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Abstract

EQUIVOCATION was introduced by Shannon in the late 1940’s in seminal papers
that kick-started the whole field of information theory. Much ground has been

covered on equivocation’s counterpart, channel capacity and in particular, its bounds.
However, less work has been carried out on the evaluation of the equivocation of a
code transmitted across a channel.

The aim of the work covered in this thesis was to use a probabilistic approach to in-
vestigate and compare the equivocation of various codes across a range of channels.
The probability and entropy of each output, given each input, can be used to calculate
the equivocation. This gives a measure of the ambiguity and secrecy of a code when
transmitted across a channel. The calculations increase exponentially in magnitude as
both the message length and code length increase. In addition, the impact of factors
such as erasures and deletions also serve to significantly complicate the process.

In order to improve the calculation times offered by a conventional, linearly-programmed
approach, an alternative strategy involving parallel processing with a CUDA-enabled
(Compute Unified Device Architecture) graphical processor was employed. This en-
abled results to be obtained for codes of greater length than was possible with linear
programming. However, the practical implementation of a CUDA driven, parallel pro-
cessed solution gave rise to significant issues with both the software implementation
and subsequent platform stability.

By normalising equivocation results, it was possible to compare different codes under
different conditions, making it possible to identify and select codes that gave a marked
difference in the equivocation encountered by a legitimate receiver and an eavesdrop-
per.

The introduction of code expansion provided a novel method for enhancing equivoca-
tion differences still further. The work on parallel processing to calculate equivocation
and the use of code expansion was published in the following conference:
Schofield, M., Ahmed, M. & Tomlinson, M. (2015), Using parallel processing to
calculate and improve equivocation, in ’IEEE Conference Publications - IEEE
16th International Conference on Communication Technology’. In addition to the
novel use of a CUDA-enabled graphics process to calculated equivocation, equivo-
cation calculations were also performed for expanded versions of the codes. Code
expansion was shown to yield a dramatic increase in the achievable equivocation lev-
els.

Once methods had been developed with the Binary Symmetric Channel (BSC), they
were extended to include work with intentional erasures on the BSC, intentional dele-
tions on the BSC and work on the Binary Erasure Channel (BEC). The work on equiv-
ocation on the BSC with intentional erasures was published in:
Schofield, M. et al, (2016), Intentional erasures and equivocation on the binary
symmetric channel, in ’IEEE Conference Publications - International Computer
Symposium’, IEEE, pp 233-235. The work on the BEC produced a novel outcome
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due to the erasure correction process employed. As the probability of an erasure oc-
curring increases, the set of likely decoded outcomes diminishes. This directly impacts
the output entropy of the system by decreasing it, thereby also affecting the equivoca-
tion value of the system. This aspect was something that had not been encountered
previously.

The work also extended to the consideration of intentional deletions on the BSC and
the Binary Deletion Channel (BDC) itself. Although the methods used struggled to cope
with the additional complexity brought by deletions, the use of Varshamov-Tenengolts
codes on the BSC with intentional deletions showed that family of codes to be well-
suited to the channel arrangement as well as having the capability to be extended to
enable the correction of multiple deletions.
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Chapter 1

Introduction

1.1 Contribution to Knowledge

The equivocation of a code gives a measure of the ambiguity and secrecy of a code

when transmitted across a channel.The work covered in this thesis took a probabilistic

approach to investigating and comparing the equivocation of various codes across a

range of channels. The work used novel approaches to perform the calculations and

generated some interesting results that enabled the direct comparison of a range of

different codes.

The key points of novel work and contributions to knowledge are summarised below:

• Equivocation calculations were performed on a general purpose computer but

used a CUDA-(Compute Unified Device Architecture) enabled graphics processor

to perform the calculations in parallel, providing sigificant calculation run-time

improvements over their linear counteparts (in some cases, up to 35 times faster).

• The calculations performed enabled a direct comparison of the equivocation lev-

els of a range of codes and, in particular, perfect and best known linear codes.

This permitted the identification of codes that give practical and useful outcomes

such as a large differential between a low equivocation level for a legitimate user

and a high equivocation level for an eavesdropper on a wiretap channel.

• The use of code expansion on a channel can dramatically increase the equiovca-

tion level of the code. Code choice and level of expansion can then be tailored to

increase the differential between the equivocation for the legitmate receiver and

1
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an eavesdropper. The novel work on parallel processing to calculate equivocation

and the use of code expansion was published by Schofield et al. (2015).

• The calculation methods used for the Binary Symmetric Channel (BSC) were ex-

tended to modifications of the BSC and to other channels. Channels investigated

included the BSC with intentional erasures (IE+BSC), the BSC with intentional

deletions (ID+BSC), Binary Erasure Channel (BEC) and Binary Deletion Chan-

nel (BDC). The work on parallel processing to calculate equivocation and the use

of code expansion was published by Schofield et al. (2016).

• The erasure correction method used on the BEC gave rise to an interesting sit-

uation where a diminishing set of output options triggered a decreasing output

entropy, something that had not been encountered previously.

• Varshamov-Tenengolts codes V Ta(n) consist of all binary vectors (x1, ....,xn) satis-

fying ∑
n
i=1 ixi ≡ a(mod(n+1)). It was shown that for V T0(n) codes with n = 2m−1,

m ≥ 2, the code will have the same number of codewords as the Hamming(m,2)

code (where m = n− k), described by the properties Ham[2m− 1,2m−m− 1,3] or

Ham[n,k,3], i.e. |V T0(n)|= |Ham[n,k,3]|.

• The use of Varshamov-Tenengolts codes on the BSC with intentional deletions

showed that family of codes to be well-suited to the channel arrangement as

well as having the capability to be extended to enable the correction of multiple

deletions.

2
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1.2 Basic Principles

Information Theory is defined (Britannica.com 2017) as:

a mathematical representation of the conditions and parameters affecting

the transmission and processing of information

and covering applications including:

• Data compression

• Error-correcting and error-detecting codes

• Cryptology

• Linguistics

• Algorithmic information theory

• Physiology

• Physics

This thesis focuses primarily on understanding and developing an aspect of error-

correcting coding called equivocation, which gives a measure of the ambiguity of a

signal. By calculating the equivocation of different codes under varying channel ar-

rangements, it is possible to identify codes that provide greater levels of secrecy for the

users.

To communicate information from one location (the source) to another (the sink ), the

information can be transmitted via a channel to form a signalling system. If the in-

formation to be sent across the system must possess certain characteristics, such as

secrecy or an ability for errors to be detected or corrected, then it may be necessary to

encode the data prior to transmission and then decode it upon receipt. A typical sig-

nalling system can therefore be represented as shown in Figure 1.1 (Hamming 1980,

p. 4).

3



1.2. BASIC PRINCIPLES

Source Encode Channel Decode Sink

Noise

Figure 1.1: A Typical Signalling System

In practice, any channel used for transmitting the data is unlikely to be perfect and is

likely to introduce an element of noise to the transmitted data. The noise introduced to

the transmission channel can affect whether the encoded data is received correctly so

that it can be correctly decoded. Dependent on requirements for the data, the errors

introduced by a noisy channel may need to be either detected or corrected.

In this context, a code is a specified system of symbols that are purposefully used

to represent other symbols. In many systems, particularly those based on electronic

components with binary states, the simplest and most efficient choice of symbols is to

use the digits 0 and 1 to represent the data.

Many codes exist that enable the detection and correction of data, each with different

properties and characteristics. There are correspondingly many ways of comparing

the codes and their relative capabilities. Transmission channels can involve different

sources and types of noise that may introduce errors that are random, regular or that

come in bursts. Codes that work well in certain situations may be of little or no value

in others. For example, an error-correcting code that gives good results on the Binary

Symmetric Channel may be unable to correct deletions and therefore may be ineffec-

tive at dealing with deletions on the Binary Deletion Channel or on a modified Binary

Symmetric Channel with intentional deletions.

In Chapter 2 a range of different channels are introduced and discussed, including the

general Information Channel, the Binary Symmetric Channel, Binary Erasure Channel,

Binary Deletion Channel, Binary Symmetric Erasure Channel and the WireTap Chan-

nel. The equivocation of codes transmitted via the these channels and modifications

4
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of them are calculated in order to compare the levels of secrecy offered by different

codes. Equivocation and capacity are two closely related measures that are linked to

the amount of information contained by a code and its entropy. Considerable work has

been done to establish upper boundaries for the capacity of different channel arrage-

ments. For example, work on the capacity bound on the Binary Deletion Channel has

been completed by Dalai (2011), Mitzenmacher (2006), Kalai et al. (2010), Kanoria &

Montanari (2010), Kirsch & Drinea (2007), Fertonani & Duman (2010). However much

less work has been undertaken on the practical calculation of equivocation for different

codes with different channel arrangements. This thesis aims to address that issue.

Equivocation gives a measure of the level of ambiguity of a code across a channel

and hence its secrecy. By looking at equivocation levels for different error probabilities,

it is possible to compare the equivocation for a legitimate receiver with a lower error

probability against an illegitimate receiver with a higher error probability.

Calculation of equivocation is a numerically intensive process. To assist this process,

software was written to perform the many calculations in parallel, enabling a reduction

of time taken to perform the calculation. This was achieved by using the parallel pro-

cessing capabilities of a graphics card, specifically an Nvidia-made card that was built

around the Compute Unified Device Architecture (CUDA) (Nvidia 2015). This enables

use of the Graphical Processing Unit (GPU) for more general purpose uses. CUDA is

a parallel computing platform and programming model created by Nvidia. It is imple-

mented by computers with CUDA-capable Nvidia GPUs, with the main CPU acting as

the ‘host’ for the linear component of a program which then delegates responsibility for

running parallelised sections of code to the GPU ‘device’ (Sanders & Kandbrot 2011).

The task of efficient delegation and management of resources is largely done by the

CUDA architecture and programming model. Graphics cards have seen dramatic in-

creases in use across several fields, especially that of crypto-coin mining where recent

surges in have led to shortages, price spikes and even rationing of device sales (BBC

2018). Other parallel methods could have been used such as the use of multi-core

processors or the use of multiple, linked processors but CUDA was used as a novel
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method in this field.

The parallelisation of the calculation by using GPUs can deliver significant performance

benefits, either allowing equivocation values to be found more quickly or for longer

codes.

Once the equivocation values for different codes have been found and normalised, they

can be compared. This enables codes with higher levels of normalised equivocation to

be identified and improvements to existing codes to be implemented.

This thesis is presented in 8 chapters.

• The remainder of Chapter 1 is given to introducing a few necessary preliminaries

about fields and matrices. Whilst the use of tools such as elementary row oper-

ations may not necessarily be explicit or apparent in subsequent chapters, their

use is common within the software implementation. The information systems

discussed in this thesis will all be based on the transmission of binary symbols,

represented by 0 and 1. To effectively operate on pairs of binary symbols, a very

brief overview of the underlying algebraic structure of fields will be given. The

manipulation of multi-element, extended fields through the use of field polyno-

mials and matrices is also commonplace in this work. Examples of this include

tasks such as multiplying the binary elements of an k-bit message by a k×n gen-

erator matrix to produce a codeword or the multiplication of a codeword by the

transpose of a parity check matrix to produce a syndrome for the codeword.

• Chapter 2 looks briefly at some types of channel that were investigated during

the research for this thesis or that are expected to be of use in subsequent work.

• Chapter 3 looks at some codes and their properties, including the relationship

between codes and the geometries associated with sphere-packing.

• Chapter 4 develops the ideas behind equivocation, including information and en-

tropy.
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• Chapter 5 gives details of a novel approach involving the practical implementation

of a method to calculate equivocation using parallel processing. The new work in

Chapter 5 was published in Schofield et al. (2015).

• Chapter 6 extends the work in Chapter 5 to give a new examination of the equiv-

ocation of codes containing erasures on both the Binary Symmetric and Binary

Erasure Channels.The new work in Chapter 6 was published in Schofield et al.

(2016)

• Chapter 7 extends the work further to give a novel consideration of the equivoca-

tion of a Binary Symmetric Channel containing intentional deletions. A relation-

ship between the number of codewords in a Hamming code and a Varshamov-

Tenengolts code is established and Varshamov-Tenengolts codes are extended

to enable the correction of multiple deletions.

• Chapter 8 concludes the thesis, highlighting and suggesting some areas to in-

vestigate in future research.

1.3 Information Theoretic Secrecy

In his seminal paper, Shannon (1949) discusses three general types of secrecy system:

1. Concealment systems - the existence of the message is hidden from the eaves-

dropper

2. Privacy systems - special equipment is required to recover the message

3. Secrecy systems - the meaning of the message is concealed by cipher, code etc.

In a secrecy system, the existence of the message is not hidden and any eavesdropper

is assumed to have the equipment needed to intercept and record the transmitted

signal. This work in this thesis is based upon the use of codes both as a secrecy

system but also for the detection and correction of errors, erasures or deletions.

Shannon defined perfect secrecy as:

7



1.4. FIELDS

requiring of a system that after a cryptogram is intercepted by the enemy,

the a posteriori probabilities of this cryptogram representing various mes-

sages be identically the same as the a priori probabilities of the same mes-

sages before the interception.

In other words, with perfect secrecy, the enemy or eavesdropper is no better off after

intercepting any amount of material than before. For example a one-time pad, where

each character of the message is paired using modular addition with a random secret

key that is shared by the sender and receiver. Even if part of the message was known

to be "attack at d - - -", it wouldn’t be possible to decode the final 3 characters unless

the key for each of the letters was known.The attack could be at any of dawn, dusk,

dark etc. The one-time pad also offers information theoretic security i.e. its robustness

comes purely from the principals of information theory and is unable to be broken even

with unlimited computing power.

1.4 Fields

1.4.1 Introduction

Whilst data may take many forms and may be represented by many different symbols,

this thesis deals solely with binary data, represented by the two symbols 0 and 1. To

operate with and manipulate binary data throughout this work, it is useful to touch very

briefly upon some of the theory of both algebraic number fields and matrices.

Fields are algebraic structures consisting of a set with two operations, usually called

addition (+) and multiplication (×, or omitted) that satisfy certain axioms (Hill 1986).

Subtraction is by adding with the additive inverse. The additive inverse of an element

a is another element b such that the direct sum a⊕b is zero. The multiplicative inverse

of an element a is another element b such that the tensor product a⊗b is one. Division

is by multiplying with the multiplicative inverse.

The finite field Fi has i elements 0,1, ...(i− 1) and is also called the ring of integers,

modulo i or the Galois Field of i, GF(i). The binary field GF(2) consisting of the two
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elements 0 and 1 is the smallest finite field. In GF(2), for addition, 0⊕0 = 0, 0⊕1 = 1,

1⊕0 = 1 and 1⊕1 = 0 and for multiplication, 0⊗0 = 0, 0⊗1 = 0, 1⊗0 = 0 and 1⊗1 = 1.

Galois Fields exist for prime numbers only and can be extended to powers of primes. A

primitive element in a base field is an element of the Galois Field whose powers result

in all the non-zero elements of the Galois Field. E.g. GF(5) has primitive elements 2

and 3 because:

20 = 1, 21 = 2, 22 = 4, 23 = 3 (and 24 = 1)

and

30 = 1, 31 = 3, 32 = 4, 33 = 2 (and 34 = 1)

But 4 is not a primitive element, since:

40 = 1,41 = 4,42 = 1,43 = 4,44 = 1

and therefore not all non-zero elements of the field have been generated. This is

supported by the modulo-5 multiplication and addition tables in Table 1.1 and Table 1.2.

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 1.1: Multiplication modulo 5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 1.2: Addition modulo 5

9
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1.4.2 Extended Fields

Extended fields can be seen as a vector of a base field. E.g. GF(23) (which can also be

represented by the notation F3
2 ) is an extended field of GF(2) with elements {0, 0, 0},

{0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0} and {1, 1, 1}. The zero element

of the extended field is {0, 0, 0} and a primitive element is α. All other elements are

obtained from α.

1.4.3 Field Polynomials

A primitive element α in a GF(pq) Galois Field has the property that the polynomial

α pq−1−1 = 0, where p is the number of elements in the base field and must be a

prime number and q is the number of elements in the vector of the extended field.

This polynomial will be zero if any of the factors in the equation are zero. Factorising

it should give factors that are both irreducible and primitive. For example (Sweeney

2002), in GF(23), i.e. when p = 2 and q = 3:

α
23−1−1 = α

7−1 = 0 (1.1)

but in modulo 2,

α
7−1 = (α +1)(α3 +α +1)(α3 +α

2 +1) (1.2)

therefore

(α +1)(α3 +α +1)(α3 +α
2 +1) = 0 (1.3)

and thus at least one of these factors in parentheses must also be equal to zero. So, if

α3 +α +1 = 0, then

=⇒ α3 =−α−1 = α +1

=⇒ α4 = αα3 = α(α +1) = α2 +α

10
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=⇒ α5 = αα4 = α(α2 +α) = α3 +α2 = α2 +α +1

=⇒ α6 = αα5 = α(α2 +α +1) = α3 +α2 +α = α +1+α2 +α = α2 +1

=⇒ α7 = αα6 = α(α2 +1) = α3 +α = α +1+α = 1

or α7−1 = 0 as required

This enables all elements to be represented as polynomials, shown in Table 1.3. It also

confirms that α23−1−1 = α7−1 = 0.

Element Polynomial Vector Value
0 0 {0, 0, 0} 0

α0 x0 = 1 {0, 0, 1} 1
α1 x1 = x {0, 1, 0} 2
α2 x2 {1, 0, 0} 4
α3 x+1 {0, 1, 1} 3
α4 x2 + x {1, 1, 0} 6
α5 x2 + x+1 {1, 1, 1} 7
α6 x2 +1 {1, 0, 1} 5

Table 1.3: Polynomials in GF(23)

1.5 Matrices

1.5.1 Matrices

The use of matrix multiplication is commonplace throughout this work. Messages and

codewords can be represented by 1×n matrices (row vectors of length n) and the full

set of codewords that comprise a linear code can be generated from messages by the

multiplication of the message by a k×n matrix called a generator matrix. Therefore the

ability to efficiently manipulate and, in particular, multiply matrices is a key capability in

this work.

An n by m matrix A is an ordered set of n×m elements in a rectangular array of n rows

and m columns:

A =




a11 · · · a1m

...
. . .

...

an1 · · · anm




11
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1.5.2 Adding Matrices

To add two (n×m) matrices A and B, add corresponding elements of each matrix.




a11 · · · a1m

...
. . .

...

an1 · · · anm



+




b11 · · · b1m

...
. . .

...

bn1 · · · bnm



=




a11 +b11 · · · a1m +b1m

...
. . .

...

an1 +bn1 · · · anm +bnm




1.5.3 Multiplying Matrices

The product of an (n×m) matrix A and an (m× p) matrix B has order (n× p).




a11 · · · a1m

...
. . .

...

an1 · · · anm







b11 · · · b1p

...
. . .

...

bm1 · · · bmp



=




Σm
i=1a1ibi1 · · · Σm

i=1a1ibip

...
. . .

...

Σm
i=1anibi1 · · · Σm

i=1anibip




1.5.4 Matrix Metrics

A basis B of a vector space V over a field F is a linearly independent subset of V that

spans V ie the basis set of linearly independent vectors that, in a linear combination,

can represent every vector in a given vector space (Moon 2005). The row space of an

n×m matrix M is the set of all linear combinations of row vectors of M:

c1r1 + c2r2 + . . .

where ci are scalars and ri are row vectors of M. The row vectors form a subspace of

the vector space of m-tuples. The row rank is the dimension of the row space. For

example the row space of the binary matrix:




1 1 0 1

0 1 1 0

0 0 0 1



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includes the vectors:
(

1 1 0 1

)
,
(

0 1 1 0

)
,
(

0 0 0 1

)
,
(

1 0 1 1

)
,
(

1 1 0 0

)

and
(

0 1 1 1

)
. The column space is the set of all linear combinations of column

vectors of the matrix and the column rank is the dimension of the column space. The

matrix rank can be found from either the row rank or the column rank of the matrix.

1.5.5 Elementary Matrices

Elementary row operations for matrices include the:

• Interchange of any two rows

• Multiplication of any row by a non-zero field element

• Addition of any multiple of one row to another

A matrix is non-singular if all the rows of an n×m matrix are linearly independent.

An identity matrix, I consists of 1’s on the leading diagonal and 0’s elsewhere. e.g.

I4 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




The transpose of an n×m matrix [ai j] is the m×n matrix [ai j]
T = [a ji]

An elementary matrix is a matrix which differs from the identity matrix by one single ele-

mentary row operation. Left multiplication (pre-multiplication) by an elementary matrix

represents elementary row operations, while right multiplication (post-multiplication)

represents elementary column operations. The elementary matrix:
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


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




has interchanged rows 2 and 3 of the identity matrix, while




1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1




has replaced row 3 with the sum of rows 3 and 4.
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Chapter 2

Channels

Chapter 2 looks briefly at several different types of channel used within the thesis,

including:

• The Information Channel

• The Binary Symmetric Channel (BSC)

• The Binary Erasure Channel (BEC)

• The Binary Deletion Channel (BDC)

• The Binary Symmetric Erasure Channel (BSEC)

• The Wire-Tap Channel (WTC)

Building on the basic theoretical model of the Information Channel, the Binary Sym-

metric, Erasure and Deletion Channels each affect the transmission of binary data

differently. The BSEC is included for completeness in the chapter, but no equivocation

values were calculated for it. The addition of a wire-tap channel to each scenario en-

ables the comparison of the channel properties for a legitimate receiver on the main

channel and an illegitmate recipient listening via the compounded properties of the

main channel and the eavesdropper channel. The WTC is a cascaded channel, where

the legitimate receipient receives the data after the first cascade and an eavesdropper

receives it after the second cascade. In addition, several modifications to standard

channels are considered, in particular on the BSC which is considered with the com-

pounding factors of both intentional erasures in Chapter 6 and intentional deletions in
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Chapter 7. All the channels investigated are taken to be memoryless i.e. each symbol

is independent of what preceded it.

2.1 The Information Channel

The Information Channel represented in Figure 2.1 (Roman 1997) is a statistical model

of the medium through which the signal passes (or is stored).

X Y

x1

x2

...
xi

...
xq

P(y j|xi)

y1

y2

...
y j

...
ys

Figure 2.1: The Information Channel (Roman 1997)

A channel is described by a set of conditional probabilities (P(y j|xi)) (1≤ i≤ q, 1≤ j≤

s) which are the probabilities that an input xi from an alphabet of q letters will appear

as some output y j from an alphabet of s letters. q and s need not be the same. The

channel is completely described by the matrix, P of conditional probabilities:

P = (P(y j|xi))

P =




P(y1|x1) P(y2|x1) ... P(y j|x1) ... P(ys|x1)

P(y1|x2) P(y2|x2) ... P(y j|x2) ... P(ys|x2)

...
...

...
...

P(y1|xi) P(y2|xi) ... P(y j|xi) ... P(ys|xi)

...
...

...
...

P(y1|xq) P(y2|xq) ... P(y j|xq) ... P(ys|xq)




• The i’th row corresponds to the i’th input symbol, xi

• The j’th column corresponds to the j’th output symbol, y j
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• The sum of the elements in any row i (1≤ i≤ q) is always 1:

s

∑
j=1

P(y j|xi) = 1 (2.1)

For each input xi we are certain that something will come out.

• If P(xi) is the probability of the symbol input xi then:

q

∑
i=1

s

∑
j=1

P(y j|xi)P(xi) = 1 (2.2)

When something is put into the system, we are certain that something comes

out.

This supposes that the channel is stationary i.e. the probabilities do not change with

time and the errors that occur are independent of each other.

Conditional probability rules give us that either:

P(xi,y j) = P(xi)P(y j|xi) (2.3)

or

P(xi,y j) = P(y j)P(xi|y j) (2.4)

By Bayes’ Theorem,

P(xi|y j) =
P(y j|xi)P(xi)

P(y j)
(2.5)

or

P(y j|xi) =
P(xi|y j)P(y j)

P(xi)
(2.6)

P(y j|xi) are known as the forward conditional probabilities, since they start at the front

with the xi given and express the probabilities of occurrence of the y j. P(xi|y j) are

known as the backward conditional probabilities: given the output, what symbol caused

it?
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2.2 The Binary Symmetric Channel

The Binary Symmetric Channel (BSC) represented in Figure 2.2 (Hamming 1980,

p. 133) is an idealised channel that relies on the ‘cross-over’ probability pe of a different

symbol being received than was transmitted for either transmitted symbol. Messages

M are encoded as codewords X and transmitted across a noisy channel (Figure 2.3)

that has a cross-over probability of pe. The channel is described as symmetric because

the cross-over error probability is the same for each of the input symbols. Estimates Y

of the encoded message are received and decoded to estimates of the original mes-

sage, Mest .

1 1

0 0
1− pe

pe

pe

1− pe

X Y

Figure 2.2: The Binary Symmetric Channel

Alice
(encoder)

Bob
(decoder)

noisy
channel

M X Y Mest

Figure 2.3: Code Transmission Across a Noisy Channel

Considering the probabilities with which the input symbols are chosen,

P(X = 1) = 1−P(X = 0)

=⇒ P(Y = 0) = P(X = 0)(1− pe)+(1−P(X = 0))pe

and P(Y = 1) = P(X = 0)pe +(1−P(X = 0))(1− pe)

If input symbols are equally likely, P(X = 0) = P(X = 1) = 1
2

=⇒ P(Y = 0) = 1
2(1− pe)+(1− 1

2)pe =
1
2 −

pe
2 + pe

2 = 1
2

and P(Y = 1) = pe
2 +(1− 1

2)(1− pe) =
pe
2 + 1

2 −
pe
2 = 1

2
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2.2. THE BINARY SYMMETRIC CHANNEL

i.e. If the input symbols are equally likely, then so too are the output symbols.

If there is no repetition and the order doesn’t matter, the number of r-combinations of

a set of n symbols in a codeword is denoted by the combinatorial coefficient

Cn
r =

n!
(n− r)!r!

=




n

r


 (2.7)

Using this, if the BSC is assumed and a particular binary code word is transmitted:

• The probability that no error will occur is (1− pe)
n

• The probability that one error will occur in a specified position is pe(1− pe)
n−1

• The probability of a particular received word that differs from the transmitted word

in i specified positions is pi
e(1− pe)

n−i.

• The probability of exactly 1 error in any position is

n.pe(1− pe)
n−1

• The probability of exactly 2 errors in arbitrary positions is:

n(n−1)
2

.(1− pe)
n−2 p2

e

• The probability of exactly i errors in any positions is:




n

i


(1− pe)

n−i pi
e
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2.3. THE BINARY ERASURE CHANNEL (BEC)

2.3 The Binary Erasure Channel (BEC)

The Binary Erasure Channel (BEC) in Figure 2.4, adapted from (Moser & Chen 2012,

p. 135) where ps is the probability of an erasure occurring, is an idealised channel in

which data may be transmitted containing erasures. These are symbols that are known

to be erroneous in known locations and that are just in need of correction, making the

correction of erasures easier than the correction of errors.

1 1

0 0
1− ps

ps

ps

1− ps

X Y?

Figure 2.4: The Binary Erasure Channel

Again, considering the probabilities with which the input symbols are chosen,

P(X = 1) = 1−P(X = 0)

=⇒ P(Y = 0) = P(X = 0)(1− ps)

and P(Y =?) = P(X = 0)ps +P(X = 1)ps

= P(X = 0)ps +(1−P(X = 0))ps

= ps

and P(Y = 1) = P(X = 1)(1− ps)

If input symbols are equally likely, P(X = 0) = P(X = 1) = 1
2

=⇒ P(Y = 0) = 1
2(1− ps)

and P(Y =?) = ps

and P(Y = 1) = 1
2(1− ps) = P(Y = 0)

As for the BSC, the probability of exactly i erasures in any positions is:
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2.4. THE BINARY DELETION CHANNEL (BDC)




n

i


(1− ps)

n−i pi
s

2.4 The Binary Deletion Channel (BDC)

In some respects, the Binary Deletion Channel (BDC) in Figure 2.5 is an extension

of the BEC. Erasures involve the value of bits being unknown but in known locations.

Deletions still involve bits of ambiguous value however the location of the missing bi-

nary digits (bits) is now also unknown. The BEC must consider the possible values of

an erased bit in a single position while the BDC must effectively consider the possible

values of an erased bit in every location. This brings an extra layer of complexity to the

problem and increases calculation times.

Source Encoder BDC Decoder

Figure 2.5: Code transmission across a Binary Deletion Channel

Referring to the BDC, Mitzenmacher (2009) notes that:

Currently, we have no closed-form expression for the capacity, nor do we

have an efficient algorithmic means to numerically compute this capacity.

If δ deletions of transmitted symbols xi ∈ X with deletion probability pd are introduced

then the positions of the received bits yi may differ from the transmitted positions, such

that {x0x1....xn−1} 7→ {y0y1....yn−δ−1}.

Ullman (1967) defines a deletion error at position j as an operator which takes the

vector x into the vector y, where yi = xi for i < j, yi = xi+1 for n > i > j and yn is either

fixed at 0 or fixed at 1. He pictures a deletion as causing a shift left of all the bits to its

right as in Figure 2.6.

The deletion of different bits may yield the same outcome. As an example, consider the
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2.5. THE BINARY SYMMETRIC ERASURE CHANNEL (BSEC)

x0x1x2...x j−1x j x j+1...xn−2xn−1

y0y1y2...y j−1y j+1...yn−2yn−1

Figure 2.6: The Binary Deletion Channel

8-bit codeword
(

11 02 03 14 05 16 17 18

)
being transmitted across the BDC

and a single deletion occurring. If the bit deleted was in position 6, 7 or 8, the outcome(
1 0 0 1 0 1 1

)
will be the same for each position. Similarly, a deleted bit in

position 2 or 3 both give the same outcome
(

1 0 1 0 1 1 1

)
. With n possible

deletion positions, the 7-bit word received could be any of those shown in Table 2.1.

The BDC itself is not directly studied here but Chapter 7 looks at the impact on equiv-

ocation of intentional deletions on the BSC.

Received word Probability(
1 0 0 1 0 1 1

)
3/8 = 0.375(

1 0 0 1 1 1 1
)

1/8 = 0.125(
1 0 0 0 1 1 1

)
1/8 = 0.1255(

1 0 1 0 1 1 1
)

2/8 = 0.25(
0 0 1 0 1 1 1

)
1/8 = 0.125

Table 2.1: Received word options for a single deletion of transmitted codeword
10010111

2.5 The Binary Symmetric Erasure Channel (BSEC)

A further channel discussed by Michelson & Levesque (1985) but not examined in detail

here is the Binary Symmetric Erasure Channel (BSEC). This is a binary input, ternary

output channel that includes a symmetric cross-over probability of pe and a symmetric

erasure of probability ps from either input symbol to an output symbol whose state is

ambiguous. If the outputs are judged to be unreliable due to factors such as a weak

received signal, those outputs are erased as they leave the demodulator. This channel

model is depicted in Figure 2.7.
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2.6. THE WIRE-TAP CHANNEL (WTC)

1 1

0 0
1− pe− ps

ps

ps

1− pe− ps

pe

pe

X Y?

Figure 2.7: The Binary Symmetric Erasure Channel

Once more considering the probabilities with which the input symbols are chosen,

P(X = 1) = 1−P(X = 0)

=⇒ P(Y = 0) = P(X = 0)(1− pe− ps)+P(X = 1)pe

= P(X = 0)(1− pe− ps)+(1−P(X = 0))pe

and P(Y =?) = P(X = 0)ps +P(X = 1)ps

= P(X = 0)ps +(1−P(X = 0))ps

= ps

and P(Y = 1) = P(X = 0)pe +P(X = 1)(1− pe− ps)

= P(X = 0)pe +(1−P(X = 0))(1− pe− ps)

If input symbols are equally likely, P(X = 0) = P(X = 1) = 1
2

=⇒ P(Y = 0) = 1
2(1− pe− ps)+

1
2 pe

= 1
2(1− ps)

and P(Y =?) = ps

and P(Y = 1) = 1
2 pe +

1
2(1− pe− ps)

= 1
2(1− ps) = P(Y = 0)

2.6 The Wire-Tap Channel (WTC)

Wyner (1975) introduced the concept of the “Wire-Tap Channel" shown in Figure 2.8.
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2.6. THE WIRE-TAP CHANNEL (WTC)

Source Main Channel
QM

Encoder Decoder

Wire-Tap Channel
QW

SK XN Y N SK

ZN

Figure 2.8: Code Transmission Across a Noisy Channel

His results showed that one could obtain perfect secrecy as described in Section 1.3

when a receiver enjoys a better channel than the wire-tapping opponent does.

The source is identified by the sequence {Sk}∞
1 where the Sk are independent, identi-

cally distributed random variables that take values in the finite set S. The Main Chan-

nel is a discrete memoryless channel with finite input alphabet X , finite output alpha-

bet Y and probability of a cross-over error, where 0 becomes 1 and vice versa, of

QM(y|x), x ∈ X , y ∈ Y . Since the channel is memoryless, the probability of a cross-over

error for N vectors is:

Q(N)
M (y|x) = Π

N
n=1QM(yn|xn) (2.8)

The Wire-Tap Channel is also a discrete memoryless channel with finite input alphabet

Y , finite output alphabet δ and probability of cross-over error QW (z|y), y ∈Y, z ∈ Z. The

cascade of the main channel and the wire-tap channel is another memoryless channel

with probability of cross-over error:

Q(N)
MW (z|x) = Πy∈Y QW (z|y)QM(y|x) (2.9)

So if the main channel has an error probability of 0.01 and the wire-tap channel had
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2.7. CONCLUSION

an error probability of 0.1, the legitimate receiver will receive correct symbols with an

average probability of 0.99, while the eavesdropper will only receive correct symbols

with an average probability of 0.99×0.9 = 0.891.

There is a trade-off between the transmission rate R and the minimum number of bits

that differ between any two codewords of the code (the Hamming distance d), assum-

ing essentially perfect (‘error-free’) transmission. Wyner’s results implied that there

exists a channel secrecy capacity (discussed in Section 4.7), CS > 0, such that reliable

transmission at rates up to CS is possible in levels approaching perfect secrecy. How-

ever, we are less concerned here with the assumption of error-free transmission and

focus more on the comparison of equivocation values between the legitimate recipient

and the eavesdropper. Hence more emphasis is placed in the number of transmitted

bits and the length of code for which equivocation can be calculated using the methods

discussed than the rate at which the data is transmitted.

The concept of the Wire-Tap Channel will be used throughout this thesis to highlight the

difference in the equivocation levels for a legitimate recipient and for an eavesdropper.

