the space of the possible solutions. Another possibi-

lity for inducing mutation in the genome, possibly increasing the fitness score, is the cross-over,

where non-overlapping portions of different genomes selected for reproduction are combined.

The random mutation is a local operator that smoothly explores the search space. On the con-

trary, cross-over is a global operator that may cause major shifts on the fitness landscape. Follo-

wing this approach, optimal sub-solutions to a global problem are merged together. The genetic

algorithm heavily relies on random events such as random selection, mutations and cross-over,

while optimising a solution to a problem, during an iterative process that unfolds through several

generations. In order to avoid regressions, elitism is often employed: a clone of each parent is

included in the population of the next generation.

An early application showing the efficiency of the genetic algorithm is the solution to the iterated

prisoner dilemma (Axelrod, 2006). The problem is a fictional scenario, where two rational indi-

viduals are in solitary confinement and have the options to remain silent or betray, confessing

the crime of the other inmate. The outcome is represented by a bi-dimensional square matrix

of order 2: if they betray each other or remain silent, both prisoners spend two or one year in

prison, respectively. On the other hand, if one individual confesses and the other stays silent,

the betrayer is set free, whilst the other inmate is condemned to a charge of three years. In the

iterated version of the problem, the question is asked several times and the prisoners remem-

ber a defined number of previous games. Axelrod tested the genetic algorithm with an iterated
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prisoner dilemma where the individuals remember the three previous games, and thus there are

43 = 64 possible combinations. The artificial genome is binary, encoding the two possible options

available to the prisoners, and has a total of 70 loci, which define all possible combinations and

3 initial moves for each player. Therefore, the fitness landscape is defined by 270 possible states.

The population consists of 20 genotypes evolved for 50 generations. The genetic algorithm sol-

ved efficiently the prisoner dilemma with limited resources, considering that only 20× 50 = 1000

states on the fitness landscape are explored.

What lays underneath such efficiency at exploring the fitness landscape? Why is a subset of few

genotypes enough for finding an optimal solution? The efficiency of the heuristic search paradigm

is justified by the building block hypothesis (Holland, 1992), which assumes that well-performing

genomes are partially defined by chunks that are relevant for the solution of the problem. The

idea is formalised with the notion of schemata (Holland, 1992; Mitchell, 1998). For the simple

case of binary encoding, the schemata is defined by an alphabet L = {0; 1; ∗}, where 0 and 1

are precise instances of the allele and the symbol ∗ is a wildcard referring to both 0 and 1. Each

schemata is defined by an order, which represents the total number of 0s and 1s, and a length,

that is, the number of symbols between the first and the last locus containing either 0 or 1. For

example, a schemata of a genotype consisting of 8 loci of order 4 and length 5 may be written

as S = {∗1 ∗ ∗01 ∗ 0}. Each genome with l loci is an instance of several schemata, in particular

adopting a binary encoding 2l. Therefore, a population of n individuals is actually searching with

a number between 2l and n2l schemata. This hypothesis sheds light on the fast convergence

shown by the application of the optimization algorithm. By using the genetic algorithm, the fitness

landscape is explored with the explicit parallelism of concrete instantiations of different genotypes,

but also with the implicit parallelism of the schemata.

Evolutionary robotics

Evolutionary robotics models adaptive and emergent autonomous behaviour mimicking the pro-

cess of Darwinian evolution (Nolfi & Floreano, 2000). Although practical applications of this

technique are multifaceted, the backbone is the application of genetic algorithms to adjust free

parameters in a robotic system. In the experiments reported in this thesis, I utilise a genetic al-
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gorithm to train artificial neural networks mounted in real or simulated miniature robots to solve

tasks defined by a fitness function. By using artificial genomes, populations of simulated robots

learn how to solve efficiently the given task, while interacting with the surrounding environment

in real time. The process of evolution unfolds in few steps.

1. Create a population. An initial set of N vectors that represent the artificial genome are

generated with random values.

2. Phenotypic expression. The genetic traits are mapped onto a matrix W , defining the

strength of the synaptic weights.

3. Fitness evaluation. Each robot acts in the same environment for t time steps and the

performance is evaluated according to a fitness function.

4. Selection and reproduction. Robots are ranked based to the fitness score and a subset

is designated for reproduction according to a selection rule.

5. Evolution. Offspring encoding the parent’s genotype with random mutations populate the

next generation. Steps 2-4 are iterated for a fixed amount of generations.

Throughout generations, artificial evolution finds the correct values for synaptic weights in the

parameter space. If evolution is successful, at the end of the last generation robots learn to

act in a robust and consistent manner in the environment, solving complex tasks. The main

difference with connectionism is the lack of predefined training sets that define sequences of

input-output patterns and the presence of a physical or simulated agent. In fact, the training by

artificial evolution is a semi-supervised method, which does not necessarily state the desired

answer given an input vector. Instead, the fitness function frames a general problem, e.g. move

towards a light source (Tuci et al., 2004), and populations of robots autonomously develop correct

input-output patterns through an implicit process of trial and error. The word implicit underlines

the difference with another semi-supervised learning algorithm, reinforcement learning (Sutton &

Barto, 1998), where the agent is explicitly rewarded with positive or negative feedbacks.

Another direction of research follows the approach of morphological computation (Pfeifer & Bon-

gard, 2006), where the artificial genome stores the phylogenetic expression of an agent’s body.
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The vector storing the genetic traits defines the set of sensors and actuators included in the

agent’s perceptual and motor system, their position in the body and the size of different body

parts. The two methods are not mutually exclusive, and significant advancements in adaptive

systems are achieved by co-evolving body morphology and controller (Bongard, 2011).

2.1.3 A new perspective on intelligence: Embodiment and situatedness

In the following years, the symbolic approach to cognition and artificial intelligence has been

widely criticised (Brooks, 1990; Thelen & Smith, 1996; Beer, 1995; Francisco Varela & Rosch,

1991; van Gelder, 1998). One of the strongest and more robust arguments against computa-

tionalism is a though experiment that underlines the absence of a fully developed semantic in

a cognitive theory which is solely based on an abstract symbol system. The Chinese room ar-

gument (Searle, 1980) creates a fictional scenario where an English speaker is locked inside a

room with a set of rules for responding in a meaningful way to messages written in Chinese. Alt-

hough the outcome is surely consistent with the Chinese language, the imaginary human subject

does not have a true understanding of the ideograms. The central point of this argument is that a

seemingly intelligent syntactical manipulation of symbols, an appropriate output given a certain

input, is not a sufficient condition for intelligent behaviours. According to Searle’s position, an

intelligent agent must also understand the meaning of symbols, that is, the link between symbols

and the real world (Harnard, 1990; Cangelosi et al., 2002).

Criticisms towards the physical symbol system hypothesis and computationalism come also from

applied fields when roboticists realised that controllers based on formal symbolic logic are ex-

tremely fragile and inefficient (Minsky, 1988; Moravec, 1988; Brooks, 1990). During the sixties

and seventies there have been several attempts to building intelligent robots with cognitive archi-

tectures based on abstract symbolic systems to represent the world, and all of them had limited

capacity to interact with the environment. In the middle eighties, Rodney Brooks took a comple-

tely different approach developing behaviour-based robotics (Brooks, 1999). The central idea in

Brooks’ work is that the "world is its own best model" (Brooks, 1999, p. 115) and using abstract

symbols to represent the environment is deemed to fail. As underlined by the author, evolution

required a considerable amount of time to displaying basic locomotion skills and low level forms
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of intelligent behaviour in the simplest organisms. Conversely, high level cognitive functions are

a relatively novel fact in the history of live. Thus, human cognitive skills may not be the pinnacle

of the evolutionary process. This argument is surely debatable and not immune from criticisms,

for example following the biological theory of punctuated equilibrium that postulates sudden sig-

nificant changes during the evolutionary process, rather than smooth and progressive modifica-

tions (Gould & Eldredge, 1977). However, the argument establishes a radical reinterpretation of

the concept of intelligence, challenging an anthropocentric view of cognition. To overcome the

inherent limits of representational architectures, Brooks developed the subsumption architecture:

the problem that the robot faces is divided into subtasks defined hierarchically. In the global archi-

tecture, low level layers correspond to primitive behaviours such as obstacle avoidance, whereas

high lever layers embody more abstract goals, for example exploring the world. The develop-

ment of the whole cognitive architecture is build incrementally, following a bottom-up approach

where lower layers are implemented and debugged before the more abstract cognitive modules

are added to the cognitive architecture.

The core idea behind behaviour-based robotics is elegantly captured by Moravec’s paradox (Mo-

ravec, 1988), the discovery in artificial intelligence and robotics that it is relatively easy for a

machine to successfully accomplish high-level tasks, e.g. playing chess, rather than solve real

time problems with a heavy load of sensorimotor activity and perceptual features. This view stri-

des with the more traditional opinion, based on an anthropocentric preconception, that higher

level cognitive functions are the apex of intelligent behaviour.

2.1.4 Robots: scientific tools for studying embodied cognition

Originally, the term robot appeared in the tile of the play Rossum’s Universal Robots of the Czech

writer Karel Capeǩ. The literal meaning of the work robot was "serf labour". Today, this connota-

tion partially captures the wider spectrum of meanings that it conveys. In fact, a machine concei-

ved as automated workforce that substitutes humans in dangerous or repetitive tasks holds true

only for industrial robots. However, robots have also a scientific utility as they provide synthetic

model for studying human cognitive facts (Parisi, 2014). A physical or simulated robotic platform

becomes a valuable tool aiding the development and testing of scientific theories and hypothesis.
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Compared to experiments conducted with human or animal models, artificial systems provide a

controlled experimental scenario.

In the experimental part of this thesis, I operationalize the concept of embodied and situated

cognition with evolutionary robotics experiments, where synaptic weights of the neural controller

are adjusted exploiting the process of synthetic evolution. Although simplified, the experimental

design comprises all the properties that characterize a simple embodied and situated cognitive

agent. To conduct the experiments, I utilise two-wheeled epuck miniature robots (Mondada et al.,

2006) equipped with several input sensors. In fact, the robotic platform has a body with sensors

and actuators, which allow the agent to perceive and act in the world throughout a continuous

flow of sensorimotor loops. Furthermore, the agent is controlled by an artificial neural network, a

simple model of a biological brain.

A necessary step to justify the decision of adopting evolutionary robotics for studying cognitive

agents involves a discussion about the scientific foundations of this area of research. What is

the purpose of evolutionary robotics? Is it aimed at solving practical engineering problems or

answering scientific inquiries? In a recent article, Trianni (2014) elucidates and organizes dif-

ferent perspectives on the field, individuating two mainstreams directions of research. Firstly,

evolutionary robotics is conceived as a design method, aimed at exploring the search space of a

complex robotic problem. By applying artificial evolution, the designer avoids a priori assumpti-

ons that may lead to sub-optimal solution. Secondly, evolutionary robotics is utilised as a model

of biological or cognitive facts. From this perspective, a robotic system is seen as the synthetic

equivalent of a living organism, and thus the system becomes a tool for the scientific investiga-

tion of natural phenomena. According to Harvey et al. (2005), evolutionary robotics is a useful

synthetic tool for studying cognition. By designing minimal models that entail the properties of

the cognitive fact under scrutiny, scientists have a ready available testbed aimed at providing evi-

dence to scientific hypothesis in a prejudice-free fashion. Overall, cognitive scientists that accept

the validity of the synthetic approach to science, where real or simulated robots are regarded

as valid model for rational agents, reject the centrality of human cognition. Therefore, a simple

artificial organism suffices at capturing the necessary and sufficient conditions which shape the
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basis for the autonomous development of low-level cognitive skills.

A recentmodel based on an evolutionary robotics experiments demonstrate that offloading the so-

lution of a navigation task in a double T-maze environment on the agent-environment interaction

does not prevent the development of cognitive strategies that rely on the internal states of a neural

network (Carvalho & Nolfi, 2016). The authors demonstrate robots without hidden artificial neu-

rons evolve a sub-optimal solution. On the contrary, agents controlled by multi-layered networks

are capable of generalising and storing sensorimotor patters, achieving a higher fitness score.

To support this conclusion, populations of robots are also evolved in less structured and noisy

environments (e.g. perturbing the orientation and position of the agent during half of the trials),

showing that in absence of regularities in the agent-environment interaction limit the usefulness of

hidden artificial neurons. Matsuda et al. (2014) replicate the vicarious trial-and-error, a seemingly

hesitating behaviour typically observed in rat experiments. A widely accepted hypothesis related

to such a behavioural pattern is that vicarious trial-and-error enhances learning efficiency com-

pared to animals that exhibit a purely reactive decision-making process. This claim is however

difficult to prove in animal models as the internal neural dynamics are inaccessible to the expe-

rimenter. The proposed neuro-robotic model aids the investigation of this cognitive phenomena

by providing a simplified and controllable syntetic scenario. Results indicates that the presence

of vicarious trial-and-error in the evolved behavioural strategy leads to more adaptability to the

environment.

Similarly to the approach followed in this thesis, embodied and situated agents has been used

as testbed to develop novel methodologies to analyse data collected during experiments. The

advantages derived from creating simple cognitive models is evident during the attempt to create

analytical frameworks compatible with a theory that stresses the primary role of sensorimotor

coupling between the agent and the environment. For example, Beer (1995) applies the dynami-

cal system framework to study the evolved behaviour of legged agent controlled by an artificial

neural network. The aim of this work is to show the potential of such analytical framework for

studying embodied ad situated agents. Recently, an information theoretic approach has been

employed to characterise the agent-environment interaction of a minimal cognitive agent invol-
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ved in a relational categorisation task (Williams & Beer, 2011). An agent controlled by a recurrent

neural network and equipped with a simple visual system moves left or right in a bi-dimensional

environment. By exploiting the perceptual input and the internal dynamic of the neural controller

the agent categorises several objects of different shape and size. Furthermore, the agent ex-

ploits the simple left-right movement to observe the items from different perspective. This model

is used as testbed for demonstrating the benefits of an information-theoretic analysis that may

be utilised with biological embodied systems.

The following sections discuss the problem of defining the embodied cognition view, demonstra-

ting the benefit of utilising robotic systems for modelling cognitive agents. In particular, I will

show how minimal differences on the definition of the field result in maximal divergences during

the operationalisation in experimental robotics.

2.1.5 The problem of definition

After the brief historical sketch outlined in the previous sections is now time to provide an over-

view of the current position of the embodied and situated framework. After 30 years of scientific

investigation, the field develops several ramifications with very different conceptualizations. No-

wadays, answering the question "what is embodiment?" is not an easy task. A scientific field

lacking of precise boundaries and well-founded theoretical boundaries is especially problema-

tic for computational modelers and roboticists. In fact, psychologists and neuroscientists deal

with existing organisms, manifestation of phylogenetic and ontogenetic developments. On the

contrary, computer scientists have to design and create their own agents starting from an empty

software project. Therefore, a well-founded theoretical ground is a necessary condition in order

to operationalise, and thus investigate, a scientific theory. The debate around the definition of

the umbrella term ’embodied cognition’ has been progressing for at least the past decade, yet an

agreement is still missing and far to be reached. Although an exhaustive review of the repertory

of different conceptualisation of embodied cognition goes beyond the aim of this thesis, a gene-

ral overview is necessary to motivate and understand the experiments reported in later chapters,

as well as the analytical tools applied to data collected from the artificial agents. Several key

words have been created to name the novel perspective on cognition, each term bringing its own
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meaning of embodied cognition. In the existing literature, cognition is defined as grounded in

perception and action (Barsalou, 2008), situated in a social and physical context (Maturana &

Varela, 1991; Beer, 1995; Pfeifer & Bongard, 2006; Barsalou, 2008), and the mind is conceived

as extended (Clark & Chalmers, 1998) and embodied (Francisco Varela & Rosch, 1991; Lakoff &

Johnson, 1999; Pfeifer & Bongard, 2006). All such terms share the same common ground, which

is the fundamental role of the bodily interaction with the environment, thus rejecting an amodal

explanation of conceptual knowledge, but subtle differences drive the theory to substantially dif-

ferent paths.

Wilson (2002) made a first attempt aimed at organising different conceptualisations of the em-

bodied cognition view. The author identifies six interpretations of the theory:

• Cognition is a situated activity. The cognizant acts within an external context which may be

social or physical. The agent is constantly involved in a perceptual-action loop of relevant

inputs and outputs.

• Cognition is time pressured. The interaction with the contextual information unfolds under

the pressure of real-time sensorimotor loops.

• The cognitive load is off-loaded onto the environment. To overcome limits of our computa-

tional abilities, we exploit the environment to reduce the complexity of cognitive tasks.

• The environment is part of the cognitive system. The agent and the environment are strictly

coupled and it is worthless studying the mind in isolation; the world is integrated in the

cognitive system.

• Cognition is for action. Behavioural outputs are the basis of cognition, and thus cognitive

facts must be analysed in terms of appropriate behavioural responses to a situation. Alt-

hough the mind is not studied in isolation, this view weakens the role of the environment,

both in terms of the more general contextual information and the physical world, as the

focus is the cogitating agent in place of a strictly coupled agent-environment system.

• Off-line cognition is body based. Even in absence of perceptual features and motor actions,

conceptual knowledge is grounded in bodily states.
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Following the conceptual clarification made by Wilson, Ziemke (2002) investigated different kinds

of body-environment interactions and bodily structures. From a computer scientist perspective,

the six definitions enumerated in (Wilson, 2002) do not suffice for building intelligent systems. As

noted by Ziemke, only the sixth notion of embodiment refers explicitly to the body, while the other

five aim at illustrative different views concerning the connexion between mind and environment.

Recently, the problem of defining the theory has been tackled by framing different concepts of

embodiment from a hierarchical point of view, in the attempt to creating a taxonomy of the terms

utilised. The theoretical foundations are built upon the distinction between grounded, embo-

died and situated cognition first delineated by Pezzulo et al. (2011). Fischer (2012) proposes

a classification which differentiates between top-down and bottom-up processing during know-

ledge retrieval. The author identifies the idea of grounded cognition as the most universal, as

it refers to invariants of the physical world. The notion of embodiment, instead, is based on the

ontogenetic development of a specific individual, subjected to objective physical properties as

well as idiosyncratic past sensorimotor experiences, and thus it is more variable. Situatedness is

the most dynamic concept, referring to the available contextual knowledge; at the same time, it is

also the most flexible towards a constantly changing environment. Therefore, grounded cognition

is a better framework to analysing top-down cognitive phenomena, whereas situated cognition

perspective is more consistent with a bottom-up approach. Reaching similar conclusions, Mya-

chykov et al. (2014) finds that the notions of grounded, embodied and situated cognition are used

interchangeably. By developing a hierarchical definition structured on the idea of stability, that

is, how much the ground for conceptual knowledge is constant through time and under different

conditions, the authors attempt to set clear boundaries between several conceptualizations of the

embodied view. The argument is centred on the notion of simulation, asking which features of

the body and the world are exploited during knowledge retrieval. The main problem is the disen-

tanglement of the two notions of grounded and situated cognition. According to the authors, the

concept of grounded cognition refers to objective and universal physical properties of the world,

and it is the most stable. Furthermore, the term should be substituted with tropism, borrowing the

idea from plant biology of an organism self-directing towards a stimulus. On the contrary, situa-

tedness is defined as contextual information in a general sense, including introspective states and

32



2.1. EMBODIED AND SITUATED COGNITION

social backgrounds, which leads to an unstable and opaque source of knowledge grounding. The

concept of embodiment is the less problematic, referring to the domain of sensorimotor experien-

ces. The degree of stability of embodied cognitive phenomena lies between the objectiveness of

the grounded cognition and the unstable dynamicity which characterizes the situated framework.

Overall, there is a general agreement on the notions of grounded and embodied cognition, which

clearly refer respectively to the physical world and the peculiar body which characterizes the

artificial or living organism. On the other hand, the idea of situated cognition conveys at least two

different meanings.

This issue is evident when considering the embodied view from a dynamical system perspective (Smith,

2005; Beer, 2008). By studying the temporal evolution of embodied systems, the concept of si-

tuatedness focuses on the real time interaction of an agent with the surrounding environment

throughout a flow of perceptual-motor loops. For example, Cangelosi et al. (2015) clearly inter-

pret the idea of situated cognition as a real time interaction of the agent with the environment,

where cognitively sound actions modify the environment; these alterations of the world are imme-

diately perceived by the cognizant, which instantly reacts. The static definition of situatedness

as an unstable contextual information shares similarities with the ongoing process of changes

produced by a dynamic and real time interaction of an agent with the environment. However,

the dynamical system perspective underlines the importance of the strict coupling between the

agent and the surrounding environment, which leads to significant differences on the concept of

situatedness.

2.1.6 Different embodied views in neural modeling: developing the concept of time and

language grounding

In this section I describe two cognitive facts that have been modelled with agents controlled by

artificial neural networks, showing how different theoretical views of embodied cognition lead

to substantially different operationalisations during the experimental design. The first cognitive

phenomenon is the development of time perception and conceptualisation in biological neuronal

systems (Karmarkar & Buonomano, 2007), which has been replicated and studied in embodied

and situated artificial systems (Yamauchi & Beer, 1994; Tuci et al., 2004; Maniadakis et al., 2009;
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Flusberg et al., 2010). Recently, a connectionist model has been proposed by Flusberg et al.

(2010), which takes inspiration from the grounding of higher level concepts by exploiting the me-

chanism of conceptual metaphor (Lakoff & Johnson, 1999). In the embodied view developed

within the linguistic tradition, metaphors are mechanisms that permit the conceptualisation of

knowledge not directly grounded in action and perception. For example, in social organisations

the word "power" is understood in analogy with upward spatial direction. The aim of the connecti-

onist model is to investigate the relation between time and space, in the attempt of understanding

which concept grounds the other (Boroditsky, 2000). Although the words embodied and situated

are used in the paper, in this model the network is not controlling a physical agent, and there is

not a real or simulated environment. The inputs of the artificial brain are linguistic labels, such as

days of the week or cardinal directions, hardwired by the experimenter taking inspiration from the

real world. The neural network includes two sets of inputs, one for items (e.g. "Monday", "Yel-

low"), the other for relations (e.g. "later", "west of"). Each input layer is connected to a dedicated

representational hidden layer, which are in turn connected to a single deeper hidden layer which

integrates the information incoming from the two distinct lower layers. The output layer consists

of a set of labels which are the logical consequence of items and relations presented to the neural

network in the input layers. For example, given the inputs "Monday" in the item input layer and

"later" in the relation input layer, a possible correct output may be "Friday". The model shows

that temporal relations are grounded in spatial relations. From an embodied and connectionist

perspective, "Monday" and "Friday" are consistent with the spatial relation "move forward". The

authors clarify that the labels of the input layers are arbitrary abstractions of a hypothetical lower

level, modality-specific modules, i.e. true perceptual states of an embodied and situated agent.

However, the aim of the model is to investigate neural structures developed at the end of the le-

arning process, rather than real-time conceptualisations achieved through genuine sensorimotor

interactions with the environment.

A very different approach is followed Tuci et al. (2004) while modeling the evolution of a sense of

time in an embodied and situated mobile robotic platform. The authors use evolutionary robotics

to train a two-wheeled cylindrical miniature robot controlled by a continuous time recurrent neural

network. By building an architecture with recurrent connections, the agent is provided with a short
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time memory, which tracks events occurred in the near past. The free parameters of the neural

controller are adjusted with artificial evolution, a learning method discussed in detail in the method

section of this thesis. Two light sensors placed on the opposite sides of the body and a ground

sensor form the robot’s perceptual system. A light bulb is placed in the arena with a white floor,

except for a circular shaded grey area surrounding, but not including, the light source. The robot

learns to approach the light and navigate on the grey area without touching an inner black line,

which represents a wall. There are two possible environments to which the robot may be exposed.

In the first environment, the light is completely surrounded by the grey area and the black line,

whereas in the second scenario there is a discontinuity. A second objective given to the robots is

to categorise the environment by autonomously evolving a signalling strategy. The categorisation

is a product of the internal dynamic of the neural networks, which develops a feeling for the flow of

time by experiencing the persistence of a stimulus over time. In fact, the robotic platform perceives

the colour of the arena with the ground sensor, developing a sense of time by experiencing the

presence of the grey area over time. In the environment with a discontinuity in the target area, the

robot does not emit any signal in the white space of the arena while approaching the light source.

By entering in the shaded portion of the environment, the neural network feels the time spent in

the coloured area and is capable of emitting a signal when the external stimulus, recorded by the

ground sensor, detects the white portion of the environment.

