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Abstract In this paper, we demonstrate that Fourier transform
infrared (FT-IR) spectroscopy is able to discriminate rapidly
between uropathogenic Escherichia coli (UPEC) of key line-
ages with only relatively simple sample preparation. A total of
95 bacteria from six different epidemiologically important
multilocus sequence types (ST10, ST69, ST95, ST73,
ST127 and ST131) were used in this project and principal
component-discriminant function analysis (PC-DFA) of these
samples produced clear separate clustering of isolates, based
on the ST. Analysis of data using partial least squares-
discriminant analysis (PLS-DA), incorporating cross-
validation, indicated a high prediction accuracy of 91.19 %
for ST131. These results suggest that FT-IR spectroscopy
could be a useful method for the rapid identification of mem-
bers of important UPEC STs.

Introduction

Urinary tract infection (UTI) is the most common laboratory-
confirmed bacterial infection encountered in medical practice
in Europe and North America. Uropathogenic strains of
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Escherichia coli (UPEC) are the predominant cause of UTI
and account for 70-95 % of community-acquired cases and
approximately 50 % of hospital-acquired cases [1, 2]. UPEC
differs from the majority of other enteric E. coli in terms of
serotype, virulence-associated traits, phylogenetic grouping
and degrees of multidrug resistance [3]. Recently, the man-
agement of UTIs has become increasingly challenging as a
result of emerging resistance to most first-line antimicrobial
agents [4]. Contributing to this increase are certain successful
UPEC clones, including ST131, which is characterised as
belonging to serotype O25b:H4, and the production of
extended-spectrum f3-lactamase and fluoroquinolone resis-
tance [5, 6], as well as ST69, which is significantly associated
with trimethoprim resistance [7].

Bacterial typing is a valuable tool in both outbreak inves-
tigation and epidemiological surveillance. A number of tech-
niques have been deployed in order to try and reduce the time
required for the identification of the causative organism in
UTI. These include matrix-assisted laser desorption/ionisation
time-of-flight (MALDI-TOF) mass spectrometry [8], ultravi-
olet resonance Raman (UVRR) spectroscopy [9] and Fourier
transform infrared (FT-IR) spectroscopy [10, 11].

FT-IR spectroscopy has become a useful technique for the
discrimination of cultured bacteria. It has been successfully
utilised for the differentiation of Enterococcus and
Streptococcus species [12, 13], and is able to discriminate
between different strains of E. coli, despite their high chemical
similarity [12], and we have recently described method devel-
opment for FT-IR allowing differentiation between quinolone-
resistant and -sensitive members of ST131, and separation of
these isolates from a small group of non-ST131 strains [11].
Here, we expand the study to demonstrate the prediction of
UPEC of other key STs, using a large strain collection.

There are many advantages of using FT-IR for the identi-
fication of bacteria over traditional biochemical or molecular
techniques, namely, the rapidity of the technique (~60 s to
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obtain spectra), automation, relatively low running costs and
simple sample preparation [14].

Materials and methods
Bacterial specimens

A collection of 95 UPEC isolates belonging to six of the most
common sequence types (STs) were collected between 2008
and 2010 from urine samples obtained from Manchester Roy-
al Infirmary, Manchester, UK. UPEC strains had previously
been typed using multilocus sequence typing (MLST) [15].
Nine isolates were selected from ST10, ST69, ST73, ST95
and ST127, and 50 isolates were of the ST131 lineage.

Sample preparation for FT-IR

Two full loops of biomass from a Columbia agar (Oxoid,
Basingstoke, UK) plate were carefully collected and
suspended in 500-pL aliquots of sterile physiological saline
(0.89 % NaCl). Each sample was centrifuged at 13,000 x gand
washed three times with 500 pL sterile saline before being
stored as a pellet at —80°C. These aliquots were subsequently
used for FT-IR analysis.