2.7 Conclusion

This chapter has introduced a few of the many theoretical models of channels for data

transmission. The simple BSC works on a cross-over error probability where the intro-

duction of an error results in a transmitted 0 being received as 1 and vice versa. The

BEC, with a given erasure probability, results in a bit of unknown value but in a known

position, while the BDC yields a bit of unknown value in an unknown location. The

BDC, about which relatively little is known, causes a substantial increase in the com-

plexity of finding a solution. As its name suggests, the BSEC is a hybrid of the BSC

and the BEC, however BSEC will not be examined in any further detail here. The WTC

extends each scenario to include differing channel conditions for each of a legitimate

recipient and an illegitimate eavesdropper.
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Chapter 3

Codes

3.1 Introduction

This chapter develops some of the concepts and tools that will either be used in subse-

quent chapters, in the calculation of code equivocation, or that contribute to the general

code picture. These include:

• Terminology

• Code distance and weight

• Classes and types of code including linear, error correcting, simple, dual, turbo,

interleaved, punctured, cyclic, best known linear, perfect, Hamming and Golay

codes

• Generator and parity check matrices

• Codes and their relationship to sphere packing problems

3.2 Coding Terminology

The terminology below will be used when referring to the characteristics of a code:

• q Number of distinct symbols employed on the channel

(e.g. for binary codes, q = 2)

• n Number of symbols in the codeword
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3.2. CODING TERMINOLOGY

• k Number of symbols in the message.

Also known as the information dimension of the code C

• m Number of parity check symbols added to the message to give the code-

word (k+m = n)

• M Number of possible messages in a q-ary code of message length k

• b x c The floor of x. The largest integer less than or equal to x.

• d x e The ceiling of x. The smallest integer greater than or equal to x.

• Redundancy r is the proportion of a code that is sent in addition to the actual

message. r = n−k
n = m

n

• Code Rate R = k/n is the proportion of information in the transmitted codeword.

The fraction should be given in its simplest form. More generally, R =
1
n

log2 M =

k
n

log2 q bits per symbol (where M = qk for a linear code)

• The Bit Error Rate (BER) is a measure of how badly a signal is affected by errors.

It is given by how many errors exist for a given number of bits transmitted.

Encoding is the process where the k message bits are converted to n bits of the code-

word (Hill 1986). Decoding is the reverse process, where the k bits of the message are

retrieved from the n bits of the codeword. A code is often described by parameters giv-

ing the number of symbols in the codeword and the number of symbols in the message

in the form [n,k]. For example, a [6,4] code is a code in which the process of encoding

adds 2 parity check bits to a 4-bit message, giving a 6-bit codeword.

Two q-ary codes are equivalent if one can be obtained from the other by means of:

• A permutation of the positions of the code or

• A permutation of the symbols appearing in one particular position.
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3.3. LINEAR CODES

3.3 Linear Codes

All the codes studied will be drawn from the F2 Galois Field i.e. they will be binary

codes represented by the symbols 0 and 1.

Linear codes are codes for which any linear combination of codewords is also a code-

word (Ryan & Lin 2009). Linear codes can be defined with symbols chosen from a set

of arbitrary size, but most significant results have been derived from assuming that the

code symbols are elements of a finite field.

In general, if we let Fn
q denote an n-dimensional vector space over a finite field of q

symbols Fq, for example:

[0,1,1,0, · · · ,0]︸ ︷︷ ︸
(n−elements)

then an [n,k,d]q linear code C is a k-dimensional subset of Fn
q. The linear code C has

qk codewords. d is the minimum Hamming distance of the code. Each vector in the

k-dimensional subset of Fn
q, which has a length of n symbols, is called a codeword.

For a code to be linear the following rule applies: If c1 and c2 are codewords and α1

and α2 are field elements, then c3 = α1c1 +α2c2 is also a codeword.

e.g. If a code is binary and linear and c1 and c2 are codewords, where c1 = 0101,

c2 = 0011 then c3 = c1 + c2 = 0101+0011 = 0110 is also a codeword.

Linear codes have several advantages over arbitrary codes: (Baylis 1998)

1. Evaluation of the distance of a code is easier

2. Encoding is fast and requires little storage

3. It is much easier to determine which errors are detectable / correctable

4. The probability of correct decoding is much easier to calculate

5. Very slick decoding techniques exist for linear codes
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3.4. HAMMING DISTANCE

3.4 Hamming Distance

The Hamming distance of two codewords is the number of positions in which two valid

codewords differ. The Hamming distance of a code is the minimum Hamming distance

between any two codewords. In Table 3.1, the minimum distance between any two

codewords (of the Hamming [7,4] code) is 3. That is, the Hamming distance of the

code is 3, so the code can be written as the Hamming [7,4,3] code.

Message Codeword
0000 0000000
0001 0001111
0010 0010110
0011 0011001
0100 0100101
0101 0101010
0110 0110011
0111 0111001
1000 1000011
1001 1001100
1010 1010101
1011 1011010
1100 1100110
1101 1101001
1110 1110000
1111 1111111

Table 3.1: Hamming [7,4,3] Code - Messages and their Codewords

If a code is used only for error detection, for the code to be able to detect all patterns

of t or fewer errors, it is necessary and sufficient to have t ≤ d−1 (or t < d), where d is

the minimum Hamming distance between codewords (Sweeney 2002, p.26).

It is possible to correct all patterns of e or fewer errors if and only if 2e+1≤ d.

In Figure 3.1, a filled circle represents a valid codeword and an empty circles repre-

sents an invalid codeword that contains at least one error. A code that has a Hamming

distance of 3 is able to detect 1 or 2 errors, but can only correct a single error by

choosing the closest valid codeword to the sequence received.

In Figure 3.2, a code that has a Hamming distance of 5 is able to detect up to 4 errors
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3.4. HAMMING DISTANCE

1 error corrected at most

number of errors

3 errors undetected 3 errors undetected 6 errors undetected

transmitted codeword

3 2 1 1 2 3 4 5 6

1 or 2 errors detected 1 or 2 errors detected 1 or 2 errors detected

Figure 3.1: Codes with Hamming distance=3

and correct up to 2.

2 errors corrected at most

up to 4 errors detected

Figure 3.2: Codes with Hamming distance=5

In Figure 3.3, a code that has a Hamming distance of 6 is able to detect up to 5 errors

and correct up to 2. A received sequence that is an equal distance of 3 from two valid

codewords could not be reliably corrected.

equidistant between two valid codewords

up to 5 errors detected

Figure 3.3: Codes with Hamming distance=6

The relative distance of a code C is a measure of the minimum distance of the code as

a fraction of the code length:

δ (C) = d/n (3.1)
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3.5. WEIGHT

Code C′ can be said to be a better code than code C if δ (C′)≥ δ (C).

3.5 Weight

Let c∈Fn. Then the weight of c, denoted w(c), is the number of non-zero coordinates in

c. The weight of a code is the minimum weight of any of its codewords. By inspection

of Table 3.1, it can be seen that the minimum weight of any non-zero codeword of the

Hamming [7,4] code is 3 (e.g. 0010101 has a weight of 3). If C is a linear code then

d(C) = w(C). A constant weight code is one in which all codewords have equal weight.

The weight distribution of a code is the set of numbers {Ai(c)} where Ai(c) denote

the number of codewords at Hamming distance i from a codeword c ∈ C. A0(c) = 1,

Ai(c)≥ 0 and ΣiAi(c) = M. For Ham[7,4,3], the weight distribution is:

i 0 3 4 7
Ai 1 7 7 1

and ΣiAi = 16.

3.6 Error Correcting Codes

Codes that build in the ability to correct errors are known as forward error correction

codes.

When a two way channel is used, an error-detecting code can be used to initiate back-

ward error correction. When an error is detected at one terminal, a request for a repeat

transmission can be given, and thus errors can effectively be corrected. Error detection

is by its nature a much simpler task than error correction and requires much simpler

decoding equipment. Error detection with retransmission is adaptive, in that the trans-

mission of redundant information is increased when errors occur, limiting the efficiency

of a simple error detection system. This makes it possible to get a better performance

than is theoretically possible on a one-way channel. Whilst there are true examples

of one-way channels in which error probabilities can be reduced using error correcting

codes, this is not true for error detection and retransmission. Furthermore, systems
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3.7. THE ERROR CORRECTING CODE PROBLEM

can use a combination of error correction and detection with feedback.

3.7 The Error Correcting Code Problem

Three key aspects of general coding problems are:

1. Finding codes that have the required error correcting ability (this usually makes

them long)

2. Finding a practical method of encoding the messages

3. Finding a practical method of making the decision at the receiver i.e. a method

of error correction.

The Error-Correcting Code Problem can be stated (Conway & Sloane 1999) as:

Given a q-ary alphabet, a length n and a minimum distance d, find a code

with these parameters and the maximal possible number of codewords,

Aq(n,d)

e.g. If A2(5,3) = 4 then the maximal possible number of codewords in a (5,3) binary

code is 4.

Many upper and lower bounds have been found for A(n,d); a summary of these, col-

lated by Conway and Sloane, is shown in Table 3.2.

For example, for a code of length n = 10 with minimum distance 4, the maximal possi-

ble number of codewords is 40. It is worth noting that many code length and minimum

difference combinations exist for which the maximal number of codewords is only im-

precisely bounded, even for quite short length codes.

3.8 Dual Code (or orthogonal vector space)

• Given a linear code C∈Fn, then the dual code of C, C⊥= {v∈Fn|v.c= 0 for every c∈

C}

• If C is a linear code in Fn with generator matrix G, then v∈C⊥ if and only if vG= 0.
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3.9. SIMPLE CODES

n d = 4 d = 6 d = 8 d = 10
6 4 2 1 1
7 8 2 1 1
8 16 2 2 1
9 20 4 2 1
10 40 6 2 2
11 72 12 2 2
12 144 24 4 2
13 256 32 4 2
14 512 64 8 2
15 1024 128 16 4
16 2048 256 32 4
17 2720-3276 256-340 36-37 6
18 5312-6552 512-680 64-72 10
19 10496-13104 1024-1288 128-144 20
20 20480-26208 2048-2372 256-279 40
21 36864-43690 2560-4096 512 42-48
22 73728-87380 4096-6942 1024 50-88
23 147456-173784 8192-13774 2048 76-150
24 294912-344636 16384-24106 4096 128-280

Table 3.2: Maximum Possible Number of Codewords for Codes of Length n (Conway
& Sloane 1999)

• dim(C) + dim(C⊥) = n. Thus if C is an [n,k] code then C⊥ is an [n,n− k] code.

• (C⊥)⊥ = C.

• A code is self-dual if C =C⊥

3.9 Simple codes

• The Zero code [n,0,n] of length n contains just the codeword 00....0.

• The Universe code [n,n,1] Fn
q is the dual of the Zero code and will contain qn

codewords, with a minimum distance for the code of 1.

• Triplication codes - Every message is repeated 3 times and the receiver takes a

majority vote. The code only corrects single errors and is very inefficient.

• The Repetition code [n,1,n] contains all codewords, aa....a, a ∈ Fq.

• Rectangular codes - The information is arranged in an (m−1)×(n−1) rectangle.
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3.10. TURBO CODES

A parity bit is added to each row and to each column, making an m× n rect-

angle. Rectangular codes are also known as product codes. An example of a

rectangular code is shown in Table 3.3.

1 0 0 1 1 0 0 1
0 1 1 0 0 1 0 1
1 1 0 1 0 0 1 0
0 0 1 1 0 1 1 0
1 0 0 0 0 1 0 0
1 0 0 1 1 1 0 0

Table 3.3: A Rectangular Code with Word and Block Parity Check Bits

• The [n,n−1,2] zero-sum code contains all vectors such that Σci = 0. It is the dual

of the [n,1,n] repetition code. When q = 2 this is called the even weight code,

since it consists of all binary vectors containing an even number of 1’s.

For example, the [5,4,2] zero-sum code contains the codewords shown in Ta-

ble 3.4.

00000 00011 00101 00110
01001 01010 01100 10001
10010 10100 11000 01111
10111 11011 11101 11110

Table 3.4: Codewords for a [5,4,2] Zero-sum Code

3.10 Turbo Codes

Turbo codes are high-performing error correction codes that approach Shannon’s The-

orem for the Channel Capacity (Shannon 1949, p. 47) in Equation 3.2. This gives the

maximum rate at which information can be transmitted over a communication channel

given a specific noise level.

Ca = B log2(1+
S
N
) (3.2)

where Ca is the capacity of the channel in bits per second, B is the bandwidth of the

channel in Hertz, S is the average received signal power over the bandwidth (measured
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3.11. INTERLEAVING

in Watts) and N is the average noise over the bandwidth (measured in Watts). Channel

capacity will be discussed further in Chapter 4.

Turbo codes are so named because, in a similar manner to mechanical turbos feeding

back power to the engine system, turbo codes work on an iterative process, feeding

back the decoded output as a joint input with the original data. This enables further

decoding and thereby reduces the number of errors with each iteration.

Turbo codes use extrinsic information in a recursive or iterative manner. This informa-

tion is shared between different component decoders. The decoder of the overall code

is computationally complex but the individual or component decoders are not. The

component decoding algorithms are exact, but the overall decoding method is approx-

imate.

3.11 Interleaving

Interleaving enables a burst of errors to be spread throughout the message by rear-

ranging the order in which the code digits are transmitted, which then allows single er-

rors to be corrected (two consecutive errors if they are in adjacent codewords). Spread-

ing out a burst of errors increases the likelihood of being able to correct the errors. The

process of interleaving/de-interleaving the information increases transmission delays

(latency), processing and storage.

3.12 Puncturing Codes

Let C be an [n,k,d] code over Fq. We can puncture C by deleting the same coordinate

i in each codeword (Jones & Jones 2002, p. 104). The resulting code is still linear;

its length is n− 1 and is often denoted by C∗. If G is a generator matrix for C, then a

generator matrix C∗ is obtained from G by deleting column i (and omitting a zero or

duplicate row that might occur).

If d > 1, C∗ is an [n−1,k,d∗] code where d∗ = d−1 if C∗ has a minimum weight code-

word with a non-zero i’th coordinate and d∗ = d otherwise. When d = 1, C∗ is an

[n−1,k,1] code if C has no codeword of weight 1 whose non-zero entry is in coordinate
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3.13. CYCLIC CODES

i; otherwise, if k > 1, C∗ is an [n−1,k−1,d∗] code with d∗ ≥ 1.

3.13 Cyclic Codes

A code is cyclic if whenever c0c1 · · ·cn−1 is a codeword, so is cn−1c0c1 · · ·cn−2 (Morelos-

Zaragoza 2002) i.e. A linear block code is cyclic if and only if every cyclic shift of a

codeword is another codeword.

To understand cyclic codes, it is best to represent the codewords as polynomials. Thus

a codeword C1 = {c0,c1, · · · ,cn−1} can be represented by the polynomial c0α0,c1α1 · · ·cn−1αn−1.

Cyclic shifts then are a multiplication of a codeword with the variable α and the result of

the multiplication modulo αn−1. All the codewords can be obtained from one generator

polynomial g(α) as long as the information is also represented as a polynomial. Thus

encoding is done by polynomial multiplication or convolution using shift registers. The

degree of the information polynomial is k− 1 and the degree of the codeword is n− 1

which means that the degree of the generator must be n− k. Similarly the parity check

polynomial h(α) has the property that:

g(α)h(α) = α
n−1 (3.3)

Consider length 7 binary cyclic codes. With binary codes, we have the following fac-

torisation into primitive (irreducible) polynomials:

α
7 +1 = (α +1)(α3 +α +1)(α3 +α

2 +1) (3.4)

Therefore possible generator polynomials are shown in Table 3.5.

Taking the primitive polynomial α3 +α +1 and setting to zero, we get α3 = α +1 which

can be used to generate the other polynomials.

α0 = 1

α1 = α
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3.13. CYCLIC CODES
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3.14. GENERATOR MATRICES

α2 = α×α = α2

α3 = α +1

α4 = α3×α = (α +1)α = α2 +α

α5 = α4×α = (α2 +1)α = α3 +α2 = α2 +α +1

α6 = α5×α = (α2 +α +1)×α = α3 +α2 +α = α +1+α2 +α = α2 +1

α7 = α6×α = (α2 +1)×α = α3 +α = α +1+α = 1

These polynomials and their related vectors are shown in Table 3.6.

Element Polynomial Vector

0 0 {0, 0, 0}

α0 1 {0, 0, 1}

α1 α {0, 1, 0}

α2 α2 {1, 0, 0}

α3 α +1 {0, 1, 1}

α4 α2 +α {1, 1, 0}

α5 α2 +α +1 {1, 1, 1}

α6 α2 +1 {1, 0, 1}

α7 1 {0, 0, 1}

Table 3.6: Polynomials in GF(23)

3.14 Generator Matrices

A generator matrix is a matrix whose rows form the basis for a linear code. The code-

words are all of the linear combinations of the rows of the matrix i.e. the linear code is

the row space of its generator matrix.

For a block code with q = 2 and n = 5, the set of vectors ( 0 0 0 0 0 ), ( 1 0 0 1 1 ), (

0 1 0 1 0 ), ( 1 1 0 0 1), ( 0 0 1 0 1), ( 1 0 1 1 0 ), ( 0 1 1 1 1 ) and ( 1 1 1 0 0 ) form

a vector space V1 and hence a linear or group, binary code. The minimum weight is 2

and hence the minimum distance is 2.
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3.14. GENERATOR MATRICES

Any set of basis vectors for a linear block code V can be considered as rows of a ma-

trix G, called a Generator Matrix of V . The code V1 is the row space of either of the

following matrices:

G1 =




1 0 0 1 1

0 1 0 1 0

0 0 1 0 1




or

G2 =




1 0 0 1 1

1 1 0 0 1

1 1 1 0 0




If G is a matrix, it generates the codewords of a linear code C by w = sG, where w

is a codeword of the linear code C and s is any vector. A generator matrix for an

[n,k,d] q-code is a k×n matrix, where n is the length of a codeword, k is the number of

information bits (the dimension of C as a vector subspace), d is the minimum distance

of the code and q is the size of the finite field, that is, the number of symbols in the

alphabet.

The standard form for a generator matrix is:

G = [Ik|A]

where Ik is the k× k identity matrix and A is a k×m matrix. m is the number of re-

dundant bits in each codeword, m = n− k. For any set of k independent columns of a

generator matrix G the corresponding set of coordinates form an information set for C.

The remaining m = n− k coordinates form a redundancy set.

Whilst there can be many generator matrices for a given code, if the first k coordinates
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3.15. PARITY CHECK MATRICES

form an information set, the code has a unique generator matrix of the form G = [Ik|A].

3.15 Parity Check Matrices

Because a linear code is a subspace of a vector space, it is the kernel of some linear

transformation. In particular there is an (n−k)×n matrix H, called a parity check matrix

for the [n,k] code C, defined by :

C = {x ∈ Fn
q|HxT = 0} (3.5)

The matrix H is called a parity-check matrix for a linear code C if the columns of H form

a basis for the dual code C⊥. As with the generator matrix for an [n,k] code C, the rows

of the (n− k)×n parity check matrix H are independent and H is the generator matrix

of the dual code or orthogonal of C.

The rows of H will also be independent. In general, there are also several possible

parity check matrices for C. If G = [Ik|A] is a generator matrix for the [n,k] code C in

standard form, then H = [−AT |In−k] is a parity check matrix for C.

Taking the [7,4,3] Hamming Code with the generator matrix below as an example,

G = [I4|A] =




1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




(3.6)

a parity check matrix would be:

H = [AT |I3] =




0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1




(3.7)

A linear code can be presented with either a generator matrix or a parity check matrix.
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A simple parity check for a binary message is achieved by counting the number of

1’s in the message and appending a final binary digit, so that the entire message is

designed to have either an odd or even number of 1’s in it. This only enables an odd

number of errors to be detected. The rows of a parity check matrix are parity checks

on the codewords of a code. They show how linear combinations of certain digits of

each codeword equal zero. For example, the parity check matrix:




01 02 13 14

11 12 03 04




shows that there are two parity checks. The first row specifies that for each codeword,

digits 3 and 4 should sum to zero, whilst the second row specifies that for each code-

word, digits 1 and 2 should sum to zero. The parity check matrix for a given code can

be derived from its generator matrix and vice versa.

3.16 Best Known Linear Codes

Many of the codes used here as examples in the calculation of equivocation are Best

Known Linear Codes (BKLCs), i.e. they have the highest minimum weight among all

[n,k] codes. Suitable codes were identified from code tables of BKLCs compiled by

Grassl (2015), while the generator and parity check matrices for these codes were

obtained using the online calculating software Magma provided by the University of

Sydney (2015). For example, to obtain the generator and parity check matrices for the

BKLC [15,11,3] (i.e. Hamming) code, the instructions were submitted to the program

as shown in Figure 3.4 and Figure 3.5.

C:=BKLC(GF(2),15,11);
C;

Figure 3.4: Magma code for obtaining BKLC generator matrix

These inputs yielded the Magma outputs shown in Figure 3.6 and Figure 3.7 respec-

tively. The Magma output is displayed line by line as a sequence of row vectors that,
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3.17. PERFECT CODES

C:=BKLC(GF(2),15,11);
P:=ParityCheckMatrix(C);
P;

Figure 3.5: Magma code for obtaining BKLC parity check matrix

when combined, form the overall matrix.

[15,11,3] Linear Code over GF(2)
Generator matrix
[1 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
[0 1 0 0 0 0 0 0 0 0 0 0 1 0 1]
[0 0 1 0 0 0 0 0 0 0 0 0 1 1 0]
[0 0 0 1 0 0 0 0 0 0 1 0 0 0 1]
[0 0 0 0 1 0 0 0 0 0 1 0 0 1 0]
[0 0 0 0 0 1 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 1 0 0 1 0 1 0 1]
[0 0 0 0 0 0 0 0 1 0 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]

Figure 3.6: Magma generator matrix output

[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
[0 1 1 0 0 1 1 0 0 1 1 0 0 1 1]
[0 0 0 1 1 1 1 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

Figure 3.7: Magma parity check matrix output

3.17 Perfect Codes

A code C ⊂ Fn
q with minimum distance 2e+1 is defined (van Lint 1999, p.34) as Perfect

if every x ∈ Fn
q has distance ≤ e to exactly one codeword. A minimum distance of 2e+1

enables the code to correct e errors. Hamming codes and the Golay code are the only

non-trivial examples of perfect codes.

A code C of length n and odd distance d = 2t +1 (where t is the number of errors to be

corrected) is perfect if C attains the Hamming bound (van Lint 1999):

|C| ≤ 2n
(n

0

)
+
(n

1

)
+ ...+

(n
t

) (3.8)
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3.18. HAMMING CODES

3.18 Hamming Codes

For any integer m, it is possible to construct a perfect, single error-correcting, binary

Hamming code Ham(m,2) with Hamming distance 3 (Hamming 1950). Such a code

uses m parity digits to correct any single error in a codeword of size n digits, where n =

2m−1. The message length is k, where k= n−m. The Hamming code Ham(m,2) can be

described by the parameters Ham[n,k,d]. The generator matrix will have dimensions

k× (2m−1) and the parity check matrix has dimensions m× (2m−1).

Consider the binary Hamming code with message length m = 4. Since n = (2m− 1),

n=(24−1)= 15 and k= 15−11= 4. Ham(4,2) is a GF2-code with parameters [15,11,3].

Hamming codes are cyclic codes, as can be seen by considering the Hamming [15,11,3]

code. Looking at the GF(24) field, α24−1−1 = α15−1 This can be factorised as:

α
15−1 = (α−1)(α4 +α +1)(α4 +α

3 +1)(α2 +α +1)(α4 +α
3 +α

2 +α +1)

Therefore since (α4 +α +1) is a primitive polynomial factor and α4 +α +1 = 0, we can

use the polynomial α4 = α +1 to generate the other polynomials.

α0 = 1

α1 = α

α2 = α×α = α2

α3 = α×α×α = α3

α4 = α +1

α5 = α4×α = (α +1)α = α2 +α

α6 = α5×α = (α2 +α)×α = α3 +α2

α7 = α6×α = (α3 +α2)×α = α4 +α3 = α3 +α +1

α8 = α7×α = (α3 +α +1)×α = α4 +α2 +α = α2 +α +α +1 = α2 +1

α9 = α8×α = (α2 +1)×α = α3 +α

α10 = α9×α = (α3 +α)×α = α4 +α2 = α2 +α +1

α11 = α10×α = (α2 +α +1)×α = α3 +α2 +α
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3.18. HAMMING CODES

α12 = α11×α = (α3 +α2 +α)×α = α4 +α3 +α2 = α3 +α2 +α +1

α13 = α12×α = (α3 +α2 +α +1)×α = α4 +α3 +α2 +α = α3 +α2 +α +α +1 = α3 +

α2 +1

α14 = α13×α = (α3 +α2 +1)×α = α4 +α3 +α = α3 +α +α +1 = α3 +1

α15 = α14×α = (α3 +1)×α = α4 +α = α +1+α = 1

These polynomials and their contribution to the matrix are shown in Table 3.7.

Element Polynomial Vector

0 0 {0, 0, 0, 0}

α0 α0 = 1 {0, 0, 0, 1}

α1 α1 = α {0, 0, 1, 0}

α2 α2 {0, 1, 0, 0}

α3 α3 {1, 0, 0, 0}

α4 α4 = α +1 {0, 0, 1, 1}

α5 α5 = (α +1)α = α2 +α {0, 1, 1, 0}

α6 α6 = α3 +α2 {1, 1, 0, 0}

α7 α7 = α3 +α +1 {1, 0, 1, 1}

α8 α8 = α2 +1 {0, 1, 0, 1}

α9 α9 = α3 +α {1, 0, 1, 0}

α10 α10 = α2 +α +1 {0, 1, 1, 1}

α11 α11 = α3 +α2 +α {1, 1, 1, 0}

α12 α12 = α3 +α2 +α +1 {1, 1, 1, 1}

α13 α13 = α3 +α2 +1 {1, 1, 0, 1}

α14 α14 = α3 +1 {1, 0, 0, 1}

α15 α15 = 1 {0, 0, 0, 1}

Table 3.7: Polynomials in GF(24)

Which yields a parity check matrix of:
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3.18. HAMMING CODES

H = (α14,α13,α12,α11,α10,α9,α8,α7,α6,α5,α4,α3,α2,α1,1)




1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

1 1 1 0 1 0 1 1 0 0 1 0 0 0 1




3.18.1 Encoding Using Hamming Codes

To encode a message m =

(
0 1 0 0

)
using the Hamming [7,4,3] code, multiply the

message by the generator matrix given in Equation 3.6 to obtain the codeword x, so

that x = m×G :

(
0 1 0 0

)




1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




=

(
0 1 0 0 1 0 1

)

Since the first k (=4) columns of the generator matrix consist of the identity matrix,

the original message is represented by the first k (=4) bits of the codeword.The Ham-

ming [7,4,3] codewords corresponding to each possible 4-bit message are shown in

Table 3.1. Once the message has been encoded, the codeword can be transmitted via

the channel.

3.18.2 Decoding Hamming Codes

If an error occurs during transmission (via a binary symmetric channel), the transmitted

codeword x will be received as y. If the the codeword x=
(

01 12 03 04 15 06 17

)

incurs an error in bit 3 during transmission, where bit 1 is the left-most bit and bit 7 is the

right-most bit, then the codeword would be received as r =
(

01 12 13 04 15 06 17

)
.
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3.18. HAMMING CODES

The codeword can be corrected by calculating the syndrome associated with the re-

ceived codeword. The syndrome is the set of parity check results obtained by multiply-

ing the received codeword by the parity check matrix. The parity check matrix could be

used in its standard form, however for Hamming codes, the syndrome can represent

a binary number by re-ordering the columns of the parity check matrix appropriately.

This gives not only the result of the checks but also the position of the error. This is

because as a Perfect code, exactly one syndrome exists for every possible codeword.

A syndrome of 0 indicates that no error has been detected.

The parity check matrix used to decode the codeword is therefore:




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1




Multiplying the received codeword by the transpose of the parity check matrix, so that

s = r×HT , yields a syndrome of:

(
0 1 1 0 1 0 1

)




0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




=

(
0 1 1

)

(
0 1 1

)
is the binary equivalent of 3 and therefore the syndrome indicates that a

transmission error has occurred in the third bit of the codeword. The codeword can be

corrected to give an estimate of the transmitted codeword y =
(

0 1 0 0 1 0 1

)
.

Since the message is contained by the first 4 bits of the codeword, an estimate of the
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original message is decoded to be mest =

(
0 1 0 0

)
. The received codeword has

been correctly decoded.

Codes with a minimum Hamming distance of n can correct up to (n− 1)/2 errors if n

is odd or up to n
2 − 1 errors if n is even; else it can detect up to n− 1 errors without

correcting them. With its minimum distance of 3, the Hamming [7,4,3] code only has

the capability to correct single bit errors. If two errors occurred during transmission of

the codeword x =

(
0 1 0 0 1 0 1

)
then the codeword would probably not be

decoded correctly. If the two errors occurred at position 1 and position 6, then the

received codeword would be r =
(

1 1 0 0 1 1 1

)
.

Multiplying the received codeword by the transpose of the parity check matrix, so that

s = r×HT , yields a syndrome of:

(
1 1 0 0 1 1 1

)




0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




=

(
1 1 1

)

This syndrome of
(

1 1 1

)
suggests that the codeword has been received with a sin-

gle error in position 7. The codeword would be corrected to y=
(

1 1 0 0 1 1 0

)
,

the first four bits of which give an estimate of the original message as mest =

(
1 1 0 0

)
.

The message has been incorrectly decoded due to the limited ability of the code to cor-

rect at most one error.

3.19 Golay Codes

Golay (1949) noticed that: C23
0 +C23

1 +C23
2 +C23

3 = 211. This equality shows the possible

47



3.19. GOLAY CODES

existence of a perfect binary [23,12,7] code, that achieves the Hamming bound and is

capable of correcting all possible patterns of at most 3 errors in 23 bit positions.

There are two closely related binary Golay codes. The perfect binary Golay code

encodes 12 bits of message data as a 23-bit codeword in such a way that any 3-bit

errors can be corrected or any 6-bit errors can be detected.

The binary Golay code is the [23,12,7] cyclic code generated by the polynomial:

α
11 +α

10 +α
6 +α

5 +α
4 +α

2 +1

The weight distribution of the 212 = 4096 codewords is:

i 0 7 8 11 12 15 16 23
Ai 1 253 506 1288 1288 506 253 1

Both the code and its dual are proper i.e. the probability P(ε) of an undetected error for

the block code is monotonically increasing in ε for 0≤ ε ≤ 1
2 , where ε is the probability

of a symbol error (Leung-Yan-Cheong et al. 1979).

The [24,12,8] extended binary Golay code is obtained from the perfect binary Golay

code by adding a parity bit.

A generator matrix for the extended binary Golay code in standard [I|A] form is:
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3.19. GOLAY CODES




1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1




The extended binary Golay code was used by the Voyager spacecraft programme in

the 1980’s for transmitting images of Saturn and Jupiter back to Earth.

There are also two closely related ternary Golay codes. The ternary Golay code is

an [11,6,5]3 linear code over a ternary alphabet; the relative distance of the code is as

large as it possibly can be for a ternary code, and hence, the ternary Golay code is a

perfect code. The extended ternary Golay code is a [12,6,6]3 linear code obtained by

adding a zero-sum check digit to the [11,6,5]3 code.

The ternary Golay code is the [11,6,5] CRC code (van Lint 1999) generated by the

polynomial:

α
5 +α

4−α
3 +α

2−1

It has a parity check matrix of:
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


1 1 1 2 2 0 1 0 0 0 0

1 1 2 1 0 2 0 1 0 0 0

1 2 1 0 1 2 0 0 1 0 0

1 2 0 1 2 1 0 0 0 1 0

1 0 2 2 1 1 0 0 0 0 1




Its weight distribution is:

i 0 5 6 8 9 11
Ai 1 132 132 330 110 24

Both the code and its dual are proper.

3.20 Codes and Sphere Packing

3.20.1 Geometric Sphere Packing

In a lattice packing, if the lattice has its origin as a centre and there are spheres with

centres u and v, then there are also spheres with centres u+ v and u− v. i.e. the set

of centres form an additive group (Conway & Sloane 1999). In n-dimensional space, if

we can find n centres v1,v2, · · · ,vn, such that the set of all centres consists of the sums

∑kivi, where the ki are integers, then the vectors v1,v2, · · · ,vn form a basis for the lattice.

In the lattice in Figure 3.8, the n-dimensional space contains the following features:

• a is a lattice point

• b is a deep hole

• ρ is the packing radius of the lattice

• R is the covering radius of the lattice

If the sphere radius was R then the whole space would be covered (in this lattice,

R = 2ρ/
√

3).
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3.20. CODES AND SPHERE PACKING

Figure 3.8: A Hexagonal Lattice (Conway & Sloane 1999)

A fundamental region for a lattice is a building block which when repeated many times

fills the whole space with just one lattice point in each copy. The lattice in Figure 3.8

shows a hexagonal fundamental region.

The packing density is a measure of what fraction of the total space is taken up by the

spheres.

∆ = Proportion of the space that is occupied by spheres

=
Volume of one sphere

Volume of fundamental region
(3.9)

3.20.2 Sphere Packing and Error Correcting Codes

Remembering that an [n,k,d] code C over Fq can correct t = b(d− 1)/2c errors, if t or

fewer errors are made then the received vector can be uniquely decoded. If the number

of errors is more than t but no more than the covering radius R, sometimes these errors

can still be uniquely decoded.
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3.20. CODES AND SPHERE PACKING

3.20.3 Example of Sphere Packing and Error Correcting Codes

An example of the relationship between error-correcting codes and sphere packing

can be seen with the Hamming [7,4,3] code (Moser & Chen 2012). The code has

24 = 16 valid codewords out of the 27 = 128 possible code vectors. Each distinct pair

of codewords of the Hamming [7,4,3] code is separated by a Hamming distance of at

least 3.

Geometrically, we can think of each valid Hamming codeword as a point in n-dimensional

space with distance at least 3 from any other codeword. If each codeword is consid-

ered as being the centre of a sphere of radius r = 1, then the spheres will contain all

the code vectors that have a Hamming distance of 1 from the valid codeword. In other

words, the code vectors differ from the valid codeword in exactly 1 bit, or they contain

a single error. No code vector can lie within two spheres as the spheres are too well

separated.

For each valid codeword in the Hamming [7,4,3] code, there are 7 code vectors that

differ by 1 bit so, along with the codeword itself, there are 8 code vectors within each of

the 16 spheres. Therefore every code vector containing a single bit error will lie closer

to one particular valid codeword than to any other. Thus, correcting a single bit error

is always possible for the Hamming [7,4,3] code. Since every possible code vector is

included within the 16 non-overlapping spheres, the Hamming [7,4,3] code is a perfect

code with the tightest possible packing of radius-1 spheres in the 7-dimensional binary

space.

3.20.4 The Sphere Packing Problem

The Sphere Packing Problem (Conway & Sloane 1999, p. 1) seeks to investigate how

densely a large number of identical spheres can be packed together. Finding the

maximal number of non-overlapping radius-t spheres that can be packed into an n-

dimensional binary space is the geometric equivalent of finding the maximal number of

codewords that a t-error correcting code can have.
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3.20. CODES AND SPHERE PACKING

3.20.5 The Hamming Bound

For any non-negative integer R and codeword u ∈ Fn, then SR(u) denotes the sphere of

radius R and centred on u (Hill 1986, p. 18), where:

SR(u) = {v ∈ Fn|d(u,v)≤ R} (3.10)

The sphere is the set of code vectors for which the Hamming distance between the

code vector and the original codeword is less than the sphere radius.