Clearly, the two approaches are quite different. The connectionist model is designed by the expe-

riment following an a priori analysis of situated social contextual features of the human linguistic

experience. The features relevant for the study are formalised in a set of static and descriptive

inputs which form the input layers of the artificial neural network, e.g. linguistic conventions such

as "west of" and "move forward". The same principle guides the selection of sensorimotor and

embodied traits selected for the model, as well as physical properties of the environment. On

the contrary, the evolutionary robotic experiment does not follow any ontological decomposition

of the real world. The model, instead, entails general principles of an embodied and situated

system. In fact, the robot is provided with a sensorimotor system, and the agent is situated within

the context of a real time dynamical interaction with the environment. The aim of the robotic ex-

periment is to understand a cognitive fact with a minimal model of a living system, which develops
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its own cognitive characteristics in a fully autonomous manner.

The second example aimed at showing the differences in the embodied cognition framework is

the development of higher level linguistic skills. The grounding of abstract concepts (Arbib, 2008;

Borghi & Binkofski, 2014) and linguistic compositionality (van Gelder, 1990) are two cognitive

phenomena difficult to explain from the point of view of a theory that underlines the primary role

of direct perception and motor activity during the development of conceptual knowledge.

In a neuro-robotic scenario, Stramandinoli et al. (2012) proposes a model aimed at unveiling the

mechanism for grounding higher level concepts and words. The input layer consists of linguistic

binary units that represent embodied and situated contextual features, as for example "grasp"

and "smile". The linguistic layer is fully connected to a set of recurrent hidden units, which are in

turn linked to an output layer. The output units are binary and there is a one-to-one mapping with

external procedural top-down modules controlling the joint space of the arm of a humanoid robot.

This scenario is methodologically similar to the model described in (Flusberg et al., 2010), as the

neural network is not directly controlling an agent. In fact, the outputs of the network are labels

themselves, and the motor control is off-loaded to a dedicated software. To form higher-order

concepts, the network learns sequences of actions. For example, "give" is an ordered combi-

nation of the action primitives "grasp", "push" and "release". Although the temporal sequence

is unfolded by the recurrent neural network, the problem is not framed from a dynamical system

perspective, where the robotic platform interacts in real time with the environment throughout

a flow of continuous sensorimotor loops. The experimental design, as well as the subsequent

analysis of the hidden artificial neurons, is centred on discrete sequential processing of linguistic

labels to unveil sub-symbolic structures for storing and retrieving conceptual knowledge.

Sugita & Tani (2005) study the problem of developing semantic compositionality in an embodied

and situated neuro-robotic model from a dynamical system perspective. In the experimental sce-

nario, a two-wheeled robot is equipped with a camera for discriminating three objects of different

colour placed in the environment. In addition to the motor outputs that regulate the speed of the

motors, a simple robotic arm is mounted on the front side of the body. The robot is controlled

by a modular recurrent neural network, consisting of two sub-networks for learning sequences
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of perception-action loops and linguistic labels. The two modules are connected with a set of

units called parametric biases, which function as modulators for the dynamic (for a detailed ex-

planation see (Tani, 2003)). The robot learns three actions, "point", "hit" and "push", the different

colours of the objects, and three spatial positions relative to the robot’s subjective experience.

During the supervised training process, the robot learns to understand simple sentences, e.g.

"point red" or "hit left", producing an appropriate behavioural response. The training set consists

of a subset of all the possible linguistic combinations. At the end of the learning phase, the robot

is exposed to sentences not included in the training set, showing that the agent is capable of

responding with the correct action. By confronting the two operationalisations of the embodied

view, the differences are evident. The robotic model described in (Stramandinoli et al., 2012)

abstracts away from a real time interaction with the environment, whereas Sugita & Tani (2005)

explicitly exploit the continuous sensorimotor flow for grounding linguistic labels.

2.1.7 Closing remarks on the concept of embodied cognition: the problem of situated-

ness

The transdisciplinary nature of the embodied and situated view of cognition inexorably leads to

different conceptualisations, manly biased by the field of study. For neuroscientists, the brain and

neural structures acquire centrality while explaining cognitive or computational functions (Rizzo-

latti & Arbib, 1998; Gallese & Lakoff, 2005); on the other hand, an experimental psychologist

or a linguist shifts the focus on the subjective experience of a cogitating agent, which grounds

the processes generated by the mind onto sensorimotor experiences (Lakoff & Johnson, 1999;

Barsalou, 2008; Borghi & Binkofski, 2014). Furthermore, by following a dynamical system appro-

ach the boundaries dividing inner and outer elements, as well as brain, body and environment,

are dissolved into the unity of a systemic view (Beer, 1995; Thelen & Smith, 1996). Although the

boundaries of embodied and grounded cognition are somewhat stable, referring to the subjective

ontogenetic development, body morphology and physical proprieties of the environment, a com-

mon vision about the idea of situatedness is still a problem. Following the discussion introduced

in the previous sections of this chapter, I propose two distinct definitions of the term:

• Situated grounded cognition: the agent is situated in an opaque social context which is
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complementary to the physical world; the subjective experience of development, the stability

of objective physical properties of the environment, and the unstable contextual information

structure knowledge and ground concepts.

• Situated dynamical cognition: the agent is situated in a physical and social environment;

cognition emerges from a real time, continuous and strictly coupled sensorimotor interaction

between an unstable subjective experience and a unstable objective world.

The problem of conceiving a widely accepted operationalisation of the concept of situatedness

was an issue implicitly discussed in the early years of connectionism. The theoretical limits of an

approach based solely on brain modeling is underlined by Parisi et al. (1990), stating that several

experimental biases may follow from the absence of a physical or simulated environment. In fact,

the numbers of input units that represent a natural or social domain, such as spatial or temporal

relations, as well as the frequency and the variety of inputs, are arbitrarily decided by the expe-

rimenter. Thus, there still is an ontological decomposition of the phenomena and the model is

designed in a top-down fashion. Furthermore, there is no real interaction with the world, as the

state of the neural network at time t is not influenced by past sensorimotor iterative loops at time

t − n. To overcome these limits, they propose an ecological approach to connectionist models,

where the artificial neural networks control a body placed in an environment, although the three

elements may be extremely simplified. A conceptual clarification was also proposed by Elman

(1998a). He distinguishes between connectionism, artificial life and dynamical system approach

to cognition. In his view, the three approaches share the common ground of a biologically orien-

ted stance by mimicking brain functions, biology, or the physics of nature. However, they differ

for the aim and scope. Connectionism primarily concerns are emergent structures, as well as

storage and retrieval, of high-level cognitive functions in the brain. Therefore, the main area of

investigation is oriented at understanding how sub-symbolic computational and distributed ma-

chines handle concepts and knowledge. Artificial life rejects the centrality of high-level functions,

focussing also on low-level cognitive facts and adaptive behaviours of early and less developed

forms of life. The dynamical system approach studies the emergent properties of adaptive sy-

stems, including neuronal ensembles and body-environment interactions, from a mathematical
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perspective.

In this thesis, I support the position stated in (Parisi et al., 1990), where the importance of a

real time and dynamical interaction of the triadic systemic entity brain-body-environment is ri-

gorously operationalised. Therefore, the conceptualisation of embodied and situated cognition

corresponds to the definition as situated dynamical cognition proposed in this section. Connecti-

onist models are surely useful tools for investigating how knowledge is structured in the brain.

However, current models are often undermined by an important methodological flaw, that is, the

arbitrary and top-down attitude during the design of the model. To overcome this issue, the neural

architecture and the training set require support from an accurate analysis of the cognitive fact

investigated by the model. For example, while designing a situated grounded cognition model of

language grounding, a frequentist analysis of words included in linguistic corpora may guide the

construction of the input vector and the training set. Otherwise, the creation of the model follows

principles not far apart from the computational tradition, and a real agent may show incapacity

of handling the noise and variety of a continuously mutating environment. On the other hand, a

situated dynamical cognition proposes models weakened by two issues. Firstly, the construction

of simulated or physical experimental environments is extremely simplified, and thus cognitive

agents develop solutions for toy-problems. Secondly, dynamical system theory is still a scientific

framework at its infancy. In fact, during the analysis of complex interactions between the agents

with the surrounding environment either few macroscopic variables of minimal models are mani-

pulated (Harvey et al., 2005), or a holistic but qualitative description is employed (Yeragani et al.,

2002). Clearly, the definitions and meanings of embodied cognition reported in this section form

a continuum, that is, there are not clear boundaries and the different sub-fields partially overlap.

In what follows, I propose an analytical framework aimed at understanding such complex sys-

tems. The embodied view, considering all the multifaceted meanings, promotes the importance

of an integrative stance towards the relationship between the agent and the environment. By

accepting this view, scientists are forced to deal with systems consisting of heterogeneous parts,

as well as a mind built upon multimodal information. Thus, the necessity of mathematical tools

that capture the intricacy of complex networks of interaction among heterogeneous components

is crucial.
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2.2 Understanding an embodied and situated system

In this thesis we stress the importance of the real time agent-environment interaction to fully

develop the embodied and situated view of cognition. In this respect, the theory is framed within

the context of dynamical system theory, that is, brain-body-environment are deeply intertwined

and the resulting system is conceived as a unity in a strict sense. Thus, understanding embodied

and situated systems requires appropriate analytical tools to avoid a disentanglement of the three

elements. In the field of synthetic modeling, the experimenter does not divide the system into sub-

components in order to achieve ameaningful behaviour. Instead, the solution of a predefined task

emerges thorough the coupled interaction of the robots’ artificial brain during the bodily interaction

with the world. By avoiding a priori decomposition of the problem, the framework is clearly holistic

and antireductionist: intelligent behaviour emerges from complex and nonlinear interactions of

simple, and non-necessarily homogeneous, parts of the system. For instance, the solution to a

problem found by a two-wheeled robot arises, according to the theoretical principles of embodied

cognition, from the coupled interaction of controller, body, and environment. But there is also a

more microscopic level of description, where groups of artificial neurons, sensors, and objects in

the environment are the atomic parts of the system. In this regard, evolutionary robotics does not

impose any assumption, as the only factor decided by the experimenter is a global utility function.

The first step concerns the design, creation and training of adaptive systems. After the trai-

ning process ends, and the robot has learned how to execute a task, the behaviour of the agent

undergoes an analysis aimed at understanding the factors that convey to a stable and robust

solution. In this respect, a reductionist approach is still a widely used framework. Consequently,

the principles that guide the creation of the model are completely discarded. The focus is now

the single part of the system, rather than global properties or local interactions among sub-parts.

Reductionism is not the only approach used for the analysis of embodied adaptive systems, espe-

cially by who is keener on drawing the analogy between cognition and dynamical system theory.

For example, Carvalho & Nolfi (2016) investigate the interplay between reactive intelligence and

internal states of a miniature mobile robot using evolutionary robotics technique. The authors

give a qualitative description of the robots’ behaviour from a dynamical system perspective, wit-

40



2.2. UNDERSTANDING AN EMBODIED AND SITUATED SYSTEM

hout using specific measures. A similar approach is followed by Montebelli et al. (2008) while

describing behaviours evolved by populations of robots in terms of visually different attractors.

In the following sections, I propose an epistemological and methodological framework for the

analysis of embodied and situated cognitive agents, arguing that a systemic and antireductionist

perspective may guide the development of quantitative tools aimed at understanding synthetic

and biological models.

2.2.1 Reductionism and antireductionism

Descartes was the first author that framed the mind-body problem in modern terms. But the

French scientist and philosopher developed also a ground-breaking advancement in the field of

scientific methodology. He conceived the idea of reductionism, where a complex problem is re-

duced into smaller and simpler parts. Therefore, a natural phenomenon is subjected to a priori

decomposition, in order to isolate single elements that are more tractable compared to inves-

tigating the system as a unity. A reductionist approach achieved numerous advancements in

science throughout the centuries. However, reductionism has intrinsic limits. In fact, decom-

posing a system into simpler sub-components terminates any attempt aimed at understanding

global properties of the whole system. Furthermore, reductionism assumes linear models and

the consequent superposition principle: two simultaneous inputs in a system cause the same

effect resulting from the sum of the two inputs given individually. In simpler terms, an effect is

proportional to the cause.

While a large number of scientific successes are rooted into reductionist ground, global properties

as well as complex interactions between variables are completely neglected. However, complex-

ity and nonlinear dynamics are central in the conceptual foundation of embodied and situated

cognitive science. A methodological aid may come from general system theory (Von Bertalanffy,

1968) and the related discipline of cybernetics (Ashby, 1956). From a system perspective, there

are two ways to approach the study of a natural phenomenon as a whole. Firstly, scientists may

model biological facts using nonlinear dynamical systems, or infer characteristic of the under-

lying dynamic from recorded data embedding the time series in order to reconstruct the attractor

in phase space. By estimating dynamical measures, for example level of chaos or fractal dimen-
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sion for chaotic systems, global properties are unveiled. Secondly, the focus may move towards

the relationships between the components that structure the system. In this respect, analytical

tools developed in the field of information theory provide useful methods to map and characterize

the information flow and nonlinear relations between variables. Furthermore, information theory

is also strictly related to cybernetics, where the chain of sensors and effectors are interpreted as

channels of communication.

Despite of subtle differences, the conceptual grounding of the two approaches is analogous,

as they conceive a system as a whole, stressing the importance of contextual information co-

ming from the environment. In recent years, these theories inspired system biology (Fang &

Casadevall, 2011), an integrative approach to science that combines empirical experiments with

mathematical modeling (Ahn et al., 2006b). Originally, system biology was created to address

the complexity of living systems. One of the major forces that increase the interest of system

thinking is the human genome project. The aim of the large scale international scientific colla-

boration, completed in 2003, was the mapping of all the genes that form the human genome. A

striking result derived from the completion of the project is indeed negative, underlining the lack

of explanatory power of a mere structural description of the DNA. The complexity of a fully deve-

loped living system is not captured by the genes considered in isolation, where the genome is a

simple array of switches that activates certain characteristics of a biological entity. Rather than

structural, the human genome requires a functional examination, as genes interact in a complex

and nonlinear way, and are constantly affected by the environment (Basso et al., 2005; Margolin

et al., 2006). The analogy with embodied and situated cognition, where complex sensorimotor

chains build our cognition, is evident, and a reformulation of the methods employed may advance

this novel theoretical framework.

A related problem concerns the identification of functional connectivity in biological neuronal en-

sembles, that is, assessing dependencies between two or more patterns of neural activity (Seth

& Edelman, 2004; Vicente et al., 2011; Friston et al., 2013). In other words, the aim is to cre-

ate graphs for understanding the coupling between different brain areas, without imposing any

assumption about effective connections (Friston et al., 2013). Functional brain mapping relies
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on nonlinear time series analysis of datasets recorded from fMRI or EEG, which capture the

complexity of the ongoing dynamic caused by intricate networks of neural activity.

Recently, antireductionism has also been criticized in the field of clinical medical science (Ahn

et al., 2006b,a). Current diagnoses of pathological states, as well as the design of treatments,

are rooted into a reductionist framework. Existing medical concepts consider healthy states as

normalcy, and risk prevention is the key element to preserve this condition. Furthermore, biologi-

cal systems are seen as the product of linear combinations of the constituent parts, and abnormal

states are justified by a small subset of factors, often by a single cause. Therefore, predictions

are made with static mathematical models based on frequentist statistics. A very different point of

view guides system science: the functions of a biological system are emergent properties caused

by nonlinear interactions of the constituent parts that are understood by analysing the system as

a whole. Moreover, contextual information and the evolution of the organism in space and time

acquire centrality. Thus, the analysis of biological systems requires either stochastic or chaotic

models. Although reductionism is efficient on detecting and solving pathologies where the rela-

tion between cause and effect are evident, as for example for an inflammation of the appendicitis,

intrinsic limits of the theoretical framework fail at explaining biological phenomena where several

factors are intertwined in a complex way. In fact, current medical science struggles to provide a

fully developed explanation for diabetes (Ahn et al., 2006a) or psychiatric disorders.

2.2.2 Holistic science: general system theory and cybernetics

During the first half of the 20th century, scholars of two different disciplines challenged the well-

founded and widely accepted philosophical framework known as reductionism. In theoretical bi-

ology, an antireductionist philosophy of science was under development. Von Bertalanffy (1968)

proposed general system theory, a foundational framework aimed at guiding the scientific inves-

tigation in natural and human science. The author highlights a major problem affecting models

created for the study of natural phenomena. In fact, scientists always assume that systems are

close. A model of a neuron decontextualizes the cell from the surrounding environment: other

neurons, cells forming the body, the influence of external forces, and so on. Living organisms

are instead open systems, which necessitates of oxygen for surviving, food for developing and
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other conspecifics to mate and reproduce, if the system reached an advanced phylogenetic de-

velopment. The observer creates boundaries. While studying a single neuron, the subject of

study becomes the single cell. Neuronal ensembles are only an objective external context, un-

necessary to understanding the functional principles and the properties of single neurons. The

traditional analytical and reductionist approach to science provides a full description of the single

parts of the system. By embracing the superposition principle, thus imposing a linear interaction

between cause and effect, a complete understanding of the single parts suffices for explaining

the behaviour of the whole system. On the contrary, system science starts from the whole, a

super-system characterised by global properties that emerge from a complex interaction of se-

veral, potentially heterogeneous, sub-components. A central element in Bertalanffy’s position is

the generality, as the final objective is the study of principles and mechanisms that characterise

any kind of system. This is an important point, transforming general system theory from a metho-

dological aid for biology into a fully developed philosophy of science, open to transdisciplinarity.

The second area of research that embraces a systemic and holistic stance is the so-called cy-

bernetics. The term cybernetics was introduced by Wiener (1961), defining a novel field aimed

at studying human thinking, as well as control and communication in machines. The etymology

is rooted into the ancient Greek word kubernetes, which means steersman, or the art of gover-

ning. According to Wiener, the proposed approach to science is expected to unveiling common

principles governing self-regulatory machines and neural systems alike. Ashby (1956) broade-

ned the scope of the discipline by defining cybernetics as the theory of machines. The study of

biological or artificial systems is grounded on the idea of information and control, from which con-

cepts of recursiveness, circularity and feedback (restricted to negative in those years) derives.

These foundational assumptions shape this new field as the study of behaviour rather than ob-

jects. Such perspective is consistent with the definition of embodiment and situatedness followed

in this thesis, where the subjective experience is submerged in an environmental context, pro-

ducing continuous communication between perceptual and motor channels. The theory is also

close to the first era of connectionism. The early model of artificial neural networks based on a

binary formalisation of the neurons, similar to relay switches, fitted perfectly with a mechanistic

view of biological organism. Therefore, cybernetics is a major candidate as the perfect bridge
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between different disciplines, sharing principles with general system theory, and thus from foun-

dational biological science, psychology, neuroscience and the formal methods developed within

the context of information theory (Shannon & Weaver, 1949).

The two disciplines are often conceived as similar and complementary, and surely for the broad

scientific endeavour the differences are marginal. General system theory and cybernetics ori-

ginated in different contexts, namely basic science and technological application. Furthermore

the two fields differ for the nature of the models employed, as the biological tradition is oriented

towards open systems and dynamic interaction, whereas cybernetics is focussed on homeosta-

sis and feedback (Drack & Pouvreau, 2015). However both fields have the common interest for

system organisation and teleological behaviour, taking a holistic stance when studying biological

or artificial machines.

2.3 Nonlinear science

2.3.1 Information theory: nonlinearities in communication channels

Information theory is a branch of applied mathematics that quantifies the information content in

communication channels. The principles were first developed by Shannon & Weaver (1949), to

investigate characteristics of signal processing such as reliability, storing, efficiency in commu-

nication and data compression. Although the term information is central, the notion itself is left

undefined. Therefore, the theory develops as a practical quantification of the efficiency of com-

munication in the wider sense, assuming an incomplete knowledge about the future and a past

corrupted by noise. The basic measure of the theory is entropy, which quantifies the amount

of uncertainty of a random variable. The interpretation is thus consistent with the analogous

quantity established in the field of thermodynamics, utilised to estimate the degree of disorder

in a system. From the interpretation of entropy in information-theoretic terms, communication is

practically conceived as the reduction of uncertainty.

Information theory is not intrinsically holistic as the various measures that extend entropy are

aimed at quantifying the efficiency of communication channels. However, multivariate measures

derived from entropy captures nonlinear interactions among variables, and importantly, homoge-
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neity is not a fundamental assumption. Therefore, these quantities are useful tools for studying

variables that represent observables recorded from heterogeneous sub-parts of a super-system.

Furthermore, the mathematical tools that information theory provides to the scientific communi-

ties are nonlinear. According to the embodied view of cognition, especially framed in the situated

and dynamical system perspective, the importance of nonlinear bodily interactions with the sur-

rounding environment, as well as nonlinearities in brain activation, are a pillar. Thus, an analytical

framework able of capturing nonlinear dependencies is fundamental.

Finally, information theory is model free. The estimation of measures is based on probabilities es-

timated from empirical data employing binning or kernel density that are essentially data-driven.

Therefore, a priopri assumptions about the nature and type of the underlying model are unne-

cessary, which render the mathematical framework consistent with an emergentist perspective

on the development of cognitive skills.

2.3.2 Application of information-theoretic measures to embodied and situated robotic

systems

Information theoretic metrics have already been applied to neuro-robotic platforms in order to un-

veil how embodied and situated agents structure the information. Tarapore et al. (2004) simulate

an Extended Braitenberg Vehicle which approaches and explores cylindrical objects placed in

an arena. The simulated agent is equipped with proximity sensors, camera, and two wheeled

differential motor system. Time series are recorded from the activation of the perceptual system.

The robot-environment interaction is characterized by calculating entropy, pairwise linear correla-

tions, and pairwise mutual information between sensors. Results show different level of disorder

in the system, quantified with entropy, for different behaviors exhibited by the robot, e.g. explo-

ring the arena versus navigating around the cylinder. Furthermore, mutual information captures

nonlinearities in the time series, detecting sensory interactions at longer time scales compared

to linear correlation. In a related work (Gomez et al., 2005) the same simulated robot is exten-

ded with a Kohonen feature map (Kohonen, 1998) for implementing a neural visual system. The

environment is populated with cylinders and cubes which are approached by the agent. The aut-

hors estimate pairwise mutual information between proximity sensors as well as receptors in the

46



2.3. NONLINEAR SCIENCE

visual field, showing that the structure of the information exchange between time series depends

on the shape and size of the objects that are perceived by the agent. The analysis of embodied

systems with information theoretic tools is extended to robots characterized by different body mor-

phologies (Sporns et al., 2006). Lungarella & Sporns (2006) utilize entropy, mutual information,

multi-information, complexity, and transfer entropy in order to generate a map of the perceptual

and motor system of different robots, while they are interacting with the surrounding environment.

The experimental setting is similar for each robot, as agents mount cameras to detect simple ob-

jects placed in the environment. The input flow incoming from cameras is processed by a neural

network, which functions as a saliency map. The neural architecture is common to all robotics

platforms. The study of the information structure is thus focused on differences caused by diffe-

rent embodiments. In fact, the three robots used in the experiments are a simple humanoid, a

four legged mobile platform, and a simulated two wheeled vehicle which have a different motor

systems and body shape. By applying information theoretic measures, results show that body

morphology, as well as the learning process, affect the structures of the information flow in the

robots. The efficacy of applying information theoretic measures to agents controlled by artificial

neural system is confirmed by a model aimed at simulating a minimal klinotaxis neural circuit of

the nematode c. elegans (Izquierdo et al., 2015). By calculating mutual information and transfer

entropy, the authors describe the complete loop of information flow from environmental stimuli, to

sensory and hidden neurons, to motor neurons and actuators. The application of mutual informa-

tion to embodied and situated systems is extended to a human-robot interaction scenario (Stoelen

et al., 2015) in order to develop a set of measures aimed at characterizing real-world applications

of adaptive systems. The information exchange between a neuro-robotic platform and human

participants during the interaction is quantified by values of mutual information.

