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Abstract 
The latest developments in AI and machine learning, and the parallel advances in 
robotics, have very recently contributed to a shift in the approach to modeling human 
intelligence. These innovations, accompanied by the new emphasis on embodied and 
grounded cognition in AI and psychology, have led to the establishment of the field of 
Developmental Robotics. This is the interdisciplinary approach, built on the close 
collaboration of the disciplines of cognitive robotics and child psychology, to the 
autonomous design of behavioral and cognitive capabilities in artificial cognitive agents, 
such as robots, which takes direct inspiration from the developmental principles and 
mechanisms observed in children. We illustrate the benefits of this approach by 
presenting a detailed baby robot case study of the role of embodiment during early word 
learning, as well as an overview of several developmental robotics model of perceptual, 
social and language development.  
 
 
Introduction 
Computational models of cognition have significantly contributed to the definition, 
testing, and validation of psychology and neuroscience theories, including 
developmental psychology. Such computational approaches, ranging from symbolic 
rule-based systems, connectionist neural networks, and Bayesian models, have 
typically resulted from scientific and technological developments in artificial intelligence 
(AI) and its attempt to reproduce and simulate the uniqueness and complexity of 
human-like adult symbolic intelligence. However, since the origins of AI, there have 
been proposals to study the full spectrum of child development, rather than adult-like 
intelligence. This is for example what Alan Turing proposed in 1950:   
 

“Instead of trying to produce a programme to simulate the adult mind, why 
not rather try to produce one which simulates the child’s? If this were then 
subjected to an appropriate course of education one would obtain the adult 
brain.” Turing (1, page 440). 

 
The latest developments in AI and machine learning, and the parallel advances in 
robotics, have contributed to a shift in the approach to modeling human intelligence. 
These innovations have been accompanied by an increased emphasis on embodied 
and grounded cognition in AI (2) and psychology (3,4). This has permitted the first 
attempts to realize Turing’s vision, i.e. the idea that an embodied agent (e.g. robot), 
using a set of intrinsic motivation principles regulating the real-time interaction between 
its body, brain and environment, can autonomously acquire and develop an increasingly 
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complex set of sensorimotor and mental capabilities, grounded in the interaction with its 
environment.  
 
The field of Developmental Robotics (DR, hereafter) specifically aims to design 
sensorimotor and cognitive capabilities in (baby) robots by taking inspiration from child 
psychology and via the modelling of incremental, developmental changes. Thus DR 
relies on a highly interdisciplinary effort of empirical developmental sciences, including 
developmental psychology, neuroscience and comparative psychology, and on 
computational and robotics disciplines, such as robotics, machine learning and artificial 
intelligence (5,6). The history of developmental robotics can be traced back to the early 
2000s, where the close collaboration of cognitive modelers and developmental 
psychologists led to the first, pioneering robotics models of development (7-9).  
 
DR builds on, but further extends, the existing computational approaches of 
development. In classical computational models of developmental mechanisms, as in 
the seminal Klahr and Wallace (10) information processing model of Piagetian concrete 
operation tasks, the modeler has to define in detail very abstract, rule-like 
representations involved in the phenomenon studied. Even in classical connectionist 
models of language learning, such as the well known past tense simulations (11), or 
more recent large scale neural models of language learning (e.g. 12) the modeler has to 
provide a formal and pre-defined representation of the input stimuli features, though the 
neural network is capable to simulate qualitative changes in the learning pathway. DR 
models, instead, permit the exploitation of the role of sensorimotor knowledge, of 
motivational and attentional mechanisms and of interaction and environmental factors, 
in the acquisition of cognitive skills (see for further discussion: 5, 13, 14).  
 
 
Direct modeling of developmental psychology experiments and data  
 
One of the key aims of developmental robotics is to take explicit inspiration from human 
developmental mechanisms to design cognitive skills in robots. We can distinguish two 
main approaches to the handling of the relation between developmental psychology and 
developmental robotics. In the first case on the direct modelling of developmental 
psychology studies, the robot experiments are directly constructed to replicate specific 
child psychology experiments. This often permits the direct comparison (qualitative 
and/or quantitative) and prediction of empirical and modeling results. The other 
approach concerns a more generic, higher-level cognitively-inspired link between the 
broad developmental mechanism studied in child experiments and the general 
developmental aspects of the robotic algorithms. This is not a rigid separation of DR 
studies, as robotics models mostly lie in the continuum between the direct modelling 
and the bio-inspired approach. 
 
