A FimH Inhibitor Prevents Acute Bladder Infection and Treats Chronic Cystitis Caused by Multidrug-Resistant Uropathogenic *Escherichia coli* ST131

Makrina Totsika,1,2,a Maria Kostakioti,3,a,b Thomas J. Hannan,4,a Mathew Upton,7 Scott A. Beatson,1,2 James W. Janetka,5 Scott J. Hultgren,3,6 and Mark A. Schembri1,2

1Australian Infectious Diseases Research Centre and 2School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia; 3Department of Molecular Microbiology, 4Department of Pathology and Immunology, and 5Department of Biochemistry and Molecular Biophysics; 6Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri; and 7School of Translational Medicine, University of Manchester, United Kingdom

Background. *Escherichia coli* O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by *E. coli* ST131 are typically associated with limited treatment options and are often recurrent.

Methods. Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference *E. coli* ST131 UTI isolate, strain EC958.

Results. We demonstrated that *E. coli* EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, *E. coli* EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent *E. coli* EC958–mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold.

Conclusions. In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated *E. coli* ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant *E. coli*.

Keywords. *E. coli* ST131; uropathogenic *E. coli*; urinary tract infection; antibiotic resistance; type 1 fimbriae; mannose; biofilm.

Uropathogenic *Escherichia coli* (UPEC) causes the majority (approximately 80%) of urinary tract infections (UTIs), resulting in an estimated 150 million cases globally per year [1]. Women are primarily affected, with almost 50% expected to experience 1 UTI in their lifetime and 20%–30% experiencing a recurrence within 6 months of an acute episode [2]. Recurrent UTI contributes significantly to UTI-associated morbidity and heavily imposes on public health resources [3]. The overwhelming success of antibiotics has led to the commonly held belief that cystitis is a self-limiting disease. However, placebo-controlled studies indicate that the natural course of cystitis can last for weeks in approximately half of all patients [4, 5]. Furthermore, many individuals have chronic recurrent UTI and require suppressive antibiotic therapy to prevent frequent recurrences. While, for the majority of cases, a short course of antibiotic therapy still remains an effective treatment, antibiotic resistance among UPEC strains is continually increasing. Despite large variation in UPEC antibiotic resistance.
resistance rates between different countries and among different UTI patient cohorts, large surveillance studies conducted during the last 20 years across Europe, North America, and South America highlight that 20%–50% of UPEC strains can be resistant to commonly prescribed antibiotics, such as trimethoprim-sulfamethoxazole (TMP-SMZ), fluoroquinolones, and β-lactams [3]. This trend has led to an increased rate of treatment failure with standard antibiotic therapies and the increased use of second- and third-line therapies, further promoting the emergence of multidrug-resistant UPEC. Taken together, the increasing antibiotic resistance among UPEC strains and the paucity of new antibiotics in development threaten to greatly complicate UTI management in the near future.

UPEC infection proceeds through a well-described pathogenic pathway in the lower urinary tract [6]. Numerous UPEC virulence factors, including adhesins, toxins, and iron-acquisition systems, have been identified [7]. Type 1 fimbriae mediate host-pathogen interactions critical in pathogenesis. The FimH adhesin, located at the tip of type 1 fimbriae, binds to mannosylated glycoproteins on human and mouse bladder epithelial cells and facilitates UPEC colonization and invasion of the bladder epithelium (urothelium) [8, 9]. After invasion, UPEC can escape the endocytic vesicle and rapidly replicate within the urothelial cell cytoplasm, forming intracellular bacterial communities (IBCs) that resemble biofilms [10, 11]. IBC formation occurs primarily during acute bladder infection and allows bacteria to rapidly expand in numbers and establish infection in a host niche that is protected from neutrophil attack and antibiotics [12–14]. The IBC pathogenic cascade has been extensively characterized in a murine model of cystitis [15, 16], and exfoliated bladder epithelial cells containing IBCs have been significantly observed in urine from women with recurrent UTI but not from healthy controls [17]. Animal models have defined 2 distinct chronic outcomes to experimental UPEC infection of the bladder in immunocompetent hosts: spontaneous resolution of bacteriuria that is often accompanied by a persistent latent intracellular infection (ie, a quiescent intracellular reservoir [QIR]) [16] or by chronic cystitis [6]. UPEC within QIRs can reemerge months later to seed a recurrent infection [16]. On the other hand, the development of chronic cystitis can sensitise mice to recurrent UTI when they are challenged with a new bacterial strain after clearance of infection following antibiotic treatment [18]. Thus, UPEC can effectively colonize the host bladder and establish acute, chronic, or recurrent infections. On the basis of murine models that mimic aspects of human disease, FimH is critical for UPEC pathogenesis. FimH is also under positive selection in human clinical isolates of UPEC, further supporting its role in human disease [19]. Inhibiting FimH function may thus represent a therapeutic strategy for the treatment and prevention of UTI. In this respect, novel biaryl mannoside FimH inhibitors, including compound ZFH-04269 (4′-[a-D-Mannopyranosyloxy]-N,3′-dimethylbiphenyl-3-carboxamide), were recently shown to attenuate UPEC virulence in mice by impeding FimH binding to the bladder epithelium, thereby preventing bacterial invasion and IBC formation and resulting in significantly reduced bladder bacterial titers during both acute and chronic cystitis [20, 21].