2.3.3 The revolution of chaos theory

Chaos is a relatively new discovery, developed within the context of the more general field of

nonlinear dynamical systems. The subject originated in the 17th century when Newton invented

differential equations to solve the two-body problem, calculating the position of the earth during

the orbital trajectory around the sun. In the years following the publication of Newton’s laws of
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motion, physicists tried to solve the three-body problem with no success. In the late 1800s, Poin-

care revolutionised the way to studying dynamical systems, giving more importance to qualitative

rather than quantitative questions. For example, instead of determining the exact position of every

planet in the solar system in a specific time, the new approach asks whether the solar system

is stable forever or some planet will escape to infinity. In order to tackle complex problems from

the novel perspective, the French mathematician developed a new set of analytical tools, based

on a geometric methodology. Poincare is also the first scientist who saw the possibility of chao-

tic behaviour in a system. Notwithstanding the intuition of the brilliant French mathematician, to

have a fully developed chaos theory a key element that was missing: the modern development

of computers during the second half of the last century. The new technology changed deeply the

way of studying dynamics, allowing mathematicians to have completely different insights on the

subject. Indeed, the possibility of running intensive numerical simulations led Lorenz to discover

his famous chaotic dynamics. In the early 1960s, he was studying a model of convection rolls in

the atmosphere using a system of three differential equations (Lorenz, 1963):

ẋ = σ(y − x)

ẏ = −xz + ρx− y

ż = xy − βz

(2.1)

For certain values of the parameters σ, ρ and β, the system exhibits an erratic behaviour, following

repetitive trajectories in a bounded region of the phase space, but never entering in the same

exact orbit. Another important characteristic of the system is its unpredictable behaviour. If the

initial values of any of the three variables differs slightly, after several time steps the evolution

takes a very different path. There is an important implication surrounding the discovery of chaos in

dynamical systems. A natural process that appears to be randommight not always be the product

of noise; instead, the laws governing a phenomenon might be fully deterministic. In other words,

a deterministic nonlinear dynamical system, with certain parameters, may produce a seemingly

random and unpredictable behaviour. Thus, the meaning of the word chaos in dynamical system

theory does not convey the idea of random disorder. Although the temporal evolution is erratic,

a chaotic system is structured and fully deterministic.
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2.3.4 Informal definition of chaos and the problem of empirical determinism

The evolution of a chaotic dynamical system is seemingly random, but it is governed by deter-

ministic laws. Such complex dynamics are good models for some natural phenomena, including

physiological data. A rigorous and widely accepted definition of chaos is still subject of vibrant

debate (Poon et al., 2010). Typically, low-dimensional chaos refers to an erratic behavior of an

autonomous nonlinear dynamical system, that is, a system without noisy or deterministic inputs.

In the present study we follow the informal definition proposed by Kaplan & Glass (2012), wi-

dely used in literature: chaos is an aperiodic, bounded, and deterministic dynamic with sensitive

dependence to initial conditions. Thus, there are four important characteristics in a dynamical

system that exhibits chaotic dynamics:

• Aperiodicity: the trajectory of the dynamic never repeats itself, meaning that the system

does not enter in the same state more than once.

• Bounded: the evolution of the dynamic is confined in a region of the phase space and the

states will never approach infinity.

• Determinism: there are no random terms in the equations governing the system, which

implies that every state is described by definite rules.

• Sensitivity to initial conditions: two starting points arbitrarily close will diverge exponentially

fast over time. This is a crucial feature of chaos because it implies the impossibility of long

term predictions.

Indubitably, sensitivity to initial condition is the only signature for chaos that has reached con-

sensus in literature. Recently, Poon et al. (2010) suggest a less stringent definition of chaos as

a low-dimensional nonlinear dynamic with long-term unpredictability. Therefore, non-autonmous

systems with deterministic or stochastic inputs can generate chaotic dynamics. In this thesis, we

estimate two measures that capture different properties of chaotic attractors. The first measure is

the fractal dimension of the attractor, which relates to the complexity of the dynamics, quantifying

the number of degrees of freedom of the system. The estimated dimension is a static metric and
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it does not inform about the evolution of the dynamic. There exist several algorithms to calculate

the degrees of freedom of a chaotic attractor, and in the present work I employ the correlation

dimension (D2) (Grassberger & Procaccia, 1983). The second measure applied to the analysis

of data recorded from embodied and situated agents quantifies the level of chaos in the system,

and it is a dynamic measure. Lyapunov exponents relates to the local exponential divergence

of nearby trajectories on the attractor. A dynamical system has a Lyapunov exponent for each

dimension of the phase space and in a chaotic system at least one is positive. The largest Lya-

punov exponent (λ1) quantifies the level of chaos in the system as it estimates the exponential

grow of small differences on the initial conditions. A large λ1 means that the system is extre-

mely sensitive to small perturbations on the initial conditions, limiting the prediction horizon. The

explanatory power of nonlinear dynamical systems in a chaotic regime is surely interesting for

modeling the complexity of nature with precise rules defined by deterministic equations. But there

is also an opposite approach, using empirical data to unveil the characteristics of the underlying

dynamic. Starting from measurements, for example the position of the robot in the environment,

I use tools of nonlinear time series analysis to reconstruct the attractor in phase space in order

to quantify the level of chaos and the degree of complexity of the system. However, detection of

chaos in recorded time series is problematic due to instrumental or dynamic noise, which may

produce seemingly chaotic behavior without satisfying the criteria of determinism. Existing met-

hods, i.e. numerical titration (Barahona & Poon, 1996; Poon & Barahona, 2001), are not reliable

at discriminating between noisy and fully deterministic time series, especially in the presence of

brown noise (Freitas et al., 2009). Therefore, the utility of chaos theory is a matter of debate, the

major critic being the lack of applicability to empirical datasets.

2.3.5 Application of chaotic measures to data recorded from humans and robots

After the initial enthusiasm triggered by pioneering works on chaotic measures applied to em-

pirical data, in particular in the field of nonlinear EEG analysis (Babloyantz & Destexhe, 1986;

Skarda & Freeman, 1987), the validity of these results was critically re-examined (Theiler, 1994;

Theiler & Rapp, 1996). Although controversial (Glass, 2009), chaos theory is still successfully

used with experimental physiological data. Nonlinear time series analysis and chaotic measu-
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res have been applied to time series recorded with EEG or MEG and they have been reliable

estimators to detect epileptic seizures and schizophrenia (Faure & Korn, 2001; Sarbadhikari &

Chakrabarty, 2001; Korn & Faure, 2003; Le VanQuyen et al., 2003; Stam, 2005). Bob et al. (2009)

show that λ1 calculated from electrodermal activity differs in schizophrenic and control subjects

during a word association task. λ1 applied to electrocardiogram data (Perc, 2005a) discrimina-

tes patients with major depressive disorder and normal control subjects in supine and standing

posture (Yeragani et al., 2002). The level of chaos calculated from the heart rate is a reliable

estimator to detect the anaerobic threshold in a not invasive way (Silva et al., 2012). A recent

study (Mangin et al., 2011) shows that λ1 calculated from time series recorded from ventilatory

flow is lower in patients with carotid atherosclerosis. λ1 has also been applied to the analysis of

dynamic gait (Dingwell & Cusumano, 2000; Dingwell et al., 2001; Perc, 2005b; Dingwell et al.,

2008; Bruijn et al., 2009; Kang & Dingwell, 2009; Cignetti et al., 2012; Rispens et al., 2014),

showing that different walking speeds (Bruijn et al., 2009) and age (Cignetti et al., 2012) are cha-

racterized by different levels of chaos. Fractal dimension of reconstructed attractors from EEG

data quantify the degree of complexity during different sleeping stages in young adults (Shen

et al., 2003) and newborns (Janjarasjitt et al., 2008). The fractal dimension D2 is also a valuable

tool for detecting color vision deficiencies from visual evoked potentials (Boon et al., 2008).

In the field of autonomous mobile robotics, chaos theory has been successfully used for descri-

bing quantitatively agents’ behaviour (for a recent review see (Zang et al., 2016)). Smithers is the

first roboticist that applies nonlinear time series analysis to datasets produced by embodied and

situated robotic systems (Smithers, 1995). By recording the values of the robots’ infrared sensors

while performing a wall-following task, fractal dimension is calculated on the reconstructed attrac-

tor. In another early attempt which exploits chaotic measures for explaining robots’ behavior, the

position of the agent in the environment over time is recorded in order to estimate the level of

chaos in the system (Nehmzow & Walker, 2003; Nehmzow, 2012). These preliminary works are

aimed at demonstrating the applicability of chaos theory to mobile robotics. Monirul Islam & Mu-

rase (2005) attain a significant advancement in the field of nonlinear time series analysis applied

to robotics correlating systematically chaotic measures to different kinds of behaviour. They use

evolutionary robotics to train Kephera robots controlled by neural networks at solving navigation
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tasks in different environments. At the end of the evolutionary process, data is collected from

infrared sensors, which is used to calculate both level of chaos and complexity of the system.

Interestingly, fractal dimension is significantly different depending on the environment where the

robot is acting. Furthermore, the degrees of freedom of the system increase throughout genera-

tions. Clearly, dissimilar environments, as well as different stages of the learning process, affect

the robots’ behaviour. Therefore, there is a correlation between fractal dimension and the be-

havioural strategy employed by the agents. The correlation between behavioural strategies and

chaotic dynamics is confirmed by an evolutionary robotics experiment, where simulated e-puck

robots learn to escape from a target area at regular time intervals (Da Rold, 2017). Results show

a correlation between the robots’ performance and chaotic measures. In a robotic experiment

aimed at replicating vicarious trial-and-error, a behavioural response used by rats which suggest

self-conflict during a decision process, Matsuda et al. (2014) estimated the largest Lyapunov

exponent from neural activation and perceptual information. They show a connection between

chaotic states and the manifestation of vicarious trial-and-error in the robotic model.
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Methods

3.1 Adaptive systems

This section describes in detail using mathematical language the concept of neural networks

employed in this thesis: feedforward multilayer perceptron, Elman recurrent networks (Elman,

1990), and recurrent networks. Different learning algorithms are discussed, with a particular

emphasis on the genetic algorithm.

3.1.1 Artificial neural networks

This section provides a rigorous mathematical description of the neural networks utilised in this

dissertation. The history and informal explanation of the computational model have been dis-

cussed in Section 2.1.2. An artificial neural network is a biologically plausible machine learning

algorithm, which operationalises in mathematical terms the functional properties of a neuronal

ensemble. The constituent basic unit is the artificial neuron, which is characterised by a nonlinear

Figure 3.1: Neural architectures. (a) Feedforward neural network (b), simple recurrent neural
network, and (c) recurrent neural network.
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activation function:

Φ(x) =
1

1 + e−βx
(3.1)

The above equation defines the logistic squash function, where the parameter β define the slope

of the sigmoidal function, which is set to 1 in all the experiments described in the following

chapters. Any nonlinear function may be employed and an alternative often chosen in neural

modelling is the hyperbolic tangent. The artificial neurons are grouped into layers and repre-

sented as vectors. The basic model of artificial neural network is the multilayer perceptron (Fi-

gure 3.1(a)), also called feed forward architecture (FF). The model consists of a vector of input

units X = {x1, . . . , xn} connected with directed forward synapses to a vector of Y = {y1, . . . , yn}

of hidden units. The multilayer perceptron is equipped with a vector O = {o1, . . . , on} of output

units. A neural architecture may consist of several forwardly connected hidden layers, or de-

signed with branches to create different neural pathways. The set of synapses connecting two

layers of artificial neurons is defined as follow:

W =



w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
... . . . ...

wm,1 wm,2 · · · wm,n


(3.2)

wherewm,n is the strength of the synaptic weight connecting the unitm to the unit n. The threshold

that characterised early development of neural modelling is substituted with a bias unit, which has

a constant activation of -1. The bias units are connected to hidden and output neurons with a

matrix B of synaptic weights that are modified during the learning process. The input signal

normalised in the range [0, 1] and clamped into the input layer. The information is propagated to

the higher level layers, and the activation of a single hidden or output neuron is updated with the

following formula:

yi = Φ

 N∑
j=0

wjixj − bi

 (3.3)
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where yi is the output of the ith unit, xj is the input from the jth unit of the previous layer, wji is

the strength of the synaptic weight connecting the two units, bi is the bias and Φ is the logistic

activation function. Similarly, the activation of an output unit oi is updated according to the signal

incoming from the connected units yj

The FF model is a static neural network that processes every input individually and serially by

propagating the signal from the input towards the output layer. At the end of the computation

the networks produces an answer and the neural activation is set to 0 before presenting the next

input vector. To generalise over events that unfold in time, artificial neural networks with recurrent

connections have been developed. Elman (1990) proposed the so-called simple recurrent neural

network (SRN), an architecture equipped with an additional vector of context units that store

the activation of the hidden units at time t (Figure 3.1(b)). During the next time step t + 1, the

context layer functions as an additional set of input units connected to the hidden layer with a

matrix C of synaptic weights. This simple form of short-term working memory stores information

about several time steps due to recursion. The SRN updates at every time step according to the

following formula:

yi = Φ

 N∑
j=0

wjixj − bi + wkick

 (3.4)

where the additional term ck is the context unit that saves the activation of hidden unit yi during the

previous time step, and wki is the synaptic weight connecting the context unit with the associated

hidden unit.

The two architectures are similar, except for the additional layer of context units in the SRN,

which allows the neural network to have memory about past events. The presence of an internal

dynamic transforms a FF from a statistical classifier into a dynamical recognizer (Pollack, 1991),

that is, a dynamical system. At every time step, the output of the hidden layer is stored without

any modification in the context units that function as an additional set of inputs during the next

time step. Therefore, the neural network is informed about its past internal states. Compared with

a FF, which can classify only statistical regularity, a SRN is capable to generalize upon events
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that unfold in time. Another possibility aimed at providing a form of memory about past events to

the neural network is the design of architectures with recurrent connections:

yt
i = Φ

 N∑
j=0

wjix
t
j +

N∑
k=0

ckiy
t−1
k − bi

 (3.5)

where yt−1k is the activation of the hidden unit yk during the previous time step and cki is the

recurrent connection between the kth and ith units of the same layer (Figure 3.1(c)). The elements

of the matrices W, B and C define the space of the free parameters of the system.

3.2 Nonlinear time series analysis

In this section, I describe the nonlinear mathematical tools applied to datasets recorded from

the robotic platforms. In particular, concepts and formalisations concerning the attractor re-

construction with the embedded delay vector technique, chaotic analysis and the information-

theoretic measures employed in later chapters are explained.

3.2.1 Phase space reconstruction

According to the delay embedding theorem (Takens, 1981) the attractor described by a dynami-

cal system can be reconstructed from a sequence of observables. The mono-dimensional time

series is projected in a higher dimensional phase space using a delay vector:

xm
τ = (xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ) (3.6)

where m is the embedding dimension, τ is the embedding lag, and xi is the ith element of the

vector containing the position of the robot. The idea behind the phase space reconstruction is to

apply time shifts on the mono-dimensional time series to create a multidimensional geometrical

object.

A correct reconstruction of the chaotic attractor depends on two parameters. Firstly, an appropri-

ate embedding lag τ is estimated. While the robot acts in the world, points that are successive

in the time series may not denote a significant change in the behaviour of the system. An appro-

priate lag corresponds to a temporal separation where new and relevant information is brought
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Figure 3.2: The Lorenz system. (a) shows the chaotic evolution of the system defined by the
equations. (b) depicts the same attractor reconstructed using the variable x.

into the system. A suitable mathematical tool is the mutual information, an information theoretic

measure used to estimate the exchange of information between two time series:

MI(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(3.7)

A more detail explanation of the mutual information, as well as methods for estimating the pro-

babilities are discussed in detail in the next section.

Clearly, having only one time series, a second dataset is generated applying temporal shifts.

Two vectorsXa = {x1, . . . , xn−τ} andXb = {x1+τ , . . . , xn} are created from the original vectorX

that contains the set of observable. Mutual information is calculated for several values of τ with

unitary increments, creating a plot of τ versusMI(Xa;Xb). The first minimum of the slope is the

appropriate value of τ . An alternative method is based on the autocorrelation function, but it has

limits when applied to intrinsically nonlinear systems.

The second parameter is the embedding dimension m. As demonstrated by Takens (1981), a

sufficient large embedding dimension fully unfolds the attractor, preserving the same dynamical

properties of the phase space described by the original variables of the system. The minimum
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embedding dimension is calculated with the false nearest neighbor algorithm (Kennel, M. B.,

Brown, R., Abarbanel, 1992):

Ri = Φ

(
|sm+1
i − sm+1

k |
|smi − smk |

− r

)
(3.8)

where smk is the nearest neighbour to point smi , Φ is a step function and r is a tolerance value.

According to Kennel, M. B., Brown, R., Abarbanel (1992) r = 10 performs well with most datasets.

When the attractor is completely unfolded, points that are close in phase space of dimension m

are close also in dimensionm+1. The algorithm is iterated in several phase spaces of increasing

dimension until the percentage of false neighbors is acceptable. Figure 3.2 shows and example

of phase space reconstruction of the Lorenz system defined with Equation 2.1 with parameters

σ = 10, ρ = 28 and β = 8/3.

3.2.2 Chaos theory

On the reconstructed attractor, nonlinear chaotic measures are applied to uncover the dynamical

properties of the system. In particular, I employ two classical measures: level of chaos λ1 and

fractal dimension D2. The dimension of the attractor gives an insight about the complexity of

the system, unveiling the number of variables that define the dynamic. There are several met-

hods to estimate the fractal dimension of a chaotic attractor. We use the correlation dimension

D2 (Grassberger & Procaccia, 1983), which is a widely tested algorithm, robust with finite time

series. D2 is based on the correlation integral, a method that counts the number of points inside

a sphere of radius r, centred in a reference point xi:

Cm(r) =
1

N2

N∑
i,j=1
i 6=j

Θ(r− |xi − xj|) (3.9)

where m is the embedding dimension, N is the total number of points in the attractor and Θ

is the Heaviside step function, whose values is 0 for negative arguments and 1 otherwise. To

estimating the fractal dimension, D2 can be approximated from the slope of the straight scaling

region of the plot log(Cm(r)) versus log(r) (see for example Figure 4.3(a) in a following chapter).

The slope of the scaling region is calculated for several embedding dimensions. If the system is
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deterministic, the estimated dimension D2 remains constant. Conversely, in random processes

D2 constantly increases when the attractor is embedded in higher dimensions.

The second chaotic measure used in this study is λ1, which quantifies one aspect of the defi-

nition of chaos, that is, sensitivity to small differences on initial conditions. There exist several

methods to estimate λ1 from recorded data. The algorithm proposed by Rosenstein et al. (1993)

has become popular due to its robustness to noise and its efficiency with short time series (for a

benchmark see (Cignetti et al., 2012; Rispens et al., 2014)). Moreover, the steps of the algorithm

partially overlap with the calculation of the correlation integral, thus lowering the computational

load. The estimation of the rate of divergence of two adjacent trajectories in phase space quan-

tifies the level of chaos in the system. After taking a reference point p and the nearest point k

that lies on a nearby trajectory of the attractor, the Euclidean distance dj = (p, k) is calculated.

An important constrain is that p and k are not in the same trajectory. To exclude points that are

close in time, the mean period is estimated using fast Fourier transform and neighbouring points

within this temporal window are discarded. In order to quantify the rate of divergence of two tra-

jectories, the distance between the pair of points dj(t) is calculated for t time steps. In practice,

the evolution of two points that are spatially close in the phase space is followed to verify whether

they tend to locally diverge or converge. The process is repeated for every point of the attractor

and for several time steps t. Finally, an approximation of the true value of λ1 is derived from the

linear fit of the slope defined by the following formula:

y(t) =
1

∆t
ln dj(t) (3.10)

where 〈ln dj(t)〉 is the mean divergence of all pair of points.

The presence of a positive λ1 and a fractal value of D2 does not guarantee that the dynamic is

generated by a nonlinear, low-dimensional, and deterministic system. Thus, further analyses are

necessary to exclude the possibility that underlying dynamic is the product of a linear system with

noise. In a chaotic deterministic system, the evolution of the attractor in phase space is regular.

Therefore, the evolution for n time steps of a reference point pt is approximated by the average

trajectory of kt neighbors. A simple method to unveil deterministic structures in a system is the
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nonlinear prediction error (Kaplan & Glass, 2012):

E =
1

N

N∑
n=1

(
pt+n − k̄t+n

)2 (3.11)

Eq (3.11) alone is not sufficient to evaluate the quality of the prediction. A convenient way to

estimate the magnitude of the error is calculated dividing the prediction error E by the variance

σ2 of the time series. If the value is close to zero, the prediction error is small and the dynamic is

deterministic. On the contrary, a value above one indicates that neighbours are a bad model for

predicting the future trajectory of pt, as the system is contaminated with high level of noise.

One of the major drawbacks of nonlinear time series analysis is the lack of mathematical tools

that give a definitive proof of the presence of chaos. When dealing with empirical data, the true

dynamic is not explicit in form of equations. Therefore, asserting that the time series is charac-

terized by a chaotic structure requires statistical validation: The assumption that the dynamic is

the product of a nonlinear deterministic system is tested against the null hypothesis of a linear

system with noise. One way of verifying the presence of low-dimensional nonlinear dynamics is

the surrogate data testing. The original time series is scrambled in order to disrupt the hypotheti-

cal nonlinear component. After calculating the fast Fourier transform, the phase is replaced with

white noise in the range 0 to 2π. A surrogate time series is created computing the inverse fast

Fourier transform of the original amplitude and the randomized phase. To evaluate the null hypot-

hesis,a measure that is consistent only with nonlinear chaotic systems is estimated on the original

time series and the surrogates. If the values of the scrambled data are significantly different the

null hypothesis is rejected.

Another necessary constrain for applying nonlinear tools to empirical data is the stationarity of

the time series. The behaviour of a dynamical system depends on the values of its parameters:

different parameters may lead the same set of functions to a stable fixed point, limit cycles or

chaotic attractors. Calculating chaotic measures of a systemwhose dynamic changes on different

time windows is meaningless, because a single value characterizes dynamics of qualitatively

different attractors. Most of the existing tools in the field of linear and nonlinear time series

analysis requires stationarity. Therefore, several statistical methods have been developed to
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asses the stationarity of recorded datasets. However, they have been mainly developed in the

context of linear time series analysis and their applicability in a nonlinear system suffers the same

limitations of the autocorrelation function for the estimation of the embedded lag. To overcome

this limitation, Schreiber (1997) proposes a nonlinear method called cross-prediction error, which

is a second order statistics that verifies the stationarity directly on phase space. A chaotic attractor

is characterized by regularities in the evolution of the system and cross prediction error verifies

whether this is true or not for the system under scrutiny. The points of the attractor are divided into

n non-overlapping segments of equal length, and different sections of the attractor are used to

predict the position of points on other regions of the phase space. Because of the characteristic

self-similarity and regular oscillations of a chaotic attractor, segments that are close in phase

space are expected to behave in a similar way. Consequently, points in two adjacent segments

are good predictors. Clearly, the opposite is true for segments far apart in the attractor, as they

are expected to provide a bad prediction. The expectation is to having a mixture of good and

bad predictors with a regular alternation. Formally, given a point xt ∈ X future states xt+n are

predicted with the following formula:

δXY =
1

NX

NX∑
n=1

(xt+n − ȳt+n)2 (3.12)

whereNX is the number of points in segmentX, ȳt+n is the center of mass of points in segment

Y , and n is the number of forward time steps used for the prediction, which is kept constant to 1.

As in (Perc, 2006), points y ∈ Y that are farther from x than a threshold θ = σ/4 are excluded,

where σ is the standard deviation of the recorded time series. If the set of proximal points θy has

less than ten elements, the threshold is increased up to a value equal to the standard deviation

of the signal.

3.2.3 Information theory

This section summarizes the information theoretic measures employed for the analysis of the

evolved embodied and situated system. The building block of more complex metrics is the Shan-

non entropy (Shannon & Weaver, 1949), which measures the degree of uncertainty, and thus

the amount of disorder, in a flow of information. In a neuro-robotic system, entropy estimates
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the average information content at each time step of any time series recorded from the neural

activation of the controller, as well as other variables such as the agent’s position, while the robot

is executing a task. The entropy is calculated according to the following formula:

H(X) = −
∑
x∈X

p(x) log p(x) (3.13)

The entropy of a recorded dataset is a global measure, as it evaluates the average degree of

uncertainty. A related measure is the local entropy, which characterizes the dynamics of the

information flow of time series at specific temporal instants:

h(x) = − log p(x) (3.14)

The local entropy estimate the information content of a single event, i.e. a specific measure, in

a recorded signal. A global estimate of the amount of disorder in a recorded time series from a

dynamical perspective is derived by averaging the set of local values.