This paper will concentrate on some prototypical examples of the direct modelling 
approach, since this better shows the benefits of a direct collaboration between 
developmental psychologists and roboticists. As we will show in the case study below 
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on the Epigenetic Robotics Architecture (ERA) (15-17) for robot experiments on early 
word learning, the direct modelling of developmental psychology data can also lead to 
novel predictions on developmental phenomena, further validated by new child 
experiments. For a discussion of examples on the general, bio-inspired approach, see 
the extended analysis of the DR literature in Cangelosi and Schlesinger (5). 
 
Other examples of the direct comparison of child and robot data have been proposed in 
the field of perceptual development. Schlesinger et al. (18) presented a model of 
perceptual completion directly simulating Amso and Johnson’s (19) experiments on 
unity perception in young infants. This DR computational model directly compares the 
performance of the simulation model (simulated distribution of scans) with 3-month-old 
infants’ eye tracking data. The model provides an operational explanation of the neural 
and developmental mechanisms in early perception.  
 
In social interaction studies, Nagai and collaborators (20, 21) model the developmental, 
stage-like emergence of shared gaze. They explicitly follow Butterworth’s (22) 
developmental framework on the incremental acquisition of different attentional gaze 
strategies: from the ecological stage (the infant looks at an interesting object regardless 
of the caregiver’s gaze direction), to the geometric (joint attention only when the object 
is in the infant’s field of view) and representational (the infant can find salient object 
outside its own field of view) gaze strategies stages.  
 
 
A Case Study: Embodied Word Learning  
 
A prototypical example of a DR study that aims to directly model child psychology data 
and to use the computational model to make predictions of language learning 
mechanisms is provided by Morse, Cangelosi, Smith, and collaborators (15, 16, 23). 
This DR model addresses the issue of embodiment factors, that is, how spatial 
locations, and their corresponding postural changes, play a key role in infants’ word 
learning.  
 
The robot’s cognitive architecture 
 
To model the role of embodiment in word learning, a DR modeling framework, called the 
Epigenetic Robotic Architecture (ERA) (15), has been proposed. This cognitive 
architecture is based on an ensemble of artificial neural networks used to implement the 
learning from multimodal stimuli (visual, speech, postural) and to control the robot’s 
behavior (Figure 1). The DR architecture consists of multiple maps, each realized via a 
Self-Organizing Map (SOM) (24). A SOM is an artificial neural network where the output 
layer consists of a 2-dimensional grid of neuron (called map). After training, the output 
neurons self-organize to create a similarity map. The maps used in the ERA 
architecture (color map, shape map, postural map) have been pre-trained respectively 
to build a categorical similarity representation of color stimuli, object shapes and the 
robot’s own body posture. Another map (speech map) has been hardwired to encodes 
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word representations. The map-to-map links are constituted by Hebbian connections. 
These connections implement the associative learning between the most active node in 
each map, activated by visual, postural and speech stimuli. 
 

< figure 1 about here > 
 
The organization and properties of such a robot architecture are purposely chosen to 
operationalize the key developmental principles and mechanisms needed for language 
development. The SOMs constitute the building block of a hierarchical set of 
interconnected cortical brain areas. Specifically, the use of pre-trained SOMs has the 
purpose to endow the robot with the pre-linguistic capability to recognize and categorize 
object’s colors and shapes, as well as creating a homunculus-type body representation 
via a motor-babbling training stage (i.e. a pre-training stage where the robot randomly 
moves its limbs to allow it to learn a body representation map). The Hebbian 
connections between the active nodes in each map implement the principle of 
multimodal associate learning needed to link the name of an object to its visual features 
(color and/or shape category) and to specific postures.  
 
In addition to the neural network architecture, the robot is pre-programmed with an 
intrinsic motivation mechanism to gaze at the position of moving entities, such as when 
waving a hand or shaking an object. This implements the developmental principle that 
infants have a tendency to pay attention to moving objects. It can be exploited by the 
experimenter to make sure that the robot’s visual system focuses on the object in sight, 
or towards the spatial location where the hand is moved, when the name of the target 
object is uttered during the language learning experiment.  
 
The baby humanoid robot iCub is used for the DR experiments (Figure 1b). The iCub is 
an open source robotic platform recently developed as a benchmark platform for 
cognitive and developmental robotics experiments (25). The use of the robot, controlled 
by its neural cognitive architecture with associative connections trained online during 
the experiment, further implements the developmental principle that word-object 
associations are the direct result of the robot’s interaction with its tutor and its physical 
environment.  
 
