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Evaluating the Impact of organic contamination upon the physiology of 
the shore crab Carcinus maenas (L.) 

Awantha Dissanayake 

THESIS ABSTI^CT 

This thesis has focused on answering fundamental questions regarding the 'normal' 
physiological ranges of the male shore crab Carcinus maenas. knowledge of the responses 
to environmental variables is needed before the effects of anthropogenic stress can be 
identified. Anthropogenic stress was imposed in the form of contamination by a ubiquitous 
priority pollutant of the aquatic environment (polyaromatic hydrocarbon, pyrene). 

The first hypothesis focused on identifying the physiological differences between juvenile 
and adult male shore crabs. Differences at the cellular level (cell and immune function) 
determined the relative contaminant sensitivity between the two ontogenetic stages, with 
juveniles expressing increased physiological sensitivity to contaminant-imposed effects 
compared to adults. 

Further questions relating to how the physiological condition of Carcinus maenas was 
altered by nutritional stress were examined in the adult stage. Physiological 'competency* or 
tolerance was shown to be dependent upon organism nutritional status. Shore crab 
physiological condition was robust to short-tenn starvation. This is interpreted to resultfrom 
autophagy induction, whereby, when diet is restricted, energy is released via metabolism of 
protein, carbohydrate and lipid stores. The physiological implications of sublethal 
contaminant exposure under short-temi induction included'increased antioxidant status, 
signalling activation of compensatory mechanisms under contaminant-mediated challenge. 
The behavioural implications of nutritional status and contaminant exposure were 
investigated by staging intraspecific agonistic contests between pairs of shore crabs for a 
food resource. 

Behavioural evidence revealed that the competitive ability (resource holding potential) of 
individuals was higher in pyrene-exposed compared to unexposed crabs, with higher 
proximate associated costs (energy expenditure) of entering agonistic contests in starved 
compared to fully-fed individuals. Shore crab competitive ability was concluded to be 
dependent upon the physiological condition of the contestant. 

The final hypothesis investigated 'seasonal' differences in the physiology of Carcinus 
maenas to test whether there were any 'windows of sensitivity' to both environmental and 
contaminant-imposed challenges. The 'normal' pattern of seasonal variability was assessed 
from crabs collected from the Avon Estuary. Differences included higher imhiune function 
and lower antioxidant status between winter and spring compared to summer to autumn. 
These seasonal differences were shown to impact on the ability of shore crabs to respond to 
PAH exposure. Seasonal evaluation of shore crab physiological condition from estuaries of 
varying PAH input [Avon Estuary (low anthropogenic exposure) and Plym Estuary (relatively 
high anthropogenic exposure)], revealed significant seasonal differences between crabs as 
signalled by cellular endpoints (cellular integrity and viability) between January and June 
compared to July to December. 

In summary, this study has revealed that shore crab physiology varies with intrinsic (age, 
nutritional status) and extrinsic (temperature) factors. Therefore, it is essential to establish 
the full extent of the 'normal' physiological ranges for C. maenas physiology to completely 
understand the impact of environmental and anthropogenic stress alike. 
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1. INTRODUCTION 

1.1 Polyaromatic hydrocarbons and the marine environment 

Coastal marine waters receive anthropogenic inputs containing many chemicals that 

are potentially toxic to aqUatic organisms (Krahn et al. 1984). One group of 

chemicals of increasing concern is the highly lipophilic polycyclic aromatic 

hydrocarbons (PAHs) which are ubiquitous pollutants of the marine environment 

(Clarke et al. 2001). PAHs are a group of chemical compounds, containing two or 

more fused benzene rings, which are highly lipophilic (log Kow = 3 - 8 ) ( O S P A R 

2001; Readman et aj. 2002). These compounds arrive In coastal waters from a 

diverse array of sources including petrochemical pollution, incomplete combustion 

processes (Clarke et al. 2001; Livingstone et al. 1992), metal smelting (Beyer et a|. 

1996; Maes et al. 1995) and electrolytic production of aluminium using anode 

technology (Aas et al. 2001; Beyer et al. 1998; M S C - E 2001). There are two 

broadly distinct P A H groups categorised dependent upon source. Petrogenic PAHs 

are derived from petroleum products, and are characterised by (relative) low 

molecular masses and have a 2 or 3-rlnged structure; these include PAHs such as 

naphthalene and phenanthrene. Pyrolytic PAHs , however, are combustion derived 

and are formed as a result of high temperature combustion of organic matter and 

industrial processes ( O S P A R 2001). Examples of pyrplytic "PAHs include 

fluoranthene, benzo[a]pyrene and pyrene; the latter is a 4-ringed PAH that Js 

included in the U S E P A priority pollutant list (MSC-E 2001) (Figure 1.1). Natural* 

sources of, PAHs into marine systems are limited and include perylene, which is 

synthesised by bacteria and algae (Clarke et.al. 2001). Concern over the fate and 

effect of PAHs- In the marine environment is related to their persistence, 

bioaccumulation potential, and acute and chronic toxicity to marine organisms. The 

particular cause for concern regarding PAH toxicity was highlighted originally In 

vertebrates based on in vivo and in vitro experiments, that revealed that various 

PAHs were potent mutagens and/or carcinogens (reviewed In Jacob 1996); around 
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200 years ago, scrotum cancer was found in ciiirnney sweeps and attributed to coal 

and soot (Pott 1775). PAHs, with four or more benzene rings (e.g. pyrene), have 

been found, to be mutagenic and/or carcinogenic and, in some cases, the resultant 

prevalence of neoplasia in fish has been associated with PAH levels ip sediments 

(Aas et al. 2001; 2003; Ruddock et al. 2002; 2003; Sole et al. 1996; Van der Oost et 

al. 1994; 1997). 

Naohthalena* Aconaphlhalene* Acenaphthytene* Ruorene* Anthracene* 

Phonanlhrene Fluorantheno*'!' Pyrena * Ben2la]anUiracene * 

Chtysene Ben2o{b](tuoranlhono * T Bonzo{k]fluoranthene*"( Bfinzo[alpyrene 

Fig. 1.1 Structures of selected polyaromatic compounds, * 
United States Environmental Protection Agency 
priority pollutants, EPAie 'European Union priority 
pollutants, EUg. Taken from Nollet (2006). 

10 



1.2 Major pathways of PAH-induced damage 

The possible molecular fate and effects of PAHs are dependent upon the 

biotransformation pathways involved in detoxification and excretion of organic 

compounds, and those pathways involved in the generation of molecular species 

(reviewed In Livingstone 1991). There are four potential mechanisms of P A H -

induced damage; from the parent compound, from the production of primary and 

secondary metabplites, from free radical derivatives of the P A H , and from the 

enhanced production pf oxyradicals. 

1.2.1 PAH parent compound 

Toxicity of the P A H parent compound may arise in several ways, such as interaction 

with enzymes, compartmentalisation within tissues or interference with gene 

expression, resulting in DNA adduct fonnatlon and/or strand breaks (Jha 2004). 

12 .2 PAH metabolites 

Metabolism of P A H compounds results in their biotransformation and increased 

solubility, facilitating elimination from the body (Timbrell 1995). Metabolism is 

divided into two phases (Phase I: 'functlonalisation'~ and Phase II: 'conjugation'), 

employing a wide range of enzymes; however, paradoxically, these reactions 

(mainly Phase I) result in toxic metabolites which can be more toxic than the parent 

compound, t h e biotransformation process results in bioactivation of the parent 

compound to secondary metabolites, which occurs due to the cytochrome P-450 

enzymes arid epoxide hydrolase function (Livingstone 1991,1993,1998). 
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12.3 Free radicals 

Free radicals of organic compounds are defined as compounds capable of 

existence that contain one or more unpaired electrons (Halliwell and Gutteridge 

1989), and are produced from various single electron oxidations and other free 

radical reactions involving PAHs (Livingstone 1991) (Table 1.1), 

Table 1.1 Free radical 'production involving organic 
compounds. 

Possible sources of free radical production 

1. Hemolysis by redox coupling with metal ion 

— 
metal *+ Ri-O-O-Ra ^1-0 + R2O 

metal is a transitional metal capable of univalent redox change 
R = alkyi or aryl group 
R2 = alkyi or aryl group 

2. Transfer reaction with organic radical 

R-H + R ' i R" * Ri H 

3. ' Reaction with hydroxyl radical 

R + O H R O H 

4. Enzyme-mediated production where reactions proceed by sequential one electron steps 
and radicals can diffuse from enzyme surface before they are oxidised 
•or reduced to an even electron species 

5. Involveitient in molecule assisted homolysis where, for example, 
decomposition of hydroperoxides is accelerated by the presence of an organic 
compound. 
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The protection of biological systems, such as membranes, occurs from the^actions-

of free-radical scavengers, of which there are two types: water-soluble scavengers 

(e.g. ascorbate, glutathione, thiols and purine bases) and fat-soluble scavengers 

(e.g. carotene and retinal). An important feature of these scavengers is that they 

are oxidised during the reactions with free radicals (e.g. oxidised glutathione). 

1.2.4 Oxyradicals 

Oxyradicals are reactive oxygen derivatives [also known as Reactive Oxygen 

Species (ROS)] generated both endbgenously as a by-product of normal oxygen 

metabolism (Winston and DI Guilio 1991), and also from the interaction between 

oxygen metabolism and organic compounds, such as PAHs. Reactive oxygen 

species include the superoxide ion (O2"), hydrogen peroxide (H2O2) and the hydroxyl 

ion (OH"). Toxic effects of these R O S s include reaction with organic molecules 

such as lipids, thereby, yielding other R O S s responsible for lipid peroxidation and 

membrane damage, enzymatic inactivation/damage apd reaction .with DNA resulting 

In base modification or strand breakage (Livingstone 1991). Redox cycles are an 

important process as PAHs are reduced by an intracellular reductase enzyme, in a 

one-electron step to a reactive intermediate, which 'in turn reduces O2 to O2", thus 

forming a cycle of O2 uptake and 02" generation. Protection against R O S is 

mediated by both enzymatic (e.g. superoxide dismutase) and non-enzymatic 

systems (e.g. a-tocopherol), known as antioxidants and either convert the oxygen 

species to less toxic or non-toxic products or by preventing their formation 

(Livingstone 1991). These protective systems are characterised by a high cellular 

activity, mainly cytosolic but also occurring in the mitochondria; the latter are 

proposed as the primary sites of (endogenous) aerobic cellular R O S production 

(Abele and-Puntarulo 2004). 
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1.3 Pyrene as a model PAH 

Pyrene, a 4-ringed P A H , l ias been found ubiquitously in coastalmarine ecosystems 

as a result of use in combustion fuels such as diesel (King et al. 2004; Reeves et al. 

2004), Exposure and subsequent metabolism of PAH compounds, such as pyrene, 

results in metabolites via the process of biotransformation. These metabolites are 

concentrated in body fluids, tissues and excreta. Analysis of such fluids can be 

used to detect exposure to bioavailable contaminants (Flllmann et al. 2002). 

Fluorescence detection methods of PAH metabolites were developed to signal P A H 

exposure In fish (Krahn et al. 1984), and have been used subsequently for detection 

of urinary P A H metabolites (e.g. 1-hydroxypyrene-type) in Crustacea (Dissanayake 

2001; Dissanayake and Galloway 2004; Watson 2004; Watson et al. 2002; 2004b), 

thereby, facilitating the use of P A H metabolites as indicators of environmental P A H 

exposure. Accordingly, PAH metabolites have been used in this study to validate 

shore crab pyrene exposure. Figure 1.2 shows the metabolites identified and 

excreted in urine by C. maenas after both Phase I and ll metabolism (Watson 2004; 

Watson et al. 2002; 2004b). Urinary PAH metabolites are used widely as indicators 

of P A H exposure in both vertebrates (Ruddock et al. 2002; 2003; Strickland et al. 

1996; Strickland and Kang 1999) and invertebrates (Dissanayake 2001; 

Dissanayake and Galloway 2004; Watson 2004; 2004a; 2004b). Pyrene-exposed 

shore crabs produce phase I metabolites [e.g. 1-hydroxypyrene (IrOH pyrene)] and 

phase II metabolites (1-OH pyrene glucoronide and pyrene-1-sulphate) indicative of 

PAH exposure. 

All PAHs absorb ultraviolet light followed by the .emission of light' of a longer 

wavelength. UV-fluorescence occurs due to the delocalised 7t-electrons within the 

benzene ring structure (Clarke et al. 2001). Each P A H compound has an optimal 

excitation and emission wavelength and signal intensity. The fluorescence 

properties vary between P A H compounds, as they are dependent upon size, 
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structure and corresponding constituents. A general trend is recognised in that the 

Optimal excitation wavelength Increases with increasing P A H molecule size. This 

variability between compounds has been used in PAH detection techniques (Aas et 

al. 1998; 2000.b; 2001; Aas and Klungsoyr 1998; Krahn et al. 1984). Specific 

wavelength excitation and emission pairs have been used to differentiate between 

P A H compounds (naphthalene, 290/335 nm; pyrene, 341/383 nm and 

benzo[a]pyrene, 380/430 nm) from both laboratory- (Watson 2004; Watson et al. 

2004b) and field-exposed shore crabs (Dissanayake 2001; Dissanayake and 

Galloway 2004; Watson et al. 2004a). The rationale for using urine collected from 

male shore crabs Is based on the fact that urine from females may contain biogenic 

compounds, like cholesterol and progesterone, which also fluoresce and may lead 

to signal interference from these endogenous compounds (Hellou and Upshall 

1995). 

The toxic effect of PAHs originates from chemical processes at the molecular level 

when the contaminant impact exceeds the effects of compensatory physiological 

responses, the effect is expressed through the hierarchical levels of blolo'gical 

organisation I.e. biochemical, cellular and physiological levels (Fossi et al. 1994). 

Figure 1.3 provides a schematic representation of the metabolic fate and 

mechanisms of toxicity in C. maenas. 
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PARENT COMPOUND PYRENE 

PHASE I METABOLISM 

PHASE II METABOLISM 

1-HYDROXYPYRENE 
GLUCORONIDE 

OH 

PYRENE-1-SULPHATE 

Fig. 1.2 Phase I and II metabolites tentatively identified in , 
Carcinus maenas urine. 
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Fig. 1.3 I^etabolic fate and meclianisms of toxicity in Carcinus maenas. Adapted from Livingstone (1991). 
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1.4 Evaluating the impact of PAHs 

All individuals possess the ability to maintain key physiological functions in the face 

of environmental, change, fluctuation or perturbation (homeostasis). An organism's 

capacity to adjust its physiology to operate within 'optimal' homeostatic efficiency in 

a variable-environment is known as its adaptability-(Bayne et al. 1985); however, 

any significant deviation from homeostasis will result in stress. Stress is defined as 

"a state produced, by an environmental or other factor (I.e. external constraints) 

which extends the adaptive responses of an animal beyond the normal range, or 

which disturbs the normal functioning to such an extent that the chances of survival 

are significantly reduced" (Brett 1958). A stressor is therefore defined as a 

condition or situation that causes a system to mobilise its resources and increase 

energy expenditure (Lugo 1978). The response that arises from the effect of a 

stressor has been described as the General Adaptation Syndrome (Selye 1946), a 

general concept defined as the sum of all non-specific, systemic reactions of the 

body that ensue upon long-term exposure to stress (Selye 1946) (Fig. 1.4). Phase 

one (alarm reaction) relates to short-term responses whereby there are alterations 

in responses. During the second phase (resistance), adaptation is optimum, 

characterised by relatively longer-term responses such as enzyme activation. The 

third phase (exhaustion) is where, under prolonged stressful conditions, 'normal' 

physiological functioning of an organism is severely impaired (Fig. 1.4). 
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ALARM ^ ( 2 ) RESISTANCE ^ P ) EXHAUSTION 
Adaptation not required ^ Adaptation is optimum V r / Adaptation is lost; 

Collapse and death 

Short-term responses: 

Behavioural, physiological and 
other responses to non-optimum 
environment 

Longer-term responses: 

- Adaptive enzymes 

Protein binding of metals 

Population selective 
action favouring survival 
of resistant individuals 

Changes in reproductive 
strategy 

- Failure of critical 
biochemical function 
leading to function 
disorders and death 

Gradual diminution and 
disappearances of some 
populations due to 
reproductive failure. 

Fig. 1.4 The General Adaptation Syndrome of Selye (1976). Taken from Mayer (1992). 
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Physiological ecology (Ecophysiology) determines the basis of the physiological 

mechanisms, involved in attaining constancy in an animal's interhal milieu 

(proposed by Claude Bernard) (Selye 1956) and such physiological flexibility of 

an organism to be related to environmental demands (Bayne et al. 1985; 

Cannon 1935). In any attempt to measure the response of an organism to such 

stress, three general considerations should be borne in mind. Firstly, the effects 

of the stress will be an integrated response involving all levels of functional 

complexity within the organism (molecular, cellular and physiological). 

Secondly, the stress response is dynamic, and Involves an alteration in 

functional properties over time. Thirdly, a potential stress may be neutralised by 

homeostatic physiological compensation. Although these processes may 

themselves be metabolically costly, it is when compensation for an 

environmental change is incomplete, or in the extreme, impossible, that lasting 

effects are measurable as a decline In the organism's fitness or, ultimately, as 

death (Koehn and Bayne 1989). 

A more comprehensive definition of stress [extending Selye's (1946) definition] 

is "any environmental Influence that Impairs the structure and functioning of 

organisms such that their Darwinian fitness is reduced" (Calow 1989). This 

definition links responses at the level of the individual, such as organism survival 

probability, developmental rate and fecundity, as proposed by Koehn and Bayne 

(1989), to parameters that influence the density of their populations and their 

future contribution to the gene pool (Calow 1989). The immediate effect of an 

environmental stress can.be referred to as the proximate response (Mayr 1961), 

whereby, an environmental variable must either Increase or decrease from 

'normal' and cause some change within the organism and population 

(Undenwood 1989). Alternatively, the ultimate response, is the evolutionary 
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effect whereby direct adaptations in populations arise as a consequence of the 

evolution of stress tolerance (Mayr 1961). 

The effects of stress, therefore,, may be studied at the level of the Individual and 

at the level of the population (Maltby 1999). However, there is no definitive level 

at which to study stress, as demands for scientific management of the biosphere 

Involve prediction and analysis of stress responses at all levels from an 

Individual organism to whole ecosystems (Grime 1989). Indeed, the different 

hierarchical levels of biological organisation provide insight, in combination, Into 

stress effects, their mechanistic processes and their potential ecological 

consequences (Maltby 1999) (Fig. 1.5). Studies of populations can provide 

insight into the disruption of community structure (Wanwick and Clarke 1993), 

but provide little information of the mechanisms of how such alterations occur. 

Conversely, studies at the organism level (molecular and biochemical), while 

contributing to our understanding of mechanistic alterations to physiological 

systems, fall short of providing information on higher-level consequences i.e. 

population and community level (Maltby 1999). Organisms are important 

operational units from both an ecological and evolutionary point of view 

(Undenwood 1989) and, by studying-effects of stress on individuaf organisms, 

elucidation of mechanisms of a) intra-individual variation, b) inter-indlvidual 

variation and c) between population variation can be established. Physiological 

variation is a feature at each of the different hierarchical'levels of biological 

organisation (Spicer and Gaston 1999). Organism-level responses can be used 

to monitor stress in natural environments, but this approach is limited currently 

by a lack of knowledge of the "normal" physiological ranges (Mehrle and Mayer 

1980), 
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Fig. 1.5 Relationships between erivironmetal stressors 
and direct and indirect effects on biological 
systems. Direct pathways affect organisms 
primarily through biochemical and. metabolic 
processes and indirect pathways influence biota 
through effects on food and habitat availability 
and through intra- and interspecific interactions. 
Taken from Marshall Adams (2005). 
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1.5 Carcinus maenas as a mode] species 

In this thesis, the common shore crab Carcinus maenas{L.) is taken as a model 

example of an eurytbpic species as it is both euryhallne (Rainbow and Black 

2001; 2002) and eurythermal (Cumberlldge 1977a; Taylor 1973). Carcinus 

niaenas has a high fecundity, a long planktonic larval period and is an 

opportunistic predator (Crpthers 1967; 1968). It Is the most common crab 

species along European shores, extending from Tromso (Norway) to Gibraltar 

(Clark et al. 2001; Hayward and Ryland 1990; Kuris et al. 2005). The discovery 

of introduced populations (Australia, Tasmania, South Africa, western North 

America and Japan) in the 1980s established this species as a global invader of 

temperate shores (Yamada et al. 2005). 

Carcinus maenas responds quickly to environmental change, through changes 

in osmoregulation (Bjerregaard and Visle 1985; 1986), respiration rates and 

capability (Arudpragasm and Naylor. 1964a; 1964b; Dawirs 1983; Depledge 

1985; Spicer and Weber 1991), and metabolic and cardiac activity (Cumberlidge 

1977a; 1977b; Depledge 1984; Wallace 1972). The physiological ability of 

C. maenas is a major factor accounting for its widespread distribution (Rainbow 

1997) and has contributed to its success as an Invader (Roman and Palumbi 

2004). Such an ability to respond to physiological challenges (defined as 

phenotypic plasticity) is likely to be a highly advantageous adaptive strategy 

(Brian et al. 2006) and may arise as a result of within-generation selective 

pressures. However, low genetic variability has been shown for shore crab 

populations around the U.K. coasts, indicating that patterns of phenotypic 

variability among shore crab populations are likely to reflect differences between 

local environments (Brian et al. 2006). 

23 



1.6 The biology of the shore crab 

1.6.1 Difference between colour morphs 

Crustacean growth is limited by the exoskeleton and only through the process of 

ecdysis (moulting) can an increase In body size be achieved (Crothers 1967; 

1968). Active feeding occurs during the intermoult stage when energy reserves 

are built up prior to moulting (Crothers 1967). TwQ different colour forms of the> 

shore crab C. maenas (red/green) are found in the adult benthic stage and occur 

due to differential duration of the intennoult stage. The colour forms are 

distinguished and classified according to carapace colour; green (green-yellow) 

or red (dark orange-red) (McGaw et al. 1992; Raid et al. 1997) and will be 

referred hereafter as green or red crabs. Physiological, behavioural and 

ecological distinctions have been documented between the two colour forms 

(McGaw et al. 1992; McGaw and Naylor 1992b; 1992c; Raid et al. 1997). 

Crothers (1968) noted that red crabs inhabited the subtldal and green crabs 

dominated the intertidal; Raid et al. (1997) related this zonation to differences in 

physiology between the colour morphs. Studies assessing the comparative 

physiology of the green and red forms have shown differences in respiration, 

osmoregulation and desiccation and starvation tolerances (Table 1.2). In 

summary, the green form appears to possess Increased 'physiological tolerance' 

to natural abiotic and biotic factors (Table 1.2). 
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Table 1.2 Comparat ive differences between Carcihus maenas 
colour morphs. + signifies increased relative 
tolerance, - signif ies decreased relative tolerance. 

PARAIWETER 

Location 

IWORPH 
GREEN RED 

Intertidal 

REFERENCE 

subtidal (Reid etal. 1997) 

Respiratory 
physiology 

(ReidetaL1997; 
Reid and Aldrich 

1989) 

.Osmoregulatory' 
physiology 

Dessication capability 

(Reid etal. 1997) 

(Reid etal. 1997) 

Low salinity tolerance (McGaw and Naylor 
1992b; 1992c) 

Starvation 
tolerance (Styrishave et al. 

2000) 
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1.6.2 Integrated studies on the shore crab 

Hebel at al. (1997) u s e d a holistic approach to summarise the effects of copper 

upon the physiology of C. maenas (Fig. 1.6). Copper was selected as it is an 

essential trace metal in crustaceans (Hebel et al. 1997), enabling the respiratory 

pigment haemocyanin to transport oxygen (Mangum 1983) and represents 

0 .17% of the functional haemocyanin molecule (Depledge and Bjen-egaard 

1989). Aquatic crustaceans, such as C. maenas, accumulate trace* metals in 

their tissues from water-borne exposure or through dietary intake (Rainbow 

1997). The transport route across membranes is as follows via carrier-mediated 

via membrane proteins, down concentration gradients through protein channels, 

passive diffusion (Lawson et al. 1995) leading to gill structural alterations, and 

finally endocytosis where the metal ion is detoxified via metal-binding proteins 

known as metallothloneins and stored, leading to accumulation within tissues 

and organs (Rainbow 1997). Physiological responses to copper include 

decreases in oxygen consumption, gill ventilation changes and alterations In 

ventilation/perfusion ratios (Hebel et al. 1997). Behavioural effects of copper 

exposure such as mating behaviour of male shore crabs, includes less directed 

searching, decreased display of mating behaviour, increased non-mating 

behaviour, such as pinching and the delayed establishment of the cradle 

carrying posture (Krang and Ekerholm 2006). 
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Fig. 1.6. Compensatory responses of Carcinus maenas following exposure to copper. Taken from Hebel et a l . 
(1997). 
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The review by Hebel et al. (1997) highlighted the Importance of an integrated 

approach to evaluating the physiological performance of an organism to either 

abiotic or biotic factors. These authors advocated the use of a combination of 

multiple measurements of variables (at the different levels of biological 

organisation) which signal the functional status of the organism, thereby, 

signalling the organism's Integrated response (Hebel et al. 1997) (Fig.1.7); 

however, there is a currently a dearth of knowledge Of studies that have utilised a 

holistic approach to evaluating effects at the level of the individual (Spicer and 

Gaston 1999). Studies that focus on linking the levels of biological organisation 

and consider the large-scale relevance of organism response are important in 

achieving the goal of determining ecosystem function (Attrlll and Depledge 1997). 

This holistic, integrated approach is essential for identifying the full impact of 

chemical contamination on organisms (Galloway et al. 2004a; 2004b; 2004c). 

BEHAVIOUR 

P H Y S I O L O G Y 

BIOCHEMICAL C E L L U L A R 

Fig. 1.7 Summary diagram representing the hierarchy of 
biological . organisation, as a framework for 
assessing biological responses in Carcinus 
maenas. 
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The main emphasis of this thesis was on using a holistic ecophysiological 

approach to evaluiating the impact of organic contamination upon C. maenas 

physiology. 

1.7 Aims and objectives 

The aim of this research programme was to elucidate the 'normal' physiological 

ranges of responses in C. maenas, by evaluating the effects of organic 

contamination (using pyrene as a model PAH) upon shore crab physiology. 

Specifically, the objectives were: 

1. To investigate whether physiological differences exist between juvenile 

and adult C. maenas and whether any such differences confer increased 

susceptibility to pyrene exposure (Chapter 3). 

2. To assess whether shore crab physiology varies with nutritional status 

(Chapter 4). 

3. To Investigate whether shore crab nutritional status is an Important factor 

regarding pyrene exposijre (Chapter 5). 

4. To investigate the intraspecific behavioural inriplications (using agonistic 

behaviour) of pyrene exposure and nutritional status (Chapter 6). 

5. To investigate whether a) shore crab physiology varies 'seasonally' within 

a year and b) whether 'seasonal'.differences indicate C. maenas sensitivity 

to PAH exposure, evaluated in estuaries of varying PAH input (Chapter 7). 

Outline of thesis 

A schenriatic outline of the research objectives of the PhD thesis is- provided in 

Figure 1.8. 
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Chapter 1: Introduction 

Chapter 2: iVIaterials & iVlethod 

Gritogenetjc 

Does physiology vary between juvenile 
and adiilt C. mae/Jas; 

Chapter 4: 
Mufritibrialstatus 
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Chapters: 
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exposure 

• Does C; maenas nutritional status confer 
physiplggical tolerance to cbritarninarit 

exposure? 

Chapter 6:-
Theeffecfef physiologic^ ' 
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• Dpes C. maenas physiological condition 
affect intraspecific agonistic- behaviour? 

i 
Chapter:] 

Seasbhal evafuatibn of C, maenas 
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• Does C. maenas physiology a) vary 
'seasonally'and b) do'seasonal' 
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•to. contanlihant exposure? 

Chapter 8: Final discussion and conclusion 

Fig. 1.8 Outline of proposed research objectives for the 
PhD programme. 
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CHAPTER 2: 

Material and Methods 
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2. MATERIAL AND METHODS 

2.1 Shore crab collection 

Male (green) intermoult shore crabs were collected from Jenkins Quay, Avon 

Estuary, Bantham, South Devon, U.K. (grid reference: S X 6623 4380) using 

mackerel-baited traps [Trappy tetra crayfish trap, Collins nets, U.K (dimensions: 

40cm L X 30cm W x 22cm H, 1.5mm mesh)] (Fig. 2.1). Previous evidence 

(McGaw and Naylor 1992a), as well as a pilot study, revealed that two hours 

approaching high water was optimum time for shore crab collection. Shore crabs 

were transported back to the laboratory (45 min) in a cooler box with damp 

absorbent paper. Details of specific laboratory maintenance and exposure 

conditions are described within each experimental chapter. 

Fig. 2.1 Baited traps [dimensions: 40 cm L x 30 cm W x 
22 cm H, (1.5 mm mesh)] used for shore crab 
collection. 
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2.2 Laboratory exposure to pyrene 

Individual crabs were exposed to pyrene at a nominal concentration of 200 pg L'̂  

in 2 L tanks; this pyrene concentration is sublethal for C. maenas (Watson 2004; 

Watson et al. 2002; 2004b). Pyrene (98 %, cat no* 18, 551-5, Sigma-Aldrich, U.K) 

was added to seawater in an acetone carrier (ratio 1:1, w/v pyrene/acetone) to 

increase water solubility: Previous evidence has shown that the acetone carrier 

does not elicit any physiological effects on C. maenas (Dissanayake et al. 2006a; 

2006b; Watson 2004; Watson et al. 2004b). Specific details of laboratory 

exposure duration are described within each experimental chapter (Chapters 3-7). 

2.3 Validation of PAH exposure 

2.3.1 Urine extraction 

To extract urine, crabs were blotted dry using absorbent paper and restrained 

ventrally onto a backboard using elastic bands running across the chelipeds and 

pereopods (Fig. 2.2). 
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Fig. 2.2 Urine extraction and collection from Carcinus 
maenas. 

