The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances

Madhura Castelino¹, Stephen Eyre², Mathew Upton³, Pauline Ho¹ and Anne Barton¹,²

Abstract

The resident microbial community, harboured by humans in sites such as the skin and gastrointestinal tract, is enormous, representing a candidate environmental factor affecting susceptibility to complex diseases, where both genetic and environmental risk factors are important. The potential of microorganisms to influence the human immune system is considerable, given their ubiquity. The impact of the host-gene-microbe interaction on the maintenance of health and the development of disease has not yet been assessed robustly in chronic inflammatory conditions. PsA represents a model inflammatory disease to explore the role of the microbiome because skin involvement and overlap with IBD implicates both the skin and gastrointestinal tract as sources of microbial triggers for PsA. In parallel with genetic studies, characterization of the host microbiota may benefit our understanding of the microbial contribution to disease pathogenesis—knowledge that may eventually inform the development of novel therapeutics.

Key words: skin microbiome, psoriatic arthritis, next-generation sequencing, metagenomics.

Introduction

The term microbiome has been used to describe the microorganisms that are present on and in the human body along with their genetic information and their ecological milieu [1]. The human body harbours 10 times more microbial cells than human cells and there is increasing acknowledgement that this represents a second genome, which contributes to tissue homeostasis [2]. The term metagenome takes into account the contribution of the genetic material from the host and all the genes and genetic elements of the microorganisms in and on the host.

Metagenomics refers to the study of the structure of the complex communities of the microbial flora inhabiting the human host, the functional information about these communities and the interactions with the human host [3]. The National Institutes of Health (NIH) Human Microbiome Project has endeavoured to characterize and establish a standardized reference database of the human microbiome in healthy individuals [4–8] in an effort to understand the interactions of microorganisms with the human host in health. The goals of all the studies characterizing the human microbiome are to define the complex microbial community and explore their functional consequences in human health and, ultimately, to translate this to understanding disease.

The emerging impact of the microbiome in inflammatory disorders

Indeed, host-microbe-gene interactions have been implicated in the pathogenesis of inflammatory disorders [3]. The hypothesis is that the normal immune system develops through harmonious relationships between the host and the normal microbes. An imbalance in the
immune system due to genetic variation thus leads to in-
appropriate levels of inflammation in response to micro-
bial products either as a failure to establish the normal
microbial flora or because of the presence of a key organ-
ism that triggers pathology [9]. The mutual effect of the
human immune system on the composition of the micro-
bio and the effect of the microbiota on the immune
system is well described [10].

In terms of inflammatory arthritic diseases, Costello et al. [11] have discussed the potential role of the gut as a
physical as well as an immune barrier in AS and the
impact of the gut microbiota on disease. A recent study
[12] comparing the faecal microbiota in early RA with
those seen in FM reported a difference in the faecal bac-
terial composition but was limited by the number of bac-
terial species that could be investigated. The studies, to
date, have been cross-sectional in nature and have not
been able to determine whether changes in the micro-
bio are cause or effect. To determine the causality of
an observational analysis of the human microbiome
requires evidence of the consistency, specificity, tempo-
rial and biological plausibility of a relationship. The ex-
emplar is the discovery and eradication of Helicobacter
pylori, which changed the management of peptic ulcer
disease and demonstrated the pathogenic role of this
bacterium. Nonetheless, even cross-sectional metage-
nomic studies will inform hypotheses about causality.
Advances in technology mean it is now possible to effi-
ciently study the community structure and characterize
the functional metagenomics of this important, potentially
modifiable, environmental factor.

Recent technological advances in the
investigation of the microbiome

Studying the microbiome was previously limited to cul-
ture-dependent methods that resulted in difficulties in isola-
ting and identifying the fastidious (difficult to culture)
microbes. Culture-independent methods of microbial
identification are usually based on characterizing the bac-
terial flora by sequencing of the 16S rRNA gene. The 16S
rRNA gene is found in all bacteria, but not in human cells;
it is highly conserved with nine hypervariable regions
(V1–V9) that can be used to determine the species of the
bacteria. It is large enough (1500 bp) for informatics
purposes, and the function of the gene has not changed
substantially over time, which means that any changes
within the gene reflect new mutations or evolution.
Culture-independent methods have facilitated the identifi-
cation of even the most fastidious bacteria and, conse-
quently, have significantly expanded the numbers of bacteria
identified in a wide range of environmental and
clinical niches.