Recently, a clone of UPEC belonging to serotype O25b:H4 and sequence type 131 (E. coli ST131) has emerged as a leading multidrug-resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. Several reports have demonstrated the global distribution of this lineage, indicating that it constitutes a major threat to public health worldwide [22]. The successful dissemination of E. coli ST131 is thought to be due to a combination of antibiotic resistance and virulence. E. coli ST131 commonly harbor genes encoding several types of β-lactamases, particularly of the CTX-M family of extended-spectrum β-lactamases (ESBLs), and are typically associated with limited treatment options [23–26]. While the E. coli ST131 genes conferring resistance to multiple classes of antibiotics have been the focus of many recent studies, the virulence mechanisms used by this clone are less well understood. Although E. coli ST131 strains are derived from phylogenetic group B2, which includes several characterized pathogenic E. coli clonal groups, only a few virulence genes (eg, fimH, iutA, and sat) appear to be uniformly encoded in all E. coli ST131 strains [24, 25, 27, 28]. Clinical studies have demonstrated transmission of virulent E. coli ST131 strains between family members [29, 30], but the factors that contribute to the widespread dissemination of this lineage and the pathogenic mechanisms used during UTI remain poorly defined.

We have previously demonstrated that the genome sequence of a representative multidrug-resistant UPEC ST131 isolate, E. coli EC958, contains genes encoding a variety of potential virulence factors, including numerous adhesins, autotransporters, and siderophore receptors [28]. In this study, we examined the pathogenic lifestyle of E. coli EC958 during experimental UTI in mice with acute and chronic infection. We demonstrated that E. coli EC958 is able to invade the bladder epithelium and form IBCs. In addition, we showed that E. coli EC958 can persist in the bladder and establish chronic infection. We also demonstrated a key role for type 1 fimbriae in the ability of E. coli EC958 to establish bladder infection, as prophylactic treatment with an oral FimH inhibitor prevented acute cystitis. Moreover, a single oral dose of the same FimH inhibitor significantly reduced the bacterial load in the bladder of mice chronically infected with E. coli EC958. This study revealed the potential of FimH inhibitors as an alternative treatment against multidrug-resistant UPEC strains.

METHODS

Bacterial Strains and Culture Conditions

E. coli EC958 was isolated from the urine of a patient presenting with community UTI in the northwest region of England.
and is a representative member of the United Kingdom epidemic strain A (pulsed-field gel electrophoresis type), one of the major pathogenic lineages causing UTI across the United Kingdom [31]. *E. coli* EC958 is a multidrug-resistant phylogenetic group B2 strain of serotype O25b:H4 and sequence type 131; its genome sequence has been recently determined [28]. For mouse infections, *E. coli* EC958 was typically cultured in Luria broth (LB) under type 1 fimbriae–inducing conditions (ie, 3 sequential 24-hour cultures incubated statically at 37°C). Functional expression of type 1 fimbriae by *E. coli* EC958 was confirmed by agglutination of yeast cells (*Saccharomyces cerevisiae*) as previously described [32].

Mouse Infections With *E. coli* ST131

All animal experimentation was conducted following the National Institutes of Health guidelines for housing and care of laboratory animals and was performed in accordance with institutional regulations after pertinent review and approval by the Animal Studies Committee at Washington University School of Medicine. C3H/HeN mice were obtained from Harlan Sprague Dawley (Indianapolis, IN). The mouse model of UTI was used as previously described [18]. Briefly, 7–8-week-old female C3H/HeN mice were inoculated with 2×10^7 colony forming units (CFU; acute infection) or 2×10^8 CFU (chronic infection) of *E. coli* EC958 directly into the bladder by transurethral catheterization. Bacterial titers in mouse urinary tract tissues were quantified by aseptically removing the bladder and kidneys at the time of euthanization, homogenizing the organs in phosphate-buffered saline (PBS), and plating serial dilutions on LB agar. In chronic infections, longitudinal urinalysis was performed prior to infection and at 1, 3, 7, 10, 14, 21, and 28 days after infection by urine collection and plating serial dilutions on LB agar.