Working in n-dimensional space, each vertex of an n-dimensional cube is represented

by a codeword of n 0’s and 1’s. The vector space consists only of the 2n vertices -

there is nothing else in the space of all possible messages except the 2n vertices. The

surface of a sphere of radius 1 about the point (0, 0,. . . , 0) is the set of all vertices in the

space which are one unit away i.e. all vertices which have a single 1 in their coordinate

representation. There are
(n

1

)
such points.

As with the Hamming [7,4,3] code, the volume of a sphere of radius 1 is the centre

point itself plus the n points with just one coordinate changed; a volume of 1+n.

The total volume of the n-dimensional space is 2n, the total number of possible points.

Since the spheres do not overlap, the maximum number of message points k must

satisfy (Hamming 1980, p. 46)

total volume
volume of a sphere

≥maximum number of spheres (3.11)

So
2n

n+1
≥ 2k (3.12)

Or, (for a sphere of radius 1) since n = m+ k

n+1≤ 2m (3.13)
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3.20. CODES AND SPHERE PACKING

Extending to a sphere of radius R and a field Fq, for R < n, SR(u) contains exactly:

|SR(u)|=




n

0


+




n

1


(q−1)+ · · ·+




n

r


(q−1)R =

r

∑
i=0




n

i


(q−1)i (3.14)

points of Fn.

Summing across all codewords within the code, if there is a q-ary (n,M,d)-code and

t = b(d−1)/2c (t is the number of errors transmitted in the codeword) then the following

inequality is satisfied:

M





t

∑
i=0




n

i


(q−1)i




≤ qn (3.15)

Or:

M ≤ qn

∑
t
i=0




n

i


(q−1)i

(3.16)

In addition to earlier definitions relating to codewords and codeword distances, a Per-

fect code can be defined (Hoffman 1991) as a code that satisfies this equation with

equality. For a binary code, this simplifies to:

M ≤ 2n

∑
t
i=0




n

i




(3.17)

Thus, the number of codewords in a code is limited by the number of distinct sym-

bols employed by the channel (q), the number of symbols in the codeword (n) and the
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3.20. CODES AND SPHERE PACKING

number of errors that the code is to be able to correct (t). This can be written as

M|St | ≤ qn (3.18)

For example with a [5,3,2] binary code (q=2, n=5):

M
(

1+
(n

1

))
≤ 25 i.e. 6M ≤ 32, so M ≤ 5

For a [23,12] code, there would be 223 = 8388608 possible code vectors. Of these,

212 = 4096 would be valid codewords, corresponding to 4096 possible messages. For

each valid codeword (of length 23), there will be 1 code with with a Hamming distance

of 0 (i.e. the codeword itself),
(23

1

)
= 23 code vectors that differ by 1 bit,

(23
2

)
= 253 code

vectors that differ by 2 bits and
(23

3

)
= 1771 code vectors that differ by 3 bits. Overall

there will be 1+23+253+1771 = 2048 code vectors that have a Hamming distance of

3 or less to each valid codeword. This is true for each codeword, therefore there will be

4096× 2048 = 8388608 codewords in total. In other words and as noted earlier, every

possible code vector of a [23,12] code has a Hamming distance of 3 or less.

Since the Golay [23,12,7] code has a minimum distance of 7, it has the ability to correct

all code vectors that contain t = b(d−1)/2c= b(7−1)/2c= 3 or fewer errors. Hence the

Golay code can correct every possible code vector. Applying k = 12,n = 23 and t = 3 to

the Hamming bound,

212 ≤ 223
(23

0

)
+
(23

1

)
+
(23

2

)
+
(23

3

)

≤ 223

1+23+253+1771

≤ 8388608
2048

≤ 4096 (3.19)
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3.20. CODES AND SPHERE PACKING

The equation holds with equality and therefore by Equation 3.16, the Golay code is a

perfect code.

If a code C has the property that there is an integer t such that the t-spheres around

the codewords are disjoint and cover the whole of Fn then the code achieves equality

in Equation 3.18. Tthe code is again perfect and possesses perfect packing.

A code with odd distance d = 2t+1 is perfect if and only if there is equality in the sphere

packing bound i.e. M|St(0)| ≤ qn. Conversely for any perfect code, the distance d must

be odd and d = 2t +1.

The difference between the two sides of the sphere packing bound is equal to the

number of points that are not covered by the spheres.

If a code has minimal distance d, the ‘Hamming Spheres’ of radius ρ = 1
2(d−1) around

the codewords are disjoint i.e. they have no element in common, (so ρ is the packing

radius of the code) and therefore the code can correct ρ errors.

3.20.5.1 Perfect Codes

Tietäväinen (1973) showed that the only parameters satisfying the Hamming bound

with equality are:




n = 2u−1, k = 2u−u−1, t = 1 for any positive integer u

n = 23, k = 12, t = 3

n = 2u+1, k = 1, t = u for any positive integer u

The first case is a general Hamming code of order u. The second case has been

shown (Pless 1968) to only hold for the Golay code. The third case is the (2u+ 1)-

times repetition code i.e. repeating the message (2u+1) times.

3.20.6 Other Geometric Properties of Lattices

Around each lattice point ai is its Voronoi cell, V (ai), consisting of those points Rn that

are at least as close to ai as to any other Pj. Voronoi cells are also known as nearest

neighbour cells. For a hexagonal lattice, the Voronoi cell is the hexagon (Conway &
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3.20. CODES AND SPHERE PACKING

Sloane 1999, p. 6).

The kissing number (τ) of a sphere packing in any dimension is the number of spheres

that touch one sphere (Conway & Sloane 1999, p. 21). For a lattice packing, τ is the

same for every sphere, but for an arbitrary packing, τ may vary from one sphere to

another. The kissing number is also known as the Newton number, contact number,

coordination number or ligancy. Values for the kissing number in the first 10 dimensions

are shown in Table 3.8.

Dimension (n) τn

1 2
2 6
3 12
4 24-25
5 40-46
6 72-82
7 126-140
8 240
9 306-380

10 500-595
...

...

Table 3.8: Kissing Number Values in Different Dimensions (Conway & Sloane 1999)

The covering density (or sparsity of the covering or thickness) (Conway & Sloane 1999,

p. 31) is:

Θ = Average number of spheres that contain a point of the space

The covering problem asks for the thinnest covering of n-dimensional space by spheres.

For a plane, no other arrangement of circles (e.g. square lattice) can cover the plane

more efficiently than the hexagonal lattice arrangement. However, as for packings, the

optimal coverings are not known in higher dimensions.

A binary analogue to the covering problem is to find the smallest number of overlapping

Hamming spheres that will cover Fn
q. Equivalently, let the covering radius of a code C
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3.21. COMPLEXITY THEORY

be:

maxxmincd(x,c)(x ∈ Fn
2,c ∈C)

Then the coding equivalent of the covering problem is, for a given code length and

covering radius, to find the smallest possible number of codewords such that every

possible codeword is within a fixed distance of a valid codeword.

3.21 Complexity Theory

Many of the algorithms in this work are highly intensive, requiring many calculations.

Complexity theory gives some indication of the relative difficulty of different calcula-

tions. A deterministic algorithm, model or process is one whose resulting behaviour is

entirely determined by its initial state and inputs, and which is not random or stochastic.

A Turing machine is a hypothetical machine that can simulate any computer algorithm,

no matter how complex. Most of the processes considered here are deterministic. Two

important and relevant classes of complexity are:

• PTIME - Contains all decision problems that can be solved by a deterministic

Turing Machine in Polynomial Time i.e. Using ’big O’ notation to classify such

problems in terms of how their run time or space requirements grow as the input

size of n grows, such problems can be solved in O(p(n)) time where p(n) is a

polynomial of n. Cobham’s thesis (Cobham 1965) holds that P is the class of

computational problems that are efficiently solvable or tractable.

• EXPTIME - is the set of all decision problems that can be solved in exponential

times (O(2p(n)) time) by a deterministic Turing machine. EXPTIME problems are

intractable in that no efficient algorithms exists for solving them, only a brute force

approach.

Consider the functions y = x2 and y = 2x shown in Figure 3.9. Visually, provided x & 3,

the exponential curve increases at a faster rate than the polynomial curve, crudely sym-

bolising the difference in complexity between PTIME problems and EXPTIME prob-
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lems. For y = x2, dy
dx = 2x and for y = 2x, dy

dx = 2x ln2. The gradient of the polynomial

increases at a constant rate of d2y
dx2 = 2, whereas the gradient of the exponential curve is

itself continuing to increase exponentially at a rate of d2y
dx2 = 2x(ln2)2. Whilst the actual

value of the exponential function will be greater than that of the polynomial function if

x > 4, above approximately x = 3.21 the gradient of the exponential curve will always be

greater than that of the polynomial function. This represents the more rapidly increas-

ing complexity of an EXPTIME problem over a PTIME problem.

Figure 3.9: Polynomial rate versus Exponential rate

As an example, consider the determination of whether a number is prime or not. The

number of steps in the calculation increases relatively slowly in comparison with the

number of digits n in the number. Agrawal et al. (2004) showed that the calculation of

whether a number is prime is a PTIME problem. Whilst not increasing at a constant

rate, in general the number of steps increases according to something approaching the

polynomial n2 i.e. in polynomial time. Board games such as the generalised version

of Go (with Japanese ko rules) are considered (Robson 1983) to be an EXPTIME

problem because the number of moves available increases exponentially with the size

of the board.
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The calculations of equivocation for the different channel arrangements encountered

in this thesis involve EXPTIME problems. For example, the calculation of equivocation

for the Binary Symmetric Channel in Chapter 5 for an [n,k,d] binary linear code must

consider 2k possible messages of length k and corresponding codewords of length

n. For each of these, there are 2n possible errors that could occur during transmis-

sion. Therefore to calculate the probabilities of all possible output messages for all

input messages, there are 2k×2n = 2n+k possible calculations to perform. The number

of calculations increases exponentially with both the code length n and the message

length k, rendering it an EXPTIME problem. Few shortcuts to reduce the calculation

time were identified, thereby requiring a brute force approach to the calculation. This

makes the calculations extremely labour intensive and formed a time-bounded con-

straint to the length of codes for which results could be evaluated. Such limitations

formed a key constraint on the length of codes able to be analysed.

3.22 Conclusion

The fields of coding, sphere packing and complexity theory are each very large and

full justice cannot be given to them in this chapter. Instead the aim of this chapter has

been to give an overview of the most salient and relevant points in order to help place

the main body of the thesis within the wider field. Of the code types discussed, per-

fect codes and BKLCs will be given the most attention in subsequent chapters. This

is primarily to restrict the code choice to a manageable set of relatively straightfor-

ward codes that enable slightly more simple calculations to be completed by a single-

purpose program in an acceptable time-frame, e.g. less than 2 days. This approach

could potentially be extended in future work to other codes such as Hadamard codes,

other Reed-Muller codes or Low Density Parity Check Codes (LDPC), although the

size of LDPC codes would most likely prove problematic. The use of the approach

with an iterative process such as that used for turbo codes would also be likely to be

problematic in terms of the resulting calculation complexity; a factor which also affects

the method’s effectiveness at coping with deletions in Chapter 7.
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Chapter 4

Channel Metrics

4.1 Introduction

Chapter 4 looks at some of the tools and measures that will be used to evaluate the

information characteristics of a variety of codes when transmitted across different chan-

nels. This includes the definition and discussion of:

• Information

• Entropy

• Equivocation

• Mutual Information

• Capacity

• Information leakage

4.2 Information

The amount of information conveyed by a symbol was introduced by Shannon (1949)

and developed further by Woodward & Davies (1952). Information is closely related to

the amount of uncertainty or the amount of surprise in that event occurring and in an

event xi with probability pi, it can be defined (Hamming 1980, p. 102) as:

I(xi) = log2
1
pi

(4.1)
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When using base 2 logarithms, the unit of information is the ‘bit of information’. If

surprise is additive and the probabilities of two independent choices are multiplied

together to get the probability of the compound event, then:

I(x1)+ I(x2) = log2
1

p1 p2
= I(x1,x2) (4.2)

On average, for each symbol xi, we get piI(xi) bits of information. Over the whole

alphabet of q symbols xi we will get an average amount of information (Hamming 1980,

p. 104) of:

q

∑
i=1

pi log2

(
1
pi

)
(4.3)

4.3 Entropy

The average amount of information per symbol xi of an information source X is known

as the entropy of the information source, or equivalently, the uncertainty associated

with the source. H(X) = 0 when the source is certain and H(X) is maximal when all the

xi are equally likely.

The entropy is given by (Jones & Jones 2002):

Hr(X) =
q

∑
i=0

p(xi) logr
1

p(xi)
(4.4)

where r is the radix or root of the code. For a binary code, r = 2 and the entropy is:

H(X) =
q

∑
i=0

p(xi) log2
1

p(xi)
(4.5)

The entropy function has the following properties:

• H(X)≥ 0
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• H(X)≤ log2 q where q is the number of input symbols

• H(X) = log2 q when all the source symbols are equally likely

Note that ‘the entropy of a source’ has no meaning unless a model of the source is

included e.g. for a Pseudo Random Number Generator, the numbers generated by a

source would come very much as a surprise unless the formula used for generating

them is known.

e.g. for a channel with q = 4 symbols (e.g. 00, 01, 10 & 11) occurring with equal

probability, the entropy will take a maximal value of 2 (= log24):

H(X) =
4

∑
i=1

p(xi) log
(

1
p(xi)

)

= 0.25log2

(
1

0.25

)
+0.25log2

(
1

0.25

)
+0.25log2

(
1

0.25

)
+0.25log2

(
1

0.25

)

= 0.5+0.5+0.5+0.5

= 2

However if the 4 symbols occur with the probabilities 0.4, 0.3, 0.2, and 0.1, the entropy

will be 1.846:

H(X) = 0.4log2

(
1

0.4

)
+0.3log2

(
1

0.3

)
+0.2log2

(
1

0.2

)
+0.1log2

(
1

0.1

)

= 0.52877+0.52109+0.46439+0.33219

= 1.84644

Similarly for the received symbols (where s is the number of output symbols):

I(y j) = p(y j) log2
1

p(y j)
(4.6)

H(Y ) =
s

∑
j=1

p(y j) log2
1

p(y j)
(4.7)
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4.3.1 Binary Entropy Function

Supposing that X is a binary random variable such that:

X =





1 with probability pe

0 with probability 1− pe

(4.8)

Then the entropy of X is in Equation 4.9 and plotted in Figure 4.1. Clearly there is little

practical use in a channel with pe > 0.5, since it has become more likely that an error

will occur than not. When pe = 0.5, the received bit has become random.

H(X) =
2

∑
i=1

pi log
1
pi

=−pe log2 pe− (1− pe) log2(1− pe) (4.9)

Figure 4.1: The Binary Entropy Function

This can also be written as H(pe) since the function depends solely on pe
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4.4 System Entropies

The relationships between input and output entropies, joint entropy, conditional en-

tropies and mutual information are shown in Figure 4.2.

H(X |Y ) H(Y |X)I(X ,Y )

H(X) H(Y )

H(X ,Y )

Figure 4.2: Relationship between entropy and mutual information

The joint entropy of a binary system can be given as

H(X ,Y ) = ∑
x∈X

∑
y∈Y

P(xi,y j) log2

(
1

P(xi,y j)

)
(4.10)

while the conditional entropy is

H(Y |X) = ∑
x∈X

P(xi)H(Y |xi)

= ∑
x∈X

P(xi) ∑
y∈Y

P(y j|xi) log2

(
1

P(y j|xi)

)

= ∑
x∈X

∑
y∈Y

P(xi,y j) log2

(
1

P(y j|xi)

)
(4.11)

If input and output symbols are dependent, in the same way to that for probabilities

P(X) and P(Y ), where P(Y |X) = P(X ,Y )−P(X),

H(X |Y ) = H(X ,Y )−H(Y ) (4.12)
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or

H(Y |X) = H(X ,Y )−H(X) (4.13)

The conditional entropy is the difference between the joint entropy and the source or

output entropy. The conditional entropy H(Y |X) represents the information loss in the

channel going from input to output. It is how much must be added to the source entropy

to get the joint entropy.

It is worth noting that in situations where H(X) = H(Y ), then H(X |Y ) = H(Y |X).

If the input X and output Y are statistically independent (i.e. what comes out doesn’t

depend on what goes in), then:

H(X ,Y ) = H(X)+H(Y ) (4.14)

4.5 Equivocation

In spoken English, one definition (Dictionary.com 2017) of the verb ‘to equivocate’ is

‘using ambiguous language so as to conceal the truth or avoid committing oneself.’

Hence when someone speaks clearly and unambiguously, they are said to be ‘un-

equivocal’.

Similarly in information theory, equivocation was described by Shannon (1948, 1949)

as a measure of the average amount of uncertainty in a received signal. It was defined

as the conditional entropy of the system, since that represents the information loss of

the channel going from input to output.

Shannon also demonstrated that the conditional entropy H(X |Y ) of the transmitted sig-

nal when the received signal is known is a natural measure of the uncertainty of what

was actually transmitted, knowing only the perturbed version given by the received sig-

nal. Thus the equivocation of a channel is an appropriate mechanism for measuring

the level of secrecy involved in the use of that channel. Shannon defined the Secrecy

of the system as the conditional entropy, H(X |Y ) = H(X ,Y )−H(Y ).
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Shannon’s equivocation remains an important analysis tool for information security.

Whilst other metrics for assessing secrecy have been proposed such as the security

gap (Klinc et al. 2009) and a value function (Cuff 2010), equivocation continues to be

recognised as an established metric (Klinc et al. 2009) and will be used in this work.

The probabilities of input codewords (xi) and output codewords (y j) can be used to cal-

culate a set of entropies. In turn, these entropies can be used to calculate the equivo-

cation of the code. For each given input message, the conditional probabilities P(y j|xi)

of each decoded message can be calculated. From the conditional probabilities, the

overall joint probability P(X ,Y ) can be calculated.

To improve communication security, the best codes can be the codes which have the

highest value of the information secrecy (the equivocation rate), for a given code length

and code rate, and are well-packed schemes. Such codes are known as the best binary

equivocation codes and have been studied in more detail by Zhang et al. (2014).

4.5.1 Normalised Equivocation

Once the equivocation for a code has been calculated, it is useful to be able to make

meaningful comparisons between the equivocation levels of different codes. To achieve

this, it must be possible to compare like-for-like measures. This is done by calculating

the normalised equivocation values by dividing the equivocation by the message length

to give the normalised equivocation H(X |Y ) as:

H(X |Y ) = H(X |Y )
k

(4.15)

This has the effect of scaling the equivocation value to lie between 0 and 1, to give

the mean equivocation per bit of transmitted data. Since the equivocation represents

the information loss of the channel, the maximum possible amount of information that

could be transmitted (and/or lost) by the channel is k. Therefore dividing the equiv-

ocation values by k will produce a normalised equivocation value for an [n,k,d] code

as required. For example while a Hamming[31,26,3] code could have an equivocation
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value in the range 0≤H(X |Y )≤ 26 and the Golay[23,12,7] code could have an equiov-

cation in the range 0≤ H(X |Y )≤ 12, the normalised equivocation of both codes would

be in the range from 0 to 1, enabling a more direct comparison of the relative merits of

each codes for a specific error probability.

4.6 Mutual Information

The a priori probability P(xi) is the probability of the input symbol xi prior to reception

(Hamming 1980, p. 138). The a posteriori probability P(xi|y j) of the input symbol xi is

the conditional probability that xi was sent given that y j was received.

The change in probability measures how much the receiver learned from the reception

of the symbol y j. In an ideal channel with no noise, the a posteriori probability is 1,

since we are certain from the received y j exactly what was sent.

Mutual Information I(xi,y j) is the difference between the information uncertainty before

(the a priori probabilities) and after reception of a y j (the a posteriori probabilities). It

is the gain in information due to the receipt of y j.

I(xi,y j) = log2
1

P(xi)
− log2

1
P(xi|y j)

= log2
P(xi|y j)

P(xi)
(4.16)

Similarly:

I(y j,xi) = log2
P(y j|xi)

P(y j)
(4.17)

• I(xi,y j)≥ 0

• I(xi,y j) = 0 if and only if xi and y j are independent

• I(xi,y j) = I(y j,xi)
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The average mutual information is:

I(X ,Y ) =





H(X)+H(Y )−H(X ,Y )

H(X)−H(X |Y )

H(Y )−H(Y |X)

(4.18)

4.7 Channel Capacity

The Channel Capacity is the maximum amount of information that can be conveyed

over all possible assignments of the P(x) or the maximum possible error-free informa-

tion transmission rate across the channel.

Ca = max
P(x)
{I(X ,Y )} (4.19)

4.7.1 Capacity of the Binary Symmetric Channel

On the BSC and considering all possible input and output options,

I(X ,Y ) =−P(x = 0,y = 0) · log2(P(x = 0,y = 0))−P(x = 0,y = 1) · log2(P(x = 0,y = 1))

−P(x = 1,y = 0) · log2(P(x = 1,y = 0))−P(x = 1,y = 1) · log2(P(x = 1,y = 1))

=−P(x = 0) ·P(y = 0|x = 0) · log2(P(x = 0) ·P(y = 0|x = 0))

−P(x = 0) ·P(y = 1|x = 0) · log2(P(x = 0) ·P(y = 1|x = 0))

−P(x = 1) ·P(y = 0|x = 1) · log2(P(x = 1) ·P(y = 0|x = 1))

−P(x = 1) ·P(y = 1|x = 1) · log2(P(x = 1) ·P(y = 1|x = 1))

(4.20)

Referring to Figure 2.2, on the BSC with error probability pe, this will achieve its maxi-
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4.7. CHANNEL CAPACITY

mum value when X (and Y ) is uniform, i.e. when P(x0) = P(x1) =
1
2 ,

Ca = max
P(x)
{I(X ,Y )}=−1

2
(1− pe) log2

(
1− pe

2

)
− 1

2
pe log2

( pe

2

)

− 1
2

pe log2

( pe

2

)
− 1

2
(1− pe) log2

(
1− pe

2

)

=−pe log2

( pe

2

)
− (1− pe) log2

(
1− pe

2

)

=−pe log2 (pe)− (1− pe) log2 (1− pe)+ pe log2 2+(1− pe) log2 2

=−pe log2 (pe)− (1− pe) log2 (1− pe)+ log2 2

= 1− pe log2 (pe)− (1− pe) log2 (1− pe)

= 1−H(X)

(4.21)

4.7.2 Capacity of the Binary Erasure Channel

On a BEC with probability of erasure ps, if n bits are transmitted then (1− ps)n bits are

received correctly on average. For large n, it is very likely that the actual number of

(correctly) received bits will be close to this average. Information can be transmitted

reliably at a rate of at most 1− ps bits per channel use i.e. for the BEC, Ca = 1− ps.

4.7.3 Capacity of the Binary Deletion Channel

Mitzenmacher (2006) notes that:

Currently, we have no closed-form expression for the capacity, nor do we

have an efficient algorithmic means to numerically compute this capacity.

4.7.4 Capacity of other Channels

As the equivocation of codes transmitted across the BSEC channel is not directly exam-

ined here and the focus is on comparing code equivocations rather than capacity, the

capacity of the other channels previously mentioned in Chapter 2, namely the BSEC
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and WTC will not be discussed further here.

4.8 Information Leakage

Smith (2011) discusses how, for an eavesdropper, comparing the uncertainty about a

source X before and after seeing the value of the output Y can indicate the information

leakage available to the eavesdropper:

leakage = initial uncertainty− remaining uncertainty (4.22)

which leads to defining leakage as mutual information

leakage = H(X)−H(X |Y ) = I(X ;Y ) (4.23)

4.9 Conclusion

This chapter has introduced the notion of information and extended it to consider the

conditional entropy or equivocation of a code being transmitted across a channel in

order to gain a measure of the level of ambiguity and inherent secrecy of the arrange-

ment. Whilst equivocation and channel capacity are closely related, the main focus will

be on calculating the normalised equivocation. Equivocation will be used extensively

over the next 3 chapters to compare the qualities of different codes when transmitted

across BSC, BEC and modifications of these.
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Chapter 5

Calculation of Equivocation through Paral-

lel Processing

5.1 Introduction

Chapter 5 details the methods used to calculate the equivocation of various codes

when transmitted across the BSC. Subsequent chapters will extend the programming

techniques used in this chapter to examine modifications of the BSC that incorporate

intentional erasures and deletions as well as looking at the BEC. With adaptation, the

techniques could potentially be transferred to the other arrangements well. Future work

could investigate extending onwards to other channels such as the BSEC, BDC, Ad-

ditive White Gaussian Noise (AWGN) Channel or Fading channels. The BDC would

create technical challenges due to the difficulty of identifying the locations of deleted

bits and the complexity of ensuing calculations, whilst the AWGN or Fading channels

would potentially require a substantially revised approach to the calculation of condi-

tional probabilities and equivocation values. Two slightly different routes through the

calculations are taken in this chapter in order to reduce the time taken to perform the

calculations. Once the initial process had been established, the process was adapted

to enable parallel processing to be used. The use of a parallel processing method per-

mitted substantial increases in efficiency and the calculation of equivocation for longer

codes. Code expansion will also be introduced as a simple method for increasing the

equivocation of a code, although the method brings with it a significant increase in the

number of bits that need to be transmitted and received and a significant time penalty.
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5.2. EQUIVOCATION CALCULATIONS

The key outcomes of Chapter 5 were published by Schofield et al. (2015).

5.2 Equivocation Calculations

Full calculation of the equivocation for a code can be very intensive. For an [n,k,d] bi-

nary linear code, there are 2k possible messages of length k and corresponding code-

words of length n. For each of these, there are 2n possible errors that could occur

during transmission. Therefore to calculate the probabilities of all possible output mes-

sages for all possible input messages, there are 2k×2n = 2n+k possible calculations to

perform, which renders it an EXPTIME problem. So even for the very simple Hamming

[7,4,3] code, with only 16 possible messages, there are 24+7 = 211 = 2048 calculations.

For the Golay [23,12,7] code, there are 235 = 3.436×1010 calculations: over 34 billion.

This increases exponentially as the code lengths increase.

In order to perform these calculations for any significant length of code, a software

solution was implemented. The solution uses some symmetrical properties of codes

and parallel processing to achieve a more efficient calculation.

The development of a software solution using parallel processing for calculating the

equivocation of a code was done in three stages:

1. Develop the calculation on a spreadsheet for a very short code as a proof of

concept.

2. Develop the calculation in C++ using linear programming.

3. Develop the calculation in C++ / CUDA using parallel processing.

5.2.1 Calculating Equivocation - Method 1

Two main linear methods for calculating equivocation were implemented. Each yields

the same net calculation via slightly different pathways. A summary of the encoding

/ correction / decoding process is shown in Figure 5.1. The original message m is

encoded as the codeword x before transmission across the BSC. Upon receipt, the

codeword r may have been affected by an error vector v and must be corrected by
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5.2. EQUIVOCATION CALCULATIONS

BSCEncoder Correction Decoderm x = mG r = x+ v y = r+ c mest

Figure 5.1: BSC encoding / decoding process

the addition of a vector c to obtain the codeword y. Finally, the corrected codeword

is decoded to the message estimate mest . If the generator matrix was in standard

form, then the decoding process is just a case of taking the first k bits of the received,

corrected codeword. Compared to the earlier description of the BSC in Figure 2.3,

the processes carried out on the received codeword r to obtain the message estimate

have been separated into two clear components; the attempt to correct any error and

the decoding of the corrected codeword to obtain the message. This is to enable a

clearer description of the two processes. hannon

The first algorithm which was used to calculate the equivocation of a code during early

iterations of developing a software solution to the calculation is shown below:

1. Take an input message, mi and its codeword, xi = miG.

2. Add each of the 2n possible error vectors e j to find each of the 2n possible received

codewords, r j = xi + v j and their respective syndromes, s j = r jHT .

3. Using the syndromes as a guide, calculate the correction c j to be applied to each

received vector.

4. Calculate the corrected version, y j = r j + c j of each of the possible 2n received

codewords and decode to find the message estimate, mest .

5. Find the probability, P(y j|xi) of receiving that message (or codeword), given the

input message.

6. Use these probabilities to find the equivocation, H(Y |X).

A working spreadsheet example was produced for both the Hamming [7,4,3] Code

and the Extended [8,4,4] version of the code. Even for these small codes, with either

27 = 128 or 28 = 256 possible errors, the full calculation is becoming difficult to reproduce

in document format.
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For the Extended Hamming [8,4,4] code, there are 24 = 16 different possible input

messages. Once encoded and transmitted as an 8-bit codeword, there are 28 = 256

different possible combinations of errors that could be introduced during transmission

across the channel:

v0 =

(
0 0 0 0 0 0 0 0

)

v1 =

(
0 0 0 0 0 0 0 1

)

...

v254 =

(
1 1 1 1 1 1 1 0

)

v255 =

(
1 1 1 1 1 1 1 1

)

When transmitting the codeword via a binary symmetric channel, the probability of an

error occurring in any single bit takes a constant value of pe. Thus the probability of

an 8-bit codeword being transmitted and there being no errors introduced is: (1− pe)
8.

So if pe = 0.01, the probability of the codeword being received without any errors is

(1−0.01)8 = 0.998 = 0.9227 (4 s. f .).The probability of an error being transmitted only in

a single specified position is 0.01×(1−0.01)7 = 0.01×0.997 = 0.00932 (5 s. f .). But since

a single error is equally likely to occur in any position, the probability of a single error be-

ing transmitted in any position is:




8

1


0.01×(1−0.01)7 = 0.07456 (5s. f .). Similarly, the

probability of two errors occurring at any location is




8

2


0.012× (1− 0.01)6 = 0.00264

(5 s. f .). More generally, for an n-bit codeword, the probability of there being exactly ε

errors transmitted is

P(ε) =




n

ε


 pε

e(1− pe)
n−ε (5.1)

Once the probability of errors occurring is known, this can be used to find the entropy

and the equivocation of the code.
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For the Extended Hamming [8,4,4] code, in standard format, the generator and parity

check matrices are shown in Equation 5.2 and Equation 5.3.

G =




1 0 0 0 1 0 1 0

0 1 0 0 1 0 0 1

0 0 1 0 0 1 1 0

0 0 0 1 0 1 0 1




(5.2)

H =




1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1




(5.3)

If the message m0 =

(
0 0 0 0

)
is encoded as the input codeword

x0 =

(
0 0 0 0 0 0 0

)
, then there are 28 = 256 possible error vectors v j,where j =

0,1, ...,(28−1) that could be introduced during transmission with corresponding vectors

r j = x0 + v j that could be received. However only 24 = 16 of the vectors will yield valid

codewords. The probability of all of these outcomes can be calculated and recorded

and is best done by considering the error vectors in increasing weight order, as in

Table 5.1. When multiplied by the transpose of the parity check matrix, each received

codeword will give one of the 24 = 16 different possible syndromes, s = yHT .

The error vector with the lowest weight that yields each syndrome will be correctly

decoded. This error vector c is then used as the correction that is ‘subtracted’ (or added

in base 2) from the received vector each time that syndrome is obtained, giving the

corrected version of the received vector y = r+c. An estimate of the original message,

mest can then be obtained from the ‘corrected’ codeword y.

However, if more than one error occurred during transmission, some of the corrections

that are applied to the received codeword will be wrong, because the code can only

correct 1 error. Hence in some cases the wrong estimate of the original message will be
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obtained. For the 256 possible output messages, 16 will have been correctly ‘corrected’

to the message m0 =

(
0 0 0 0

)
and, for the remaining 240 possible outputs, 16

will have been incorrectly ‘corrected’ to each of the 15 other possible messages, from

m1 =

(
0 0 0 1

)
to m15 =

(
1 1 1 1

)
.

For example,

• the error vector
(

0 0 0 1 0 0 0 0

)
with weight 1 is the first vector that

yields a syndrome of
(

0 1 0 1

)
.

• the error vector
(

0 0 0 0 0 1 0 1

)
with weight 2 also yields a syndrome

of
(

0 1 0 1

)
.

• therefore
(

0 0 0 0 0 1 0 1

)
is corrected by subtracting (or adding)

(
0 0 0 1 0 0 0 0

)
to give a ‘corrected’ codeword of

(
0 0 0 1 0 1 0 1

)

• this gives an incorrect message estimate of mest = m1 =

(
0 0 0 1

)

Message Transmitted Codeword

0 0 0 0 0 0 0 0 0 0 0

Received Probability Syndrome Corrected Message

Codeword P(r j|x0) Codeword Estimate

Estimate y j

00000000 0.922744694428 0000 00000000 0000

00000001 0.009320653479 0001 00000000 0000

00000010 0.009320653479 0010 00000000 0000

00000100 0.009320653479 0100 00000000 0000

00001000 0.009320653479 1000 00000000 0000

00010000 0.009320653479 0101 00000000 0000
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Message Transmitted Codeword

0 0 0 0 0 0 0 0 0 0 0

Received Probability Syndrome Corrected Message

Codeword P(r j|x0) Codeword Estimate

Estimate y j

00100000 0.009320653479 0110 00000000 0000

01000000 0.009320653479 1001 00000000 0000

10000000 0.009320653479 1010 00000000 0000

00000011 0.000094148015 0011 00000000 0000

00000101 0.000094148015 0101 00010101 0001

00000110 0.000094148015 0110 00100110 0010

00001001 0.000094148015 1001 01001001 0100

00001010 0.000094148015 1010 10001010 1000

00001100 0.000094148015 1100 00000000 0000

00010001 0.000094148015 0100 00010101 0001

00010010 0.000094148015 0111 00000000 0000
...

...
...

...
...

10111111 9.90E-15 0110 10011111 1001

11011111 9.90E-15 1001 10011111 1001

11101111 9.90E-15 1010 01101111 0110

11110111 9.90E-15 0111 11100101 1110

11111011 9.90E-15 1011 10111001 1011

11111101 9.90E-15 1101 11100101 1110

11111110 9.90E-15 1110 11010110 1101

11111111 1.00E-16 1111 10011111 1001

Table 5.1: Hamming [8,4,4] Code - Error Dependent Syndrome Decoding

Once all possible message estimates have been established, the probability of getting
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each output codeword given the input codeword, P(y j|xi) can be calculated by summing

the individual probabilities. So:

P(y j|x0) = ∑
y j=x0

P(r j|x0) (5.4)

=⇒

P(y0|x0) = 0.9227+8×0.00932+7×9.41×10−5 = 0.997969
P(y1|x0) = 3×9.41×10−5 +5×9.51×10−7 +5×9.61×10−9

+3×9.70×10−11 = 0.000287
...

...
P(y15|x0) = 9.41×10−5 +4×9.51×10−7 +5×9.61×10−9

+4×9.70×10−11 +2×9.80×10−13 = 9.80×10−5

Similarly, the other possible message estimates generate Table 5.2.