The amount of disorder that characterizes a single variable is not sufficient for mapping the in-

formation flow in an embodied and situated agent controlled by a neural network. Therefore, the

mutual information (Equation 3.7), a measure related to the entropy that quantifies the degree

of dependence of two time series, is estimated on recorded neural activity. This information-

theoretic measure unveils nonlinear correlations between variables in the system. The informa-

tion gain of two variables may be estimated locally, according to the following formula:

mi(x; y) = log

(
p(x, y)

p(x)p(y)

)
(3.15)

The outcome of the local form consists of a time series describing the exchange of information

thorough time between two channels of communication. Importantly, local mutual information

may assume negative values. The interpretation of negative values is that a variable is misinfor-

mative, increasing the uncertainty of the other variable (Fano & Hawkins, 1961).

Estimating the amount of information shared between two variables in a system may unveil non-
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trivial dependencies in an embodied and situated system. However, mutual information does

not reveal the directionality of the information flow. To overcome this issue, Schreiber (2000)

developed a specific measure, the so-called transfer entropy, determining which variable sends

messages to the other:

TEX→Y =
∑
x∈X

∑
y∈Y

p
(
yt+n,y

dy

t ,xdx
t

)
log

p
(
yt+n | y

dy

t ,xdx
t

)
p
(
yt+n | y

dy

t

)
 (3.16)

where yt+n is a measurement of the random variable Y at time t+n, y
dy

t and xdx
t are embedded

vectors. By embedding time series, hidden dynamics are unveiled exploiting one observable and

past events are explicitly included in the estimation. In practice, transfer entropy quantifies the

amount of information transmitted from the dynamic of X, evaluating also the dynamic of Y , to

future states of Y . The time horizon of the prediction is defined by the parameter n, which holds

a constant value of 1 in the experiments described in later chapters.

Crucially, transfer entropy is asymmetric, thus the magnitude and direction of the information

transfer from a random variable X towards Y is estimated by subtracting the outcome of TX→Y

and TY→X . Furthermore, transfer entropy captures the amount of information transmitted from

past states of the destination variable to the source, which is consistent with the interpretation of

causality introduced by Wiener (Wiener, 1959; Wibral et al., 2014). The temporal evolution of the

information transfer between two variables is calculated by applying the local transfer entropy to

single realizations of the stochastic processes (Lizier et al., 2008):

tex→y = log

p
(
yt+n | y

dy

t ,xdx
t

)
p
(
yt+n | y

dy

t

)
 (3.17)

The local transfer entropy assess which variables are acting as emitter and receiver during a

specific time step, while the robot is executing the task.

These information theoretic measures rely on a correct estimation of the probabilities from recor-

ded data points. Although for entropy and mutual information, where one or two dimensions are

involved, a naïve estimator such as fixed binning usually suffices, a correct evaluation of transfer
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entropy is more problematic due to high-dimensional spaces.

In fact, the recorded signal is projected onto a multi-dimensional phase space by embedding the

time series. Thus, simple estimators are not reliable (Lee et al., 2012; Lizier, 2014) and probability

distributions are reconstructed employing more sophisticated techniques such as kernel density

estimation. In this work, the rectangular kernel is employed to infer the distribution from the

recorded finite dataset, which is the estimator utilised in the original formulation of the transfer

entropy (Schreiber, 2000):

K(x) =
1

NX

NX∑
i=1

|x− xi| ≤
h

2
(3.18)

This kernel draws a n-dimensional box with sides of fixed size around each point, defined with a

constant value of h = 1 in this article, counting the number of element xi of the dataset that are

close to the reference point x. The number of dimensions n depends on the number of variables

that define the probability distribution. Further analysis are based on the Gaussian kernel, defined

as follows for the univariate case:

K(x) =
1

NX

NX∑
i=1

1√
2παh2

e
−0.5

(
x−xi
αh

)2

(3.19)

Where h is the bandwidth. The choice of a correct bandwidth is essential as it defines the

smoothness of the distribution. If h is chosen too small, spurious results are included in the

reconstructed probability distribution. On the other hand, a large bandwidth obscures fine struc-

tures that may characterize the recorded dataset. The values of the parameter α is manipulated

in order to fine tune the smoothing of the distribution. An efficient and widely tested method to

assess the correct value of h is the Silverman’s rule of thumb (Silverman, 1986):

h = σ

(
4

3n

) 1
5

(3.20)

where n is the number of points of the recorded time series and σ is the standard deviation.

The calculation of mutual information and transfer entropy includes joint distributions and em-
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Figure 3.3: Evorobot simulator. The picture shows a running experiment, depicting the envi-
ronment and the robot on the left, the neural activity on the right.

bedded multi-dimensional vectors. The extension of Gaussian kernel to multivariate distributions

is defined as follows:

K(x) =
1

NX

NX∑
i=1

1

(2π)D/2 | αH |1/2
e−0.5(x−xi)

TαH−1(x−xi) (3.21)

where D is the number of dimensions and H is the bandwidth matrix. A correct estimation of

multivariate probability densities relies on the correct choice of H, which is estimated with the

Silverman’s rule of thumb generalized to D dimensions as follows:

h = Σ

(
4

(D + 2)n

) 1
D+4

(3.22)

where Σ is the covariance matrix of the multivariate dataset, n is the number of recorded points

and D is the number of dimensions.

3.3 Evolutionary robotics simulator

In this thesis I utilise Evorobot (Nolfi & Gigliotta, 2010), an open source software tool for run-

ning evolutionary robotics experiments with epuck robots (Mondada et al., 2006), which are two-

wheeled cylindrical platforms of 3.5 cm radius equipped with various sensors (e.g. infrared sen-

sors) and motor actuators. An example of a running simulation is depicted in Figure 3.3. The

simulator is written in C/C++ and includes the following features. Firstly, an evolutionary robotics
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algorithm allows the experimenter to define a write fitness functions to evaluate individual robot’s

performance. The algorithm includes mechanism for selection and reproduction available for the

experimenter. Secondly, a neural network simulator permits the user to define the architecture

and the activation function that characterises the artificial neurons. The parameters of the neural

network and genetic algorithm are defined in a configuration file. Thirdly, the software includes a

simulator for the robot’s body, including sensors and actuators, as well as the environment and

a set of objects (e.g. target areas, walls). To conduct the experiment presented in this thesis, I

designed and implemented the fitness functions. Furthermore, the software has been modified

to collect data necessary to perform chaotic and information-theoretic analyses.

3.4 Experiment: Chaotic dynamics in simulated robots

In what follows, I describe the experimental scenario and the mathematical tools utilized for

nonlinear time series analysis. The evolutionary robotics experiment is conducted using Evoro-

bot (Nolfi & Gigliotta, 2010). The software employed during the estimation of chaotic measures

has been developed by the author using Matlab, and tested replicating results reported in (Ro-

senstein et al., 1993).

3.4.1 Evolutionary robotics experiment

The robotic platform is a miniature vehicle equipped with several input and proprioceptive sen-

sors. For the purpose of the experiment, I limit the perceptual information to a ground sensor

placed on the front-bottom part of the robot. The wheels of the robot are controlled by two dis-

tinct step motors, and thus the platform is capable of navigating the environment either following

a straight line, or performing turns of various angle. The simulations are replicated with robots

controlled by different artificial neural networks, either a FF, or a SRN (Elman, 1990). The signal

incoming from the ground sensor is preprocessed in order to discriminate two colors, green and

blue, which are the input features of two binary units forming the input layer of the neural con-

troller. The output layer consists of two units, each defining the angular velocity of one the step

motor. The environment is a squared arena of 200 cm side surrounded by walls, containing a

target area with a radius of 20 cm placed at the center (Figure 3.4). The target area has a simple

intrinsic temporal dynamic, changing color at regular intervals between green and blue. The only
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Figure 3.4: The simulated environment. The squared arena contains a target area placed at
the center. The target area changes color between green and blue at regular intervals.
The robot, depicted as a red circle, achieves positive reward remaining on the green
target area. When the target area becomes blue, the reward is negative and the robot
is forced to escape from danger, entering in the empty space of the arena.

environmental variable manipulated in the experiment is the timescale that defines the number

of time steps elapsing before a change of color in the target area. In order to create variations on

the evolutionary constrains, three main experimental conditions are devise by manipulating the

amount of timescales that a population of robot experience during the learning process. In fact,

the evolutionary niche is characterized by either 1(E1), 21(E2), or 61(E3) timescales. Therefore,

different populations of robots experience a different number of temporal dynamics during the

learning process. Each experimental condition is replicated 5 times, using timescales of different

length (Table 3.1), for a total of 15 simulated environments.

The robot gets a positive reward navigating inside the target area when its color is green, whilst

negative score is gained if the agent stays on the blue colored target area. The portion of the

environment outside the target area is a safe zone, where the robot has neither positive nor

negative reward. Formally, the fitness function is defined as follows:

Fitness =


+1 green

−1 blue

0 otherwise

(3.23)

The robot lifespan during a trial is limited to 10,000 time steps, where a time step corresponds to
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Timescales
E1 {100} {200} {300} {400} {500}
E2 {90, . . . , 110} {190, . . . , 210} {290, . . . , 310} {390, . . . , 410} {490, . . . , 510}
E3 {70, . . . , 130} {170, . . . , 230} {270, . . . , 330} {370, . . . , 430} {470, . . . , 530}

Table 3.1: Timescales used in the three experimental conditions. The values refer to the
number of time steps elapsing between changes of color in the target area. In envi-
ronments characterized by a set of multiple timescales, one value is randomly chosen
when the robot is placed in the environment. Each experimental condition is replicated
5 times with variations of the temporal dynamic, modifying the length of the timescales.

200 ms. If the robot collides against a wall the trial terminates. At the beginning of the trial, the

robot is placed at the center of the target area, which always starts with green color. For each

experimental setup, a population of 100 genotypes is randomly generated with 8 bit encoding,

which define the values of the free parameters of the neural network. The values contained in

the genotype vector are normalized in the range [-5,+5] for the synaptic weights and [-1,+1] for

biases. The size of the vector describing the genotype is 17 for the FF and 26 for the SRNnetwork.

For each experiment, the population of robot is evolved for 200 generations, which are enough

to reach a steady state in the evolutionary process. At the end of each generation, the 5 best

robots generate 20 offspring. In order to smoothly explore the space of the possible solutions, the

evolutionary process is driven by mutation, which is a local search operator. During reproduction,

there is a 2% probability of flipping a bit in the artificial genome. Although debatable, cross-over

is not employed as the operator may cause instabilities in the learning process, generating major

transitions on the fitness landscape (Nolfi & Floreano, 2000). In order to avoid regressions in the

evolutionary path, elitism is employed, that is, each robot selected for reproduction generates a

clone. The number of trials available to the robots during each generation is proportional to the

number of time intervals the robot may be exposed throughout the evolutionary process. Thus,

robots trained in environments characterized by 21 or 61 timescales have a high probability to

experience every time interval during phylogenetic development. Every experiment is repeated

40 times for each type of neural controller, generating new initial genotypes using different random

seeds. The parameters are summarized in Table 3.2.

In the input layer, FF and SRN neural controllers have two units that encode the incoming infor-

mation from the ground sensor. To build a system as simple as possible, continuous input value

68



3.5. EXPERIMENT: INFORMATION THEORETIC DECOMPOSITION OF EMBODIED SYSTEMS

Parameter Value
Population 100
Replications 10

Parents 20
Offspring 5
Encoding 8 bits
Mutation 2%
Elitism 1
Weights [-5,5]
Biases [-1,1]

Parameters FF 17
Parameters SRN 26

Generations 200

Table 3.2: Genetic algorithm parameter table for experiment 1

of the single ground sensor are pre-processed to feed two input units with binary activation, where

each neuron reacts to one of the two colors of the target area. With this simple perceptual sy-

stem, robots do not gain any sensory information when they navigate the environment outside

the target area. The input signal is propagated to a three neurons hidden layer, which is fully con-

nected to two output neurons that regulates the speed of left and right motors. Both hidden and

output neurons are connected to a bias unit, and each unit is updated according to Equation 3.8.

The SRN has an additional layer of context units that store the output values of the hidden layer

at the previous time step. This additional layer is connected to the hidden units and serves as

additional input to the network (Equation 3.4). The artificial neurons are formalised with a logistic

function (Equation 3.1).

3.5 Experiment: Information theoretic decomposition of embodied systems

In this section I report the details of the experimental setup and the measures utilized during data

analysis. Evolutionary robotics is a semi-supervised learning method that autonomously explo-

res the solution space defined by a global utility function. By mimicking the evolutionary process,

populations of robots develop a solution finding the optimal free parameters of the system, ad-

justing the values of synaptic weights and motor biases. At the end of evolution, data is recorded

from the 4 neurons of the neural network during the execution of the task. The recorded time

series are subsequently analysed with information-theoretic measures.
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Figure 3.5: The experimental scenario. (a) depicts themaze and the robot (black circle), placed
at the starting position. (b) shows a schematic representation of the robot’s morpho-
logy with the displacement of the sensors. The left (IF-L) and right (IF-R) infrared
sensors utilized in the experiment are painted in red. (c) the artificial neural network.
Numbers refer to the identification numbers (ID-n) used is subsequent figures for
referring to specific connections. The output layer includes two motor neurons that
separately control the left (M-L) and right (M-R) motors.

3.5.1 Simulated robotic scenario

Populations of simulated e-puck robots are evolved using Evorobot, a scientific software deve-

loped for evolutionary robotics experiments (Nolfi & Gigliotta, 2010). The simulated agents are

miniature cylindrical robots with two differential wheels and 8 infrared sensors placed around the

body (Mondada et al., 2006). In this experiment, only the front middle left and front middle right

sensors are activated and connected to the controller (Figure 3.5(b)).

The environment is a simple squared maze with inner walls of 30 cm length and outer walls

of 54 cm, shaping 4 corners of 90◦. At the beginning of the trial robots are placed after the

bottom-right corner, as shown in Figure 3.5(a), with the front part of the agent directed towards

the upper-left corner. The aim of the simulation is to mapping the relations between variables

forming the system, rather than the robots’ ability to learn multiple tasks or develop robustness

toward noise. Therefore, the environment where robots evolve is not manipulated in order to avoid

a combinatorial explosion of the factors involved during the information-theoretic analysis.The

length and displacement of the walls, as well as the starting position, are constant. During the

learning stage, the life span of a robot is limited to 2,000 time steps and a collision with the walls
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terminates the trial. A population of 100 robots characterised by different genotypes with 8 bits

encoding is tested and the performance is measured according to the following fitness function:

Fitness = (m1 +m2)− 2|m1 −m2| − 0.5(i1 + i2) (3.24)

where m1 and m2 are the speed of the left and right motor actuators, i1 and i2 the activation of

the left and right infrared sensors. The fitness function selects robots that move in the arena at

the highest speed. The first two components of the fitness function affect the motor behavior,

rewarding a high forward angular velocity while penalizing rotations of the robot’s body. The

third component punishes the activation of the two infrared sensors, forcing wall avoidance. The

selection of the robots that generate the population of the next generation is rank based. The 20

robots which achieve the largest fitness generate 5 offspring with a 2% probability of mutating

a single bit of the vector encoding the genotype. Reproduction does not follow a cross-over

scheme, where non overlapping parts of two different artificial genomes are mixed. Although

the utility of this operator is controversial in the field of evolutionary robotics, mixing different

genotypes may lead to instabilities during the evolutionary process (Nolfi & Floreano, 2000).

One offspring of each parent is replicated with elitism, that is, the genotype is cloned without any

mutation. Therefore, the best solution is preserved to guarantee stability during the evolutionary

process, avoiding descends on the fitness landscape. The evolution iterates for 200 generations

and the simulation is replicated 10 times with different random seeds to generating the initial set

of genotypes. The parameters are summarized in Table 3.3.

The neural network architecture is recurrent (Equation 3.5) and designed avoiding complexity,

consisting of two input neurons that encode the activation of the left and right proximity sensors

normalised in the range [0, 1]. The input layer is fully connected to two output units (Figure 3.5(c)).

Each artificial neuron of the output layer regulates the speed of a motor actuator and the two units

are connected with lateral connections. The motor neurons are connected to a bias unit and the

activation of the incoming signal is updated with following equation:

ma
t = Φ(mb

t−1 + i1 + i2 − ca) (3.25)
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Parameter Value
Population 100
Replications 10

Parents 20
Offspring 5
Encoding 8 bits
Mutation 2%
Elitism 1
Weights [-5,5]

Parameters 8
Generations 200

Table 3.3: Genetic algorithm parameter table for experiment 2

where mb
t−1 is the activation of the output b at the previous time step, ca is the bias unit, i1 and

i2 are the input neurons that encode the activation of left and right infrared sensor, respectively;

output neurons are update with the logistic squash function (Equation 3.1). The number of free

parameter encoded in the genotype is 8. The binary values stored in the genome are normalized

in the range [-5,+5] for synaptic and bias connections.

The set of information-theoretic measure and the kernel density estimators for reconstructing the

probability distributions from the recorded data are described in Section 3.2.3. Equation 3.16

and 3.17 that define the transfer entropy include embedded vectors. The embedded lag τ is

estimated with the mutual information or the average value of the local form, as discussed in the

result section. The minimum embedding dimension d is estimated using the false nearest neig-

hbour algorithm (Equation 3.8). The threshold of false neighbour is set to 20%, as the underlying

dynamics may not be fully deterministic.
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Chapter 4

Chaotic dynamics in simulated robots

4.1 Introduction

This experimental chapter aims at investigating the possibility of understanding the global pro-

perties of an embodied and situated system, which is one aspect of the antireductionist and

holistic perspective. A mathematical theory that easily map onto such perspective on scientific

investigation is chaos theory, where a system is described in terms of a set of coupled nonlinear

equations. The analogy with an integrative view of science is evident as the subcomponents

cannot be separated and studied in isolation. The interest of such models is focused on global

properties that characterize the system conceived as a whole. Chaos theory is surely a fasci-

nating mathematical fact, where deterministic systems exhibit erratic behaviour. However, the

model does not include stochastic components and the seemingly random evolution of the dyna-

mic is the product of nonlinear and complex interactions among the variables of the system. What

makes nonlinear chaotic systems so appealing is the possibility of creating mathematical models

that are fully understood, without incorporating stochastic elements to formalise the inexplicable.

However, major issues undermine chaos theory if the focus moves from top-down abstract mo-

dels to the domain of empirical data. In fact, models may be developed in a bottom-up fashion,

starting from observables. Following a data-driven approach, chaotic measures are estimated

on attractors reconstructed in phase space from recorded time series. However, discriminating a

low-dimensional deterministic system from linear and noisy dynamics is still an unsolved problem.

Notwithstanding the impossibility of providing a final proof that demonstrates the presence of

chaos in recorded data, I test the theory on a large number of robots in order to assess the

practical utility and concrete applicability of fractal dimension D2 and level of chaos λ2 to real-
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world phenomena. The analysis of recorded time series is guided by a precise operationalisa-

tion of the definition of chaos presented in Section 2.3.4 with appropriate nonlinear tools. Thus,

acknowledging the impossibility of definitive hallmarks for chaos, the risk of misinterpreting the

results is reduced to an acceptable minimum. Relevant previously published works are reviewed

in Section 2.3.5, demonstrating that chaotic measures are capable of quantifying the dynamic

underlying robots’ behaviour with the phase space reconstruction technique. Another direction

of research in mobile robotics focuses in top-down modelling, where robots’ behaviour is guided

by chaotic controllers. Results show that two wheeled robots efficiently explore unpredictable

environments Nakamura & Sekiguchi (2001); Martins-Filho et al. (2004); Volos et al. (2013), out-

performing agents controlled by stochastic controllers.

In what follows, I report a series of evolutionary robotics experiments where simulated e-puck

robots develop a behavioural response to a target area that changes colour and properties over

time. At regular intervals, a target area placed at the centre of the arena switches between posi-

tive and negative reward. The dynamic governing the agent-environment interaction is analysed

estimating chaotic measures on the reconstructed attractor. By using a large number of simula-

ted robots, I investigate the applicability of chaos theory to the more general class of embodied

and situated agents.

4.2 Results

At the end of the evolutionary process, the robot of each replication that achieved the largest

fitness score during the last generation is selected for data collection. Therefore, a total of 1,200

different trajectories are used for chaotic analysis. The best robots of each replication do not

show a significant difference in performance, thus the selected agents are tested in environ-

ments never experienced during evolution. To evaluate the robots’ adaptiveness towards novel

situations, the lower and upper bounds of the set of timescales used during training is expanded

of ±50. For instance, if the robots have been trained in a world characterized by a set of ti-

mescales Tevo = {90, 91, . . . , 109, 110}, the performance is evaluated using intervals in the range

Ttest = {40, 41, . . . , 159, 160}. During evolution the temporal dynamic of the target area is cho-

sen randomly. On the contrary, for collecting data the best robots act for 10,000 time steps for
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Figure 4.1: Time series embedding. Reconstructed chaotic attractor from the vector storing the
position of the best robot generated from seed 24, controlled by a SRN, and evolved
in environments where the target area changes color with 61 different timescales
(E3) in the range Tevo = {470, 471, . . . , 529, 530}. (a) shows the position of the robot,
data used for the reconstruction of the attractor. (b) illustrates the robot’s trajectory
in Cartesian space and (c) displays the reconstructed attractor in phase space.

each timescale. Robots are exposed to several environments and performing chaotic analysis

for every trajectory is computationally expensive. In order to restrict the number of time series,

trajectories are recorded only from the environment where robots score the largest fitness. The

first 3,000 time steps of the time series are discarded in order to avoid artifacts generated by the

initial transient phase of the robot’s trajectory.

4.2.1 Chaotic analysis

The first step to take in order to conduct nonlinear time series analysis is the reconstruction

of the attractor in phase space (Equation 3.6). From an embodied and situated perspective

neural controller, robot, and environment are parts of a system governed by some unknown set

of laws. Therefore, any time series conveys information about the entire system, in which all

the subcomponents directly or indirectly interact. In this study we arbitrarily analyze the time

series recorded from the position of the robot in the environment (Figure 4.1(a)). Specifically, we
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Figure 4.2: Parametrization of the embedded vector. A correct reconstruction of the attractor
from amono-dimensional time series depends upon appropriate values of embedding
delay τ and dimension m. Data is collected from the best robot of seed 24, evolved
in E3 with timescales Tevo = {470, 471, . . . , 529, 530}, and controlled by a SRN. (a)
shows the estimated mutual information between the original time series and itself
after applying temporal delays (∆t). The first minimum is reached with ∆t = 8 (red
dot), which represents the correct value for τ . (b) displays the percentage of false
nearest neighbors for different embedding dimensions. To fully unfold the attractor
the minimum m is 3, as it lowers the percentage below the threshold of 5% (red
dashed line).

consider the environment as a Cartesian space (Figure 4.1(b)) and the time series is generated

recording the position of the robot in the abscissa.

As discussed in the method section, a correct reconstruction of the attractor depends on a cor-

rect parametrisation of the parameter τ and d that define the embedding lag and dimension,

respectively. The embedding lag τ is approximated by the first minimum of the estimated mutual

information (Equation 3.7), as discussed in Section 3.2.1. In practice, the information-theoretic

measures captures the nonlinear correlations in the system, capturing the average temporal in-

terval elapsing between crucial sub-behaviours. For example, the navigation in a straight corridor

exhibited by robotic platform exploring a maze is irrelevant from a dynamical perspective. On the

contrary, turning behaviour is relevant, as new information is brought into the evolution of the sy-

stem. In this experiment, marginal and joint probabilities are calculated näively with bins of fixed

size. The only parameter, the bin size, is optimized using the technique proposed by Shimazaki &

Shinomoto (2007). Following the estimation of the embedding lag, the attractor is reconstructed
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Figure 4.3: Attractor dimension. The fractal dimension is estimated with the correlation inte-
gral. The algorithm is applied to the best robot of replication 24, controlled by a SRN
and evolved in E3 with timescales Tevo = {470, 471, . . . , 529, 530}. (a) shows the lo-
garithmic plot of the correlation integral versus the distance threshold r for different
embedding dimensions m. The linear fit (red dashed line) of the scaling region esti-
mates the fractal dimension D2. (b) reports the estimated values of D2 for different
embedding dimensions, starting from the minimum m, for the chaotic robot (black
dots), and a stochastic system generated with synthetic data (red stars).

in several increasing dimensions to unveil the minimum values of d utilizing the false nearest

neighbour algorithm (Equation 3.8). In the experiments the threshold is set to a value of 5% and

m is increased to a maximum value of 20. Figure 4.2 shows an example of parametrisation of τ

and d based on a specific robot, whereas Figure 4.1(c) depicts the fully unfolded chaotic attractor.