Detection of *E. coli* ST131 IBCs

Bladders of C3H/HeN mice infected with *E. coli* EC958 were bisected, splayed, and fixed in 3% paraformaldehyde for 1 hour. For IBC enumeration, fixed bladders were washed and stained with 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-gal) as previously described [33]. IBC size and morphology were examined by immunofluorescence and confocal laser scanning microscopy [34].

FimH Inhibitor Studies

Preparation and pharmacokinetic analysis of the FimH inhibitor 4′-(a-D-Mannopyranosyloxy)-N,3′-dimethylbiphenyl-3-carboxamide (compound ZFH-04269) has been previously described (compound 8 in [21]). One oral dose (50 mg/kg) of compound ZFH-04269 was administered to mice by oral gavage either 30 minutes prior to transurethral inoculation with *E. coli* EC958 (prophylactic therapy) or on day 14 after infection (treatment of chronic cystitis).

Statistical Analyses

Bacterial numbers in urinary tract tissues (bladder and kidneys) were compared between different groups of mice, using non-parametric tests; the Mann–Whitney *U* test was used to compare median bacterial titers between 2 groups of mice, and the Kruskal–Wallis test for comparisons involving ≥3 mouse groups. A statistical significance threshold was set at *P* < .05.

RESULTS

E. coli ST131 Cause Acute Infection of the Mouse Urinary Tract.

To map the pathogenesis of *E. coli* EC958 in vivo, we used a well-established mouse model of UTI [12]. Eight-week old C3H/HeN female mice were inoculated with 2×10^7 CFU of *E. coli* EC958 directly into the bladder, using a sterile Teflon catheter. The colonization ability of *E. coli* EC958 was examined over the course of acute infection by determining bacterial CFU in the mouse bladder and kidneys at 6, 16, and 24 hours after infection (Figure 1). Bladder colonization by *E. coli* EC958 remained high at all assessed time points of acute infection,

![Figure 1](https://academic.oup.com/jid/article-abstract/208/6/921/831769?download=true)

Figure 1. *Escherichia coli* ST131 causes acute urinary tract infection in female C3H/HeN mice. Scatter plots of *E. coli* EC958 titers (colony-forming units [CFU/organ]) in bladders (A) and kidneys (B) of mice at 6, 16, and 24 hours after infection. Horizontal bars represent median *E. coli* EC958 titers for each mouse group. A total of 8–10 mice were assessed per time point in each experiment. Plots show data from 2 experimental repeats.
with group median values of >10⁴ CFU/bladder. By 24 hours after infection, a bimodal distribution was observed for bacterial titers in the bladder (Figure 1A). The 2 bladder subpopulations observed at 24 hours after infection (each corresponding to approximately 50% of infected mice) displayed median bacterial CFU titers that were 2 logs higher or 2 logs lower than that observed at 6 hours after infection for all infected mice. C3H and CBA background mice are known to be genetically susceptible to vesicoureteral reflux [35], and therefore kidney colonization by 6 hours after infection has been shown to occur uniformly in these strains after intravesical inoculation of UPEC, even under conditions that minimize mechanical reflux during inoculation [36]. E. coli EC958 was also able to establish kidney infection with high titers (>10⁵ CFU/kidneys) by 6 hours after infection, and while the kidney bacterial load decreased over time, E. coli EC958 was still present in the kidneys of all infected mice by 24 hours after infection (Figure 1B). Taken together, our results demonstrate that E. coli EC958 is able to effectively colonize the bladder and kidneys of C3H/HeN mice and establish acute infection of the urinary tract.

E. coli ST131 Proceed Through the IBC Pathway During Acute Bladder Infection

To examine whether E. coli EC958 progresses through IBC development during acute bladder infection, the bladders of infected mice were extracted at 6 hours after infection, bisected, fixed, and stained with X-gal. IBC formation was observed in all infected bladders, with a median of 21 IBCs/bladder (range, 7–33 IBCs/bladder; Figure 2A), suggesting that E. coli EC958 is able to invade bladder urothelial cells and replicate intracellularly to form IBCs. Immunofluorescence labeling of E. coli EC958–infected bladders at 6 hours after infection and examination by confocal microscopy revealed large IBCs (Figure 2B–D). By 16 hours after infection, most IBC-containing urothelial cells had burst and released E. coli EC958 cells, in the form of free rod-shaped or long filamentous bacteria, into the bladder lumen (Figure 2E–G). This is the first demonstration of IBC formation by an E. coli ST131 strain during acute infection of the mouse bladder.