Message Estimate Probability
P(y0|x0) = 0.997969
P(y1|x0) = 0.000287
P(y2|x0) = 0.000289
P(y3|x0) = 0.000192
P(y4|x0) = 0.000289
P(y5|x0) = 0.000192
P(y6|x0) = 4.86×10−8

P(y7|x0) = 4.80×10−6

P(y8|x0) = 0.000289
P(y9|x0) = 3.9×10−8

P(y10|x0) = 0.000192
P(y11|x0) = 1.95×10−6

P(y12|x0) = 0.000192
P(y13|x0) = 1.95×10−6

P(y14|x0) = 1×10−6

P(y15|x0) = 9.80×10−5

Table 5.2: Extended Hamming [8,4,4] Code - Conditional Probabilities

Since the output is dependent on the input, P(xi,y j) = P(xi)P(y j|xi), so to calculate

values of P(xi,y j), the probabilities must be considered as possible outcomes of the

whole data set and should be multiplied by P(xi) =
1
2k . Since P(xi) = 1/24 = 1/16, we

obtain the probabilities in Table 5.3.
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Message Estimate Probability
P(x0,y0) = 0.06237
P(x0,y1) = 1.80×10−5

P(x0,y2) = 1.81×10−5

P(x0,y3) = 1.20×10−5

P(x0,y4) = 1.81×10−5

P(x0,y5) = 1.20×10−5

P(x0,y6) = 3.04×10−9

P(x0,y7) = 3.00×10−7

P(x0,y8) = 1.81×10−5

P(x0,y9) = 2.44×10−9

P(x0,y10) = 1.20×10−5

P(x0,y11) = 1.22×10−7

P(x0,y12) = 1.20×10−5

P(x0,y13) = 1.22×10−7

P(x0,y14) = 6.25×10−8

P(x0,y15) = 6.13×10−6

Table 5.3: Hamming [8,4,4] Code - Joint Probabilities

From Equation 4.10, the joint entropy for the code is the summation of the individual

entropies, giving H(x0,Y ) as

H(x0,Y ) = 0.06237log2(
1

0.06237)

+1.80×10−5 log2(
1

1.80×10−5 )+1.81×10−5 log2(
1

1.81×10−5 )

+1.20×10−5 log2(
1

1.20×10−5 )+1.81×10−5 log2(
1

1.81×10−5 )

+1.20×10−5 log2(
1

1.20×10−5 )+3.04×10−9 log2(
1

3.04×10−9 )

+3.00×10−7 log2(
1

3.00×10−7 )+1.81×10−5 log2(
1

1.81×10−5 )

+2.44×10−9 log2(
1

2.44×10−9 )+1.20×10−5 log2(
1

1.20×10−5 )

+1.22×10−7 log2(
1

1.22×10−7 )+1.20×10−5 log2(
1

1.20×10−5 )

+1.80×10−7 log2(
1

1.80×10−7 )+1.80×10−8 log2(
1

1.80×10−8 )

+6.13×10−6 log2(
1

6.13×10−6 )

= 0.25717

So far, the probabilities have been calculated given that the input message was m0 =
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(
0000

)
. However these probabilities must be considered in light of all possible 2k mes-

sages, of which m0 is just one. No matter what message is input, the errors will affect

the transmission process with the same probabilities as for m0, giving a symmetry to

the probability calculations for each message and associated transmitted codeword.

Therefore the sum of the entropies of the possible inputs and outputs is as per Equa-

tion 5.5.

H(X ,Y ) = ∑
xi∈X

H(xi,Y ) = 2k×H(x0,Y ) = 16×0.25717 = 4.02748 (5.5)

If the 2k input messages are equally likely, P(xi) =
1
2k , the entropy of the source for the

Extended Hamming [8,4,4] Code is

H(X) = ∑
xi∈X

P(xi) log2(
1

P(xi)
) = 24× 1

24 × log2
1

1/24
= log2 24 = 4 (5.6)

Therefore from Equation 4.13, the equivocation is

H(Y |X) = H(X ,Y )−H(X) = 4.02748−4 = 0.02748 (5.7)

This process can be repeated for any pe, 0≤ pe ≤ 0.5.

5.2.2 Calculating Equivocation - Method 2

Once the first method had been developed and a sound understanding of the process

of calculating equivocation had been gained, it became important to develop an equiv-

alent method that gave the same result but with maximum efficiency and that lent itself

to parallel processing.

For one message (m0) and its codeword (x0):

1. Add successively weighted error vectors.

2. Note for which errors each syndrome is obtained first. These are the errors that
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can be correctly corrected.

3. Operating on batches of codewords at a time, add the 2n−k error vectors to each

of the 2k codewords in turn

4. Record the weights and probabilities P(r j|x0), (0 ≤ a ≤ 2n−k) of the resulting re-

ceived codewords.

5. Use these 2n probabilities to find the equivocation.

Again using the Extended Hamming [8,4,4] code as a worked example, by working

through the set of possible error vectors in order until each possible syndrome has

been obtained for the first time, Table 5.4 is produced. The first occurrence of each

syndrome is highlighted in bold.

Message Encoded Codeword

m0 = 0000 x0 = 0000000

Received Probability Syndrome

Codeword r j P(r j|x0)

0 0 0 0 0 0 0 0 0.922744694428 0 0 0 0

0 0 0 0 0 0 0 1 0.009320653479 0 0 0 1

0 0 0 0 0 0 1 0 0.009320653479 0 0 1 0

0 0 0 0 0 1 0 0 0.009320653479 0 1 0 0

0 0 0 0 1 0 0 0 0.009320653479 1 0 0 0

0 0 0 1 0 0 0 0 0.009320653479 0 1 0 1

0 0 1 0 0 0 0 0 0.009320653479 0 1 1 0

0 1 0 0 0 0 0 0 0.009320653479 1 0 0 1

1 0 0 0 0 0 0 0 0.009320653479 1 0 1 0

0 0 0 0 0 0 1 1 0.000094148015 0 0 1 1

00000101 0.000094148015 0101

00000110 0.000094148015 0110
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Message Encoded Codeword

m0 = 0000 x0 = 0000000

Received Probability Syndrome

Codeword r j P(r j|x0)

00001001 0.000094148015 1001

00001010 0.000094148015 1010

0 0 0 0 1 1 0 0 0.000094148015 1 1 0 0

00010001 0.000094148015 0100

0 0 0 1 0 0 1 0 0.000094148015 0 1 1 1

00010100 0.000094148015 0001

0 0 0 1 1 0 0 0 0.000094148015 1 1 0 1

00100001 0.000094148015 0111

00100010 0.000094148015 0100

00100100 0.000094148015 0010

0 0 1 0 1 0 0 0 0.000094148015 1 1 1 0

00110000 0.000094148015 0011

01000001 0.000094148015 1000

0 1 0 0 0 0 1 0 0.000094148015 1 0 1 1

01000100 0.000094148015 1101

01001000 0.000094148015 0001

01010000 0.000094148015 1100

0 1 1 0 0 0 0 0 0.000094148015 1 1 1 1

Table 5.4: Hamming [7,4,3] Code - Error Dependent Syndrome Decoding

As before with Method 1, P(y j|x0) can be calculated by summing the individual proba-

bilities, so:

P(y0|x0) = 0.9227+8×0.00932+7×0.0000941 = 0.997969 (5.8)
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This value is used as before to contribute towards the calculation of the entropy values

and the equivocation of the code.

Up until this point, the same algorithm has been used as for method 1. However

now that all the lowest weight error vectors that generate unique syndromes have been

found, the remainder of the process can be broken into more manageable, independent

batches. The process is therefore able to be calculated using parallel processing.

To calculate P(y1|x0), only the codewords identified in the previous step as yielding the

first occurrence of each syndrome need to be used. These are added to the codeword

generated by the message m1 =

(
0001

)
, namely x1 =

(
0010101

)
. This gives the

received codewords and associated probabilities shown in Table 5.5.

Message Encoded Codeword
m1 = 0001 x1 = 0010101

Received Codeword Probability Syndrome
r j P(r j|x1)

00010101 9.51×10−7 0000
00010100 9.41×10−5 0001
00010111 9.61×10−9 0010
00010001 9.41×10−5 0100
00011101 9.61×10−9 1000
00000101 9.41×10−5 0101
00110101 9.61×10−9 0110
01010101 9.61×10−9 1001
10010101 9.61×10−9 1010
00010110 9.51×10−7 0011
00011001 9.51×10−7 1100
00000111 9.51×10−7 0111
00001101 9.51×10−7 1101
00111101 9.70×10−11 1110
01010111 9.70×10−11 1011
01110101 9.70×10−11 1111

Table 5.5: Hamming [8,4,4] Code - Error Dependent Syndrome Decoding
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Summing these probabilities as before gives Equation 5.9.

P(y1|x0) = 3×9.41×10−5

+ 5×9.51×10−7

+ 5×9.61×10−9

+ 3×9.70×10−11

= 2.87×10−4

(5.9)

The equivalent of Table 5.2 can be constructed by repeating this process for every

possible message and its associated codeword. From this point onwards, the process

for calculating the entropies and the equivocation of the code is the same as for Method

1.

Once the code equivocation has been calculated for a single probability of error on the

BSC, the calculation can be repeated for multiple other probabilities. By doing this, a

table and graph of normalised equivocation values (or equivocation per information bit)

can be constructed as in Table 5.6 and Figure 5.2 for the Extended Hamming [8,4,4]

Code.

Probability of Error on BSC Equivocation Normalised Equivocation
0.01 0.0275 0.0069
0.05 0.4064 0.1016
0.10 1.1132 0.2783
0.15 1.8442 0.4610
0.20 2.4939 0.6235
0.25 3.0222 0.7556
0.30 3.4215 0.8554
0.35 4.7013 0.9253
0.40 3.8784 0.9696
0.45 3.9721 0.9930
0.50 4 1

Table 5.6: Extended Hamming [8,4,4] Code - Equivocation and Normalised Equivoca-
tion values

Whilst Figure 5.2 shows normalised equivocation values for a single code, subsequent

results will enable the comparison of normalised equivocation levels for different codes,
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Figure 5.2: Equivocation for Extended Hamming [8,4,4] Code for different BSC error
probabilities

modifications of those codes and for different channel arrangements. Thus it becomes

possible to identify codes and code modifications that yield improved equivocation lev-

els and thereby offer greater levels of secrecy to legitimate users against illegitimate

users on an eavesdropper channel of greater noise level.

5.3 Program Implementation

During the development of an efficient program to calculate the equivocation of a code,

early iterations employed linear programming to work through a program sequentially.

This created a need to repeatedly call sections of code many times. Shoup’s Number

Theory Library “NTL" (Shoup 2015) was used extensively during this phase, primarily

for vector and matrix manipulation over the GF2 field.

NTL is described as:

“a high-performance, portable C++ library providing data structures and al-

gorithms for manipulating signed arbitrary length integers and for vectors,

matrices, and polynomials over the integers and over finite fields.”

In this respect, NTL worked well during the earlier stages of development, however

as the development of the program continued and more parallel programming tech-
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niques were introduced, the challenges of porting the library from a linear to a parallel

methodology meant that it became of less use.

5.3.1 Useful Algorithms

Generation of binary numbers in numerical order

In order to step from one binary number to the next in numerical order, the algorithm

below was used intially:

1. Start from the right-hand, least significant bit (lsb) of the current binary number,

bit n

2. Add ‘1’ to the lsb

3. If the result of the sum is a ‘0’, add ‘1’ to the next most significant bit. Repeat until

a value of ‘1’ results from the sum.

e.g. To generate the next binary number in numerical order after(
11 02 13 04 05 16 17 18

)

• Add ‘1’ to the lsb ‘1’ (bit 8), resulting in a lsb of ‘0’

• Add ‘1’ to bit 7, becoming ‘0’

• Add ‘1’ to bit 6, becoming ‘0’

• Add ‘1’ to bit 5, becoming ‘1’ - STOP

• Bits 4,3,2,1 unchanged

• This gives the next binary number in numerical order of(
11 02 13 04 15 06 07 08

)

In later work, however, as the use of bitwise manipulation of numbers became the

preferred method, this process became redundant as only a trivial increment of the

variable was required. However, it did act as a useful stepping stone to the process of

generating the binary numbers in weight order.
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Generation of binary numbers in weight order

In order to step from one binary number to the next in weight order, the algorithm below

was used:

1. Start from the right-hand, lsb of the current binary number

2. Working from lsb to most significant bit (msb) (i.e. from right to left), locate the

first ‘1’ bit that can be shifted left (i.e. the first ’1’ bit that has a ’0’ it the left of it)

3. Shift this bit left

4. Shift any bits to the right of this bit as far to the right as possible

5. If no bits exist that can be shifted left, then no further binary numbers of the

current weight exist. Shift all i set bits back to the right-most positions and set the

next MSB to 1.

e.g. To generate the next binary number in weight order after 18410,(
11 02 13 14 15 06 07 08

)
,

• Starting from the right, bit ’3’ is the first ‘1’ bit that has a ’0’ to the left of it and is

therefore able to be shifted to the left

• Bit 3 is shifted left to position 2

• The remaining ‘1’ bits to the right of this, in positions 4 and 5, must all be shifted

as far right as possible i.e. to positions 7 and 8

• This gives the next binary number in weight order of(
11 12 03 04 05 06 17 18

)
= 19510

e.g.2 From step 5,
(

11 12 13 04 05 06 97 98

)
= 22410 would automatically be-

come
(

01 02 03 04 15 16 17 18

)
= 1510

When considering 5-bit numbers (for brevity), the process above will yield a set of

binary numbers in weight order as shown in Appendix A.
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5.3.2 Parallelisation of Calculations

The high volume of calculations needed to evaluate the equivocation of a code of any

significant length means that on a standard laptop or desktop computer, the length of

time needed to run a calculation is the dominant limiting factor (although memory can

also be a limiting factor). When performing the calculation via a linear process, the

implementation could calculate the equivocation for codes of length n < 32, but little

more. To overcome this, stages of the calculation needed to be performed in parallel

i.e. a single process that can be called many times concurrently. To parallelise the cal-

culation, a computer capable of running Nvidia’s CUDA architecture and programming

model was used.

Graphics Processing Units evolved to take some of the load for managing the graphical

output requirements of a computer away from the CPU. Over time, GPUs have become

increasingly capable devices for performing relatively simple, repetitive operations in

parallel and at high speed, extending their remit beyond graphics and evolving into

General Purpose GPU (GPGPUs).

CUDA (Compute Unified Device Architecture) is a parallel computing platform and pro-

gramming model created by Nvidia (Nvidia 2015). It is implemented by computers

with CUDA-capable Nvidia GPUs, with the main CPU acting as the ‘host’ for the linear

component of a program which then delegates responsibility for running parallelised

sections of code to the GPU ‘device’ (Sanders & Kandbrot 2011). The task of efficient

delegation and management of resources is largely done by the CUDA architecture

and programming model.

In this case, a laptop with an i7 processor, 12GB of RAM and the CUDA enabled

GeForce GTX470M GPU with 288 cores and 2GB of RAM was used. Different GPUs

and versions have different capabilities. Whilst the GTX740M GPU is designed for a

laptop device, it was still able to offer a CUDA compute capability of 3.5, enabling it to

comfortably access a sufficiently capable version of the CUDA programming model.
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The laptop was configured to run Ubuntu 14.04 LTS. Within this platform, Eclipse was

used as an Integrated Development Environment for writing the code, along with the

Nvidia CUDA Compiler NVCC and Nsight for Eclipse, an add-on for Eclipse to enable

development of the CUDA specific code.

The main program is run on the CPU. A section of code within the main program,

similar to a function and called a kernel, can be written for the GPU device to execute.

Each instance of the kernel is called a thread. The CUDA architecture enables multiple

threads to be run concurrently. These threads can be grouped together into blocks and

the blocks can be grouped as warps. In order to pass references to variables between

the host and the device, pointers were used.

Numerous limitations on memory capacity and processing speed, caused by the ar-

chitecture and capability of the CPU and GPU, enforced compromises and constraints

on block sizes and the grouping together of blocks into batches. For example with a

setup with compute capability 3.5, a maximum of 210 = 1024 threads are permitted per

block. Similarly, a maximum of 231− 1 blocks are permitted. This implies a maximum

of 241−210 threads per kernel call. In practice, however, the 2GB RAM of the GPU and

the dynamic limitations of how much contiguous memory can be allocated to a single

variable pointer meant that significantly smaller batches of blocks could be used at any

time to prevent memory overflow.

One of the greatest sources of problems encountered during this work was secondary

issues arising from using the GPU to parallel process the calculations, despite it provid-

ing more time-efficient calculations. The parallel processing load detracted significantly

from the GPUs ability to simultaneously perform its more normal duties. This caused

intolerable delays in user input and screen refresh rates, often causing the computer

to crash. In addition, the significant time taken learning how to program in the CUDA

environment created a large time overhead.

90



5.3. PROGRAM IMPLEMENTATION

5.3.3 Implementation Iterations

The development of the software to calculate code equivocation was undertaken as a

series of iterations, with each iteration evolving from and building on the previous one.

Five iterations were produced that adopted a linear approach to programming before

swapping to a parallel approach and producing fourteen further iterations. During the

linear phase, NTL was used extensively, however this caused issued when trying to

integrate the NTL functions with the CUDA architecture. The key differences between

the parallel iterations are summarised in Table 5.7.

Iteration Key developments

Number

1 First conversion of a linear solution to a parallel solution. NTL functions used

previously not working. Variables used with a kernel function must be declared

locally or copied into CUDA memory space. Not considered feasible to do this

with all background NTL variables.

2 Improved CUDA memory allocation and use of variable pointers.

3 Conversion of NTL GF2 format vectors to integer format, so that pointers to

vector variables can be sent to the CUDA kernel. Enables error vectors to be

dealt with in parallel.

4 Improved memory allocation and de-allocation. Codewords and error vectors

treated as integers throughout, rather than being converted from GF2 vectors.

More efficient rolling calculation of H(X ,Y ).

5 Minor changes - housekeeping / tidying up

6 Minor changes only.

7 Creation of a second parallel processing task by a distinct kernel. The first

kernel calculates the weights of the received vectors. The new kernel uses the

vector weights to calculate the P(X ,Y ) joint probability for each error probability

pe, a task previously done by a linear loop.
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Iteration Key developments

Number

8 Improved efficiency of second kernel, calculating combined probabilities. In-

corporation of mutual entropy calculation into second kernel, changing the

sub-task from a linear one to a parallel one.

9 Attempt to calculate message encoding into a codeword as a parallel task

within the first kernel. Discontinued since this could be done more efficiently

by NTL in the linear part of the program.

10 Calculation is limited by hardware and architecture constraints. With a CUDA-

imposed maximum of 1024 threads per block and a memory limit on the

amount of block data that the GPU can store at any time, a compromise be-

tween linear and parallel processing must be introduced. The maximum num-

ber of blocks processed at any time is limited to a batch size of 1024. Linearly

processed loops control the parallel process.

11 Interim version, aimed at improving integration of codeword production mem-

ory control into batch process.

12 Minor changes - housekeeping / tidying up.

13 Further optimisation of batch size control. Separation of task into a standalone

function. This version is used for the majority of code equivocation and pro-

gram run-time calculations presented in the report.

14 Interval between error probabilities decreased from 0.05 to 0.01. Equivocation

values now being calculated for 51 values rather than 11, increasing calcula-

tion run times by a factor of 5. Yielding much smoother output graphs with

fewer discontinuities, this version is used for the generation of most of the

output graphs in the report.

Table 5.7: Key differences between software iterations
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5.3.4 CUDA Coding

In the main part of a program, a CUDA kernel (Sanders & Kandbrot 2011) called

getWts can be called by the CPU host by the code:

getWts«<*blocks,*threads»>(d_Ctx, d_EV, d_powK, d_powNK, d_n, d_wts);

The triple angled brackets indicate that the function is a kernel to be run on the GPU

device and define the number of blocks and threads to be created by each instance of

the kernel. Parameters in the brackets are pointer variables to be used by the kernel.

As malloc can be used to allocate CPU memory for use by pointers, so cudaMalloc

can be used in a similar fashion to allocate GPU memory for use by pointers within the

device. Prior to calling a kernel, any required host variables must be copied to device

memory, using the cudaMemCpy function. The code for the kernel to be run in parallel

by the device is indicated by the __global__ function.

__global__ void getWts(int* Ctx, int* EV, long*

powK, long* powNK, int* n, int* wts)

{

long id = blockIdx.x * blockDim.x

+ threadIdx.x;

long wt = 0;

for (long i = 0; i < *powNK; i++ )

{

wt = 0;

for (int j = 0; j < *n; j++)

{

if ( ( ( *(Ctx + id*(*n) + j) +

*(EV + i*(*n) + j ) ) % 2 ) == 1)

{

wt++;

}

93



5.4. RESULTS

}

(*(wts + id * (*n+1) + wt ))++;

}

}

The values held by variables such as blockDim.x, blockIdx.x and threadIdx.x

identify the number of threads per block and the identity of the block or thread be-

ing executed. This enables each individual thread to access the specific data that it

requires.

The central part of the function is used to add each bit of the error vector (pointed to

by the variable ‘EV’) to each bit of the transmitted codeword (pointed to by the variable

‘Ctx’) and then to find the weight of the resultant vector. A record of the weight of

each received vector is then stored in memory space allocated to the GPU device

and pointed to by the variable ‘wts’. The nested ‘for’ loops enable this to be carried

out for each bit of every error vector. The parallelisation of the program enables the

process to be done in batches for every possible codeword, thereby considering every

possible combination of codeword and error vector. A second kernel then uses batch

processing to calculate the summation of the probabilities of the received codeword

weights, enabling the entropies and the equivocation to be calculated.

5.4 Results

A graph showing the normalised equivocation values of some perfect and extended

perfect codes is shown in Figure 5.3 and reproduced in log− log form in Figure 5.4.

Of the Hamming codes examined, the longer codes exhibited higher levels of nor-

malised equivocation than the shorter ones. Hamming [31,26,3] has higher normalised

equivocation values than Hamming [15,11,3], which in turn, has higher values than

Hamming [7,4,3]. For pe . 0.17, Hamming codes also have higher normalised equivo-

cation values than the Golay [23,12,7] code. However this is offset by the Golay code

benefitting from its ability to correct up to 3 errors, whilst the Hamming codes can only
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Figure 5.3: Normalized equivocation of some perfect codes and their extensions

correct a single error.

Figure 5.4: log− log graph for normalised equivocation of perfect codes

A comparison of the normalised equivocation of the perfect Golay [23,12,7] code and
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the two random [23,12] codes, code A and code B, whose standard form generator

matrices, GA and GB are given below was performed and the results are shown in

Figure 5.5.. The first k columns of each matrix form a k× k identity matrix, while the

remaining n− k columns are populated with randomly distributed bits.

GA =




1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0



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GB =




1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1




This shows that random codes can possess higher levels of equivocation (and there-

fore secrecy) than a perfect code, although their error correcting capabilities may be

significantly less.

The normalised equivocation values of some longer Best Known Linear Codes are

shown in Figure 5.6 and show comparatively little difference between the codes as

code length increases.

A log− log graph, concentrating on the range 0.01 ≤ pe ≤ 0.1 is shown in Figure 5.7 to

highlight the similarity between the results.

The BKLCs used in Figure 5.6 were originally chosen to demonstrate the different

lengths of time that the parallelised calculation would take as code lengths increased

(discussed in subsection 5.4.1). They were not known to possess similar properties

to each other, however as the code length increases, the gradients of their respective

equivocation curves become increasingly similar to one another. The expanded log

scale graph of Figure 5.7 highlights these similarities.
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Figure 5.5: Normalized equivocation of Golay [23,12,7] and two random [23,12] codes

For all codes examined, the normalised equivocation is an increasing function when

expressed as a function of the probability of error pe on a binary symmetric channel.

However the rate of increase is often at its lowest in the ranges 0 ≤ pe . 0.05 and

0.4. pe . 0.5, while the rate of increase is often at its highest in the range 0.05. pe . 0.2

. Given that it may be common for a legitimate receiver to receive the signal through

a channel with a low probability of transmission error and for an illegitimate receiver to

receive the signal with a markedly higher probability of transmission error, this could

be of use when developing codes that are designed to maximise the differences in

ambiguity levels between a legitimate and illegitimate receiver.

Such an approach enables a move away from theoretical situations, where both the

legitimate recipient and the eavesdropper have a perfect channel, towards situations

where both channels may involve a level of signal degradation. By accepting and

managing a level of degradation for the legitimate recipient, more coding schemes

could be made available that provide a significantly higher level of equivocation for an

eavesdropper than for the legitimate receiver. The nature of the channels becomes a
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Figure 5.6: Normalized equivocation of longer Best Known Linear Codes

Figure 5.7: log− log graph for normalised equivocation of BKLC

means of providing security.

For example, if when transmitting data using the Golay [23,12,7] code on the BSC, if the

legitimate receiver has a pe of 0.01 whilst the eavesdropper has a net error probability

of 0.1, the legitimate receiver will face a normalised equivocation level of 0.000148.

The eavesdropper on the other hand has an equivocation value of 0.205, some 1385
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times greater.

5.4.1 Calculation Times

The times taken to calculate equivocation values for some Best Known Linear Codes

are shown in Table 5.8.

Code Linear time (s) Parallel time (s) Linear : Parallel
ratio

BKLC [30,20,5] 3466 (≈ 58min) 105.99 33 : 1
BKLC [31,21,5] 6880 (1hr 54m) 238.6 29 : 1
BKLC [32,22,5] 13702 (3.8hr) 444 31 : 1
BKLC [33,21,6] 27048 (7.5hr) 780 35 : 1
BKLC [33,23,5] 27634 (7.7hr) 1021 27 : 1
BKLC [36,25,5] not reasonably calculable 6760 -
BKLC [36,26,4] not reasonably calculable 8878 (2.5 hr) -
BKLC [40,27,6] not reasonably calculable 91875 (25.5 hr) -

Table 5.8: Time to calculate equivocation for longer BKLCs

The times taken to calculate equivocation values for some perfect codes and their

extensions are shown in Table 5.9.

Code Linear time (s) Parallel time (s) Linear : Parallel
ratio

Hamming [7,4,3] 0.0174 0.068 1 : 4
Extended Hamming [8,4,4] 0.021 0.084 1 : 4
Hamming [15,11,3] 0.991 0.147 7 : 1
Golay [23,12,7] 67.996 4.48 15 : 1
Extended Golay [24,12,8] 238.6 17.8 13 : 1
Hamming [31,26,3] 33961 3809 9 : 1

Table 5.9: Time to calculate equivocation for some perfect codes and their extensions

Both Table 5.8 and Table 5.9 show a significant increase in the calculation times as the

code length increases. Once code lengths approaching n = 36 or higher are consid-

ered, the linear calculation on a standard laptop takes sufficiently long as to cease to

be reasonably calculable. In this work, an unreasonable calculation was considered

to be one that took in excess of 2 days to complete. This was due to the requirement

to run a privately owned laptop at maximum processor capability for extended periods

of time. Whilst the linear method is actually quicker for very short length codes, the
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parallel method soon becomes the preferred solution, producing a result more quickly

for all code lengths where n > 10. The results for longer length codes show that signif-

icant gains can be made, with calculations being performed by the parallel processing

method up to 35 times quicker than by the linear method in the instance of the BKLC

[33,21,6] code.

When considering the different ratios between the calculation times of the parallal pro-

cessed and linear methods, a possible trend is visible but it is hard to draw any rigorous

conclusions from these. Table 5.9 show a general improvement in the linear:parallel

ratio from 1:4 for Hamming[7,4,3] up to 15:1 for Golay[23,12,7], however the addition

of an extra bit to the Golay code to yield the extended Golay[24,12,8] code does not

continue that trend. The linear calculation time increases by a factor of 3.5 from 68s

to 239s, whereas the parallel time increases by a factor of 4 from 4.5s to 17.8s, giving

a slightly decreased ratio of 13:1 for the extended code. The additional bit has had a

slightly greater impact on the software implementation underlying the parallel method

than on the linear method. Similarly in Table 5.8, many of the ratios are in the order of

30:1 but, for the codes examined, there is no consistent or predictable pattern. Of all

the codes examined, those listed in Table 5.8 gave the greatest ratio of improvement

in calculation run-time from linear to parallel processing. However, the codes selected

for examination in these 2 tables vary in both their code and message length, making it

difficult to confirm the inter-related impact of either unless the factors are isolated from

each other.

The calculation time is dependant upon many factors, including both the message

length k, the codeword length n, the number of threads per block, blocks per batch

and the structure of the calculation program. To highlight the effect of increasing k

and n on calculation times, independent runs of calculations for increasing lengths of

k and n were performed. The times taken to calculate equivocation values for some

Best Known Linear Codes of message length k = 15 and increasing values of n are

shown in Table 5.10. The times listed are for calculations that were performed for the
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probabilities 0 ≤ pe ≤ 0.5 in 0.05 increments, with 0.01 as an additional value. Many

of the calculations were subsequently re-performed for probabilities 0 ≤ pe ≤ 0.5 in

increments of 0.01 in order to give more accurate and smoother output graphs.

Since these results were published, it has been observed that the calculation times ex-

hibit greater variability on subsequent re-calculations than originally noted, so all times

are now only given to 2s.f. rather than 3s.f. . Even so, there is still occasionally some

variation around these values, although the values given form a fair median value. This

variation is presumed to be due to the computer being in different states on each re-

calculation, due to factors such as different background programs being in operation at

the time.

Code Parallel time (s)
BKLC [20,15,3] 1.4
BKLC [21,15,4] 1.5
BKLC [22,15,4] 1.6
BKLC [23,15,4] 2.3
BKLC [24,15,4] 5.8
BKLC [25,15,5] 4.1
BKLC [26,15,6] 12
BKLC [27,15,6] 66
BKLC [28,15,6] 430
BKLC [29,15,7] 430

Table 5.10: Calculation times for BKLCs with message length k = 15

A graph of these times is shown in Figure 5.8. The graph shows a general trend that

as the code length n increases, the calculation time increases exponentially, as would

be expected. However several anomalies exist. The calculation time for n = 25 is

less than that for n = 24 while the calculation times for n = 28 and n = 29 are almost

identical. This is not caused by the main body of the calculation where the P(y j|xi) are

calculated. Instead the irregularities stem from the initial process of setting up the error

correction process and the identification of which codeword is the first one in weight

order to yield each syndrome. This can take significantly different times for each code,

depending on the structure of the code’s generator (and parity check) matrix. There is

also the potential for different parity check matrices of the same code to cause different
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calculation run times, although this was not investigated in any detail here. Again,

this would be due to differences in the order in which codewords are identified that

are the first to yield each syndrome. It would appear that for the BKLC [24,15,4] and

BKLC [28,15,6] codes the first codewords to yield each syndrome by weight order

occur significantly later on average than for BKLC [25,15,5] and BKLC [29,15,7] codes

respectively.

Figure 5.8: Time to calculate equivocation for codes of message length k = 15 for
different code lengths (n)

The times taken to calculate equivocation values for some Best Known Linear Codes

of code length n=30 and increasing values of k are shown in Table 5.11.

A graph of these times is shown in Figure 5.9.

It can be seen that for a fixed codeword length, there is an optimal message length k

that gives a minimum calculation time. This occurs around code length n = 19 and is

due to the calculation method used in the software. There are 210 threads in each block

and 210 blocks per instance of the kernel of the parallel component of the program. Be-

low a message length of k = 20, the parallel component of the program has not yet

achieved maximum efficiency and above k = 20, the linear part of the program is per-

103



5.4. RESULTS

Code Parallel time (s)
BKLC [30,16,7] 552
BKLC [30,17,6] 562
BKLC [30,18,6] 212
BKLC [30,19,5] 93
BKLC [30,20,5] 107
BKLC [30,21,4] 171
BKLC [30,22,4] 279
BKLC [30,23,4] 500
BKLC [30,24,4] 955
BKLC [30,25,3] 3631

Table 5.11: Calculation times for BKLCs with code length n = 30

Figure 5.9: Time to calculate equivocation for codes of length n = 30 for different mes-
sage lengths(k)

forming an increasing proportion of the workload. For the program arrangement used,

operating with a message length of k = 19 to 20 enabled a “sweet spot" of efficiency to

be achieved. This also supports the observation made from Table 5.8 that many of the

best improvements in calculation time from linear to parallel processing were achieved

with message lengths around k = 20.
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5.4.2 Run-Time Factors

There are, however, many inter-related factors at play that influence the efficiency of

the calculation and the time taken for the calculation to run. These include but are not

limited to:

• Code length - This is one of the most fundamental factors affecting the length

of time that a calculation will take. At its most basic, a single-bit increase in the

length of a codeword will approximately double the number of calculations to be

performed and the time taken. However the presence of numerous other factors

means that this is unlikely to directly bring an exact doubling of the calculation

run-time.

• Message length - At very low code lengths (e.g. below k = 15), the CPU performs

much of the calculation. As the code length increases, an increasing proportion

of the workload is able to be taken by the GPU. Once the “hand-off" of tasking by

the CPU to the parallel-processing GPU has reached the greatest rate that the

GPU and CUDA architecture can manage, each subsequent single-bit increase in

message length will approximately double the calculation time if all other factors

remain the same.

• Code structure - One of the first tasks of the calculation is to identify those error

vectors that yield the first instance of each syndrome. The code structure indi-

cated by the generator matrix will directly affect which error vectors give each

syndrome, how long it will take to locate them and thereby, the calculation run-

time.

• Available RAM - limitations of the parallel processing performed by the GPU were

counter-acted by holding significant amounts of data in memory. For example, in

the intiial stage of the calculations, a record of each error vector that gave an

initial instance of a syndrome was recorded. This record itself rapidly becomes

bounded by memory limitations, both the overal amount of available memory and
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the way in which contiguous space is allocated. Increasing the available memory

would increase the amount of data held in RAM and reduce the processing load.

• Number of processors - It is reasonable to anticipate that an increase in the num-

ber of processors used will bring a proportionate increase in processing capability

and a decrease in calculation times. However, as each additional processor will

bring time overheads, both through its own internal operation and in it’s interac-

tions with other processors, the actual impact on calculation run times is likely to

be more complex.

• CPU capability - Since the CPU runs the main, linear component of the program,

a more capable CPU (with higher clock speed, bus speed, cache size, number of

cores, etc.) would enable the linear calculations to be carried out more quickly.

• Number of GPUs - the software was written to be run on a standard laptop with

a single CPU and single GPU. Further work on this topic could extend calcula-

tions further by employing a suite of processors with parallel computing capabil-

ity. Adding further GPUs will decrease calculation run-times with each new set of

CUDA enabled cores brought to bear on the calculation.

• GPU capability - the Nvidia GeForce GTX470M GPU used for the calculations

had 288 cores, such that 288 threads could be run simultaneously, at a processor

clock speed of 1.1GHz. A more capable GPU would have more cores, operating

at higher speeds. For example, the GeForce TITAN V has 5120 cores operating at

1.455GHz. Numerous other differences between different CUDA-enabled GPUs

will also affect calculation times significantly.