Using a hooked seeker, the third maxillipeds were moved aside and secured 

using elastic bands, thereby exposing the epistome; to prevent urine dilution from 

water arising from the branchial exhalent chambers, residual water was blotted 

dry using absorbent paper. Each operculum of the antennal gland (situated below 

the second antennae) was prised open using a hooked seeker; urine flowed from 

bladders through the opercula and was collected using a 1 ml syringe with a 10 pi 

pipette tip attached (Fig. 2.2). Urine samples (50-200 pi) were transferred to 

siliconised centrifuge tubes and stored at -20 °C. 
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2.3.2 Urinary PAH metabolite analysis 

Fluorescence analyses were performed using a microplate fluorescence 

spectrophotometer (BIOTEK FL-600) using specific wavelength filter pairs for 

either pyrene (PYR) metabolites (see Chapters 3, 4, 5, 6) or benzo[a]pyrene 

(B[a]P) metabolites (see Chapter 7). Prior to analysis, samples were thawed on 

ice (15 min). Fifty microlitre samples were diluted 1:20 with 50 % ethanol and 

screened for fluorescence using the wavelength pairs shown in Table 2.1; results 

are expressed as fluorescence units (arbitrary units). 

Table 2.1 Wavelength pairs used to discern between PAH 
metabolite groups. 

Wavelength/ Bandwidth (nm) 

Filter set PAH metabolite group 

Pyrene Benzo[a]pyrene 

Excitation 340/11 360/20 

Emission 420/50 420/50 
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2.3.3 1-hydroxypyrene standards 

t h e primary metabolite, l-hydroxypyrene (1-OH pyrene) (Sigma-Aldrich; 36, 151-

8), was used as the standard to semi-quantitatively report the fluorescence from 

urine samples (not the parent compound, pyrene), as it takes into account the 

conjugation of a polar group. 1-hydroxypyrene also closely represents the peaks 

observed in urine samples from C. maenas (Watson et al. 2004b). Results are 

therefore reported as pg L"" of 1-OH pyrene equivalents. In Chapter 7, 

fluorescence from urinary benzo[a]pyrene metabolites are reported but are not in 

terms of 1-OH B[a]P equivalents, due to the unavailability of commercial standard 

solution of 1-OH B[a]P. t h e rationale for measuring metabolite fluorescence was 

to discern between sites where pyrehe or B[a]P peaks may occur indicative of 

PAH exposure (Dissanayake and Galloway 2004). 

2.4 Biochemical and cellular endpoints 

2.4.1 Haemolymph extraction 

t o extract haemolymph, crabs were blotted dry using absorbent paper and 

restrained as described previously. Haemolymph samples were taken from the 

arthrodial membrane at the base of a walking leg (Fig. 2.3). Samples (500. pi) 

were withdrawn Into a pre-chilled 1 ml syringe using a 21 gauge needle, 

transferred into siliconised centrifuge tubes, and stored on ice for analysis of 'live 

cell assays' (see Section 2.4.6) and stored at -80 °C. 
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Fig. 2.3 The arrow indicates location of the arthrodial 
nnembrane at the base of the walking leg where 
haemolymph was sampled. 

2.4.2 Haemolymph preparation (Cold storage assays) 

Thawed (4 °C) haemolymph samples were deproteinated by addition of 0.6 M 

perchloric acid and centrifuged at 10,000 g for 20 min. The resulting supernatant 

was neutralised using 2 M potassium bicarbonate to ensure a pH range of 6 - 8. 

Following the modification by Engel and Jones (1978), EDTA 

(ethylenedinitrilotetraacetic acid) was incorporated within the hydrazine buffer to 

eliminate inhibition of enzyme-catalysed reaction due to traces of heavy metals. 

Samples were centrifuged at 10,000 g for a further 20 min to remove the 

potassium perchlorate precipitate from solution; the resulting supernatant was 

stored at -80 °C for further analysis of haemolymph glucose and lactate 

concentrations. 
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2.4.3 Glucose analysis 

Haemolymph glucose concentrations were determined Using the method of Kunst 

e ta l . (1981). Glucose is phosphorylated by adenosine triphosphate (ATR) In the 

reaction catalysed by hexokinase. Glucose-6-phosphate (G6P) is then oxidized to 

6-phosphogluconate in the presence of oxidized nicotinamide adenine 

dinUcleotide (NAD) in a reaction catalysed by glucose-6-phosphate 

dehydrogenase (G6PDH). During this oxidation, an equimolar arhount of NAD is 

reduced to NADH, leading to a change in absorbance at 340 hm which can be 

measured spectrophotometrically. The consequent increase in absorbance is 

directly proportional to glucose concentration. 

Principle: 

Hexo!<inase 

Glucose + ATP • Glucose-6-phosphate + ADP 

G5PDH 

Glucose-6-phosphate + NAD • 6-Phosphogluconate + NADH 

All reagents were supplied by Sigma-Aldrich Chemical Co . Ltd (Poole, U.K.). 
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2.4.4 Lactate analysis 

Haemolymph L-lactate concentrations were determined using the method of 

Gutmann and Wahlefeld (1974) with the suggested modification by Engel and 

Jones (1978). The assay was carried out In a microplate format (Briffa and 

Eiwood 2005). A mixture of glycine-hydrazine buffer, oxidized nicotinamide 

adenine dinucleotlde (NAD) (40 mM) and lactate dehydrogenase (600 Units mg 

protein'?) was added to 20pl of sample (ratio 20:1, v/v). Lactate concentrations 

were determined spectrophotometrically at 340 nm after 2 h at 37 °C. Lactate 

standards ( 0 - 2 mM) were used for lactate concentration determination. 

Principle: 

L-(+)-Lactate + NAD* <^ NADH + 

LDH 

2.4.5 Total antioxidant status 

Reactive oxygen species (ROS) are oxygen derivatives, produced both 

endogenously and as a result of P A H exposure, which may lead to molecular and 

cellular effects, such as DNA adducts and membrane damage (see Chapter 1, 

Section 1.2.4). The potentially harmful effects of R O S are negated by the 

enzymatic, and non-enzymatic components of the antioxidant capability of the, 

organism. A biological antioxidant is defined as any substance that, when present 

at. low concentrations compared to those of an oxidisable substrate, significantly 

delays or prevents oxidation of that substrate (Halliwell and Gutteridge 1995). 

'Antioxidant power' is referred to as the reducing ability of the substrate. A 

measure of antioxidant power is used here in vitro to determine the ferric reducing 

ability of plasma (FRAP) of C. maenas haemolymph. This method works using 
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reductants in a non-specific redox-linl<ed colourmetrio metiiod employing an easily 

reduced oxidant (Fe"'-TPTZ complex) in stoichiometric excess, which is reduced 

to the ferrous form (Fe"-TPTZ complex) to forni an intense blue colour which 

strongly absorbs at 593nm (Benzie and Strain 1996). 

Prior to analysis, samples were thawed on ice (15 min). Haemolymph samples 

were centrifuged at 4500 g and 10 pi of the sample supernatant (plasma) was 

added to 96-well microtitre plates for analysis. A working F R A P reagent was 

produced by mixing SOOmM acetate buffer (pH 3.6), 10 mM 2, 4, 6 -tripyrldyl-s-

triazine (TPTZ) solution and 20 mM FeCla.eHaO in a 10:1:1 ratio. The 300 mM 

acetate buffer was prepared by mixing 3.1 g of sodium acetate trihydrate 

(C2H3Na02.3.H20) (Sigma, U.K) with 4 ml glacial acetic acid and brought to 1 L 

with distilled water. The TPTZ solution was prepared by making a solution of 

10 mM T P T Z in 40 mM HCI. Two hundred microlitre aliquots of the F R A P reagent 

mix "was added to each sample and incubated at 37°C for 10 min. Standards of 

known Fe (II) concentrations (FeS04.7H20) were added between 0 and 1000 pM 

for F R A P determination. F R A P values were determined spectrophotometrically 

by measuring the absorbance at 593 nm, taken at both 0 and 10 min. Results 

were determined by subtraction of values at t lO from tO and expressed as pM L'''. 

2.4.6 Haemolymph preparation ('Live cell' assays) 

Haemolymph samples (30 pi) were pipetted into poly-L-lyslne-coated 96-well 

microplates and analysed in duplicate. Plates were agitated gently in a plate 

shaker at 200 rpm for 60 sec and incubated at 10 °C for 50 min to promote 

adherence and formation of a cell monolayer. 
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2.4.7 Cellular integrity (Eosin Y dye exclusion assay) 

Dye exclusion methods are based on the fact that, firstly, intact membranes are 

impermeable to large or charged molecules and, secondly, maintain cytoplasmic 

gradients thereby retaining intracellular concentrations of ions. Permeability of the 

cytoplashiic membrane indicates moribund or dead cells (Coder 1997). EosIn Y 

(tetrabromofluorescein) is a fluorescein-derivative stain with an absorption 

maxima between 515 and 518 nm (Constantino et al. 1995); the principle of this 

assay is that healthy cells with intact plasma membranes (full integrity) can 

exclude eosin Y, whereas, injured cells rapidly take up the dye (Lowe and Pipe 

1994). 

To measure membrane damage, haemolymph samples were incubated with 

Eosin Y dye at a 1:10 ratio at 10 °C for 10 min. Following incubation, cells were 

fixed using Baker's formol calcium (BFC) (2 % NaCI, 1 % Calcium Acetate, 4 % 

Formaldehyde), washed once with phosphate buffer (PBS; 0.01 M phosphate 

buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 7.4, Sigma-

Aldrich, U.K), and centrifuged at 70 g for 5 min to remove residual dye. Cells 

were lysed using 1 % acetic acld-50 % ethanol solution (100 pi) to release any 

incorporated dye (Asamples). The optical density of each sample was determined 

spectrophotometrically at 518 nm. To quantify the amount of Incorporated dye, 

and express percentage cellular integrity, 2 pi of Eosin Y and the acetic acid 

solution (98 pi) was used to solubilise the Eosin Y dye; this value was used as the 

absorbance of the dye (Adye). 
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The lysed cell suspension was removed (90 pi) following centrifuging at 70 g for 1 

min and the remaining cell suspension (10 pi) in the plate was analysed for 

haemocyte protein-concentration (see Section 2.4.10). The following equation 

was used to calculate cellular integrity (see below). Cellular Integrity is expressed 

as Eosin Y absorbance at 518 nm per mg.protein. 

Asamples x l O O = % cellular integrity 

Adye 

2.4.8 Lysosomes and oxidative stess 

Lysosomes are highly conserved intracellular organelles within eukaryotic cells 

and are identified on the basis of two criteria: a surrounding membrane and the 

presence of enzymes (acid hydrolases) (de Duve 1983). Autophagy (self-eating) 

is a homeostatic intracellular process whereby.intracellular degradation/recycling 

of proteins occur. It contributes to the turnover of cellular components by 

delivering portions of the cytoplasm and organelles to lysosomes, where they are 

digested (Yoshimori 2004). Autophagy takes part in cell survival and death, and 

has been Implicated In development, aging, neurodegeneration and cancer 

(Deretic 2006). Lysosomes are integral to cellular functioning as they are the sites 

of macromolecular degradation and recycling via the system of digestive enzymes 

(de Duve 1983). This enzymatic action functions optimally at low pH and is 

maintained by ah ATP-dependent proton pump located in the membrane (de Duve 

1983). 

The lysosomal system of cells has been the central focus of cellular-based toxicity 

studies, as these intracellular organelles are known for their ability to facilitate the 

sequestering of contaminants, such as metals and organic compounds (Babich 

42 



and Borenfreund 1991). On the basis of contaminant sequestering ability of 

lysosomes, mammalian cells have been used in regulatory toxicology studies, 

through use of a colourimetric dye method, as a tool for both detecting and 

quantifying the potencies ofchemical compounds and in environmental monitoring 

studies (Babich and Borenfreund 1991; 1993). Consequently, lysosomes have 

been used as an indicator of cellular viability due to their sequestering properties, 

and have been evaluated in various freshwater and marine bloindicator species 

for environmental contamination (ICES 2004). For C. maenas, lysosomes are 

found within the hyaline cells which are important In terms of phagocytic activity 

(the innate immune function in crustaceans; see below) (Ratisliffe and Rowley 

1979). The haemocytes of Crustacea have been reported to be involved in 

carbohydrate metabolism, to form a reservoir of free amino acids, to assist in the 

relocation of lipoproteins during moulting and to be actively involved in the host 

defence mechanisms (phagocytosis) (Ratcliffe and Rowley 1979). 

Lysosomes play an important role in sequestration and detoxification of metals 

and organic conripounds but previous studies have shown that overloading of the 

storage capacity may contribute to alterations In the integrity of lysosomal 

membrane (Lowe and Pipe 1994; Lowe et al. 1995b). -Under severe 'stress', 

alteration of the lysosomal membrane may be so great as to result in loss of 

hydrolytic enzymes outside the organelles which may lead to autophagy. The 

latter forms the principle of using indicator dyes as tools for evaluating lysosomal 

function (Babich and Borenfreund 1991; 1993; Lowe et al. 1995a; Lowe et al. 

1992; Lowe and Pipe 1994; 1995b). Winston and Di Guilio (1991) demonstrated 

in mussels that lysosomal destabilisation was affected by production of 

oxyradicals generated from contaminant exposure, both internally and externally 

to the lysosomal membrane. 
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2.4.9 Cellular viability (Neutral red retention assay) 

t h e neutral red (NR) assay Is based on the Incorporation of the supravital dye NR 

within the lysosomes of cells, th is weakly cationic dye penetrates cell 

membranes by non-ionic diffusion and binds intracellularly to sites of the 

lysosomal matrix. Contaminants that .injure the plasma or lysosomal membrane 

decrease the uptake and subsequent retention of the dye. Dead or damaged cells 

cannot retain the dye after washing and fixation procedures (Babich and 

Borenfreund 1991). 

Haemolymph samples were incubated with an excess (200 pi) of neutral red 

solution (0.004 %) and incubated at 10 °C for 3 h to allow for uptake of the dye. 

Following Incubation, the medium was removed and fixed using Baker's fonnol 

calcium (BFC). Any excess dye, which is not fixed intracellularly, is removed 

from solution by washing three times with phosphate buffered saline (PBS) and 

centrifuged at 70 g for 5 min. A 1 % acetic acid-50 % solution (200 pi) was used 

to lyse the cells and extract the neutral red dye. t h e optical density of each 

sample was deterniined spectrophotometrically at 550 nm. An aliquot of the cell 

lysate suspension (190 pi) was removed following centrifuging at 70 g for 1 min 

and the remaining cell suspension (10 pi) in the plate was analysed for haemocyte 

protein concentration (see section 2.4.11). Cellular viability results are expressed 

as neutral red dye absorbance at 550 nm per mg protein (Galloway et al. 2004c). 
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2.4.10 Phagocytosis 

All crustaceans have an open vascular system and hence the rationale for the 

blood to be termed haemolymph and the cells known as haemocytes (Bauchau 

1981). Haemocyte functions Include coagulation and wound repair, phagocytosis, 

transport and synthesis of carbohydrates, and indirectly, osmoregulation via 

contribution to the free amino acid pool (Bauchau 1981). The phagocytic 

capability of crustaceans serves to remove foreign particles, such as water-borne 

bacteria that may be incorporated into the open vascular system. Phagocytosis is 

performed by the alpha cells (Johnstone et al. 1973; Smith and Ratcliffe 1978) 

also known as the hyaline cells (Ratcliffe and Rowley 1979). There are ca. 

2.5 X 10® circulating haemocytes in C. maenas, and around 80 % of these cells 

are capable of phagocytpsis thereby underscoring the phagocytic ability of this 

species (Smith and Ratcliffe 1978). 

A 50 pi aliquot of neutral red (NR) stained, heat-stabilised zymosan (Sigma-

Aldrich) particle suspension containing 1x10^ particles ml'^ in P B S was added to 

the haemolymph. Microtitre plates were incubated at 10 °C for 30 min. Cells 

were fixed using B F C and the microtitre plates were centrifuged at 70 g for 5 min, 

and washed three times in P B S to remove excess zymosan particles. 

Suspensions of known zymosan concentrations were aliquoted (50 pi) to duplicate 

wells just prior to the last centrifugation to provide a standard curve ( 0 - 5 x 1 0 ^ 

zymosan particles). Acetic, acid (1 %) in 50 % ethanol (100 pi) was added to each 

well to solubilise the haemocytes and release the engulfed zymosan particles into 

suspension. An aliquot of the cell lysate suspension (190 pi) was removed 

following centrifuging. at 70 g for 1 min and the remaining cell suspension (10 pi) 

in the plate was analysed for haemocyte protein concentration (see Section 

2.4.11). The optical density of each sample was determined 

45 



spectrophotometrically at 550. nm. Phagocytic index was expressed as 

absorbance of NR-stained zymosan particles x 10'' per mg protein. 

2.4.11 Haemolymph protein determination 

Haemolymph protein concentration was quantified using a protein reagent kit 

(Pierce, U.K). The Pierce bicinchoninic acid (BCA) protein reagent reacts with 

protein to form a purple reaction product and Its absorbance can be determined 

spectrophotometrically at 550 nm. Two protein reagents (A and B) were mixed 

prior to protein determination (ratio of 1:50), the reagent mix was added (200 pi) to. 

haemolymph samples (10 pi) and incubated at 37 °C for 30 min. Optical density 

was expressed as mg per ml of protein. Bovine serum albumin (Sigma, U.K) was 

used as a standard protein solution to produce a standard curve (0.2 - 2 mgmr""). 

2.4.12 Haemocyanin determination 

Haemocyanin, the respiratory pigment of Crustacea, is metabolised under food-

limiting situations (Taylor and Anstiss 1999), and used as an energy reserve 

(Uglow 1969). Concentrations of the respiratory pigment haemocyanin [He] were 

determined using the spectrophotometric method determined by Nickerson and 

van Holde (1983). Fifity microlitres of haemolymph diluted with 950 pi of P B S 

(Sigma, U.K.) was used for [He] using 1.5 ml quartz cuvettes at an absorbance of 

335 nm. Haemocyanin concentration was calculated using the extinction 

coefficient {e = 14.2) (see equation below) (Nickerson and van Holde 1983). 

A335 = s c L 

Where: 

A = molar absorptivities 
£ = molar extinction coefficient 
c = molar concentration 
L = Light path (1cm) 
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2.5 Physiological endpoints 

2.5.1 Cardiac activity 

The mean resting heart rate (/H) of crabs was measured using the non-invasive 

Computer-Aided Physiological MONitoring system (CAPMON) described by 

Depledge and Andersen (1990). In summary, a coupled infrared transmitter and 

photo transducer detector unit is glued (using cyanoacrylate glue) onto the 

carapace above the heart (Fig. 2.3). Due to conformational changes of the heart 

with each heartbeat, the intensity of light reflected back to the detector is observed 

to fluctuate. The registered signal is fed to a computer where the signal is 

converted via an analogue digital converter. Heart rate can be determined 

continuously every minute for extended periods where the data are stored for 

analysis. 

Fig. 2.4 The position on the crab carapace where the 
CAPI^ON sensor is placed to record cardiac 
activity. 
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2.5.2 Scope for Growth » 

Growth is a fundamental property of all living organisms and is imperative for the 

survival of a population. The amount of energy production represents the 

difference b e ^ e e n an individual's energy intake and energy output (Bayne 1984). 

Changes in the amount of energy incorporated in growth or reproduction is 

described by the following equation: 

P =A - {R +U) 

Where: 

P = energy incorporated into somatic growth and gamete production 
A = energy absorbed from food 
R = energy respired 
U = energy excreted 

This energy budget provides a means of integrating fundamental physiological 

processes (feeding, food absorption, respiration and excretion) into an energy 

index available for growth and reproduction, termed "Scope for Growth (SfG)" 

(Bayne 1984). Scope for growth is a useful index as it provides information about 

the organism's response to the environmental stimulus. Each component of the 

SfG equation was measured as outlined in the following sections and expressed 

as the integrated S /G index (Section 2.5.6). 
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2.5.3 Measurement of oxygen consumption 

Oxygen measurements were performed using 1 L Perspex respiration chambers 

(with sealed o-rings) designed for oxygen consumption using a static recirculating 

system (Fig. 2.5). One crab was placed per chamber (30 min acclimation) with 

'open' (i.e. recirculating water: open tap) water flow, and water samples were 

taken at the start (to) and following 30 min (tso) during 'closed' (static water; closed 

tap) water flow to determine dissolved oxygen concentrations (mg L'^). 

Concomitant heart rate measurements demonstrated that 30 min acclimation was 

adequate time for the heart rate levels to decrease from 'active' (i.e. handling 

stress) .state to 'resting' levels. Oxygen concentrations were measured using a 

Cellox 325-3 oxygen probe (Multi 340i/SET, WTW, Germany). Oxygen 

consumption measurements (i.e. tao - to) were perfonned in a temperature-

controlled room (15 ± 1 °C) at 32 ppt. After each set of oxygen measurements, 

crabs were removed from test chambers, blotted dry using absorbent paper and 

wet-weighed (± 0.01 mg) using a balance (Sartorius B3100P) and converted to 

dry weight (Roast et al. 1999a) to allow for weight-specific expression of oxygen 

consumption rates and expressed as mg O2 L"̂  g dry weight"'' hr'\ 
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Fig. 2.5 Diagrammatic representation of a recirculating 
system used for oxygen consumption in Carcinus 
maenas. Water flow from reservoir (1) fed into 
individual chambers [represented by red lines 
(2a)], water taken for oxygen consumption 
measurements through chamber outflow valve 
containing decreased oxygen concentrations 
during 'closed' water flow (2b).. During 'open' 
water flow, i.e. recirculating, water is collected 
into a sump (3) and transferred to a secondary 
sump (4) where it is filtered (10 pm filter) and 
pumped into the reservoir for recirculation. 
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2.5.4 Measurement of egestion rates 

Egestion rates (faecal production) were measured as a surrogate for ingestion 

rates (as egestion correlates with ingestion) by adaptation of a method described 

by Roast et al. (1999b). Pre-weighed food [y-irradiated cockle tissue (Gamma 

foods, T M C , Bristol, U.K) 1 g ± 0.01 mg] was introduced to individual crabs and 

faeces were collected using a plastic Pasteur pipette: Faeces were rinsed with 

distilled water and stored in pre-weighed centrifuge tubes at -20 °C for analysis 

and expressed as mg per g dry weight per h. 

2.5.5 Measurement of absorption efficiency 

Crab absorption efficiency was estimated by the ratio method based on the 

proportion of the organic material (the ash-free material) in the food and the 

faeces (COnover 1966) and calculated using the following equation (1): 

(1) Absorption efficiency = (F-E) / [(1 - £) x F ] 

Where: 

F = ash free dry weight: dry weight ratio of food 
E =ash free dry weight: dry weight ratio of faeces 

Oven-dried (60 °C) material (food/faeces) (± 0.01 mg) (dry weight) was placed into 

ashed, pre-weighed aluminium foil containers. The containers were ashed at 

450 °C for 2 h to combust fully the organic material and re-weighed (± 0.01 mg) to 

ascertain the ash content of the organic material (ash free dry weight). 
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2.5.6 • Calculation of Scope for Growth (SfG) Index 

Carcinus maenas SfG was calculated by converting oxygen consumption and 

ingestion rates into energy equivalents (J h" )̂, and calculating the net energy 

gain/loss using the following equation (2): 

(2) P =A - {R + U) 

Where: 

P = SFG (J mg dry w f ^ h"^) 
A = energy absorbed (J mg dry wt"^ h'^ ) 
R = energy excreted (J mg dry wf^ h'^ ) 

Components of equation 2 (A and R) were calculated using equations 3 and 4 and 

transformed into energy equivalents: 

Enemv absorbed: 

(3) A = C x Absorption efficiency 

Where: 

A = energy absorbed (J mg dry wf^ h'^ ) 
C = energy consumed (J mg dry wf^ h'^ ) 
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Energy respired: 

(4) R = oxygen consumption (pi 62 mg dry wt"^ h" )̂ x 0.02008. 

R = energy respired (J mg dry wt"^ h"̂ ) 

Oxygen consumption rates were converted to dry-weight specific rates 
(ca. 20 % for decapod crustaceans) (Roast et al. 1999b). 

0.02008 J(pl Oz'^) = heat equivalent of oxygen uptake (Gnaiger 1983). 

The rate of ammonia excretion is usually correlated closely with respiration rate 

and contributes < 5 % of the metabolic energy expenditure and was therefore 

omitted from the SfG calculation (Widdows and Staff 1997). Ammonia excretion 

was not measured here, thus SfG was calculated from the equation P =A-R. 

2.6 Statistical analyses 

Two methods of statistical analyses are used throughout the thesis. To test for 

treatment differences in a single variable, univariate analyses are applied. To 

establish the integrated response of all physiological variables to signal 

physiological condition, multivariate analyses were used. 
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2.6.1 Univariate 

Univariate analyses of variance {ANOVA) tests were performed using G M A V 5 for 

Windows ® (Underwood 2005). ANOVA tests (othenwise stated) were performed 

using untransfdrmed data, Significarit differences between treatment groups are 

highlighted with rejection of the null hypothesis at the 5 % probability level (P < 

0.05). 

2.6.2 l^ultivariate 

Multivariate analyses were performed using PRIMER © v6 (Plymouth Routines in 

Multivariate Ecological Research, PR IMER-E Ltd).. Various analytical tests were 

used to identify the data. Tests are based upon triangular euclidean (geonrietric) 

distance resemblance matrices using normalised data (i.e. subtracted by the 

mean and divided by the standard deviation). 

2.6.2.1 Analysis of sifnilarity (ANOSIM) 

ANalysis Of SIMIIarity (ANOSIM) tests were used to test for differences between 

treatment groups. ANOSIM R values are expressed between 0 and 1, where 

large values indicate discrimination between painwise Interactions (Clarke and 

•Wanwick 2001). For analyses where there are more than two.palnwise tests, a 

significant result is attained when the pairwise R value is greater than the Global 

R value. 
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2.6.2.2 Index of multivariate dispersion (IMD) 

Pairwise comparisons between treatment groupings are expressed using IMD 

values (between a minimum of -1 arid a maximum of +1) to denote the sample 

variability within a group compared to that of another group (Wanwick and Clarke 

1993). A value of +1 occurs when all similarities amorig impacted samples are 

lower than any similarities among control samples and the converse situation 

yields a value of -1 . A value of 0 is indicative of no difference between treatment 

groups (Wanwick and Clarke 1993). 

2.6.2.3 Similarity of percentages (SIMPER) 

SIMPER procedures are not formal statistical tests but exploratory analyses used 

to compare two groups at a time, identifying influential variables for each specific 

comparison (Clarke and Warwick 2001). S IMPER analyses are used here to 

indicate which physiological variables were responsible (i.e. percentage 

contribution) for the treatment differences (if any) as revealed by ANOSIM tests. 
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CHAPTER 3: 

Does physiology vary between juvenile 
and adult Carcinus maenas (L.)? 
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Does physiology vary between juvenile and adult Carcinus maenas (L.)? 

Abstract 

The aim of the present study was to test the hypothesis that adult and juvenile 

crabs are physiologically distinct and, consequently, will exhibit different 

sensitivities to contaminant exposure. Various aspects of the physiology of 

juvenile (< 35mm CW) and adult (> 60mm CW) crabs were measured immediately 

following collection; physiological assessment was based on a repertoire of 

biological responses at successive levels of biological organisation (biochemical 

to physiological). Univariate analysis of newly-collected crabs (n = 18) 

demonstrated that juveniles had lower immune capability (0.03 ± 0.02 vs. 0.07' 

±0.07 zymosan particles 10^ mg protein'"'), lower metabolic energy (25.71 ± 14.42 

vs. 36.88 ±13.82 pg L"̂ ) and increased scope for growth (S/G) (24.62 ± 12.84 vs. 

2.6 ± 1.18 J mg''' dry wt'"' hr^) compared with adults. Following a seven-day 

sublethal exposure to pyrene (200 pgL'^), exposed juveniles exhibited decreased 

immunocompetence (phagocytic index and cellular integrity) (P < 0.05), 

significantly elevated (19%) basal heart rate and significantly decreased (55 %) 

respiration rate (at rest) (P < 0.05) compared with unexposed juveniles. Although 

univariate analyses highlighted significant 'stress' responses in juvenile and adult 

crabs with exposure to pyrene, multivariate analysis revealed degradation in 

physiological condition in only juvenile shore crabs. Adult crabs were more 

tolerant than juveniles of pyrene exposure. Results confirm that juvenile and adult 

C. maenas vary physiologically and as such, juvenile shore crabs are more 

susceptible to the effects of pyrene exposure. 
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3.1 INTRODUCTION 

The shore crab Carcinus maenas inhabits various coastal habitats including 

estuaries (Crothers 1968), Estuaries are highly productive habitats but are 

characterised by wide and acute fluctuations of abiotic conditions such as salinity 

and temperature (Rewitz et al. 2004). To cope with such environmental variability, 

shore crab physiology is highly robust and C. maenas is euryhalihe (AbellP et al. 

1997; McGaw and Naylor 1992c; Rainbow and Black 2001, 2002; Reid et al. 

1997) and eurythermal (Aagaard 1996; Camus .et al. 2004; Cumberlldge 1977a; 

Taylor 1973). In addition, adult crabs express a tidal migration from the subtidal to 

the intertidal and, by entering the estuary at high tide and leaving before low tide 

(Dare and Edwards 1981; Hunter and Naylor 1993; Rewitz et al. 2004;.Warman et 

al. 1993), they exploit food resources and limit exposure to extreme environmental 

abiotic ranges (Kaiser et al. 1990; Reid et al. 1989). Juvenile shore crabs inhabit 

the intertidal (Crothers 1968), often within estuaries (Crothers 1968); the latter 

acting as a nursing ground, as reported for other crustacean species (Epifanio et 

al. 2003; Haywood et al. 1998; Morgan et al. 1996). 

