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Multiple metabolomics of uropathogenic E. coli
reveal different information content in terms of
metabolic potential compared to virulence factors†

Haitham AlRabiah,a Yun Xu,a Nicholas J. W. Rattray,a Andrew A. Vaughan,a

Tarek Gibreel,‡b Ali Sayqal,a Mathew Upton,‡b J. William Allwood§a

and Royston Goodacre*a

No single analytical method can cover the wholemetabolome and the choice of which platform to usemay

inadvertently introduce chemical selectivity. In order to investigate this we analysed a collection of

uropathogenic Escherichia coli. The selected strains had previously undergone extensive characterisation

using classical microbiological methods for a variety of metabolic tests and virulence factors. These

bacteria were analysed using Fourier transform infrared (FT-IR) spectroscopy; gas chromatography mass

spectrometry (GC-MS) after derivatisation of polar non-volatile analytes; as well as reversed-phase liquid

chromatography mass spectrometry in both positive (LC-MS+ve) and negative (LC-MS!ve) electrospray

ionisation modes. A comparison of the discriminatory ability of these four methods with the metabolic

test and virulence factors was made using Procrustes transformations to ascertain which methods

produce congruent results. We found that FT-IR and LC-MS!ve, but not LC-MS+ve, were comparable

with each other and gave highly similar clustering compared with the virulence factors tests. By contrast,

FT-IR and LC-MS!ve were not comparable to the metabolic tests, and we found that the GC-MS profiles

were significantly more congruent with the metabolic tests than the virulence determinants. We

conclude that metabolomics investigations may be biased to the analytical platform that is used and

reflects the chemistry employed by the methods. We therefore consider that multiple platforms should

be employed where possible and that the analyst should consider that there is a danger of false

correlations between the analytical data and the biological characteristics of interest if the full

metabolome has not been measured.

1. Introduction
Metabolomics aims to categorise the small molecular weight
complement of cells, tissue and biouids,1–3 and although
arguably an ‘ancient’ science4 a plethora of analytical platforms,
mainly based onmass spectrometry (MS) and various molecular
separation techniques including gas chromatography (GC) and
liquid chromatography (LC), have made it possible to detect
small molecules in biological matrices.5

In practice, the detection of the full metabolome is still
unachievable by a single analytical tool due to the chemical

complexity of metabolites, great variations in their concentra-
tion levels and various other reasons such as analyte lability.6

Therefore, in addition to MS, other detection techniques such
as NMR spectroscopy and vibrational spectroscopies (viz. FT-IR
and Raman) are used as complementary analytical approaches.
In particular, FT-IR spectroscopy is considered to be a low cost,
high-throughput technique making it a rst option for prelim-
inary experiments to give a preview of the experiment direction
before more advanced tools are employed.7

The question arises as to exactly how complementary these
methods are. For example, in FT-IR spectroscopy sample
extraction is usually not performed and the method provides
chemical information at the level of molecular vibrations, not
isolated metabolites per se. By contrast, MS-based studies are
performed usually aer extraction and usually aer GC or LC.
All of these processes introduce selectivity into the analysis and
hence potential analytical bias. If we consider GC-MS using
methanol extraction followed by a two-stage methoxamination
and silyation,1,8 one is generally selecting metabolites from
central metabolism such as sugars, sugar phosphates, amino
acids and small fatty acids etc. For LC-MS, using reversed-phase
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chromatography one targets more lipophilic species and
another choice made is the polarity of the ion source in terms of
positive or negative electrospray ionisation. It is currently
unlikely that people have the resources to include all possible
analytical approaches and therefore choices are made on which
are the most appropriate or accessible to select.