• CUDA compute capability - the GPU used had a compute capability of 3.5, en-

abling 1024 threads per block, but running subject to the capability of the GPU

cores. The GeForce TITAN X has a compute capability of 6.1, giving a range of

improvements and advantages such as an increased number of 32-bit registers

available per block and an increased amount of shared memory per multiproces-
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sor.

• Number of threads per block - Most compute capabilities permit blocks to be

created in up to 3-dimensions with up to 1024 threads in x and y dimensions

and 64 threads in the z dimension. In the software solution developed, only the

x dimension was used. Further development of the software could potentially

reduce run-times further through the use of y and z dimensions for running multi-

dimensional blocks of threads.

• Number of blocks per warp - At the next level, blocks can be treated in groups

of up to 64, called warps. Warps were not used in the software solution but do

potentially form another mechanism for reducing calculation run-times.

• Programming model: It has been shown that a hybrid programming model, where

the core program is linear and repetitive tasks are performed in parallel can offer

signficant improvements in efficiency over a purely linear program. A different

mechanism for achieving this could come through the multi-core CPUs that many

standard PCs now offer. However, it was decided to pursue the CUDA architec-

ture approach because:

– CUDA-enabled GPUs generally have many more cores than a multi-core

CPU, enabling a greater level of parallelisation for the completion of highly

repetitive but relatively simple calculations.

– Use of the CUDA architecture offered a novel approach to performing an

equivocation calculation.

• Program efficiency - Finally, one of the greatest factors affecting the calculation

run-time was the programming ability of the author, who started the research

period with a relatively low level of programming skill. Throughout the course of

the PhD, many significant programming lessons were learnt and improvements

made. It is inevitable that further significant improvements would be possible,

especially in light of the observations just made above.
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5.5 Improving Code Equivocation by Expansion

Once a procedure for efficiently calculating the equivocation of a code has been imple-

mented, it encourages the comparison of codes and the location and design of codes

with improved levels of equivocation. As an example, consider a modification of the

simple Hamming [7,4,3] code. A single bit of data could be replaced by a sequence of

data bits, say 4 bits long. The first three bits are randomly generated whilst the fourth

bit is chosen to give an overall message parity equivalent to the data that is to be trans-

mitted. So the data bit 0 could be represented as (0011), each component of which is

transmitted over the course of 4 successive messages:

(

RandomBits︷︸︸︷
001

ParityBit︷︸︸︷
1 )

Where previously the probability of an error occurring while a single bit was transmitted

might have been quite low, for example pe = 0.01, now that the representation of the

data bit 0 is transmitted across more messages, the probability of an error becomes

compounded and potentially much increased. If an f -fold expansion of a code is taken

to be one in which a data bit is represented by f − 1 random bits and 1 parity check

bit, then the received data bit would be expressed in terms of the parity of the received

data bits:

Parity =
f

∑
i=1

ri (5.10)

where ri is the i’th received bit of the code expansion. The received data is the sum of

the transmitted data and any associated errors that occur during transmission:

ri = ti + vi (5.11)

where ti is the i’th bit of the expansion and vi is i’th bit of the associated error vector.

Therefore:

Parity =
f

∑
i=1

ti +
f

∑
i=1

vi (5.12)
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But by design, ∑
f
i=1 ti = 0 and therefore Parity = ∑

f
i=1 vi, so if the received message

parity is non-zero, then a decoder error must have occurred.

When considering a 4-fold code expansion, the possible error combinations that could

occur range from
(

0 0 0 0

)
to
(

1 1 1 1

)
. Given that we only need to consider

the combinations that give an odd parity, then the probability of the 4-fold expansion

being decoded erroneously is:

(
4
1

)
(1− pe)

3 pe +

(
4
3

)
(1− pe)p3

e

In general for an f -fold expansion, the probability of an incorrect decoding would be:

i≤ f/2

∑
i=0

(
f

2i+1

)
(1− pe)

f−(2i+1)p2i+1
e

A 4-fold expansion of the Hamming code gives effective channel probability errors as

shown in Table 5.12.

Single bit probability 4-fold expansion
of error probability of error

0 0
0.01 0.038816
0.05 0.17195
0.10 0.2952
0.15 0.37995
0.20 0.4352
0.25 0.46875
0.30 0.4872
0.35 0.49595
0.40 0.4992
0.45 0.49995
0.50 0.5

Table 5.12: Compounded channel probability errors for a 4-fold code expansion

The effective channel probabilities for 2-, 4-, and 10-fold code expansion are shown in

Figure 5.10.

These effective channel probability errors yield normalised equivocation values for a

4-fold expansion of the Hamming [7,4,3] code shown in Table 5.13 and plotted in Fig-
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Figure 5.10: Effective Channel Probability Errors 2x, 4x and 10x code expansion

ure 5.11. As previously, normalised equivocation values were calculated by dividing

the equivocation by the original message length. The graph also includes 2-, 3- and

10-fold expansions of the Hamming [7,4,3] code. The values for each expansion were

calculated in a similar manner to those of the 4-fold expansion.The figure shows that

the equivocation values of the code expansions are significantly higher than those of a

simple Hamming code.

Single bit probability of error Normalised Equivocation
0 0

0.01 0.067291
0.05 0.53895
0.1 0.85093
0.15 0.95522
0.2 0.98774
0.25 0.99721
0.3 0.99954
0.35 0.99995
0.4 0.99998
0.45 1
0.5 1

Table 5.13: Normalised equivocation for a 4-fold expansion of the Hamming [7,4,3]
code
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Figure 5.11: Comparison of BKLC [14,4,7] and Hamming code with 2x, 3x, 4x and
10x code expansion

Figure 5.12: Comparison of Golay [23,12,7] and 2 random [23,12] codes with 4-fold
expansion

For the 10-fold expansion, a 0.01 probability of transmission error yields a normalised

equivocation level of 0.23. However an error probability of just 0.05 now yields a nor-

malised equivocation value of 0.897, compared to 0.101 for the unexpanded Hamming

code. If the intended recipient has a channel probability error of 0.01, they still have a
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Figure 5.13: Comparison of Golay [23,12,7] and 2 random [23,12] codes with 10-fold
expansion

good chance of recovering the data, whereas an illegitimate eavesdropper with a chan-

nel error probability of 0.05 will now need to overcome a much higher level of ambiguity

in order to recover the data. The secrecy of the data transmission has been very signif-

icantly improved by the expansion of a simple Hamming code. However this improved

secrapacity ecy comes at a cost; only one bit of data is transmitted for every 4 or 10

bits of data carried by the Hamming code, reducing the net data rate significantly.

It is worth noting that while the Hamming [7,4,3] code with 2-fold expansion and BKLC

[14,4,7] code both effectively take 14 bits to transmit 4 bits worth of data, their equiv-

ocation graphs are very different. The 2-fold expansion of the Hamming [7,4,3] code

offers a significant improvement in equivocation over the basic Hamming [7,4,3] code,

whereas the BKLC [14,4,7] code shows a significant worsening in performance. For

a BSC error probability of pe = 0.05, the 2-fold expanded Hamming code gives a nor-

malised equivocation of 0.259, while the non-expanded Hamming code gave a value

of 0.101 and BKLC[14,4,7] only gives a value of 0.038. This suggests that simply using

longer and longer codes may not be as effective at improving equivocation as using

code expansions.
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Additionally, the 4-fold and 10-fold expansions for the Golay [23,12] code and the 2

random [23,12] codes previously discussed are shown in Figure 5.12 and Figure 5.13

respectively. Code expansion of a random code can give a higher normalised equiv-

ocation value that for a non-expanded but more structured code. For example, with a

BSC error probability pe = 0.05, a 4-fold expansion of the random [23,12] code A gives a

normalised equivocation of 0.597, compared to a non-expanded Golay[23,12,7] value

of 0.033. As with the Hamming codes, these figures show that there is a very marked

increase in normalised equivocation levels when code expansion is used compared to

the original codes.

5.6 Chapter Conclusions

This chapter has developed several points with regard to both the use of parallel pro-

cessing for calculating equivocation and the comparison of equivocation values for

different codes and their variants.

• In subsection 5.3.2, it was seen that parallel processing can be effectively im-

plemented on a general purpose computer using the Nvidia CUDA architecture.

Developing the code to implement the parallel processed component of the pro-

gram was both time consuming and challenging but enabled the generation of

results for longer codes.

• Parallel processing can provide significant improvements in calculation times for

intensive calculations. The best improvements obtained gave calculation results

up to 35 times more quickly with parallel processing than with linear processing.

• Parallel processing code must be carefully implemented in order to optimise its

efficiency for the actual task. In particular careful memory management is nec-

essary to enable the GPU to continue operate its core duties effectively whilst

simultaneously carrying out the parallel processed component of the calculation.

• Section 5.4 shows that normalised equivocation values can be used to compare

the relative secrecies of codes, enabling codes with higher inherent levels of se-
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crecy to be selected if required, although the other properties of the codes, such

as the error correcting capability must also be borne in mind. For example, from

Figure 5.3, when operating with a BSC error probability of 0.05, Golay[23,12,7]

has a normalised equivocation of 0.033, whereas Hamming[31,26,3] has a value

of 0.221, nearly 7 times higher. The Hamming code offers a higher level of se-

crecy for that error probability than the Golay[23,12,7] code but is only able to

correct 1 error rather than 3.

• For the codes examined from the Hamming code family, longer codes had higher

normalised equivocation values than the shorter codes. For example, with pe =

0.05, the normalised equivocation of Hamming[7,4,3] is 0.101 compared to 0.157

for Hamming[15,11,3] and 0.221 for Hamming[31,26,3]. However, the complex-

ity of the calculations to find equivocation values for longer codes meant that it

wasn’t possible to verify this for longer Hamming codes such as Hamming[63,57,3]

or Hamming[127,120,3]. Further work is required to establish if the pattern holds

for either longer Hamming codes or for other families of code.

• Largest differences in code equivocation values were often found in the more

central range of the error probabilities for the codes investigated (especially for

expanded codes). This can be seen by identifying the steepest part of the curve

in any of the normalised equivocation graphs from Figure 5.3 to Figure 5.13.

• For the codes examined, the differences in normalised equivocation values be-

tween codes decrease as code lengths increase. For example, in Figure 5.6 with

longer length BKLCs, the similarity in value of all 7 functions can be seen quite

clearly, whereas the differences between the shorter codes in Figure 5.3 are sign-

ficantly more marked. This may be partly due to structural similarities that must

exist in order to yield the best linear codes for each code length. As the code

lengths increase, it may be that the relative differences between the codes that

give the greatest minimum distance for each code length decrease, however this

was not formally confirmed.
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• In Section 5.5, it was shown that by expanding a simple code through the use

of random data and parity check bits, much greater levels of secrecy can be

achieved in some cases. For example, with a BSC error probability pe = 0.05, a

10-fold expansion of the Hamming[7,4,3] code gives a normalised equivocation

level of 0.897, compared to 0.101 for the non-expanded code. However, there is

a trade-off between achieving the desired level of secrecy by expanding a sim-

ple code and the significant increase in the number of bits of data that need to be

transmitted in order to achieve it. A 10-fold code expansion of the Hamming[7,4,3]

code may enable very high levels of equivocation but would require the transmis-

sion of 70 bits of data to send a 4-bit message.

• Rather than designing codes with improved error-correcting capabilities, one of

the aims of the work was to identify codes that either a) give a higher equivoca-

tion value and level of secrecy than other similar or related codes or b) enable

a large differential in equivocation level to be established between the legitimate

recipient and the eavesdropper. It was possible to use random codes to achieve

higher equivocation values than for more structured but non-expanded codes.

For example, with a BSC error probability pe = 0.05, a 4-fold expansion of a

random [23,12] code gives a normalised equivocation of 0.597, compared to a

non-expanded Golay[23,12,7] value of 0.033. However, although the inherent

randomness of the codes increased equivocation levels, this is of little benefit

given that the codes offer no error correcting capability.

• The expansion of a code can offer higher normalised equivocation values than

a code with a similar net code rate. For example, consider the Hamming[7,4,3]

code with 2-fold expansion and the BKLC[14,4,7] code. Both require 14 bits

to transmit 4 bits worth of message data, however for pe = 0.05, the 2-fold ex-

panded Hamming code gives a normalised equivocation of 0.259, while the non-

expanded Hamming code gave a value of 0.101 and the BKLC[14,4,7] only gives

a value of 0.038. Code expansion has a compounding influence on equivocation.
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Chapter 6

Equivocation of Erasures

6.1 Introduction

The key outcomes of Chapter 6 were published by Schofield et al. (2016).

Having established a parallel processing method to calculate the equivocation of a

code transmitted via a BSC, this approach can be extended to examine the impact of

erasures and deletions. In this chapter, two different situations involving erasures are

considered:

• Equivocation of codes, including intentional erasures on a BSC

• Equivocation of codes on the Binary Erasure Channel (BEC)

6.2 Equivocation of a BSC with Intentional Erasures (IE+BSC)

It has already been seen that if transmitting across a BSC while an eavesdropper

listens via a Wire-Tap Channel, the difference in signal quality can be exploited to

improve the inherent transmission secrecy. However if this exploitation involves the

‘managed’ use of erasures, then the secrecy of the code transmitted across the channel

can be improved whilst simultaneously reducing the volume of data that is transmitted.

This is in contrast to the increased volume of data incurred by the code expansion

methods used in Chapter 5.

In his use of punctured LDPC codes in order to modify the security gap, Klinc et al.

(2011) acknowledged that it can be difficult to measure or analyse equivocation. Work

has also been done to establish upper and lower bounds for equivocation, including
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the use of known and unknown puncturing patterns Almeida (2013). Other techniques

have been applied to specific circumstances to calculate equivocation, such as the

analysis of the generator matrix of the eavesdropper’s code (Wickramasooriya et al.

2013) and the use of probability mass functions for syndrome coding (Al-Hassan et al.

2014). However, calculations such as Al-Hassan’s remain computationally demanding,

requiring the generation of many error patterns and syndromes.

This section looks at the deliberate introduction of erasures whilst transmitting data

across a BSC (IE+BSC) within a Wire-Tap environment. The software solution used

in Chapter 5 has been enhanced to permit the calculation of normalised equivocation

values for the IE+BSC.

Since an error-correcting code can correct at most d−1
2 errors or d− 1 erasures (Hoff-

man 1991), in this work, the number of erasures deliberately introduced will always be

constrained to be less than or equal to the correction capability of the code.

If deliberate erasures are introduced, then the value of a bit in a specified location is

unknown as shown in Figure 6.1 and must be treated as random.

1

0

X Y?

Figure 6.1: Deliberate Erasures

As in Chapter 5, the processes of correcting the received codeword and decoding it

are considered separately, as shown in Figure 6.2. The message m is encoded as

the codeword x before bits are intentionally erased to give the transmission vector

t. Transmission across the BSC and potential introduction of a BSC error v yields a

received vector r. This vector r is then corrected by the addition of a vector c to give

the corrected, received codeword y. Finally y is decoded to give the message estimate

mest .
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BSCEncoder Intentional

Erasure

Correction Decoderm x = mG t r = t + v y = r+ c mest

Figure 6.2: IE+BSC encoding / decoding process

6.2.1 Calculations

A message of length k is encoded as a codeword of length n. If a bits, in known

locations (for example the right-hand a bits of the codeword), are deliberately erased

ahead of transmission, then n− a bits of known value and a erased bits of unknown

value (but known location) would be received. The data is transmitted across a BSC

and therefore the known bits will still have been susceptible to a cross-over error of

probability pe.

For an [n,k,d] code containing a erasures in known locations, it is necessary to con-

sider all possible values that the erased bits could have held and also all possible BSC

errors in non-erased locations. Whilst this adds complexity to the scenario compared to

that for calculating the equivocation for codes on the BSC without erasures, it is signif-

icantly less complex than when considering deletions where the erasure locations are

unknown. This aspect will form the fundamental difference between the approaches

for erasures and deletions.

There would be 2n−a possible error vectors that could affect the n−a received bits. For

each of those possible error vectors, it would be necessary to consider 2a possibilities

of what the erased bits could have been. If the probability of a symmetric crossover

error on the BSC is pe, the probability of there being ε errors in a received codeword

that is known to contain a erasures in known positions is thus:

P(ε,a) =
(

n−a
ε

)
(1− pe)

(n−a)−ε pε
e (6.1)

Therefore if a BKLC [8,2,5] code was transmitted with two bits erased in positions 7 and
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8,
(

t1 t2 t3 t4 t5 t6 ?7 ?8

)
, the probability of receiving a codeword of length 8

bits containing a single error with a BSC error probability pe = 0.01 is:

P(1,2) =
(

6
1

)
×0.995×0.01 = 0.0571

When calculating the equivocation of the code across the channel, the probability and

thence the conditional entropy of each possible output, given each possible input, must

be found. Any erased bits could have been either a 0 or a 1 with equal probability, so

the received codeword could have been any one of 1
2a possible options before the a bits

were erased.

Thus the probability of a received message having contained ε errors in specific loca-

tions and the a erasures having come from a particular combination of 0’s and 1’s will

be as shown in Equation 6.2:

P(ε,a) = (1− pe)
(n−a)−ε pε

e ×
1
2a (6.2)

So the probability of receiving an 8-bit codeword on a BSC with error probability pe =

0.01, with errors in positions 1 and 4 with 2 erased bits in positions 7 and 8 ( i.e. the

vector
(

01 12 03 04 15 06 ?7 ?8

)
will be:

0.994×0.012× 1
22 = 2.401×10−5

Equivocation calculations allowing for erasures were initially performed by the comple-

tion of a spreadsheet of calculations for a short code (in this case, the BKLC [8,2,5]

code) before being incorporated into the existing C++ program used previously for cal-

culating the code equivocation.
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The BKLC [8,2,5] code can have Generator Matrix:




1 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1




and Parity Check Matrix: 


1 0 0 0 1 0 0 1

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1




The 4 possible messages
(

0 0

)
,
(

0 1

)
,
(

1 0

)
and

(
1 1

)
yield valid codewords

of:
(
0 0 0 0 0 0 0 0

)
(
0 0 0 1 1 1 1 1

)
(
1 1 1 0 0 1 1 1

)
(
1 1 1 1 1 0 0 0

)
.

The first section of the spreadsheet, showing the calculation of probabilities for each

possible error vector and erasure combination for the zero codeword
(

0 0 0 0 0 0 0 0

)
,

with known erasures in positions 7 and 8 and pe = 0.01, is shown in column two of Ta-

ble 6.1 with possible erasure combinations shown in grey. The error vectors are listed

in weight order, containing ε errors where 0≤ ε ≤ n−a.

Once the probabilities have been calculated for each possible combination of BSC error

and erased bits, these probabilities can be used to find the equivocation.

This is achieved by:

1. Multiplying the received codeword by the parity check matrix to obtain the syn-

drome.
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2. Using the syndrome to correct the received codeword to the most likely valid

codeword (columns 3 to 5 of Table 6.1).

3. Summing probabilities to find the total probability of each codeword y j being re-

ceived, given a particular message xi as input. This gives P(y j|xi).

4. P(xi,y j) = P(xi)P(y j|xi)

5. H(xi,y j) = P(xi,y j) log2
1

P(xi,y j)

6. H(xi,Y ) = ∑y∈Y H(xi,y j) = ∑y∈Y P(xi,y j) log2
1

P(xi,y j)
)

7. H(X ,Y ) = ∑x∈X H(xi,Y ) = ∑x∈X ∑y∈Y P(xi,y j) log2
1

P(xi,y j)
)

The probabilities for the output codeword y0 =

(
0 0 0 0 0 0 0 0

)
given the

input codeword x0 =

(
0 0 0 0 0 0 0 0

)
are shown in bold in Table 6.1. The

probability sums for each codeword, x0, ...,x3 can be seen in Table 6.2.

Table 6.2 shows that the contribution to the joint equivocation from one codeword is

0.50197. The contribution to the joint entropy from each input codeword will be the

same and therefore the joint entropy H(X ,Y ) = 0.50197×4 = 2.007886.

Figure 6.3 shows the conditional probabilities for BKLC [8,2,5] with 2 erasures and

pe = 0.01. The output probabilities can be found from these, as shown in Table 6.3.

This demonstrates that if the input codewords are equally likely then so too are the

output codewords i.e. P(y j) = 0.25.

If P(yi) = 0.25, then

H(Y ) = ∑
y∈Y

P(y j) log(
1

P(y j)
) = 4×0.25log2(

1
0.25

) = 4×0.25×2 = 2

Therefore when pe = 0.01,

H(X |Y ) = H(X ,Y )−H(Y ) = 2.007886−2 = 7.886×10−3
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Codeword:
0 0 0 0 0 0 0 0

Received Codeword P(ε,a) Syndrome Correction Corrected codeword
+erased bits

0 0 0 0 0 0 ? ?
0 0 0 0 0 0 0 0 0.23537 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0.23537 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0.23537 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0.23537 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

P(0,2) = 0.94148
0 0 0 0 0 1 ? ?
0 0 0 0 0 1 0 0 0.002377 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0.002377 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0.002377 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0.002377 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

...
...

...
...

1 0 0 0 0 0 ? ?
1 0 0 0 0 0 0 0 0.002377 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0.002377 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0.002377 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0.002377 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

P(1,2) = 0.05706
...

...
...

...
0 0 0 0 1 1 ? ?
0 0 0 0 1 1 0 0 2.4×10−5 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1
0 0 0 0 1 1 0 1 2.4×10−5 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 2.4×10−5 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 2.4×10−5 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1

...
...

...
...

1 1 0 0 0 0 ? ?
1 1 0 0 0 0 0 0 2.4×10−5 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1
1 1 0 0 0 0 0 1 2.4×10−5 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1
1 1 0 0 0 0 1 0 2.4×10−5 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1
1 1 0 0 0 0 1 1 2.4×10−5 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1

P(2,2) = 1.441×10−3

...
...

...
...

1 1 1 1 1 1 ? ?
1 1 1 1 1 1 0 0 2.5×10−13 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 1 2.5×10−13 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 2.5×10−13 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 2.5×10−13 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

P(6,2) = 1×10−12

Table 6.1: Error and erasure correction process

Since the BKLC [8,2,5] code encodes 2 bit messages as a codeword of length 8, the
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Output Codeword P(y j|x0) P(x0,y j) H(x0,y j)

0 0 0 0 0 0 0 0 0.99940409 0.24985102 0.49991691
0 0 0 1 1 1 1 1 0.00029694 7.4235E-05 0.00101832
1 1 1 0 0 1 1 1 0.00029213 7.3032E-5 0.00100354
1 1 1 1 1 0 0 0 6.8414E-06 1.1703E-06 3.2766E-05
TOTAL 1 0.50197154

Table 6.2: Calculation of joint entropy from probabilities for codeword x0 = 00000000

Output codeword P(y j)

00000000 (0.99940+0.000297+0.00029+6.8414E−06)×0.25 = 0.25
00011111 (0.000297+0.99940+6.8414E−06+0.00029)×0.25 = 0.25
11100111 (0.00029+6.8414E−06+0.99940+0.000297)×0.25 = 0.25
11111000 (6.8414E−06+0.00029+0.000297+0.99940)×0.25 = 0.25

Table 6.3: Combined output probabilities and entropies BKLC [8,2,5] with pe = 0.01

normalised equivocation will be

7.886×10−3÷2 = 3.943×10−3

In all results for codes of differing lengths, the equivocation values stated have been

normalised to between 0 and 1, depending on the message length of the code, to give

the equivocation per data bit.

6.2.2 Results

As an imperfect code, the BKLC [8,2,5] is only capable of correcting at most 4 erasures

(d− 1), where d is the minimum distance of the code. Alternatively it can correct at

most 2 errors or other combinations of errors and erasures, subject to the constraint

that 2ε +a < d (Sweeney 2002, p.164). Hence the BKLC [8,2,5] code can correct the

combinations of errors and erasures in Table 6.4

Errors Erasures
0 0, 1, 2, 3, 4
1 0, 1, 2
2 0

Table 6.4: Correctable Combinations of Errors and Erasures for the BKLC [8,2,5]
Code
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x3 = 11111000, P(x3) = 0.25

P (y0|x3) = 6.8414E−06

P(y1|x3) = 0.000292129

P(y2|x3) = 0.000296941

P(y3|x3) = 0.999404089

x2 = 11100111, P(x2) = 0.25

P (y0|x2) = 0.000292129

P(y1|x2) = 6.8414E−06

P(y2|x2) = 0.999404089

P(y3|x2) = 0.000296941

x1 = 00011111, P(x1) = 0.25

P (y0|x1) = 0.000296941

P(y1|x1) = 0.999404089

P(y2|x1) = 6.8414E−06

P(y3|x1) = 0.000292129

x0 = 00000000, P(x0) = 0.25

P (y0|x0) = 0.999404089

P(y1|x0) = 0.000296941

P(y2|x0) = 0.000292129

P(y3|x0) = 6.8414E−06

Figure 6.3: Input and output probabilities for BKLC [8,2,5] on IE+BSC with 2 erasures
and pe = 0.8

For the Golay [23,12,7], this increases as shown in Table 6.5.

For the BKLC [8,2,5] shown in Figure 6.4, all curves are monotonic (i.e. always increas-

124



6.2. EQUIVOCATION OF A BSC WITH INTENTIONAL ERASURES (IE+BSC)

Errors Erasures
0 0, 1, 2, 3, 4, 5, 6
1 0, 1, 2, 3, 4
2 0, 2, 4
3 0

Table 6.5: Correctable Combinations of Errors and Erasures for the Golay [23,12,7]
Code

ing), therefore increasing the number of deliberately erased bits that are transmitted

increases the equivocation of the code. One important observation is that the curves

for both 3 and 4 erasures of the BKLC [8,2,5] code are co-linear i.e. transmitting the

code with either 3 or 4 erasures produces the same values of normalised equivocation.

This is because the increase from 3 to 4 erasures does not change the ability of the

code to use the 26 available syndrome patterns for the detection or correction of either

errors or erasures.

Figure 6.4: Equivocation of BKLC [8,2,5] code with up to 4 erasures

Similarly, for the Golay [23,12,7] code in Figure 6.5 with the ability to correct up to 6

erasures, 6 monotonic lines are obtained, with the equivocation increasing with each

additional erasure.
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Figure 6.5: Equivocation of Golay [23,12,7] code with erasures

When code expansion is brought in to the arrangement as well, as discussed in Sec-

tion 5.5, the 4 distinct groups of curves on each of Figure 6.6 and Figure 6.7 reflect

the different code expansions (none, 2-fold, 4-fold and 10-fold). It is worth noting that

each graph shows multiple crossover points when comparing equivocation curves for

scenarios with different numbers of erasures and different levels of code expansion.

For example in Figure 6.6, when comparing BKLC [8,2,5] with 4 erasures and no code

expansion and the same code with no erasures and 2-fold code expansion, there is a

crossover point between 0.1 and 0.11. When pe ≤ 0.1, the scenarios with 4 erasures

and no code expansion gives higher equivocation values. Conversely if pe ≥ 0.11, no

erasures and 2-fold code expansion give higher equivocation values. Therefore it can

be seen that one arrangement gives higher equivocation at lower error probabilities,

while the other may be more useful at higher error probabilities. Similarly, compar-

isons can be drawn between the differing gradients of the curves in different parts of

the graph. Between approximately 0.04 and 0.25, 4 erasures and no code expansion

gives a steeper graph than no erasures and 2-fold code expansion. Thus it may be pos-
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sible to achieve a greater differential between the equivocation level for the intended

recipient and the illegitimate eavesdropper. If the likely error probability of the chan-

nel can be established, estimated or measured then a choice could be made about

which arrangement should be selected in order to maximise the required characteris-

tics. Similar comparisons can be made and implications drawn for any of the crossover

points in either Figure 6.6 or Figure 6.7.

Figure 6.6: Equivocation of BKLC [8,2,5] code with erasures and code expansion

Figure 6.8 highlights some differences between the use of code expansion and the

use of erasures, in this case for the Golay [23,12,7] code. For all error probabilities

above pe = 0.05, 2-fold code expansion offers greater increases in equivocation than

the deliberate introduction of erasures. However below pe = 0.05, the use of multiple

erasures gives a greater increase in equivocation. Therefore at close to pe = 0.05 for

the Golay code, there is a changeover point above which a 2-fold code expansion gives

higher equivocation levels and below which the use of 6 erasures gives higher equivo-

cation. A similar changeover occurs for the BKLC [31,21,5] in Figure 6.9 although the

changeover occurs at pe between 0.01 and 0.02 and is less obvious. Either modifica-

tion to the code (code expansion or intentional erasures) carries a penalty - the use of
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Figure 6.7: Equivocation of Golay [23,12,7] code with erasures and code expansion

code expansion increases the number of transmitted bits dramatically whereas the de-

liberate introduction of erasures decreases the error detecting and correcting capability

of the code.

The deliberate introduction of erasures to a transmission system can, if chosen care-

fully, lead to a greater increase in equivocation for an illegitimate eavesdropper than for

the legitimate receiver. For example with the Golay [23,12,7] code, a BSC error prob-

ability pe of 0.01 for the legitimate receiver and 0.10 for the eavesdropper will produce

the normalised equivocation levels shown in Table 6.6 for scenarios with no erasures

and with 2 erasures.

Legitimate receiver Eavesdropper
BSC error probability 0.01 0.10
Equivocation (with no erasures) 0.00015 0.20496
Equivocation (with 2 erasures) 0.00147 0.29394
Increase in equivocation 0.00132 0.08898

Table 6.6: Equivocation of Golay [23,12,7] code on BSC with and without 2 erasures

In this case, the deliberate introduction of 2 erasures has increased the normalised
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Figure 6.8: Equivocation of Golay [23,12,7] code with 6 erasures versus 2-fold code
expansion

equivocation for the eavesdropper by a greater amount (0.089) than for the legitimate

receiver (0.0013), a factor of 67.

However, this does not always hold and is dependent on the scenarios being compared

and the range of error probability being considered. Consider the Golay [23,12,7] code

with an error probability pe = 0.05 for the legitimate receiver and overall error probability

0.20 for the eavesdropper for scenarios with no erasures and 6 erasures, as shown in

Table 6.7.

Legitimate receiver Eavesdropper
BSC error probability 0.05 0.20
Equivocation (with no erasures) 0.03317 0.64453
Equivocation (with 6 erasures) 0.17759 0.71385
Increase 0.14442 0.06932

Table 6.7: Equivocation of Golay [23,12,7] code on BSC with and without 6 erasures

In this case, the equivocation has increased for the legitimate receiver by a greater

amount (0.144) than it has for the eavesdropper (0.069).
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Figure 6.9: Equivocation of BKLC [31,21,5] with 4 erasures versus 2-fold code expan-
sion

6.2.3 Conclusion

• The intentional introduction of erasures to the BSC increases the equivocation of

the code, but not generally by as much as the use of code expansion. For exam-

ple, below approximately 0.05, introducing 6 erasures gives higher equivocation

levels than 2-fold code expansion but above 0.05, 2-fold code expansion always

gives a higher equivocation value. However 10-fold code expansion would give

higher equivocation levels and 6 erasures for every error probability examined (6

erasures would only give higher values for very small error probabilities ie well

below 0.01)

• An increase in the number of erasures on the IE+BSC may not always lead to an

increase in the equivocation. For example, either 3 or 4 intentional erasures of

the BKLC[8,2,5] code on a BSC will yield the same equivocation levels in each

case, because the additional erasure doesn’t change the ability of the code to use

the available syndrome patterns for the detection and correction of either errors
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or erasures.

• As with the BSC, code expansion can be used on the IE+BSC to increase equiv-

ocation.

• Combinations of erasures and code expansion can be used to maximise the dif-

ference in equivocation for the legitimate receiver and an eavesdropper for a par-

ticular error probability. For example, from Figure 6.7, the Golay[23,12,7] code

on the BSC with 3 erasures and 4-fold expansion could give a legitimate recip-

ient with an error probability of 0.01 a normalised equivocation value of 0.054,

whereas an eavesdropper with a WTC error probability of 0.05 would be liable to

a normalised equivocation of 0.602, over 11 times greater.

6.3 Equivocation on the Binary Erasure Channel

The previous section had to address two factors that had a simultaneous impact on the

equivocation of the channel, namely the intentional use of erasures and the likelihood

of an error from the BSC itself.

This section looks at the transmission of data across a Binary Erasure Channel as

shown in Figure 6.10. The message m is encoded as the codeword x ahead of trans-

mission across the BEC. On receipt, x may have had a bits erased to yield the received

vector r. This is then corrected to give y before being decoded to the message esti-

mate mest . The erasures are no longer ‘intentional’ or ‘controlled’ and can occur in any

position. The erasures can occur in any single position with a probability of ps.

BECEncoder Correction Decoderm x = mG r y = r+ c mest

Figure 6.10: BEC encoding / decoding process

The probability of a erasures occurring in any word of length n is:

P(a) =
(

n
a

)
(1− ps)

n−a pa
s (6.3)
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6.3.1 Calculation

As previously, a spreadsheet was first drawn up as a ‘proof of concept’ prior to the

calculation algorithm being coded in C++.

The equivocation is calculated by initially considering every possible erasure pattern

for each transmitted codeword, as in Table 6.8.

Option probability
Messages 0 0 0 1 1 0 1 1
Codewords 00000000 00011111 11100111 11111000
0 Erasures 00000000 00011111 11100111 11111000 P(a = 0) = 0.43046721
1 Erasure 0000000? 0001111? 1110011? 1111100? 0.04782969

...
...

...
...

...
?0000000 ?0011111 ?1100111 ?1111000 0.04782969

P(a = 1) = 0.38263752
2 Erasures 000000?? 000111?? 111001?? 111110?? 0.00531441

00000?0? 00011?1? 11100?1? 11111?0?
...

...
...

...
...

...
??000000 ??011111 ??100111 ??111000 0.00531441

P(a = 2) = 0.14880348
...

7 Erasures 0??????? 0??????? 1??????? 1??????? 9E−08
...

...
...

...
...

???????0 ???????1 ???????1 ???????1 9E−08
P(a = 7) = 7.2E−08

8 Erasures ???????? ???????? ???????? ???????? P(a = 8) = 1E−08

Table 6.8: BEC Erasure probabilities for BKLC [8,2,5] with ps = 0.1

For each erasure option, the origin of the option must be considered. For example,

with bits 6 and 8 of the received codeword
(

01 02 03 14 15 ?6 17 ?8

)
erased,

22 = 4 options must be taken into account. To decide which option is the most likely,

calculate the syndrome. To be a valid codeword decode, the syndrome must be zero.

Table 6.9 shows that for the received codeword
(

0 0 0 1 1 ? 1 ?