 

< figure 1 about here > 
 
 
The Baldwin task 
 
The robot experimental procedure follows exactly the one used in child psychology 
experiments on early word learning, i.e. the Baldwin Task used in the Samuelson et al. 
study (26). The experimenter sits in front of the robot, with a white table where objects 
will be shown and labeled. Every time an object is shown, the robot shifts its posture 
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(torso, arms and gaze) to look at the object, and learns to categorize it according to its 
visual features (e.g. color and shape). Each trial consists of nine steps: 
 

Steps 1-2 The experimenter starts by showing two novel objects to the robot: (i) the 
target object, whose name has to be learned, and (ii) the foil object acting 
as distractor. These objects are shown one at a time respectively on the 
left and right location of the table.  

Steps 3-4 The two objects are shown again  
Steps 5 The experimenter hides the objects, directs the robot’s attention towards 

the right side where the first (target) object was shown and says: “This is a 
Modi”.  

Steps 6-7 The two objects are shown again, one at a time, as in the initial steps.  
Step 9  Both objects are presented simultaneously, in a new location at the center 

of the table, and the robot is asked “Find the Modi”. 
 
 
The robot experiments 
 
In Morse et al. (16), a combination of 5 experiments with robot participants and 4 with 
children are carried out. These use the default Baldwin object-label mapping tasks in 
which names are either encountered in the absence of their target, or an Interference 
task (i.e. when their target is present, but in a location previously associated with a foil). 
The first set of iCub robot experiments was used to replicate and extend the original 
paradigm by Samuelson et al. (26). The robot experiments first replicated existing infant 
tasks and data: (Exp.1) the default Baldwin Task, (Exp.2) a Switch Task in which the 
position of the two objects in steps 3-4 is swapped, to stop the object-name association, 
and (Exp.3) the Interference Task. Two extra, novel robot experiments test the effects of 
a second postural change (sitting/standing) in addition to the left/right posture change of 
the previous experiments: (Exp.4) Posture Change Task, when in step 5 the robot 
changes position from sitting to standing, and (Exp.5) the Interference Posture Change 
Task, which follows the Interference task, but with the same sitting-to-standing posture 
change in the naming test at the final step. The results of these novel robot experiments 
demonstrated that in the Posture Change Task the position change disrupts the object-
name association and the iCub randomly picks any of the two objects. On the contrary, 
in the Interference Posture Change Task, when the posture shift was instituted also 
during the naming event of the final step, the robot learns and maintains the association 
between the target object and its “Modi” name.  
 
The child experiments 
 
Four child experiments were also carried out, with the aim of replicating with infants four 
of the robot experiments: Baldwin Task, Interference Task, Posture Change Task and 
Interference with Posture Change Task. The results of the experiments with children 
replicated the same pattern of results from the robot studies. In particular, the child data 
validated the novel robot modeling results of both the tasks with posture change, which 
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had not been previously studied in child psychology. This showed that despite spatial 
location being task-irrelevant in the Interference with Posture Change Task, infants (as 
predicted with robots) use body-centric spatial contingency over temporal contingency 
to map the name to the object. Both infants and robots remember the name-object 
mapping even in new spatial locations. In addition, the analyses of the robot’s neural 
control architecture show how this memory can emerge. The iCub study demonstrates 
an exquisite coupling of the body’s momentary spatial orientation and internal cognitive 
operations (see also, 26). The iCub model suggests that word and object features are 
fundamentally tied to bodily information; by contrast, the model proposed by Samuelson 
et al. links word-object associations to an integrated spatial representation in a way that 
can, ultimately, generalize over space, while remaining fully coupled to the real-time 
orientation of the body in space. 
 
Lesson learned 
 
Overall, this model demonstrates that it is possible to build an embodied cognitive 
system that develops linguistic and sensorimotor capabilities through interactions with 
the world, closely resembling multiple child development phenomena (16). This is 
achieved through the design of a cognitive architecture implementing key 
developmental mechanisms and principles during early word learning stages: (i) the 
pre-linguistic capability to recognize and categories object features; (ii) capability to 
segment heard words; (iii) a representation of own’s body posture with respect to its 
environment; (iv) an attentional mechanisms guided by motion perception; (v) the 
learning mechanism for the acquisition of multimodal associations during interaction 
with a tutor.  
 