High-throughput screening (HTS) FT-IR spectroscopy

Samples were slowly defrosted on ice and the bacterial suspen-
sions were adjusted to an optical density at 600 nm (ODgq) of
between 0.4 and 1.2. Aliquots (30 uL) of each of the 95 bacterial
samples were spotted onto a 96-well ZnSe plate (Bruker Optics
Ltd., Coventry, UK) and oven dried at 40 °C for 30 min.

HTS FT-IR spectroscopic analysis was carried out using
the microplate module of a high-throughput scanner (HTS-
XT™) attached to an Equinox 55 spectrometer (Bruker Optics
Ltd.) [14]. The spectrometer was fitted with a deuterated
triglycine sulfate (DTGS) detector and controlled with Opus
4 software, via MS Windows on an IBM-compatible PC. As
in previously described methods, FT-IR spectra were collected
over the mid-IR wavelength range of 4,000-600 cm ™' and 64
scans were co-added and averaged [16, 17]. Three spectra
(machine replicates) were collected from separate locations
of each sample and the experiment was run in duplicate (two
biological replicates), which resulted in a total of 570 spectra
being collected. The FT-IR data were then converted and
analysed using MATLAB 2010a (The MathWorks Inc.,
Natick, MA, USA).

Data analysis

Data were exported from the Opus software and imported into
Matlab. The spectra were then normalised by using the
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standard normal variate (SNV) [18], a commonly used meth-
od to remove the light-scattering effect in the FT-IR spectra. In
addition, the samples were analysed on two different FT-IR
plates and the difference in the spectra between the two plates
were clearly visible (data not shown). A piecewise direct
standardisation (PDS) [19] model was built based on the
common samples between the two plates and then this model
was applied to the whole data set to remove the variation
caused by using different plates.

Cluster analysis on the SNV and PDS pre-processed data was
carried out in two stages using different algorithms. The unsu-
pervised clustering method principal component analysis (PCA)
was performed first to reduce the dimensionality of the multivar-
iate data whilst preserving the variance [14]. PCA transforms the
original set of variables to a new set of uncorrelated variables
called principal components (PCs); these are ordered so that the
first few retain the majority of the variation present in all of the
original variables [20]. The PCs are then plotted against each
other to visualise the natural clusters within the data. This was
followed by discriminant function analysis (DFA), which is a
supervised technique that discriminates data based on the
retained PCs with a priori knowledge of which spectra are
replicates. This is an unbiased method, as the provided priori
knowledge only involved samples that were replicates. DFA
maximises between-class variance and minimises within-class
variance [21], and such a model with a priori knowledge of
which samples were replicates minimises the variation caused
by the experiment. Thus, the natural clustering trend due to the
biological factors (e.g. phenotype of isolates of different STs)
may better be presented, compared to the results of PCA.

In addition to PCA and DFA, partial least squares for
discriminant analysis (PLS-DA) [22] was employed to build
a classification model to predict the ST of the FT-IR spectra
collected from the samples unknown to the model. This was
done by using a bootstrapping resampling procedure [23]. In
bootstrapping resampling, suppose there were n samples in
total, n samples were randomly chosen with replacement (i.e.
one sample could be chosen more than once). These samples
were used as the training set and the remaining samples which
had not been chosen were used as the test set (on average,
63.2 % of samples would be chosen as the training set and the
remaining 36.8 % samples as the test set in each bootstrapping
resampling). In our study, the bootstrapping resampling was
based on biological replicates, i.e. all the samples of the same
biological replicates were selected together, thus #=190 (95
isolatesx2 biological replicates). The PLS-DA model was
built on the training set and the number of PLS components
was selected by using a k-fold cross-validation performed on
the training set only, where k is the number of biological
replicates in the training set. The model was then applied to
the test set to predict their STs. This procedure was repeated
1,000 times and the prediction accuracies were averaged to
show the generalisation performance of the PLS-DA model.
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Fig. 1 Principal component-discriminant function analysis (PC-DFA)
plot of high-throughput Fourier transform infrared (FT-IR) spectra for
uropathogenic Escherichia coli (UPEC). PCs 1-20 (accounting for
99.12 % of the total variance) were used by the DFA algorithm with a
priori knowledge of machine replicates (50 isolates of ST131, nine

Results

Initially, the raw spectra that were produced from FT-IR
spectroscopy were visually examined (data not shown). These
FT-IR spectra for the 95 UPEC isolates showed broad and
complex contours, with some inevitable baseline shifts and
scaling problems that were resolved using EMSC scaling
(data not shown).