E. coli ST131 Can Persist in the Bladder and Cause Chronic Infection

Previous studies have shown that acute UTI due to UPEC can progress to chronic cystitis or infection resolution [18]. In agreement with these findings, we observed a bimodal distribution of bladder bacterial titers at 24 hours after infection with E. coli EC958, suggesting that mice with higher bacterial titers may develop chronic cystitis. To test whether E. coli EC958 can persist in the bladder beyond acute infection, we tested its ability to cause chronic cystitis in female C3H/HeN mice. Chronic cystitis was previously defined by the presence of high-titer (>10⁴ CFU/mL) persistent bacteriuria of at least 2-4 weeks.
duration and high-titer (>10^4 CFU/organ) bladder colonization with accompanying inflammation at 2 and 4 weeks after infection [18]. After experimental inoculation with 10^7 or 10^8 CFU of *E. coli* EC958, bacterial titers in urine were monitored over a period of at least 4 weeks (Figure 3A). We found that 2 of 20 mice (10%) and 8 of 20 mice (40%) infected with 10^7 and 10^8 CFU of *E. coli* EC958, respectively, developed high-titer (>10^4 CFU/mL) bacteriuria that was present at every time point through day 28 after infection (Figure 3B and 3C). A subset of mice infected with 10^8 CFU of *E. coli* EC958 were euthanized for analysis at day 28 (n = 10) and day 42 (n = 5) after infection. We found that the bladders recovered from mice with persistent bacteriuria (n = 5) were grossly enlarged and inflamed (data not shown) and had bacterial titers significantly higher than those of mice that had resolved bacteriuria (ie, mice with <10^4 CFU/mL in urine at least once during the infection period; n = 10), with a median difference in CFU per bladder of approximately 30 000-fold (P = .0026, by the Mann–Whitney U test; Figure 3D). Bacterial titers in the kidneys were also significantly higher in persistently bacteriuric mice as compared to those in mice with resolved bacteriuria, with a median difference in CFU per kidney of 10 000-fold observed (P = .0003, by the Mann–Whitney U test; Figure 3D). Taken together, our results demonstrate that *E. coli* EC958 can persist in the bladder of C3H/HeN mice and cause chronic infection.

Acute *E. coli* ST131 Bladder Infection Can Be Prevented Using an Orally Administered FimH Inhibitor

The multidrug resistance of *E. coli* ST131 poses a challenge for successful treatment and prevention of recurrent UTI, which may be exacerbated by the formation of IBCs. *E. coli* EC958 is resistant to 8 classes of antibiotics, including cephalosporins, fluoroquinolones, and aminoglycosides. Consistent with this phenotype, we showed that *E. coli* EC958 established acute bladder infection in C3H/HeN mice (n = 8) that were given prophylactic TMP-SMZ (54 or 270 μg/mL) for 3 days prior to infection (Figure 4A). This result, when considered in light of the widespread occurrence of multidrug-resistant UPEC infections, prompted us to evaluate alternative strategies for the treatment and prevention of *E. coli* ST131–mediated UTI. We have previously demonstrated that strains of the ST131 lineage, including *E. coli* EC958, rely on the FimH adhesin of type 1 fimbriae for colonization of the mouse bladder [28]. Given the key role of type 1 fimbriae in *E. coli* EC958 uropathogenesis, we evaluated the efficacy of a previously characterized FimH inhibitor [21] in preventing acute bladder infection by *E. coli* EC958. Two groups of 8 mice were administered 1 oral dose of compound ZFH-04269 (50 mg/kg) or PBS 30 minutes prior to intraurethral inoculation with *E. coli* EC958 (10^7 CFU), and bacterial titers in bladders and kidneys were assessed at 6 hours after infection. Mice treated with compound ZFH-04269 showed...
a median 100-fold decrease in \(E. coli \) EC958 CFU in their bladder, compared with PBS-treated control mice (\(P = .0009 \), by the Mann–Whitney test; Figure 4B). No difference was observed in \(E. coli \) EC958 bacterial titers in the kidneys of mice treated with compound ZFH-04269 or PBS (Figure 4B). These data highlight the importance of type 1 fimbiae in the establishment of cystitis by \(E. coli \) EC958 and indicate that FimH inhibitors may be a promising strategy for preventing infection by multidrug-resistant \(E. coli \) ST131.