In order to quantify the underlying dynamics, D2 is estimated on the phase space using the

correlation integral (Grassberger & Procaccia, 1983) defined by Equation 3.9. The algorithm

counts the number of points surrounding a reference point pk, iterating the process for the whole

trajectory of the attractor. The correlation integral includes the parameter r that defines the length

of the boundaries for searching neighbouring points. The range of values of r is calculated taking

the smallest distance rmin and the largest distance rmax between all pairs of points. I use 30

different spheres of radius rn = rmin + n(rmax − rmin)/30, with n incrementing from 1 to 30. To

estimating the fractal dimension, D2 can be approximated from the slope of the straight scaling

region of the plot log(Cm(r)) versus log(r), as shown in Figure 4.3(a). The slope of the scaling
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Figure 4.4: Level of chaos. The level of chaos is quantified by λ1, calculated from the logarithm
of the average local divergence of neighboring points over time. The linear fit of the
scaling region (red dashed line) estimates the value of λ1 of the recorded data. (a)
shows convergence of the estimation of λ1 at higher embedding dimensions for the
best robot of seed 24, whereas (b) shows that the agent evolved from seed 27 fails
to stabilize. Both datasets are recorded from robots controlled by a SRN and evolved
in environments with timescales Tevo = {470, 471, . . . , 529, 530}.

region is calculated for embedding dimensions d ∈ D in the range D = {m, . . . ,m+ 10}, where

m is the the minimum embedding dimension (Figure 4.3(b)).

The second chaotic measure calculated on the reconstructed attractor is λ1, which quantifies the

level of chaos in the system. In this thesis I employ the method developed by Rosenstein et al.

(1993) formalised with Equation 3.10. The algorithm estimates the local exponential divergence

of nearby trajectories. λ1 is approximated by the linear fit applied on the scaling region of the

slope obtained from the plot of < ln(div) >, which is the logarithmic of the average divergence,

versus the time horizon (Figure 4.4).

As discussed in the method section of this thesis, appropriate nonlinear statistics is applied on

the reconstructed attractors to verify the presence of a low-dimensional deterministic system.

Thus, nonlinear prediction error is estimated to test the determinism of the underlying dynamics

according to Equation 3.11. In particular, the number of neighbors is varied in the range 1 to

300, whereas prediction horizon is left constant with N = 1. Furthermore, the stationarity of the

embedded time series is assessed with the cross-prediction error (Equation 3.12). Finally, the
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presence of a linear system with injected noise is investigated with the surrogate data testing

on scrambled time series, that is, synthetic data generated by disrupting hypothetical nonlinea-

rities on the recorded signal. In this experiment, nonlinear prediction error is calculated on the

surrogate time series. The process is repeated for 40 scrambled time series and the nonlinear

prediction error of the original time series is compared with a Wilcoxon rank sum test.

The first step to take before estimating λ1 and D2 is to verify whether the time series is a valid

candidate for chaotic analysis. For evaluating the efficiency of the evolved behavioral strategy in

the presence of chaos, I divide the robots into two groups: chaotic and non-chaotic. Following the

steps described in detail in the previous section, trajectories that fail to lower the amount false

nearest neighbors below 5% at the tenth dimension are labeled as non-chaotic. Furthermore,

datasets which fail to exhibits a deterministic dynamic due to a large nonlinear prediction error are

included in the same set. Moreover, trajectories unable to reject the null hypothesis, postulated

with the surrogate data testing, of a linear dynamical system with noise are also classified as

non-chaotic. Finally, a constant increase of the fractal dimension D2 (Figure 4.3) or a flattening

of the scaling region for λ1 (Figure 4.4), when the time series is embedded in higher dimension is

also a hallmark for stochastic system. Finite dimensional systems converge once the embedding

dimension is large enough and the attractor is properly unfolded. Stochastic systems are infinite

dimensional and the estimated fractal dimension never settles to a constant value. At the same

time, λ1 decreases because higher embedding dimensions are large enough to accommodate

the dynamic. Therefore embedded time series that fail the convergence of λ1 or D2 are also

categorized as non-chaotic. Nonstationary time series are not included in any of the two groups

as a dynamic that qualitatively changes over time undermines the reliability of λ1 and D2. Any

robot that is not included either in the non-chaotic group, or discarded after the cross-prediction

error for stationarity, is classified as chaotic. Average values of λ1 andD2, as well as the number

of chaotic robot for each experimental scenario, are reported in Table 4.1.

4.2.2 Chaotic measures and performance

A first question I want to answer is whether robots that exhibit a chaotic behavior have advanta-

ges over robots in the non-chaotic group. To compare different groups of robots non-parametric
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FF SRN
N λ1 D2 N λ1 D2

E1 38 0.057(±0.052) 1.66(±0.67) 59 0.065(±0.057) 1.64(±0.67)

E2 52 0.060(±0.051) 1.61(±0.63) 51 0.068(±0.064) 1.53(±0.70)

E3 49 0.046(±0.043) 1.55(±0.70) 58 0.070(±0.041) 1.32(±0.60)

Table 4.1: Average values of chaotic measures. Number of chaotic robots (N ), level of chaos
(λ1), and fractal dimension (D2).

bootstrap is used, which is a simple form of Monte Carlo estimation. In frequentist statistics, the

sample is representative with some degree of approximation of the unknown true distribution.

The idea behind bootstrap is to create fake samples θ̂(D) exploiting the values of the original

datasetD. In practice, to comparing two empirical distributions the algorithm involves few simple

steps. Firstly, a new sample θ̂(D1) of the same size n of the original data D1 is created choosing

random subjects with repetition and substitution. Similarly, a new dataset θ̂(D2) of sizem is rand-

omly generated for distributionD2 and the difference dk between the average value of resampled

populations θ̂(D1) and θ̂(D2) is calculated. The process is iterated k times and the final result is

a bell shaped distribution consisting of the differences of the means between samples bootstrap-

ped from the recorded data D1 and D2. Finally, upper and lower 95% confidence intervals are

derived from the 5th and 95th percentiles of the distribution. The only parameters is the number

of bootstrap, which is set to k = 1, 000 as the estimation of the percentiles stabilizes. This simple

technique can be easily used to evaluate significant statistical differences between two populati-

ons. If 0 is included between the upper and lower confidence intervals, the two populations are

equal. On the contrary, two negative or positive confidence intervals indicate a higher score for

D2 and D1, respectively. The motivations that lead to applying bootstrapping for comparing two

populations are multifaceted. From a methodological perspective, non-parametric bootstrapping

avoids assumptions on the true distribution. The available data is exploited to generate a more

tractable normal curve. Moreover, there is a practical reason that arises from the different size of

the samples, which undermines the statistical power of traditional statistical tests. Before testing

the difference in performance between robots that exhibit a chaotic behavior and agents that are

not governed by such dynamics, preliminary analyses are conducted on chaotic robots control-

led by different kinds of neural networks. The motivation is to verifying whether the presence
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Figure 4.5: Mean difference bootstrapping of the fitness between chaotic robots controlled
by FF or SRN neural network. The statistical test evaluates the effect of the neural
controller on the performance in the presence of chaos. Positive confidence intervals
(red solid lines) indicate a better performance of agents with FF controllers. During
the testing phase, robots act in environments never experienced during evolution,
expanding the upper and lower bounds of the set of timescales by 50. (a), (b), and
(c) refer to robots evolved in E1, E2, and E3, respectively.

of deterministic chaos affects the quality of the solution despite the neural controller is static or

dynamic. Results reported in Figure 4.5 show that there is no significant difference of fitness

between FF and SRN in all three kind of environments, that is, experiments where robots are

trained with 1, 21 or 61 timescales. Therefore, robots controlled both by FF and SRN are grou-

ped together and tested against agents that do not show presence of chaos. However, there is

no significant difference between the performance of chaotic and non-chaotic robots evolved in

E1 (Figure 4.5(a)).

Interestingly, non-parametric bootstrapping demonstrates that robots characterized by chaotic

dynamics have a significant higher fitness score in environments where they have been exposed

to a variety timescales during evolution, as shown in Figures 4.6(b-c).

To strengthen the result, robots trained using a single interval are tested with ±80 timescales,

that is, the same number of environments experienced by robots evolved with 61 environments

during the testing phase. The same test is performed on the population of robots evolved with 21

timescales, expanding the original set of time intervals of ±70. Results confirm the hypothesis
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Figure 4.6: Mean difference bootstrapping of the fitness between chaotic and non-chaotic
robots. The statistical test evaluates the effect of chaotic behaviors on the robots’
performance during the testing phase. Positive confidence intervals (red solid lines)
indicate a better performance of chaotic agents. (a) shows that there is no significant
difference in performance in E1. (b) and (c) show a larger fitness for chaotic robots
evolved in E2 and E3, respectively.

of a higher ability of robots driven by a chaotic dynamics to adapt to novel environments. Com-

paring Figure 4.6(a) with Figure 4.7(a), there is a noticeable increment on the difference of the

performance between chaotic and non-chaotic robots. Consistently, the increasing divergence

on performance when robots trained with 21 timescales are tested in a wider variety of intervals

is also evident, as shown in Figure 4.6(b) and Figure 4.7(b).

So far I have evidence that robots governed by chaotic dynamics have a better behavioral re-

sponse to environments never experienced during the evolutionary process. A further question

concerns whether λ1 orD2 are related to the robots’ performance. To assess the effect of λ1 and

D2 on the robots’ behavior, Pearson correlation coefficient is estimated to quantify the degree of

linear dependence between the average fitness score on the testing scenario and chaotic mea-

sures. Results summarized in Figure 4.8 show a moderate negative correlation between D2 and

fitness score, whereas λ1 has a weak positive correlation.
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Figure 4.7: Mean difference bootstrapping of the fitness between chaotic and non-chaotic
robots evolved in E1 and E2, tested in a larger number of novel environments.
Robots evolved in E1 and E2 are tested with 161 timescales, as robots of E3. Positive
confidence intervals (red solid lines) indicate a better performance of chaotic agents.
(a) shows no significant difference in E1. (b) show a better performance for chaotic
robots evolved in E2.

4.2.3 Chaotic dynamics and behavioral strategies

In this section I verify whether the level of chaos, quantified by λ1, or the number of degrees

of freedom, estimated with fractal dimension D2, are related to different behavioral strategies.

These dynamic descriptors are calculated in an abstract phase space, however, sensitivity to

initial conditions and complexity of the system affect the actual behavior of the robot in physical

space.

Robots’ behavior is evaluated by distal analysis (Nolfi & Floreano, 2000), that is, a behavioral

description from the point of view of the observer. By inspecting the trajectories of the robots, I

group agents that display similar solutions, and for each experiment two prototypical behaviors

are selected. The choice of the selected behaviors is arbitrary, but it follows a rationale. I analyze

behaviors that are characteristic of environments where robots are exposed either to 1, 21, or

61 timescales during the evolutionary process, comparing the effect of chaotic measures on the

trajectories followed by the robots and the performance. Furthermore, I select a strategy which

emerges both in environments where robots are trained with 1 timescale and scenarios that force
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Figure 4.8: Correlations between chaotic measures and fitness. The fitness value measures
the average performance of chaotic robots during the testing phase, when the number
of timescales is increased of ±50. Points of the scatter plot represents single robots.
The gray dashed line indicates the Pearson correlations of λ1 (top) and D2 (bottom)
with the fitness for robots evolved in E1(a), E2(b), and E3(c).

the agent to adapt to several timescales during evolution.

Experiment 1

In the group of chaotic robots evolved in environments characterized by a single timescale, 4

robots develop a behavioral strategy which is not present in scenarios where agents are exposed

to several intervals. Figure 4.9(b) shows a prototypical trajectory drawn by Robot 1 Experiment

1 (R1E1) controlled by a FF neural network. A similar behavior (Figure 4.9(c)) is produced by

Robot 2 Experiment 1 (R2E1), which mounts a SRN. Both agents are evolved in an environment

where the target area changes color every 200 time steps. As shown in Figure 4.9(a), estimated

chaotic measures are very similar for robots controlled either by a FF (D2 = 2.11, λ1 = 0.022) or a
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SRN (D2 = 1.99, λ1 = 0.002). Furthermore, the performance of the two robots during the testing

phase is comparable. As shown in Figure 4.9(f) and Figure 4.9(g), both agents have a heteroge-

neous efficiency towards different timescales. Overall, the evolved behavioral strategy is resilient

to disturbances given by novel timescales, scoring an average fitness of 0.37± 0.21 (R1E1) and

0.47±0.18 (R2E1). In comparing the first two agents, R1E1 and R2E1, I show that robots exhibit a

similar behavior in Cartesian space, and are characterized by similar chaotic measures estimated

in phase space, react likewise to environment never experience during learning. To further inves-

tigate the effect of dynamic descriptors on the quality of the solution, I examine a third robot that

exhibits a different behavior, but characterized by equivalent complexity and level of chaos. The

selected Robot 3 Experiment 1 (R3E1) is controlled by a SRN and is evolved in an environment

where the target area switches color every 200 time steps. Although chaotic measures of the

reconstructed attractor are similar (D2 = 2.07, λ1 = 0.015), the trajectory plotted in Figure 4.9(d)

differs from the behavior displayed by the other two robots, namely, R1E1 and R2E1. The stra-

tegy developed by R3E1 consists of an elliptical orbit outside the blue target area, which leads

the robot to enter with a trajectory tangent to the circumference of the target area when the color

switch happens. While on the green target area, the robot draws circles of small radius gaining

positive reward. This solution is less robust compared with the prototypical behavior of R1E1

and R2E1, which directs the robots inside the green target area with a perpendicular trajectory.

Figure 4.9(h) shows a high fitness when R3E1 is tested in the environment experienced during

the evolutionary process, but the performance clearly drops with different timescales, lowering

the average fitness score to 0.03 ± 0.08. The last behavioral analysis of robots evolved in envi-

ronments with a single timescale is focused on agents with opposite values of chaotic measures,

that is, low fractal dimensions and higher levels of chaos. A fourth agent, Robot 4 Experiment 1

(R4E1), is randomly chosen among the group of robots with λ1 = [0.15; 0.25] andD2 = [0; 1]. The

robot’s controller is a SRN, evolved in an environment characterized by a timescale of 200 time

steps. The strategy evolved by R4E1 is shown in Figure 4.9(e). According to the results repor-

ted in the previous section, λ1 has a weak positive correlation with the robots’ ability to adapt to

novel environments, but there is a moderate negative correlation between low fractal dimensions

D2 and the performance. Therefore, there is a high probability of selecting a robot that evolved
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Figure 4.9: Behavioral analysis of robots evolved in E1. (a) shows the values of λ1 plotted
against D2 for the whole set of chaotic robots evolved in E1. Markers indicate robots
selected for the analysis. (b-e) depicts the robots’ trajectories over 7,000 time steps
and (f-i) the fitness achieved in every environment experienced by the agents during
the testing phase.

a strategy robust to environmental noise produced by a change in the timescale. Figure 4.9(a)

confirms our prediction showing normalized fitness scores of 0.51 ± 0.30 when the robot acts in

the 101 environments experienced during the testing phase.

From the analysis of robots’ trajectories I can formulate the hypothesis that there is a correlation

between chaotic measures and robustness of the solutions toward novel environments, with the

constraint that the agents exhibit the same behavioral strategy. In other terms, dynamic quantities
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are useful tools for predicting the quality of the behavioral strategy if the underlying dynamical

system is the same, but variables representing parameters have different values.

Experiment 2

In order to provide evidence for the formulated hypothesis, 4 more robots (Figure 4.10(a)) are ex-

amined within the group of chaotic agents trained in environments with 21 different temporal dyn-

amics. Among the various solutions found by the evolved robots, I select the trajectories followed

by Robot 1 of Experiment 2 (R1E2) and Robot 2 of Experiment 2 (R2E2), shown in Figure 4.10(b)

and Figure 4.10(c), respectively. The first robot is controlled by a FF and the evolutionary niche

has timescales in the range T = {390, 391, . . . , 419, 420}. R2E2 evolves in environments where

the color switch happens with intervals T = {190, 191, . . . , 219, 220}, and the agents mounts a

SRN. This kind of behavioral pattern is exhibited only by robots trained in environment with 21

timescales and it is adopted by a total number of 8 robots. The avoidance strategy of the blue

target area is based on circular trajectories that bring the robot in the safety zone, re-entering at

regular intervals to check the state of the target area. If the target area is green, the robot stays

inside, navigating on the central portion of the green target area. Interestingly, the two robots

have a similar behavior and level of chaos, λ1 = 0.088 for R1E2 and λ1 = 0.057 for R2E2, but

the estimated fractal dimension is substantially different. In fact, the underlying dynamic of R1E2

has a dimension D2 = 1.72, whereas the number of degrees of freedom involved in the behavior

of R2E2 is much lower, with D2 = 0.65. Both robots achieve a large fitness in a wide number of

scenarios never experience during the evolutionary process (Figures 4.10(f-g)). As expected, the

robot with lower fractal dimension has a slightly better performance, scoring an average fitness of

0.41±0.29 versus a fitness equal to 0.37±0.26 scored by the robot with a dynamic where a higher

degree of complexity is involved. To randomly choose Robot 3 experiment 2 (R3E2), I follow the

same logic used with the third robot of the E1, that is, an agent that displays a similar level of chaos

(λ1 = 0.081) and a comparable fractal dimension (D2 = 1.64) with R1E2. The robot’s artificial

brain is recurrent and synaptic weights adapt to environments with T = {490, 491, . . . , 519, 520}.

The trajectory of the robot is shown in Figure 4.10(d) and the fitness score recorded in the 121

intervals of the testing phase are plotted in Figure 4.10(h). Results show a considerably better

87



4.2. RESULTS

Figure 4.10: Behavioral analysis of robots evolved in E2. (a) scatter plot of the level of chaos
(λ1) and complexity (D2) of chaotic robots evolved in E2. Markers refer to robots
selected for the analysis. (b-e) show the evolution of the trajectories for 7,000 time
steps in Cartesian space. (f-i) show the fitness score in 121 environments.

performance compared to R1E2 and R2E2, with an average fitness of 0.66± 0.07. Finally, I ana-

lyze a robot with high level of chaos (λ1 = 0.267) and a low fractal dimension (D2 = 0.68). The

trajectory of the selected agent, Robot 4 Experiment 2 (R4E2), and the overall performance is

shown in Figure 4.10(e) and Figure 4.10(i), scoring an average fitness of fitness of 0.49 ± 0.32.

The agents has the same controller and evolves in the same environments of R2E2. Contrary

to the prediction that can be infer from the Pearson correlation shown in Figure 4.8, the average

performance of the robot in environments not experienced during evolution is worse than R3E2.
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This result supports the hypothesis stated above concerning the role of chaotic characteristic

measures on the performance of the robots. In fact, level of chaos and degree of complexity

are not absolute invariant measures that correlate with the efficiency of the solution despite of

the behavioral strategy employed by the agents. Instead, they are useful tools for explaining the

quality of the solution if the robots’ behaviors are governed by the same dynamic.

Experiment 3

To strengthen the preliminary conclusions achieved through behavioral analysis of selected ro-

bots evolved in E1 and E2, 4 more robots of E3 are analyzed (Figure 4.11(a)). For the behavioral

analysis of the last experiment, where robots experience 61 intervals during evolution, I first exa-

mine two robots that exhibit the same kind of behavior, but the underlying dynamics have different

chaotic measures. Themotivation is to validate the hypothesis which follows from the comparison

between the average fitness of R1E2 and R2E2, that is, a low fractal dimension have an effect

on the performance if robots have a similar behavior. The strategy adopted by 6 robots evolved

in environments with 61 timescales consists in elliptical orbits that move the agents outside the

blue target area, followed by regular circles of wide radius drawn inside the green target area.

Within the group of robots that display such a solution, I compare Robot 1 Experiment 3 (R1E3),

whose trajectory is shown in Figure 4.11(b), and Robot 2 Experiment 3 (R2E3), which follows

more regular orbits, as shown in Figure 4.11(c). The two robots clearly have different values

of chaotic measures, with R1E3 having a D2 = 1.65 and λ1 = 0.086, against D2 = 0.91 and

λ1 = 0.165, which characterize the dynamic of R2E3. In terms of fitness attained during testing

stage, R1E3 reaches a mean value of 0.66± 0.03 (Figure 4.11(f)), while R2E3 scores 0.80± 0.03

(Figure 4.11(e)). As expected, lower fractal dimension and higher level of chaos have a positive

impact on the overall performance of the robot if the two agents have a similar behavior. Remar-

kably, the trajectory followed by R2E3 is visually more regular than the path exhibited by R1E3.

Moreover, 7 robots of E2 behave in a similar manner, including R3E2, which extends the analy-

sis to robots evolved with a different number of timescales. Although the behavioral strategy is

similar, Figure 4.10(d) and Figure 4.11(b) show a clear difference between trajectories of R3E2

and R1E3. As reported previously, fractal dimension, level of chaos, and average fitness have
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Figure 4.11: Behavioral analysis of robots evolved in E3. (a) points represent chaotic robots
with the associated level of chaos (λ1) and fractal dimension (D2). Markers show
the selected robots. (b-e) depict the trajectories followed by the analyzed robots
while executing the task for 7,000 time steps. (f-i) illustrates the performance of the
4 robots during the testing phase in 161 different environments.

similar values for both robots. This is consistent with the hypothesis of a correlation between

chaotic characteristic measures and fitness, with the restriction that agents employ a similar be-

havioral strategy. Furthermore, the evolutionary niche that shapes the solution is subordinated

to dynamics resulting from the evolutionary process. In fact, similar behaviors characterized by

comparable level of chaos and complexity, but evolved with a different number of timescales,

have the same capability to adapt to novel environments. As for the previous experiments, an

agent with similar level of chaos and fractal dimension of R1E3 is selected. Figure 4.11(d) shows
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the trajectory drawn by Robot 3 Experiment 3 (R3E3) and the fitness achieved in the 161 envi-

ronments of the testing phase is reported in Figure 4.11(h). Although the dynamic of R3E3 is

characterized by chaotic measures similar to R1E3, withD2 = 1.54 and λ1 = 0.109, the solution

found by R3E3 is more efficient than the strategy of R1E3. In fact, the average fitness is equal to

0.81±0.03, which is closer to R2E3. This confirms our claim thatD2 and λ1 are not absolute inva-

riant measures that correlates with the performance, but they are reliable estimators only when

robots are governed by the same dynamic. The first three agents are controlled by a SRN and are

trained using the set of timescales T = {370, 371, . . . , 429, 430}. The dynamic of the last agent,

Robot 4 Experiment 3 (R4E3), is characterized by an intermediate level of chaos (λ1 = 0.097) and

a low fractal dimension (D2 = 0.71). The trajectory of R4E3 is shown in Figure 4.11(e) and the

fitness gained in the test environments is reported in Figure 4.11(i). The behavioral strategy is

the product of a SRN, evolved with a set of timescales T = {290, 291, . . . , 319, 320}. The solution

is robust towards environments experienced during training and novel scenarios, achieving an

average fitness of 0.90± 0.01.

Results concerning the behavioral analysis of robots evolved in E3 are consistent with deductions

that follow from the examination of robots’ trajectories evolved in experiments characterized by 1

and 21 timescales. Therefore, the hypothesis that D2 and λ1 are correlated to the fitness score

when robots behave in a similar manner is confirmed. Moreover, I argue that D2 and λ1 are

invariant with respect to the evolutionary niche.