Exploratory analysis using PCA showed no clear distinc-
tion between isolates of different STs (data not shown). How-
ever, after further analysis via PC-DFA, it was possible to
discriminate between the different subtypes, as samples from
the same ST clustered together. The PC-DFA plot from all 95
isolates showed two clear separate clusters (Fig. 1): these two
clusters that can easily be distinguished correspond to ST127
and ST131 isolates. The samples from the four remaining STs
(ST10, ST69, ST73 and ST95) were not clearly recovered into
individual clusters at this stage of the analysis. However, we
envisaged that the clustering of samples within the ST131 and
ST127 groups may have affected the clustering of the other
STs, preventing clear discrimination between the groups; that
is to say, the spectra were dominated by specific chemicals
characteristic of these two ST groups which were absent from
isolates of the other four STs. Therefore, PC-DFA was repeat-
ed on isolates of these four STs only, having removed the
ST127 (n=9) and ST131 (n=50) data. The resulting plot
showed clear clustering of isolates from the remaining STs
(Fig. 2).

To validate the observations, the raw spectra were normal-
ised using SNV transformation and subjected to PDS to
remove any unavoidable variations between the different

isolates from each of the other five STs examined) and, so, the fact that
isolates cluster together is due to natural similarities, rather than ones
artificially imposed by the DFA algorithm. Each different colour repre-
sents a different sequence type (ST), as shown by the figure legend. Clear
clustering for ST127 and ST131 can be seen

ZnSe plates. Prior to correction, the PC-DFA showed clear
clustering for ST131 and ST95, and although general trends
could be seen for isolates from ST10, ST69, ST73 and ST127,
they failed to form distinct clusters (data not shown). After
transformation, when the data from plate 2 (test data) were
projected into the results from plate 1 (training data), as
expected, the ST131 test data projected very close to the
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Fig. 2 PC-DFA plot of high-throughput FT-IR spectra for UPEC after
the removal of spectra from isolates of ST127 and 131. PCs 1-20
(accounting for 99.54 % of the total variance) were used by the DFA
algorithm, again with a priori knowledge of machine replicates (nine
isolates from ST10, ST69, ST73 and ST95 were used). Each different
colour represents a different ST, as shown by the figure legend. Clear
separate clustering for isolates of all four STs can be seen. The circles are
drawn as a guide and have no statistical significance
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training data for this ST (Fig. 3). Similarly, but to a slightly ~ Discussion

lesser extent, the projections of the ST127, ST73, ST95 and
ST69 test data projected close to the training data for the
respective STs. Unfortunately, the ST10 projections were not
as good as the other STs and many data points appeared to be
dispersed away from their respective samples used in the
model construction (the training data).

Finally, PLS-DA modelling with 1,000 bootstrapping
validations was then performed on the calibrated data and
the prediction accuracy for ST131 was 91.19 % (Table 1).
Prediction accuracies for ST95 (86.58 %) and ST127
(69.38 %) were also high, showing that it was possible to
predict isolates from these groups accurately. Although
ST73 (39.15 %) and ST10 (30.15 %) obtained relatively
low prediction accuracies, they were better than a truly
random prediction, which would have a 1/6th chance (or
16.67 %) of success.