Therefore in this study, we used a range of metabolomics
platforms on a microbiologically characterised set of uropa-
thogenic Escherichia coli (UPEC) isolates that all belong to the
same sequence type (ST131), an important and globally
disseminated clone.9 Due to the platforms available in our
laboratory, we selected FT-IR spectroscopy, GC-MS of polar non-
volatile analytes, and reversed-phase LC-MS in both positive
and negative ESI modes. Both GC-MS and LC-MS analysis were
performed on 80% methanol (80 : 20 methanol–water (v/v))
extracts. Once the data were collected, we used a series of che-
mometric methods to compare the differentiation ability of all
four methods. Moreover, these were compared with genotypic
and phenotypic characteristics that are measured during
investigation of the pathogenic potential of UPEC and included
data for a panel of metabolic tests and virulence factor carriage.

2. Experimental
2.1 General chemicals

Unless otherwise stated, all chemicals were supplied by Fisher
Scientic (Fisher Scientic Ltd., Loughborough, UK), and all
solvents and acids were obtained from Sigma Aldrich (Sigma
Aldrich, Dorset, UK).

2.2 Microorganisms

The 11 uropathogenic Escherichia coli (UPEC) isolates examined
were obtained from bacteriuria urine samples submitted to the
bacteriology laboratory at the Central Manchester Foundation
Trust. The isolates were all from the ST131 lineage and resistant
to quinolones due to different genetic mechanisms (Table S1†).
Identication of virulence capacity, metabolic prole and anti-
biotic susceptibility have been previously described10,11 and
these are provided in Tables S2 and S3.†

2.3 Preparation of Escherichia coli inoculates for metabolic
ngerprinting and metabolic proling

Samples were prepared according to the protocols described in
ref. 12 with the only exception being that samples were incu-
bated for 21 h rather than 18 h (see Fig. S1† for details). Aer
cultivation of the bacteria (see ESI†) each of the 4 biological
replicates were split for FT-IR, GC-MS and LC-MS ("2) to ensure
that results were obtained from the same biological cultures.

For GC-MS and LC-MS, 15 mL from each replicate was
collected, quenched and extracted according to the procedures
developed by ref. 8. The only difference in this study is that for
metabolite extraction 80% methanol (80 : 20 methanol–water
(v/v)) was used rather than 100% methanol to enhance the
recovery of polar small molecules. Samples for GC-MS and LC-
MS, including quality control samples (QCs), were normalised
to optical density (OD) andmade up with 80%methanol (80 : 20

methanol–water (v/v)). Further sample processing steps were
applied to the GC-MS samples (adding internal standards, a
two-step chemical derivatisation and adding retention index
marker solutions). LC-MS samples were reconstituted in 100 mL
HPLC grade water, vortex mixed and centrifuged before
instrumental analysis. Full details of sample preparations are
available in the ESI.†

2.4 FT-IR spectroscopy

A Bruker Equinox 55 infrared spectrometer (Bruker Ltd.,
Coventry, UK) equipped with a HTX™ module was used for FT-
IR spectroscopic analysis using the method described in ref. 12
and 13. Spectra were collected in the range of 4000–600 cm!1,
with 64 co-adds and at a resolution of 4 cm!1.

2.5 GC-MS

A LECO Pegasus III TOF/MS was used to conduct GC-TOF/MS
and its mode of operation is provided in the ESI† following our
established GC-MS protocol,14,15 which follows Metabolomics
Standards Initiative (MSI) guidelines.16 Aer GC-MS, data were
processed via the deconvolution method of ref. 14. QC samples
were used before statistical analysis, as described by ref. 17, to
give quality assurance of data by evaluating and removing mass
features exhibiting high deviation within the QC samples.

2.6 LC-MS

UHPLC-MS analysis was carried out on an Accela UHPLC
autosampler system coupled to an electrospray LTQ-Orbitrap
XL hybrid mass spectrometry system (ThermoFisher, Bremen,
Germany) as previously described by ref. 15 and 17 and high-
lighted in the ESI.† Note that the same samples were analysed
twice: once in positive and again in negative ESI modes. QCs
were also used as detailed in ref. 17 to provide quality assurance
of the LC-MS data.