Many crustaceans move as adults from the intertidal to the subtidal (Rainbow and 

Black 2005) and it is believed that crustacean physiology needs to be 

'physiologically competent' to cope with such ecological transitions (Morritt and 

Spicer 1999). It is well established that some aspects of crab physiology vary with 

developmental stage; for example, there is greater variation in heart rate of 

juvenile C. maenas compared to adults during the tidal cycle (Depledge 1992; 

Newell et al. 1972). The physiological tolerance at any life-cycle stage determines 

the survival potential of individuals (Hebel et al. 1997). Currently, there is a lack of 

information regarding the physiology of juvenile C. maenas. In this chapter, the 

hypothesis that the enhanced tolerance of adults compared with juvenile C. 
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maenas would be reflected in an increased ability of the adults to tolerate 

contaminant-induced stress (in the form of pyrene exposure) was tested. 

Pyrene, a polyaromatic hydrocarbon (PAH), is one of a group of highly lipophilic 

organic compounds that are ubiquitous pollutants of the marine environment 

(Dissanayake and Galloway 2004). In the marine environment, PAHs originate 

from petrochemical pollution and from incomplete combustion processes (Clarke 

et al. 2001). There is concern over the fate and effect of P A H s in the marine 

environment due to their persistence, bipaccumulatlon potential, and acute and 

chronic toxicity to marine organisms (Clarke et al. 2001; Livingstone 1992, 1998). 

Pyrene toxicity can arise inthe form of membrane damage, enzyme inactivation or 

damage by reactive oxygen species produced by pyrene metabolism (see 

Chapter 1, Section 1.2). A sublethal exposure was used here as means of 

imposing contaminant-induced injury, allowing assessment of the potential 

differential susceptibility of juvenile and adult stages of the shore crab to pyrene 

exposure. Exposure, and subsequent metabolism of P A H compounds by 

organisms, results in metabolites of the parent compound being concentrated in 

body fluids, tissues and excreta (Dissanayake and Galloway 2004). The presence 

of such metabolites in crab urine is used here as a surrogate measurement of 

detecting exposure to bioavailable contaminants (Fillmann et al. 2002). 

The aim of this study was to establish how juvenile and adult C. maenas 

responded to sublethal exposure (200pgL'^ for seven days) to the P A H , pyrene. 

To achieve this aim, the physiological condition of juvenile and adult crabs was 

measured (a) directly from the field (immediately upon collection within 24 h), and 

(b) after pyrerie exposure (after seven days). 
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3.2 MATERIAL AND METHODS 

3.2.7 Shore crab collection and maintenance 

Juvenile (<35mm carapace width (CW)] and adult (>60mm CW) (Crothefs 1967) 

male (green) intermoult Carcinus maenas {n = 36) were collected from the Avon 

Estuary, Bantham, South Devon, U.K. (grid reference: S X 6623 4380) on two 

occasions (23''' November and 26"" November 2004) using mackerel-baited traps 

(Chapter 2, Section 2.1). In the laboratory, crabs were subjected to an 

assessment of their physiological condition within 48h of collection and maintained 

in static holding tanks containing filtered (10pm carbon filtered), aerated seawater 

(34ppt, 15 ± 1°C) under a 12h light: 12h dark photoperiod for seven days. Crabs 

were fed twice weekly with y-iiTadlated cockle {Cerastoderma edule) (Gamma 

foods, tropical Marine Centre, Bristol, U.K.) and water was changed within 18h of 

each feeding. 

3.2.2 Physiological assessment of newly-collected crabs 

" Each crab was numbered using a label attached (cyanoacrylate glue) to the 

carapace; carapace width (mm) and wet weight (g) were recorded, and crabs 

were grouped (based on CW) as juveniles (<35mm) and adults (>60mm CW) {n = 

18/group). To establish physiological condition, the following biological responses 

were measured at successive levels of biological organisation: (1) biochemical 

(glucose determination, antioxidant potential), (2) cellular (cellular viability, cellular 

Integrity and phagocytosis index) and (3) physiological [haemocyanin and scope 

for growth (SFG)]. Measurements of respiration and egestion rates (components 

of S F G ) were taken iariof to haemolymph sampling. Haemolymph samples 

(lOOpl) were extracted by puncture of the arthrodial membrane at the base of the 

4*'' walking leg using a pre-chilled 1ml syringe and 21 gauge needle (Slgma-

Aldrich, U.K). Cellular assays were conducted immediately post-haemolymph 
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.sampling. Haemolymph samples were snap-frozen using liquid nitrogen arid 

stored at -80°C for all subsequent analysis. 

3.2.3 Biochemical techniques 

Total antioxidant status: determined by measuring the combined reducing power 

of the electron-donating antioxidants present (i.e ferric reducing antioxidant 

potential) (Benzie and Strain 1996; Rickwobd and Galloway 2004). A 

stoichiometric excess of the oxidant ferric tripyridyltriazine (Fe'" -TPTZ) was added 

to each lOpI sample (SOOpI of lOmM In 300 mM sodium acetate, pH 3.6) and its 

reduction to the ferrous form (Fe") measured spectrophotometrically after 10 mins 

at 593nm (see Chapter 2, Section 2.4.5 for details). 

Glucose concentration in haemolymph: glucose concentrations were assayed 

according to the method of Kunst et al. (1981) (see Chapters , Section 2.4.3 for 

details). 

3.2.4 Cellular techniques 

Cellular viability: determined using a dye uptake method as described by 

Galloway et al. (2004c) (see Chapter 2, Section 2.4.9 for details). 

Cellular integrity: cell functionality (i.e. dead or viable) was determined using a 

dye exclusion method whereby 2mg ml""* Eosin Y was added to haemolymph 

samples (20pl) at a ratio of 1:10. Following 10 min incubation and washing cycle, 

the absorbance of the residual dye was measured spectrometrically at 518nm. 

Viable cells stain light green (due to dye exclusion) whereas dead and moribund 

cells stain red (see Chapter 2, Section 2.4.7 for details). 
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Phagocytosis index: the phagocytic capability of haemocytes was evaluated by 

measuring the active 'uptake of neutral red-stained zymosan particles as 

described by Parry and Pipe (2004), and employed by Galloway et al. (2004c) 

(see Chapter 2, Section 2.4.10 for details), 

3.2.5 Physiological techniques 

Haemocyanin concentration [He]: was estimated for individuals using the 

established spectrophotometric method (Nickerson and van Holde 1983). Fifty 

microlitres of haemolymph were diluted in 950pl of physiological saline; the 

absorbance of the mixture was measured at 335nm using quartz cuvettes (Sigma, 

U.K) and expressed in mg ml"^ using the 1% extinction coefficient given by 

Nickerson and van Holde (1983) (see Chapter 2, Section 2.4.12 for details). 

Scope for growth (SFG): calculated measuring various physiological components 

(see Chapter 2, Section 2.5.2 for details)' and the net energy gain/loss through 

these physiological processes using the following equation: 

P = A-R 

Where: P = SFG (J mg dry wt"̂  h"""), A = energy absorbed (J mg dry wt"̂  h'"") and R 

= energy respired (J mg dry wt"̂  h'"') (Widdows eta l . 1995). 
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3.2.6 Experimental design and post-exposure assessment 

Six groups, eacii of 6 crabs (a - c = Juveniles, d - f = adults), were exposed 

individually (1 crab per tank; 36 in total) under the following treatments: controls (a 

and d); solvent controls (acetone, 0.005%) (b and e) and exposed 200pg r"* 

pyrene (nominal concentration) (c and f) (Table 3.1). Each group was exposed for 

7 d; crabs were fed individually on 1g of y-irradiated cockle every two days and 

water was changed within 18 h of feeding. 

Table 3.1 Treatment groupings of exposed crabs. Subscript 
letters indicate treatment groups; a-e =juvenile 
treatments, d-f = adult treatments (n = 6). 

Treatment Juveniles Adults 

Control 6^ 6^ 

Solvent control 6'' 6^ 

P Y R 6° 6̂  

Post-exposure assessment of physiological condition included the biological 

responses described previously (see Sections 3.2.3 - 3.2.5) with the additional 

physiological nrieasurement of heart rate monitoring (30 min recordings) using the 

C A P M O N system (Depledge and Andersen 1990). To semi-quantify pyrene 

exposure, fluorescence analysis for 1-hydroxylpyrene-type metabolites ( l -OH) 

was performed on diluted urine samples (lOpI jn 50% ethanol, ratio 1:20) sampled 

from the antennal gland (Dissanayake and Galloway 2004; Watson et al. 2004b) 

(see Chapter 2, Section 2.3.2 for details). 
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3.2.7 Statistical analysis 

Two methods of statistical analyses were used to isolate significant differences in 

physiological condition of newly-collected juvenile and adult C. maenas, and to 

identify toxicant sensitivity via contaminant exposure. . Univariate {ANOVA or 

Kruskal-Wallls) analyses were performed to test for differences for a single 

parameter between experimental groups. To attain an integrated summary of the 

contaminant Impact, multivariate analyses tested for differences between the 

experimental groups via the complete repertoire of biological responses 

measured. Univariate statistical analyses were perfomied using GMAV5 for 

Windows ® or StatGraphics® Plus v5 (Statistical Graphics Corporation). 

Treatment differences were analysed using either the parametric ANOVA test or 

non-parametric Kruskal-Wallis test, dependent upon homoscedasticity of data 

(Kruskal and Wallis 1952) (see Chapter 2, Section 2.6.1 for details). 

Multivariate analysis was carried out using PRIMER® v6 (Plymouth Routines in 

Multivariate Ecological Research, PRIMER-E Ltd). ANOSIM (ANalysis Of 

Similarities) tests were Used to test for similarities between ontogenetic stages. 

ANOSIM R values are expressed between 0 and i Large values indicate 

discrimination between pairwise interactions (Clarke and Warwick 2001). A 

comparative index of multivariate dispersion (IMD) is also expressed and uses 

pairwise comparisons for denoting the sample variability within a group compared 

to that of another group (Wanwlck and Clarke 1993). IMD values are between a 

mimimum of -1 and a maximum of +1. A value of -1 implies no difference 

between treatment groups and +1 occurs when all similarities among impacted 

samples are lower than any similarities among control samples (Warwick and 

Clarke 1993) (see Chapter 2, Section 2.6.2 for details). 
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3.3 R E S U L T S 

3.3.1 Physiological assessment of newly-collected crabs 

There were significant differences in several biological responses between 

juvenile and adult C. maenas (Table 3.2). Juveniles had significantly higher cell 

viability {ANOVA, Fi_34 = 16.90, P < 0.01) (Fig. 3.1a), respiration rates {ANOVA, 

Fi,34 = 13, P < 0.01) (Fig. 3.1b) and S F G {ANOVA, F^,29 = 46.44, P < 0.001) (Fig. 

3.1c) but lower haemolymph glucose {ANOVA, Fi,34 = 5.62, P < 0.05) (Fig. 3.1d) 

and phagocytic capability {ANOVA, Fi^34 = 7.07, P < 0.05) (Fig. 3.1e) than adults. 

Painwise ANOSIM tests confirmed that the physiological condition of the two 

ontogenetic stages was different, and that juveniles have different ranges for a 

-number of their biological responses, whilst maintaining 'normal' function 

conipared to adults [R = 0.915, P (%) = 0.001,Table 3.3a]. 
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Table 3.2 Physiological assessment of newly-collected juveni le 
and adult Carcinus maenas: 

RESPONSES 

(mean ± SD) 

JUVENILES • 
(n = 18) 

ADULTS 
(n = 18) 

STATISTICAL 
SIGNIFICANCE 

- _i 
6 
z 
LU 
X 
(J 
o 

GLUCOSE 
(KG L-^) 

25.71 ± 14.42 36.88 ± 1 3 . 8 2 

ANOVA, 
Fi, 34 =5.62, 

P< 0.05 

- _i 
6 
z 
LU 
X 
(J 
o ANTIOXIDANT 

POTENTIAL 
(|JML-^) 

331 ± 122 346 ± 147 NO 
DIFFERENCE 

al 

3 _i 
Lit 
U 

CELLULAR 
INTEGRITY 

(%) 

79.35 ± 11.35 75.69 ± 13.65 NO 
DIFFERENCE 

al 

3 _i 
Lit 
U 

CELLULAR 
VIABILITY 

(O.D mg protein'^) 
0.15 ± 0.07 0.08 ± 0.04 

ANOVA, 
Fx,34 = 16.90, 

P < 0.01 

al 

3 _i 
Lit 
U 

PHAGOCYTOSIS 
(zymosan 10^ mg 

protein"^) 

0.03 ± 0.02 0.07 ± 0.07 

ANOVA, 
F,,34 = 7.07, 

P < 0.05 

_I 
< 
u 
(3 
2 
o 
1—1 

X Q. 

HAEIviOCYANIN 
(mg ml"^) • 

0.39 ± 0.14 0.32 ± 0 . 1 5 . NO 
DIFFERENCE _I 

< 
u 
(3 
2 
o 
1—1 

X Q. 

RESPIRATION 
(mg O2 L""* g dry weight"̂  

hr-̂ ) 

5.06 ± 5.11 0.70 ± 0.52 
ANOVA, 

Fl,34 = 13, 

P < 0.01 

_I 
< 
u 
(3 
2 
o 
1—1 

X Q. SFG 
(Jmg"^drywt"^h"^) 

24.62 ± 12.84 2.68 ± 1.18 
ANOVA, 

F,,29 = 46.44, 

P <0 .001 
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Fig. 3.1 mean ± 1 SE) (n = 18); b) Respiration rate (mg O2 L'^g dry a) Cell viability (OD mg protein'^; 
weight"^ hr"^); mean ± 1 SE) (n = 18); c) Scope for growth (J mg'^dry wt"^ h"^); mean ± 1 SE) (n 
=18); d) Glucose concentrations (pg L'^; mean ± 1 SE) (n = 18); e) Phagocytosis (zymosan particles 
10'' mg protein'^; mean ± 1 SE) (n = 18). 
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Table 3.3 Results from one-way ANOSIM tests, based on Euclidean distance similari t ies in biological responses 
from newly-collected crabs and post-exposure physiological assessments. NS = Not significant, S = 
Significant, CON = Contro l , PYR = Pyrene. 

Treatments ANOSIIVI Global tests 

P 
R P (%) (value) 

ANOSIM pairwise tests 

P 
R P(%) (value) 

Significant 
difference 

^ ' - ' 

z 

Juveniles vs. Adults - 0.915 0.1' 0.001 S 

0, 

, 3 O) 
O 

o 
Q. 

Juveniles; CON vs. PYR 

Adults; CON vs. PYR 

0.124 5.6 0.056 

0.245 5.6 0.056 

0.215 1.1 

0.1 13.4 

0.011 

0.134 

S 

NS 

IMD 

0.609 

0.04 
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3.3.2 Physiological assessment following pyrene. exposure 

Compared to controls, concentrations pf 1-hydroxypyrene-type metabolites- in 

the urine were significantly higher in both juvenile and adult pyrene-exposed 

individuals {Kruskal-Wallis, T S = 13.86, P < 0.05) (Fig. 3.2), validating exposure 

to the parent compound (pyrene). For juvenile crabs, six out of seven 

responses were significantly affected by pyrene exposure, whereas for adults, 

only two out of seven parameters were affected significantly (Table 3.4). 

Multivariate analysis (ANOSIM) identified significant differences in physiological 

state for juvenile crabs with exposure to pyrene, but not for adults; however, 

juveniles also showed greater variability in the overall response to pyrene 

exposure (0.609) compared to adults (0.04) (Table 3.3). 

ro 
c OJ 

H 
s | 

II 
O HI 
£ m 
c 
S 

2000 T 
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1000-
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* 

1=1 Adults 

r I Juveniles 

CON (4) PYR (3) CON (10) PYR (3) 

Juveniles Adujts 

TREATMENT 

Fig. 3.2 Concentrations of 1-OH Pyrene-type metabolites 
( 340/420) (pg L'^; mean ± SE) (CON = Control, 
PYR = pyrene exposed, * signify exposures are 
significantly different from controls P < 0.05) (n 
= 6 group'^). 
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Table 3.4. Post-exposure (200pg L'^ pyrene) assessment of 
juveni le and adult Carcinus maenas physiology (n = 
6) based on changes in biological responses 
compared to controls. 

JUVENILES . ADULTS 

RESPONSES 

M STATISTICAL 
SIGNIFICANCE 

CELLULAR 
INTEGRITY 

(%) . 

Decreased cell 
integrity ( 2 5 % ) No effect 

ANOVA, 
Fs,3o = 2.54, 

P < 0.05 

r> _i-_j 
. UJ 

U 

CELLULAR 
VIABILITY 

(O.D mg protein'^) 

Increased cellular 
viability ( 6 5 % ) No effect 

ANOVA, 
Fs,29 = 3.02, 

P < 0.05 
r> _i-_j 

. UJ 
U 

PHAGOCYTOSIS 
(zymosan 10' mg 

protein'^) 
Decreased phagocytic 

Capability ( 5 0 % ) 
Increased phagocytic 

capability ( 3 0 % ) 

ANOVA, 
Fs,30 = 4.74, 

/ '< 0.01 

HEART RATE 
(beats min"^) 

Increased heart rate 
( 2 0 % ) No effect 

ANOVA, 
Fs,30 =r 4.74, 

P< 0.01 

_i 

5 
1—1 
13 
O 
_i O 
1—1 

CL 

RESPIRATION 
(mg 02 L-' lir') 

Decreased respiration 
rate (50o/o) No effect 

ANOVA, 
F5,3o = 439, 

P < 0.005 

_i 

5 
1—1 
13 
O 
_i O 
1—1 

CL 
SFG 

(Jmg-^drywf^h-^) No effect Decreased S F G 
( 6 5 % ) 

Krusl<al-Wallis, 
TS = 17.85 

P < 0.005 

FEEDING 
(% energy 

• consumed) 

Decreased energy 
consumption ( 1 0 % ) No effect 

Krusl<al-Wallis, 
TS = 10.74 

P < 0.06 
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3.4 DISCUSSION 

Measurements taken directly from crabs from the field established significant 

physiological differences between juvenile and adult C. maenas. Juveniles 

showed higher weight-specific respiration rates and scope for growth, but lower 

immune function (phagocytic index) and metabolic energy (in the form of 

glucose) compared with adults. Respiration rates recorded here are consistent 

with those reported by Dawirs (1983) for C. maenas and confinn his finding that 

weight-specific respiration rates decrease with increasing biomass. Present 

findings also highlight, that juvenile crabs have increased scope for growth 

compared with adults; these data are consistent with the hypothesis that they 

channel more energy towards somatic growth than adults (Styrishave et al. 

2000). Differences between juveniles and adults were also identified at sub-

organismal levels, with immunocompetence (cellular viability and phagocytosis) 

differing in juveniles compared with the 'adult pattern'. A higher cellular viability 

in juvenile crabs could be explained by varying ratios of cell types. Johnstone et 

al. (1973) provided evidence for two types of circulating haemocytes: alpha and 

beta cells. Alpha cells are the storage sites for glycogen and .the presence of 

numerous large vacuoles in the peripheral cytoplasm is suggestive of phagocytic 

function. Beta cells are described as the 'explosive corpuscles' thought to be 

involved in coagulation. Alpha cells constitute ca. 80% and beta cells constitute 

ca. 20% of the circulating haemocytes found in adult crabs (Smith and Ratcliffe 

1978) which is consistent'with the present findings of ca. 80% cellular integrity in 

both size groupings. Variable ratios of alpha and beta haemocytes, throughout 

the developmental stage of the life cycle, would afford an explanation of the 

differential immunocompetence pattern seen here. 
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Energy available .for metabolism, in the form of glucose, was higher, in adult 

crabs than juveniles, and may result from 'differences in feeding behaviour. 

Adiilt male crabs are active foragers and undertake extensive migrations into 

estuaries to exploit food resources (Rewitz et al. 2004), whereas juveniles reside 

in estuaries, which serve as nursery areas (Morgan et al. 1996). The total 

energy pool available to an individual is a sum of the circulating glucose and 

stored glycogen (not measured here) (Briffa and Elwood 2004). High circulating 

glucose levels are necessary in energy-demanding activities such as exercise, 

and fighting behaviour, as shown in C. maenas, Necora puber and Pagurus 

bernhardus (Briffa and Elwood 2004; Sneddon et al. 1999; Thorpe et al. 1995). 

The ontogenetic differences outlined here suggest a less developed immune 

capability in juveniles compared to adults, and differential physiological status 

between the two developmental stages. 

The main aspect of this study was to assess if there were differential responses 

between the ontogenetic stages of C. maenas to sublethal toxicity to the priority 

pollutant pyrene. The global question was do juvenile and adult crabs have 

different 'physiological competencies' (defined as the tolerance afforded to the 

organism by the i^epertoire of Inherent biological responses to stressors). 

Following pyrene exposure, significant biological responses were observed in 

each size grouping, with juveniles displaying significant deviations in seven 

cellular and physiological measurements. At the cellular level, pyrene exposure 

caused significant decreases in immunocompetence and cellular integrity for 

juveniles. The increased dye retention observed in the neutral red assay could 

have arisen due to an increase in the amount of lysosomes present as well as 

lysosomal volume. Findings of increased dye uptake In juveniles are in accord 

with other studies reporting increased lysosomal capacity following contaminant 

exposure (Grundy et al. 1996; Matozzo et al. 2002; Matozzo and Marin 2005; St-
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Jean et al. 2002a, b). Cellular viability Is based on the accumulation of the 

cationio neutral red dye Into the lysosomes of viable cells. The apparent 

increase of dye retention could be due to the increase in lysosome number and 

volume induced by the low level of pyrene. This pattern of elevated dye 

retention In pyrene-exposed juveniles may be due to the intrinsic ability of 

lysosomes to accumulate a wide range of contaminants (St-Jean et al. 2002b). 

In the present study, lysosomes did not appear to reach their maximum retention 

capacity and probably preserved their integrity. According to St-Jean et al. 

(2002a) (and references therein), lysosomal membrane destabilisation IsMinked 

to oxidative stress. The current exposure conditions did not confer a persistent 

xenobiotic challenge, in either size cohort, to induce lysosomal membrane injury 

or oxidative stress, substantiating our results of no change in antioxidant 

potential. Increased heart rate, and concomitant decrease in respiration rates, 

were also observed here, which are in concordance with Spicer and Weber 

(1991) who reported a similar response In crustaceans exposed to heavy metals 

(copper and zinc at a sublethal concentration of 0.4 mgL'""). Camus et al. (2004) 

report Increased cardiac activity for C. maenas exposed to copper (0.5 mgL"^ for 

three days) and interpreted this as an increase in oxygen demand to 

compensate for physiological malfunctions. Impairment of gaseous exchange 

due to gill epithelium alterations would cause internal hypoxia, thereby, 

accounting for an increase In heart rate as a compensatory response (Hebel et 

al. 1997). 

Present results show contaminant impacts for juveniles and adults are 

manifested at the cellular and physiological levels. To understand the 

•implications of these responses an assessment of their effects upon Dan/vinian 

'fitness' parameters needs to be made [i.e. the intra-population variation in 

physiological traits serves to increase the fitness of individuals (Spicer and 
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Gaston 1999)]. Results of the Integrated measure of scope for growth (S/G) 

demonstrated that there was no significant effect of pyrene exposure on 

juveniles; however, a decrease in energy acquisition (due to decreased egestion 

rates) occurred. Suppression of crustacean feeding rates, following exposure to 

toxic contaminants, has been documented (Naylor 1989; Roast et al. 1999b) 

and help explain the present results. In adults, scope for growth was decreased 

significantly and this may be the result of re-chanhelling of energy from growth 

to compensatory mechanisms (e.g. energetic costs pf immunocompetence) (St-

Jean et al. 2002b). In general, SfG decreases with contaminant exposure; 

however, this conclusion is based solely on bivalve molluscs (Widdows et al. 

1995; Widdows 1992; Widdows and Salkeld 1993). The results for S fG froni this 

study highlight the implications of contaminant-exposure to energy budgets 

within crustaceans and demonstrate how they vary with developmental stage. 

Although univariate analyses highlighted significant 'stress' responses in juvenile 

and adult crabs with exposure to pyrene, multivariate analysis revealed 

degradation in physiological condition in only juvenile shore crabs. On the other 

hand, adult crabs were more tolerant than juveniles of pyrene exposure. These 

results highlight the robustness of adult shore crab physiology and the relative 

susceptibility of juveniles to contaminant exposure. Values for the index of 

multivariate dispersion (IMD) demonstrated greater variability in juvenile 

responses (0.609) compared with adults (0.04), suggesting increased plasticity 

of response for the fonner (Table 3.3). Newell (1972) stated that it was 

advantageous for juvenile crabs inhabiting the Intertidal to be in. an 'alert' state, 

thereby, possessing the ability to deal with unfavourable conditions. The 

variability of responses to contaminant exposure between crab stages can be 

used as an identifiable symptom of perturbation (suggestive of the phenotypic 

response to pyrene exposure) and has been used as such in environmental 
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impact studies (Warwicl< and Ciartce 1993). th is variability in response could be 

used also to identify toxicant sensitivity between the two developmental stages. 

In the context of the present study, sublethal pyrene exposure resulted in 

alterations in single biological systems at various levels of biological 

organisation. Alterations to cellular and physiological parameters measured 

here suggest that juvenile shore crabs are more susceptible to the toxic effects 

of pyrene (after an acute sublethal exposure), possibly due to the higher 

metabolic capacity in the bio-activation of pyrene (indicated by higher respiration 

rates) (Table 3.4), although similar levels of 1-OH pyrene metabolite levels 

between pyrene-exposed juvenile and adults were observed (after 7 days). 

Multivariate analyses highlighted the robustness of the physiology of adult C. 

maenas compared with juveniles, and the susceptibility of juvenile shore crabs, 

via the inherent phenotypic responses to sublethal contaminant exposure. 

In conclusion, differences in physiological condition existed between recently-

collected adult and juvenile C. maenas, and these differences in turn determined 

the level of susceptibility of each ontogenetic stage to the effects of pyrene 

exposure. Results found here support the hypothesis that juveniles display 

increased sensitivity to contaminant-imposed toxicity compared to the fully-

developed adult form. Having established the physiological capacity of adult 

and juvenile C, maenas differs, the next chapter examines whether nutritional 

status alters the physiological condition of adults. . 
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CHAPTER 4: 

Does Carcinus maenas physiology vary 
with nutritional status? 
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Does Carcinus maenas physiology vary with nutritional status? 

Abstract 

Crustaceans are subjected to temporary periods of reduced food intai<e during 

moulting and at times of limited food availability. The aim of this study was to 

test if food limitation altered the physiological condition of Carcinus maenas, 

through the utilisation of energy reseives and the status of each physiological 

component of its system. To achieve this aim, short-term changes (7 and 14 

days) in C. maenas physiological condition (biochemical and cellular) were 

evaluated. 

Significant differences [as highlighted by univariate analysis, (P <0.05)] in both 

biochemical and cellular [cellular viability and phagocytosis, (day 7); antioxidant 

status and phagdcytosis, (day 14)] endpoints were observed in shore crabs 

between dietary treatments (starved, diet-restriction and fully fed) after both 

seven and fourteen days. An integrated evaluation of the physiological condition 

(via multivariate analysis) revealed that shore crab physiology is relatively robust 

to short-term changes (< 7 days) with significant changes to cellular functioning 

occurring after fourteen days. In conclusion, this study has shown that short-

term starvation leads to a difference in cellular homeostasis only after fourteen 

days, thereby highlighting the robustness of shore crab physiology to tolerate 

periods of nutritional deprivation. 
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4.1 INTRODUCTION 

The ability of Carcinus maenas to deal with periods of nutritional constraints, 

both intrinsic (I.e. moulting) and environmental'(i.e. limited prey availability), is 

dependent on each physiological component of the organism's system, such a s 

the energy available to the shore crab via mobilisation of energy stores, e.g. 

protein, carbohydrate and lipid. The repertoire of biological responses, from 

biochemical to physiological, to biotic and also abiotic stressors, ultimately, 

determines whether the organism can compete both intra- and interspeciflcally, 

i.e. to grow and finally reproduce (Hebel et al. 1997). In order to differentiate 

between the physiological effects of stressors and natural processes, a brief 

outline of cellular metabolism is needed. 

In all eukaryotic cells, metabolisni enables the cell to perform vital functions, 

including providing the energy to maintain the internal composition of the cell, as 

well as the synthesis (and recycling) of cell constituents (proteins, nucleic acids, 

lipids and carbohydrates) for the cell to fulfil its specialised function (Bronk 

1999). The synthesis of cell constituents arises from one of three sources: 

firstly, absorption from metabolites external to the cell (i.e. dietary route), 

secondly, release from a metabolite from a source within the cell (i.e. storage), 

and/or finally, the metabolite may be formed by the metabolism of a precursor, 

which is either absorbed or derived from a source stored within the cell (Bronk 

1999). In summary, metabolism enables cells to convert the energy found in 

nutrients (or from storage) into a form which will support both bipsynthesis of 

molecules and maintenance of the internal environment. Cellular metabolism Is 

driven by generation of energy (in the form of ATP) via the Krebs cycle (or T C A 

cycle). The energy is used to oxidise pyruvate formed during the glycolytic 

breakdown of glucose and also oxidises acetyl CoA arising from fatty acid 

degradation and proteolysis to form amino acids; the latter are then used to 
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synthesise new proteins required for survival or catabolised into Krebs- cycle 

intermediates (e.g. citrate) to supply cells, with energy (Hames and Hooper 

2000). The intermediates in the cycle provide precursor molecules for various 

biosynthetic pathways; synthesis of- fatty acids from citrate, amino acid 

synthesis, synthesis of purine and pyrimldine nucleotides and glucose 

conversion by gluconeogenesls. With regard to C. maenas, glycogen is stored 

in granules of the alpha cells, where glucose is subsequently released upon 

breakdown of this storage polysaccharide (Johnstone et al. 1973). Fatty acid 

(lipid) breakdown occurs within the mitochondria, whereas protein degradation 

occurs within the lysosomes of cells. Summary diagrams outline the intracellular 

energy pathways where energy Is released via metabolism of the energy stores 

(Fig. 4.1) and the fate- of these three cell constituents (under aerobic 

metabolism) via the Krebs cycle (Fig. 4.2). 