Common behaviour for experiment 1,2 and 3

In order to provide further evidence to this claim, a behavioral strategy that emerges in every

experiment is examined. Estimated chaotic measures show a variety of qualitatively different at-

tractors, with level of chaos bounded in a small interval (λ1 = [0.0003; 0.13]), but with noticeable

differences for the number of degrees of freedom (D2 = [0.68; 2.38]). Robots that evolve this

strategy navigate inside the green target area following the perimeter. When the target area is

subjected to the color switch, agents steer into the empty portion of the environment. While the

color of the target area is blue, robots move following a circular trajectory of small radius. By em-

ploying this behavioral strategy, the agents enter inside the target area at regular intervals in order
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Figure 4.12: Behavioral analysis of robots that developed a similar strategy in different
experiments. Trajectories followed by robots with high fractal dimension evolved
in E1(a), E2(b), E3(c), and the corresponding fitness achieved during the testing
phase (d-f). Strategies adopted by robots with low fractal dimension (g-h), and the
performance of robots trained in E1(j), E2(k), and E3(l).

to check the current color. In order to have an unbiased comparison between robots evolved in

different experiments, that is, trained in environment with 1, 21 or 61 timescales, agents pertai-

ning to E1 and E2 are tested in 161 environments. Although the strategy evolved by this pool

of agents is efficient and almost every robot achieves a high average fitness score (0.80± 0.01),

chaotic measures still correlate with efficiency of the solution. The robot that uses the weakest

behavioral strategy has also the highest fractal dimension D2 = 2.38, scoring a noticeable lower

average fitness of 0.60±0.79. I compare two clusters of three robots, grouped together according
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to the values of D2 and λ1. The criteria for selecting the trajectories is based on robots of E1, as

only a limited number of agents evolve the analyzed prototypical behavior. For each robot of E1

that undergoes a detailed behavioral analysis, two robots of E2 and E3 are randomly selected

within an interval of ±0.1 for fractal dimension and ±0.01 for level of chaos. Therefore, robots

included in the same group have similar D2 and λ1 values. There is a single robot evolved with 1

timescale which dynamic is characterized by a significant high fractal dimension, thus the choice

is constrained to one agent. Instead, the agent governed by a dynamic with low complexity is

randomly chosen among attractors with D2 < 1. From a visual inspection of the robots’ trajec-

tories, and evaluating the fitness achieved in different environments, the effect of the degree of

complexity is evident. Firstly, robots with a low-dimensional chaotic dynamic (Figures 4.12(g-i))

avoid the blue target area drawing small circles in the empty zone of the environment. Instead,

dynamics with a higher degree of complexity lead the robots either to follow a circular trajectory

of wider radius in the empty part of the environment (Figures 4.12(b-c)), or navigate inside the

green target area following a slightly spiral orbit (Figures 4.12(a)). Secondly, Robots with a higher

fractal dimension have a slightly worst performance during the testing phase (Figures 4.12(d-e))

compared with agents’ behavior characterized by a lower degree of complexity (Figures 4.12(j-l)),

as reported in Table 4.2.

High dimensional Low dimensional
Fitness D2 Controller Fitness D2 Controller

E1 0.70(±0.07) 1.59 FF 0.877(±0.03) 0.82 FF
E2 0.83(±0.05) 1.57 FF 0.865(±0.02) 0.82 FF
E3 0.74(±0.13) 1.62 SRN 0.854(±0.04) 0.87 SRN

Table 4.2: Fitness and fractal dimension of robots that exhibit a similar behavior in diffe-
rent evolutionary niches. Robots are randomly selected from a group of agents that
evolved the same behavioral strategy. Agents are evolved in environments charac-
terized by a change in color of the target area with different numbers and lengths of
time intervals. Data show that the performance is unrelated to the evolutionary niche
and the neural controller. Fractal dimension, instead, is a numerical descriptor that
predicts the robustness of the solution towards novel environments.

4.3 Discussion

In this chapter I estimate chaotic measures reconstructing the attractor from the behavior of em-

bodied and situated neuro-robotic systems, trained with genetic algorithm. The procedure for
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calculating level of chaos and degrees of freedom follows a widely accepted definition of chaos

as a deterministic aperiodic dynamic, bounded in a region of the phase space, and sensitive

on small variations on the initial conditions (Kaplan & Glass, 2012). The definition is operati-

onalized using appropriate nonlinear mathematical tools applied on the reconstructed attractor

in phase space. Suitable tests are employed to verify the presence of a low-dimensional and

deterministic chaotic dynamic. Nevertheless, current analytical methods in nonlinear science do

not provide a definitive signature for the presence chaos in empirical data. Although a recent

framework relaxes the definition of chaotic system, including non-autonomous dynamical sys-

tems with stochastic inputs (Poon et al., 2010), the presence of dynamic or instrumental noise

invalidates estimates aimed at quantifying level of chaos or fractal dimension. In the presence of

stochastic components, measures developed for low-dimensional systems are applied to high-

dimensional cases. Therefore, the reliability of such estimators becomes questionable (Kantz &

Schreiber, 1998; Faure & Korn, 2001; Sarbadhikari & Chakrabarty, 2001; Korn & Faure, 2003; Le

Van Quyen et al., 2003; Stam, 2005; Bob et al., 2009; Freitas et al., 2009; Glass, 2009). Consi-

dering this issue, I utilize chaotic measures on a large number of simulated autonomous robots.

The main question concerns whether chaotic measures are useful estimators for explaining the

solution developed through the real time interaction of agents with the surrounding environment.

In this regard, I agree with the interpretation suggested by Bob et al. (2009). The authors find

a correlation between schizophrenic associations and increased level of chaos calculated from

recorded electrodermal activity, but they are aware of the current limitations for discriminating

stochastic and fully deterministic systems. A large λ1 is thought as a metaphor for pathologically

increasing complexity and less predictability in the neural activity, rather than a certain hallmark

for an underlying chaotic dynamic. Lacking of a reliable test for determinism in nonlinear science,

the contribution of this chapter to chaos theory is to provide evidence about the utility of chao-

tic measures applied to empirical data, while avoiding strong and definitive claims regarding the

underlying dynamics.

The transdisciplinary effort that follows from the embodied and situated view of cognition requi-

res a shared mathematical framework. Moreover, chaos theory has the advantage of creating

models both from equations and recorded data. Therefore, nonlinear analysis of time series
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recorded from behavioral patterns or neural activity are useful for creating a common ground

which links different disciplines. In a recent article, Reynolds et al. (2016) show that mud snails

exhibit chaotic patterns while searching for food. This result may inspire roboticists while buil-

ding a robotic system that executes efficiently a garbage collection task or explores an unknown

area (Nakamura & Sekiguchi, 2001; Martins-Filho et al., 2004; Volos et al., 2013). On the other

hand, ecologists that follow a dynamical system approach have an artificial model which can be

used for confirming hypotheses developed with animal models (Floreano et al., 2007). Results

reported in this paper show that robots involved in a temporal task, where agents develop a cor-

rect timing in order to avoid a target area that changes proprieties at regular intervals, are more

efficient if the evolved behavioral strategy is chaotic. By taking into consideration the described

robotic model, ecologists may be inspired while studying animal behaviors produced in similar

tasks.

Furthermore, the neuro-robotic model confirms theoretical frameworks postulated by the embo-

died and situated view of cognition. In fact, robots’ performance is unrelated to the kind of neural

controller. Each experiment is replicated with FF and SRN neural networks, and in the presence

of chaotic dynamics there is no significant difference in the performance. This result is somew-

hat unexpected as recurrent connections give a short term memory to the robots. An internal

dynamic may cause changes of direction without perceptual information, condition that is fulfilled

while robots are avoiding the blue target area. Although some behavioral strategies emerge only

in populations of robots controlled by SRN, there is no effect on the fitness. Therefore, the emer-

gence of an effective solution is offloaded in the coupled interaction of body, artificial brain, and

environment during the evolutionary process. Results show that the entangled interaction among

sub-components of the system is captured by chaotic measures, as they are correlated with the

performance, rather than the type of controller. Similarly, same behaviors evolve in environments

characterized by different amounts and lengths of timescales.

Leaving aside the interdisciplinary effort that links human and animal science with artificial sys-

tems, I now focus on the contribution given by our model to the field of mobile robotics. Firstly,

results reported in this chapter are consistent with other evolutionary robotics scenarios, where
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chaotic measures are applied to the behavior of two wheeled robots (Monirul Islam & Murase,

2005). By applying chaotic measures to the embedded time series recorded from the activity of

the infrared sensors, there is an evident correlation between the robots’ performance and fractal

dimension. Level of chaos, instead, is not informative about the quality of the solution evolved by

the robots. Moreover, different architectures of the neural controllers do not strongly affect either

the level of chaos, or the degree of complexity of the system, as well as the fitness score. It is

worth noting that λ1 is calculated with a different algorithm (Wolf et al., 1985) and data is collected

from perceptual states of the robots, rather than their position in the environment, but results are

consistent with findings reported in this chapter.

The novel contribution provided by our experiments concerns the interplay between fractal dimen-

sion and the type of behaviors exhibited by the robots. The simple environment where evolution

takes place is not constrained by narrow corridors, and robots of different populations adopt ra-

dically different behavioral strategies. By inspecting the robots’ trajectories in Cartesian space,

I conclude that there is not an absolute correlation between fractal dimension and performance.

Rather, the degree of complexity of the system correlates with the robustness of the solution

developed by the robots only if they behave in a similar manner. Secondly, robots that exhibit

chaotic behaviors are more resilient towards environmental changes, scoring high fitness in en-

vironments either encountered through evolution, or experienced only during the testing phase.

This result is aligned with experiments where robots’ behavior is controlled by a chaotic dynamic

resulting from a set of nonlinear Equations (Nakamura & Sekiguchi, 2001; Martins-Filho et al.,

2004; Volos et al., 2013). For example, Nakamura & Sekiguchi (2001) show the advantage of a

chaotic trajectory over a random walk when a two wheeled robot is exploring the environment.

4.4 Conclusion

In this chapter, I show that chaos theory can be successfully applied to datasets recorded from

the position in the environment of embodied and situated agents. The definition of chaos as an

aperiodic, bounded, and deterministic dynamic, with sensitive dependence on initial condition is

operationalized with appropriate nonlinear analytical tools. Although the application of chaotic

measures to empirical data is extremely controversial, results show that robots governed by a
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chaotic dynamic are more resilient to environmental changes compared with non-chaotic agents.

Furthermore, data support a correlation between the robustness of the solution evolved by the

robots and the level of chaos, as well as the degree of complexity of the underlying dynamic.

Results based on behavioral analyses show that chaotic measures are not absolute invariants.

In fact, level of chaos and degree of complexity of the system explain robots’ capability of adapting

to novel environments only if agents have the same underlying dynamic, which leads to similar

behavioral patterns. The existing set of mathematical tools for nonlinear time series analysis still

lacks of a definitive test for discriminating fully deterministic and stochastic systems. However,

chaos theory can be applied de facto to observables producing consistent results.
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Chapter 5

Decomposing an embodied and situated system

via information theoretic measures

5.1 Introduction

The embodied and situated view of cognition stresses the importance of real-time and nonli-

near bodily interaction with the environment for developing concepts and structuring knowledge.

From this perspective, the agent forms a integrate system with the surrounding world and thus

understanding cognitive processing requires appropriate analytical tools. In accordance to an

antireductionist stance, the experiment described in this chapter moves from the study of global

properties towards the analysis of relationships among the sub-components of the system. By

estimated Information-theoretic measures on pairings of variables to unveiling nonlinear interacti-

ons that structure the agent-environment system are unveiled.

Current approaches are mainly based on a qualitative geometrical description of the systems’ be-

haviour from a dynamical system perspective (see for example (Beer, 1995; Tani & Nolfi, 1999;

Montebelli et al., 2008; Carvalho & Nolfi, 2016)). Although visual descriptions have the merit

of explaining the evolution of agent-environment interaction thorough time, a precise numeri-

cal explanation of observed phenomena is an essential prerequisite to advancing a scientific

field. Furthermore, little effort is directed towards the study of relationships that characterise

the subcomponents of the system. To overcome this issue, I analyse an evolutionary robotic

model (Nolfi & Floreano, 2000) performing a wall-following task employing nonlinear mathema-

tical tools developed in the field of information theory. The choice of such cognitive model is

motivated by its consistency with an operationalisation of the embodied and situated view. In
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the experimental scenario, a robot, capable of receiving perceptual inputs and producing motor

responses, is controlled by an artificial brain and the agent autonomously develops a solution

to a problem defined by the surrounding environment. To avoid a disentanglement of the sub-

components of the system, this work is framed within the context of an antireductionist philosophy

of science (Ahn et al., 2006b,a; Fang & Casadevall, 2011) and system science (Von Bertalan-

ffy, 1968), using concepts recently developed in the field of system biology (Basso et al., 2005;

Margolin et al., 2006). Specifically, we utilize mathematical tools developed in the field known

as information theory. Information-theoretic measures do not directly accommodate into an an-

tireductionist scientific framework, as for example chaos theory (Da Rold, 2017; Kesić, 2016).

However, we apply such measures to all possible pairings of connected variables, thus unveiling

the intricate web of dynamic relationships and structures of the indivisible system brain-body-

environment. Thus, the idea of information-theoretic decomposition refers to a mapping of the

relationships among sub-components of systems, to understanding how these interact within the

system.

Recently, Beer and Williams (Beer & Williams, 2015) analyse a minimal cognitive agent involved

in a relational categorization task, outlining a proposal for relating dynamical systems and infor-

mation theory, showing the complementarity and consistency of the two styles of explanations. In

this work, we employ local forms of information-theoretic measures, which directly capture cha-

racteristics of the ongoing dynamics. However, the existing literature reviewed in Section 2.3.2

is mainly focused on detecting modifications of the information structure when macroscopic alte-

rations occur, as for example substantial modifications of the environments, or differences in the

robots’ body. On the contrary, in this experiment environmental variables and body morphologies

are not manipulated to testing the robustness of the information-theoretic measures in detecting

minor differences that emerge in different populations during the evolutionary process. Further-

more, neural networks in the evolved agents are subjected to synaptic lesions in order to verify

and strengthen the conclusions that follow from the analysis. In what follows, I demonstrate that

the set of information-theoretic measures provides a decomposition of the system, capturing the

intricacy of nonlinear relationships that characterise robots’ behaviour and neural dynamics.
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Figure 5.1: Time series recorded form the robots’ perceptual andmotor neurons. The figure
depicts the neural activity during two laps around the maze. (a) and (b) represent the
left and right infrared sensor, respectively. (c) refers to the left motor actuator and
(d) to the right output. Replications 1-8 navigates counter-clockwise, whereas the 9th
and 10th follow the opposite direction. The neural activation is characterised by large
positive spikes of the infrared sensor directed toward the outer walls and drops in
activity to the inner motor.

5.2 Results

At the end of the evolutionary process every population evolve an efficient strategy for navigating

around the squared maze. During testing and data collection the lifespan of robots is extended

to 10,000 time steps in order to improve the accuracy of information-theoretic measures. The

analysis is restricted to the robot that achieved the highest fitness score in each replication. The

starting position directs the robots counter clockwise, but agents evolved in the 9th and 10th repli-

cation perform a 180◦ turn after approaching the first corner and circulate in the opposite direction.

To unveil the minimal architecture necessary for the robots to execute the task, as well as every

functional sub-architecture, all possible combinations of synaptic lesions are applied to the neural

controllers. The pruned neural networks are evaluated counting the number of laps achieved by

the robots. The robots controlled by a full architecture achieves on average 28.3± 6.2 laps. We

utilize this benchmark as the fitness score may give spurious results if lesioned robots spin, thus

scoring low amounts of reward, instead of touching a wall after few time steps terminating the

100



5.2. RESULTS

trial. Although the experimental setting is extremely simple and evolution is not characterized by

noise, e.g. different starting positions or wall lengths, the resulting embodiment is very diverse

in different replications. In fact, robots evolved from different random seeds presents noticeable

dissimilarities concerning the possible sub-architectures that accomplish a number of laps equal,

or very close to, the baseline test where no lesions are applied. Specifically, the average number

of viable neural structures across the 10 replications is 8.1±4.8, ranging from a minimum of 2 for

the best robot of the 3rd population to a maximum of 16 for the robots evolved from the 5th and

7th seeds. Despite of dissimilarities in the evolved neural structures, there are common features

shared by all neural architectures. The synapses connecting the infrared sensor oriented toward

the outer wall and the motor close to the inner wall is always necessary for a correct functioning of

the robots. Furthermore, every evolved artificial brain requires at least one of the two connections

between the motor outputs.

By inspecting the recorded neural activity shown in Figure 5.1 the only clear difference that emer-

ges is between robots that navigate clockwise or counter clockwise. The pattern of the time series

is similar for every robot, with positive spikes of the infrared sensor oriented towards the outer

wall, followed by a drop of the motor neuron close to the inner wall. However, diversities in the

neural structure and minor behavioural differences are not captured from an observation of the

recorded time series.

In the following sections, mutual information and transfer entropy, including their local form, are

estimated on signals recorded from the perceptual and motor neurons while robots are naviga-

ting in the arena. The initial 500 time steps of the recorded signals are discarded in order to

avoid artifacts which may follow from a transient phase where robots are stabilizing the repetitive

trajectory. Instabilities during the beginning of the trial are obvious for the two robots that follow

a clockwise direction, as the agents invert the direction with a 180◦ turn at the first corner of the

maze. However, the initial part of the time series recorded from agents that navigate counter

clockwise is also characterized by a considerable amount of outliers. The information-theoretic

measures are estimated on the recorded time series, and their first difference, for pairs of vari-

ables connected with a synapse. Datasets are normalized with 0 mean and standard deviation
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1. Probabilities are calculated with univariate or multivariate Gaussian kernel, according to the

dimensionality of the sample, as well as rectangular kernel. The aim of the analysis is to infer

functional relations between variables of the same robot, rather than comparing the magnitude of

information-theoretic measures that emerge in different populations. Therefore, the outcome of

the various information-theoretic measures employed in this work are normalised, as we investi-

gate differences that emerge in the same system, rather than focusing on intra-seeds evaluations.

In the next section I first report the results of the local forms of the local mutual information and

transfer entropy, which provide a dynamic description of the exchange of information and causal

relationships. Subsequently, the global versions of such estimates are applied to the embodied

and situated systems for unveiling mutual dependencies and the structure of the information

flow. Finally, inferences concerning the agent-environment interaction and the functional neural

architecture based on different information-theoretic measures are combined in order to draw a

behavioural description without observing the robot during the execution of the task.

5.2.1 Local mutual information

The averages value of the pairwise local mutual information between variables of the systems do

not show substantial differences. Furthermore, the time series representing the dynamic of the

exchange of information are not characterised by significant fluctuations. However, a normaliza-

tion in the range [0, 1] of the outcome of the local mutual information calculated on the 5 possible

pairings between neurons of the same robot offers insights about the underlying functional neural

structures. By normalising, minor differences on the estimations are magnified, thus creating a

weighted ranking of interactions between variables of the same system.

Figure 5.2 shows the rankings of the averaged local mutual information estimated on the recorded

time series using both rectangular and Gaussian kernels. Results demonstrate that information

dynamics and nonlinear interactions that are not captured by observing the recorded activity of

the perceptual andmotor neurons are unveiled. On the contrary, the estimation of the information-

theoretic measure on the first difference does not show any pattern that either maps the functional

connectivity, or describes peculiarities of the behavioural strategy (data not shown).

The outcome of the local mutual information reveals functional dependencies between variables
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Figure 5.2: Average values of the local mutual information estimated on unpruned neural
networks. The outcome of the pairwise local mutual information is normalised se-
parately for Gaussian and rectangular kernels in the range [0, 1] to obtain a weighted
ranking of interactions. The degree of exchange of information between variables
unveils functional relationships of the underlying neural structure.

of the system. For example, there is an overall high mutual dependence between the external

infrared sensor and the inner motor, which is consistent with the incapability manifested by the

robots of exploring the maze while this neural connection is lesioned. Interestingly, the 2nd repli-

cation is the only population of robots that navigates counter clockwise requiring the connection

between the inner infrared sensor and the outer motor. The average local mutual information

shows a high value of the aforementioned connection, thus detecting an association between the

sensory information and the motor output. The local mutual information detects also peculiari-

ties on the embodiment of the 5th replication. In fact, the neural architecture is resilient towards

several combinations of synaptic lesions. The only synapse always present in all the 16 functi-

onal sub-architectures connects the outer sensor with the opposite motor and the information

exchange between these two variables is significantly higher if compared to other replications.

Therefore, the ranked values of the local mutual information are useful for detecting the impor-

tance of direct connections between variables that form the functional backbone of the neural

system.
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We observe noticeable differences on the estimation depending on the kernel employed for the

reconstruction of the probability distributions. These variations are justified, as the local form of

the mutual information does not include a linear component in the formula and thus low proba-

bilities cause an exponential growth in the entropy level. In particular, the noticeable differences

are visible in the 2nd, 3rd and 7th replication, where the Gaussian kernel is underestimating the

connection between the outer infrared sensor and the inner motor. Other dissimilarity are evi-

dent in the 8th population, where the local mutual information estimated with rectangular kernel

accentuates the importance of the sensorimotor chain in the right-hand side of the body and the

recurrent connection of the output layer, whereas Gaussian kernel detects important exchanges

of information on the opposite side of the robot. However, this agent functions with several sub-

architectures that involves both sides of the body. Finally, both kernels estimates a low average

value of information exchange between the inner infrared sensor and the inner motor of the 3rd

replication, whereas the synapse connecting the neurons is fundamental for the execution of the

task.

To further investigate the effect of different kernels on the estimation of information-theoretic me-

asures, local mutual information is calculated for every possible neural architecture that allows a

correct functioning of the system. In this chapter, we report results of 3 arbitrarily chosen repli-

cations. The rationale for selecting robots for the analysis with different sub-architectures aims

at providing a variety of behavioural strategies that emerge in different brain-body-environment

systems.

The first selected robot evolved from the 4th population (Figure 5.3). The agent neural structure is

particularly resilient towards synaptic lesions, without visible effects on the recorded time series.

The estimation of the local mutual information between the outer infrared sensor and the outer

motor is significantly lower when probability distributions are reconstructed employing a Gaussian

kernel. Despite of negligible differences, the average value of the local mutual information is

significantly high between all sensors necessary for a correct execution of the task.

The second agent is the best robot of the 10th population. The agent navigates the arena cloc-

kwise and exhibits slightly different trajectories depending on the synaptic lesions applied to the
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Figure 5.3: Estimation of the local mutual information in pruned neural networks evolved
in the 4th replication. The local mutual information is calculated for all functional
neural sub-architectures, creating separated weighted rankings. Synapses are la-
belled with identification numbers. This replication shows resiliency towards pruning,
relying mainly on 3 connections that are characterised by high degrees of information
exchange.

neural controller. Figure 5.4 shows a clear effect caused by the presence of the connection bet-

ween the left infrared sensor and the left motor actuator, which stabilises the trajectory, and thus

activation of the sensor. Although the visible effect is on the time series recorded on the oppo-

site motor, the local mutual information is capable of detecting minor changes on the information

exchange within the sensorimotor chains of the left-hand side of the robot. Overall, results are

consistent with the sub-architectures identified through systematic lesions applied to the neural

controller. Firstly, there is a high degree of dependence between the outer sensor and the inner

motor, with the exception of one sub-architecture, where the Gaussian kernel estimates a low

value. Secondly, the recurrent dynamic connecting the output layer is recognised as important
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Figure 5.4: Estimation of the local mutual information in pruned neural networks evolved
in the 10th replication. The local mutual information detects high degrees of depen-
dence between variables that form the functional backbone of the neural network.
Furthermore, the local mutual information individuates the presence of a synapse in
the left sensorimotor chain, which stabilises the robot’s trajectory.

for 4 architectures. Finally, the absence of the connection between the left sensor and motor is

detected as the measure of dependence drops to very low levels.

The last robot included in the analysis evolved from the 2nd replication, which is the only neu-

ral controller that follows a counter clockwise direction and requires the connection between the

inner infrared sensor and the outer motor (Figure 5.5). When the robot navigates in the envi-

ronment there are fast bursts in activity of the outer infrared, synchronised with low peaks of the

activation of the inner motor. The inner infrared sensor have a complex pattern of activity, cha-

racterised by smooth changes within the interval [0.0, 0.5]. The outer motor is always producing

high outputs with small fluctuations. Interestingly, both rectangular and Gaussian estimators de-
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Figure 5.5: Estimation of the local mutual information in pruned neural networks evolved
in the 2nd replication. The uniqueness of this neural structure is the necessity of a
connection between the sensor directed towards the inner wall and the outer motor
actuator. This characteristic is captured by the local mutual information that estimates
high degree of information exchange. However, probabilities estimated with different
kernels cause inconsistencies on the mapping of the functional neural structure.

tect a high degree of dependence between the inner sensor and the outer motor, a peculiarity

of this replication. The synaptic connection between the left infrared sensor and the left motor

stabilises the system, as for the best robot of the 10th replication. In fact, a lesion produces vi-

sible fluctuations on the time series recorded from the left infrared sensor and the right motor.

By analysing this replication, manifest discrepancies on the probability estimation clearly emerge.

Firstly, Gaussian kernel does not detect an association between the outer infrared sensor and the

inner motor actuator. Although the synapse is necessary for avoiding collisions, Gaussian kernel

is estimating low average values of local mutual information. Secondly, the outcome of the local

mutual information calculated with Gaussian kernel shows high values of information exchange
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Figure 5.6: Effects of the smoothing parameter on the local mutual information estimated
with Gaussian kernel. The formulation of Gaussian kernel includes a parameter
α that modifies the bandwidth h or values stored in the bandwidth matrix H. Bar
charts refer to the complete set of all functional neural architectures evolved in the 10th
replication, demonstrating that different values of this parameter do not significantly
affect the ranking of the local mutual information.

between all connected variables, except for the pair consisting of the right infrared sensor and the

left motor, whereas the rectangular kernel detects mutual association between the right sensor

and the left motor.