)
,

(
0 0 0 1 1 1 1 1

)
is the only option that yields a syndrome of zero and is the

most likely to be correct. Therefore this option would be chosen as the decode for the

132



6.3. EQUIVOCATION ON THE BINARY ERASURE CHANNEL

Received codeword Syndrome
00011?1?
00011010 111001
00011011 000010
00011110 111011
00011111 000000

Table 6.9: BEC Erasure options for bits 6 and 8 for BKLC [8,2,5]

received, erased codeword.

This process works well when the errors introduced are well within the erasure cor-

recting capabilities of the codeword. However as more erasures occur, more than one

zero-syndrome may occur, with no way of distinguishing which yields the correct de-

code.

So for the received codeword
(

0 0 ? ? ? ? ? ?

)
with 6 erasures, two of the

26 = 64 possible options are valid codewords, (00000000 and 00011111) and give a

zero-syndrome as shown in Table 6.10.

Received codeword Syndrome
00??????
00000000 000000
00000001 111011
00000010 000001
00000100 000010

...
...

00000011 111010
...

...
11000000 110000

...
...

11110000 111100
00011111 000000
00101111 001100

...
...

11111011 000100
11111101 111001
11111110 000011
11111111 111000

Table 6.10: Syndromes for BKLC [8,2,5]
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When looking at the Hamming [7,4,3] code, with its limited error and erasure correcting

capability, as a perfect code it can correct up to 2 erasures on the BEC. However for

4 erasures there are 2 possible correct decode options, 4 options for 5 erasures, 8

options for 6 erasures and all 16 possible options for all 7 bits being erased.

This leads to the question of how to decide which valid decode is the correct option.

Since all the options that give a valid decode are equally likely, there are 2 apparent

decoding strategies.

• Choose a valid decode option randomly.

• Choose the first valid decode option i.e. the first option that gives a zero-syndrome.

Calculation of the equivocation using the first strategy will give a slightly different value

each time since different decode options are randomly selected. The values will differ

because it is only the received vectors with high numbers of erasures that are affected,

beyond the correction capability of the code and therefore with low probabilities of

occurrence.

The second strategy is one specific case of the first strategy and its use would provide

consistent, predictable results. Since the first valid decode option is just as likely as

any other option to be the correct codeword and this strategy yields some interesting

results, this is the strategy pursued.

For the BKLC [8,2,5] code with a BEC erasure rate of ps = 0.01, the message
(

0 1

)

will be transmitted as the codeword
(

0 0 0 1 1 1 1 1

)
. The full list of all pos-

sible received vectors and their decodes, probabilities and contributions to the joint

entropy are listed at Appendix B. Table 6.11 shows that for the transmitted codeword(
0 0 0 1 1 1 1 1

)
there are 8 possible erasure combinations that would result

in an incorrect decode using the strategy described. In this case, all would yield the

zero codeword as in Table 6.11

When summing the contributions to the joint entropy for each of the transmitted code-
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Erasure pattern Probability Decode
000????? 9.7E-11 00000000
00?????? 9.8E-13 00000000
0?0????? 9.8E-13 00000000
?00????? 9.8E-13 00000000
0??????? 9.9E-15 00000000
?0?????? 9.9E-15 00000000
??0????? 9.9E-15 00000000
???????? 1E-16 00000000

Table 6.11: Incorrect Decodes for BKLC [8,2,5] with ps = 0.01

words, Table 6.12 is obtained. It can be seen that for the BKLC [8,2,5] with a BEC

erasure probability of ps = 0.01, the joint equivocation H(X,Y) is close to 2.

Trasnmitted Codeword Decode P(y j|xi) P(xi,y j) H(xi,y j)

x0 = 00000000 00000000 0.25 0.0625 0.5
00011111 0 0 0
11100111 0 0 0
11111000 0 0 0

x1 = 00011111 00000000 2.5E-11 6.25E-12 8.805E-10
00011111 0.25 0.0625 0.5
11100111 0 0 0
11111000 0 0 0

x2 = 11100111 00000000 2.5E-13 6.25E-14 1.047E-11
00011111 2.5E-11 6.25E-12 8.805E-10
11100111 0.25 0.0625 0.5
11111000 0 0 0

x3 = 11111000 00000000 2.5E-11 6.25E-13 8.805E-10
00011111 2.5E-13 6.25E-14 1.047E-11
11100111 2.5E-11 6.25E-013 8.805E-10
11111000 0.25 0.0625 0.5

Joint Entropy H(X ,Y ) 2.0000000035

Table 6.12: Joint Entropy contributions for BKLC [8,2,5] with p(s) = 0.01

6.3.2 Calculating H(Y )

In Chapter 4, it was noted that H(X |Y ) = H(X ,Y )−H(Y ) and that H(Y |X) = H(X ,Y )−

H(X). Up until this point, previous channel arrangements have meant that H(X) and

H(Y ) have been equal and therefore so have H(X |Y ) and H(Y |X). However, due to the

decoding method used with transmission across the BEC, this is no longer the case. In

order to calculate H(X |Y ) as a measure of the secrecy of the code across the channel,
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it is important to calculate the value of H(Y ) as it changes with ps.

As the number of erasures increases beyond the ability of the code to correct them,

the probability of incorrectly decoding the received codeword increases. Since the

decoding strategy in the event of multiple valid decode options is to select the first

option, there will be an increasing probability of selecting the first codeword that gives

a zero-syndrome, usually the zero codeword. In extremis, if all bits are erased, then

the zero codeword will always be selected.

Table 6.12 gives the conditional and joint probabilities obtained for an erasure proba-

bility of ps = 0.01, while Figure 6.11 shows just the conditional probabilities for ps = 0.8

with y0 probabilities emphasised. The output probabilities can be obtained from these,

shown for ps = 0.01 in Table 6.13 and for ps = 0.8 in Table 6.14. Both tables (but in

particular Table 6.14) show that the probabilities of obtaining each output codeword

are no longer uniform as was the case for both the BSC and the IE+BSC. This comes

as a direct result of the decoding method being used and the decreasing likelihood of

choosing codewords other than the zero codeword as ps approaches 1.

Output codeword P(y) H(y)
00000000 0.25+2.5E-11 + 2.5E-13 + 2.5E-11 = 0.2500000001 0.5
00011111 0 + 0.25 + 2.5E-11 + 2.5E-13 = 0.25 0.5
11100111 0 + 0 + 0.25 + 2.5E-11 = 0.25 0.5
11111000 0 + 0 + 0 + 0.2499999999 = 0.2499999999 0.5

H(Y) 2

Table 6.13: Output probabilties and entropies BKLC [8,2,5] with ps = 0.01

Output codeword P(y) H(y)
00000000 0.25 + 0.0819 + 0.0655 + 0.0819 = 0.4794 0.5085
00011111 0 + 0.1681 + 0.0400 + 0.0236 = 0.2316 0.4888
11100111 0 + 0 + 0.1445 + 0.0400 = 0.1845 0.4498
11111000 0 + 0 + 0 + 0.1045 = 0.1045 0.3405

H(Y) 1.7876

Table 6.14: Output probabilties and entropies BKLC [8,2,5] with ps = 0.8

For a much higher ps, the likelihood of having multiple erasures also increases accord-

ing to Equation 6.3. If many erasures become likely, then the probability of the code
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x3 = 11111000, P(x3) = 0.25

P (y0|x3) = 0.32768

P(y1|x3) = 0.09437184

P(y2|x3) = 0.15990784

P(y3|x3) = 0.41804032

x2 = 11100111, P(x2) = 0.25

P (y0|x2) = 0.262144

P(y1|x2) = 0.15990784

P(y2|x2) = 0.57794816

P(y3|x2) = 0

x1 = 00011111, P(x1) = 0.25

P (y0|x1) = 0.32768

P(y1|x1) = 0.67232

P(y2|x1) = 0

P(y3|x1) = 0

x0 = 00000000, P(x0) = 0.25

P (y0|x0) = 1

P(y1|x0) = 0

P(y2|x0) = 0

P(y3|x0) = 0

Figure 6.11: Input and output probabilities for BKLC [8,2,5] on BE C with 2 erasures
and pe = 0.8
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being unable to correct the erasures will also increase. As this happens, it becomes

more likely that the decoding process will resort to selecting the zero codeword as the

decode. As previously noted, in extremis when all bits are erased, it becomes a cer-

tainty that the zero codeword will be selected as the decode. Hence as ps → 1, the

output entropy H(Y )→ 0. When considering the relationship between H(X) and H(Y )

as shown in Figure 4.2, as ps increases H(Y ) decreases, as shown in Figure 6.12.

H(X |Y ) H(Y |X)I(X ,Y )

H(X) H(Y )

H(X ,Y )

Figure 6.12: Changing Relationship between Input and Output Entropies on BEC as
ps increases and H(Y ) decreases

Once both H(X ,Y ) and H(Y ) have been calculated, the equivocation can be found from

H(X |Y ) = H(X ,Y )−H(Y ).

6.3.3 Results

When dealing with the BSC, it was only necessary to consider symmetric crossover

errors of probability 0 ≤ pe ≤ 0.5. Once pe reaches 0.5, the channel has become fully

randomised, with the output having ceased to be dependent on the input. There is no

point proceeding with error probabilities greater than 0.5 because an error has become

more likely than not. However for the BEC, the risk of an erasure occurring must

be considered up until it becomes a certainty i.e. the full range 0 ≤ ps ≤ 1 must be

considered. Figure 6.13 show the normalised equivocation for 4 codes of different

lengths and Figure 6.14 shows the corresponding normalised values of H(Y ) for each

code as ps changes, demonstrating how the output entropies decrease rapidly as ps
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approaches 1. Figure 6.15 shows the normalised equivocation for a range of Best

Known Linear Codes of length n = 15. Both Figure 6.13 and Figure 6.15 illustrate the

dramatic differences in normalised equivocation between different length codes.

The ability of a code to correct erasures is limited by the dmin of the code. The figures

suggest that of the BKLCs examined, those codes with low dmin values and low era-

sure correcting capabilities will yield higher equivocation levels. These differences in

equivocation level are at their most prominent for mid-range probabilities. For example

if ps = 0.5, the normalised equivocation of the BKLC [15,4,8] code is 0.0597882 while

for the BKLC [15,12,2] code it is 0.689081.

Figure 6.13: Equivocation of codes on the BEC

6.3.4 Conclusions

The work on equivocation on the BEC demonstrates that the methods previously used

for the BSC can be extended to include other channels. Whilst some worthwhile results

were obtained for a few codes, programming limitations prevented getting results for

any codes of length greater than n = 15. Despite that, the results showed that there

can be some very large differences in normalised equivocation values, even for closely
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Figure 6.14: Output Entropy H(Y ) of codes on the BEC

related codes.

The most worthwhile point developed was the observation of a system, whose correc-

tion and decoding mechanism reduces the set of possible outcomes and hence the

output entropy as the erasure probabilty ps increases.

6.4 Chapter Conclusions

In addition to the expansion of codes previously discussed, erasures can be used as

an alternative mechanism for increasing the equivocation of a code over a BSC and

thereby its average ambiguity and secrecy.

• Increases in equivocation from the introduction of intentional erasures on the

BSC can be significant, but not as great as those increases shown by the use

of code expansions. For example, from Figure 6.7 in subsection 6.2.2, for the

Golay[23,12,7] code with pe = 0.05, 6 erasures give a normalised equivocation of

0.178 while 4-fold expansion gives a much higher value of 0.540.

• Some increases in the number of bits erased on the IE+BSC do not necessarily
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Figure 6.15: Equivocation of BKLCs of length 15 and different k on BEC

lead to an increase in equivocation. This was seen with BKLC[8,2,5], where the

increase from 3 to 4 erasures did not change the equivocation. This was because

the increase in erasures didn’t change the ability of the code to use the available

syndrome patterns for the detection or correction of either errors or erasures.

• The controlled introduction of erasures to a BSC can lead to a greater increase

in equivocation for an eavesdropper than it does for the legitimate receiver. The

introduction of 2 erasures to the Golay[23,12,7] code on the IE+BSC gave an

increase in normalised equivocation of 0.00132 for the legitimate receiver with

pe = 0.05 but a much larger increase of 0.08898 for an eavesdropper with pe = 0.1.

• A comparison between code expansions and erasures can show situations where,

for a particular error probability, there is a changeover point in which method pro-

duces the higher equivocation values. It was seen that for Golay [23,12,7] with

pe < 0.05, 6 erasures gave a higher equivocation value, whereas for pe > 0.05,

2-fold code expansion gave higher values.

• On the BEC in Section 6.3, even codes with similar properties or similar lengths
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can have wildly different equivocation characteristics. Figure 6.13 shows that with

ps = 0.2, BKLC[15,10,4] had a normalised equivocation of just 0.0733, whereas

BKLC[15,12,2] had a value of 0.3581.

• The correction and decoding mechansim used for the BEC in subsection 6.3.2

caused a reduction in the possible outcomes and a decreasing output entropy as

the probability of an erasure increased. As ps→ 1, H(Y )→ 0. In extremis, when

all bits are erased, it becomes a certainty that the zero codeword will be selected

as the decode.
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Chapter 7

Equivocation of Deletions

7.1 Introduction

Golomb et al. (1963) observed that:

the single insertion and deletion channel, even in the absence of other

noise, would make a fascinating study.

Subsequent work by Dobrushin (1967) and Stambler (1970) discussed coding theo-

rems for channels subject to random deletions and insertions, while Graham (2015)

introduces an alternative model for the Binary Deletion Channel (BDC) and Davey &

Mackay (2001) discussed reliable communication of channels with insertions, dele-

tions and substitutions. No closed-form expression for the capacity of the BDC exists

at present, however extensive work has been undertaken on providing tighter bounds

for the BDC by Dalai (2011), Mitzenmacher (2006), Kalai et al. (2010), Kanoria & Mon-

tanari (2010, 2013), Kirsch & Drinea (2007), Fertonani & Duman (2010).

This chapter looks at a method of evaluating the equivocation of a code when symbols

are intentionally deleted ahead of transmission across a Binary Symmetric Channel (ID

+ BSC), shown in Figure 7.1. The system includes a simple state switch that controls

whether a deletion is introduced into the system or not. When the switch is in position

‘0’, the system acts as a simple BSC with wiretap, the results of which have already

been discussed in Section 5.4. When the switch is in position ‘1’, the system acts as

an ID+BSC with Wire-Tap.
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m
Encoder

x = mG Deletion

State switch

‘0’ =⇒ No deletion

‘1’ =⇒ Deletion

x∗
BSC

y∗

Wiretap

Channel

Correction Decoder
ya mesta

yb,mestb

Figure 7.1: Code transmission across a BSC with intentional deletions (ID+BSC), sub-
ject to wiretap

7.2 Equivocation of a Binary Symmetric Channel with Intentional Deletions

(ID+BSC)

If δ deletions of transmitted symbols xi ∈ X are introduced for the ID+BSC then as with

the BDC, the positions of the received bits y∗i may differ from the transmitted positions.

{x0x1....xn−1} 7→ {y∗0y∗1....y
∗
n−δ−1}

The n− δ non-deleted bits will also be susceptible to a cross-over probability of pe on

the BSC.

However, when considering multiple deletions, the number of permutations that must

be considered rapidly extends beyond the practical capabilities of a ‘standard’ PC, even

if the parallel processing techniques previously described were implemented on the

GPU. For δ deletions in a codeword of length n, there are
(n

δ

)
possible arrangements

of locations in which the bits could have been deleted. If any number of deletions

were permitted, up to a value δ , ∑
δ
i=0
(n

i

)
cumulative arrangements must be consid-

ered. Even for a relatively short code such as the Golay [23,12,7] code, considering 2

deletions rather than 1 deletion gives 11 times more arrangements of deletion positions
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to consider since (23
2

)
(23

1

) =
23!/21!2!

23!/22!1!
=

(23×22)/(2×1)

23/1
= 22/2 = 11

Considering up to and including 3 deletions would give 89 times more arrangements of

deletion positions to consider:

(23
1

)
+
(23

2

)
+
(23

3

)
(23

1

) =
23+253+1771

23
=

2047
23

= 89

The impact of the BSC must still be considered for every possible arrangement. There-

fore this chapter will only consider a single intentional deletion ahead of transmis-

sion via the BSC.

In Figure 7.1, a message m is encoded as the codeword x of length n and subjected to a

single-bit deletion, yielding x∗. before being transmitted across the BSC. The received

punctured codeword y∗ must then be corrected back to a valid codeword y of length n

before finally being decoded to an estimate of the original message, mest .

Punctured (n−1)-bit codewords x∗ will be referred to as codeword stubs. Every code-

word will generate its own set of n codeword stubs, some of which may be similar to

each other or to stubs from other codewords. For every position in which the deletion

could have occurred, all 2n−1 possible BSC errors must be considered.

The 24 = 16 possible sets of codeword stubs for the Hamming [7,4,3] code are shown

at Appendix C.

7.2.1 Calculation of Equivocation

As previously, a proof-of-concept spreadsheet was drawn up in Microsoft Excel prior to

coding up the algorithm. Even for a code as simple as the Hamming [7,4,3] code, such

a spreadsheet consists of many hundreds of rows and columns. It was assumed that

messages selected are independent and identically distributed, such that for a linear

[n,k,d] code, P(xi) =
1
2k .

There are two main phases to the process of calculating the equivocation of an ID+BSC
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channel:

• Determine how to decode each received punctured codeword

• Evaluate the entropic contribution for every possible input/output combination,

allowing for both intentional deletions and BSC errors.

Maximum Likelihood Decoding (MLD) compares received sequences with valid code-

words, taking into account the confidence in the received symbols and selecting the

codeword closest to the received sequence (Sweeney 2002, van Lint 1999, Togneri &

deSilva 2002). To decide how to decode the codeword stubs, a MLD approach is used:

• For all 2n−1 received codeword stubs, list the 2n possible n-bit rebuild options ru,v

that the stub could have come from (u indicates the stub number 0≤ u≤ 2n−1−1,

v indicates the rebuild number 0≤ v≤ 2n−1).

• Find the Hamming distance d(ru,v,xi) of each rebuild option from all 2k valid code-

words xi. However only rebuild options with the reconstructed bit equal to the

equivalent bit of the valid codeword need be considered, halving the number of

distances that must be found. This requires the evaluation of 2n−1 × n× 2k =

n×2n+k−1 distances, a number that increases exponentially with both n and k.

• Given d(ru,v,xi), calculate the probability, P(xi|ru,v) of the rebuild option having

come from each valid codeword.

• The output codeword ŷ j with the highest probability Pmax(xi|y j) of being the source

of the stub is selected.

• P(ŷi) can be found from the mean probability of the rebuild having come from each

codeword. Each transmitted codeword has n possibilities for each bit deleted,

with probability 1
n . The decoder has no information about which bit is deleted so

has to sum over all n deletion possibilities to find the most likely codeword, given

y j.
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• If two codewords are equally likely then one is chosen randomly.

For example, with the Hamming [7,4,3] code and a BSC pe = 0.01, the codeword stub(
0 0 0 1 1 1

)
has 14 possible rebuild options with distances to valid codewords

as shown in Table D.1 of Appendix D. Once the distances are known, the probabili-

ties in Table D.2 can be calculated. This shows that codewords c1 and c8 have equal

maximum likelihood of being the correct decode, so one of these is chosen, potentially

rebuilding
(

0 0 0 1 1 1

)
as
(

0 0 0 1 1 1 0

)
.

The probability of each received vector, P(y j) can be found from the mean of these

probabilities for each received vector. For 0.01 with the Hamming [7,4,3] code, the

codeword stub
(

0 0 0 1 1 1

)
gives P(y7) = 0.01768. A full list of decodes and

output probabilities P(y j) for the Hamming [7,4,3] code with one intentional deletion

and when pe = 0.01 is in Appendix E.

To evaluate the contribution to the entropy of every possible combination of input and

output codeword:

• Consider every possible input message and corresponding codeword

• For every one of 2k codewords, consider all n codeword stubs

• For every one of n codeword stubs, consider all 2n−1 possible BSC errors

• For every codeword stub with 2n−1 possible errors, consider its distance to a valid

codeword and calculate P(y j|xi). This gives 2k× n× 2n−1 = 2n+k−1× n distances

to consider i.e. it again rises exponentially with both n and k. Even for the short

Hamming [7,4,3] code, this requires the evaluation of 210 distances.

By Bayes’ Theorem,

P(xi|y j) =
P(y j|xi) ·P(xi)

P(y j)
(7.1)

and since:
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• P(y j|xi) is known

• P(y j) is known

• P(xi) =
1
2k for an [n,k,d] linear code with equally likely input codewords

• H(xi|y j) = P(xi|y j) · log2(
1

P(xi|y j)
)

we can calculate H(xi|y j). By summing across all input codewords, we obtain Equa-

tion 7.2

H(X |y j) = ∑
x∈X

P(xi|y j) log2

(
1

P(xi|y j)

)
(7.2)

The contributions to the conditional entropy of codeword y7 are shown in Table 7.1.

Subsequent summing over all received codewords gives Equation 7.3

H(X |Y ) = ∑
y∈Y

P(y j)H(X |y j)

= ∑
x∈X

∑
y∈Y

P(y j)P(xi|y j) log2

(
1

P(xi|y j)

)

= ∑
x∈X

∑
y∈Y

P(xi,y j) log2

(
1

P(xi|y j)

)
(7.3)

For Hamming [7,4,3] with pe = 0.01, H(X |Y ) = 0.1681. The calculation can be repeated

for a range of probabilities and codes to give the results in subsection 7.2.5.

7.2.2 Code Choice

Initital calculations were performed with simple codes such as Hamming codes or Best

Known Linear Codes, taken from existing code tables (Grassl 2015). However, whilst

they may be efficient in terms of offering a good minimum Hamming distance relative

to the code length, such codes may not be effective codes with regards to how they

cope with deletions.

Take, for example, the two 7-bit codewords x1 =

(
01 12 03 04 15 06 17

)
and

x2 =

(
11 02 03 14 05 16 17

)
. They differ in positions 1,2,4,5 and 6 i.e. they

have a Hamming distance of 5. However if bit 1 of x1 is deleted and either bit 6 or 7
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xi P(y7) P(y7|xi) P(xi|y7) H(xi|y7)

x0 = 0000 0.0176839 9.70299e-07 3.42932e-06 1.1009e-06
x1 = 0001 0.0176839 0.138614 0.489903 0.00891835
x2 = 0010 0.0176839 0.00141373 0.00499653 0.000675483
x3 = 0011 0.0176839 0.00141373 0.00499653 0.000675483
x4 = 0100 0.0176839 0.00141373 0.00499653 0.000675483
x5 = 0101 0.0176839 0.00141373 0.00499653 0.000675483
x6 = 0110 0.0176839 2.78642e-05 9.84805e-05 2.31792e-05
x7 = 0111 0.0176839 4.243e-09 1.4996e-08 6.89245e-09
x8 = 1000 0.0176839 0.138614 0.489903 0.00891835
x9 = 1001 0.0176839 2.78642e-05 9.84805e-05 2.31792e-05
x10 = 1010 0.0176839 2.82843e-07 9.99651e-07 3.52353e-07
x11 = 1011 0.0176839 2.82843e-07 9.99651e-07 3.52353e-07
x12 = 1100 0.0176839 2.82843e-07 9.99651e-07 3.52353e-07
x13 = 1101 0.0176839 2.82843e-07 9.99651e-07 3.52353e-07
x14 = 1110 0.0176839 4.243e-09 1.4996e-08 6.89245e-09
x15 = 1111 0.0176839 9.70299e-07 3.42932e-06 1.1009e-06

Sum H(X |y7) 0.02058863

Table 7.1: Entropy contributions for y7

of x2 is deleted ahead of transmission, the vector
(

1 0 0 1 0 1

)
is transmitted in

both cases. Thus, even if there is no risk of error from the BSC (pe = 0), upon receipt it

isn’t possible to determine which codeword the received stub originated from. This will

contribute towards the code having a non-zero equivocation even when pe = 0.

In order to mitigate against this, codes can be designed for use with the deletion chan-

nel. Such codes will need to consider the number of ambiguous codeword stubs (i.e.

they could have originated from more than one valid codeword) that exist once one or

more deletions have been intentionally made.

However to consider every possible codeword stub interaction with all others in order

to optimise the code for deletions is not trivial. An [n,k,d] code will have 2k codewords,

each with n possible stubs. There will be (2k× n)× (2k−1× n) = 22k−1× n2 interactions

between possible pairs of stubs. For a [7,2,d] code, this would give 23 × 72 = 392

interactions, but for the Hamming [15,11,3] code it rises to 221×152 = 4.82×108.
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7.2.3 Varshamov-Tenengolts Codes

One useful set of codes when dealing with deletions highlighted by Sloane (2002) are

the Varshamov & Tenengolts (1965) codes. These codes were proven to be useful for

correcting single deletions by Levenshtein (1965a) and Levenshtein (1965b).

For 0 ≤ a ≤ n, the Varshamov-Tenengolts code V Ta(n) consists of all binary vectors

(x1, ...,xn) satisfying
n

∑
i=1

ixi ≡ a(mod(n+1)) (7.4)

Alternatively,

x1 +2x2 + ixi, ...nxn = m(n+1), m ∈ Z+

Codes with a = 0 contain the most codewords, giving the first few such codes as:

Code Codewords
V T0(1) {0}
V T0(2) {00,11}
V T0(3) {000,101}
V T0(4) {0000,1001,0110,1111}
V T0(5) {00000,10001,01010,11011,11100,00111}
V T0(6) {000000,001011,001100,010010,011110,100001,101101,110011,110100,111111}

...
...

Table 7.2: Varshamov-Tenengolts codes

A binary word of length n is a valid codeword of a Varshamov-Tenengolts V T0(n) code

if the sum of the positions of the bits with value 1 is equal to 0 mod n+ 1. So for the

V T0(8) code,
(

11 12 03 04 05 06 17 18

)
is a codeword because bits 1,2,7 and

8 are set and (1+2+7+8) mod 9 = 0.

The key characteristic of V T0(n) codes that is of use in this situation is their resistance

to deletions. Considering the V T0(5) code, deletion of a single bit of each codeword

gives codeword stubs of length 4 as shown in Table 7.3.

Each codeword stub is unique to a single codeword without ambiguity, making it possi-

ble to determine its origin. All that remains is to allow for the impact of possible errors

from transmission across the BSC.
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Codeword Single deletion codeword stubs
00000 0000
10001 1000, 1001, 0001
01010 0101, 0100, 0110, 0010, 1010
11011 1101, 1111, 1011
11100 1110, 1100
00111 0011, 0111

Table 7.3: Single deletion codeword stubs for V T0(5)

It is worth noting Sloane’s observation (Sloane 2002) that few V T0(n) codes are linear.

Indeed V T0(n) codes are linear for n ≤ 4 but are never linear again, since for n ≥ 5,

V T0(n) contains the vectors 1 0 . . . 0 0 1 and 1 1 . . . 1 0 0 but not their sum.

To identify V T0(n) codewords, the computer code in Figure 7.2 was used.

powN = 1 « n;

for( int x = 0; x < powN; x++ ){ // Considers every n-bit vector
sum=0;

for( int i = 0; i < n; i++ ){ // Considers each bit of the vector
val = ( x & ( 1 « i) ) » i;

if( val == 1 ){

sum += ( n - i );} } // Sum of positions with bit = 1
if( sum % ( n + 1 ) == 0 ) { // Checks if codeword is valid

c[ nVT ] = x; // Adds to list of valid codewords
nVT++;} } // Tally of valid codewords

Figure 7.2: Code for generating Varshamov-Tenengolts codes

The number of codewords in a particular VT code (the cardinality of the code) can be

calculated from Sloane’s Theorem:

|V Ta(n)|=
1

2(n+1) ∑
odd d|(n+1)

φ(d)
µ( d

(d,a))

φ( d
(d,a))

2(n+1)/d (7.5)

where d are the odd divisors of n, φ is the Euler totient function, µ(n) is the Möbius

function and (d,a) = gcd(d,a). For a = 0, this gives the sequence in Table 7.4
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Varshamov-Tenengolts Code Cardinality
V T0(1) 1
V T0(2) 2
V T0(3) 2
V T0(4) 4
V T0(5) 6
V T0(6) 10
V T0(7) 16
V T0(8) 30
V T0(9) 52
V T0(10) 94
V T0(11) 172
V T0(12) 316
V T0(13) 586
V T0(14) 1096
V T0(15) 2048

...
...

Table 7.4: Cardinality of V T0(n) codes

A code with cardinality |V T0(n)| will contain x bits of information, where 2x = |V T0(n)| or

x = log(|V T0(n)|)
log2 . So for V T0(5) with 6 codewords, the equivocation must be divided by

log6
log2 to normalise it.

If a = 0, then gcd(d,a) = d and

|V T0(n)|=
1

2(n+1) ∑
odd d|(n+1)

φ(d)
µ(d

d )

φ(d
d )

2(n+1)/d

=
1

2(n+1) ∑
odd d|(n+1)

φ(d)
µ(1)
φ(1)

2(n+1)/d

=
1

2(n+1) ∑
odd d|(n+1)

φ(d)2(n+1)/d

However, if the special case where n = 2m−1, m ∈ Z+ is considered,

|V T0(2m−1)|= 1
2(2m−1+1) ∑

odd d|(2m−1+1)
φ(d)2(2

m−1+1)/d

=
1

2m+1 ∑
odd d|(2m)

φ(d)22m/d
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but the only odd divisor of 2m is 1, so

|V T0(2m−1)|= 1
2m+1 φ(1)2(2

m)

=
1

2m+1 22m

= 22m−m−1

Therefore, for 1≤m≤ 6, the V T0(n) codes will have the cardinalities shown in Table 7.5

m n |V T0(n)|
1 0 20

2 3 21

3 7 24

4 15 211

5 31 226

6 63 257

Table 7.5: Cardinality of V T0(n) codes with n = 2m−1

It can be seen that for V T0(n) codes with n = 2m−1, m≥ 2, the code will have the same

number of codewords as the Hamming (m,2) code (where m = n−k), described by the

properties Ham[2m−1,2m−m−1,3] or Ham[n,k,3], i.e.:

|V T0(n)|= |Ham[n,k,3]| (7.6)

It is believed that this is the first time that this relationship has been described.

7.2.4 Expanded Varshamov-Tenengolts Codes

Consider the combination of a Varshamov-Tenengolts code with a repetition code

where the f -fold expansion of any codeword repeats each original bit f times. Describ-

ing each bit of an expanded codeword with respect to its source bit and its repetition

number, we have Figure 7.3.

If f = 3, the V T0(6) codeword
(

101101

)
, with ∑

6
i=1 ixi = 1+3+4+6 = 14 = 0 (mod 7),

becomes the V T 3
0 (6) codeword

(
111000111111000111

)
. The bit originally in position 4,

x4 would be repeated in positions 10, 11 and 12 in the expanded codeword and would
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x1,x2, ...xi, ...xn

︷ ︸︸ ︷
x11,x12, ...,x1 f ,

︷ ︸︸ ︷
x21,x22, ...,x2 f , ...

︷ ︸︸ ︷
xi1,xi2, ...,xi f

frepeats
, ...
︷ ︸︸ ︷
xn1,xn2,xn f

Figure 7.3: Expansion of a Varshamov-Tenengolts codeword

give a contribution of 10x4 + 11x4 + 12x4 to the sum of products. For any original bit

xi, the triplicated bits will now reside in positions 3i− 2,3i− 1 and 3i. In general, for f

repeats, the repeated bits will be in positions f (i− 1)i+ 1, f (i− 1)i+ 2, ... f (i− 1)i+ f .

Overall, the sum of the products would become:

∑
n
i=1 ∑

f
j=1 ixi j = (x1 +2x1 + ...+ f x1) +

(( f +1)x2 +( f +2)x2 + ...+2 f x2)+
...
( f (i−1)+1)xi)+( f (i−1)+2)xi + ...+( f (i−1)+ f )xi+
...
( f (n−1)+1)xn +( f (n−1)+2)xn + ...+n f xn

So the f terms that originated from the i′th bit yield a contribution of:

(( f (i−1)+1)+( f (i−1)+2)+ ...( f (i−1)+ f ))xi

= ( f f (i−1)+Σ
f
i=1i)xi

= f f (i−1)+ f
2 ( f +1))xi

= f ( f i− 1
2( f −1))xi

Which will always give an integer value of xi since f ( f −1) is always even. For example,

with triplication, the contribution from the expansion of the original fourth term of a

V T 3
0 (6) codeword would be 3(3×4− 1

2(3−1))x4 = 3(12−1)x4 = 33x4 as previously noted.

Over all terms for an expanded VT code with i original bits, xi , and f -fold expansion,

this gives a sum of
n

∑
i=1

f

∑
j=1

ixi j =
n

∑
i=1

f ( f i− 1
2
( f −1))xi (7.7)

So for the V T 3
0 (6) codeword,

(
101101

)
, we get

However 114 6= 0 (mod7), so expanded V T codewords do not retain this property of the
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∑
n
i=1 ∑

f
j=1 ixi j = 3(3×1− 1

2(3−1)) · · ·1)+3(3×2− 1
2(3−1)) · · ·0)+

3(3×3− 1
2(3−1)) · · ·1)+3(3×4− 1

2(3−1)) · · ·1)+
3(3×5− 1

2(3−1)) · · ·0)+3(3×6− 1
2(3−1)) · · ·1)

= 6+0+24+33+0+51
= 114

primary V T codes. Despite this, an f -fold expansion of a V T0(n) code is resilient to

multiple deletions, inheriting a combination of the V T code’s ability to tolerate deletions

and a repetition code’s ability to increase its resistance to defects.

Landjev & Haralambiev (2007) proved that if C is a t-deletion correcting code of length

n, then the expanded code:

C f = {(x1...x1︸ ︷︷ ︸
f

,x2...x2︸ ︷︷ ︸
f

, ...xn...xn︸ ︷︷ ︸
f

)|(x1,x2, ...xn) ∈C} (7.8)

is a code of length f n correcting f t + f −1 deletions.

So single-deletion correcting V T codes that have undergone f -fold expansion are ca-

pable of correcting 2 f − 1 deletions e.g. a V T 2
0 (n) code can correct 3 deletions. For

example, the V T0(4) code has the codewords ( 0 0 0 0 ), ( 1 0 0 1 ), ( 0 1 1 0 ), and ( 1

1 1 1 ). With 2-fold expansion, the V T 2
0 (4) codewords become those in Table 7.6.