Crustacean growth is limited hy the exoskeleton and only through ecdysis 

(moulting) can an increase in body size be achieved (Crothers 1967; 1968). 

During the moulting cycle, feeding strategies are adopted which are dependent 

upon food availability (Sanchez-Paz et al. 2006). Active feeding occurs during 

the intennoult stage (C4) when energy reserves are built up prior to moulting 

(Crothers 1967). Approaching ecdysis, feeding declines and ceases during the 

process of moulting. The feeding cycle resumes post-moult when the 

exoskeleton hardens (Sanchez-Paz et al. 2006). Starvation induction in 

crustaceans has been proposed as a tractable model to understand the 

molecular and enzymatic changes which determine the energetic and metabolic 

function of the organism (Sanchez-Paz et al. 2006). Short-(< 4 weeks) and 

long-term (> 4 weeks) changes in. biochemical, cellular and physiological 

parameters have been examined in various crustacean species, including' C. 

maenas, and are the physiological changes during nutrition-deprived conditions. 
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summarised in Table 4.1. Physiological changes, resultant from starvation, 

range from metabolic alterations (oxygen consumption and cardiac activity) to 

depletion of energy stores, such as haemocyanin, 

The aims of this study were to test whether short-term (7 and 14 days) food 

llhiitation would cause biochemical and cellular changes, thereby altering the 

physiological condition of C. maenas. 
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LIPIDS 

Fig. 4.1 Diagrammatic representation of pathways utilised for intra-and extracellularly energy release into 
the haemolymph in Crustacea. Adapted from Sanchez-Paz et al . (2006). 
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Fig. 4.2 Diagrammatic representation of the aerobic 
metabolism of three major cell constituents via 
the Krebs cycle (Boyer 2002). 
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Table 4.1 Short (< 4 weeks) and long (> 4weeks) term effects 
of starvation upon physiological parameters in 
Carcinus maenas. 

TIME SCALE PARAMETER DESCRIPTION REFERENCE 

Slnort-term Nutritional 
status 

Diet restriction triggers autophagy and 
' improved' lysosomal capacity 

(Moore 2004) 

Sfiort-term 

Glycogen 
and 

glucose 

Glycogen depletion, especially in 
muscles was seen following exposure 
to hypoxia or starvation in Nephrops 

norvegicus 

Analysis of anthrone-responsive sugar 
concentration in the blood of C. 

maenas shows that the haemolymph 
sugars exhibit a cyclic pattern which is 
related to tidal state, with peak values 

associated with low tide period. 

(Baden et al. 1994) 

(Williams 1985) 

Sliort-term Oxygen 
Consumption 

Starvation in C. maenas in the 
laboratory at 15°C results in a 
progressive suppression of the 

metabolism compared with fully fed 
crabs. This effect becomes apparent 
after 2 weeks at 15°C but may occur 

sooner at higher acclimation 
temperatures. 

No significant differences in body 
weight over a 3 wk starvation period 

(Marsden 1973) 

Stiort-term Heart rate Heart rates were depressed following 
starvation and crabs were less active 

(Depledge 1985) 

'slow' haemocyanin and 
apohaemocyanin may act as organic 

(Uglow 1969) 

Short and 
long-term 

Haemocyanin stores 
'fast' haeocyanin suggests that this 

protein fulfils a basic respiratory need. 
[He] a reflection of feeding history 

Indicator of physiological stress 

(Spicer and Baden 
2000; Spicer and 
Stromberg 2002) 

(Enqel et al. 1993) 

Short-term Fatty acids 

High lipid content in crabs o f ' good ' 
condition, as well as low water content 

in haemolymph. 
Storing energy in lipid form may be 

considered an advantageous strategy 

(Styrishave et al. 
2000) 

Long-term Midgut gland 

May act as a temporary store of 
haemolymph copper when 

haemocyanin is catabolised during 
starvation or at the time of moulting 

(Rainbow 1988) 

(Depledge 1989) 

Long-term 
Tissue free 

space 

Shrinkage of tissue due to catabolism 
increases the tissue free space, 

com'pensated by uptake of water and 
expansion of haemolymph volume 

(Scottfordsmand and 
Depledge 1993) 

Long-term Exoskeleton 
Structure 

Thinning of the exoskeleton occurs 
(this is a long-term starvation cost) 

(Scottfordsmand and 
Depledge 1993) 
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4.2 MATERIAL AND METHODS 

4.2.1 Shore crab collection and maintenance 

Adult (>60mm CW) (Crothers 1967) male (green) Intermoult Carcinus maenas 

{n = 54) (mean C W 66.29 ± 5.07mm) were collected from the Avon Estuary, 

Bantham, South Devon, U.K. (grid reference: S X 6623 4380) on two occasions 

(23'" and 26"' May 2005) using mackerel-baited traps(see Chapter 2, Section 

2.1). In the laboratory, crabs were maintained in static holding tanks containing 

filtered (10pm carbon filtered), aerated seawater (34ppt, 15 ± 1°C) under a 12h 

light : 12h dark photoperiod for a maximum of 2 days and transferred into 

treatment tanks. Crabs were held in exposure tanks (2L) and fed according to 

the Individual nutritional treatment conditions (see below) and starved or fed with 

y-irradiated cockle {Cerastoderma edule) (Gamma foods, Tropical Marine 

Centre, Bristol, U.K). Water was changed every 48 h and within 18h of each 

feeding. 

4.2.2 Experimental design and post-exposure assessment 

Each crab was numbered using a label attached (cyanoacrylate glue) to the 

carapace. Carapace width (CW) (mm) and wet weight (g) of each crab was 

recorded. Crabs were assigned into one of three treatment groups: a) starved 

{n = 18); b) diet-restricted (DR) (n = 18) and c) fully fed {n = 18). Each group 

was 'exposed' for fourteen days with crabs being fed individually, either on 1g on 

alternate- days [after an Initial starvation period of 3 days (DR)] or 2g everyday 

(fully fed) of irradiated cockle (Fig. 4.3). Post-'exposure' assessment included 

the biological responses measured at: (1) biochemical (antioxidant potential) 

and (2) cellular levels (cellular integrity, viability and phagocytosis), after seven 

and fourteen days exposure. Haemolymph samples (500pl) were extracted by 

puncture of the arthrodial membrane at the base of the 4"" walking leg using a 
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pre-chilled Inil syringe and 21 gauge needle (Sigma-Aldrich, U.K). Cellular 

assays were conducted immediately post-haemolymph sampling. Haemolymph 

samples were snap frozen using liquid nitrogen and stored at -80°C for 

subsequent biochemical analysis (see Chapter 2, Section 2.4 for details). 

4,2.3 Post-exposure assessment 

FRAP (Ferric reducing ability of plasma): antioxidant status was determined by 

measuring the conribined reducing power of the electron-donating antioxidants 

present (i.e ferric reducing antioxidant potential) (Benzie and Strain 1996; 

Rickwood and Galloway 2004). A stoichiometric excess of the oxidant ferric 

tripyridyltriazine (Fe" ' -TPTZ) was added to each lOpI sample (SOOpI of 10mM in 

300 mM sodium acetate, pH 3.6) and its reduction to the ferrous fomri, (Fe") 

monitored over 10 min at Asganm (see Chapter 2,, Section 2.4.5 for details). 

Cellular viability: stress-Induced pathological change In the lysosomal 

compartments of haemocytes was determined using a dye uptake method as 

described by Galloway et al. (2004c) (see Chapter 2, Section 2.4.9 for details). 

Cellular integrity: cell functionality (i.e. dead or viable) was determined using a 

dye exclusion method whereby 2mg ml""* Eosin Y was added to haemolymph 

samples (20pl) at a ratio of 1:10. Following 10 min incubation and washing 

cycle, the absorbance of the residual dye was measured at 518hm. Viable cells 

stain light green (due to dye exclusion) whereas dead and moribund cells stain 

red (see Chapter 2, Section 2.4.7 for details). 

85 



7 d 1 4 d 

Starved 

Diet-restriction 

Acute starvation period 
(3 days) 

Feeding regiine (1g coc!<le on 
alternate days) 

Feeding regime (1g cockle on 
alternate days) 

Fed 

Feeding regime (2g cockle, day"̂ ). 

Fig. 4.3 Experimental feeding regime and exposure assessment of Carcinus maenas at 7 and 14 days. 
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Phagocytosis index: the phagocytic capability of haemocytes was evaluated by 

measuring the active uptake of neutral red-stained zymosan particles as 

described by Parry and Pipe (2004), and employed by Galloway et al. (2004c) 

(See Chapter 2, Section 2.4.1 Ofor details). 

4.2.4 Statistical analysis 

Two methods of statistical analyses were used to isolate significant differences 

In physiological condition of adult C. maenas. Univariate analyses were 

performed to test for differences for a single parameter between experimental 

groups. To attain an integrated summary' of the contaminant impact, 

multivariate analyses (ANOSIM, SIMPER) tested for differences between the 

experimental groups via the complete repertoire of biological responses 

measured (see Chapter 2, Section 2.6 for details). 

87 



4.3 R E S U L T S 

4.3.1 Day? 

4.3.1.1 Univariate analyses 

Significant differences in physiological condition (at the biochemical and cellular 

level) were revealed over time (following 7 and 14 days) under different feeding 

regimes (Tables 4.2 and 4.3 respectively). 

Antioxidant status, as shown by the potential of the plasma to reduce ferric ions 

in vitro, showed no differences between dietary treatments. These results 

highlight the robustness of total antioxidant status in crab haemolymph. Cell 

integrity (%) did not differ between dietary treatments, supporting the conclusion 

that cellular integrity is maintained regardless of short-term and long-term 

starvation (i.e. 3 and 14 day in diet-restriction and starved treatments 

respectively). Significant differences between treatments were found for cellular 

viability, with increased neutral red dye retention in starved compared with fed 

individuals {ANOVA, F2,5i = 3.66, P < 0.05) (Table 4.2 and Fig. 4.4). Immune 

function, as shown by the phagocytic capability of haemocytes, was also found 

to be affected by dietary status, and significant differences were observed 

between starved and fed individuals; starved crabs expressed increased 

phagocytic capability {ANOVA, Fz^si = 3.98, P < 0.05) (Table 4.2 and Fig. 4.5). 
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Table 4.2 Physiological assessment of s tarved, diet-restr icted (DR) and fully fed shore crabs (day 7) (n = 18). 

Level Parameters Starved Diet-
restriction 

(DR) 

Fed Statistical 
significance 

BIOCHEIVllCAL Antioxidant status 161.27 ±67.16 159.13 + 76.40 169.72 ±84.38 
(MM L-̂ ) 

ANOVA 

Fzsi =0.10 

P = 0.91 

a: 

UJ 
o 

Cellular integrity 
(%) 

Cellular viability 
( C D mg protein" )̂ 

Phagocytosis 
(zymosan particles 

10'mg protein'^). 

66.3 ±16 • 69.43 ±16 75.81 ±17 

1 ± 0.71 0.68 ±0.42 0.56 ±0.40 

2.56 ± 1.44 2.33 ± 0.84 1.82 ± 0.77 ' 

ANOVA 

F2.61 =0.48 

P = 0.65 

ANOVA 

F2,si =3.66 
P<0.05 

ANOVA 

F2.S1 =3.98 

P < 0.05 
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Fig. 4.4 Cellular viability (O.D mg protein^) assessed in 
starved, diet-restricted and fully fed Carcinus 
maenas {n - 18) (day 7). * signifies P < 0.05. 
Error bars signify ± 1 standard error. 
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Fig. 4.5 Phagocytic index (zymosan particles 10'' mg 
protein"^) assessed in starved, diet-restricted 
and fully fed Carcinus maenas (day 7). * 
signifies P < 0.05. Error bars signify ± 1 
standard error. 

90 





4.3.1.2 Multivariate analyses 

No significant differences in stipre crab physiological condition were identified 

between dietary treatments (using ANpSIIVI) [Global R = 0.p18, P (%) = 19.2]. 

These results suggest that shore crab physiological condition is robust and that 

during an acute starvation period (7 days), the biochemical and cellular ̂  

functioning (i.e. total antioxidant status, cellular integrity, cellular viability and 

immune function) does not alter from that of fully-fed Individuals. 

4.3.2 Day 14 

4.3.2.1 Univariate analyses 

Following fourteen days under each dietary condition, diet-restriction (DR) crabs 

demonstrated lower antioxidant capability than the starved and fed groups 

{ANOVA, F2.51 = 7.69, P < 0.05) (Table 4.3 and Fig. 4.6). There were no 

significant differences at the cellular level between starved, fed and DR crabs 

(as demonstrated by cellular integrity and cellular viability), indicating no 

deterioration of cellular integrity or cellular functioning after 14 days of 

starvation. However, there was a significant difference with respect to starved 

and fed treatments, with starved crabs displaying an induction in phagocytic 

capability {F2.51 = 3.98, P < 0.05) (Fig. 4.7). 
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Table 4.3 Physiological assessment of s tarved, diet-restr icted (DR) and fully fed shore crabs (day 14) (n = 18). 

Level Parameters Starved Diet- . 
restriction 

(DR) 

Fed Statistical significance 

BIOCHEMICAL Antioxidant status 
(MM L-̂ ) 

213.28 ± 52.24 170.56 ± 64.86 253.89 ± 72.36 ANOVA 

F2.51 =7.69 
P<0.05 

a: 
< 

UJ 
o 

Cellular integrity 
(%) 

Cellular viability 
(O.D mg protein'̂ ) 

Phagocytosis 
(zymosan particles 

lO^mg protein'l) 

67.08 ±12 

0.15 + 0.04 

75.44 ± 8 78.65 ±'15 

0.18 ±0.15 0.20 ±0.14 

2.65 ± 0.95 2.79 ±2.59 1.69 ±0.81 

ANOVA 

F2,s, =1.48 

P = 0.24 

ANOVA 

F2.51 =0.48 

P = 0.64 

ANOVA 

F2,5i =7.98 

P,<0.05 
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Fig. 4.6 Antioxidant status assessed in starved, diet-
restricted (DR) and fully fed Carcinus maenas 
(day 14). * signifies P < 0.05. Error bars 
signify ± 1 standard error. 
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Fig. 4.7 Phagocytic index (zymosan particles 10^ mg 
protein'^) assessed in starved, diet-restricted 
and fully fed Carcinus maenas (day 14). * 
signifies P < 0.05. Error bars signify ± 1 
standard error. 
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4.3.2.2 Multivariate analyses 

Significant differences in stioi^e crab physiological condition were identified 

between treatment groups as revealed by the ANOSIM test [Global R = 0.134, P 

(%) = 0.1]. Differences were observed between starved and fed crabs [R = 

0.209, P (%) = 0.2], and diet-restriction and fed treatments [R = 0.14, P {%) = 

0.2] (table 4.4a). Results from S IMPER analysis showed that cellular integrity 

(<42%) was the significant contributor to the overall separation of starved and 

fed treatments (Table 4.4b); however, antioxidant status was contributed < 31% 

to the overall difference between diet-restricted and fully-fed crabs (Table 4.4b). 

These results demonstrate the dichotomy in physiological status with dietary 

manipulation, with starvation (both 3 days and 7 days) and diet-restriction having 

a negative effect on cellular homeostasis, as indicated by cellular integrity and 

antioxidant status. 
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t ab l e 4.4 Pairwise treatment comparisons of exposure 
assessment periods 7 and 14 days (a). NS= not 
significant, S = significant (b) and (c) SIMPER 
analyses of variables contributing to the treatment 
differences observed ' in a) . Signif icant differences 
and highest contributing variables are highlighted in 
bold. 

a) Pairwise treatment Exposure assessment 
comparisons j 

Starved vs. PR NS NS 

Diet-restriction vs. Fed NS S 

Starved vs. Fed NS s 

Treatments: Starved vs. Fed crabs 

b) Contribution Cumulative 

Variable • (%) (%) 

Cellular integrity 41.68 41.68 
Antioxidant status 24.88 66.56 
Cellular viability 22 88.56 
Phagocytosis 11.44 100 

Treatments: Diet-resti-iction vs. Fed crabs 

c) 
Contribution Cumulative 

Variable .(%) (%) 

Antioxidant status 30.05 30.05 
Cellular viability 26.91 56.96 
Phagocytosis 26.51 83.47 
Cellular integrity 16.53 100 
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4.4 DISCUSSION 

Present results Indicate ttiat experimental manipulation of food intake affects 

stiore crab physiology. In particular after fourteen days, there were significant 

differences at both the biochemical and cellular level, in starved compared to 

fully-fed shore crabs. The dietary conditions used were not intended to mimic 

seasonal nutritional conditions experienced by C. maenas but to test the 

hypothesis that differences in nutritional status give rise to different physiological 

conditions. However, these treatment groups give some insight into the potential 

differences in physiological state experienced by C. maenas during the course 

of a year at the adult stage of the life cycle. 

Univariate analysis {ANOVA) revealed that two cellular variables were altered by 

food-deprived conditions after seven days. PhagocytiP capability and cellular 

viability were shown to be induced by reduced nutrition (i.e. starvation), 

compared to fed conditions, However, physiological condition (multivariate 

analyses) by the interaction of all variables measured here, was unaltered by 

short-term starvation (seven days) comparing starved and fed crabs, highlighting 

physiological tolerance of this species to food-deprived conditions. 

After fourteen days, however, significant differences In shoi-e crab physiological 

condition were found between starved and fed crabs, and between diet-

restriction and fed crabs. Although univariate analysis {ANOVA) revealed 

significant differences only in phagocytic capability (between starved and fed 

conditions) and decreased antioxidant status (between DR and fed crabs), 

multivariate analysis (SIMPER) signalled cellular Integrity as the influential factor 

determining differences in physiological condition between starved and fed 

conditions (Table 4.4). This apparent contradiction in response may be related 

to depletion of the glycogen reserves within the alpha (hyaline) cells (Johnstone 
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et al. 1973) which are, subsequently, also the cells responsible for phagocytic 

function (Smith and Ratcliffe 1978); Phagocytosis is an energy-dependent 

process and is sensitive to intracellular energy levels (Galloway and Depledge 

2001). For example, a decrease In cellular Integrity may herald the breakdown 

of the hyaline cells for the utilisation of these energy reserves due to the 

imposed starvation conditions, resulting |n subsequent induction of phagocytic 

function, compared with fed crabs. 

The biochemical and cellular systems studied here, therefore, appear to be 

dependent upon nutritional status. For example, the total antioxidant capability 

(excluding glutathione) was stable over fourteen days of starvation signifying 

that the antioxidant systems (both enzymatic and non-enzymatic) in C. maenas 

are able to buffer oxidative stress. Under fully-fed. conditions, antioxidant 

capabilities were higher than starved and diet-restricted individuals, indicating 

that, in this organism, the array of these enzymatic and non-enzymatic systems 

are dependent on the energy available through nutrition. It may postulated that 

In quiescent periods of the adult life stage of C. maenas, (December - April), 

when metabolic activity is low (Marsden 1973) and feeding is reduced due to 

reduced food availability (Depledge 1985), antioxidant capability of adult C. 

maenas is stable, but has the capability to increase with increase in nutritional 

intake. Furthermore, under periods of high activity (April - September), where 

adult males are foraging for food and channelling energy to somatic and gonadic 

growth (i.e. to reach reproductive maturity), the antioxidant capability of adult 

males would be augmented by the increase in food intake. 

Differences in cellular viability were observed in starved individuals (day 7 

compared to day 14) over the seven-day experimental period. It is concluded 

that induction of the lysosomal system [as- shown by increased dye uptake, in 
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lysosomes of starved crabs compared with fed crabs (Fig. 4.4)] is be triggered 

by acute starvation. These results are in accord with previous evidence of 

lysosomal up-regulation in mussels (Moore 2004; Moore et al. 2006) and signals 

autophagy. Autophagy is the process of 'self-eating' whereby degradation of 

cellular components occurs, such as defunct organelles and proteins (Moore et 

al. 2006). The concept of autophagy sustaining survival during nutrient-deprived 

conditions is not new (de Duve and Wattiaux 1966), and has led to the 

conclusion that autophagy is the major catabolic pathway for eukaryotic cells to 

generate intracellular nutrients (fatty acids and amino acids) for the purpose of 

maintaining energy production (ATP) and macromolecular synthesis (e.g. 

proteins) (Fig. 4.8). Autophagy has been proposed as a protective mechanism 

induced due to nuthtional deprivation (Levine 2005). 

Decreased 
ExtiacelUar Nmrents 

\ 

Dtemutt M f a e a l u l H H u M n t a 

ATP 

V 
Airtopiiagy 

I 
Pre AulD|itisg9*omal LywHnrrc DegtadMoi of 

SirjcUw / -^ CYtotllBMnt 
tsoOtW' Comporertt 

MsTiUeno • 

Fig. 4.8. Autophagy in cellular defence under nutrient-
deprived condition. Adapted from Levine 
(2005). 
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Up-regulation of autophagic processes in starved shore crabs may function as a 

mechanism for breaking down protein and carbohydrate stores to release 

energy needed for survival. A fourteen-day starvation period has been shown to 

result in C. maenas utilising haemolymph protein to supply energy (Uglow 

1969). Autophagy is proposed here as a mechanism of energy-production via 

the breakdown of proteins and cellular components as shown by the induction of 

the lysosomal system. Possible benefits of induced autophagy could be 

extrapolated to 'seasonal' differences in nutritional status (as outlined above). In 

dormant periods, such as winter, autoph'agy could be accountable as a process 

by which energy stores are metabolised, therefore, signalling an induction of the 

lysosomal system. 

In summary, short-rterm starvation causes biochemical and cellular changes in 

shore crab physiology. This study has shown, however, that starvation leads to 

a significant difference in cellular homeostasis but only after fourteen days, 

highlighting the robustness of shore crab physiology to tolerate periods of 

nutritional deprivation. 
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CHAPTER 5: 

Does Carcinus maenas nutritional status 
confer physiological tolerance to 

contaminant exposure? 
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Does Carcinus maenas nutritional status confer physiological tolerance to 
contaminant exposure? 

Abstract 

As shown previously (Chapter 4), cellular functioning was altered under food-

deprived conditions, such as induction of haemocyte phagocytic ability. In this 

chapter, contaminant (pyrene) exposure is added to the experimental design to 

investigate whether shore crab nutritional status confers physiological tolerance 

to sublethal pyrene exposure. 

Significant effects (P < 0.05) upon shore crab physiology (biochemical and 

cellular) were observed with both sublethal pyrerie exposure (200 pgL"^ for 14 

days) and dietary manipulation (starved, diet-restriction and fully fed). Inci-eased 

pyrene metabolite levels, both after seven and fourteen day's exposure, and 

increased protein levels (proteinuria) in the urine of starved crabs were observed 

in pyrene-exposed crabs. In summary, this study has shown that shore crab 

susceptibility to sublethal pyrene exposure is dependent upon nutritional status. 

In conclusion, susceptibility to the effects of contaminant exposure is dependent 

upon shore crab physiological condition, as shown by experimental manipulation 

of nutritional status. 
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5.1 INTRODUCTION 

As shown previously in this thesis, cellular functioning was altered in starved 

compared with fed crabs (see Chapter 4). Shore crabs rely upon the readily 

available glycogen stores within haemocytes for energetically-costly cellular 

functioning, such as phagocytic activity of haemocytes. Induction of haemocytic 

phagocytic activity occurs under starvation conditions (assessed after both 

seven and fourteen days), resulting in changes to overall physiological condition 

(only after fourteen days) compared with fully fed crabs (see Chapter 4). As 

discussed previously, the nutritional status of an organism is paramount to 

maintaining its biochemical and cellular homeostasis. Functional components of 

the physiology of the organism can be up-regulated during nutrition-deprived 

conditions, leading to an 'improved cellular housekeeping' (Moore 2004) via the 

process of autophagy. Autophagy, or 'self-eating' (Finn and Dice 2006) is a 

non-selective, homeostatic process where cytosolic or intracellular organelles 

are sequestered by autophagosomes (a double-membrane structure) for 

transportation to lysosomes, where digestion occurs (Deretic 2006) (Fig. 5.1). 

Lysosome 

Fig. 5.1 Diagrammatic representation of the process of 
autophagy, mediated by the production of 
autophagosomes, which transport cellular 
components and organelles to the lysosomes for 
degradation. Taken from (Yoshimori 2004). 
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Autophagic processes are highly conserved in eukaryotio cells from yeast to 

mammals (Deretic 2006; Meijer and Codogno 2004). Autophagy plays an 

important role in intracellular degradation and' recycling of long-lived proteins 

and organelles (i.e. cell survival and death) (Yoshimori 2004). A school of 

thought exists where this hohieostatic process is implicated In cell development, 

ageing, neurodegeneration and cancer (Deretic 2006). Autophagy occurs in 

response to both internal (cellular 'housekeeping') and external (e.g. starvation) 

stimuli (Finn and Dice 2006). ' 

The purpose of this chapter was to investigate the combined effects of 

contaminant-imposed perturbation and diet-restriction upon the biochemical, 

cellular and physiological components of Carcinus maenas physiology. The 

aims of this study, therefore, were to investigate whether nutritional status 

confers physiological tolerance to sublethal contaminant (pyrene) exposure. 
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5.2 MATERIAL AND METHODS 

5.2.1 Shore crab collection and maintenance 

Adult (>60mm CW) (Crothers 1967) male (green) intermoult Carcinus maenas 

{n = 54) (mean C W 66.29 ± 5.07mm) were collected from the Avon Estuary, 

Bantham, South Devon, U.K. (grid reference: S X 6623 4380) on two occasions 

(23'*' and 25'^ June 2005) using mackerel-baited traps (see Chapter 2 Section 

2.1). In the laboratory, crabs were maintained in static holding tanks containing 

filtered (10pm carbon filtered), aerated seawater (34ppt, 15 ± 1°C) under a 12h 

light: 12h dark photoperiod for a maximum of 2 days before being transferred to 

treatment tanks. Crabs were held in exposure tanks (2L) and fed according to 

the Individual nutritional treatment conditions (see below) and starved or fed with 

y-irradiated cockle {Cerastoderma edule) (Gamma foods. Tropical Marine 

Centre, Bristol, U.K.). Water was changed within 18h of each feeding. 

. 5.2.2 Experimental design and post-exposure assessment 

Each crab was numbered using a label attached (cyanoacrylate glue) to the 

carapace. Morphometric characteristics of each crab were recorded such as: 

carapace width (CW) (mm) and wet weight (g). Subsequently, crabs were 

assigned into one of six treatment groups: (1) starved unexposed {n = 9); (2) 

starved PYR-exposed {n = 9); (3), diet-restricted (DR) {n = 9); (4) DR P Y R -

exposed (n = 9); (5) fed unexposed {n. = 9); and (6) fed PYR-exposed {n = 9). 

Each treatment group was held for fourteen days and fed crabs were fed 

individually, either 1g on alternate days (after an initial starvation period of 3 

days) for diet-restricted crabs or 2g everyday in the fully-fed treatment. P Y R -

exppsed crabs were subjected to a sub-lethal exposure regime of 200pgL''' 

pyrene (nominal concentration) for 14 d. Post-exposure assessment included • 

the biological responses-measured at: (1) biochemical (antioxidant potential, 
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PYR-metaboIites in urine, urinary protein concentration) and (2) cellular levels 

(cellular integrity, viability and phagocytosis), after 7 and 14 days exposure. 

Haemolymph samples (500pl) were extracted by puncture of the arthrodial 

membrane at the base of the 4''̂  walking leg using a pre-chilled 1ml syringe and 

21 gauge needle (Sigma-Aldrich, U.K). Cellular assays were conducted 

Immediately post-haemolymph sampling. Haemolymph samples were snap 

frozen using liquid nitrogen and stored at -80°C for subsequent biochemical 

analysis (See Chapter 2 for details). 

5.2.3 Post-exposure assessment 

FRAP (Ferric reducing ability of plasma): antioxidant status was determined by 

measuring the combined reducing power of the electron donating antioxidants 

present (i.e ferric reducing antioxidant potential) (Benzie and Strain 1996; 

Rickwood and Galloway 2004). A stoichiometric excess of the oxidant ferric 

tripyridyltriazine (Fe" ' -TPTZ) wasadded to each lOpI sample (SOOpI of lOmM in 

300 mM sodium acetate, pH 3.6) and its reduction to the ferrous form (Fe") 

monitored over 10 mins at 593nm (see Chapter 2, Section 2.4.5for details). 

Cellular viability: stress-induced pathological change in the lysosomal 

compartments of haemocyfes was determined using a dye uptake method as 

described by Galloway et al. (2004c) (see Chapter 2, Section 2.4.9 for details). 

Cellular integrity: cell functionality (i.e. dead or viable) was determined using a 

dye exclusion method whereby 2mg ml"'' Eosin Y was added to haemolymph 

samples (20pl) at a ratio of 1:10. Following 10 min incubation and washing 

cycle, the absorbance of the residual dye was measured at 518nm. Viable cells 

stain light green (due to dye exclusion) whereas dead and moribund cells stain 

red (see Chapter 2, Section 2.4.7 for details). 
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Phagocytosis index: the phagocytic capability of haemocytes was evaluated by 

measuring the active uptake of neutral red-stained zymosan particles as 

described by Parry and Pipe (2004) and employed by Galloway et al. (2004c) 

(see Chapter 2, Section 2.4.10 for details). 