2.7 Data analysis

The pre-processed FT-IR, GC-MS and LC-MS data (see ESI for
full details†) were rst analysed using principal component
analysis (PCA). The rst 1:n PCs scores which explained #75%
of the total variance were then subjected to discriminant func-
tion analysis (DFA). DFA was calibrated with 11 classes (one for
each of the 11 E. coli isolates) and the rst 3 discriminant
functions (ordinates) were retained. In order to make visual-
isation easier, and more importantly to balance the number of
samples for Procrustes analysis (vide infra), as each class con-
tained 36 FT-IR spectra (4 biological replicates, 3 spots for each
and 3measurements from each spot) these were mean-averaged
to generate 11 DFA coordinates for the 11 isolates. In a similar
fashion for GC-MS and LC-MS (in both ion source modes) where
each sample was represented by 4 injections (1 for each of the 4
biological replicates), the resulting DFA scores were also
averaged.

In addition to the analytical metabolomics data, the E. coli
strains had also been subjected to classical microbiological
testing. Metabolic activity was probed via 47 biochemical tests
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(Table S3†) designed to measure carbon source utilisation
and enzymatic activity using the Vitek 2 ID-GNB card and the
Vitek 2 compact Automated Expert System (Biomérieux).11

The virulence capabilities (Table S2†) of these strains were
investigated through genetic screening for the presence of
29 ExPEC associated Virulence Factors (VF) encompassing
ve categories (adhesins, toxins, siderophores, capsule and
“miscellaneous”).10

These metabolic tests (MT) and VF tests are characters that
are both represented as present/absent data. These are clearly
very different to the FT-IR, GC-MS and LC-MS quantitative data
which are all continuous data. To make these two different data
types comparable with each other, the pattern of the MT and the
VF test data sets were also projected into ordination space using
the following procedure: rst a pair-wise distance matrix was
calculated to measure the dissimilarity between every pair of the
isolates using the Jaccard (Tanimoto) distance;18 next principal
coordinate analysis (PCoA) was performed on the square rooted
distance matrix and the rst 3 PCs were retained.19

The result of the above analysis was six different ordination
analyses: PC-DFA from the four metabolomics data sets, and
PCoA from the metabolic tests and virulence factors. In order to
compare the similarity in the discriminatory ability generated
by these different analyses Procrustes analysis was performed
on all possible data set pairs.20 In this process, the similarity is
measured in terms of the Procrustes error, which varies from
0 to 1; where 0 indicates a perfect match and 1 indicates that the
two sets of clusters are completely different. The statistical
signicance level of the levels of these similarities were assessed
using a Procrustean test procedure.21 For each comparison,
10 000 permutation tests were performed by permuting the
order of the samples in the data sets and subsequently per-
forming the Procrustes analysis. The Procrustes errors of these
permutations were recorded to form a null distribution. The
observed Procrustes error was then compared against the null
distribution and an empirical p-value was derived by counting
the number of cases when the Procrustes error obtained from
the permuted data sets was lower than the observed error; this
was then divided by 10 000 (the total number of the permuta-
tion tests).

If any of the pair-wise comparisons indicated comparable
clusters, it would also be interesting to investigate which vari-
ables in the metabolomics data sets (i.e., FT-IR, GC-MS and LC-
MS in both +ve and !ve ionisation mode data sets) were mainly
responsible for the matched patterns revealed aer the
Procrustes rotation. This was achieved by rst projecting the
loadings of the PCA into the PC-DFA space using the DFA
loadings and then rotating these again using the Procrustes
orthogonal rotation matrix. The resultant loadings were deno-
ted as Procrustes rotated loadings. The variables with signi-
cantly high loadings were the ones that contributed most to the
matched pattern aer the Procrustes rotation.