This issue is clarified by inspecting the probability densities reconstructed with different kernels.

We limit the description to the univariate case, which is sufficient for explaining substantial incon-

sistences in the estimation of the local mutual information. The datasets recorded from observa-

bles characterized by spikes of activity or inactivity include a large number of values close to 0

after normalization and long one-sided tails either in the negative range for motors or positive for

infrared sensors. Employing kernel density estimation on such datasets leads to significantly dif-

ferent probabilities distributions that depend on the estimator. In fact, Gaussian kernel produces

a slope with a narrow and smooth spike centered around 0, whereas rectangular kernel estima-
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tes probabilities equal to 0 as values becomes higher or lower than the bandwidth, shaping the

distribution as a step function.

A possible solution to limit the differences on the estimation of the local mutual information is the

manipulation of the parameter α included in the equation describing the Gaussian kernel, which

adjusts the bandwidth h, or the values of H for multivariate datasets, thus affecting the smoothing

of the reconstructed probabilities. However, Figure 5.6 shows that the size of the bandwidth

does not significantly affect the ranking of the averaged local mutual information estimated on

every functional architecture evolved from the 10th replication. Similar results are obtained on the

other nine replications. The question concerning which kernel is the right choice for mapping the

information structure does not have a definitive answer. In general, rectangular kernel provides

a better mapping of the underlying neural structure. However, Gaussian kernel is more sensitive

towards the restructuring of the dynamics of the information exchange between variables caused

by synaptic lesions. Furthermore, the choice of the kernel is also task-dependent, as datasets

recorded from diverse experimental scenarios may present peculiar patterns of activation whose

properties are unveiled by different probability estimators.

5.2.2 Local transfer entropy

In the estimation of the local transfer entropy, several parameters are involved. Firstly, the estima-

tion may be based on the recorded time series or the derivatives. Secondly, different kernels may

produce different results in detecting the direction and magnitude of the dynamics that characte-

rise the information transfer. Thirdly, estimating the information transfer on the single-dimensional

time series by setting parameters τ = 1 and d = 1, instead of embedding the signal recorded

from the variable sending the signal, or both time series, may have a significant impact on the

reliability and precision of the calculation. Finally, the estimation of the embedding lag τ differs if

the average of the local mutual information is employed in place of the mutual information while

embedding the recorded dataset. In order to test the best parametrisation of the local transfer en-

tropy, the information-theoretic measure is calculated for all possible combinations of parameters.

To have a benchmark we use as case study the connection between the outer infrared sensor and

the inner motor, which have been detected as fundamental in every replication by the top-down
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lesions applied during testing. Furthermore, the selected connection is generally characterised

by high levels of local mutual information when the full architecture is employed, lowering the pos-

sibility of non-homogeneous scenarios as robots of different populations, and thus with diverse

neural structures, are included in the dataset. The ranking derived from the normalisation of the

estimated local transfer entropy do not show patterns related to the underlying functional neural

structures or the robots’ behaviour. However, the dynamic of the information transfer individuates

time steps during which a lesion on the synapse does not cause major failures of the system.

In order to find the best parametrisation, we devise a test aimed at evaluating the reliability of

the local transfer entropy in detecting temporal instants where the forward connection linking the

infrared sensor to the motor is unnecessary. At the beginning of the test, the robot is placed in

the same starting position of the evolutionary process and the architecture without any synaptic

lesions is downloaded in the system. The robot navigates the arena and the neural connection is

deactivated during time steps characterised by an information transfer from the motor output to-

ward the infrared sensor, which is the direction opposite to the true connectivity. Before lesioning

the synapse, the current configuration of the system is saved, recording the robot’s position in

the maze and the activation of the neurons. After the lesion is applied, the robot acts for a fixed

amount of time steps or until the agent collides against a wall. The robots’ ability at surviving is

tested with several temporal horizons T = {1, . . . , 100}, that define the maximum lifespan of the

robot during the trial. At the end of each trial, the robot is repositioned in the environment and the

activation of the neural system is restored according to the values previously recorded. The test

is performed for each time step characterized by negative information transfer. In order to assess

the exactness of the information-theoretic measure, the test is repeated 50 times with random

sequences synthetically generated. The values stored in the vector describing the temporal se-

quence of the estimated local transfer entropy is shuffled using the Fisher-Yates algorithm. The-

refore, the total number of time steps is preserved, while the temporal order is scrambled. The

precision of the local transfer entropy is evaluated by comparing the total lifespan of a robot with a

controller lesioned according to the dynamic predicted with the local transfer entropy, against the

average number of time steps resulting from randomly applied lesions. The limit of the prediction

horizon of the local transfer entropy is defined by time t ∈ T that represent the convergence of
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Figure 5.7: Accuracy of the local transfer entropy. The accuracy of the local transfer entropy
for describing the information dynamics is tested applying lesions during temporal
intervals characterised by information transfers from the motor to the inputs. The
dynamic unveiled by the local transfer entropy is compared with surrogate datasets,
thus applying lesions during random time steps. The prediction horizon is defined as
the convergence of the average lifespan of robots pruned according to the information
dynamic and random lesions. The local transfer entropy is estimated with different
parametrizations, specifically x and y refer to recorded time series, X and Y are em-
bedded vectors, ẋ is the difference of signal. (a) and (b) show the prediction horizon
and the percentage of lesions applied during the test for rectangular and Gaussian
kernel, respectively. (c) summarises the result with an accuracy measure, based on
the number of lesions and the robots’ survival capability.

the total lifespan of robots pruned according to the local transfer entropy and random lesions.

To evaluate the accuracy rate of different parametrisations, we create a simple measure A =

(l/t)+(l×t), where l is the percentage of time steps with a lesioned synapse and t is the average

time that a robot controlled by a pruned neural network survives before colliding against a wall.

The first component of the equation is a ratio that rewards the reliability of the local transfer en-
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tropy. The second component accounts for the total number of lesions during the robot’s lifespan

that the information-theoretic measure detects. The expectation is that a good parametrisation

detects the largest number of lesions applied with a correct timing. Figure 5.7 shows that several

parametrisation are effective for detecting the absence of information transfer and thus the pos-

sibility of lesioning the synaptic connection, during several time steps. Interestingly, rectangular

kernel is a better estimator for low dimensional cases. In fact, it outperforms the Gaussian kernel

if the time series is not embedded, or the mutual information is utilised for estimating the para-

meter τ , as the false nearest neighbour algorithm returns on average lower minimum embedding

dimension d. In fact, the mutual information estimates the embedding delay τ = 1.05± 0.22 and

dimension d = 3.56±1.09 for rectangular kernel and τ = 1.57±1.45, d = 3.99±1.52 for Gaussian

kernel. Embedding parameters based on the averaged value of the local mutual information are

τ = 3.84 ± 2.00 and d = 6.26 ± 1.56 for probabilities reconstructed with rectangular kernel and

τ = 5.62 ± 4.53, d = 5.45 ± 1.38 if Gaussian kernel is employed. Results demonstrates that

the most reliable estimation is achieved embedding the recorded signals using the local mutual

information for evaluating the parameter τ , and reconstructing the probabilities with Gaussian

kernel.

The effect of different parameters on the estimation of the local transfer entropy is shown in Fi-

gure 5.8. Although the pattern of the time series describing the local transfer entropy is similar,

exhibiting positive spikes corresponding to the corners of the maze, there are clear differences

on the representation of the dynamic of the information transfer. The local transfer entropy calcu-

lated from distributions reconstructed by a Gaussian kernel on the embedded time series show

clear regular spikes, followed by small negative fluctuations with occasional forward transfers of

moderate intensity 5.8(a). A similar model of information transfer is reconstructed by employing

a rectangular kernel, but a significant lower number of time steps between high peaks of positive

information transfer are characterised by activity from the infrared sensor directed towards the

motor output 5.8(b). Overall, the evaluation of the dynamic describing the information transfer

is significantly less efficient when multivariate probabilities are reconstructed with a rectangular

kernel. In fact, small positive values are seldom detected while the agent is navigating following

a straight line. Furthermore, there are temporal offsets in the detection of high degrees of posi-
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Figure 5.8: Dynamic of the information transfer. The local transfer entropy estimated between
the right infrared sensor and left motor actuator for the robot of the 1st replication du-
ring the execution of a lap. In (a) probabilities are estimated with Gaussian kernel on
embedded time series, whereas in (b) a rectangular kernel is employed. (c) and (d)
depict the local information transfer calculated on the recorded signals using Gaus-
sian and rectangular kernel, respectively.

tive information transfer when the robot is approaching the corner. The latter is surely the most

important factor, as the cornering behaviour is a more difficult sub-task. For example, failing to

activating the synaptic connection in the straight corridor may lead to a collision with the walls

after several time steps. Instead, the 90◦ corner requires an immediate reaction by the robot with

a hasty reconfiguration of the motor activation.

The differences in the estimation of the local transfer entropy in relation to the kernel employed

are more evident in the low dimensional case, where the time series is not projected onto a mul-

tidimensional space. Specifically, Gaussian kernel produces wider fluctuations and the synaptic

connection is active for about 50% of the time 5.8(c). However, overestimating the number of

time steps defined by a positive information transfer is not useful as the most important factor for

lesioning the synaptic connection in real time, while avoiding collisions, is a correct information-

theoretic description of the directed temporal dynamic. On the other hand, probabilities estimated

with a rectangular kernel are less sensitive towards small variations of the information transfer,

detecting only spikes that correspond to the corners of the arena 5.8(d).
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As a consequence of the time series embedding, past events of the dynamic stored in the acti-

vity of the infrared sensor and the motor output are unveiled. Therefore, the estimation of the

local transfer entropy entails a fine grained description of the temporal structure that leads to an

activation of the connection with a consistent timing, thus avoiding malfunctions in the system.

By inspecting the time series produced by the local transfer entropy, the effects produced by

embedding the time series, as well as the kernel used for determining the probability distribu-

tion, are clearer. We argue that in low dimensions the precision of the Gaussian kernel does

not compensate the lack of knowledge about past events of the dynamic, which is achieved by

embedding the time series. Therefore, the local transfer entropy detects fluctuations but places

positive values at the wrong time. However, the weakness in the low dimensional case becomes

a strength in higher dimensions, where knowledge about the past states of the system are in-

cluded in the multidimensional embedded time series, which unfolds the dynamics. In fact, the

Gaussian kernel is more resilient towards the curse of dimensionality and captures finer structu-

res in the multidimensional data. Therefore, past events that characterised the complex dynamic

of the information transfer between sensory input and motor output are detected and exploited.

5.2.3 Mutual information

The mutual information applied on recorded time series identifies whether robots execute the

wall following clockwise or counter clockwise, detecting strong mutual dependences between

the inner infrared sensor and both motor outputs (Figure 5.9). Similar results are obtained when

the mutual information is estimated on time series recorded from robots controlled by lesioned

architectures. This result is somewhat unexpected, as signals of the infrared sensor oriented

toward the outer wall is characterized by large spikes during the execution of the task, whereas

the inner infrared sensor exhibits small fluctuations (Figure 5.1). Furthermore, tests on pruned

architectures demonstrate that in every population the most important synapse connects the in-

frared sensor facing the outer wall of the arena with the opposite motor. Therefore, the mutual

information captures characteristics of the robot-environment interaction, rather than the infor-

mation structure between sensors and motor actuators of the system. The mutual information

estimated from the first difference of the recorded time series does not show any clear pattern
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Figure 5.9: Estimation of the mutual information. The dependences between variables un-
veil characteristics of the agent-environment interaction. The systems display high
degrees of dependence between the left infrared sensor and the motor actuators in
robots that navigate counter-clockwise. On the contrary, agents that follow the op-
posite direction are characterised by high degrees of dependence between the right
sensor and the outputs.

(data not shown).

5.2.4 Transfer entropy

As expected, the estimation of the information transfer differs significantly depending on the em-

bedding parameters, both in terms of directionality and magnitude. However, the parametrisation

that best matches the true functional connectivity estimates the pairwise transfer entropy on the

recorded time series, assessing the value of the embedding lag τ using the mutual information

(Figure 5.10). Overall, the direction of the information transfer is directed from the motors toward

the sensors. However, this result is consistent with the task as in the straight corridors the robot

is not actively using the neural network. Indeed, previous analysis based on the local form of

the transfer entropy demonstrates that during a significant amount of time steps the robot is not

using the neural connections (Figure 5.8). In fact, the navigation is mainly driven passively by the

biases, which are always set with positive values by evolution, and small adjustment of the tra-

jectory induced by low activation of the infrared sensors. For every replication, excluding the 2nd
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Figure 5.10: Estimation of the transfer entropy. The information flow unveils characteristics
of the agent-environment interaction and the underlying functional neural structure.
The information transfer is directed from the motors to the inputs as the behaviour
is mainly driven passively by the biases. However, the transfer entropy detects the
importance of fundamental synapses, which are characterised either by information
flow directed towards the output, or the smallest degree of information transfer in
the opposite direction. The transfer entropy is calculated on embedded vectors.
Positive values on the recurrent connection in the output layer refer an information
flow from left to right.

that is discussed later in this section, and with different embedding parameters, the connection

linking the outer infrared sensor and the inner motor is characterized by the highest forward or

lowest backward information transfer from the input to the output. Furthermore, transfer entropy

calculated with rectangular kernel shows an information transfer from the right to left motor for

robots that explore the maze counter clockwise and the opposite direction for the two agents that

follow a clockwise direction. Interestingly, the transfer entropy detects a high degree of informa-

tion from the inner sensor towards the outer motor in the robot of the 2nd replication, which is the
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Figure 5.11: Estimation of the transfer entropy in pruned neural networks evolved in the
10th replication. Bar charts show the restructuring of the information flow caused
by pruning. The transfer entropy detects an increased activity on the synapse con-
necting the left infrared sensor with the right motor. This result is consistent with
an observation of the robot’s trajectory that becomes more unstable, thus requiring
active adjustments during the execution of the task.

only agent that explores the maze counter clockwise necessitating this connection. Moreover,

the 2nd replication exhibits the most unstable trajectory and the transfer entropy detects an overall

higher degree of information transfer directed from the sensors to the motors.

The transfer entropy is also calculated on robots controlled by pruned sub-architectures, as shown

in Figure 5.11 for the best robot of the 10th replication. Results further clarify the role of the transfer

entropy in describing the behaviour of an embodied and situated system. Firstly, lesioned neural

networks require higher degrees of forward information transfer from the left infrared sensor to

the right motor, which is the functional backbone of the architecture. This outcome is justified by

a more unstable trajectory produced by a pruned architecture, and thus an expected increment
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of the activity to compensate erratic behaviours. Another indispensable synapse, the recurrent

connection between the two motor actuators, is always transferring high degrees of information

from left to right. Secondly, the connection between the left infrared sensor and the left motor is

characterised by a high degree of information transfer from the output to the input. Conversely,

result from the averaged local mutual information (Figure 5.2), as well as synaptic lesions, de-

monstrate the importance of a sensorimotor chain on the left-hand side of the robot’s body. The

outcome of the two information-theoretic measures may appear contradictory, the transfer en-

tropy falsifying the mapping of the information dynamic unveiled by the local mutual information.

However, these results underline the fact that the two measures capture different properties of the

embodied system. We argue that the transfer entropy unveils both functional relations between

variables, similarly to the local mutual information, as well as aspects of the agent-environment

interaction. To clarify, we sketch an explanation of the behavioural dynamic. A robot controlled

by the full architecture mainly navigates passively, exploiting the inertial movement generated

by the positive biases. In the presence of critical input flows, the left infrared sensor triggers a

sensorimotor chain that involves both motors. Thus, the robot produces a behavioural response,

which is promptly detected by the left infrared sensor. However, the configuration of the system

brain-body-environment is actively modified by the agent, explaining the high degree of infor-

mation transfer directed toward the sensors, which is affected by the robot’s movement. The

transfer entropy reveals that there is a significant relationship between the two variables when

the connection is active, but the strongest driving force of the sensorimotor loop is, in this case,

the agent-environment interaction. In fact, when the synapse is lesioned the transfer entropy

detects low values of information transfer between the sensor and motor placed on the left side

of the body. On the contrary, sub-architectures with an active forward connection from the left

infrared sensor to the right motor actuator show higher degrees of information transfer, but lower

than the full architecture. However, low values of transfer entropy in the synapse connecting the

left-hand side sensorimotor chain are explained by the high levels of information transfer from

the outer sensor to the inner motor in robots mounting pruned neural networks, to compensating

the instability of the systems.
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5.2.5 Decomposing the behaviour via information-theoretic measures

In this section we develop a behavioural description of selected agents from an information-

theoretic perspective. In what follows, we perform a though experiment, assuming that the robot’s

behaviour has not been observed, thus attempting to infer the characteristics of the system from

the results of the information-theoretic analysis. The rankings describing the interaction between

variables of the system defined with the pairwise estimation of the information-theoretic measures

unveil meaningful functional dynamics of the sensorimotor network, as well as characteristics of

the agent-environment interaction. In fact, from the results of the information-theoretic analysis,

we may hazard an ansatz about the functional connectivity of the underlying neural structure and

the behaviour exhibited by the embodied and situated systems. Figure 5.12 shows the dynamics

of the local information transfer while robots are completing a lap of the maze. In order to com-

pare the magnitude of the information transfer between different pairs of variables, the values

of the local transfer entropy are normalised in the range [0; 1] across the five time series. The

differences on the dynamics of the information transfer are evident and are consistent with diffe-

rent behavioural strategies. Furthermore, the best robot mounting the minimal functional neural

architecture evolved in the 10th replication is included in the analysis, in order to demonstrate the

capability of information-theoretic measures of unveiling minor modifications in the system.

The direction followed by the robots is deducted from the mutual information. Figure 5.9 shows

high degrees of mutual dependence between the left infrared sensor and the motors for the 2nd

robot, an information structure characteristic of robots that navigate counter-clockwise. The out-

come of the transfer entropy and the average values of the local mutual information offer insights

on the underlying functional neural architecture. Both Gaussian and rectangular kernels identify

strong information exchange between the left infrared sensor and the right motor (Figure 5.5).

However, the local mutual information presents inconsistencies on the relationship between the

right infrared sensor and the left motor that depends on the estimator employed. Therefore,

we inspect the results of the transfer entropy (Figure 5.10), which individuates a strong forward

information transfer from the left infrared sensor towards the right motor, as well as a weak for-

ward interaction between the right sensor and the left motor. The transfer entropy calculated with
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Figure 5.12: Estimated local transfer entropy and robot’s trajectory. Graphical representa-
tion of the information dynamics related to the robot’s spatial position. Red circles in-
dicate information transfers from the sensors to the motors, or a left to right direction
for recurrent connections in the output layer. The size of the marker is proportional
to the magnitude of the estimated local transfer entropy. Blackened environments
(ID1, ID3 and ID4, bottom row) refer to lesioned synapses.

rectangular kernel detects strong positive information transfer on the left-hand side sensorimotor

chain that is not confirmed neither by the Gaussian estimator, nor the averaged local mutual infor-

mation. Thus, we advance a hypothesis about the functional connectivity of the neural network,

consisting of 2 synapses connecting the infrared sensors with the motors placed on the opposite

side of the body and the necessity of a connection in the output layer.

Besides relationships between variable of the system, the transfer entropy discloses characte-

ristics of the agent-environment interaction. In the previous section, we notice a higher degree

of information transfer from the inputs to the outputs in robots controlled by pruned architecture
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that compensates instabilities of the behaviour. Therefore, we infer that the 2nd replication evol-

ved a behavioural strategy characterised by numerous adjustment of the trajectory during the

execution of the task, hypothesis confirmed by inspecting the robot’s positions in the environ-

ment (Figure 5.12). In fact, the robot steers towards the inner wall after completing the 90◦ left

turn, which leads to fluctuations on the information transfer of moderate intensity. Furthermore,

3 forward connections linking the input layer with the motor actuators display fluctuations syn-

chronised with the critical sub-task that consist of a sharp turn. The remaining forward synapse,

which connects the right infrared sensor and the right motor, shows spikes of information transfer

while the robot is exiting the bottom-right corner and during the execution of the left turn in the

upper-right corner. Interestingly, the local transfer entropy between the two motors displays low

values. However, this result is consistent with the data analysis reported in the previous section

that demonstrates the importance of the directionality of the information transfer during the tem-

poral evolution of the dynamic, rather than high magnitudes (Figure 5.8). Moreover, the agent

is controlled by the full architecture and thus adjustment in the trajectories may be offloaded to

other synaptic connections.

The unimportance of estimating large values of local information transfer is confirmed with the

analysis of the 10th replication, either controlled by the neural controller without synaptic lesions,

or the minimal functional architecture consisting of 3 connections. In fact, Figure ?? demonstra-

tes that the dynamic of the information flow between the left infrared sensor and the right motor is

characterised by small fluctuations of information transfer. Nevertheless, results from the avera-

ged local mutual information and the global transfer entropy identify the importance of a synapse

linking this sensorimotor chain. Considering the other synaptic connections, the outcome of the

transfer entropy (Figure 5.11) is aligned with the functional connectivity deduced from the de-

grees of information exchange (Figure 5.4). The structure of the information flow in the robot

controlled by the full architecture is characterised by significant amounts of global information

transfer directed from the outputs to the inputs, which is a fingerprint for a regular trajectory de-

termined by the biases and small behavioural adjustments. However, the global transfer entropy

detects the importance of the synapse connecting the left infrared sensor with the right motor. In

fact,Gaussian kernel estimates negative information transfer but this connection is characterised
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by the weakest magnitude. Moreover, the global transfer entropy calculated with rectangular ker-

nel describes this synapse as the only forward connection characterised by an information flow

directed towards the motor neuron.

The hypothesis regarding the functional neural structure and the dynamics of the agent-environment

interaction are confirmed by the outcome of the transfer entropy in pruned neural networks. Fir-

stly, the system displays high degrees of information transfer from the left sensor to the right

motor, underlining the importance of a direct channel of communication (Figure 5.11). Secondly,

the agent controlled by the minimal sub-architecture, which comprises only the artificial synapse

connecting the left infrared sensor with the right motor output, as well as the two lateral connecti-

ons of the output layer, shows small fluctuations on the local transfer entropy between the left

input sensor and the right motor (Figure 5.12, bottom row). Clearly, describing a correct timing for

the information directed toward the output is more important than estimating large fluctuations in

the dynamics of the information transfer. In fact, this neural connection is the only active between

the inputs and the motors.

Interestingly, significant differences emerge from the information-theoretic decomposition of the

behavioural strategies evolved in different populations. In fact, the 10th replication mounting the

full architecture is characterised by large spikes of local information transfer from the left motor to

the right motor while the robots is turning right in the 90◦ corners of the maze (Figure ??, middle

row). Furthermore, the dynamic of the local transfer entropy between the left infrared sensor

and the left motor actuator exhibits a large positive spike followed by high degrees of negative

local information transfer while entering in the the corners. The clockwise direction followed by

the robot is deduced from the results of the mutual information, which correlates the left infrared

sensor with the motor actuators (Figure 5.9). The local transfer entropy between the left infrared

sensor and the right motor exhibits small fluctuations while the robot is crossing the straight

corridor and small spikes in the corners of the maze. Undoubtedly, the structures and dynamics

of the information differ significantly compared with the robot evolved in the 2nd replication.

The capability of capturing minor behavioural differences exhibited by robots is evident by compa-

ring the best agent of the 10th replication mounting the full architecture or the minimal functional
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neural network. Results of the global transfer entropy between variables of the system is con-

sistent with the mapping of the information exchange unveiled with the local mutual information.

Furthermore, results reported in Figure 5.4 depict high degree of dependence between the sen-

sor and motor placed on the left-hand side of the robot if the connection is active. In particular,

functional neural sub-architectures that include this synapse show the absence of fluctuations on

the time series recorded from the left infrared sensor and the right motor. The role of a sensori-

motor chain on the left part of the body is now explained by the dynamic of the information flow.

By inspecting the time series representing the values of the local transfer entropy, the presence

of a connection from the left infrared sensor to the right motor stabilizes the trajectory on the initial

part of the corner. A final remark concerns the lesioned synapses. Although these connections

exhibit complex dynamics of the local information flow, characterised by significant amounts of

large spikes, the averaged values of the local mutual information (Figure 5.4) and the outcome

of the global transfer entropy (Figure 5.11) detect the their irrelevancy.