5.2.4 Statistical analysis 

Two methods of statistical analyses were used to isolate significant differences 

in physiological condition of adult C. maenas. Univariate analyses were 

performed to test for differences for a single parameter between experimental 

groups. To attain an integrated summary of the contaminant Impact, 

multivariate analyses (ANOSIM and SIMPER) tested for differences between the 

experimental groups via the complete repertoire of biological responses 

measured. Univariate, statistical analyses were performed using G M A V , 5 for 

windows®, treatment differences were analysed using the parametric analysis 

of variance test, due to homoscedasticity of data (Unden/voPd 2005). 

Multivariate analysis was carried out using PRIMER® v6 (Plymouth Routines in 

Multivariate Ecological Research, PRIMER-E Ltd) (see Chapter 2, Section 2.6 

for details). 
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5.3 RESULTS 

Significant differences in shore crab physiological condition (at the biochemical 

and cellular leyel) was revealed over time (following 7 and 14 days exposure) 

(See Tables 5.1 and 5.4, respectively). 

5.3.7 Day 7 

5.3.7.7 Biochemical variables 

In all three dietary treatments, ui-inary concentrations of 1-hydroxypyrene type 

metabolites were significantly higher in PYR-exposed individuals {ANOVA, F2,^ 

= 10.19, P < 0.001). A significant difference was observed also between the diet 

treatments, with increased metabolite concentrations found in- the starved 

treatment compared to that of fed and DR crabs {ANOVA, F2,48 = 11.76, P < 

0.001) (Fig. 5.2). Urinary protein concentrations were significantly higher In 

starved compared to the DR and fed crabs {ANOVA, F2,48 = 23.25, P < 0.001). 

Within the starved treatment; unexposed crabs had higher protein 

concentrations within the urine than PYR-exposed crabs {F2,48 = 12.44, P < 

0.001) (Fig. 5.3). Antioxidant status, however, as shown by the potential of the 

plasma to reduce ferric ions in vitro, showed no significant differences between 

dietary treatments. Exposure to pyrene, in contrast (within dietary treatments), 

had a negative effect upon antioxidant status, with PYR-exposed crabs 

demonstrating a lower antioxidant capability than unexposed counterparts 

{ANOVA, Fi,5o = 21.40, P < 0.001) (Fig. 5.4). 
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Table 5.1 Post-exposure physiological assessment of nutrit ion and contaminant- imposed physiological constraints 
in starved, diet-restr icted (DR) and fuMy fed Carcinus maenas (mean ± 1 SE) (day 7) . * , * * , * * * 
signify P < 0 .05, 0.01 and 0 .001, respectively. 

Significant changes 
to biological responses 

compared to treatment controls 

(DAY 7) 

Parameters Starved 

(Con vs. PYR) 

Diet-restricted 
(DR) 

(Con vs. PYR) 

Fed 

(Con vs. PYR) 

Statistical significance 

INTRA- treatment INTER-treatment 

(Diet-Exposure Interaction) (Diet) 

< 
O 

111 
X o o 
CO 

Urinary PYR metabolites 

(MgL-̂ ) 

Urinary protein concentrations 

(mgml'̂ ) 

Antioxidant status 
(MM L-̂ ) 

315.22 ±22 
vs. 

724.95 ±94.17 

0.39 ± 0.07 
vs. 

0.18 ±0.02 

110.86 ±20.14 
vs. 

175.58 ±22.49 

34.14 ± 34.34 
vs. 

806.15 ±236.30 

0.07 ±0.02 
vs. 

0.08 ± 0.01 

86.86 ±10.70 
vs. 

154.53 ±16.42 

70.65 ±19.49 
vs. 

570.68 ±68.28 

0.10 ±0.01 
vs. 

0.14 ± 0.01 

130.98 ±27.06 
vs. 

186.53 ±11.85 

*** 

*** 

* * * 

(Unexposed) 

starved > DR = Fed 
* * * 

*** 

NO DIFFERENCE 

01 

Cellular integrity 

(%) 

84.73 ±0.41 
vs. 

80.92 ± 0.99 

86.73 ± 0.03 
vs. 

80.8 ±2.13 

84.24 ±0.46 
vs. 

80 ± 0.67 

* * * NO DIFFERENCE 

LU 
O 

Cellular viability 
(O.D mg protein'') 

0.58 ±0.10 
vs. 

0.24 ±0.03 

0.36 ± 0.04 
vs. 

0.19 ±0.05 

0.32 ±0.05 
vs. 

0.17 ±0.02 
* * * * * 

Phagocytosis 
(zymosan particles lO'mg protein"') 

2.83 ±0.68 
vs. 

0.75 ± 0.26 

2.37 ±0.36 
vs. 

0.69 ±0.17 

1.62 ±0.41 
vs. 

0.53 ±0.15 
*** NO DIFFERENCE 
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Fig. 5.2 Urinary PYR metabolite concentrations (|jgL'^) 
assessed in starved, diet-restricted (DR) and fully 
fed Carcinus maenas (n = 9) (day 7). Hatched bars 
indicate PYR-exposed treatments. * * * signifies P < 
0.001. Error bars signify ± 1 standard error. 
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Fig. 5.3 Urinary protein concentration (mgml-1) assessed in 
starved, diet-restricted (DR) and fully fed Carcinus 
maenas {n = 9) (day 7). Hatched bars indicate 
PYR-exposed treatments. * * signifies P < 0.01. NS 
= Not Significant. Error bars signify ± 1 standard 
error. 
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Fig. 5.4 Antioxidant status (|JM L"^) assessed in starved, 
diet-restricted (DR) and fully fed Carcinus maenas 
(n = 9) (day 7). Hatched bars indicate PYR-exposed 
treatments. * * signifies P < 0.01. Error bars 
signify ± 1 standard error. 

110 





5.3.1.2 Cellular variables 

Cell integrity (%) was higher in unexposed crabs compared to PYR-^exposed crabs 

Irrespective of dietary treatment {ANOVA, Fiso = 22.27, P < 0.001). No significant 

differences, however, were observed between dietary treatments (Fig. 5.5). 

Cellular viability was higher in unexposed compared to PYR-exposed crabs, 

irrespective of dietary treatment {ANOVA, Fi,5o = 25.27, P < 0.001). Significant 

differences were also found between treatment groups, with increased cellular 

viability in-starved compared with fed and DR crabs {ANOVA, F2,5o = 5.06, P < 0.01) 

(Fig. 5.6). 

Immune function, as shown by the phagocytic capability of haempcytes, was 

affected by contaminant exposure and significant differences were observed 

between unexposed and PYR-exposed individuals, with contaminant-exposed crabs 

expressing a depressed phagocytic capability {ANOVA, F .̂̂ g = 29.13, P < 0.001); 

however, no differences Were observed, between dietary treatments (Fig.,5.7). 
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Fig. 5.5 Cellular integrity (%) assessed in starved, diet-
restricted (DR) and fully fed Carcinus maenas (n = 
9) (day 7). Hatched bars indicate PYR-exposed 
treatments. * * * signifies P < 0.001. Error bars 
signify ± 1 standard error. 
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Fig. 5.6 Cellular viability assessed in starved, diet-restricted 
(DR) and fully fed Carcinus maenas {n = 9) (day 7). 
Hatched bars indicate PYR-exposed treatments. * * 
signifies P < 0.01. NS = Not Significant. Error bars 
signify ± 1 standard error. 
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Fig. 5.7 Phagocytosis index (zymosan particles lO^mg 
protein^) assessed in starved, diet-restricted (DR) 
and fully fed Carcinus maenas {n = 9) (day 7). 
Hatched bars indicate PYR-exposed treatments. * * * 
signifies P < 0.001. Error bars signify ± 1 standard 
error. 
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5.3.1.3 Multivariate analyses 

Multivariate analysis (ANOSIM tests) identified significant differences between 

treatment groups [Global R = 0.393, P (%) = 0.1]. Significant differences were 

observed between pyrene-exposed and unexposed crabs, irrespective of dietary 

treatments: starved [R = 0.529, P (%) =. 0.1]; diet-restriction [R = 0.564, P (%) = 0.1] 

and fully fed [R = 0.667, P (%) = 0.1] (Table 5.2). Results from S I M P E R analysis 

revealed that, in each dietary treatment, a different variable was the significant 

contributor to the overall group separation (Table 5.3). Within the starved treatment, 

urinary protein concentrations contributed < 25% to the group differences (Table 

5.3a). Antioxidant statijs (<35%) was the primary variable responsible for group 

differentiation for PYR-exposed and unexposed fed crabs (Table 5.3b). With regard 

to the diet-restriction treatment, however, urinary PAH metabolites (<25%) were the 

major contributing variable attributable for group separation (Table 5.3c). 
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Table 5.2 Post-exposure physiological assessment (day 7). Results from ANOSIM tests highlighting treatment differences 
between unexposed and pyrene-exposed (PYR) Carcinus maenas. 

ANOSIM GLOBAL tests ANOSIM pairwise tests Significant 
Treatment Pair wise tests R • P% R P% difference 

STARVED 
Unexposed 

vs. 
PYR-exposed 

0.393 0.1 0.529 0.1 

DIET-
RESTRICTION 

Unexposed 
vs. 

PYR-exposed 
0.393 0.1 0.667 0.1 

Unexposed 
FED vs. 0.393 0.1 0.564 0.1 S 

PYR-exposed 
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Table 5.3 Pairwise treatment comparisons of percentage 
contribution of each physiological variable within each 
dietary treatment (day 7). Highest contributing 
variables are highlighted in bold. 

a) Starved (unexposed) vs. Starved (PYR) 

(%) 

Protein in urine 24.13 24.13 
Cell viability 22.7 46.84 
Phagocytosis 21.56 68.4 
Antioxidant status 16.06 84.46 
Cell Integrity 8.39 92.85 
PAH metabolites 7.15 100 

b) Fed (unexposed) vs. Fed (PYR) 

y'"'̂ "'̂  m. 1%L 
Antioxidant status 23.73 23.73 
Cell Integrity" 21.67 45.4 
PAH metabolites 19.93 65.33 
Phagocytosis 18.1 83.43 
Cell viability 13.92 97.35 
Protein in urine 2.65 100 

c) DR (unexposed) vs. DR (PYR) 

. , . . . Contribution Gumuls 
^^"^'^'^ ^ (%} (%i 

PAH metabolites 33.91 33.91 
Cell Integrity 29.01 62.92 
Antioxidant status 13.52 76.44 
Phagocytosis ' 12.94 89.38 
Cell viability 9.61 99 
Protein in urine 1 100 
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5.3.2 Day 14 

Significant differences in stiore crab physiological condition (at the biochemical and 

cellular level) were revealed following 14 days exposure (See Table 5.4)-

5.3.2.1 Biochemical variables 

Urinary concentrations of 1-hydroxypyrene-type metabolites were significantly 

elevated in PYR-exposed individuals in all three treatments, compared to that of 

unexposed crabs {ANOVA, F^so = 51.79, P'< 0.001). A significant difference was 

observed also between the dietary treatments, with increased metabolite 

concentrations in the starved treatment compared to that of fed and DR crabs 

{ANOVA, F2,4s = 24.47, P < 0.001) (Fig. 5.8). 

Urinary protein concentrations, were significantly higher in starved crabs compared 

to the DR and fed treatments {ANOVA, F2,48 = 42.56, P < 0.001). Within the starved 

treatment, unexposed crabs had higher protein concentrations within the urine than 

PYR-exposed crabs (AA/OW\, F2,48 = 28.36, P < 0.01) (Fig. 5.9). 

Antioxidant status demonstrated differences between dietary treatments,, with the 

fed treatment demonstrating a greater antioxidant capability (in plasma) than both 

the starved and DR groups (AA/OW\, F2,48 = 5.35, P < 0.01) (Fig. 5.10). 
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Table 5.4 • Post-exposure physiological assessment of nutrition and contaminant- imposed physiological constraints in 
s tarved, diet-restr icted (DRi) and fully fed Carcinus maenas (mean ± l SE) (day 14). * , * * , * * * signify P < 0 .05, 
0.01 and 0 .001, respectively. 

Significant ctianges 
to biological responses 
compared to treatment 

controls 

(DAY 14) 

Parameters Starved Diet-restricted 

(DR) 

Fed 
Statistical significance 

INTRA-treatment INTER-treatment 

(Diet-Exposure Interaction) (Diet) 

i 
LU 

o g 

Urinary PYR metabolites 

(MQL-') 

Urinary protein concentrations 

(mgml"') 

Antioxidant status 

(MM L-') 

448.15 ± 92.58 
vs. 

920.54 ±108.15 

0.42 ± 0.06 
vs. 

0.17 ±0.01 

138.02 ±21.11 
vs. 

170.31 ± 13.41 

48.07 ±27.94 
vs. 

497.26 ±95.11 

0.11 ±0.02 
vs. 

0.08 ±0.02 

148.05 ±15.15 
vs. 

185.36 ±15.15 

54.65 ±10.06 
vs. 

401.13 ±82.9 

0.13 ±0.02 
vs. 

0.10 ±0.03 

204.93 ± 17.09 
vs. 

203.96 ±15.12 

* * * 

** 

NO DIFFERENCE 

Starved > DR = Fed 

* * * 

* * * 

Starved = DR< Fed 
* * 

a: 

ZD 
- J 
_1 
111 
O 

Cellular integrity 
{%) 

Cellular viability 
(O.D mg protein'') 

86.28 ± 0.45 
vs. 

87.09 ± 0.13 

0.27 ± 0.02 
vs. 

0.56 ±0.12 

84.80 ±1 
vs. 

86.30 ±1.36 

0.19 ±0.04 
vs. 

0.45 ±0.05 

86.92 ± 0.63 
vs. 

86.13 ± 0.46 

0.19 ±0.03 
vs. 

0.34 ±0.04 

NO DIFFERENCE 

*** 

NO DIFFERENCE 

Phagocytosis 
(zymosan particles 10̂  mg protein'') 2.14 ±0.44 

vs. 
1.65 ±0.35 

1.31 ±0.25 
vs. 

1.61 ±0.30 

2.44 ±0.43 
vs. 

1.42 ±0.22 

NO DIFFERENCE NO DIFFERENCE 
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Fig. 5.8 Urinary PYR metabolite concentrations (pgL"^) 
assessed in starved, diet-restricted (DR) and 
fully fed Carcinus maenas (n - 9) (day 14). 
Hatched bars indicate PYR-exposed treatments. 
* * * signifies P < 0.001, NS = Not Significant. 
Error bars signify ± 1 standard error. 
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Fig. 5.9 Urinary protein concentration (mgml"^) assessed 
in starved, diet-restricted (DR) and fully fed 
Carcinus maenas (n = 9) (day 14). Hatched 
bars indicate PYR-exposed treatments. 
signifies P < 0.001. Error bars signify ± 1 
standard error. 
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Fig. 5.10 Antioxidant status {[iM L" )̂ assessed in starved, 
diet-restricted (DR) and fully fed Carcinus 
maenas (n = 9) (day 14). Hatched bars indicate 
PYR-exposed treatments. * * signifies P < 0.01, 
NS = Not Significant. Error bars signify ± 1 
standard error. 
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5.3.2.2 Cellular variables 

Fourteen days pyrene-exposure had no apparent effect at the cellular level. 

PYR-exposed and unexposed crabs demonstrated similar cellular Integrity and 

phagocytosis (Table 5.2). However, there was increased cellular viability in the 

PYR-exposed compared with unexposed crabs, regardless of dietary treatment 

(starved, DR and fed) (A/VOW\, F , ,5o = 22.27, F < 0.001) (Fig. 5.11). 
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Fig. 5.11 Cellular viability assessed in starved, diet-
restricted (DR) and fully fed Carcinus maenas (n 
= 9) (day 14). Hatched bars indicate PYR-
exposed treatments. * signifies P < 0.05, NS = 
Not Significant. Error bars signify ± 1 standard 
error. 
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5.3.2.3 Multivariate Analysis. 

Multivariate analysis (ANOSIM tests) revealed significant differences between 

treatment groups [Global R = 0.387, P (%) = 0.1] with significant differences only 

observed between starved pyrene-exposed and unexposed crabs, starved [R = 

•0.529, P (%) = 0.1] (Table 5.5). Results from S IMPER analysis revealed that 

with regard to the starved treatment, urinary protein concentrations were 

contributing < 36% to the group-differences (See Table 5.6). 
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Table 5.5 Post-exposure physiological assessment (day 14). Results from ANOSIM tests highlighting treatment differences 
between unexposed and pyrerie-exposed (PYR) Carcinus maenas. 

ANOSIM GLOBAL tests ANOSIM pairwise tests Significant 
TREATMENT Pair wise tests R P% R P% difference 

Unexposed 
STARVED vs. 0.387 0.1 

PYR-exposed 
0.648 0.1 

DIET-
RESTRICTION 

Unexposed 
vs. 0.387 0.1 

PYR-exposed 
0.285 0.1 NS 

Unexposed 
FED vs. 0.378 0.1 

PYR-exposed 
0.158 0.1 NS 
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Table 5.6 Pairwise treatment comparisons of percentage 
contribution of each physiological variable within 
each dietary t reatment (day 14). Highest 
contributing variables are highlighted in bold. 

Starved (unexposed) vs. Starved (PYR) 

Variable 
Contribution 

• (%) 
Cumulative 

(%) . 

Protein in urine 35.91 35.91 
PAH metabolites 18.4 54.31 
Phagocytosis 15.61 69.91 
Antioxidant status 13.81 83.72 
Cellular Integrity 13.52 97.24 
Cellular Viability 2.76 100 

5.4 DISCUSSION 

Experimental manipulation of the 'internal milieu' of the shore crab was 

accomplished via a combination of nutrition and contaminant exposure. Pyrene 

exposure had a significant effect upon cellular functioning after seven and 

fourteendays exposure. 

Validation of pyrene exposure was achieved through evaluation pf urinary 

pyrene metabolites. Irrespective of dietary treatment, after both 7 and l 4 days 

exposure, pyrene-exposed crabs contained a higher concentration of urinary 

pyrene metabolites compared to unexposed crabs (Figs. 5.2 and 5.8, 

respectively). There were no differences in pyrene metabolite levels after 7 and 

14 days exposure to,pyrene for either starved {ANOVA, Fi_i6 = 1-86, P = 0.19), 

diet-restricted {ANOVA, Fije = 1.51, P = 0.24) or fed treatments {ANOVA, Fi,ie = 

3.22, P = 0.092), signifying that pyrene metabolism by shore crabs was constant 

throughout the study. 
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Antioxidant status, as sinown by the ability of the plasma to sequester reactive 

oxygen species (ROS), is Influenced by shore crab nutritional state (see Chapter 

4). Fully-fed crabs have been shown in this study to possess a higher 

antioxidant capability than starved or diet-restricted (DR) crabs (irrespective of 

pyrene exposure). This increased dietary-influenced capability may arise due to 

the amount of energy channelled to produce compounds with antioxidant 

scavenging properties. Antioxidants have been studied In detail as possible 

indicators of oxidative stress in marine organisms (Ahmad et al. 2000; Burgeot 

et al. 1996; Cheung et al. 2001; Cossu et al. 1997; Fitzpatrick et al. 1997; Regoli 

et al. 1998; Winston and Di Guilio 1991). Evidence has shown that antioxidants 

(such as enzymes) are inducible with increasing contaminant concentrations 

and exposure (Ahmad et al. 2000; Burgeot et al. 1996; Cheung et al. 2001). 

Other studies have shown that antioxidants capabilities are diminished or 

saturated with contaminant exposure (Camus et al. 2002b; Cossu et al. 1997; 

Doyotte e ta l . 1997; Vijayavel e ta l . 2004). The mechanism by which antioxidant 

systems operate is dependent upon exposure concentration and duration of 

contaminant exposure. Acute exposure results in an induction of antioxidant 

activity; however, chronic or higher contaminant concentrations can result in a 

reduction in antioxidant activity/capability (Table 5.7). 
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Table 5.7 Summary table of effects of sublethal contaminant 
exposure on antioxidant systems in aquatic 
organisms. 

Species Contaminant Effect Reference 

Channa punctatus Paper mill 
effluent 

Induction of antioxidant enzymes 
(e.g. glutathione peroxidise and 
catalase) over 15, 30, 60 and 90 

days exposure 

(Ahmad et al. 
2000) 

Mullus barbatus PAHs 

Induction of antioxidant enzymes 
(glutathione-s-transferase and 

catalase) in contaminated areas 
(37507.5 ngL'^) compared to 'clean' 

areas (47.2 ngL''') 

(Burgeot et ai. 
1996) 

Perna viridis PAHs . 
Induction of antioxidant enzymes with 

increasing PAH concentrations (8-
307 ng g dry tissue"^) 

(Cheung etal. 
2001) 

Unio tumidus 

PAHs (42261 pg/kg dry 
sediment) 

metals (433.12 mg/kg 
dry wt) 

After 15 and 30 days (caged) 
exposure to contaminants in the 
water column, antioxidants were 

inhibited by 60% and 80% in gills and 
digestive gland. 

(Cossu et al. 1997) 

Mytilus 
galloprovincialis 

Trace metals (As, Cu, 
Fe, Mn, Fb, and Zn) 

Lower levels of glutathione and 
higher enzymatic activities of 

glyoxalase compared to control 
mussels 

(Regoli 1998) 

Hyas araneus 
14 day exposure to 

North sea oil: 
PAHs 

(234 195 pg kg"') 

Saturation of the total oxygen 
scavenging capacity in the midgut 

gland compared with controls 

(Camus et al. 
2002b) 

Macrobrachium 
malcolmsonii 

Hydrogen peroxide 
{in vitro) 

Induction of glutathione peroxidise 
with increasing hydrogen peroxide 

exposure 
(Amn etal. 1999) 

Scylla serrata Naphthalene 
(100 nigL'^ 

96 hr exposure) 

Reduction in antioxidant capability: in 
haemolymph, ovary and hepatopancreas 
for both: 

1) Enzvmes: 
catalase (CAT); glutathione peroxidase 
(GPX); superoxide dismutase (SOD) 

and 

2) non-enzvmatic antioxidants: 
vitamin C (ascorbic acid), vitamin E 
(tocopherol) and glutathione,(GSH) 

(Vijayavel .et al. 
2004) 
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The F R A P assay measures the total antioxidant level in a sample (Griffin and 

Bhagooli 2004). The drawback of this method is that glutathione is unable to 

reduce Fe'" and does hot account for the thiol (SH) group of antioxidants (Prior 

and Cao 1999). Bell and Smith (1995) demonstrated the occurrence, 

distribution and activity of antioxidant enzymes (catalase, glutathione 

peroxidase, superoxide dismutase) in the haemocytes and cell-free plasma of 

the shore crab C. maenas. Sub-lethal exposure to naphthalene (PAH) was 

investigated in Scylla serrata and revealed decreased antioxidant activities for 

both enzyniatic (catalase, glutathione peroxidase, superoxide dismutase) and 

non-enzymatic antioxidants (vitamins 0 , E and glutathione) (Vijayavel et al. 

2004), thereby, corroborating findings of antioxidants in crustaceans, and 

specifically allude to the antioxidants detected using the F R A P assay. The 

•present results show that total antioxidant capability (excluding glutathione) in 

crab haemolymph is dependent on the individual's nutritional status. 

Protein analysis of urine revealed that urinary protein concentrations were 

significantly higher in starved crabs than in fed or P R individuals, indicative of 

proteinuria (i.e. excess loss of protein in urine) (Kashif et al. 2003). There wei^e 

no differences, however, in protein levels within the urine between days 7 and 

14 exposure periods for either starved {ANOVA, Fi,i6 = 0.11, P = 0.74), diet-

restricted {ANOVA, Fi,i6 = 0, P = 0.99) or fed treatments {ANOVA, P .̂ye = 1.68, P 

= 0.21), signifying that protein excretion by shore crabs was constant throughout 

the study. There are four mechanisms of proteinuria (in humans): increased 

glomerular filtration, inadequate tubular reabsorption, overflow and increased 

tubular secretion and maybe indicative of kidney dysfunction (Kashif et al. 2003; 

Tonelli et al. 2006). The crustacean hepatopancreas, a multilobate sac or 

diverticulum of the midgut, is analogus to the vertebrate liver, pancreas and 

small intestine (Crothers 1967), and is a vital organ involved In excretion; 
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carbohydrate and lipid metabolism^ enzyme secretion, digestion and food 

absorption, synthesis and secretion of plasma proteins and storage of energy 

reserves (Crothers 1967; Johnstone et al. 1973; Sanchez-Paz et al. 2007). In 

this present study, protein overflow may be postulated to arise when prptein 

stores are broken down (in order to provide the body with energy during 

nutrition-deprived conditions) and subsequent increased protein levels overflow 

into the hepatopancreas, leading to excretion via the antennal glands. In C. 

maenas, starvation, has been induced experimentally (Meigh 2000; Uglow 

1969). After fourteen days of starvation, haemolymph protein levels decreased 

by 20% (Uglow 1969). Meigh (2000) demonstrated that, due to a combination of 

starvation and exposure to mixed effluent of engine oil, significant decreases in 

haemolymph protein levels occurred and postulated that protein metabolism had 

been induced. In other crustacean species, a reduction in the hepatosomatic 

index (hepatopancreas weight: an indicator of energy reserves) (Well et al. 

2006) has been shown to occur through the use and mobilisation pf energy 

reserves (Sanchez-Paz et al. 2007) (and references therein). Such evidence of 

protein metabolism for energy in times of nutritional deficiency may explain the 

excess protein excreted In urine, found here. 

Present results indicate that contaminant exposure has not altered cellular 

function. The singular effect was increased cellular viability and this has been 

shown previously (Dissanayake et al. 2006b; Grundy et al. 1996; Matozzo et al. 

2002; Matozzo and Marin 2005; St-Jean et al. 2002a, b). This elevated 

capability of lysosomes to accumulate contaminants (in this case pyrene) may 

be explained by the fact that maximal lysosomal capability has not been 

compromised and membrane destabilisation has not occurred (Dissanayake et 

al. 2006b). The significant differences of increased cellular viability between 
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starved and DR and fed crabs can be postulated to be linked with the process of 

autophagy. This process may confer pollutant-Induced tolerance via up-

regulatlon of the breakdown mechanisms of proteins through the use of 

interniediates for the end purpose of maintaining energy production (ATP) via 

the Krebs cycle (Moore et al. 2006). This process of augmented: autophagy by 

short-term diet-restriction has been demonstrated also in mussels, using both 

model organic and heavy metal contaminants(Moore 2004). 

The combined effect of dietary manipulation and contaminant-imposed 

perturbation was tested to investigate whether susceptibility to contaminant 

exposure was dependent upon shore crab nutritional status. Using multivariate 

methods it is possible to postulate the implications of both nutritional and 

contaminant-imposed constraints upon shore crab physiological condition, rather 

than measuring changes for one single variable. Changes to the shore crab 

physiological condition (using an integrated approach of multivariate analysis) 

signalled by a repertoire of biochemical and cellular responses are apparent.with 

a seven-day and fourteen-day exposure period. Differences between pyrene-

exposed individuals and unexposed crabs were observed for all dietary 

treatments (starved, fed and diet-restriction). For exposed crabs, increased 

pyrene metabolites and proteinuria levels were observed In starved crabs 

compared to fully-fed crabs assessed at seven and fourteen exposure periods 

(Figs 5.2, 5.3, 5.8 and 5,9, respectively). Also, antioxidant status was 

significantly different between fed and starved and diet-restricted crabs (Figs 5.4 

and 5.10). Cellular viability, however, was lower in pyrene-exposed crabs (for all 

treatments) after seven days compared to unexposed crabs (Fig 5.6) after 

fourteen days exposure, however, induction of cellular viability was observed in 

pyrene-exposed crabs. 
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The mechanisms of biochemical and cellular processes obseived here appear 

to be dependent upon shore crab nutritional status, thereby, affording 

contaminant tolerance. On the basis of these and previous results (Chapter 4), 

it is concluded that shore crab physiology is robust to short-term and sublethal 

contaminant-mediated challenges. In summary, this study has shown that the 

susceptibility of C. maenas to sublethal contaminant exposure is dependent 

upon its nutritional status (as shown by lower haemolymph total antioxidant 

capability in starved crabs compared to fully fed crabs). Short-tenn exposure to 

pyrene resulted In up-regulatjon of cellular processes, such as lysosomal 

capability (signalled by an increase in cellular viability). 
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CHAPTER 6: 

Does the physiological condition of 
Carcinus maenas affect intraspecific 

agonistic behaviour? 
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Does the physiological condition of Carcinus maenas affect intraspecific 
agonistic behaviour? 

ABSTRACT 

In nature, intraspecific resource conflicts are prevalent, particularly male-male 

dyadic competitions. Ultimately, resource conflicts are resolved through 

contests and these depend on three distinct traits: resource holding potential 

(RHP; e.g. body size), resource value and aggressiveness. Male Carcinus 

maenas exhibit a characteristic and measurable series of agonistic behavioural 

patterns during inter-individual competition for resources (in this case, a whole 

cockle). This study tested the hypothesis that shore crab physiological condition 

is a key factor jn determining the outcome of intraspecific agonistic resource 

contests in this species. For starved crabs, resource holding potential (RHP 

defined as the ability to win an all-out contest) evaluated using intraspecific 

agonistic behaviour was significantly higher in pyrene-exposed compared to 

unexposed crabs. Also for starved crabs, exposed individuals had increased 

resource possession (%) and decreased recuperation time' compared to 

unexposed crabs (P < 0.05) irrespective of nutritional state. In conclusion, 

experimental manipulation of shore crab physiological condition (via a 

combination of dietary and sublethal contaminant exposure) has shown that 

under nutrient-deprived conditions (starved crabs), higher proximate metabolic 

costs are incurred [decreased lactate and glucOse concentrations (P < 0.05)], 

compared to fully-fed individuals. Resource holding potential (RHP) was higher 

in pyrene-exposed compared to unexposed crabs, thereby, demonstrating how 

shore crab physiological condition determines the competitive ability of this 

species. 
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6.1 I N T R O D U C T I O N 

In nature, intraspecific conflicts are prevalent for many species and arise over 

competition for limited resources, such as food, shelter (Bfiffa and Eiwood 

2001), territory (Brandt 2003; Taylor et al. 2001), and mates (Brandt 2003; Faber 

and Baylis 1993; Kosmala et al. 1998; Lailvaux et al. 2005) (reviewed in 

Huntingford and Turner 1987). Ultimately, resource conflicts are resolved 

through fighting (Hurd 1997) and may involve 'conventional' signals such as 

sexually-selected traits [(ornarhents or badges of status; reviewed in Andersson 

(1994)] or 'costly' signals when performing an energy-demanding activity such 

as fighting (Briffa 2006). Both types of signals advertise fighting ability or 

resource holding potential (RHP). R H P Is defined here as the ability to win an 

all-out contest (Maynard Smith 1982; Parker 1974). Resource holding potential 

has been assessed for several taxa using various measures Including body size 

(Beaugrand et al. 1996), weight (Faber and Baylis 1993; Martin et al. 1997) and 

weapon size (e.g. claw size in C. maenas) (Sneddon et al. 1997b).' 