3. Results and discussions
In clinical microbiology, bacterial characterisation is largely
dependent on phenotypic methods such as biochemical tests

and bacterial morphology. These are time consuming and oen
provide limited information when compared with modern
bioanalytical techniques. The two most common biochemical
tests that microbiologists use are (i) those based on metabolic
tests which involve growth on selective media to test for specic
enzymes and (ii) assays for virulence factors which oen reect
how the microorganism interacts with its environment and
include its adhesins and capsule as well as any toxins produced.
In general terms, metabolic tests reect the organism's meta-
bolic potential whilst some virulence tests probe the surface of
the microorganism, as it is this surface that interacts with the
environment.

To assess the level of information that metabolomics data
may generate from microbiological samples, we compare four
metabolomics approaches with each other and, importantly,
with these two classical microbiology tests from a range of
UPEC isolated from a local hospital. The results from the
metabolomics methods, MT and VF, were analysed using
cluster analysis and these generated six different ordination
scores plots: four PC-DFA plots from the FT-IR, GC-MS and LC-
MS in both +ve and -ve ionisation modes and PCoA from the
MT and VF. The resulting cluster plots then need to be
compared and this is very difficult by eye. For example, the
comparison of two sets of clusters in three dimensions
requires one to: (i) rst translate the spatial clustering
(arrangement of samples) of one sample set onto the other, so
that they are now both centred together; (ii) next, the clusters
are scaled so that they are of equivalent size; (iii) nally, the
clusters are aligned by rotation. Of course for simple shapes,
this can be done by eye. The problem is that for the compar-
ison of clusters generated from six different methods (as in
this study) the number of unique comparisons that needs to be
made is 15, and these need to be ranked and objectively
assessed. Therefore in this study, we used a series of
Procrustes transformations.

The Procrustes errors with the associated p-values of the
pattern comparisons were calculated as described above and are
presented in Table 1. In this table the comparisons which
revealed very similar spatial arrangements of the clusters from
the PCoA and PC-DFA are highlighted in yellow. A Venn
diagram-like gure reecting these overall comparisons is
shown in Fig. 1. This gure was constructed by rst performing
PCoA on the Procrustes errors table and converting it to a 2-D X–
Y scatter scores plot. Next, we calculated the 95% c2 condence
regions (these are the ellipses shown in the plot) around each
class, assuming that each have the same size of covariance
matrices; this presumes that following the Procrustes trans-
formation all resulting data transformations would have the
same scale. It is clear from this comparison in Fig. 1 that there
are mainly four congruent pairs of clusters. In Table 1, these can
be judged by having a low p-value (<0.01; frommultiple testing).
These are highlighted below:

(1) The LC-MS proles in negative mode and the virulence
factor test data had the highest similarity level with a Procrustes
error of 0.4533 and the associated p-value was 0.0002 (i.e. only 2
out of 10 000 permutations had obtained a higher Procrustes
error).
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(2) The FT-IR spectra also obtained a statistically signicant
similarity to the VF test data with a p-value of 0.0072. By
contrast, GC-MS and LC-MS in positive mode did not have a
signicant similarity to the VF test data (p > 0.01).

(3) The GC-MS metabolite data obtained a very signicant
similarity to the classical metabolic tests (MT; p¼ 0.0006), while
the other 3 data sets had no signicant similarity to this type of
data (p > 0.01). We note that in Fig. 1 there is some congruence
between GC-MS with the VF but this is not as strong as the MT.

(4) For the comparisons between the four metabolomics data
types, the FT-IR data and LC-MS proles in the negative mode
had similar shapes, and this was to be expected as both were
very similar to the VF test.

(5) Finally there was low similarity between the VF test and
the metabolic test as p > 0.01.