Table 1 Partial least squares-discriminant analysis (PLS-DA) modelling
with 1,000 bootstrapping validations showing the prediction accuracies
(%) for the isolates examined from six major uropathogenic Escherichia
coli (UPEC) clones

Actual ST Predicted ST (%)

ST69 ST73 ST127  ST95 ST10 ST131
ST69 5514  16.65 6.76 5.54 5.58 10.33
ST73 24.71 39.15 6.7 6.99 1248  9.97
ST127 5.21 8.62 69.38 0.51 7.42 8.85
ST95 1.02 1.67 0.21 86.58  0.15 10.39
ST10 16.48 16.16 17.59 5.58 30.15 14.04
ST131 231 0.9 241 2.74 0.46 91.19
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The ability to identify UPEC to the ST level rapidly using FT-
IR spectroscopy could help improve the diagnostics and epi-
demiological surveillance for these common UTI pathogens.
A collection of 95 UPEC isolates was examined using HTS
FT-IR spectroscopy in order to investigate whether or not it
was possible to discriminate between isolates of different STs.

The PCA results obtained from the FT-IR data failed to find
six groups, one for each ST, demonstrating the limitation of
this unsupervised method in discriminating between these
UPEC strains. It was, therefore, necessary to perform PC-
DFA to be able to differentiate between these STs. The PC-
DFA cluster analysis readily demonstrated the capability of
FT-IR to identify UPEC from ST131 (Fig. 1), which agrees
with our recent findings using a small collection of UPEC
[11]. These current data also show that FT-IR was able to
separate ST127 strains from other STs, including ST131.
Removing the strong (bio)chemical signal(s) generated by
the 50 ST131 strains and the ST127 strains allowed differen-
tiation between ST10, ST69, ST73 and ST95 using PC-DFA
and resulted in tight, well-separated clusters (Fig. 2). Being
able to identify ST131 and ST127 easily from other STs with
FT-IR shows that there are obvious differences in the bio-
chemical fingerprints of these UPEC STs. It is already known
that E. coli strains can have considerable biochemical vari-
ability [24] and we have demonstrated that ST131 and ST127
show significant differences in their biochemical and viru-
lence factor profiles when compared to each other and mem-
bers of other STs. In combination, this perhaps helps explain
the clear separation of isolates from these STs [15, 25].

The between-plate validation carried out resulted in excel-
lent projection for ST131 isolates, with very little variation
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between the two biological replicates across the two ZnSe
plates. This shows that it should be possible to accurately
predict if an isolate is from ST131. However, the projections
for ST10 were rather scattered and much less convincing.
Whilst the PLS-DA modelling showed very good prediction
accuracy for isolates of ST131 (91.19 %), ST95 (86.58 %) and
ST127 (69.38 %), the prediction accuracies for ST73 and
ST10 were both low (39.15 % and 30.15 %, respectively),
which could reflect significant variations between isolates in
terms of underlying genetics. It should be noted that there are
six different outputs in the PLS-DA model for the prediction
of each of the six different bacteria; as such, a truly random
score would be a 1 in 6 chance or 16.67 % of being correctly
identified. Therefore, as all predictions were much higher than
this, one can consider that the bacteria in all of these STs do
have unique phenotypic FT-IR fingerprints. eBURST analysis
of MLST data has demonstrated that ST10 and ST73 are less
recently diverged than other STs, and each is a founder of a
large clonal complex, with allelic similarity to many other
STs. The deeper divergence may explain why they do not
have well-conserved phenotypic characteristics, like members
of ST131 and ST127 [15].

The high prediction accuracy for ST131 isolates is partic-
ularly promising and supports our previous data for ST131
[11]. ST131 is particularly prevalent worldwide and consid-
ered clonal [1, 4, 6]; therefore, the use of HTS FT-IR spec-
troscopy and the subsequent ability of PC-DFA to discrimi-
nate between isolates of different UPEC STs, with minimal
sample preparation and relatively little data manipulation,
could significantly increase the speed of diagnosis and prove
to be an invaluable epidemiological tool.
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