Game theory models of aggressive conflict behaviour are postulated to be 

dependent upon three distinct traits: resource holding potential, resource value, 

and aggressiveness. Experimental manipulation of these traits has helped 

clarify the degree they are influenfial in shaping intraspecific male-male dyadic 

contests: R H P (Faber and Baylis 1993; Gherardi 2006; Leiser et al. 2004; Neat 

et al. 1998; Petersen and Hardy 1996); resource value (Gherardi 2006; Sneddon 

et al. 1997a) and aggressiveness (Earley et al. 2000). In cases of asymmetrical 

contests, where one opponent is larger than the other, body size (RHP) is the 

important factor in determining the victor in painwise contests (Beaugrand et al. 

1996; Faber and Baylis 1993; Sneddon et al. 1997b). In symmetrical contests, 

however (where conspecifics are matched in terms of RHP , e.g. body size), 

resource value and aggression are inhportant in settling conflicts (Hurd 2006). 
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During pairwise contests, quantitative estimates of tlie R H P difference t)etween 

opponents are said to determine contest duration (Hurd 2006). Contest duration 

appears to persist until one opponent reaches a 'cost' threshold; this was 

proposed as 'the own RHP-dependent hypothesis' (Gammell and Hardy 2003). 

This latter hypothesis was developed from the work of Payne and Pagel (1997) 

who proposed that those opponents in such 'energetic wars of attrition' that are 

committed to expending the greatest amount of energy towards resolving the 

Conflict will emerge as the contest victor. Phenotypic correlates (body size, claw 

size) (Briffa and Elwood 2004) of R H P are said to be fixed, as size of weapons 

will not vary during a fight (Briffa and Elwood 2004; Sneddon et al. 1997b). 

Intuitively, it may be proposed that shore crab physiological condition is an 

Important factor in determining the individual R H P , outcome and associated 

costs of the contest, yet limited data exist to support this hypothesis. 

The male shore crab Carcinus maenas exhibits a characteristic and measurable 

series of agonistic behavioural patterns during inter-individual competition for 

limited resources such as females and food (Sneddon et al. 1997a). Differences 

in physiological condition between opponents may lead to consequences in 

terms of competitive ability and, ultimately, contest outcomes. Exposure-

concentration relationships have shed light upon the probable effects of acute-

sublethal responses impacting upon an organism's physiology (Brown .et al. 

2004; Canty e ta l . 2007; Livingstone 1991; 1992; 1998; Rickwood and Galloway 

2004; Scarlett et al. 2007). Behaviour links physiological function (internal 

biological processes) with ecological processes (e.g. growth, reproduction) 

(Scott and Sloman 2004). Unanswered questions remain about integrating the 

behavioural effects of toxicants with physiological processes. Instances where 

behaviour may be indicative/sensitive to contaminant-mediated injury can be 

considered to be potential indicators and have been characterised in detail in 
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fish (Scott and Sloman 2004). A paucity of information exists that link effects 

between the various hierarchical levels of biological organisation; biochemical 

through to behavioural. This study explored the hypothesis that experimental 

manipulation of shore crab physiological condition [via combined dietary 

manipulation and exposure to sublethal concentration of the aromatic 

hydrocarbon pyrene (see Chapter 5)], while keeping the phenotypic correlates 

fixed, (i.e. pody size and weapon size), will be a key factor in shaping 

intraspecific agonistic contests in the shore crab C. maenas (Briffa and Elwopd 

2004). 

6.2 MATERIAL AND METHODS 

6.2.1 Shore crab collection and maintenance 

Adult (>60mm CW) (Crothers 1967) male (green) intermoult Carcinus maenas 

{n = 54) (mean C W 66.29 + 5.07mm) were collected from the Avon Estuary, 

Bantham, South Devon, U.K. (grid reference: S X 6623 4380) on two occasions 

(23"'and 2 5 * June 2005) using mackerel-baited traps (see Chapter 2, Section 

2.1). In the laboratory, crabs were maintained in static holding tanks containing 

filtered (10pm carbon filtered), aerated seawater (34ppt, 15 ± 1°C) under a 12h 

l ight: 12h dark photoperiod for a maximum of 2 days before being transferred 

into treatment tanks. Grabs were held in exposure tanks (2L) and starved or fed 

with Y-irradiated cockle {Cerastoderma edule) (Gamma foods, Tropical. Marine 

Centre, Bristol, U-K.) according to the individual nutritional treatment'conditions 

(see below). Water was changed within 18h of each feeding. 
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Each crab was nurhbered using a label attached (cyanoacrylate glue) to the 

carapace. Morphometric characteristics of each crab were recorded such as: 

carapace width (CW) (mm) and wet weight (g). - The following treatment groups 

were used for agonistic encounters over a food resource (see Chapter 5, 

Section 5.2.2): (1) starved unexposed (n =^9); (2) starved PYR-exposed (n = 9); 

(3) diet-restricted (DR) {n = 9); (4) DR PYR-exposed (n = 9); (5) fed unexposed 

(n = 9); and (6) fed PYR-exposed (n = 9). Each PYR-exposed shore crab was 

paired with an unexposed cohspecific from the respective dietary treatment (e.g. 

starved unexposed vs. starved PYR-exposed). 

Table 6.1 Paired treatment groups used to evaluate agonist ic 
behaviour (n = 9) . 

Dietary 
manipulation Exposure treatment 

Starved Unexposed vs. PYR-exposed 

Diet-restricted Unexposed vs. PYR-exposed 

Fully-fed Unexposed vs. PYR-exposed 

136 



6.2.2 Intraspecific contest behaviour 

t o initiate agonistic encounters, two size-matched crabs (i.e. unexposed vs. 

PYR-exposed) were placed in a fighting chamber separated by vertically-sliding 

blackened glass dividers. The fighting chamber was blackened out from three 

sides to limit visuial stimuli from altering contest behaviour. Contests 

commenced when a whole cockle was placed in the centre of the chamber and 

the dividers raised. Typically, the contest often began with a series of 

'wrestles', where the crabs would grapple, often pushing and 'pinching' each 

other with their claws or trying to pin each other. In some cases, contests 

escalated to a fight, where the intensity of the aggression increased. Agonistic 

encounters, were allowed to proceed for 15min, then crabs were separated and 

their physiological condition assessed based on haemolymph glucose and 

lactate analysis. Haemolymph samples (100pl) were extracted by puncture of 

the arthrodial membrane at the base of the walking 4"^ walking leg using a. pre-

chilled 1ml syringe and 21 gauge needle (Sigma-Aldrich, U.K.) (see Chapter 2, 

Section 2.4. t for details). 

Behavioural patterns used here to describe contest behaviour in C. maenas 

were adapted from Sneddon et al. (1997a) (Table 6.2); with the addition of 

further categories (Table 6.2) based on intensity and duration of various 

postures adopted, and described here as wrestles and fights (Figs 6.1 and 6.2, 

respectively). Wrestles were identified as slow, low-intensity behaviour where 

opponents engaged in grappling by interlocking their chelae (Fig. 6.1). Wrestles 

were common and are interpreted as low aggression behaviour whereby injury 

is minimised (Brick 1998; deCarvalho et al. 2004; Warner 1970; Wells 1978). 

Fights, however, were more intense and accompanied a quicker series of 

movements where 'pinching' of opponents pereopods occurred (Fig. 6.2). 

Fighting is also reported commonly for crabs with consequent injury which often 
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decides tlie contest outcomes (deCan/altio et al. 2004; Huntingford and Turner 

1987; Maynard Smith 1982; Parker 1974; Payne and Pagel 1997). 

Agonistic encounters between contestants, recorded using a video camera 

(Sony DCR10 TRV), included various behaviours such as: resource possession 

(% time possession of the resource i.e. the cockle); recuperation time [period 

where opponent moves away from the aggressor (In sec)]; total number of 

recuperation Jtimes; fight and wrestle duration (in sec), contest intensity (no. of 

fights/no. of wrestles); and total contest duration [fight + wrestle duration (sees)] 

(Table 6.2). Crabs were held for a further two weeks after experiments to 

ensure they were not in proecdysis, which would potentially affect physiological 

condition and subsequent contest behaviour. 

6.2.3 Haemolymph analysis 

The concentration of L-lactate was determined using the method pf Gutmann 

and Wahlefeld (1974) with the suggested modification by Engel and Jones 

(1978). The assay was optimised and carried out in a microplate format (Briffa 

and Elwood 2005) (see Chapter 2, Section 2.4.4 for details). 

6.2.4 Statistical analysis 

Two methods of statistical analyses were used to isolate'significant differences 

between experimental treatments, using intraspecific agonistic contests and 

post-contest metabolite concentrations of lactate and glucose. Univariate 

analyses were performed to test for differences for a single parameter between 

experimental groups. To attain an integrated summary of the contaminant 

impact, multivariate analyses (ANOSIM, SIMPER), tested for differences 

between the experimental groups via the complete repertoire of biological 
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responses measured. Univariate statistical analyses were perfomied using 

G M A V 5 for windows®. Treatment differences were analysed using the 

parametric Analysis of variance test, due to homoscedasticity of data 

(Undenwood 2005). Multivariate analysis was carried out using PRIMER® v6 

(Plymouth Routines in Multivariate Ecological Research, PRIMER-E Ltd) (see 

Chapter 2, Section 2.6.2 for details). 
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Table 6.2. Types of behavioural patterns displayed in intraspecif ic contest behaviour in male Carcinus maenas 
adapted from Sneddon et a l . ( i 9 9 7 a ) . 

TYRE DESCRIPTION QUANTIFIED 

Wrestles 

Fights 

Crabs would engage each other in grapples,,often interlocking 
chelae resulting in pushing and pinching to 'pin' the opponent 
opponent down. This series of behaviours is slow and low in 
intensity. A wrestle can potentially escalate into a fight. 
(Duration between 30- 240 sec). (See Figure 1.) 

Crabs engage each other in the same postures as 
wrestles, however, aggression and intensity increases 
resulting in a more vigorous series of behaviours where 
pinching of pereopods occurs. 
This sequence of events is quicker, however, the 
duration is shorter, compared to wrestles. 
Fights can de-escalate to wrestles or both opponents 
seize aggressive activity. 
(Duration between 20- 40 sec). (SeeFlgiiref 2.) 

Measured in sec 

Measured in sec 

Resource Possession (%) % time in possession of the cockle. 
Time in possession of the cockle 

/ by contest duration 
(Expressed as %) 

Recuperation time Time taken to recuperate from either wrestles or fights, timed 
as soon as the crab breaks engagement and moves 
away from the opponent. 

Measured in sec 

N°. of Recuperation times Total number of recuperation times 

Total contest duration Total duration of wrestles and fights 

Expressed as a frequency 

Measured in sec 

Contest intensity Mean number of fights/ mean number of wrestles Expressed as a ratio. 
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Fig. 6.1 Postures displayed in an example of a wrestle 
where opponents attempt to 'p in ' each other. 

Fig. 6.2 Example of a fight where opponents use 
aggressive behaviours such as raising the body 
above the ground and use of the chelae for 
grasping and pinching. 
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6.3 RESULTS 
J 

. 6.3.1 Univariate 

Results for biochemical (post-coritest haemolymph lactate and glucose 

concentrations) and behavioural (Intraspecific agonistic behaviours) endpoints 

are summarised in Tables 6.3 and 6.4, respectively. 

6.3.1.1 f-iaemolympti analysis 

Lactate concentrations did not differ significantly between unexposed and P Y R -

exposed crabs within the respective dietary treatments (starved, diet-restriction 

and fed), but there was a difference between the fed unexposed group and the 

starved and DR unexposed groups. For fully-fed crabs, unexposed individuals 

had significantly higher haemolymph lactate concentrations than PYR-exposed 

crabs {F2.48 = 3.89, P < 0.05) (Fig. 6.3). Haemolymph glucose concentrations 

did not differ significantly between the three dietary treatments but there was a 

significant difference in this measurerhent, due to the diet and exposure 

interaction, with the fed PYR-exposed group yielding lower glucose 

concentrations than their unexposed counterparts (22.49 ± 8.89 vs. 31,20 ± 9.42 

^igL-^) {Fz48 = 4.23, P < 0:05) (Fig. 6.4). 
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Table 6.3 Post-contest biochemical assessment of s tarved, diet-restr icted (DR) and fully-fed shore crabs (mean 
± 1 SE) . * signifies P < 0.05. NS = Not Significant 

Level Endpoints Starved Pret-restrlcted 
(DR) 

Fed 
Statistical significance 

Intra- treatment Inter-treatment 

(Diet-exposure Interaction) (diet) 

UJ 
X o o 
CQ 

Lactate 
(mmol L-̂ ) 

Glucose 
(ug L-̂ ) 

15.51 ±3.5 
vs. 

23.60 ± 3.06 

29.09 + 1.7 
vs. 

25.05 ± 3.61 

21.50 ±2.65 
vs. 

27.52 ± 3.03 

28.59 ±3.10 
vs. 

32.73 ±3.10 

3"1.20±3.13 
vs. 

22.49+2.96 

34.51 ±4.89 
vs. 

17.91 ±3.3 

(Unexposed) 
starved > DR = Fed 

* 

NS 

NS 
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6.3.12 Intraspecific contest behaviour 

Each pair of equally size-matched contestants engaged in agonistic encounters 

in the experimental fightirig chamber. Agonistic encounters consisted of a series 

of behaviours (Table 6.2) ranging from cheliped displays to wrestles, 

subsequently escalating Into fights. For all treatments, mean wrestle and fight 

durations ranged between 209 ± 37 s and 42 ± 13 s respectively. All results for 

behaviour'al Variables are summarised in Table 6.4. Significant differences in 

resource possession were observed only within the starved treatment, with 

PYR-exposed Individuals demonstrating a significantly higher resource 

possession than unexposed crabs (52 and 19% respectively) {Fij6 = 4.53, P < 

0.05) (Fig. 6.5). Significant differences in recuperation time (sec) were observed 

only between unexposed and PYR-exppsed crabs within the starved treatment. 

Unexposed, starved individuals took significantly longer to recuperate after fights 

or wrestles during agonistic encounters compared to PYR-expbsed starved 

crabs (437.22 ± 28.23 vs. 166.44 ± 21.98 s) {Fz48 = 3.76, P < 0.001), (Fig. 6.6). 

No significant differences were obsen/ed in other agonistic behaviours including 

number of wrestles and fights, total contest duration and contest intensity. 
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Table 6.4 Intraspecif ic agonist ic behavioural assessment of s tarved, diet-restr icted (DR) and fully-fed shore Crabs 
(mean ± 1 SE) . * and * * * signify P < 0.05 and P < 0 .001, respectively. NS = Not Significant. 

Statistical significance 
Level Endpoints Starved Diet-restricted 

(DR) 

Fed Intra- treatment 

(Diet-exposure 
Interaction) 

Inter-treatment 

(diet) 

19.44 ±1.19 32.78 ±1.20 33.89 ±1.04 
Resource possession vs. vs. vs. * NS 

(%) 51.89 ±1.20 37.67 + 1.53 25.56 ±1.17 

Recuperation time 
437.22 ±9.41 

vs. 

334.56 ±10.87 
vs. 

256.89 ± 9.03 
vs. 

*** 
NS 

_i 
(sec) 116.44 ±7.33 261.11 +8.92 399.89 ± 9.23 

=>• 
O 

X 
LU 
CQ 

Number of recuperation 
times 

4 ±0.10 
vs. 

1.78 ±0.08 

3.11 ±0.09 
vs. 

3.67 + 0.14 

4.56 ±0.18 
vs. 

3.89 ± 0.08 

NS NS =>• 
O 

X 
LU 
CQ No. of wrestles 6 ±0.1 5.33 + 0.11 7 ±0.13 NS NS 

No. of fights 2.44 ± 0.06 2.22 ± 0.04 1.78 + 0.06 NS NS 

Total contest duration 246.67 ±2.3 229.32 + 0.9 277.25 ± 4.8 NS NS 

Contest intensity 0.43 ± 0.01 0.56 ±0,02 0.36 ± 0.01 NS NS 
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6,3.2' Multivariate 

Significant differences (ANOSIIVI painwise tests) were identified only between 

contaminant (PYR) and unexposed shore crabs, with regard to the starved 

dietary treatment (Table 6.5). S IMPER analysis [evaluation of the percentage 

contribution of each endpoint (biochemical and behavioural) to the group 

differentiation]. Identified recuperation time (14.9%), resource possession 

(14.8%) and haemolymph lactate concentration (12%) as the three major 

contributing endpoints accounting for over 40% for the difference between 

treatment groups (Table 6.6). ' 
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Table 6.5 Results from one-way ANOSIM tests, bases on euclldean distances in normalised variables from post-contest 
biochemical and intraspecif ic behavioural assessment., Signif icant treatment differences are highlighted in 
bold. S= Significant, NS = Not Significant. 

ANOSIM GLOBAL tests ANOSIM pairwisetests Significant 
TREATMENT Pairwisetests R P% P value R P% P value difference 

Unexposed 
STARVED vs. 0.052 6 0.06 0.21 1.1 0.011 

PYR-exposed 

Unexposed 
DIET-RESTRICTION vs. 0.052 6 0.06 -0.111 96 0.958 NS 

PYR-exposed 

Unexposed 
FED vs. 0.052 6 0.06 0.047 23 0.226 NS 

PYR-exposed 
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Table 6.6 Pairwise treatri ient comparison of percentage 
contribution of each physiological variable within the 
starved treatment. Highest contributing variables 
are highlighted in bold. 

Starved: Unexposed vs. PYR-exposed 

Variable Contribution 
(%). 

Cumulative 
(%) 

Recuperation time 14.93 14.93 
Resource possession (%) 14.82 29.75 
Lactate 12 41.75 
Fight duration 11.59 53.33 
Intensity . 9.57 62.9 
No. of recuperation times 9.2 72.1 
No of Wrestles 8.88 80.99 
Wrestle Duration 8.25 89.24 
Glucose 5.99 •95.23 
No of Fights 4.77 100 
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6.4 DISCUSSION 

Previous worl< fias sliowri tfiat figliting beliavibur is metabolically costly for 

various crustacean species [Necora puber (Thorpe et al. 1995); Carcinus 

maenas (Sneddon et al. 1999) and Pagurus berniiardus (Briffa and Elwood 

2004) ]. For example, accumulation of the products of anaerobic respiration, 

such as lactate, result in reduced ability to persist in agonistic encounters and 

faster onset of exhaustion (Thorpe et al. 1995). In the current study, lactate 

concentrations were-not measured from inactive crabs but previous studies have 

shown that lactate levels from crabs at rest range from negligible to 1,5 mmolL"\ 

In the present study, post-contest lactate levels were high (15-40 mmolL'^), 

indicating that metabolic energy demands were met by anaerobic respiration, via 

the breakdown of pyruvate to lactate (Hames and Hooper 2000; Sneddon et a|. 

1999; Thorpe et al. 1995). Lactate Is a hamnful by-product of anaerobic 

respiration (arising under oxygen-limiting circumstances such as muscle 

contraction) (Hames and Hooper 2000) and has been used as an index of 

metabolic cost during aerobic activity of animals (particularly with a limited 

capacity for aerobic respiration) (Balogh et al. 2001; Matsumasa and Mural 

2005) . The costs of engaging in agonistic behaviour results in increased lactate 

levels and is proposed to impose a limit upon contest duration (Sneddon et al. 

1998). 

In thepresent study, accumulation of lactate was higher in unexposed fed crabs 

compared to unexposed starved and diet-restricted (DR) crabs. High lactate 

levels, coupled with increased concentration of free-circulating glucose 

concentrations, measured also in the haemolymph, implies an imposed 

proximate cost for energetic behaviour. Pyrene-exposed fed shore crabs 

showed no significant difference in levels of lactate post-contest, but unexposed 

151 



fed crabs had significantly higher glucose levels, suggesting that more energy 

was available to unexposed fed individuals as opposed to their PYR-exposed 

counterparts. It Is known that for N. puber, and C. maenas, elevated glucose 

levels are observed in response to fighting (Sneddon et al. 1999; Thorpe et al. 

1995). Also, it has been proposed that L-lactate levels influence behavioural 

decisions In contest behaviour such as decrease in shell-rapping behaviour and 

the decision'to desist from contest behaviour, as seen In hermit crabs (Briffa and 

Elwood 2004). 

The imposed 'physiological state' of the experimental crabs has an implication to 

the amount of energy reserves and, subsequently, the energy available for an 

energetically-demanding activity such as contest behaviour. Fed individuals can 

afford to 'cope' with higher L-lactate levels as well as mobilising glucose from 

energy reserves. Lactate is a metabolic substance that is produced at all times 

(even at rest), both due to oxygen availability and unavailability (Myers and 

Ashley 1997). In energy-demanding situations (e.g. agonistic contest 

behaviour), adenosine triphosphate (ATP) is catabolised to A D P and 

subsequently to A M P in the muscle fibres. This process is dependent upon 

glycolysis to ultimately generate A T P (Balogh et al. 2001). A metabolic change 

(within the cell) arises to enable full mitochondrial function to occur. Increase in 

the NADH/NAD"" (nicotinamide adenine dinucleotide) ratio (i.e. redox potential), 

which Is transmitted to the cytosol whereby the lactate/pyruvate ratio is driven 

towards increased lactate production (Myers and Ashley 1997) in 'order to 

maintain the regeneration of NAD"" thereby allowing for the production of A T P 

via glycolysis (Hames and Hooper 2000). 
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The difference found here whei'eby fed crabs had higher concentrations of 

circulating glucose and lactate compared to starved or diet-restricted crabs, can 

be postulated to have arisen due to their higher energy reserves (in comparison 

to starved and diet-restricted individuals), thereby, increased glycolysis rate 

resulting in concomitant increased glucose and lactate productiop. This 

reasoning could explain why fed individuals were observed to 'cope' with higher 

L-lactate.levels. In comparison, starved crabs, cannot cope with the high lactate 

levels, due to the lack of energy reserves and, hence have lower L-lactate 

levels, compared to fed and starved crabs. It has been suggested that there are 

few behavioural differences, and similar metabolite levels, between eventual 

contest winners and losers (Thorpet ef al. 1995). The combination, however, of 

metabolite profiles may not be the sole reason influencing behavioural decisions 

to end encounters. 

There are three traits that are inherently modelled in contest behaviour: resource 

holding potential (RHP); relative resource value (Vj and aggressiveness (Hurd 

2006). RHP is the ability to Win a contest (Maynard Smith 1982) through 

inherent phenotypic (e.g. body size) and physiological attributes (e.g. energy 

reserves). Resource value or motivation is related to the value of the disputed 

resource (Sneddon et al. 1997a), such as food (foraging individuals) or females 

(reproductively active males). Aggressiveness is related to the individual's 

tendency .to escalate" a contest independently of both R H P and resource value 

(Hurd 2006). In symmetrical contests where R H P and resource value are 

matched, aggressiveness may be a trait that influences escalation decisions in 

agonistic encounters. 

In this study, no differences were observed in contest duration, contest intensity 

and wrestle or fight duration, suggesting that crabs, irrespective of energy 
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reserves, engaged in intraspecific agonistic behaviour with comparable vigour or 

intensity. Sneddon et al. (1999) reported that shorter contests were observed in 

shore crabs that had been subjected to hypoxic conditions. De-escalation of 

fights to'wrestles, (to a less energetically costly behaviour) is proposed by these 

authors to occur due to metabolic costs of agonistic encounters outweighing any 

possible benefits. Possible explanations for the discrepancy between earlier 

observations (Sneddon et al. 1999) and. findings here may be explained by 

resource motivation. In the present study, resource motivation was imposed 

upon size-matched conspecifics by introduction of a food resource (whole 

cockle). Staged contests therefore presented contestants with motivation to 

engage in dyadic contests conferring a greater perceived benefit than cost. 

Contests often begin with wrestles escalating into fights (Sneddon et al. 1997a), 

contest de-escalation (from fights to wrestles) as witnessed by Sneddon et al. 

(1997a) can be explained by the lack of resource value in staged contests, 

thereby influencing an individual's motivation to pursue or evade agonistic 

encounters. In this current study, phenotypic correlates of R H P , such as body 

(carapace width) and weapon (cheliped) size were fixed; shore crab 

physiological condition was manipulated via a combination of dietary and 

contaminant exposure. Via autophagy (see Chapter 5), diet-restricted 

individuals are subjected to a survival strategy, whereby breakdown of long-lived 

proteins occurs allowing recycling of products into protein synthesis and energy-

production pathways (Moore et al. 2006). Autophagy allows cells to be self-

sustaining during nutrition-deprived conditions (Finn and Dice 2006; Yoshimori 

2004). Under these conditions, resource value (and thus motivation) would be 

higher in starved crabs. This perceived increase in resource value could explain 

the significant difference in resource possession and recuperation time between 

the unexposed and PYR-exposed starved treatments. This interpretation 

corroborates predictions made by several game theory models that, as resource 
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value Increases, behaviour during contests is related to the value of the disputed 

resource (in this case^food) (Sneddon et al , 1997a). Corroborative evidence by 

Gherardi (2006) showed that resource value (i.e. gastropod shell quality) In the 

hermit crab Pagurus longicarpus was imperative to contest behaviour in this 

species. A hermit crab vyill initiate an attack upon a rival based upon information 

about its own shell quality (if its own shell is damaged or too small). Gherardi 

(2006) suggested that contest behaviour is dependent upon resource value. 

Game theory models and experimental evidence suggest that strategies in 

agonistic encounters are determined by an individual's physiological condition. 

Manipulation of an individual's state, therefore, should elicit behavioural 

differences (Sneddon et al. 1999). The present study shows that the resource 

holding potential (RHP), and associated energetic consequences of agonistic 

encounters, was dependent on shore crab physiological condition. Physiological 

condition therefore determines the energy available to the shore crab for 

energetically-demanding activities (such as intraspecific agonistic behaviour) as 

shown here by higher lactate levels In fed crabs compared to starved crabs. 

In conclusion, experimental manipulation of shore crab physiological condition 

(via a combination of dietary and sublethal contaminant exposure) has shown 

that, under nutrient-deprived conditions (starved crabs), resource holding 

potential (RHP) evaluated using the ecologically important intraspecific agonistic 

behaviour in this species was higher in pyrene-exposed crabs compared .to 

unexposed crabs. Shore crab physiological condition, however, was not the 

sole reason accounting for the differences in behaviour, as resource value 

(evaluated here in the presence of a whole cockle) is concluded to influence an 

individual's motivation to enter agonistic encounters. 
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CHAPTER 7: 

Does the physiology of Carcinus maenas 
vary 'seasonally' and do 'seasonal' 

physiological differences confer 
physiological tolerance to contaminant 

exposure? 
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Does the physiology of Carcinus maenas vary 'seasonally' and do 
'seasonal' physiological differences confer physiological tolerance to 
contaminant exposure? 

ABSTRACT 

Environmental temperature has a direct Influence upon poikilothermic 

organismal physiology." Knowing the full range of temperature-mediated 

metabolic and physiological abilities of an organism will contribute to our 

understanding of specific contaminant-Imposed constraints upon organism 

physiological condition. The aims of this study were to a) outline the seasonal 

differences In shore crab physiology, and b) to evaluate the seasonal differences 

in physiological condition of crabs from estuaries [Avon apd Yealm (low), Plym 

(high)] with relatively differential anthropogenic input (defined here as maritime 

activity and indicated by P A H metabolite levels). A seasonal difference in shore 

crab physiology (antioxidant status and immune function) was identified with 

physiological condition differing between winter-spring compared to summer-

autumn periods in crabs from the Avon Estuary; these differences are taken to 

represent the 'normal' variability in shore crab physiology. Seasonal evaluation 

of shore crab physiological condition from estuaries of varying PAH input 

revealed significant seasonal differences between crabs as signalled by cellular 

_ ehdpolnts [cellular-integrity and viability (P < 0.05)]. The integrated response of 

shore crab physiological condition (multivariate) identified differences in 

physiological condition between Avon crabs (low anthropogenic exposure) and 

Plym crabs (relatively high anthropogenic exposure) between January and June 

compared to July to December. In conclusion, to aid understanding of the 

potential contaminant impacts on C. maenas physiology, it is imperative that, 

firstly, the natural temporal variability in organism physiological ranges is 

established by defining the 'normal' seasonal, pattern in shore crab physiological 

condition and then contaminant effects upon physiology can be outlined. 
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7.1 INTRODUCTION 

Environmental temperature is a major limiting factor in organism physiological 

function and is linked to climate (Davenport and Davenport 2005). For aquatic 

poikilothermic organisms, a change in environmental temperature results often 

in a direct change in the rate of all physiological and biochemical processes 

(Hochachka and Somero 2002); however, extremes are migifated by 

temperature-mediated metabolic adjustments, leading to effects upon metabolic 

rates, locomotory and behavioural activity (Hochachka and Somero 2002; 

Sokolova and Portner 2003; Spicer and Gaston 1999). 