3.1 Interpretation of FT-IR spectra

FT-IR spectroscopy is not a particularly popular metabolic
ngerprinting method but it has been extensively used for so
called ‘whole-organism ngerprinting’22 for bacterial charac-
terisations due to its high-throughput nature with minimal
sample preparation.23–26 In this study, FT-IR was applied to
discriminate between isolates with the same sequence type and
the FT-IR clusters had similar scores to those from virulence

factor tests (Fig. 2 and Table 1). Fig. 2 shows the results from
both the FT-IR (in red) and VF (in blue) where it can be seen
that, in FT-IR, isolate 48 forms a cluster that is distinct from the
other isolates, but is collocated with results from its VF test.
Inspection of Table S2,† which shows the scores of the different
virulence tests, reveals isolate 48 is the only isolate with a
negative score for PAI. PAI is an acronym for pathogenicity
islands, which are mobile genetic elements that carry the genes
responsible for the production of many virulence factors,
including protein secretion systems, toxins, adhesins and many
others.27 FT-IR spectra from intact bacteria contain information
on fatty acids, amides, polysaccharides, proteins and amino
acids. As these virulence factors may be located in the
membrane (outer surface of the organism), it is likely that FT-IR
spectroscopy is detecting the loss of these as the whole
organism is analysed and hence that is why it is located away
from the other 10 isolates.

Isolates 52 and 75, 160 and 164 share the same VF prole,
with the exception of strains 160 and 164 being negative for traT
(Table S2†), a cell surface molecule involved in resistance to the
activity of complement (serum). All four isolates cluster together
in the FT-IR data and are located reasonably close to their
respective clusters from VF; they are located in the positive side
of PC1 (Fig. 2) and this may reect that these isolates are all
positive for the afa/draBC surface adhesins. Isolate 2 is also
coincident in terms of FT-IR spectra with these four isolates but

Table 1 The Procrustes errors with the associated p-values of the pair-wise comparisonsa

LC-MS (pos) LC-MS (neg) GC-MS FT-IR VF Metabolic test

LC-MS (pos) —
LC-MS (neg) 0.6699 (p ¼ 0.0543) —
GC-MS 0.9239 (p ¼ 0.7521) 0.7423 (p ¼ 0.0903) —
FT-IR 0.9344 (p ¼ 0.8118) 0.5333 (p ¼ 0.0059) 0.8973 (p ¼ 0.3701) —
VF 0.8855 (p ¼ 0.5633) 0.4533 (p ¼ 0.0002) 0.6603 (p ¼ 0.0107) 0.5429 (p ¼ 0.0072) —
Metabolic test 0.7782 (p ¼ 0.2021) 0.6737 (p ¼ 0.072) 0.5681 (p ¼ 0.0006) 0.7843 (p ¼ 0.2195) 0.6653 (p ¼ 0.091) —

a Values highlighted in bold are considered signicant (p < 0.01) and indicate pairs of methods that provide equivalent clusters/shapes.

Fig. 1 Venn diagram-like plotted showing the overall clustering
congruence between the four analytical approaches and the two
microbiological tests. See text for explanation of its construction.

Fig. 2 Superimposed scatter plots of PCoA scores of the first two
components of the VF tests and Procrustean-transformed FT-IR
spectra.
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is very different for VF and this disparity was also observed for
the LC-MS in negative ionisation mode comparison with VF
(vide infra).

Capsular association factors (kpsMT K5 and kpsMT II) are
extracellular and this may be reected in the FT-IR spectra.
Isolates 2, 25, 48, 183, 184 and 230 are positive for both these
factors and, with the exception of isolate 2, are located on the
negative part of PC1. Isolate 124 is also associated with these
isolates and this may be a consequence of it being negative for
afa/draBC as discussed above.

Finally, no relationship between FT-IR spectra and traT was
evident from this analysis and this was also observed for the LC-
MS conducted in the negative ionisation mode.

3.2 Interpretation of LC-MS proles

The same 11 E. coli isolates from uropathogenic infections were
also analysed by reversed-phased LC-MS. As discussed above,
80% methanol (80 : 20 methanol–water (v/v)) extracts were
prepared from these bacterial cultures and MS was performed

in both positive (LC-MS+ve) and negative (LC-MS!ve) ionisation
modes. Comparisons were made with VF and MT and it was
found that LC-MS in the negative ionisation mode shows a
higher level of similarity with VF tests than FT-IR spectroscopy
did (Table 1 and Fig. 3). Moreover, because of these congruen-
cies between [LC-MS!ve and VF] and [FT-IR and VF] it was not
surprising that the [LC-MS!ve and FT-IR] comparison was also
very similar (Table 1).