A FimH Inhibitor Can Successfully Treat Bladder Infection in Mice Chronically Infected With \(E. coli \) ST131

We also evaluated the efficacy of compound ZFH-04269 in treating established bladder infection in mice with chronic cystitis. Sixty mice were infected with \(E. coli \) EC958 (\(10^8 \) CFU) and in 2 independent experiments and mice with chronic infection (urine bacterial titers of \(>10^6 \) CFU over a 14-day period; \(n = 26 \)) were treated with 1 oral dose of compound ZFH-04269 (\(n = 13 \)) or PBS (\(n = 13 \)) at day 14 after infection. Enumeration of bladder bacterial titers 6 hours after treatment revealed that the median number of \(E. coli \) EC958 CFU per bladder in mice treated with ZFH-04269 was \(>1000 \)-fold less than that in PBS-treated controls (\(P = .0018 \), by the Mann–Whitney test; Figure 4C). Moreover, the median \(E. coli \) EC958 load in the bladder of mannoside-treated mice was reduced to \(<10^4 \) CFU (\(P = .0398 \), by the Wilcoxon signed rank test), which is closer to the median bacterial titer observed in the bladders of mice that resolved bacteriuria (Figure 3D). No effect was observed for compound ZFH-04269 treatment on kidney colonization (Figure 4C).

DISCUSSION

Several recent publications, including reports from the Infectious Diseases Society of America, highlight the urgent need for new therapies to combat multidrug-resistant gram-negative pathogens, including \(E. coli \) ST131 \([3, 37–39]\). \(E. coli \) ST131 is a high-risk ESBL-producing clone and currently represents one of the
most dominant groups of multidrug-resistant E. coli strains internationally [40]. While many studies have examined the resistance profiles of E. coli ST131, little is known about the factors that contribute to the clone’s pathogenesis. We recently demonstrated that E. coli ST131 isolates establish acute bladder infection in C57BL/6 mice in a type 1 fimbiae–dependent manner [28]. In this study, we mapped the pathogenic lifestyle of E. coli ST131 in much greater detail, using a C3H/HeN mouse infection model, and we evaluated for the first time alternative strategies for the treatment of E. coli ST131–mediated UTI.

E. coli EC958 is a representative isolate from the ST131 lineage and is resistant to multiple classes of antibiotics, including cephalosporins, fluoroquinolones, sulfonamides, and aminoglycosides [28]. Using a well-established mouse model of UTI, we show here that E. coli EC958 invades urothelial cells of the mouse bladder and forms IBCs with a size and morphology comparable to those of the reference cystitis strain E. coli UTI89 [10]. Moreover, the progression of E. coli EC958 through the IBC developmental cycle in the C3H/HeN mouse bladder mirrored closely the timing previously observed for E. coli UTI89 in the same mouse model [12]. This study also describes the first analysis of E. coli ST131 infection in a chronic UTI model and will provide a framework to further understand these infections. Given that E. coli strains EC958 and UTI89 are as distantly related at the whole-genome level as E. coli EC958 is to E. coli strains belonging to other phylogroups (eg, A and D) and other pathotypes (eg, commensal and enterohemorrhagic E. coli; Totsika and Beatson, unpublished data), it is perhaps surprising that the pathogenesis of E. coli EC958 and UTI89 in the mouse bladder is so closely matched. This would support recent findings suggesting that UPEC strains that have different virulence profiles but express type 1 fimbiae induce a convergent host response involving pathways such as IBC formation that result in common symptoms of cystitis [41].

The inability to effectively combat infections caused by multidrug-resistant E. coli with currently available therapies is a pressing medical concern, and alternative therapeutic strategies are needed. Inhibiting the function of virulence factors required by pathogens to cause disease, such as the FimH adhesin in E. coli, has been a major goal in the treatment of multidrug-resistant E. coli ST131 and reduce the need for prescribing broad-spectrum antibiotics to treat community-acquired UTI.

Notes

Financial support. This work was supported by the Australian National Health and Medical Research Council (APP1012076), the University of Queensland (Early Career Researcher Grant to M. T.), the Australian Research Council (Discovery Early Career Researcher Award DE130101169 to M. T., Future Fellowship FT100100662 to M. A. S., and Australian Research Fellowship DP0881247 to S. A. B), and the National Institutes of Health and Office of Research on Women’s Health Specialized Centre of Research (DK64540, DK51406, and AI48689 to S. J. H., and a Mentored Clinical Scientist Research Career Development Award K08 AI083746 to T. J. H.).