Crustaceans have different physiological tolerances to abiotic factors such as 

hypoxia (Bernatis et al. 2007; Legeay and Massabuau 2000; Spicer and Baden 

2001), salinity (Aagaard 1996; Jones 1981; Rainbow 1997; Rainbow and Black 

2001, 2002; Roast et al. 1999a) and temperature (Hawkins et al. 1982; Stillman 

and Somero 1996; Styrishave et al. 1999; Truchot 1975). Many crustaceans, for 

example Carcinus maenas, are. sensitive to abiotic factors (e.g. temperature) 

(Camus et al. 2004) but seasonal acclimatisation confers environmental 

modification of an individual's physiological processes (Spicer and Gaston 

1999). The annual sea temperatures which shore crabs experience around 

British coastal waters ranges from 4°C (January to March) to 19°C (July to 

September) (Robertson et al.. 2002). These temperature variations in temperate 

waters have Important implications for shore crab physiojogy and behaviour, 

from cardiac activity to foraging behaviour (Table 7.1). 
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Table 7.1 Temperature-related effects upon aspects of shore 
crab Carc/ntvs maenas physiology and ecology. 

PARAMETER WINTER-SPRING SUMMER-AUTUMN REFERENCE 

Abundance in 
estuaries Low High 

(Nayior1962) 
(Crottiers 1967) 

(Hunter and Naylor 
1993) 

(Attril! and Ttiomas 
1996) 

Foraging activity Low High 
(Aagaard et al. 1995) 

(Styrishave etal. 1999) 

Cardiac activity Low High 

(Aagaard 1996) 
(Camus etal.-2004) 

(Depledge 1985; 1992) 
(Styrishave etal. 1999) 

Hepatopancreas 
fatty acid profile Low High 

(Styrishave and 
Andersen 2000) 
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Although the differences, in various aspects of shore crab physiology are 

primarily temperature related, they are also linked with the seasonal lifecycle of 

male and female shore crabs (Tables 7.2 and 7.3). Table 7.2 outlines the life 

cycle of a typical individual shore crab from^ copulation In summer to larval 

development over winter and spring. Adult male shore crabs, however, move 

offshore (•>3m) during winter (December - February) and return to shallower 

waters as ambient temperature increases in spring (March - June) (Styrishave 

et al. 1999) (Table 7.3). Increases in wafer temperature leads to increased 

metabolic activity, resulting in concomitant, increases in locomotory and foraging 

activity (Aagaard et al. 1995; Styrishave et al. 1999). Seasonal patterns are 

summarised as temporal variations "usually responses to particular cues that 

tend to coincide with time of year. If such cues do not arise in any particular 

year, the response will not be elicited" (Crowe 1999). Our lack of knowledge of 

the 'normal' seasonal physiological ranges has prevented the understanding of 

the associated effects of environmental change or fluctuation upon organism 

physiology. The aims of this present study were therefore to a) evaluate 

seasonality in shore ci^ab physiology, and b) to evaluate seasonal differences in 

shore crab physiological condition in estuaries of differential anthropogenic input 

(defined here as maritime activity and assessed by screening for urinary PAH 

metabolites as an indicator of P A H exposure). 
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Table 7.2 General life cycle of Carcinus maenas [compiled from Crothers (1967)] . 

Step JAN FEB MAR APR MAY 1 JUN JUL AUG SEP NOV DEC 

1 1a. Copulation 1 b. Ovigerous females move 
, offshore 

Berried females/ Eggs 
3a. Zoea 

4b. Overwintering 
zoea 

4a. Megalopae 

Late settlers reach puberty 

5a. Young crab 
settlement 

4b. Overwintering zoea 

5b. Puberty 

Key 
1a Copulation occurs during sumer months; female is only receptive after moulting 
1 b Ovigerous females move offshore 
2 Berried females move offshore; 'egg plug is cleaned and ventilated by the female, eggs turn bright orange to dull brown to grey 

3a Zoea appear in the plankton 
4a Melalopae settle onto the benthos 
4b Late developing larvae that do not metamorphose will settle in small number over the winter 

or overwinter to settle in the forthcoming spring 
5a Young crabs settlement onto the benthos 
5b Young crabs reach puberty; females quicker than males in autumn in the first year, 
6 Late settlers reach puberty in following spring. 
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Table 7.3 Seasonal lifecycle of adu\t Carcinus maenas [compiled from Crothers (1967) and Naylor (1962).]. 

Step JAN FEB IMAR APR MAY JUN JUL AUG SEP OCT NOV :i DEC ; 
1 Movement 
2 offshore' 
3 Anecdysis. 
4 4a. Movement onshore 4b. Copulation 
5 

1 Movement offshore due to environmental conditions; only specimens > 35 mm carapace width 
„ Movement 'offshore' due to environmental conditions ('offshore' = > 3m 

depth) 
3 Moulting cessation during the coldest months of the year 
. Increase in temperature initiates movements 

onshore 
Breeding period begins with precopula pairing with female, ending with copulation in the late summer 
months 
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7.2 M A T E R I A L A N D M E T H O D S 

7.2.1 Shore crab collection 

Male (green) Intermoult C. maenas were collected from three estuaries of 

varying anthropogenic input (Table 7.4, Fig. 7.1). Mackerel-baited cages were 

deployed two hours prior to high tide and collected at the predicted time of high 

tide. A maximum mean number of three adult male shore crabs (^ 60mm GW) 

cage'^ (Fig. 7.2) were sampled for analysis of physiological condition. Crabs 

were transported to the laboratory ( 1 0 - 4 5 min) in cooler boxes with damp 

absorbent paper. 

Table 7.4 Relative anthropogenic usage (defined as marit ime 
activity) of three estuaries used to evaluate shore 
crab physiological condition (Avon, Yea lm, and 
Plym), South Devon, U.K (grid references: SX 666 
438 , SX 540 480 and SX 483 538, respectively). 

Location Maritime activity 
(Boats/Ships year"^) 

Reference 

Avon Estuary <20 

Yealm Estuary < 250 

Plym Estuary >1500 

(QHM 2006c) 

(QHM 20p6a) 

(QHM 2006b) 
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KEY 

A = Plym Estuary 

B = Yealm Estuary 

C = Avon Estuary 

Fig. 7.1 Map depicting estuary locations within southwest 
England (U.K) (Avon, Yealm and Plym 
Estuaries), South Devon, U.K (grid references: 
SX 666 438, SX 540 480 and SX 483 538, 
respectively) (Google 2007). 
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7.2.2 Seasonal sampling. 

Grabs were collected throughout the year (2006), as follows: season 1 ("winter" 

= January- March), season 2 ("spring" = April - June), season 3 ("summer" = 

July - Septeniber), season 4 ("autumn" = October ^ December). Sampling times 

were replicated temporally within each season with three sampling time points 

within each season (Fig. 7.2). Table 7.5 shows the mean seawater temperature 

and rainfall data common for all three estuaries sampled. 

7.2.2.1 Physiological assessment 

a) Sample collection 

Within 24 h of collection, urine was extracted from each crab (as described in 

Chapter 2, Section 2.3.1) and stored for analysis. Within 24 - 48 h, haeniolymph 

(500pl) was collected from each crab and analysed immediately using the live 

cell assays (see Section 7.2.2.1b). Remaining haemolymph was snap-frozen 

using liquid nitrogen and stored at -80°C for analysis of antioxidant status (as 

described in Chapter 2, Section 2.4.5). Following urine and haemolyrnph" 

sampling, shore crabs from the three different estuaries were maintained in 

separate holding tanks^ containing filtered (10pm carbon-filtered) aerated 

seawater (34psu, 15 ± 1°C) under a 12h light : 12 dark photoperiod, until 

released back to the appropriate estuary. The feeding history of caught shore 

crabs was not known and,, therefore, they were not fed at any time during 

collection or handling to not influence nutritional status. 

165 



Timepoint 

Cages 

Max mean of 3 crabs cage 

Season (4) 

t 
Estuary ( 3 ) 

t 
Timepoint 

t 
Cages 

Max mean of 3 crabs cage 

Timepoint 

Cages 

Max mean of 3 crabs cage 

Fig. 7.2 Experimental procedure for seasonal collection of shore crabs. Sampling times were temporally 
replicated (n=3) at each estuary over the four seasons. 
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Table 7.5 Monthly precipitation and mean seawater 
tempetratures in Southwest U.K. (2006). 
Precipitation data compiled from the Met Office 
(2007). 

Mean 
seawater prprinitatinn Mean seasonal 

Season Month temperature i-recipiiauon precipitation ± 1 
± 1 SD ^"^"^^ SD (mm) 

JAN 32.7 
1 FEB 7.5 ±0.24 57.9 60.23 ±28.77 

MAR 90.1 

APR • 45.3 
2 MAY 13.71.0.37 ' -114.9 60.53 ± 48,58 

J U N 21.4 

JUL 41.3 
3 AUG 16.9 ± 0.33 85.9 70.13 + 25.01 

SEP 83.2 

OCT 115.9 
4 NOV 14.7 ±1.66 115.5 115.2 + 0.96 

DEC 114.1 
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b) Sample analysis 

Carcinus haemolymph samples collected within 24 - 48 h were analysed using 

both live cell (cellular integrity, cellular viability and phagocytosis) and cold 

storage techniques (total antioxidant status) (as described in Chapter 2, 

Sections 2.4.6 - 2.4.10). Urine samples were analysed for the presence of P A H 

metabolites with fluorescence spectrophotometry, using excitation and emission 

wavelength pairs for both pyrene (PYR) (345/382nm) and benzo[a]pyrene (BaP) 

(380/430nm) (see Chapter 2, Sections 2.3.2 -2.3.3). 

7.2.3 Statistical analysis 

Two methods of statistical analyses were used to differentiate between a) 

individual variables (univariate), and b) shore crab physiological condition 

(measured here by the integrated response of all variables) (multivariate). 

Univariate (ANOVA) and multivariate methodologies (ANOSIM and SIMPER) 

are described fully in Chapter 2, Section 2.6. 
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7.3 REiSULTS 

7.3.1 Seasonality of shore crab physiology (A von EstUary) 

7.3.1.1 Physiological endpoints 

Significant seasonal differences (P < 0.05) in shore crab physiological variables 

were identified (Table 7.6). Increased immune function, signalled by a greater 

phagocytic index, was found In seasons 1 and 2 (winter and spring months), 

compared to seasons 3 and 4 (summer and autumn months) {ANOVA, Fs^ = 

12.71, P < 0.01) (Fig. 7.3). Total antioxidant status was. lower between January 

r March (season 1), compared'to all other seasons {ANOVA, F3.8 ^ 8.18, P < 

0.01) (Fig. 7.4). Presence of urinary PAH metabolites (PYR & BaP) was lower 

during seasons 1 and 2 (January - June) compared with seasons 3 and 4 (July 

- Dec) as observed with BaP metabolites {ANOVA, Fs.e = 10.17, P < 0.01) (Fig. 

7.5). P Y R metabolites, however, were higher only between October to 

December (season 4) compared to April - June (season 2) {ANOVA, F3^8 = 4.57, 

P < 0.05) (Fig. 7.5). 
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Table 7.6 Univariate summary of seasonal differences in physiological variables from shore crabs sampled from 
the Avon Estuary. Data are presented as rfieans ± 1 standard deviat ion. NS = Not Significant, S = 
Significant difference {P <0.05). 

Season 1 Season 2 Season 3 Season 4 Statistical Seasonal 
Variables (January-March) (April - June) (July - September) (October - December) differences differences 

Carapace Width (mm), 53.97± 12.77 66.15 ±3.53 60.74 ± 4.34 56.01 ± 2.94 NS 
Wet weight (g) 47.75 ±12.28 68.36 ±11.65 53.97 ± 9.79 41.71 ±6.85 NS -
Cell Integrity (%) 81.08 ±18.98 85.08 ±5.14 89.64 ±1.26 86.39 ± 2.46 NS * 

Ce|r Viability (O.D mg protein"'') 0:38 ±0.27 0.42 ± 0.20 0.56± 0.12 6.50 ± 0.08 NS -
Phagocytosis (zymosan particles 10^ mg prptein ) 1.86 ±0.78 1.73 ±0.41 0.93 ± 0 0.90 ± 0.05 S 1 & 2 > 3 & 4 
Total antioxidant status (pM L ) 151.19 ±56.93 261.89 ±51.38 274.06 ± 32.80 332.30 ± 37.83 S 1 < 2 = 3 = 4 
PYR metabolites (F.U.) 18:54 ± 12.29 13.18 ±14.52 53.67 ±16.33 47.88 ±11.14 S 2<4 
BaP metabolites (F.U.) 99.81 ± 30.34 62.57 ± 66.31 401.12 ±66.06 296.80 ± 64.34 S 1 =2<3 = 4 

170 



3.0 n 

' 2.5-

S o 
o .o 

03 Q . 

0 

1 

2.0 -

1.5-

1.0 -

0.5 -

0.0 

SEASON 

Fig. 7.3 Seasonal levels of phagocytosis Index from 
assessed in shore crab haemocytes. (n = 3 
timepoints). * signifies P < 0.05. Error bars 
signify ± 1 standard deviation. 
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Fig. 7.4 Seasonal levels of total antioxidant statijs 
assessed in shore crab haemocytes. (n = 3 
timepoints). * signifies P < 0.05. Error bars 
signify ± 1 standard deviation. 
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Fig. 7.5 Seasonal levels of PAH (PYR & B[a]P) urinary 
metabolites assessed in shore crabs, {n = 3 
time points). * signifies P < 0.05. Error bars 
signify ± 1 standard deviation. 
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^ 7.3.1.2 Shore crab physiological condition 

Significant seasonal differences in C. maenas ptiysiological condition (using the 

combination of several variables: shore crab wet weight, cellular integrity, 

cellular viability, phagocytic index and total antioxidant status) and 

environmental variables (PAH metabolites) were revealed by multivariate 

analyses (ANOSIM tests) (Table 7.7). Significant seasonal differences, with 

regard to all physiological variables, were' observed early in the year compared 

with later in the year; 1 and 3 (winter-summer), 1 and 4 (winter-autumn), and 2 

and 4 (spring-autumn) (Table 7.7). These results indicate that shore crab 

physiological condition varies seasonally with differences occumng between the 

months of January - June and July - December 2006. 

Significant seasonal differences (P <0.05) in P A H metabolites followed the same 

pattern as described for shore crab physiological condition, with higher 

concentrations of PAH metabolites in summer and autumn (seasons 3 and 4) 

compared with winter and spring (seasons 1 and 2) (Table 7.7). There were no 

significant correlations between seasonal shore crab physiological state and 

•PAH exposure [season 1 (0.428), season 2 (0.027), season 3 (-0.064) and 

season 4(0.146)]. 

S IMPER analysis identified the percentage contribution of each physiological 

variable to shore crab physiological condition within each- season (Table 7.8). 

These results show that (of the variables measured here) each physiological 

endpoint was the significant driving variable to the observed differential shore 

crab physiological state within each season [s i : cell integrity (<38%); s2: 

phagocytosis (<32%); s3: cellular viability (<52%) and s4: antioxidant status 

(<38%)] (Table 7.8). 
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Table 7.7 Pairwise seasonal compar isons using physiological 
and environmental (PAH metabolites) variables. NS 
= Not Signif icant, S = Significant {P < 1%). 

Variables 

Seasonal painwise Physiological Environmental 
comparisons (All (PAH 

variables) metabolites) 

s1 vs. s2 NS NS 

s i vs. s3 S S 

s1 vs.- s4 S S 

s2 vs. s3 NS S 

s2 vs. s4 S S 

s3 vs. s4 NS NS 
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Table 7.8 Percentage contribution of each physiological 
variable within each season (assessed in Avon 
Estuary shore crabs): Highest contributing variables 
within each season are highlighted in bold. 

Season 1 
(January-March) 
Variable . Contribution (%) Cumulative (%) 

Antioxidant status 10.57 10.57 
WW(g) 16.13 26.69 
Phagocytosis 17.73 44.43 
Cell Viability 17.8 62.23 
Ceirintegrity 37.77 100 

Season 2 
(April - June) 
Variable Contribution (%) Cumulative (%) 

Cell Integrity 8.87 8.87 
Antioxidant status 12.33 21.2 
WW^(g) 20.3 41.5 
Cell Viability 26.98 68.48 
Phagocytosis 31.52 100 

Season 3 
(July- September) 
Variable Gontributiori (%) Cumulative (%) 

Cell Integrity 2.36 2.36 
Phagocytosis 3.77 6.14 
WW(g) 19.33 25.47 
Antioxidant status 22.71 48.18 
Cell Viability 51.82 100 

Season 4 • 
(October Decehiber) 
Variable Contribution (%) Cumulative (%) 

Cell Integrity 4.29 4.29 
Phagocytosis 10.56 14.86 
Cell Viability 23.05 37.91 
WW(g) 24.49 62.39 
Antioxidant status 37.61 100 
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7.3.2 Seasonal differences in physiological condition of shore crabs 
from estuaries of varying anthropogenic input 

7.3.2.1 Physiological endpoints 

Significant seasonal differences (P < 0.05) in sfiore crab physiology were 

observed in several physiological variables between estuaries of varying 

anthropogenic input (Table 7.9). Between January - March (season 1), 

increased benzp[a]pyrene metabolites were found in Plym and Yealm shore 

crabs compared to Avon crabs {ANOVA, F2,6 ='8.52, P < 0.05) (Table 7.9a and" 

Fig. 7.9). No differences between Avon, Yealm or Plym crabs were observed 

between April and June (season 2) (Table 7.9b). Between July and August 

(season 3), however, Avon crabs displayed increased cellular viability compared 

to Plym and Yealm crabs {ANOVA, Fz^ = 6.85, P < 0:05) (Table 7.9c, Fig 7.10). 

During October to December (season 4), crabs sampled from the Yealm Estuary 

were significantly larger {ANOVA, F2,e = 6.45, P < 0.05) and heavier {ANOVA, 

F2,6 = 6.91, P < 0.05) than those from the Avon and Plym(Table 7.9d); however, 

Plym crabs displayed higher cellular viability compared to crabs from the Avon 

and Yealm (Table 7.9d and Fig 7.9). Correlation analysis between cellular 

viability and P A H metabolites from Plym crabs (PYR and B[a]P metabolites) 

revealed modest correlations at only seasons 2 (0.43 and 0.54, for P Y R and. 

B[a]P metabolites, respectively) and season 4 (-0.34 and 0.59), for P Y R and 

B[a]P metabolites, respectively), thereby, indicating that P A H exposure was not 

solely accountable for effects measured at the cellular level. 
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Table, 7.9 Univariate summary of seasonal differences in physiological variables between estuaries 
of varying anthropogenic input. Data are presented as means ± 1 standard deviat ion. 
NS = Not significant, S = Significant difference (P < 0.05). 

a 
Phvsioloaical variables 

Season 1: January - March SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES 

a 
Phvsioloaical variables Avon Plym Yealm 

SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES 

Wet weight (g), 47:75 ±12.28 41.54 ±2.85 48.18 ±12.53 NS -
Cell Integrity (%) 81.08 ±18.98 87.31 ± 9.91 78 ±11.35 NS -
Cell Viability (O.D mg protein"^) 0.38 ± 0.27 0.20 ± 0.05 0.33 ±0.17 NS -
Phagocytosis (zymosan particles 10'̂  mg protein'^) 1.86 ±0.78 1.16 ±0.56 1.61 ±0.93 NS -
Total antioxidant status (pM L"̂ ) 151.19 ±56.93 244.74 ± 57.14 308.51 ±109.29 NS 
PYR metabolites (F.U.) 18.54 ±12.29 30.11 ±12.75 19.63 ±10.41 NS -
BaP metabolites (F.U.) 99.81 ± 30.34 215.78 ±49.43 169.41 ±15.34 S Avon < Plym = Yealm 

b 
Phvsioloaical variables 

Season 2: (April - June) , SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES 

b 
Phvsioloaical variables Avon Plym Yealm 

, SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES 

Wet weight (g) 68.36 ±11.65 48.91 ± 7.20 47.02 ±10.41 NS 
Cell Integrity (%) 85.08 ±5.14 87.17 ±7.98 86.43 ±4.63 NS 
Cell Viability (0-D mg protein"^) 0.42 ± 0.20 0.29 ± 0.05 0.32 ±0.15 NS -
Phagocytosis (zymosan particles 10^ mg protein"^) 1.73 ±0.41 1.32 ±0.05 1.60 ±0.47 NS -
Total antioxidant status (pM L'̂ ) 261.89 ±51.38 300.21 ± 66.87 219.72 ±40.39 NS -
PYR metabolites (F.U.) 13.18 ±14.52 43.85 ±22.25 12.93 ±22.39 NS -
BaP metabolites (F.U.) 62.57 ± 66.31 295.70 ±125.83 60.68 ±105.10 NS -
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Table 7.9 Univariate summary of seasonal differences in physiological variables between estuaries of 
varying anthropogenic input.. Data are presented as means ± 1 standard deviat ion. NS = Not 
significant, S = Significant difference {P <0.05). 

c 
Phvsioloqical variables 

Seasons: July-September SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES • 

c 
Phvsioloqical variables Avon Plym Yealm 

SIGNIFICANT 
DIFFERENCE 

LOCATION 
DIFFERENCES • 

Wet weight (g) 53.97 ±9.79 54.75 ± 9.98 50.04 ± 20.59 NS -
Cell Integrity (%) 89.64 ±1.26 86.03 ± 7.73 " 83.31 ± 14.03 NS -
Cell Viability (O.D mg protein'^) 0.56 ± 0.12 0.32 ± 0.04 0.28 ±0.13 S Avon > Plym = Yealm 
Phagocytosis (zymosan particles 10''mg protein'^) 0.93 ± 0 0.85 ±0.16 0.84 ±281.68 NS -
Total antioxidant status (pM L''') 274.06 ± 32.80 275.33 ±85.13 281.68 ±46.44 NS -
PYR metabolites (F.U.) 53.67 ±16.33 29.34 ± 27.99 41.97 ±37.17 NS -
BaP metabolites (F.U.) 401.12 ±66.06 237.01 ± 225.08 319 ±246.71 NS -

-

d Season 4: October-December SIGNIFICANT LOCATION 
Phvsioloqical variables Avon Plym Yealm DIFFERENCE DIFFERENCES 
Wet weight (g) 41.71 ±6.85 44.90 ±11.17 68.05 ±4.74 s Avon,= Plym < Yealm 
Cell Integrity (%) 86.39 ± 2.46 84.33 ±11.88 84:33 ±1.62 NS -
Cell Viability (O.D mg protein"^) 0.50 ± 0.08 0.91 ± 0.21 ' 0.55 + 0.09 s Plym > Avon =Yealm 
Phagocytosis (zymosan particles 10''mg protein''') 0.90 ± 0.05 1.05 ±0.20 0.74 ±0.13 NS -
Total antioxidant status (pM L"'') 332.30 ± 37.83 217.13 ±170.10 398.29 ±82.78 NS -
PYR metabolites (F.U.) 47.88 ±11.14 250.65 ±196.67 48.76 ± 27.90 NS -
BaP metabolites (F.U.) 296.80 ± 64.34 1082.49 ±1170.67 339.65 ±181.07 NS -
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Fig. 7.9 . Location and seasonal levels of B[a]P metabolites from three different estuaries. * signifies P < 
0.05, NS = Not Significant. Error bars signify ± 1 standard deviation. 
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Fig. 7.10 Differences in cellular viability assessed in haemocytes from shore crabs from three different 
estuaries. * signifies P < 0.05. Error bars signify ± 1 standard deviation. 
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7.3.2.1 Shore crab physiological condition 

Significant seasonal differences in pliysiological condition were found for 

Carcinus maenas sampled from the three estuaries with differences observed 

between Avon and Plym crabs in seasons 1 and 2 (Table 7.10a). No 

differences in shore crab physiological condition were found between Avon and 

Yealm shore crabs, and between Plym and Yealm crabs. In seasons 1 and 2 

(Table 7.10a). Contrary to earlier in the year (seasons 1 and 2), no differences 

were identified between Avon and Plyrii crabs in seasons 3 and 4 (Table 7.10a). 

Significant differences, however, between Avon and Yealm C. maenas were 

observed in both seasons 3 and 4. The only seasonal difference found between 

Plym and Yealm crabs was observed later in the year (season 4). These results 

indicate differences in shore crab physiological condition between crabs from 

estuaries of varying P A H input at different times of the year. 

Seasonal differences in P A H metabolites in urine between Avon and Plym crabs 

were observed throughout the year; however, no seasonal differences in crab 

physiological condition were observed between Avon and Yealm crabs (Table 

7.10b). 

Physiological condition of Plym and Yealm shore crabs, in comparison, differed 

throughout the year, except in season 1 (Table 7.10b). Correlation analysis 

revealed no significant correlations between shore crab physiological state and 

P A H exposure. 

Physiological condition of Avon crabs was significantly different from Plym 

crabs, with cellular integrity (<26%) and cellular viability (<25%) accounting for 

the differences in physiological condition in season 1 and 2 (Table 7.11 and 

7.12, respectively). These values indicate differential cellular functioning in 
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January - June in crabs from an estuary of low PAH input (Avon) conripared to 

crabs from an estuary of (relatively) high PAH input (Plyni). Physiological 

condition of Avon crabs was significantly different from crabs from the Yealm 

Estuary between July - December (seasons 3 and 4), with cellular viability 

(<29%) and shore crab wet weight (<35%) contributing to the overall difference 

in physiological condition, indicating differences in both cellular effects and 

weight of shore crabs sampled (Table 7.13 and 7.14). The only significant 

seasonal difference in shore crab physiological condition between Plym and 

Yealm crabs was observed between October and December (season 4), with 

total antioxidant status contributing <23% to the overall difference (Table 7.14), 

indicating effects manifested at the biochemical level. These results reveal that 

(of the variables measured here) different physiological variables (at a particular 

season) accounted for the significant differences in shore crab physiological 

condition between estuaries of varying anthropogenic input. 
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Table 7.10 Pairwise ANOSIM seasonal location comparisons using a) physiological and b) environmental (PAH 
metabolites) variables. NS = Not Significant, S = Significant {P < 1%). 

S E A S O N S E A S O N 

PAIRWISE COMPARISONS 
(LOCATION) 1 2 3 4 PAIRWISE COMPARISONS 

(LOCATION) 1 2 3 4 

Avon vs. • Plym S S NS NS 
r 

Avon " vs. Plym S S S S 

Avon vs. Yealm NS NS S S Avon vs. Yealm NS NS , NS NS 

Plym vs. Yealm NS NS NS s Plym vs. Yealm NS S S S 

Phvsioloqical variables 
Carapace Width (mm) 
Wet weight (g) 
Cell Integrity (%) 
Cell Viability (O.D mg protein'̂ ) 
Phagocytosis (zymosan particles 10^ mg protein"'') 
Total antioxidant status (pM L"̂ ) 
PYR metabolites (F.U.) 
BaP metabolites (F.U.) 

Phvsioloqical variables 
Carapace Width (mm) 
Wet weight (g) 
Cell Integrity (%) 
Cell Viability (O.D mg protein"'') 
Phagocytosis (zymosan particles 10^ mg protein'̂ ) 
Total antioxidant status (pML"'') 
PYR metabolites (F.U.) 
BaP metabolites (F.U.) 
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Table 7.11 Pairwise location comparisons of percentage 
contribution Of each physiological variable within 
season 1. Signif icant location differences are 
highlighted in yel low, highest contributing variables 
are highlighted in bold. 

Ayon_5rabs^ys. Plyjn crabs 

Contribution Cumulative 
Variable (%) 

Cell Integrity 25.39 25.39 
Cell Viability 22.03 47.42 
Phagocytosis 20.59 68.01 
VVW(g) 19.58 87.59 
Antioxidant status 12.41 100 

Avon crabs vs. Yealm crabs 

Contribution Cumulative 
Variable (%) , (%) 

Antioxidant status 22.72 22.72 
Cell Viability 20.35 43.07 
Cell Integrity ' 20.01 63.08 
Phagocytosis 18.65 81.73 
WW(g) 18,27 100 

Plym crabs vs. Yealm crabs 

Contribution Cumulative 
Variable (%) (%) 

Antioxidant status 28.12 28.12 
Phagocytosis 21.96 50.07 
WW(g) 21.19 71.26 
Cell Viability 17.25 88.51 
Cell Integrity 11.49 100 
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Table 7.12 Palrwlse location comparisons of percentage 
contribution of each physiological variable within 
season 2. Signif icant location differences are 
highlighted in yel low, highest contributing variables-
are highlighted in bold. 

[ Avon crabs vs. Pjyrn crabs^ 

Contribution Cumulative 
Variable (%) (%) 

Cell Viability 24,69 24,69 
Cell-Integrity 20.46 45.16 
WW(g) 20.42 65.58 
Phagocytosis 18.15 83.73 
Antioxidant status 16.27 100 

Avon crabs vs. Yealm crabs 

Contribution Cumulative 
Variable {%) (%) 

WW (9) 23.95 23.95 
Cell Viability 22.57 • 46.52 
Phagocytosis 20.1 66.61 
Cell Integrity 16.71 83.32 
Antioxidant status 16.68 100 

Plym crabs vs. Yealm crabs 

Contribution Cumulative 
Variable (%) (%) 

Antioxidant status 27.44 27.44 
Cell Integrity 20.95 48.39 
Phagocytosis 19.93 • 68.32 
WW (g) 18.26 86.57 
Cell Viability 13.43 100 
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Table 7.13 Pairwise location comparisons of percentage 
contribution of each physiological variable within 
season 3. Signif icant location differences are 
highlighted in yel low, highest contributing variables 
are highlighted in bold. 