There were, however, two minor differences between the LC-
MS!ve comparison with VF (Fig. 3) compared with the FT-IR
spectroscopic comparison (Fig. 2) and these are briey high-
lighted below:

% The rst signicant disparity is the observation that
isolates 2, 25 and 184 were collocated in LC-MS!ve mode
whereas they were signicantly spread in PC1 in FT-IR. We note
that they possess identical VF tests (Table S2†) and a possible
explanation for this is that LC-MS!ve is detecting these prefer-
entially compared with FT-IR (Table 1).

% The second difference is that in FT-IR, isolates 2, 52, 75,
160 and 164 were very closely clustered together. By contrast, in
LC-MS!ve isolates 160 and 164 ‘moved’ to the positive parts of
PC1 and PC2 and cluster very closely with their respective VF
tests, whilst isolates 2, 52 and 75 are now collocated near the
origin with isolates 124 and 183 (Fig. 3).

It is possible that some of these small differences are
because in LC-MS a methanolic extract is used compared to FT-
IR where whole-organism ngerprinting is used. The similarity
between the differentiation ability of FT-IR and LC-MS!ve with
VF is interesting and this may reect that both metabolomics
methods are preferentially detecting cell wall components. As
discussed above, FT-IR analyses the intact bacteria and certainly
contains information on proteins and lipids, amongst other
cellular components. In LC-MS, as reversed-phase LC is used
with the negative ionisation mode more lipophilic species are
analysed that may be associated with the cell wall and this has
been reported before for direct infusion MS.28,29

In the positive mode of LC-MS, very little similarity with VF
was observed (Table 1). By contrast, although comparison of LC-
MS+ve with MT (Fig. S2†) showed some congruence; this was not
statistically signicant and so will not be discussed here.

3.3 Interpretation of GC-MS proles

The GC-MS approach used here30 generates information-rich
metabolite proles of polar analytes and so mainly covers
metabolites involved in the central metabolism. As can be seen
from Fig. 4, there is high similarity between GC-MS proles for
the 11 bacteria (highlighted in red) with the metabolic tests (in
blue) and the similarity match is 0.5681 and is highly signicant
with p ¼ 0.0006 (Table 1).

Isolates 160 and 164 share exactly the same results from MT
and they are located closer to each other in the positive side of
PC1 with isolate 183. Following Procrustes transformation of
the PC-DFA from the GC-MS data, isolates 160 and 164 are very
similar and are recovered far from all other isolates, which are
congruent with their MT except for 230 which is positive in PC2.
Inspection of the MT (Table S3†) reveals that 160 and 164

Fig. 3 Superimposed scatter plots of PCoA scores of the first two
components of the VF tests and Procrustean-transformed LC-MS
negative mode data.

Fig. 4 Superimposed scatter plots of PCoA scores of the first two
components of themetabolic tests and Procrustean-transformed GC-
MS data.
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are unique from all other isolates in that they scored positive in
the GlyA test, which detects the glycine arylamidase enzyme.
Arylamidase enzymes mainly hydrolyse peptides containing
L-amino acids with an unsubstituted a-amino group in the
N-terminal residue31 and one of the main amino acids released
by this enzyme is leucine.32 Therefore, the PC-DFA loading plots
from GC-MS were produced (Fig. S3†) and it was found that two
variables were highly discriminatory (variables 17 and 49).
Variable 17 is identied by in house database matching to
leucine and shows a much higher level in these two isolates

than in the other E. coli (Fig. 5a). Moreover, arylamidase
enzymes are involved in 8 of the metabolic tests in this experi-
ment (Table S3†) and isolates 160 and 164 have the highest
scores in these tests compared with others.