Binary Denary
( 0 0 0 0 0 0 0 0 ) 0
( 1 1 0 0 0 0 1 1 ) 195
( 0 0 1 1 1 1 0 0 ) 60
( 1 1 1 1 1 1 1 1 ) 255

Table 7.6: 2-fold expansion of Varshamov-Tenengolts V T0(4)

When single, double and triple deletions are applied to each of these codewords, the

7, 6 and 5-bit codeword stubs (in denary) in Table 7.7, Table 7.8 and Table 7.9 are

obtained respectively:

In each of the tables, each stub is unique to a single codeword. There are no am-

biguities about the origin of the codeword stub. As discussed in subsection 7.2.2, if

there is no ambiguity in the source of the codeword stub, then it possible to correctly
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Codeword Single deletion codeword stubs
0 0
195 97,99,67
60 30, 28, 60
255 127

Table 7.7: Single deletion codeword stubs for V T 2
0 (4)

Codeword Twin deletion codeword stubs
0 0
195 48, 49, 33, 51, 35, 3
60 15, 14, 30, 12, 28, 60
255 63

Table 7.8: Twin deletion codeword stubs for V T 2
0 (4)

Codeword Triple deletion codeword stubs
0 0
195 24, 16, 25, 17, 1, 27, 19, 3
60 7, 15, 6, 14, 30, 4, 12, 28
255 31

Table 7.9: Triple deletion codeword stubs for V T 2
0 (4)

‘correct’ the received stub to the transmitted codeword, enabling an equivocation of

zero, provided pe = 0. Thus the expansion of Varshamov-Tenengolts codes enables

the construction of codes that are resistant to multiple deletions. It’s worth noting that

whilst individual codeword lengths may be quite long, the number of codewords can be

optimized for the intended use.

To construct a ‘simple’ multi-deletion tolerant code, the algorithm below could be used:

• Identify the number of information bits b to be transmitted

• Identify the level of deletion correction required e.g. to correct 5 deletions requires

2 f −1 = 5, or f = 3.

• Select a suitable Varshamov-Tenengolts code where |V T0(n)|> 2b

• Generate the f -fold expanded VT code, V T f
0 (n) from the original VT code

For example, a code that could transmit 11 information bits and be resistant to 2 dele-
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tions would require a V T code of length 15 to be expanded 2-fold, giving 2048 code-

words each of length 30. Unfortunately, it was considered impractical to write software

to calculate the equivocation of these expanded V T codes as even this simple V T 2
0 (15)

code would be moving beyond the processing capabilities available to the author.

7.2.5 Results

As with other scenarios investigated, the program was written to calculate the equivo-

cation of the code on the ID+BSC for a range of probabilities 0≤ pe ≤ 0.5 with step size

0.01. The equivocation was found for a range of codes, up to the time-bounded practi-

cal limits of the algorithm. For the BKLC [19,10,5], a run-time of approximately 2 days

was required. Results for some codes of length less than 16 are shown in Figure 7.4

and for codes of length 16≤ n≤ 19 in Figure 7.5.

Many of the curves follow a similar pattern. One of the largest differences lies between

those codes whose equivocation is zero when pe = 0 and those with non-zero values.

If a code has a non-zero equivocation value when pe = 0, then it is unable to cope

with a single deletion even before the possibility of additional errors from the BSC is

considered. Codes that cannot cope with a single deletion are of less interest and use

than those that can tolerate a deletion. In all cases examined, the only crossover points

occurred when comparing against a code with a non-zero equivocation. No crossover

points between different codes of interest were identified.

Of the codes evaluated initially, only BKLC [12,4,6], BKLC [15,5,7], BKLC [16,5,8] and

the manually constructed code [17,9] code had normalised equivocation values of less

than the nominal value 0.01 when pe = 0, as shown in Table 7.10. The alternative [17,9]

code had been designed as an attempt to reduce the impact of ambiguous codeword

stubs, whilst enabling comparison with BKLC [17,9,5].

7.2.6 Comparison of Equivocation for Erasures and Deletions

Since a deletion might be considered as an erasure that can occur in any position, it

might appear tempting to compare their respective graphs of equivocation with era-
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Figure 7.4: Equivocation of different codes of length 15 or less on the ID+BSC

Figure 7.5: Equivocation of different codes of length 16≤ n≤ 19 on the ID+BSC

sures and deletions. For example, the equivocation of erasures on the BSC for BKLC

[8,2,5] in Figure 6.4 could perhaps be compared to the equivocation of a deletion on

the BSC for the same code, shown in Figure 7.4. Such a comparison is shown in Fig-
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Code Normalized equivocation HN(X |Y )
Hamming [7,4,3] 0.1139

BKLC [8,2,5] 0.2845
BKLC [10,4,4] 0.0195
BKLC [12,4,6] 0.0078
BKLC [13,7,4] 0.0146
BKLC [15,7,7] 0.0039

Hamming [15,11,3] 0.0458
BKLC [16,5,8] 0.0000
BKLC [17,9,5] 0.0228
BKLC [18,9,6] 0.0239
BKLC [19,7,8] 0.0124

Table 7.10: Normalized equivocation values for ID+BSC when pe = 0

ure 7.6. Consideration could be given as to whether the equivocation for a deletion

might form some type of upper bound for increasing numbers of erasures. However

it is not appropriate to make such a comparison. The underlying mechanisms behind

how intentional erasures and intentional deletions on the BSC are handled and how the

equivocation is calculated are significantly different because of the unknown location

of the deletions. With deletions, decisions must be made about how to decode each

punctured codeword, even though there may be ambiguities in that decision process

when working with codes not specifically designed for handling deletions. Due to the

different error correction and deletion correction properties of the code, the equivoca-

tion curve for a BKLC with single erasure starts at zero but the curve for a deletion may

not. With deletions, entropic contributions for each input/output combination are cal-

culated based on a maximum likelihood decoding that compares received sequences

with valid codewords and must take into account the level of confidence in the received

symbols. Furthermore, even if some form of relationship between i erasures and i

deletions could be established, the practical challenges of calculating the equivocation

for multiple deletions made it impractical to investigate during this research.

7.2.7 Equivocation of Varshamov-Tenengolts Codes

When equivocation values are calculated for Varshamov-Tenengolts codes on the ID+BSC,

shown in Figure 7.7, a significantly different picture emerges than that for BKLCs. By
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Figure 7.6: Comparison of a single deletion and multiple erasures for BKLC[8,2,5]

design, all V T codes offer an equivocation of zero when pe = 0, however the graphs for

the more ‘purpose-built’ VT codes also exhibit far less variation in their shape, with a

gradient that decreases as pe increases. For several BKLCs such as BKLC [16,5,8],

the gradient initially increases before reaching a point of inflexion and then decreasing.

All graphs are monotonic i.e. if pe1 < pe2 then Hpe1
(X |Y )< Hpe2

(X |Y ).

For the V T0(12) code, if the intended recipient had a BSC error probability pe of 0.01,

they would be liable for a normalised equivocation value of 0.084 whereas if the eaves-

dropper had a pe = 0.1, they would be liable to a value nearly six times greater of 0.485.

A simple comparison in Figure 7.8 of the V T0(17) code with the BKLC [17,9,5] and a

code of length n = 17, manually constructed to reduce the risk of ambiguities between

stubs when a bit is deleted, shows that the Varshamov-Tenengolts code provides an

equivocation of zero when pe = 0 but it also provides significantly higher equivocation

values for all other BSC error probabilities.

When code expansion is introduced on top of intentional deletions on the BSC for

Varshamov-Tenengolts codes, the results in Figure 7.9 are obtained.
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Figure 7.7: Equivocation of Varshamov-Tenengolts codes on ID+BSC

Figure 7.8: Comparison for Varshamov-Tenengolts, manually constructed and BKLCs
of length 17 on ID+BSC

The temptation to compare the BSC+ID equivocation of BKLCs of length n and V T0(n)

codes is not necessarily a constructive one, as the BKLC code may not provide re-
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Figure 7.9: Equivocation of Varshamov-Tenengolts codes on ID+BSC with 2, 4 and
10-fold code expansion

silience against a single deletion. However it is worth comparing a V T0 code that can

carry k bits of information with a BKLC with message length k that offers resistance

to a deletion when pe = 0. For example, consider V T0(7) which has 16 codewords,

can transmit 4 information bits and is resilient to 1 deletion. This can be compared to

BKLCs with k = 4 (and which therefore also can transmit 4 information bits) of increas-

ing codeword length n.

A graph of the equivocation of BKLCs on the ID+BSC as n increases is shown in

Figure 7.10. Closer examination of the equivocation values when pe = 0 for each code

gives us Table 7.11.

Unlike the Varshamov Tenengolts codes (and specifically the V T0(7) code), whose

codewords always yield unambiguous codeword stubs and an equivocation of zero

when pe = 0, BKLCs with k = 4 (and therefore 16 codewords) do not achieve an equiv-

ocation of zero until a code length of at least n = 14 is reached. A comparison of the

V T0(7) codes with BKLCs that have k = 4 and an equivocation of zero when pe = 0 is in

Figure 7.11.
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Figure 7.10: Equivocation of BKLCs with k = 4 on ID+BSC

Code Normalized equivocation HN(X |Y )
Hamming [7,4,3] 0.113883

BKLC [8,4,4] 0.060068
BKLC [9,4,4] 0.024306
BKLC [10,4,4] 0.019516
BKLC [11,4,5] 0.017421
BKLC [12,4,6] 0.007813
BKLC [13,4,6] 0.024038
BKLC [14,4,7] 0.000000
BKLC [15,4,8] 0.000000
BKLC [16,4,8] 0.000000

Table 7.11: Normalized equivocation values for ID+BSC for BKLCs, k = 4 when pe = 0

The V T0(7) code achieves its designed aim of providing effective tolerance of deletions

far more efficiently, with codewords half the length needed for a BKLC. In addition,

V T0(7) also yields higher equivocation values than any of the BKLCs that manage to

offer an equivocation of zero when pe = 0.

7.2.8 Chapter Conclusions

• In subsection 7.2.2, it was seen that Best Known Linear Codes that are selected

to maximise the minimum distance for any given value of n and k are not nec-
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Figure 7.11: Comparison of V T0(7) with BKLCs with k = 4 on ID+BSC

essarily good codes for using when deletions are involved. Neither the "perfect"

Hamming[7,4,3] nor Hamming[15,11,3] cannot reliably correct even a single dele-

tion on ID+BSC to give an equivocation of 0 when pe = 0.

• Codes that cannot correct a single intentional deletion always retain some am-

biguity in their decoding method and do not give an equivocation of zero when

pe=0. They are therefore are of little practical use on the ID+BSC.

• subsection 7.2.3 showed that Varshamov-Tenengolts V T0(n) codes provide a set

of codes that eliminate ambiguities between codewords stubs when a single dele-

tion in involved. V T0(n) codes offered higher levels of equivocation than the reli-

ably correcting BKLCs examined on the ID+BSC. For example, for pe = 0.1, the 3

BKLC codes in Figure 7.11 (in which all codes convey 4 bits of information) had

normalized equivocation values of 0.093, 0.109 and 0.132, compared to V T0(7)

which had a much higher value of 0.479.

• Varshamov-Tenengolts codes can generally offer the ability to correct a deletion

for a higher code rate (R = k/n) and lower redundancy than a BKLC that carries

164



7.2. EQUIVOCATION OF A BINARY SYMMETRIC CHANNEL WITH INTENTIONAL
DELETIONS (ID+BSC)

the same amount of information. Again for the codes in Figure 7.11, the BKLCs

had code rates of 0.286 (4/14), 0.2667 (4/15) and 0.25 (4/16) whereas V T0(7)

had the much more efficient code rate of 0.571 (4/7).

• In subsection 7.2.4, it was shown that codes to correct any number of deletions

can be designed, based on Varshamov-Tenengolts code, despite the modified

codes no longer satisfying ∑
n
i=1 ixi ≡ a(mod(n+ 1)). For example, the 2-fold ex-

panded Varshamov-Tenengolts code, V T 2
0 (4), is resistant to 3 deletions.

• If m≥ 2, n = 2m−1, k = n−m, then |V T0(n)|= |Ham[n,k,3]|
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Chapter 8

Conclusion

This doctoral work has enabled an investigation of the equivocation properties of many

different types of code and transmission channel. It was partially achieved through the

use of a novel mechanism for calculating the equivocation - parallel processing via the

CUDA architecture. Key points developed within the work include:

• In subsection 5.3.2, it was seen that parallel processing can be effectively im-

plemented on a general purpose computer using the Nvidia CUDA architecture.

Developing the code to implement the parallel processed component of the pro-

gram was both time consuming and challenging but enabled the generation of

results for longer codes. ı

• Parallel processing can provide significant improvements in calculation times for

intensive calculations. The best improvements obtained gave calculation results

up to 35 times more quickly with parallel processing than with linear processing.

• Parallel processing code must be carefully implemented in order to optimise its

efficiency for the actual task. In particular careful memory management is nec-

essary to enable the GPU to continue operate its core duties effectively whilst

simultaneously carrying out the parallel processed component of the calculation.

• Section 5.4 shows that normalised equivocation values can be used to compare

the relative secrecies of codes, enabling codes with higher inherent levels of se-

crecy to be selected if required, although the other properties of the codes, such

as the error correcting capability must also be borne in mind. For example, from
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Figure 5.3, when operating with a BSC error probability of 0.05, Golay[23,12,7]

has a normalised equivocation of 0.033, whereas Hamming[31,26,3] has a value

of 0.221, nearly 7 times higher. Based on the codes’ normalised equivocation val-

ues for that error probability, the Hamming code offers a higher level of secrecy

than the Golay[23,12,7] code despite having a lesser error correcting capability.

• For the codes examined from the Hamming code family, longer codes tended to

have higher normalised equivocation values than the shorter codes. For exam-

ple, with pe = 0.05, the normalised equivocation of Hamming[7,4,3] is 0.101 com-

pared to 0.157 for Hamming[15,11,3] and 0.221 for Hamming[31,26,3]. However,

the complexity of the calculations to find equivocation values for longer codes

meant that it wasn’t possible to verify this for longer Hamming codes such as

Hamming[63,57,3] or Hamming[127,120,3]. Further work is required to establish

if the pattern holds for either longer Hamming codes or for other families of code.

• Largest differences in code equivocation values were often found in the more

central range of the error probabilities, for the codes investigated (especially for

expanded codes). This can be seen by identifying the steepest part of the curve

in any of the normalised equivocation graphs from Figure 5.3 to Figure 5.13.

• For the codes examined, differences in normalised equivocation values between

codes decrease as code lengths increase. For example, in Figure 5.6 with longer

length BKLCs, the similarity in value of all 7 functions can be seen quite clearly,

whereas the differences between the shorter codes in Figure 5.3 are signficantly

more marked.

• In Section 5.5, it was shown that by expanding a simple code through the use

of random data and parity check bits, much greater levels of secrecy can be

achieved in some cases. For example, with a BSC error probability pe = 0.05, a

10-fold expansion of the Hamming[7,4,3] code gives a normalised equivocation

level of 0.897, compared to 0.101 for the non-expanded code. However, there is

a trade-off between achieving the desired level of secrecy by expanding a sim-
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ple code and the significant increase in the number of bits of data that need to be

transmitted in order to achieve it. A 10-fold code expansion of the Hamming[7,4,3]

code may enable very high levels of equivocation but would require the transmis-

sion of 70 bits of data to send a 4-bit message.

• One of the aims of the work was not to design codes with improved error-correcting

capabilities but to identify codes that either a) give a higher equivocation value

and level of secrecy than other similar or related codes or b) enable a large dif-

ferential in equivocation level to be established between the legitimate recipient

and the eavesdropper. By expanding random codes, higher equivocation values

can be achieved than for more structured but non-expanded codes. For example,

with a BSC error probability pe = 0.05, a 4-fold expansion of a random [23,12]

code gives a normalised equivocation of 0.597, compared to a non-expanded

Golay[23,12,7] value of 0.033. However, although the inherent randomness of the

codes increased equivocation levels, this is of little benefit given that the codes

offer no error correcting capability.

• The expansion of a code can offer higher normalised equivocation values than

a code with a similar net code rate. For example, consider the Hamming[7,4,3]

code with 2-fold expansion and the BKLC[14,4,7] code. Both effectively require

14 bits to transmit 4 bits worth of message data, however for a BSC error proba-

bility of pe = 0.05, the 2-fold expanded Hamming code gives a normalised equiv-

ocation of 0.259, while the non-expanded Hamming code gave a value of 0.101

and the BKLC[14,4,7] only gives a value of 0.038.

• Increases in equivocation from the introduction of intentional erasures on the

BSC are significant, but not as great as those increases shown by the use of

code expansions. For example, from Figure 6.7 in subsection 6.2.2, for the

Golay[23,12,7] code with pe = 0.05, 6 erasures give a normalised equivocation

of 0.178 while 4-fold expansion gives a much higher value of 0.540.

• Some increases in the number of bits erased on the IE+BSC do not necessarily
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lead to an increase in equivocation. This was seen with BKLC[8,2,5], where the

increase from 3 to 4 erasures did not change the equivocation. This was because

the increase in erasures didn’t change the ability of the code to use the available

syndrome patterns for the detection or correction of either errors or erasures.

• The controlled introduction of erasures to a BSC can potentially lead to a greater

increase in equivocation for an eavesdropper than it does for the legitimate re-

ceiver. The introduction of 2 erasures to the Golay[23,12,7] code on the IE+BSC

gave an increase in normalised equivocation of 0.00132 for the legitimate re-

ceiver with pe = 0.05 but a much larger increase of 0.08898 for an eavesdropper

with pe = 0.1.

• A comparison between code expansions and erasures can show situations where,

for a particular error probability, there is a changeover point in which method pro-

duces the higher equivocation values. It was seen that for Golay [23,12,7] with

pe < 0.05, 6 erasures gave a higher equivocation value, whereas for pe > 0.05,

2-fold code expansion gave higher values.

• On the BEC in Section 6.3, even codes with similar properties or similar lengths

can have wildly different equivocation characteristics. Figure 6.13 shows that with

ps = 0.2, BKLC[15,10,4] had a normalised equivocation of just 0.0733, whereas

BKLC[15,12,2] had a value of 0.3581.

• The correction and decoding mechansim used for the BEC in subsection 6.3.2

caused a reduction in the possible outcomes and a decreasing output entropy as

the probability of an erasure increased. As ps→ 1, H(Y )→ 0. In extremis, when

all bits are erased, it becomes a certainty that the zero codeword will be selected

as the decode.

• In subsection 7.2.2, it was seen that Best Known Linear Codes that are selected

to maximise the minimum distance for any given value of n and k are not nec-

essarily good codes for using when deletions are involved. Neither the "perfect"
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8.1. DISCUSSION

Hamming[7,4,3] nor Hamming[15,11,3] cannot reliably correct even a single dele-

tion on ID+BSC to give an equivocation of 0 when pe = 0.

• Codes that cannot correct a single intentional deletion always retain some am-

biguity in their decoding method and do not give an equivocation of zero when

pe=0. They are therefore are of little practical use on the ID+BSC.

• subsection 7.2.3 showed that Varshamov-Tenengolts V T0(n) codes provide a set

of codes that eliminate ambiguities between codewords stubs when a single dele-

tion in involved. V T0(n) codes offered higher levels of equivocation than the reli-

ably correcting BKLCs examined on the ID+BSC. For example, for pe = 0.1, the 3

BKLC codes in Figure 7.11 (in which all codes convey 4 bits of information) had

normalized equivocation values of 0.093, 0.109 and 0.132, compared to V T0(7)

which had a much higher value of 0.479.

• Varshamov-Tenengolts codes can generally offer the ability to correct a deletion

for a higher code rate (R = k/n) and lower redundancy than a BKLC that carries

the same amount of information. Again for the codes in Figure 7.11, the BKLCs

had code rates of 0.286 (4/14), 0.2667 (4/15) and 0.25 (4/16) whereas V T0(7)

had the much more efficient code rate of 0.571 (4/7).

• In subsection 7.2.4, it was shown that codes to correct any number of deletions

can be designed, based on Varshamov-Tenengolts code, despite the modified

codes no longer satisfying

∑
n
i=1 ixi≡ a(mod(n+1)). For example, the 2-fold expanded Varshamov-Tenengolts

code, V T 2
0 (4), is resistant to 3 deletions.

• If m≥ 2, n = 2m−1, k = n−m, then |V T0(n)|= |Ham[n,k,3]|.

8.1 Discussion

This programme of Ph.D. study was started immediately following successful comple-

tion of an Open University degree in computing and with a historical background of a

170



8.1. DISCUSSION

pass degree in mathematics some 20 years previously. The key skills required during

the period of research included:

• the development of an understanding of the broader aspects of coding theory

• a specific understanding of equivocation

• sufficient ability to program software solutions for calculating equivocation

• the perseverance to work through the many issues encountered along the way.

The material covered during the OU computing degree formed a broad introduction

to some aspects of coding theory such as the error-correcting capabilities of Hamming

codes, however this was in very little detail, except to have been sufficient to encourage

the author to make further steps into the field. Before the PhD. was started, the author

had no knowledge of equivocation.

Similarly, some work on C++ and object-oriented programming in Java had been com-

pleted during the OU degree programme. However as the doctorate work progressed,

it became increasingly apparent how much there was to learn in order to construct pro-

grams that provided solutions to the necessary calculations in anything approaching a

time-effective manner.

Consequently, a huge amount of time and effort has been expended on bringing these

skills to a higher standard. It is particularly interesting to look back through the vari-

ous iterations of the programs produced to see how the programming methods have

changed and improved en route.

As examples,

• NTL library. At the outset, significant time was spent learning how to work with

Shoup’s C++ Number Theory Library (NTL). The aim of this was to enable op-

eration with very large numbers through mechanisms such as the ZZ class for

arbitrary length integers, GF2 for integers mod 2 and the GF2X class for poly-
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nomicals over GF2. The manipulation of these classes and passing of values

between them took a long time to become used to.

Unfortunately, as the research progressed and became more focussed towards

the calculation of equivocation on different channel arrangements, it became ap-

parent that the ability to handle large, long numbers was far less important than

the ability to handle smaller numbers very quickly. Eventually use of the NTL

library was dropped in favour of simpler mechanisms that were felt to handle

smaller codes more efficiently for the task. As an example in the first, linear ver-

sion of the program to calculate equivocation on the BSC, the function below was

used to generate the next binary number:

vec_GF2 getNextBin(vec_GF2 vecA)

{

carry = 1;

posn = k -1;

vecA[posn] += 1;

while ( (carry == 1) && (posn > 0) )

{

if (vecA[posn] == 0)

{

carry = 1;

}

else

carry = 0;

vecA[posn-1] += carry;

posn–;

}

return vecA;

}
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However, once the change away from using NTL had been made in favour of

using bitwise manipulation of numbers stored as integers, this reduced back to

the triviality of a numerical increment:

num++;

• Bit-shifting. For a large proportion of the study period, n-bit binary numbers were

first handled using the vector and then using pointers with either the int or

long number types to hold each single bit. Eventually this approach was dropped

and the whole n-bit number was stored as a single int or long. This was then

manipulated using left- and right- bit-shifting to multiply and divide by powers of

2 and the logical operations & (AND), | (OR) and ˆ(XOR) to enable functions

such as matrix multiplication. Not only did this significantly reduce the amount

of memory needed to store the variables, but it also significantly increased the

speed of calculation and hence the length of codes for which the equivocation

could be found. An example of this approach to coding has already been seen in

Figure 7.2 on page 151.

• Balance between speed (calculation time) and memory. The calculations

done during the research were very intensive, increasing exponentially with the

length of both the message and the codeword. This constantly pushed at the

boundaries of what a ‘standard’ computer was able to achieve, both in terms of

the processing speed and capability and the memory requirements. For a calcu-

lation to run quickly, there was often a need to store volumes of data beyond the

capacity of the computer, so compromises had to be found for each calculation.

• CUDA architecture. The use of Nvidia’s CUDA architecture was viewed as a

viable mechanism for reducing calculation times. By employing the graphics card

for parallel processing the most repetitive components of calculations, significant

time savings were able to be obtained, fulfilling the primary purpose of CUDA.

This was seen in Table 5.8 where parallel processed times were up to 35 times
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quicker than those for linear processing.

However implementing the software within the CUDA architecture came at a very

great time cost to the research programme. Where a working linear version of a

program could be written increasingly quickly, converting this across to work as a

parallel processed equivalent with CUDA took considerable time and effort. The

first working, parallel-processed version of the program to calculate equivocation

on the BSC took several months to complete. CUDA kernels have their own

instruction set and do not easily permit the use of external libraries. The use

of NTL within the CUDA environment was never able to be resolved and was

another major reason for discontinuing the use of NTL. These time penalties in

learning such programming techniques and pitfalls had a massive, dominating

impact on the overall amount of visible outputs from this research project.

• GPU limitations. The CUDA architecture is specifically designed to enable the

use of a Nvidia GPU within a standard computer to perform parallel calculations.

However in practice, this was found to present significant problems.

– Usability. When running an intensive CUDA program, most of the unit’s

processing capability is given over to the calculation. This leads the dis-

play(s) to react and refresh much more slowly and all responses to inputs

such as mouse movement and keyboard input are severely delayed. This

usually rendered the computer unusable for any other tasks whilst the CUDA

program was running. If the program was on an extended run (e.g. the cal-

culation of equivocation on the ID+BSC for BKLC [19,7,8] for 50 probabilities

in 0.01 intervals took in excess of 36 hours), then no other work could be

done on the computer during that time.

– Stability. The extensive but necessary use of memory to store mid-calculation

values and the intensive use of the GPU led to severe stability issues for the

computer. The computer would often ‘hang’ and become completely unus-

able. Any changes to the physical set-up of the computer e.g. (un)plugging

174



8.2. FURTHER AREAS OF STUDY

a second monitor would usually trigger an instability. Re-starting would not

necessarily clear the issues and caused immense frustration and loss of

study time. When the computer was working correctly, it was generally left

powered on and running for days or weeks at a time to minimize any risks

from changes. Whilst it was believed that most of the issues emanated

from the atypical use of the GPU and heavy use of memory, no satisfactory

memory management solutions were found. Once the majority of the par-

allel processing phase of the work had been completed, the (Ubuntu 14.04

LTS) computer gradually re-acquired good stability.

8.2 Further areas of Study

In summary, the field has proven an interesting one to study as a Ph.D student and one

that would bear significant further study. There was relatively little research to draw on

regarding the actual evaluation of equivocation for different channels, especially when

extending to the Binary Erasure and Binary Deletion Channels. This doctoral work has

opened up numerous possible avenues for further research.

1. Investigation of other decoding strategies that yield a decreasing output entropy

H(Y ) as encountered in Section 6.3.

2. Extension of the work in Chapter 7 to include multiple deletions.

3. Further examination of the equivocation properties of Varshamov-Tenengolts codes.

Whilst VT codes work very well for single-deletion situations, processing limita-

tions prevented the actual calculation of equivocation values for multi-deletion

resistant codes. It would be interesting to pursue this further.

4. Calculation of equivocation on other channels, including the Binary Deletion Chan-

nel (BDC) and Binary Symmetric Erasure Channel (BSEC). These two channels

would form a very natural extension to the work already covered and have al-

ready been discussed to some extent. It is anticipated that calculations for the

BSEC would require little additional modification of existing software and would
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yield results for similar length codes to those already obtained. However, al-

though addressing the BDC would require few modifications to existing software

solutions, the additional complexity that deletions bring in comparison to erasures

would only make it possible to obtain results for quite short codes. In addition to

the channels already discussed, other channels might be considered such as the

Additive White Gaussian Noise (AWGN) channel or Fading channels. The AWGN

channel is a model that mimics the impact of noise due to natural processes by

adding further noise to the intrinsic noise of an existing information system. Gaus-

sian noise is normally distributied with respect to time and White noise possesses

a uniform power level across the frequency band of the system. The AWGN chan-

nel models satellite and other space-based communication links well but less so

for terrestrial environments, due to other factors such as interference and multi-

path propagation. Fading channels model the degradation of signal quality over

large distances, even without significant AWGN. Fading is more likely to be due to

terrestrial influences such as multipath propagation, terrain/geography, weather

phenomena etc. It is considered that the existing methods developed during this

thesis would not transfer well to either the AWGN channel or Fading channels

without a substantially revised approach to the calculation of conditional proba-

bilities and equivocation values.

5. Development of further techniques to reduce calculation run-times and thereby

enable calculation of equivocation for longer codes The software solutions used

in this work have been shown to be effective at directly calculating equivocation

values that enable comparisons to be made between different codes, but only

for codes of length n ≤ 40. Whilst further channels arrangements could be con-

sidered, the primary way of extending the calculation to longer codes would be

via more efficient programming and by bringing greater processing capability to

bear on the problem. Those increases might come from the methods suggested

in subsection 5.4.2, however it is likely that they would only bring a few extra bits

of code length, since each extra bit of code length will approximately double the
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necessary processing.

6. Calculation of equivocation for other types of code. The codes examinded in

this thesis were mostly either perfect codes or best known linear codes, although

the work was extended to Varshamov-Tenengolts codes in order to better cope

with intentional deletions on the BSC. Extensions that might be considered would

be to look at Hadamard codes, Reed-Muller codes or Low Density Parity Check

(LDPC) codes. As relatively straightforward binary linear codes with definable

generator matrices and that are used for error detection and correction, both

Hadamard and Reed-Muller codes would make good candidates for further in-

vestigation using the methods employed in this work. However, LDPC codes

usually have very much larger parity check matrices (PCMs), in the order of hun-

dreds, if not thousands, of both columns and rows. It is considered unlikely that

the methods used here would be able to be extended to cope with PCMs on that

scale. Similarly, Turbo Codes, which are high-performing codes that approach the

channel capacity, rely on an iterative feedback process to correct errors during

decoding. The additional complexity brought by the compounding of calculations

caused by the feedback process would again probably render the methods used

as inadequate for calculating the equivocation of turbo codes.
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Appendix A

5-Bit Error Vectors in Weight Order

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1
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Appendix B

BKLC[8,2,5] Decode Probabilities and Joint

Entropy Contributions

Transmitted codeword x1 =

(
0 0 0 1 1 1 1 1

)
, ps = 0.01

Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

No erasures

00011111 00011111 0.9227 0.2307 0.4881

1 erasure

0001111? 00011111 0.0093 0.0023 0.0203

000111?1 00011111 0.0093 0.0023 0.0203

00011?11 00011111 0.0093 0.0023 0.0203

0001?111 00011111 0.0093 0.0023 0.0203

000?1111 00011111 0.0093 0.0023 0.0203

00?11111 00011111 0.0093 0.0023 0.0203

0?011111 00011111 0.0093 0.0023 0.0203

?0011111 00011111 0.0093 0.0023 0.0203

2 erasures

000111?? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00011?1? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00011??1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0001?11? 00011111 9.4148E-05 2.3537E-05 3.6187E-04
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

0001?1?1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0001??11 00011111 9.4148E-05 2.3537E-05 3.6187E-04

000?111? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

000?11?1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

000?1?11 00011111 9.4148E-05 2.3537E-05 3.6187E-04

000??111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00?1111? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00?111?1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00?11?11 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00?1?111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

00??1111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0?01111? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0?0111?1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0?011?11 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0?01?111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0?0?1111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

0??11111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?001111? 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?00111?1 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?0011?11 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?001?111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?00?1111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

?0?11111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

??011111 00011111 9.4148E-05 2.3537E-05 3.6187E-04

3 erasures

00011??? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0001?1?? 00011111 9.5099E-07 2.3774E-07 5.2314E-006
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

0001??1? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0001???1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000?11?? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000?1?1? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000?1??1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000??11? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000??1?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

000???11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?111?? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?11?1? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?11??1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?1?11? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?1?1?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00?1??11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00??111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00??11?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00??1?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

00???111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?0111?? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?011?1? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?011??1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?01?11? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?01?1?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?01??11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?0?111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?0?11?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0?0?1?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

0?0??111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0??1111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0??111?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0??11?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0??1?111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

0???1111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?00111?? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0011?1? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0011??1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?001?11? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?001?1?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?001??11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?00?111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?00?11?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?00?1?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?00??111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0?1111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0?111?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0?11?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0?1?111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

?0??1111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

??01111? 00011111 9.5099E-07 2.3774E-07 5.2314E-006

??0111?1 00011111 9.5099E-07 2.3774E-07 5.2314E-006

??011?11 00011111 9.5099E-07 2.3774E-07 5.2314E-006

??01?111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

??0?1111 00011111 9.5099E-07 2.3774E-07 5.2314E-006

???11111 00011111 9.5099E-07 2.3774E-07 5.2314E-006
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

4 erasures

0001???? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

000?1??? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

000??1?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

000???1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

000????1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00?11??? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00?1?1?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00?1??1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00?1???1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00??11?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00??1?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00??1??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00???11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00???1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

00????11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?011??? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?01?1?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?01??1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?01???1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0?11?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0?1?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0?1??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0??11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0??1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0?0???11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

000111?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

0??11?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0??11??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0??1?11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0??1?1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0??1??11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0???111? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0???11?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0???1?11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

0????111 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0011??? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?001?1?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?001??1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?001???1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00?11?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00?1?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00?1??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00??11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00??1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?00???11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?111?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?11?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?11??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?1?11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?1?1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0?1??11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0??111? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0??11?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

?0??1?11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

?0???111 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??0111?? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??011?1? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??011??1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??01?11? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??01?1?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??01??11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??0?111? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??0?11?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??0?1?11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

??0??111 00011111 9.6060E-009 2.4015E-009 6.8763E-008

???1111? 00011111 9.6060E-009 2.4015E-009 6.8763E-008

???111?1 00011111 9.6060E-009 2.4015E-009 6.8763E-008

???11?11 00011111 9.6060E-009 2.4015E-009 6.8763E-008

???1?111 00011111 9.6060E-009 2.4015E-009 6.8763E-008

????1111 00011111 9.6060E-009 2.4015E-009 6.8763E-008

5 erasures

000????? 00000000 9.7030E-011 2.4257E-011 8.5539E-010

00?1???? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

00??1??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

00???1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

00????1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

00?????1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0?01???? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0?0?1??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0?0??1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

0?0???1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0?0????1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0??11??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0??1?1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0??1??1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0??1???1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0???11?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0???1?1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0???1??1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0????11? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0????1?1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

0?????11 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?001???? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?00?1??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?00??1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?00???1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?00????1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0?11??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0?1?1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0?1??1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0?1???1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0??11?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0???11? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0???1?1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?0????11 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??011??? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??01?1?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

??01??1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??01???1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0?11?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0?1?1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0?1??1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0??11? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0??1?1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

??0???11 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???111?? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???11?1? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???11??1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???1?11? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???1?1?1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

???1??11 00011111 9.7030E-011 2.4257E-011 8.5539E-010

????111? 00011111 9.7030E-011 2.4257E-011 8.5539E-010

????11?1 00011111 9.7030E-011 2.4257E-011 8.5539E-010

????1?11 00011111 9.7030E-011 2.4257E-011 8.5539E-010

?????111 00011111 9.7030E-011 2.4257E-011 8.5539E-010

6 erasures

00?????? 00000000 9.801E-013 2.4503E-013 1.0265E-011

0?0????? 00000000 9.801E-013 2.4503E-013 1.0265E-011

0??1???? 00011111 9.801E-013 2.4503E-013 1.0265E-011

0???1??? 00011111 9.801E-013 2.4503E-013 1.0265E-011

0????1?? 00011111 9.801E-013 2.4503E-013 1.0265E-011

0?????1? 00011111 9.801E-013 2.4503E-013 1.0265E-011

0??????1 00011111 9.801E-013 2.4503E-013 1.0265E-011

?00????? 00000000 9.801E-013 2.4503E-013 1.0265E-011
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