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

8. Wu XR, Sun TT, Medina JJ. In vitro binding of type 1-fimbriated
Escherichia coli to uropakins Ia and Ib; relation to urinary tract infec-
9. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1
pilus-mediated bacterial invasion of bladder epithelial cells. Embo J
2000; 19:2803–12.
10. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ.
Intracellular bacterial biofilm-like pods in urinary tract infections.
11. Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial
communities of uropathogenic Escherichia coli depends on type 1 pilis.
pathways of uropathogenic Escherichia coli in urinary tract pathogene-
of host defenses by type 1-piliated uropathogenic Escherichia coli.
14. Blango MG, Mulvey MA. Persistence of uropathogenic Escherichia coli
in the face of multiple antibiotics. Antimicrob Agents Chemother
15. Hunstad DA, Justice SS. Intracellular lifestyles and immune evasion
64:203–21.
16. Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia
coli persistence and eradication from the urinary tract. Proc Natl Acad
17. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. De-
tection of intracellular bacterial communities in human urinary tract
Early severe inflammatory responses to uropathogenic E. coli predis-
pose to chronic and recurrent urinary tract infection. PLoS Pathog
2010; 6:e1001042.
vivo role for FimH during urinary tract infection in addition to
53:4779–92.
21. Cusumano CK, Pinkner JS, Han Z, et al. Treatment and prevention of
urinary tract infection with orally active FimH inhibitors. Sci Transl
22. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a
pandemic, multiresistant, community-associated strain. J Antimicrob
Opin Microbiol 2006; 9:466–75.
24. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Es-
cherichia coli sequence type ST131 as the major cause of serious multi-
drug-resistant E. coli infections in the United States. Clin Infect Dis
2010; 51:286–94.
nental emergence of Escherichia coli clone O25:H4-ST131 producing
26. Pitout JD, Gregson DB, Campbell L, Laupland KB. Molecular character-
istics of extended-spectrum-beta-lactamase-producing Escherichia
coli isolates causing bacteremia in the Calgary Health Region from
2000 to 2007: emergence of clone ST131 as a cause of community-
GG. Epidemic clonal groups of Escherichia coli as a cause of antimicro-
bial-resistant urinary tract infections in Canada, 2002 to 2004. Antimi-
28. Totsika M, Beatson SA, Sarkar S, et al. Insights into a multidrug resis-
tant Escherichia coli pathogen of the globally disseminated ST131
6:e26578.
JR. Transmission of an extended-spectrum-beta-lactamase-producing
Escherichia coli (sequence type ST131) strain between a father and
daughter resulting in septic shock and emphysematous pyelonephritis.
Within-household sharing of a fluoroquinolone-resistant Escherichia
coli sequence type st131 strain causing pediatric osteoarticular infec-
coli strains A–E, with CTX-M-15 [beta]-lactamase, all belong to the inter-
32. Schembri MA, Sokurenko EV, Klemm P. Functional flexibility of the
FimH adhesin: insights from a random mutant library. 10.1128/
33. Hung CS, Dodson KW, Hultgren SJ. A murine model of urinary tract
34. Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. QseC-
ediated dephosphorylation of QseB is required for expression of
genes associated with virulence in uropathogenic Escherichia coli. Mol
35. Murawski PJ, Maina RW, Malo D, et al. The C3H/HeJ inbred mouse is
a model of vesico-ureteric reflux with a susceptibility locus on chromo-
36. Lane MC, Alterm C, Smith SN, Mobley HLT. Expression of flagella
is coincident with uropathogenic Escherichia coli ascension to the upper
guidelines for the treatment of acute uncomplicated cystitis and pyelo-
urethritis in women: A 2010 update by the Infectious Diseases Society
of America and the European Society for Microbiology and Infectious
38. Livermore DM. Fourteen years in resistance. Int J Antimicrob Agents
2012; 39:283–94.
Bad bugs need drugs: an update on the development pipeline from the
Antimicrobial Availability Task Force of the Infectious Diseases Society
40. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative
bacteria: the role of high-risk clones in the dissemination of antibiotic
41. Norinder BS, Koves B, Yadav M, Brauner A, Svanborg C. Do
Escherichia coli strains causing acute cystitis have a distinct virulence reper-
42. Rasko DA, Sperrandio V. Anti-virulence strategies to combat bacteria-