Avon crabs vs. Piym crabs 

Contributio Cumulative 
Variable - n(%) {%) 

Cell Viability 29.89 29.89 
WW(g) 20.92 50.81 
Cell Integrity 20.2 71 
Antioxidant status 15.94 86.94 
Phagocytosis 13.06 100 

Avon crabs vs. Yealm crabs 

Contributio Cumulative 
Variable . n(%) (%) 

Cell Viability 28.47 28.47 
Phagocytosis 20.24 48.71 
Antioxidant status 19.69 68.4 
WW(g) 16.54 84.94 
Cell Integrity 15.06 too 

Plym crabs vs. Yealm crabs 

Contributio Cumulative 
Variable n(%) (%) 

Cell Integrity 23.44 23.44 
Phagocytosis 22.41 45.85 
WW(g) 21.52 67.37 
Antioxidant status " 21.15 88:52 
Cell Viability 11.48 100 
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Table 7.14 Pairwise location comparisons of percentage 
contribution of each physiological variable within 
season 4. Signif icant location differences are 
highlighted in yel low, highest contributing variables 
are highlighted in bold. 

Avon crabs vs. Plym crabs 

Contribution Cumulative 
Variable (%) (%) 

Cell Viability 25.13 25.13 
Cell Integrity 20.6 45.73 
Phagocytosis 20.51 66.25 
Antioxidant status 17.87 84.12 
WW(g) 15.88 100 

[ Ayqnjcrabs vs. Yeajm crabs 

Contribution Cumulative 
Variable 1%) (%) 

WW (9) 34.73 34.73 
Antioxidant status 24.35 59.08 
Phagocytosis 20.82 79.9 
CellJntegrity 10.94 90.83 • 
Ceir Viability 9.17 100 

[ Piym crabs vs. Yealm crabs ; 

Contribution Cumulative 
Variable . (%) {%) 

Antioxidant status 22.3 22.3 
Cell Viability 20.44 42.74 
Cell Integrity 19.92 62.66 
WW(g) 19.74 82.39 
Phagocytosis 17.61 100 
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7.4 . DISCUSSION 

7.4.1 Seasonality of shore crab physiology (Avon Estuary) 

Significant seasonal differences in shore crab physiology were highlighted with 

univariate analysis; for example, winter and spring crabs had higher Immune 

function compared to summer and autumn individuals (Fig. 7.3), and lower 

antioxidant status in winter compared to other seasons (Fig. 7.4). Multivariate 

analyses revealed seasonal differences in shore crab .physiological state earlier 

in the year (winter-spring) compared to later in the year (summer-autumn); 

differences at the cellular and biochemical level were suggestive of differential 

levels of 'normal' physiological function. 

Differences in immune function were observed with seasonal differences in 

water temperatures (Table 7.5). In crustaceans, phagocytic capability is the 

innate immune ability (Galloway and Depledge 2001) of the organism to combat 

foreign particles (e.g. bacteria) within the open circulatory vascular system 

(Bauchau 1981). As with all poikilothermic organisms, temperature dictates 

metabolic state, therefore, in Carcinus maenas, general activity (e.g. foraging) 

and food demand decreases in the colder winter months (Styrishave et al. 

1999). Temperature has been suggested to cause an inhibitory effect upon 

phagocytosis (Bauchau 1981) and the phagocytic capability of Mytilus edulis 

was lower at 10°C than at 15°C (when exposed to copper) (Parry and Pipe 

2004). Results found here, however, contradict previous evidence as the 

phagocytic capability of C. maenas was higher in the cold winter months 

compared to the summer. This same pattern is corroborated by findings for 

several fish species (Collazos et al. 1994; Dexiang and Ainsworth 1991; Le 

Morvan et al. 1997) and two bivalve mollusc species, Crassostrea virginica 

(Hegaret et al. 2003) and Chamelea gallina (Monari et al. 2007). Nikoskelainen 

et al. (2004), however, that higher environmental temperature had a negative 
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effect on the phagocytic ability of haemocytes in rainbow trout. At. present, it 

appears that temperature effects on innate immunity are species-specific with no 

apparent clear summative pattern. Differences in immune function, found here 

-In the shore crab, imply immune 'status' changes seasonally. Such seasonal 

changes may confer benefits to C. maenas at specific times of the year; for 

example, combating increases in bacterial communities in the water column 

(Sung et al. 1999). In this study, no attempt was made to quantify and 

categorise the haemocyte cell type (e.g. alpha or beta cells) present in the 

haemolymph at the different times of the year. Alpha cells are strongly 

basophilic and capable of phagocytosis and beta cells are thought be the 

'explosive corpuscles' responsible for coagulation (Johnstone et al. 1973). All 

alpha cells (i.e. hyaline, semigranular and granular cells) possess the capability 

to phagocytise, although hyaline and semi-granular cells appear more active 

than granulocytes (Bauchau 1981; Bell and Smith 1993): An investigation into 

whether differential ratios of the alpha cell types present throughout the yearly 

life cycle of the adult male shore crab could provide further insight into the 

seasonal differences in innate immune status. 

A seasonal difference in total antioxidant status (excluding glutathione) was 

found in the shore crab yearly life cycle (Fig 7.4) and may occui- as a result of 

metabolic state. In C. maenas, metabolic rate is a function of environmental 

temperature and varies at different times of the year (Styrishave et al. 1999). 

There is a positive relationship between heart rate and locomotory activity, and 

this relationship is significantly affected by temperature, which is highest during 

the summer months compared to autumn (Styrishave et al. 1999). 

189 



All forms of aerobic life experience production of potentially harmful partially 

reduced species of molecular oxygen, i.e. reactive oxygen species (ROS) that 

occur naturally as a by-product due to normal oxygen metabolism (Winston and 

Di Guilio 1991). Consequently, organisms possess a battery of protective 

defence mechanisms (antioxidants) against the potential damage of R O S , i.e. 

possible membrane, protein and DNA damage (Halliwell and Gutteridge 1989). 

Mitochondria are proposed as the primary sites of aerobic cellular R O S 

production, as these organelles are thought to utilise over 90 % of the cellular 

oxygen (Abele and Puntarulo 2004). In ternis of cellular homeostasis,, a balance 

In favour of R O S production is normal, as R O S perform roles that are integral to 

the. organism (e.g. neurotransmitter function) (Abele and Puntarulo 2004). 

Oxidative stress, however, occurs due to increased R O S production whereby 

the ROS/antioxidant balance is altered (Evans and Halliwell 2001). Marine 

ectotherms, such as the shore crab, may face oxidative stress challenges 

through hypoxia (Abele and Puntarulo 2004) (and references therein), dietary 

and reproductive status (Regoli 1998), and contaminant-mediated injury (Camus 

et al. 2002a; 2002b; Frenzilli et ah 2001; Regoli and Principato 1995). Seasonal 

differences In antioxidant activity, corroborating findings here, have been 

reported in other marine organisms, including molluscs (Bocchetti and Regoli 

2006; Borkovic e ta l . 2005; Lau et al. 2004; Lesser and Kruse 2004; Manduzio et 

al. 2004; Niyogi et al. 2001a; Ramos-Vasconcelos et al. 2005; Regoli et al. 

2002; Wilhelm Filho et al. 2001), a polychaete worm (Geracitano et al. 2004), a 

barnacle (Niyogi et al. 2001b) and a fish species (Ronisz et al. 1999), and are 

suggestive of a seasonal trend of higher antioxidant enzyme activities during the 

summer months, compared to winter (Malanga et al. 2006). The seasonal 

variation in antioxidant status outlined here reflects a 'baseline' seasonal 

antioxidant profile in the adult male shore crab. 
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Present work identified seasonal alterations in lysosomal function for Carcinus 

maenas. Seasonal differences in lysosomal membrane destabilisation have 

been reported for the oyster Crassostrea virginica and the mussel Mytilus sp. 

with higher destabilisation rates in winter compared to summer (Harding et al. 

2004; Ringwood et al. 2002). The general conclusion is that such seasonal 

differences are indicative of physiological differences or seasonal differences in 

bioavailability and bioaccumulation of contaminants (Ringwood et al. 2002). In 

this present study, P A H contaminant levels were relatively low and represent 

low anthropogenic input. Pyrene (PYR) metabolite levels (indicative Of P A H 

contamination) within the Avon Estuary (low in maritime activity) were at 

environmentally lower levels (<30 pgL"'') compared to P Y R metabolite levels (< 

350 - 7500 pgL'^) found in other studies around the U.K. (Severn and Tyne) 

(Law et al. 1997; 2002; Ruddock et al. 2002; 2003). B[a]P metabolite levels 

measured here could not be compared to levels found elsewhere due to the 

unavailability of benzo[a]pyrene standards needed to convert fluorescence units 

into B[a]P equivalents. The low P A H metabolite levels found here are regarded 

as indicative of low P A H input into the marine environment through low maritime 

activity. The low correlations [season 1 (0.428), season 2 (0.027), season 3 (-

0.064) and season 4 (0.146)] found between the physiological multivariate 

'pattern' and environmental (PAH metabolite) 'pattern' indicate that the seasonal 

differences outlined in shore crab physiology were not related to P A H exposure. 

For the present study, the conclusion is that seasonal differences in cellular 

viability (lysosomal function) are attributed directly to seasonal environmental 

conditions. 
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In summary for the Avon Estuary, there was a general trend that shore crab 

^physiological, condition differed in winter and spring from that observed in 

summer and autumn. Seasonal differences in shore crab physiology (Table 7.7) 

could confer seasonal 'windows' of increased physiological tolerance during the 

summer months compared to the winter (Hebel et al. 1997). The seasonal 

differences in shore crab physiology, observed here, may be regarded, 

therefore, as the 'normal' seasonal pattern in shore crab physiological condition. 

7.4.2 Seasonal differences In shore crab physiological 
condition between estuaries of varying 
anthropogenic input 

Comparison of shore crabs from the Avon (low anthropogenic activity) and Plym 

(high anthropogenic activity) estuaries showed differences in physiological 

condition between January and June (Table 7.10a). No differences in 

physiological condition between shore crabs were apparent, however, between 

July and December (Table 7.10a). 

With regard to Plym arid Yealm shore crabs, physiological differences were 

observed only between October and December. Comparison of crabs from the 

Avon and Yealm estuaries (both relatively low in maritime activity compared with 

the Plym Estuary) revealed physiological differences between July and 

December. Evaluation of the integrated shore crab physiological condition 

(SIMPER analysis) revealed that cellular integrity and/or cellular viability 

(between January - September) were the physiological parameters that most 

accounted for the differences. Previously, cellular viability has been shown to 

be impacted negatively by contaminants (Cheung et al. 1998; Dissanayake 

2001; Galloway et al. 2004c; Lowe et al. 1995a; Lowe and Pipe 1994; 

Wedderburn et al. 2000). In this present study, although cellular Integrity and 
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viability (when evaluated as single parameters) did not differ between estuaries, 

multivariate analyses indicated. that cellular Integrity was responsible. In 

conjunction with cellular viability; for seasonal differences between crabs from 

the Avon and Plym estuaries between January- June (Tables 7.11 and7.12). 

Geographical differences in shore crab physiological condition could be 

attributed to cOntaminant-hiediated toxicity. For example, increased B[a]P 

metabolite levels [indicative of P A H exposure, (Fig 7.9)] could affect cell 

numbers (cellular integrity) and lysosomal function (cellular viability). 

, Lysosomes have the capacity to bioaccumulafe contamina'nts (Nicholson 2001; 

Regoli et al. 1998), with the negative effects, such as lysosomal membrane 

degradation, only becoming apparent after the maximal storage capacity is 

exceeded (Bayne et al. 1985; Regoli et al. 1998). Seasonal differences in 

lysosomal properties [e.g. membrane permability (evaluated by measuring dye 

retention time), volume density, surface density, surface-to-volume ratio and 

numerical density] have been shown previously in Mytilus eduHs (Ebceberria et 

al. 1995; Harding et al. 2004; Mafigomez et al. 1996). Reduction in lysosome 

structure, morphology and membrane function during seasonally low 

environmental temperatures (e.g. in the winter and spring) has been observed; 

contrary to the summer and autumn seasonal pattern shown here. Coupled with 

this seasonal pattern, organic contamination, in the form of PAHs, has been 

causally linked with lysosomal alterations, such as size reduction (Marigomez 

and Baybay-Villacorta 2003; Marigomez et al. 1996). Evidence to show that 

lysosomal capability results from effects of contaminant-exposure include 

lysosomal size and density increase, under acute or sub-lethal exposure (Canty 

et al. 2007; Marigomez and Baybay-Villacorta 2003; Matozzo et al. 2002; 

Matozzo and Marin 2005; Rickwood and Galloway 2004; St-Jean et al. 2002a, 

b), lysosomal size reduction, decreased density and membrane impairment 
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caused by damage of the membrane-associated proton pump and Ieal<age of 

hydrolytic enzymes to the cytosol, due to higher contaminant concentrations 

(Cajaraville et al. 2000; Cheung et al. 1998; Da Ros et al. 2002; Galloway et a|. 

2002; Lowe eta l . 1995b; Nicholson 1999, 2001, 2003; Regoli e ta l . 1998). 

P A H metabolites in crab urine indicated that crabs from the Avon and Yealm 

estuaries had significantly lower exposure to PAHs than those from the Plym in 

all seasons except winter (January - March). No significant seasonal 

differences in PAH metabolites were observed between Avon and Yealm crabs, 

confirming a low maritime anthropogenic input at these sites. 

Results found here of increased PAH metabolites from high maritime activity are 

corroborated by findings by King et al. (2004) who reported seasonal differences 

in P A H concentrations from 16 P A H compounds (including pyrene and 

benzo[a]pyrene) in Brighton marina, U.K. These authors suggested that periods 

of rainfall would increase surface run-off from roads, thereby, increasing 

deposition of rainwater-dissolved PAHs directly to surface waters, as well as 

increased run-off (King et al. 2004). There is clear evidence by contaminant 

deposition (e.g. pesticides) within watenways being linked with precipitation 

events (Liess et al. 1999), supporting findings here of higher PAH metabolites 

between July - December [where there was higher rainfall (Table 7.5)] compared 

with January - Jun& {ANOVA, F2,6 = 4.45, P < 0.05) (Fig 7.9). 

In summary, the present study reported temporal (seasonal) variability in shore 

crab physiological condition at two reference locations and one location of 

(relatively) high anthropogenic impact (defined here as maritime activity). 

Although few seasonal differences in individual physiological parameters were 

identified (univariate), the integrated response of shore crab physiological 
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condition (multivariate) showed that seasonal differences in physiological 

condition Were apparent between crabs at estuaries of varying anthropogenic 

input. However, physiological condition did not correlate with these differences 

in P A H contamination either between sites or seasons. While causality (to 

PAHs) cannot be attributed, multivariate analysis indicated that shore crab 

physiological condition differed between locations of varying anthropogenic 

activity. 

In conclusion, to aid understanding of the potential contaminant impacts op C. 

maenas physiology, it is imperative that, firstly, the naturaltemporal variability in 

organism physiological ranges are outlined and, by defining the "normal" 

seasonal pattern in shore crab physiological condition, the contaminant effects 

upon physiology can be identified. 
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CHAPTER 8: 

Final Discussion 
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FINAL DISCUSSION 

Research conducted for this PhD focussed on answering fundamental questions 

regarding the physiology of the male shore crab Carcinus maenas. Individual 

organisms possess the ability to maintain key physiological functions in the face 

of environmental change or fluctuation (Spicer and Gaston 1999); however, if 

that ability is impaired, physiological dysfunction may arise. The main PhD 

research question centred on the effects of sublethal organic contaminant 

exposure upon shore cf-ab physiology. The need for increasing understanding 

of the biochemical toxicology of aquatic organisms is impeded by the lack of 

knowledge of the basic biochemistry of the organisms, including 'normal' 

physiological ranges (Mehrle and Mayer 1980). Determining the physiological 

mechanisms involved in maintaining homeostasis in an organism's internal 

milieu (Massabuau 2003; Spicer and Gaston 1999) is imperative in 

understanding its ability to function. Without this knowledge, responses (e.g. 

compensatory and/or 'stress' effects) to environmental factors, or anthropogenic 

stress, cannot be identified. Anthropogenic stress, in the fonn of contamination 

by a known ubiquitous priority pollutant of the aquatic environment (polyaromatic 

hydrocarbon, pyrene), was used here as a means of imposing physiological 

constraints and investigating the associated effects upon shore crab physiology. 

The physiological condition of the shore crab was evaluated throughout the 

thesis using a multidisciplinary approach, encompassing the biochemical, 

cellular, physiological and behavioural levels. 

The first experimental chapter (Chapter 3) focussed on outlining physiological 

differences between the juvenile and adult benthic stages of the male shore 

crab. Differences in physiological condition at the biochemical (lower metabolic 

energy signalled by haemolymph glucose levels), cellular (lower immune 

function, as revealed by phagocytosis) and physiological (higher scope for 
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growth) levels were found between juveniles .and adults. These 'normal' 

physiological differences determined the relative contaminant sensitivity 

between the ontogenetic stages, with juveniles expressing increased 

physiological sensitivity to contaminant-imposed effects (as revealed by 

decreased cell integrity, decreased phagocytic capability, increased heart rate, 

decreased respiration rates and decreased energy consumption) compared to 

the developed adult form (Dissanayake et al. 2006a, b). 

Further questions relating to Carcinus maenas physiological condition subjected 

to nutritional stress (Chapters 4 and 5) and behavioural implications (Chapter 6) 

concentrated on the adult stage. Experimental manipulation of organismal 

physiological condition revealed that male shore crab physiology (in terms of the 

biochemical and cellular mechanisms) was dependent upon nutritional status. 

Carcinus maenas physiological condition was. robust to short-term starvation 

(such as might occur during moulting or periods of decreased activity in winter 

months). It is postulated that this ability to withstand short periods of limited 

food supply occurs due to autophagy induction ('self-eating') (as revealed by an 

increase in cellular viability) (Deretic 2006), whereby energy is released via 

metabolism of protein, carbohydrate and lipid stores. The physiological, 

implications of sublethal contaminant exposure under short-term nutritional 

duress included an increased antioxidant status, signalling activation of the 

compensatory mechanisms under contaminant-mediated challenge. 

Physiological 'competency' or tolerance is shown here to be dependent upon the 

organism's nutritional status and possible reasons for 'seasonal' differences in 

physiological condition were hypothesised. The behavioural implications of 

nutritional stress and contaminant exposure were investigated via intraspecific 

contest behaviour, i.e. staging contests between pairs of shore crabs for a food 

resource (Chapter 6). Behavioural evidence revealed that the energy 
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expenditure, stamina and associated costs of entering in agonistic contests were 

dependent on ttie physiological, condition of the contestant, thereby, having an 

effect upon an individual's motivational state and hence competitive ability. 

The final question of the research programme dealt with investigating possible 

'seasonal' differences in Carcinus physiology, with the aim of identifying any 

'windows of sensitivity' to both environmental and contaminant-imposed 

challenges. A seasonal field monitoring study was implemented and shore crab 

physiology was assessed throughout the year. Differences in 'seasonal' 

physiological condition were outlined such as a higher immune function and 

lower antioxidant status between November-April (winter and spring) compared 

to May-October (summer to autumn). These differences were related to shore 

crab ecology and regarded as the 'normal' seasonal pattern in shore crab 

physiological condition. These 'seasonal' differences were shown to have 

implications to shore crab physiological condition with regard to biochemical 

(antioxidant) and cellular (integrity, immune function and viability) mechanisms. 

In terms of organic contaminant-exposure, as revealed by the presence of 

urinary P A H metabolites. In summary, shore crab physiology was shown to be 

dependent on both intrinsic [age (Chapter 3), nutritional status (Chapter 4)] and 

extrinsic [temperature (Chapter 7)] factors. Both intrinsic and extrinsic factors 

are important in determining the physiological tolerance to contaminant-imposed 

conditions tested here (Chapters 3, 5 and 7). It could be argued that the 

combined effect of both intrinsic and extrinsic factors determine the 'plasticity' in 

responses observed here. 

Phenotypic plasticity is defined as the production of multiple phenotypic 

responses from a single genotype and is dependent upon environmental 

conditions (Miner et al. 2005). Plasticity in responses include changes in 
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morphology (Cotton et al. 2004; Lee 1995; Price 2006), behaviour (Behrens 

Yamada et aJ. 1998; Cotton et al. 2004) and physiology (Russell 1998; Sinclair 

et al. 2006), and can be expressed within the period of a single Individuars life 

span or across generations (Miner et aL 2005). Phenotypic plasticity; however, 

refers to ecological implications of yariability in individual traits resultant from 

developmental processes as a consequence of external factors (e.g. 

environment, predators), and above all, refers specifically to irreversible traits 

(Plersma and Dreht 2003). Confusion arises over the use of the term 

'phenotypic plasticity" when it is applied in the physiological context, to reversible 

processes with changes in the external environment (Piersma and Drent 2003). 

Hence, the term 'phenotypic flexibility' was established and defined as the ability 

of organisms to show continuous but reversible transformations in behaviour, 

physiology and morphology (Piersma' and Lindstrom 1997). The sea urchin 

Diadema antillarum was observed to respond to changes in food availability by 

adjusting body size and, consequently, optimising reproduction and survival 

(Levitan 1989), its feeding capacity, however, was unaltered as the Aristotle's 

lantern (mouth structure) remained unchanged (Levitan 1991). Similar effects 

have been shown with the green sea urchin Strongylocenfrotus 

droebachiensisu, whereby, low food availability resulted in utilisation of energy 

reserves from gonadal tissue (Russell 1998). Although such examples of 

phenotypic flexibility describe the variation in intra-lndividual traits as a function 

of external (environmental) factors, it falls short with regard to the degree of 

physiological compensation for the influence of the external factor. 

Selye's (1973) General Adaptation Syndrome was proposed as a model of the 

response of an organism to a stressor. Gray's (1989) modification of the model 

showed that application of a stressor may lead to a measurable response within 

an organism (the 'alarm' reaction) and that if compensation to the stressor 
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occurs, 'normal' activity may resume. If continued application of the stressor (or 

at a greater concentration) occurs, the organism may not 'cope' and a decline in 

physiological condition occurs, ultimately resulting in death (Fig. 8.1). Example 

of 'alarm' reactions include induction of P450 enzyme expression and activity in 

response to P A H exposure (Aas et al. 2000a; Burgeot et al. 1994; Livingstone 

1993). Gray's" (1989) model illustrates possible alteration(s) in a biological 

response(s), but fails to depict the range in which compensation may occur. A 

schematic model originally developed in the context of human health (Hatch 

1962), but also used to describe 'health status' and organism physiological 

condition (Depledge 1994), is adapted here and illustrates the extent to which 

the biochemical/physiological compensatory mechanisms can protect an 

organism before signs of damage are apparent (Depledge 1994; Spicer and 

Gaston 1999) (Fig. 8.2). 

The solid curve defines the relationship between pathology (x axis) and 

physiological condition (y axis). An individual can occupy any point on the curve 

and can occupy different points at various times. The physiology of a 'healthy' 

organism can be observed to lie within the homeostatic range (Section A). 

Deviations from homeostasis will cause a change in the inherent biological 

responses, resulting in a decrease in physiological condition, thereby, a shift 

towards the compensatory zone (Section B). Any further exposure to a 

stressor(s) will result in a decline in physiological condition past the limit of 

physiological competency (i.e. the limit at which the physiological tolerance 

afforded the repertoire of inherent compensatory responses), resulting in 

physiological dysfunction and possible pathological damage (Section C). 

Physiological competency is no longer possible at this point and pathological 

damage may ensue, but any further decline and shift along the curve will 

surpass the point at which any pathological damage may be reversible (Section 
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D). The underlying importance of this diagram is ultimately dependent upon the 

repertoire of responses to stressor(s), which determines whether an organism 

can compete sufficiently well, both intra-specifically and inter-specifically, tp^ 

grow and reproduce (Hebel et al. 1997). 

Physiological competency is described as the physiological regulation that 

allows for any disturbances in physiological function, and can be defined as the 

predisposed physiological tolerance afforded to the organism by the repertoire of 

responses. Physiological competency can be measured within the individual at 

successive levels of biological organisation (biochemical to behavioural). 

2 

^ — 

> Normal activity 

\ ;Deatti 

Time or space 

Fig. 8.1 Modification of Selye's General Adaptation 
Syndrome. Arrows show application of stressor. 
(1) .'alarm response and compensation to the 
stressor; (2) continuous line to single application 
(nornial activity), broken line response to 
continuous application or increased leyel of 
stressor (leading to death). Taken from (Gray 
1989). 
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PATHOLOGY 

'HEALTHY' 'DISEASED' 

Fig. 8.2 Theoretical relationship between disease and dysfunction. (A) Individual function undisturbed; (B) 
function disturbed but physiological competency is possible; (C) limit of physiological compensation, 
until damage is repaired;, (D) decline in physiological condition leading to death, due to irreversible 
pathological damage. Adapted from Hatch (1962).and Depledge (1994). 
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Using the evidence gathered from within this PhD, the degree of physiological 

competency may be outlined with regard to shore crab physiology. Outlining the, 

difference between juvenile and adult male shore crabs allows for the elucidation of 

the 'normal' physiological function between the ontogenetic stages, through 

evaluation of biochemical (glucose); cellular (cellular viability and innate immune 

function); metabolic (basal respiration rates) and physiological (scope for growth) 

responses (Chapter 3). Super-imposition of a chemical stressor (pyrene) shows 

that the zone of physiological compensation (B) (Fig. 8.2) can be postulated to be 

lower in juveniles compared to adult shore crabs, due to increased sensitivity to 

contaminant-mediated effects (Chapter 3). Differences in physiological competency 

between ontogenetic stages have also been shown elsewhere with regard to salinity 

(Anger et al. 2000; Charmantier et al. 2001; Holdich et al. 1997; Morgan 1987) and 

osmoregulation (Charmantier et al. 2002; Morritt and Spicer 1999). 

When focussing solely on the physiology of the male shore crab, it may be possible 

to outline the zones of homeostasis, i.e. normal function (A) and physiological 

competency (B) (Fig. 8.2). Chapter 4 described the effect of dietary manipulation 

(via nutritional intake) on the physiological condition of the adult male shore crab. 

Shore crab physiological condition was shown to be relatively robust to short-term 

(< 7 days) changes, postulated to occur via the utilisation of energy reserves 

(Chapter 4). Contaminant exposure, however, demonstrated' that tolerance 

(physiological competency) afforded to the individual was significantly dependent 

upon the nutritional status of the organism (Chapter 5). Modulation in biochemical 

(increased antioxidant status) and cellular functions (immune function signalled by 

phagocytosis, cellular integrity and viability) were observed and can be postulated to 

be up-regulation of biochemical and cellular processes and indicative of 

physiological compensation by the repertoire of biological responses measured. 

Although short-temn (14 days) effects of sublethal pyrene concentrations (200pgL"^) 
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were evaluated here, they were not prolonged to evaluate the limit of reversible, 

pathological damage (D) (Fig. 8.2) (I.e. by exposure to higher concentrations and/or 

longer exposure periods). It could be concluded that adult male shore crab 

physiology (during the Intermoult stage) Is robust to short-term changes in 

physiological condition. The degree of physiological competency, and the limit of 

physiological compensation to various stressors, has been shown previously in 

various species, with regard to nutritional state (Depledge 1985; Russell 1998), 

temperature (Cowling et al. 2003; Denny et al. 2006), osmotic sti-ess (Calosi et al. 

2005; Cowling et al. 2003), hypoxia (Bernatis et al. 2007; Brouwer et al. 2007; 

Davenport and Wong 1987) and contaminants (Sloman 2004), and serves to 

illustrate an organism's limit of physiological compensation. 

Behaviour is an important component of physiological adjustment to the 

environment (Spicer and Gaston 1999) and is an energetically demanding activity. 

Intraspecific resource conflicts were shown here to be dependent upon crab 

physiological condition (Chapter 6). Shore crab physiological condition, 

manipulated by a combination of dietary and contaminant-imposed constraints, had 

repercussions for behaviour. Behavioural endpoints (resource possession and 

recuperation time) revealed that intraspecific agonistic contests were shaped by the 

physiological condition of the competitors and, consequently, had proximate 

biochemical (glucose and lactate concentrations) 'costs' resultant from energetically 

demanding behaviour. It may be concluded, therefore, that physiological 

compensation shown at the biochemical and cellular level translates to effects seen 

at higher levels (behaviour) within the individual. These have effects have 

ecologically-relevant Implications to individual fitness, as evaluated here by the 

ability of shore crabs to compete for food. 
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Normal function or iiomeostasis in C. maenas pliysiology was shown to vary 

seasonally, with differences in biochemical (antioxidant status), cellular 

(phagocytosis) and shore crab physiology (multivariate) occurring between winter-

spring and summer-autumn, accompanying changes in environmental (temperature) 

conditions (Chapter 7). This natural variation in physiology has implications, for the 

ability of crabs to tolerate contaminant exposure. The effects of contaminant 

exposure upon shore crab physiological condition (evaluated here in three estuaries 

of varying P A H input) revealed differences highlighting the Importance of evaluating 

the natural physiological range of shore crab physiology. 

To measure the response(s) of an organism to physiological stress, there are three 

important considerations. Firstly, the effects of the stress will be an integrated 

response involving all levels of functional complexity within the organism (molecular, 

cellular and physiological). Secondly, the stress response is dynamic and involves 

alteration In functional properties over time. Thirdly, a potential stress hriay be 

neutralised by homeostatic physiological compensation (Koehn and Bayne 1989). 

Therefore to study the effects of a stressor upon the physiology of organism, it is 

paramount that the normal physiological ranges be identified allowing understanding 

of the organism's ability to function. Without this knowledge, compensatory 

responses and consequently stress effects cannot be elucidated. In conclusion, this 

present study, has demonstrated that sublethal contaminant exposure (as a means 

of imposing physiological constraints) has resulted in alterations to single biological 

systems at various levels of biological organisation (biochemical to behavioural) (via 

univariate analysis). The integrated physiological condition (multivariate), allowed 

assessment of the normal physiological range and physiological competency, 

between ontogenetic stages Guvenile and adult), nutritional status and season. 
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The present study has attempted to elucidate the normal physiological ranges of the 

shore crab C. maenas. Therefore, it is essential to establish the full extent of the 

'normal' physiological ranges for C. maenas physiology to fully understand the 

Impact of environmental and anthropogenic stress alike. 
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