The interaction of such perceptual, linguistic and sensorimotor capabilities permits not 
only the replication of known child data, but also the prediction of novel phenomena 
involved in the postural biases in word learning. This approach can be extended to shed 
light on how children change their word learning abilities over the longer timescales of 
development. For example, the ERA cognitive architecture and learning principles have 
been extended to model other developmental phenomena, such as mutual exclusivity 
(17) and U-shape phenomena in Universal Phonetic Discrimination stage (27). The ERA 
developmental architecture has been shown to be particularly suitable to model 
qualitative changes in development. The interaction between learning mechanisms, the 
resulting embodied behavior of the agent, and the opportunities for learning that the 
environment provides, can account for the staged development of cognitive abilities. In 
the ERA architecture, two simple mechanisms account for the developmental transitions 
and the multiple early language learning phenomena replicated. One is the realization of 
‘neural readiness’, i.e. the focus on changes in the neural substrate resulting from 
ongoing learning which facilitate the acquisition of new knowledge and skills. The 
second developmental phenomenon is ‘perceptual readiness’, i.e, the focus on the 
multimodal perceptual requirements supporting the learning of new tasks (see 23 for 
extended discussion on these two developmental mechanisms).   
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The study of multiple developmental phenomena is possible via the realization of DR 
experiments utilizing a physical robot agent, a cognitive architecture for multimodal 
associative learning linking own sensorimotor representation with external linguistic 
stimuli, and the result of direct interaction between the (robot) child and the (human) 
experimenter. All this permits the direct testing of hypotheses on postural and spatial 
biases in cognitive development, minimizing the role of the computational modeler in the 
detailed implementation of the features and structure of perceptual and linguistic 
representations, and in the results of the learning interactions.  
 
 
Looking Ahead: Scientific Challenges and Applications 
 
The detailed analysis of the iCub robot’s experiments of the embodiment strategies of 
early word learning, and the multiple examples of DR models of perceptual, social and 
linguistic development in robots, directly grounded on child psychology studies, shows 
the multiple benefits of the baby robot approach. These achievements have set the 
bases for new scientific challenges in the field. Key themes for future work in DR include 
the focus on open-ended, cumulative learning, the modeling of physical and neural 
maturational mechanisms interacting with both evolutionary and ontogenetic 
development, and ethical aspects in child-robot interaction research (see 5 for full 
discussion of these challenges).  
 
For example, the challenge on open-ended learning refers to the fact that the robot 
keeps learning in new interactions with its environment. Cumulative learning refers to 
the simultaneous and cumulative acquisition of cognitive skills. This challenge involves 
the idea of ‘raising’ an infant robot into early childhood, if not longer, in an artificial “robot 
kindergarten”. In Araki et al. (28), a learning robot interacts for a full week with an 
experimenter, who teaches it the names of 200 objects during numerous online learning 
sessions. Adams et al. (29) have also proposed the approach of a ”virtual school 
student” in the robot kindergarten/school. This method foresees the implementation of a 
virtual student robot growing in both “Preschool Learning” (based on open, long term 
interaction experiments of sensorimotor skills and basic cognitive capabilities) and 
“School Learning” environment (for long-term practice of higher cognitive abilities).   
 
In addition to such scientific challenges, the DR models of cognitive development have 
important implications for current and future applications in child psychology, child 
rehabilitation and education. For example, several pioneering investigations have 
looked at the translation of robot modeling research, especially the studies on social 
interaction, into applications of social assistive robotics as for children with autism 
spectrum disorder (ASD) (e.g. 30, 31). Scassellati et al. (31) analyze the achievements 
in this field and suggest that these improved social skills and behaviors via robot 
interaction are the consequences of the fact that robots provide novel sensory stimuli to 
the ASD child. A similar approach to the use of social developmental robots as therapy 
for ASD children has been applied to other disabilities as in the treatment for children 
with diabetes (32) and with mobility and motor disabilities (33). Although standard, pre-
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programmed robotic algorithms can also be used in robot therapy for children with 
disabilities, DR models offer the advantage of being intrinsically focused on typical (and 
atypical) developmental changes. 
 
Finally, a key area of development both for scientific and application-oriented work of 
DR is the use of robots for education. Karim and colleagues (34) have recently reviewed 
the potential for using robots for STEM education. They discuss how the many studies 
on robots’ involvement for teaching and tutoring for disciplines such as mathematics, 
science, and language, have their roots in classical psychology socio-constructivist 
theories (e.g. 35) and in modern pedagogic theories on active learning (36).  
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Figure 1 Cognitive architecture (top) and experimental setup (bottom) of the iCub model 
of embodied word learning (from Morse et al. 2015). 

 