?0?1???? 00011111 9.801E-013 2.4503E-013 1.0265E-011

?0??1??? 00011111 9.801E-013 2.4503E-013 1.0265E-011

?0???1?? 00011111 9.801E-013 2.4503E-013 1.0265E-011

?0????1? 00011111 9.801E-013 2.4503E-013 1.0265E-011

?0?????1 00011111 9.801E-013 2.4503E-013 1.0265E-011

??01???? 00011111 9.801E-013 2.4503E-013 1.0265E-011

??0?1??? 00011111 9.801E-013 2.4503E-013 1.0265E-011

??0??1?? 00011111 9.801E-013 2.4503E-013 1.0265E-011

??0???1? 00011111 9.801E-013 2.4503E-013 1.0265E-011

??0????1 00011111 9.801E-013 2.4503E-013 1.0265E-011

???11??? 00011111 9.801E-013 2.4503E-013 1.0265E-011

???1?1?? 00011111 9.801E-013 2.4503E-013 1.0265E-011

???1??1? 00011111 9.801E-013 2.4503E-013 1.0265E-011

???1???1 00011111 9.801E-013 2.4503E-013 1.0265E-011

????11?? 00011111 9.801E-013 2.4503E-013 1.0265E-011

????1?1? 00011111 9.801E-013 2.4503E-013 1.0265E-011

????1??1 00011111 9.801E-013 2.4503E-013 1.0265E-011

?????11? 00011111 9.801E-013 2.4503E-013 1.0265E-011

?????1?1 00011111 9.801E-013 2.4503E-013 1.0265E-011

??????11 00011111 9.801E-013 2.4503E-013 1.0265E-011

7 erasures

0??????? 00000000 9.9E-015 2.475E-015 1.2009E-013

?0?????? 00000000 9.9E-015 2.475E-015 1.2009E-013

??0????? 00000000 9.9E-015 2.475E-015 1.2009E-013

???1???? 00011111 9.9E-015 2.475E-015 1.2009E-013

????1??? 00011111 9.9E-015 2.475E-015 1.2009E-013

?????1?? 00011111 9.9E-015 2.475E-015 1.2009E-013
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Received codeword Decode P(y|x1) P(x1,y) H(x1,y)

??????1? 00011111 9.9E-015 2.475E-015 1.2009E-013

???????1 00011111 9.9E-015 2.475E-015 1.2009E-013

8 erasures

???????? 00000 1E-016 2.5E-017 1.3787E-015

Table B.1: BEC Received vector decodes, probabilities and joint entropy contributions
for BKLC[8,2,5] with P(A) = 0.01
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Appendix C

6-bit Codeword Stubs for Ham[7,4,3]

Codeword C0 = 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Codeword C1 = 0 0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 1 1 0

0 0 0 1 1 0

0 0 0 1 1 0

0 0 1 1 1 0

0 0 1 1 1 0

0 0 1 1 1 0

Codeword C2 = 0 0 1 0 0 1 1

0 0 1 0 0 1

0 0 1 0 0 1

0 0 1 0 1 1

0 0 1 0 1 1

0 0 0 0 1 1

0 1 0 0 1 1

0 1 0 0 1 1

Codeword C3 = 0 0 1 1 1 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 1 0 1

0 0 1 1 0 1

0 0 1 1 0 1

0 1 1 1 0 1

0 1 1 1 0 1
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Codeword C4 = 0 1 0 0 1 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 0 0 1

0 1 0 1 0 1

0 1 0 1 0 1

0 0 0 1 0 1

1 0 0 1 0 1

Codeword C5 = 0 1 0 1 0 1 1

0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1 1 1

0 1 0 0 1 1

0 1 1 0 1 1

0 0 1 0 1 1

1 0 1 0 1 1

Codeword C6 = 0 1 1 0 1 1 0

0 1 1 0 1 1

0 1 1 0 1 0

0 1 1 0 1 0

0 1 1 1 1 0

0 1 0 1 1 0

0 1 0 1 1 0

1 1 0 1 1 0

Codeword C7 = 0 1 1 1 0 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

1 1 1 0 0 0

Codeword C8 = 1 0 0 0 1 1 1

1 0 0 0 1 1

1 0 0 0 1 1

1 0 0 0 1 1

1 0 0 1 1 1

1 0 0 1 1 1

1 0 0 1 1 1

0 0 0 1 1 1

Codeword C9 = 1 0 0 1 0 0 1

1 0 0 1 0 0

1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

0 0 1 0 0 1
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Codeword C10 = 1 0 1 0 1 0 0

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 0 0

1 0 1 1 0 0

1 0 0 1 0 0

1 1 0 1 0 0

0 1 0 1 0 0

Codeword C11 = 1 0 1 1 0 1 0

1 0 1 1 0 1

1 0 1 1 0 0

1 0 1 1 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 1 1 0 1 0

0 1 1 0 1 0

Codeword C12 = 1 1 0 0 0 1 0

1 1 0 0 0 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1

1 0 0 0 1 0

1 0 0 0 1 0

Codeword C13 = 1 1 0 1 1 0 0

1 1 0 1 1 0

1 1 0 1 1 0

1 1 0 1 0 0

1 1 0 1 0 0

1 1 1 1 0 0

1 0 1 1 0 0

1 0 1 1 0 0

Codeword C14 = 1 1 1 0 0 0 1

1 1 1 0 0 0

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1

Codeword C15 = 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
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Appendix E

Codeword stub decodes and probabilities

for Hamming[7,4,3]

Codeword stub Decode Output probabilities

p(y j)

0 0 0 0 0 0 0 0 0 0 0 0 0 0.05886

0 0 0 0 0 1 0 0 0 0 0 0 0 0.00121

0 0 0 0 1 0 0 0 0 0 0 0 0 0.00121

0 0 0 0 1 1 0 0 1 0 0 1 1 0.00945

0 0 0 1 0 0 0 0 0 0 0 0 0 0.00121

0 0 0 1 0 1 0 1 0 0 1 0 1 0.00945

0 0 0 1 1 0 0 0 0 1 1 1 0 0.02592

0 0 0 1 1 1 0 0 0 1 1 1 0 0.01768

0 0 1 0 0 0 0 0 0 0 0 0 0 0.00121

0 0 1 0 0 1 0 0 1 0 0 1 1 0.02592

0 0 1 0 1 0 0 0 0 1 1 1 0 0.00121

0 0 1 0 1 1 0 0 1 0 0 1 1 0.00259

0 0 1 1 0 0 0 0 1 1 1 0 1 0.00121

0 0 1 1 0 1 0 0 1 1 1 0 1 0.02592

0 0 1 1 1 0 0 0 0 1 1 1 0 0.03415

0 0 1 1 1 1 0 0 1 1 1 0 1 0.00945

195



Codeword stub Decode Output probabilities

p(y j)

0 1 0 0 0 0 0 0 0 0 0 0 0 0.00121

0 1 0 0 0 1 0 1 0 0 1 0 1 0.00945

0 1 0 0 1 0 0 1 0 0 1 0 1 0.00945

0 1 0 0 1 1 0 0 1 0 0 1 1 0.03415

0 1 0 1 0 0 1 0 1 0 1 0 0 0.00945

0 1 0 1 0 1 0 1 0 0 1 0 1 0.03415

0 1 0 1 1 0 0 0 0 0 0 0 0 0.01768

0 1 0 1 1 1 0 1 0 1 0 1 1 0.00945

0 1 1 0 0 0 0 1 1 1 0 0 0 0.02592

0 1 1 0 0 1 1 1 1 0 0 0 1 0.00121

0 1 1 0 1 0 0 1 1 0 1 1 0 0.02592

0 1 1 0 1 1 0 1 0 1 0 1 1 0.01768

0 1 1 1 0 0 0 1 1 1 0 0 0 0.02592

0 1 1 1 0 1 0 0 1 1 1 0 1 0.01768

1 0 1 1 1 0 0 1 1 0 1 1 0 0.00945

1 0 1 1 1 1 1 1 1 1 1 1 1 0.00121

1 0 0 0 0 0 0 0 0 0 0 0 0 0.00121

1 0 0 0 0 1 1 0 0 1 0 0 1 0.00945

1 0 0 0 1 0 1 1 0 0 0 1 0 0.01768

1 0 0 0 1 1 1 0 0 0 1 1 1 0.02592

1 0 0 1 0 0 1 0 1 0 1 0 0 0.01768

1 0 0 1 0 1 1 0 0 1 0 0 1 0.02592

1 0 0 1 1 0 0 0 0 1 1 1 0 0.00121

1 0 0 1 1 1 1 0 0 0 1 1 1 0.02592

1 0 1 0 0 0 1 0 1 0 1 0 0 0.00945
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Codeword stub Decode Output probabilities

p(y j)

1 0 1 0 0 1 1 0 0 1 0 0 1 0.01768

1 0 1 0 1 0 1 0 1 1 0 1 0 0.03415

1 0 1 0 1 1 0 1 0 1 0 1 1 0.00945

1 0 1 1 0 0 1 1 0 1 1 0 0 0.03415

1 0 1 1 0 1 1 0 1 1 0 1 0 0.00945

1 0 1 1 1 0 1 0 1 1 0 1 0 0.00945

1 0 1 1 1 1 1 1 1 1 1 1 1 0.00121

1 1 0 0 0 0 1 1 0 0 0 1 0 0.00945

1 1 0 0 0 1 1 1 1 0 0 0 1 0.03415

1 1 0 0 1 0 1 1 0 0 0 1 0 0.02592

1 1 0 0 1 1 1 1 0 0 0 1 0 0.00121

1 1 0 1 0 0 1 1 0 1 1 0 0 0.02592

1 1 0 1 0 1 1 1 1 0 0 0 1 0.00121

1 1 0 1 1 0 1 1 0 1 1 0 0 0.02592

1 1 0 1 1 1 1 1 1 1 1 1 1 0.00121

1 1 1 0 0 0 0 1 1 1 0 0 0 0.01768

1 1 1 0 0 1 1 1 1 0 0 0 1 0.02592

1 1 1 0 1 0 1 0 1 1 0 1 0 0.00945

1 1 1 0 1 1 1 1 1 1 1 1 1 0.00121

1 1 1 1 0 0 1 1 0 1 1 0 0 0.00945

1 1 1 1 0 1 1 1 1 1 1 1 1 0.00121

1 1 1 1 1 0 1 1 1 1 1 1 1 0.00121

1 1 1 1 1 1 1 1 1 1 1 1 1 0.05886

Table E.1: Received stub decodes and probabilities for Hamming[7,4,3] with pe = 0.01
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Abstract—Equivocation gives a measure of the average level
of ambiguity of a received signal and the level of security
that a code can offer. The development of a software solution
using GPU parallel processing to calculate the equivocation more
efficiently enables values for longer code lengths to be calculated.
Equivocation values for various codes and their expansions are
compared and inferences drawn about their relative security.

I. INTRODUCTION

One metric of a code’s secrecy is its equivocation. By com-
paring the equivocation of different codes and modifications of
those codes, codes with higher levels of equivocation can be
identified. Since such a process can be very computationally
intensive, a method for calculating the equivocation using par-
allel processing was developed. Whilst others [1],[2] have used
equivocation calculations to compare and construct codes and
improve code secrecy, especially involving syndrome coding,
none have previously done so using parallel processing.

II. CODES AND EQUIVOCATION

A binary, linear code is constructed from symbols belong-
ing to the binary field F2 (also known as the Galois Field of
2, GF2) [3] in which any linear combination of codewords is
also a codeword.
Equivocation (or the conditional entropy) describes the av-
erage ambiguity of a received signal [4]. It represents the
information loss of the channel going from input to output.
The probabilities of input messages (X) and output messages
(Y) can be used to calculate a set of entropies. In turn, these
entropies can be used to calculate the equivocation of the code.
For each given input message, the conditional probabilities
Pr(y | x) of each decoded message can be calculated. From
the conditional probabilities, the joint probabilities Pr(X,Y )
can be calculated. The entropy of an information source is
given by equation 1:

Hr(X) = −
∑

i

Pr(xi) log(Pr(xi)) (1)

Similarly the joint entropy of an information source and output
is given by equation 2:

Hr(X,Y ) = −
∑

i,j

Pr(xi, yj) log(Pr(xi, yj)) (2)

The joint entropy is the sum of the source entropy and the
conditional entropy. Hence the equivocation (or conditional
entropy) can be found from equation 3 :

Hr(Y |X) = Hr(X,Y )−Hr(X) (3)

The equivocation for an (n, k, d) code where n=codeword
length, k=message length and d=minimum distance of the
code, can be calculated using the method:
For one message and its codeword,

1) Add successively weighted error vectors.
2) Note for which errors each syndrome is obtained

first. These are the errors that can be correctly
corrected.

3) Operating on batches of codewords at a time, add
the 2n−k error vectors to each of the 2k codewords
in turn

4) Record the weights and probabilities of the resulting
received codewords.

5) Use these 2n probabilities to find the equivocation.

III. IMPLEMENTATION AND PARALLELISATION OF
CALCULATIONS

Early iterations of an efficient program to calculate the
equivocation of a code employed linear programming. This
created a need to call sections of code many times. Shoup’s
Number Theory Library “NTL” [5] was used extensively
during this phase, primarily for vector and matrix manipulation
over the GF2 field.
The high volume of calculations needed to evaluate the equiv-
ocation of a code of any significant length means that on
a standard laptop or desktop computer, the length of time
needed to run a calculation is the dominant limiting factor.
When performing the calculation via a linear process, the
implementation could calculate the equivocation for codes of
length n < 32 but little more. To overcome this, stages of the
calculation needed to be performed in parallel.
To parallelise the calculation, a computer capable of running
Nvidia’s Cuda architecture and programming model was used.
CUDA (Compute Unified Device Architecture) [6] is a par-
allel computing platform and programming model created by
Nvidia. It is implemented by computers with Cuda-capable
Nvidia GPUs, with the main CPU acting as the ’host’ for the
linear component of a program which then delegates respon-
sibility for running parallelised sections of code to the GPU
’device’. Different combinations of GPUs and Cuda versions
have different capabilities. To write and compile the Cuda
specific code, Nsight for Eclipse was used as an enhanced
Integrated Development Environment, along with the Nvidia
Cuda Compiler NVCC.
Once compiled, the linear part of the program is run on the host
CPU. The part of the program to be executed in parallel by the
GPU device is similar in structure to a function and is called a



kernel. Each instance of the kernel is called a thread. The Cuda
architecture enables multiple threads to be run concurrently,
grouped into blocks.
Limitations on memory capacity and processing speed en-
forced compromises and constraints on block sizes and the
grouping together of blocks into batches. A set-up with
compute capability 3.5 will restrict the maximum number of
threads per block to 210. Similarly, a maximum of (231 − 1)
blocks are permitted. This implies a maximum of (241 − 210)
threads per kernel call. In practice however, the dynamic
limitations of how much contiguous memory can be allocated
to a single variable pointer meant that significantly smaller
batches of blocks had to be used in order to prevent memory
overflow.

IV. CUDA CODING

A Cuda kernel [7] called getWts can be called by the
CPU host by the following code:
getWts<<<*blocks,*threads>>>(d_Ctx,
d_EV, d_powK, d_powNK, d_n, d_wts);
The triple angled brackets indicate that the function is a
kernel to be run on the GPU device and define the number
of blocks and threads to be created by each instance of the
kernel. Parameters in the brackets are pointer variables to
be used by the kernel. The code for the kernel to be run
in parallel by the device is indicated by the __global__
function.

__global__ void getWts(int* Ctx, int* EV, long*
powK, long* powNK, int* n, int* wts)
{

long id = blockIdx.x * blockDim.x
+ threadIdx.x;
long wt = 0;
for (long i = 0; i < *powNK; i++ )
{

....
}

}

The values held by variables such as blockDim.x,
blockIdx.x and threadIdx.x identify the number of
threads per block and the identity of the block or thread being
executed. This enables each individual thread to access the
specific data that it requires.

V. RESULTS

The use of parallel processing enabled calculations to be
performed for codewords of length up to 40, an improvement
of 8 bits over the linear method. The calculation time is
dependent upon many factors, including the message length
k, the codeword length n, the number of threads per block and
blocks per batch and the structure of the calculation program.
Independent runs of calculations for increasing lengths of
k and n were performed. A graph of the times taken to
calculate equivocation values for some Best Known Linear
Codes (BKLCs) of message length k=15 and increasing values
of n is shown in figure 1. The BKLCs used were generated
using Magma software from the University of Sydney [8].
The calculations that were performed for the probabilities 0
to 0.5 in 0.05 increments, with 0.01 as an additional value.
Many of the calculations were subsequently re-performed for

probabilities 0 to 0.5 in 0.01 increments in order to give more
accurate and smoother output graphs.
A graph of the times taken to calculate equivocation values for

Fig. 1. Time to calculate equivocation for codes of message length k=15 for
different code lengths(n)

some BKLCs of code length n=30 and increasing values of k
are shown in figure 2. It can be seen that for a fixed codeword
length, there is an optimal message length k that gives a
minimum calculation time. This occurs around k=20 and is due
to the calculation method used in the software. There are 210

threads in each block and 210 blocks per instance of the kernel
of the parallel component of the program. Below a message
length of k=20, the parallel component of the program has not
yet achieved maximum efficiency and above k=20, the linear
part of the program is performing an increasing proportion of
the workload. The times taken to calculate equivocation values

Fig. 2. Time to calculate equivocation for codes of length n=30 for different
message lengths(k)

for some perfect codes,their extensions and some longer codes
are shown in table I. Whilst the linear method is actually
quicker for very short length codes, the parallel method soon
becomes the preferred method, producing a result more quickly
for all code lengths where n > 10. The results for longer
length codes show that significant gains can be made, with
calculations being performed by the parallel processing method
up to 35 times quicker than by the linear method in the instance
of the BKLC(33,21,6) code.
A graph showing the normalised equivocation values of dif-
ferent perfect and extended perfect codes is shown in figure 3.



Code Linear time (s) Parallel Linear to
time (s) parallel

ratio
Hamming(7, 4, 3) 0.0174 0.068 1 : 4
Ext. Hamming (8, 4, 4) 0.021 0.084 1 : 4
Hamming(15, 11, 3) 0.991 0.147 7 : 1
Golay(23, 12, 7) 67.996 4.48 15 : 1
Ext. Golay(24, 12, 8) 238.6 17.8 13 : 1
Hamming(31, 26, 3) 33961 3809 9 : 1
BKLC(30, 20, 5) 3466 105.99 33 : 1
BKLC(31, 21, 5) 6880 238.6 29 : 1
BKLC(32, 22, 5) 13702 444 31 : 1
BKLC(33, 21, 6) 27048 780 35 : 1
BKLC(33, 23, 5) 27634 1021 27 : 1
BKLC(36, 25, 5) not reasonably calculable 6760 -
BKLC(36, 26, 4) not reasonably calculable 8878 -
BKLC(40, 27, 6) not reasonably calculable 91875 -

TABLE I. EQUIVOCATION CALCULATION TIMES FOR SOME PERFECT
CODES, THEIR EXTENSIONS AND LONGER BKLCS

Longer perfect codes generally exhibit higher levels of equiv-

Fig. 3. Normalized equivocation of some perfect codes and their extensions

ocation than shorter ones. Hamming (31,26,3) has higher nor-
malised equivocation values than Hamming (15,11,3), which in
turn, has higher values than Hamming(7,4,3). Hamming codes
also have higher equivocation values than the Golay(23,12,7)
code at lower probabilities (p(e) < 0.15). However this is
offset by the Golay code benefitting from its ability to correct
up to 3 errors whilst the Hamming codes can only correct a
single error [9].
The normalised equivocation values of some longer Best
Known Linear Codes (BKLC) in figure 4 show comparatively
little difference between the codes as code length increases.
The BKLCs used in figures 4 were chosen to demonstrate
the different lengths of time that the parallelised calculation
would take as code lengths increased. They were not known
to possess similar properties to each other, however as the code
length increases, the gradients of their respective equivocation
curves become increasingly similar to each other.
For all codes examined, the normalised equivocation is an
increasing function when expressed as a function of the
probability of error on a binary symmetric channel. How-
ever the rate of increase is often at its lowest in the range
0 ≤ p(e) ≤ 0.05, while the rate of increase is often at
its highest in the range 0.05 ≤ p(e) ≤ 0.2 . Given that it
may be common for a legitimate receiver to receive the signal
through a channel with a low probability of transmission error
and for an illegitimate receiver to receive the signal with a
markedly higher probability of transmission error, this could

Fig. 4. Normalized equivocation of longer Best Known Linear Codes

be of use when developing codes that are designed to maximise
the differences in ambiguity levels between a legitimate and
illegitimate receiver.
Such an approach enables a move away from theoretical situa-
tions where both the legitimate recipient and the eavesdropper
have a perfect channel towards situations where both channels
may involve a level of signal degradation. By accepting and
managing a level of degradation for the legitimate recipient,
more coding schemes could be made available that provide a
significantly higher level of equivocation for an eavesdropper
than for the legitimate receiver. The nature of the channels
becomes a means of providing security.

VI. EXPANDING CODES

Once a procedure for efficiently calculating the equivoca-
tion of a code has been implemented, it also encourages the
ability to compare codes and to locate and design codes with
improved levels of equivocation. As an example, consider a
modification of the simple Hamming(7,4,3) code. A single bit
of data could be replaced by a sequence of data bits, say, 4
bits long. The first three bits are randomly generated whilst
the fourth bit is chosen to give a message parity equivalent to
the data that is to be transmitted. So the data bit 0 could be
represented as (0011), each component of which is transmitted
as the first bit of 4 successively transmitted messages:

(

RandomBits︷︸︸︷
001

ParityBit︷︸︸︷
1 )

Where previously the probability of an error occurring as a
single bit was transmitted might have been quite low, for
example 0.01, now that the representation of the data bit 0 is
transmitted across more messages, the probability of an error
becomes compounded and potentially much increased. If an
x-fold expansion of a code is taken to be one in which a data
bit is represented by x-1 random bits and 1 parity check bit,
then the received data bit would be expressed in terms of the
parity of the received data bits:

Parity =

x∑

i=0

ri (4)

where ri is the i’th received bit of the code expansion. The
received data is the sum of the transmitted data and any



associated errors that occur during transmission:

ri = ti + ei (5)

where ti is the i’th bit of the expansion and ei is the associated
error. Therefore:

Parity =

x∑

i=0

ti +

x∑

i=0

ei (6)

But by design,
∑x

i=0 ti = 0 and therefore Parity =∑x
i=0 ei,so if the received message parity equals 1, then a

decoder error must have occurred.
When considering a 4-fold code expansion, the possible error
combinations that could occur range from 0000 to 1111. Given
that we only need to consider the combinations that give an
odd parity, then the probability of the 4-fold expansion being
decoded erroneously is:

(
4

1

)
(1− p(e))3p(e) +

(
4

3

)
(1− p(e))p(e)3

In general for an x-fold expansion, the probability of an
incorrect decoding would be:

i≤x/2∑

i=0

(
x

2i+ 1

)
(1− p(e))x−(2i+1)p(e)2i+1

A 4-fold expansion of the Hamming code gives effective
channel probability errors as shown in table II. These effec-

Single bit probability of error 4-fold expansion probability of error
0 0

0.01 0.038816
0.05 0.17195
0.1 0.2952
0.15 0.37995
0.2 0.4352
0.25 0.46875
0.3 0.4872
0.35 0.49595
0.4 0.4992
0.45 49995
0.5 0.5

TABLE II. COMPOUNDED CHANNEL PROBABILITY ERRORS FOR A
4-FOLD CODE EXPANSION

tive channel probability errors yield normalized equivocation
values for a 4-fold expansion of the Hamming(7, 4, 3) code
plotted in figure 5, along with 2, 3 and 10-fold expansions of
the code. The figure shows that the equivocation values of code
expansions can be significantly higher than that of a simple
Hamming code. For the 10-fold expansion, a 0.01 probability
of transmission error yields a normalised equivocation level of
0.23, however an error probability of just 0.05 now yields a
normalised equivocation value of 0.897, compared to 0.1005
for the unexpanded Hamming code. If the intended recipient
has a channel probability error of 0.01, they still have a
good chance of recovering the data, whereas an illegitimate
eavesdropper with a channel error probability of 0.05 will now
need to overcome a much higher level of ambiguity in order
to recover the data. The secrecy of the data transmission has
been very significantly improved by the expansion of a simple
Hamming code. However this improved secrecy comes at a
cost; only one bit of data is transmitted for every 4 or 10 bits
of data carried by the Hamming code, reducing the data rate
significantly.

Fig. 5. Comparison of Hamming code with 2x, 3x, 4x and 10x code expansion
and BKLC(14,4)

While the Hamming(7,4,3) code with 2-fold expansion and
BKLC(14,4,7) code both effectively take 14 bits to transmit 4
bits worth of data (and therefore have the same effective code
rate), their equivocation graphs are very different. The 2-fold
expansion of the Hamming (7,4,3) code offers a significant
improvement in equivocation over the basic Hamming (7,4,3)
code, whereas the BKLC(14,4,7) code shows a significant
worsening in performance. This suggests that using code
expansions is more effective at improving equivocation than
simply using longer and longer codes.
A comparison of the equivocation of the perfect Go-
lay(23,12,7) code and two random (23,12) codes is shown in
figure 6, along with their 4-fold expansions. This shows that:

• Random codes can possess higher levels of equiv-
ocation (and therefore secrecy) than a perfect code,
although their error correcting capabilities may not be
as good.

• Normalised equivocation rates of 4-fold expansions of
the Golay and random (23,12) codes are significantly
higher than those of the original codes.

Fig. 6. Comparison of Golay(23, 12, 7) and 2 random (23, 12) codes with
4-fold expansion

VII. CONCLUSION

This paper has developed several points with regard to both
the use of parallel processing for calculating equivocation and



the comparison of equivocation values for different codes and
their variants.

• Parallel processing significantly improve equivocation
calculation times.

• Longer codes of the same family will tend to have
higher relative equivocation values.

• Largest differences in code equivocation values are
often found in the 0.01 < p(e) < 0.2 range, especially
for expanded codes.

• Differences in normalised equivocation values be-
tween codes appear to decrease as code lengths in-
crease.

• By expanding a code through using random data and
parity check bits, greater secrecy can be achieved.

• By expanding random codes, higher equivocation val-
ues can be achieved than for non-expanded codes.

• Code expansions can offer higher normalised equivo-
cation values than a code with a similar code rate.
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Abstract—Secure data transfer is often achieved by encryption.
However, if transmitting across a Binary Symmetric Channel
while an eavesdropper listens via a Wiretap Channel, the differ-
ence in signal quality can be exploited to improve the inherent
transmission secrecy. If this exploitation involves the managed
use of erasures, then the secrecy of a code transmitted across
the channel can be improved whilst simultaneously reducing the
volume of data that is transmitted.

Keywords-Ambiguity, binary symmetric channel (BSC), code
expansion, equivocation, erasure, graphical processing unit
(GPU), parallel processing, security, wiretap.

I. INTRODUCTION

Shannon’s seminal papers [1], [2] introduced equivocation
(conditional entropy) as a measure of the secrecy of the
information contained within a received signal. Other metrics
for assessing secrecy have been proposed such as the value
function [3] and the security gap [4], however Klinc’s paper
also noted that equivocation continues to be recognised as an
established metric. As such, equivocation will be used in this
work.

It is acknowledged [5] that it can be difficult to measure
or analyse equivocation. Work has been done to establish
upper and lower bounds for equivocation such as Almeida’s
use of known and unknown puncturing patterns [6], while
other techniques have been applied to specific circumstances
to calculate equivocation. These include Wickramsooriya’s
analysis of the generator matrix of the eavesdropper’s code
[7], [8] and Al-Hassan’s use of probability mass functions for
syndrome coding [9].

Zhang’s work [10], [11] constructs best binary equivocation
codes for syndrome coding in the Binary Symmetric Channel
(BSC) [12], however the direct evaluation of the equivocation
of a code suitable for a channel having erasures has received
little attention. The consideration of all possible input mes-
sages to a transmission system and all possible decoded output
messages is highly numerically intensive. An [n, k, d] code
(n = code length, k = message length, d = min. distance)
must consider 2n error vectors for each of the 2k messages.
This was addressed by the author in [13] when GPU parallel
processing techniques were used to calculate the equivocation
values for codes and their expansions more efficiently. The use
of GPU-based parallel processing permitted calculation times
up to 35 times quicker than with traditional linear techniques.

Source
Intentional

Erasures
Encoder BSC

Wiretap

Channel

Decoder

Fig. 1. Code Transmission across a BSC with erasures, subject to wiretap

1

0

x y?

Fig. 2. Deliberate Erasures

This paper extends that work to consider the normalised
equivocation of codes that include intentionally erased bits.

An erasure of a data bit is where the value of the data bit
is not known but the location of the bit is known. The Binary
Erasure Channel (BEC) is an idealised channel that uses
erasures [14]. Equivocation of BECs in a wiretap environment
[15] has been examined [16], [17], [18], however here we
look at the intentional erasure of one or more bits of data
ahead of transmission across a BSC (IE+BSC) within a wiretap
environment, shown in Fig. 1. If erasures of a transmitted
symbol x ∈ X are introduced for the IE+BSC then the value
of a received symbol y ∈ Y in a specified location is unknown
as in Fig. 2 and has a uniform distribution. The non-erased bits
will be susceptible to a cross-over probability of p on the BSC.

II. CALCULATION OF EQUIVOCATION

If a message of length k is encoded as codeword of length
n and s bits in known locations are then intentionally erased
ahead of transmission, the probability of a received message
having contained e errors in specific locations and the s
erasures having come from a particular combination of 0’s



and 1’s is:

p(e, s) = (1− p)(n−s)−epe × 1

2s
(1)

The joint entropy of a set of source symbols X and received
symbols Y is:

H(X,Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

1

p(x, y)
(2)

Shannon defined secrecy as:

H(X|Y ) = H(X,Y )−H(Y ) (3)

This is evaluated as:

H(X|Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

1

p(x, y)
−

∑

y∈Y
p(y) log

1

p(y)

(4)
The evaluation of Eqn. 4 is numerically intensive but eval-

uation for short codes is possible with modern hardware. The
normalised equivocation is the equivocation per transmitted
bit, H(X|Y )

k .

III. SOFTWARE IMPLEMENTATION

The software implementation of the equivocation calcula-
tion was achieved through the use of the GPU parallel pro-
cessing capabilities afforded by the Nvidia CUDA architecture
[19], where the linear component of the program is run on the
CPU and the repetitive codeword and error vector additions
are performed in parallel on a CUDA-enabled Nvidia graphics
processor [20]. This multi-threaded approach offers significant
efficiency (and therefore time) savings over standard linear
methods. The calculations were run for a variety of binary
linear codes, including perfect Hamming and Golay codes and
best known linear codes (BKLCs) identified in [21]. Since
combinations of e errors and s erasures can be correctly
decoded provided that 2e+ s < d [22], a maximum of d− 1
erasures can be corrected. Generator and parity check matrices
for codes were generated using online Magma software [23].

IV. RESULTS

It can be seen from the BKLC[8, 2, 5] in Fig. 3 and the
Golay[23, 12, 7] code in Fig. 4 that increasing the number
of deliberately erased bits that are transmitted increases the
equivocation of the code. The curves for both 3 and 4 erasures
of the BKLC[8, 2, 5] code are co-linear i.e. transmitting the
code with either 3 or 4 erasures produces the same values of
normalised equivocation. This is because the increase from 3
to 4 erasures does not change the ability of the code to use the
26 available syndrome patterns for the detection or correction
of either errors or erasures.

The deliberate introduction of erasures to a transmission
system can, if chosen carefully, lead to a greater increase in
equivocation for an illegitimate eavesdropper than for the le-
gitimate receiver. For example with the Golay[23, 12, 7] code,
a BSC error probability of 0.01 for the legitimate receiver
and 0.10 for the eavesdropper will produce the normalised

Fig. 3. Equivocation of BKLC[8, 2, 5] code with up to 4 erasures

Fig. 4. Equivocation of Golay[23, 12, 7] code with up to 6 erasures

Legitimate receiver Eavesdropper
BSC error probability 0.01 0.10
Equivocation (with no erasures) 0.00015 0.20496
Equivocation (with 2 erasures) 0.00147 0.29394
Increase in equivocation 0.00132 0.08898

TABLE I
EQUIVOCATION OF GOLAY[23, 12, 7] CODE ON BSC WITH AND WITHOUT

2 ERASURES

equivocation levels in Table I for scenarios with no erasures
and with 2 erasures.

In this case, the deliberate introduction of 2 erasures has
increased the normalised equivocation for the eavesdropper
by a greater amount (0.089) than for the legitimate receiver
(0.0013).

However, this does not always hold. Consider the
Golay[23, 12, 7] code with an error probability of 0.05 for the
legitimate receiver and 0.20 for the eavesdropper for scenarios
with no erasures and 6 erasures, shown in Table II.

In this case, the equivocation has increased for the legiti-
mate receiver by a great amount (0.144) than it has for the
eavesdropper (0.069).

Fig. 5 highlights some differences between the use of
code expansion and the use of erasures, in this case for the
Golay[23, 12, 7] code. n-fold code expansion was achieved by



Legitimate receiver Eavesdropper
BSC error probability 0.05 0.20
Equivocation (with no erasures) 0.03317 0.64453
Equivocation (with 2 erasures) 0.17759 0.71385
Increase 0.14442 0.06932

TABLE II
EQUIVOCATION OF GOLAY[23, 12, 7] CODE ON BSC WITH AND WITHOUT

6 ERASURES

Fig. 5. Equivocation of Golay[23, 12, 7] code with 6 erasures versus 2-fold
code expansion

replacing a single data bit with a sequence of n − 1 random
bits and an n’th bit that gives a message parity equivalent to
the data to be transmitted. For all error probabilities above
0.05, code expansion offers greater increases in equivocation
than the deliberate introduction of erasures. However below
0.05, the use of multiple erasures gives a greater increase
in equivocation. Therefore at close to 0.05 for the Golay
code, there is a changeover point above which a 2-fold
code expansion gives higher equivocation levels and below
which the use of 6 erasures gives higher equivocation. Either
adaptation to the code carries a penalty - the use of code
expansion increases the number of transmitted bit dramatically
whereas the deliberate introduction of erasures decreases the
error detecting and correcting capability of the code.

V. CONCLUSION

In addition to the expansion of codes previously discussed,
erasures can be used as an alternative mechanism for in-
creasing the equivocation of a code over a Binary Symmetric
Channel and thereby its average ambiguity and secrecy.
• Increases in equivocation in the erasure examples given

are significant but not as great as those increases shown
by the use of code expansions

• Some increases in the number of bits erased do not
necessarily lead to an increase in equivocation

• The introduction of erasures to a channel can potentially
lead to a greater increase in equivocation for an eaves-
dropper than it does for the legitimate receiver.

• A comparison between code expansions and erasures can
show situations where, for a particular error probability,
there is a changeover point in which method produces the

higher equivocation values e.g. at around p(e) = 0.05 for
the Golay[23, 12, 7] code.
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