The other variable that was identied as signicant (Fig. S3†)
was variable 49, which unfortunately we are currently unable to
identify. When this feature is plotted for the 11 isolates (Fig. 5b)
it is also elevated in isolates 160 and 164 conrming its
importance as a discriminatory metabolite feature. We note also
that isolate 183 also has increased levels compared with all the
other isolates, although its level is not as high as the levels
generated by 160 and 164.

In terms of metabolic tests, isolate 183 is closer to isolates
160 and 164 as can be seen from its blue coding in Fig. 4, and in
GC-MS it is recovered to the right of the other eight isolates and
in the positive part of PC1. It shares the same metabolic results
with these two isolates in all tests except GlyA (glycine aryla-
midase) and PHOS (phosphatase) tests. It is expected to observe
a notable signal by phosphatase as the production of alkaline
phosphatase is induced by alkaline environment generated by
peptide metabolism.33 Although phosphate is produced in
many metabolic reactions this elevation is generally reected
for most of the strains that express phosphatase (Table S3†) and
this is generally reected in the phosphate levels measured by
GC-MS (Fig. 5c).

4. Concluding remarks
In metabolomics investigations, the analyst has to choose the
most appropriate analytical method to employ. To date, most of
these are based on early decisions to do with analytical
procurement due to the expense of metabolomics instrumen-
tation. The question arises as to whether equivalent results are
generated by all platforms. In this investigation, we attempted
to address this by analysing a set of well characterised uropa-
thogenic E. coli that had been analysed by a battery of metabolic
tests (n ¼ 47) and virulence factor determinations (n ¼ 30).
These tests probe different parts of the bacterial cell. Obviously,
metabolic tests probe the enzyme component of the bacteria
and are usually focused on central metabolism and carbon
utilisation. By contrast, virulence factors tend to be cell wall
associated and include adhesins, capsules and toxins.

Four different approaches for metabolomics were investi-
gated. FT-IR spectroscopy was employed directly on intact
bacteria for metabolic ngerprinting, or what is oen described
as whole-organism ngerprinting. Following quenching and
extraction using methanol, GC-MS was performed following a
two-stage derivatisation, and LC-MS was performed in reversed-
phased LC mode directly on the methanolic extracts in both
positive and negative ionisation source modes.

In order to compare the clustering patterns from the six
different analyses with one another, Procrustes transformations
were performed and this allowed objective assessment of the
similarity of the cluster patterns in terms of the spatial
arrangement of the 11 E. coli isolates in either PCoA or PC-DFA
scores space. We found that FT-IR and LC-MS in negative ion-
isation mode were comparable with each other and also with

Fig. 5 Box–whisker plots for each isolate demonstrating the
concentration level of candidate intracellular metabolites from (a)
variable 17 (leucine), (b) variable 49 (unknown), and (c) phosphate.
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the virulence factors tests but not comparable to the metabolic
tests. By contrast, GC-MS compared well with metabolic tests
but not the virulence determinants. Although LC-MS in the
positive ionisation mode was not statistically correlated with
either, visual inspection of clusters with the metabolic tests
suggested there may be some loose congruence between the two
methods.

In conclusion, we believe that whenever possible more than
one metabolomics modality should be used, and the analyst
should consider carefully the analytical technique employed
and these will certainly reect the chemical bias of the methods
used. We know for example that LC-MSmainly targets lipophilic
species when reversed phase is used; by contrast, GC-MS mainly
focuses on polar small molecules. It is possible that there is a
danger of false correlations between the analytical data and the
biological characteristics of interest if the full metabolome has
not been measured. This is clearly demonstrated in this study
where the GC-MS data predominantly correlates with the
metabolic tests, whilst LC-MS in negative ionisation mode and
FT-IR spectroscopy correlate with the virulence determinants.
Of course if we did not know about these two different types of
inherent characteristics we may have jumped to false conclu-
sions, and the same rules are likely to be manifest when
metabolomics is employed to study higher organisms like
mammalian systems and plants as well as complex body uids.
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