5.3 Discussion

The endeavour attempted in this chapter is to examining the explanatory power of different information-

theoretic measures during the analysis of embodied and situated systems. The testbed is a

neuro-robotic model that autonomously adapt to the environment mimicking the process of evo-

lution. The decision of employing this class of adaptive systems is justified as follows. Firstly,

a major principle guiding the evolutionary robotics framework is an antireductionist approach,

where the solution to a problem defined by a global utility function is achieved in a bottom-up

fashion from the interaction of the robot with the surrounding environment, thus avoiding a priori

analytical decomposition of the system to achieving a top-down solution. Thus, the experimenter

has no or little knowledge about the functioning of the systems, which may bias the subsequent

information-theoretic analysis. Secondly, neuro-robotic systems trained with semi-supervised le-

arning algorithms are a sound operationalisation of embodied and situated view of cognition. In

fact, the system brain-body-environment is conceived as a holistic system, where the agent’s

body and brain are strictly coupled with the surrounding environment. Boundaries that divide

concepts such as inner and outer, neurons and sensors, as well as agent and physical world
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are blurred and tend to dissolve into the unity of a system perspective, where sub-components

interact in a dynamical and nonlinear way during the learning process. Finally, a neuro-robotic

system is characterised by concrete instantiations of communication channels, the artificial syn-

apses, which are manipulated in order to verify the hypotheses formulated about the map of

interactions between variables.

The application of information-theoretic measures leads to a decomposition of the embodied

and situated system, without rejecting the antireductionist perspective. In fact, the system is

analysed without disentangling the coupled sub-components and the network of relationships are

unveiled by confronting and relating the whole set of possible interactions among variables that

form the system. The outcome of the different information-theoretic measures estimated on all

possible couples of variables that are connected by a synapse is normalised, creating rankings of

interaction. Similarly, Bauer et al. (2007) summarises the results of the transfer entropy creating

causal maps of industrial chemical processes. To create such map, variables are ordered in a

binary matrix, where rows indicate causal variables and columns effect variables. Pairings that

show a positive information transfers above a certain threshold are marked with 1, thus creating a

matrix of causal interactions based on pairwise estimations of the transfer entropy. However, we

do not set minimal values for assessing the significance of specific information transfers. Rather,

normalisation creates a weighted ranking according to the magnitude of the information-theoretic

measure, where 0 corresponds to the weakest and 1 to strongest interaction, thus mapping the

entire network of relationships among variables of the system.

Results demonstrate that each information-theoretic measure unveils different characteristics of

the underlying functional neural structure and the agent-environment interaction. In particular,

mutual information is a useful behavioural descriptor, discriminating between the two classes of

robots that navigate clockwise or counter-clockwise. On the other hand, the local formulation of

the mutual information, which describes the dynamic of the information exchange between two

random variables, provides an evaluation of functional relationships within the network of percep-

tual and motor variables. In the neuro-robotic systems described in this article, such relationships

have a concrete instantiation with the artificial synapses, and thus communication between chan-
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nel may be interrupted. Therefore, we move from a passive description of the system to an active

verification of the results obtained with the information-theoretic analysis.

The transfer entropy is a time-asymmetric measure that quantifies the directed information trans-

fer between two variables. This measure is particularly interesting if applied to embodied in situ-

ated systems, characterised by a continuous flow of sensorimotor loops. In fact, results reported

in this article demonstrate that transfer entropy serves two purposes. Firstly, this information-

theoretic measure unveils functional relationships concerning the variable of the system by de-

tecting synapses that are fundamental for the execution of the task. Secondly, the transfer entropy

captures dynamics of the agent-environment interaction. Thus, the mapping of the information

flow among perceptual and motor variables describes functional characteristics of communica-

tion channels, similarly to the dynamics captured by of the local mutual information, conditioned

however by the continuous interaction of the robot’s body with the physical world. In fact, during

the straight navigation in the corridors of the maze, the robot’s body is moved forward by the

positive values of the biases connected to the motor actuators. Consistently, the information flow

is mainly directed from the actuators to the perceptual system, depicting the agent as passive.

However, the transfer entropy detects synapses linking perceptual and motor neurons that are

fundamental for the functioning of the systems. Furthermore, agents that exhibit unstable trajec-

tories caused by a pruning of the neural network or sub-optimal evolution are characterised by

larger values of information transfer directed from sensors to motor actuators if the channel of

communication is utilised by the robots during the execution of the task. The interpretation of this

result is that in the presence of an ordered system, characterised by stable trajectories, relevant

connections intervene for steering in the corners of the maze and are manly unused in the corri-

dors, explaining the overall low magnitudes of information transfer. On the contrary, disordered

systems requires a flow of information directed from the sensors towards the motors, in order to

actively adjust the trajectory. Consistently, irrelevant synapses are described with large amounts

of negative information transfer, as these connections do not actively influence the behaviour

either in the straight part of the maze or during the turns.

The local transfer entropy is the only information-theoretic measure that does not unveil functional
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relationship among sub-component of the system if the outcome is evaluated with the normalised

ranking. However, the local transfer entropy detects the necessity of an active neural connection

between two variables during specific time steps. This measure identifies time steps characteri-

sed by an information transfer from specific perceptual inputs towards a motor output, that is, the

necessity of a synapse during specific temporal intervals. The effect of lesions applied on these

synapses according to time steps characterised by output-input dynamics of information trans-

fer are compared with randomly generated sequences of pruning, demonstrating that the local

transfer entropy detects temporal instants where the presence of a specific neural connection is

fundamental for exploring the environment avoiding collisions with the walls.

By combining the results of different information-theoretic measures, the experimenter may infer

characteristics of the robot’s behaviour and peculiarities of the neural controller without obser-

ving the system during the execution of the task. Furthermore, modifications of the information

structures and dynamics caused by synaptic lesions are mapped and subsequently confronted

with the description of fully functional agents, consolidating the hypotheses.

5.4 Conclusions

In this article, we investigate the explanatory power and impotence of information-theoretic me-

asures applied to embodied and situated systems, operationalised with an evolutionary robotics

model executing a wall-following task. Information theory provides a set of nonparametric and

model-free statistical tools that unveils nonlinear relationships between time series recorded from

perceptual and motor neurons of the agent. The aim is to assisting and complementing with nu-

merical characterisations the purely geometrical description of such systems offered by a dyna-

mical system approach. The analysis strictly follows an antireductionist perspective, avoiding a

disentanglement of the integrate system consisting of an agent controlled by an artificial brain that

interacts in real time with the environment. In accordance with recent foundational developments

in system biology, the whole network of interactions among variables of the system is analy-

sed to capturing functional relationships. We adopt two measures, namely mutual information

and transfer entropy, which investigate the interactions between pairings of variables connected

by an artificial synapse. The mutual information measure the degree of dependence between
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observables. This measure captures characteristics of the agent-environment interaction, discri-

minating between robots that navigate in the maze clockwise or counter-clockwise. The transfer

entropy, instead, is time-asymmetric and extends the concept of mutual information determining

the magnitude and direction of information transfer between two variables, thus revealing the

complex network of causal interactions among the various sub-components of the system. Re-

sults demonstrate that the transfer entropy describes features of the robot’s interaction with the

surrounding environment, as well as the information flow within the neural system. These estima-

tors describe the structure of mutual dependences and information flows over the entire robots’

lifespan. To investigating the information dynamics, the local form of such measures is estimated

on recorded time series, thus unveiling characteristics regarding the temporal evolution of the

system from an information-theoretic perspective. The local mutual information quantifies the

information exchange, determining to what extent two variables inform or misinform each other

during the execution of the task. Tests conducted on robots with pruned neural architectures

demonstrate that the estimation of high degrees of dependence between neurons correlates to

the underlying functional neural structure, detecting synapses that are fundamental for executing

the wall following. The local transfer entropy uncovers the importance of synaptic activity during

specific temporal intervals, discriminating between active perceptual-motor loops and passive

inertial motion produced by other parts of the system. Notwithstanding the limits of estimating

such measures on pairings of variables rather than using multivariate extensions of mutual infor-

mation and transfer entropy, as well as inconsistencies caused by different probability estimators,

the information-theoretic tools are capable of decomposing the integrated embodied and situated

agent, determining the functional relationships among the sub-components of the system.
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Chapter 6

Conclusions

This thesis investigates the general problem of understanding embodied and situated systems

from a dynamical system perspective. The argument develops following three levels of explana-

tion. Firstly, providing a theoretical clarification concerning the concept of embodied cognition.

Secondly, supporting an antireductionist philosophy of science for analysing such cognitive sys-

tems. Finally, applying appropriate nonlinear integrative mathematical tools during the analysis

of data collected from neuro-robotic models.

The scientific questions proposed in the introductory chapter of the thesis have been consistently

addressed, demonstrating the potential of a rigorous quantitative, data-driven and dynamical ap-

proach to the study of embodied and situated systems. In chapter 4, a large number of trajec-

tories are recorded from different robots that react to environmental temporal dynamics. The

chaotic measures calculated on attractors reconstructed by embedding the vectors storing the

robots’ position are useful numerical descriptors that correlate with the capability of adapting to

unpredictable environments. The experiment is a significant step forward on the analysis of auto-

nomous systems, demonstrating the explanatory power of chaos theory applied to empirical data

recorded from robotic systems. In chapter 5, miniature mobile robots execute a wall-following and

time series record the neural activity. During data analysis, two information-theoretic measures

are applied to unveil aspects of the information structure that characterise the embodied and si-

tuated systems. Firstly, mutual information is estimated on each pair of neurons connected by

a synapse to evaluate the degree of mutual dependence between neurons. Secondly, direction

and magnitude of the information flow is reconstructed employing the transfer entropy for revea-

ling the complex networks of underlying causal structures. The novelty introduced in this chapter

is the estimation of the local form of such measures to assess the dynamic of the information
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structure and flow while the robots are executing the task. Furthermore, the hypotheses and

inferences derived from the analysis are verified by lesioning the artificial neural systems con-

trolling the robots. Results show that each measure captures different relational aspects of the

agent-environment interaction and functional neural connections.

A major issue affecting the field of embodied cognition is the lack of a widely accepted defini-

tion (Cangelosi et al., 2015), which causes a broad spectrum of experimental operationalisati-

ons. This problem is particularly critical for cognitive modellers and roboticists that study artificial

cognitive agents that are built by the experimenter. Thus, a precise definition guiding the design

of the model is crucial. Although the foundational traits of the field are still vague, the different

explanations of the related concepts of embodied, grounded and situated cognition proposed

in literature share some similarities and common meanings (Fischer, 2012; Myachykov et al.,

2014). Embodied cognition is centred on the subjective experience of a physical brain placed in

a physical body. Particular attention is directed towards the agent, member of a population of con-

specifics. In fact, the body, a product of phylogenetic evolution throughout generations, shapes

and constrains the cognitive abilities of the agents. Furthermore, the history of the ontogenetic

development that characterises a specific individual affects the network of concepts stored in the

brain. The term grounded cognition, instead, refers to immutable physical properties of the en-

vironment, whose regularities are perceived by the agent, structuring concepts and knowledge.

From this perspective, the sensorimotor experience of the world is mainly a source of statistical

invariants that affect the neuronal ensembles in the brain. Synthetic models are often aligned with

the connectionist tradition, where the input-output mappings are concretise with linguistic labels,

often abstracting away from the real time and dynamic of the agent-environment interaction. The

last concept, situatedness, is the more problematic and entails at least two meanings. Firstly,

situated cognition refers to the contextual information available in the world, including the physi-

cal environment and the social experience, in a precise spatiotemporal setting (Barsalou, 2008).

Secondly, situatedness is defined as the continuous flow of sensorimotor loops experienced by

the agent while interacting with the environment, a position aligned with the dynamical system

approach to cognition (Beer, 2008). The experiments presented in this dissertation are based on

the latter definition, thus stressing the importance of real-time and dynamical exchanges between
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the robot and the external world.

By delimiting clear theoretical boundaries, the idea of embodied and situated cognition is ope-

rationalised employing evolutionary robotics (Nolfi & Floreano, 2000). This technique is based

on neuro-robotics platforms trained with a learning process that models biological evolution. The

agents autonomously adapt in bottom-up and semi-supervised fashion to the environment and

the continuous sensorimotor interaction is a central element for developing cognitive abilities.

From this perspective, an analysis of embodied and situated systems solely based on a reductio-

nist approach does not suffice. In fact, embracing a dynamical system perspective leads inexora-

bly to conceiving the agent, brain and environment as a highly integrated and indivisible system.

Cognitive facts are the product of a complex and nonlinear network of interactions among sub-

systems and a radical reformulation of the analytical methodology is a necessary condition for un-

derstanding embodied and situated cognitive agents. Recently, several scientific disciplines are

reconsidering the centrality of reductionism, proposing a holistic and antireductionist philosophy

of science (Ahn et al., 2006b,a; Fang & Casadevall, 2011). Hence, the focus is shifting from

approaches based on a divide et impera stance, which examines specific parts of a biological

phenomenon in isolation, towards the study of global properties of the system and the nonlinear

interactions among its variables. The experiments reported in this thesis attempt to applying

these concepts to evolved robotic platforms. An important principle guiding the experimental de-

sign is to avoiding the manipulation of macroscopic variables, such as robots’ morphologies or

major changes in the environment, in order to test the capability of nonlinear tools to detect minor

modifications in the trained systems

The first work describes a scenario where robots are involved in a temporal task, performing

a reaching-avoiding behaviour depending on the colour of a target area that switches between

blue and green at regular intervals. The only environmental variables controlled by the experi-

menter are the lengths and the number of different temporal intervals elapsing between changes

of colour in the target area experienced during the training process. A second variable that is

modified concerns the neural controller, as the experiment is replicated with static and recurrent

neural networks. At the end of the evolutionary process, the best robots are tested on environ-
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ment characterised by target areas characterised by novel temporal dynamics never experien-

ced during learning. The systems are analysed with mathematical tools developed in the field of

chaos theory (Kaplan & Glass, 2012). By following this approach, the experimenter avoids an

a priori decomposition of the system into sub-components, which are subsequently analysed in

isolation. Rather, chaotic measures reveal and quantify global properties of the integrated sy-

stem brain-body-environment. The robot’ trajectory is recorded and utilized for reconstructing

the attractor describing the underlying dynamics with the technique of delayed embedded vec-

tors. Subsequently, chaotic measures are estimated on the reconstructed attractors that exhibit

hallmarks of low-dimensional deterministic chaos. In particular, two dynamical measures are

estimated on suitable robots: the level of chaos for estimating the long term unpredictability of

the behaviour and the fractal dimension, which determines the number of degrees of freedom

in the system. The results consistently demonstrate the utility of chaotic measures for unveiling

properties and characteristics of the evolved robots, showing a correlation between the robots’

ability at adapting to environments never experienced during the learning process and chaotic

measures. Furthermore, robots that exhibit a chaotic behaviour are more resilient towards unpre-

dictable environments if compared to agents that do not exhibit a chaotic behaviour. Therefore,

the experiment supports the applicability of chaos theory to empirical data, including the class of

embodied and situated systems.

The second experiment investigates the nonlinear relationships among variables of the system by

applying information-theoretic measures (Shannon &Weaver, 1949) on robots performing a wall-

following task inside a squared maze. The neural controller is based on a minimal architecture,

where two perceptual neurons send signal to two motor actuators. The output units are con-

nected with two lateral connections, thus creating a neural network that consists of six synapses.

Similarly to the previous experiment, there is little intervention from the experimenter in the ma-

nipulation of variables. In fact, the environment and the neural architecture are invariant, and the

dissimilarities that characterise different populations of robots are epigenetic phenomena. The

activity of the perceptual and motor neurons is recorded while robots are exploring the maze and

pairwise estimations of mutual information and transfer entropy are calculated between observa-

ble connected by a synapse. Although measures derived from Shannon entropy are not directly
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related to an antireductionist framework, bivariate estimates are calculated on all the pairings

of variables in order to numerically characterise the whole network of interactions. During the

analysis, the degree of dependence between pairings of variables is estimated with the mutual

information. The direction and magnitude of the information flow is instead captured by the trans-

fer entropy. The analysis is further extended employing the local form of the mutual information

and the transfer entropy, which capture the dynamic of the information during the execution of

the task. The hypotheses derived from the information-theoretic analysis concerning the under-

lying functional neural structures are verified by pruning the evolved neural controllers. Interes-

tingly, the local mutual information, as well as the global and local transfer entropy, discriminate

synapses that are fundamental to avoid malfunctions in the system. Furthermore, the mutual

information and the transfer entropy captures peculiarities of the robot-environment interactions,

such as the direction followed by the agent during the exploration of the environment, or discri-

minating between agents that actively modify the trajectory exploiting the perceptual inputs from

robots that are passively driven by the activation of the biases. The local transfer entropy unfolds

the dynamics of the information flow between sensors and motors, thus discriminating temporal

intervals that requires an active processing of the input signal to adjust the robots’ trajectory.

Overall, the questions proposed in the initial part of this dissertation find an answer. Surely, the

application of nonlinear quantitative tools to embodied and situated systems is an alternative

and complementary framework to a static and structural explanation of the neural networks, or a

qualitative and geometrical description of the evolution of the whole system. In particular, chaos

theory applied to empirical data is a valuable numerical descriptor that captures characteristics

of the underlying dynamics. Furthermore, chaotic systems may be created with coupled equa-

tions, thus complementing the bottom-up approach with a top-down modelling while studying a

cognitive system.

The application of information theory covers the second fundamental aspect of an antireducti-

onist approach to science, that is, the study of nonlinear relationships among heterogeneous

sub-components that constitute a system. The information-theoretic measures are also less

problematic, as strong assumptions regarding the dimensionality or the type of dynamics are
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unnecessary. In fact, the approach is totally model-free and data-driven, based solely on proba-

bilities reconstructed from recorded data. The analysis conducted on a minimal cognitive model

demonstrates that information theory is a robust tool for unveiling functional neural structures

and for explaining characteristics of the agent-environment interactions. In the following section

I underline the current limits of the proposed approach, suggesting possible extensions to the

experimental work described in this thesis.

6.1 Current limits and future works

The experiments described in this thesis are a testbed based on minimal cognitive models for

the possible applications of nonlinear time series analysis to embodied and situated systems.

Minimalism in the experimental design is necessary while assessing the explanatory power of

an innovative approach for the study of embodied and situated systems. However, such simpli-

city permits stress tests on novel, and sometimes criticised, mathematical tools and approaches

to scientific investigation. Thus, the experiments conducted in this thesis are explorative and

commences a direction of research that surely requires more complexity to prove and confirm

the reliability of nonlinear models of scientific explanation. Some limits that are affecting the

state of the art in nonlinear time series analysis are evident, for example the controversial topic

concerning the assumption of determinism that affects the field of chaos theory, or the absence

of robust probability estimators in high dimensional spaces that are necessary for estimating

information-theoretic measures. In this regard, embodied and situated neuro-robotics systems

may provide interesting case studies for developing and testing future advancements in the field

of nonlinear time series analysis. In fact, such models extend the existing methods, comple-

menting the abstraction synthetically generated datasets and the impossibility of manipulating

biological observables.

Therefore, this work has to be considered as the starting point for future research, listed below:

• Chaos theory and information theory are somewhat related. The level of chaos quantifies

the sensitivity of the system to the initial conditions, limiting the long term prediction of the

evolution of the dynamics. Similarly, the entropy captures the disorder of the system. The
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two metrics and approaches clearly share similarities and a system analysis based on both

frameworks, deterministic and stochastic, may create synergies to further explain properties

and characteristics of embodied and situated systems.

• Another possibility is the creation of chaotic robots controlled by chaotic nonlinear dynamical

system, thus following a top-down approach. In parallel, the same cognitive phenomena

may be studied with autonomous systems, followed by a data-driven chaotic analysis. This

approach combines, in the context of chaos theory, an a priori analytical decomposition and

an emergentist framework, which may lead to interesting insights on the study of cognitive

phenomena.

• Information-theoretic measures may find an application to systems characterised by higher

degree of complexity, for example humanoid robots or swarms. These scenarios are useful

for developing and testing multivariate information-theoretic measures.

• The nonlinear mathematical tools employed in the experiments reported in this thesis may

apply also to biological data. An interesting perspective may stem from interdisciplinary

experiments, where a cognitive fact is studied in natural and artificial systems, proposing a

common background for data analysis.

The aim of the suggested future directions is twofold. Firstly, the proposed approach may ad-

vance the field of the embodied and situated view by providing a solid shared mathematical

background for studying the complexity of cognition. From this perspective, novel experiments

based on an integration of biological and artificial agents studied with a common methodologi-

cal and analytical framework, capable of capturing the intrinsic nonlinearities of highly integrated

systems, may cause significant advancements in the understanding of cognition. In fact, the

possibility of sharing, comparing and communicating results amongst different disciplines is of

primary importance for a scientific field heavily based on an interdisciplinary effort. Secondly,

cognitive phenomena are investigated by several fields of research, ranging from psychology

to neuroscience to robotics, thus providing a common ground for extending the existing set of

nonlinear mathematical tools starting from an empirical perspective.
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Information theory

Results reported in this thesis underline the importance of the kernel utilized during the estima-

tion of probabilities from the recorded dataset. This issue is particular evident in a simulated

wall-following scenario, where time series are characterized by bursts of activity or inactivity, fol-

lowed by relatively long periods characterised by small fluctuations. In this work, we restrict our

investigation to the kernel density estimation approach, testing the effect of rectangular andGaus-

sian kernels, two widely employed distributions in the existing literature (see for example (Kaiser

& Schreiber, 2002; Bauer et al., 2007; Wibral et al., 2014)). However, other kernels, e.g. triangu-

lar or Epanechnikov, may be valid candidates for the reconstruction of the probability distributi-

ons. These methods are model-free and data-driven and thus each kernel may disclose different

properties of the recorded datasets. Furthermore, alternative methods to the kernel density es-

timation have been proposed. Kraskov et al. (2004) developed an adaptive partitioning method

based on the estimation of k-nearest neighbours. The peculiarity of the algorithm is that the

neighbouring space surrounding the points is defined by entropies calculated with Kozachenko-

Leonenko technique. Although the procedure is originally developed for the evaluation of the

mutual information, and thus employed for evaluating a maximum of 2 joint random variables,

the authors discuss the robustness of the estimator in higher dimensional spaces. In fact, the

method is utilized for the estimation of multivariate probabilities distributions employed in the for-

mulation of the conditional mutual information (Frenzel & Pompe, 2007; Gómez-Herrero et al.,

2015) and transfer entropy (Gómez-Herrero et al., 2015). A similar approach is followed by Lee

et al. (2012), extending Darbellay-Vajda algorithm to 3 dimensions for achieving an adaptive par-

titioning of the sample space. Results demonstrates that method outperforms Gaussian kernel

density estimation and fixed binning in mapping the information transfer with a benchmark test

based on a biomedical dataset. However, the major drawback of this technique is the restriction

to 3 dimensions, and thus this probability estimator is inapplicable to formulations of the transfer

entropy based on embedded time series.

Another issue that limits the data analysis presented in this chapter is the absence of a direct

statistical test to assessing true relationships between variables. These methods are mainly
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based on surrogate data testing, where scrambled time series are generated from, and compared

with, the recorded signal. The surrogate time series preserve the same statistical properties of

the recorded observable, but correlations between the variables X and Y are disrupted (see for

example (Vicente et al., 2011; Wibral et al., 2014; Lizier et al., 2011)). However, the possibility of

performing lesions in the neural architecture renders the detection of spurious correlations less

stringent, justifying the decision of omitting surrogate data testing.

Moreover, the experiment is centred on direct relationships between pairs of variables and the

maps of interactions are constructed with a normalised ranking. An extension of the experiments

described in this article may focus on the evaluation of multivariate versions of the information-

theoretic measures for describing complex sensorimotor and neural chains, revealing how en-

sembles of time series are interconnected (Verdes, 2005; Frenzel & Pompe, 2007; Flecker et al.,

2011; Lizier et al., 2011; Williams & Beer, 2011; Runge et al., 2012b,a; Gómez-Herrero et al.,

2015; Runge et al., 2017). However, this experiment aims at investigating the descriptive power of

different information-theoretic measures estimated on neuro-robotics autonomous systems, rat-

her than capturing the fine grained networks of complex causal chains of interactions. Therefore,

limiting the information-theoretic measures to pairwise estimations is, to some extent, justified.
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