All sequencing-based methods use primers that bind to
the unique DNA sequence within or around the 16S rRNA
gene. Thus all amplification products should be of bacteri-
al, not human, origin. The length of the amplified se-
quence depends on the site of primer binding, and this is
determined by the primers used. The bacterial DNA
sequence can then be determined using a choice of
platforms. Metzker [13] has elegantly described the
sequencing technologies that are currently available. The
first-generation technology, employing automated Sanger
sequencing, is slow and relatively expensive, but pro-
duces long reads (segments of DNA that are being ana-
ysed). The advantage of sequencing the entire 16S rRNA
gene using the Sanger sequencing technology is that it
reduces the possibility of primer bias (selective loss of
bacterial groups due to the inability to accurately se-
quencing certain bacteria because of the region that the
selected primer pair binds), which may be introduced in
the newer next-generation sequencing (NGS) platforms,
such as the Roche/454 GS Junior, Illumina/MiSeq and
Life Technologies/Ion Torrent PGM. The newer NGS plat-
forms are faster and more cost effective, but they have
shorter mean read lengths of DNA (between 150 and 550
bases).

However, for taxonomic assignment of bacteria using
the 16S rRNA gene, read lengths as small as 250 bp
have been shown to be sufficient, with relatively little
benefit in increasing the read length [14]. The shorter
read lengths that are the norm of the NGS platforms
have the disadvantage that, depending on the hypervar-
iable region selected for amplification, not all groups of
bacteria can be classified. Conversely, NGS technologies
have a greater depth of sequencing (with larger number of
reads) and in general have lower sequencing errors.
Hence the choice of platform is moving towards NGS,
especially with the increasing read lengths that all pro-
viders are striving to achieve and approaches that com-
bine data generated using a collection of primers targeting
several variable regions. The use of barcodes in NGS
allows pooling of samples, facilitating analysis of larger
numbers of samples simultaneously. NGS technologies
are being extensively used in the investigation of the
microbiome [6, 7, 14, 15], including the NIH Human
Microbiome Project [4].

Aetiological hypothesis: PsA and the
microbiome

Psoriasis is a chronic inflammatory skin condition that is
prevalent worldwide, with varying incidence and preva-
ience rates depending on the geographic region and age
group studied [16]. Nearly one-third of individuals with
psoriasis develop PsA, with an average of 8–10 years
from the onset of skin disease [17–23]. Studies have
shown that patients with PsA have greater cardiovascular
morbidity than the general population [24] and poor qual-
ity of life [25]. Given these co-morbidities, it is imperative
that early effective intervention is instituted in patients with
PsA. However, the treatment of PsA patients is often
based on knowledge and evidence from studies investi-
gating patients with RA. A recent study [26] exploring the
synovial histopathology of PsA compared with undifferen-
tiated spondyloarthropathy (USpA), AS and RA showed
that PsA is more similar to USpA and AS than RA.
These discrepancies highlight the need to understand
the pathogenesis of PsA for development of targeted therapies.

The 40-fold increased recurrence risk ratio observed by Karason et al. [27] in first degree relatives of patients with PsA suggests a strong and complex genetic susceptibility component along with an important environmental contribution. Among the environmental triggers, infections have been investigated as infectious triggers of PsA in the past. For example, Vasey et al. [28] found elevated levels of antibody to streptococcal exotoxin anti-deoxyribonuclease-B in PsA compared with patients with psoriasis without arthritis, RA or other forms of dermatitis and normal controls. In a study that investigated surrogate markers for viral infection, an increased incidence of serological markers for HCV in PsA cases compared with patients with RA have been reported [29], although the finding was not replicated in a later study [30].

More recently, Eder et al. [31] reported the association of infection requiring antibiotic treatment with the onset of PsA in a case-control study. With the advent of the HIV epidemic in sub-Saharan Africa and the de novo appearance of psoriasis and PsA in a population with previously low incidence and prevalence rates [32, 33], there is renewed interest in the dysregulation of innate immunity due to infection or an alteration in the microbial community structure as an aetiological pathway.

However, the identification of a clear-cut contribution from a pathogen to PsA susceptibility has been elusive. Histologically there is evidence of inflammation in the gut [34, 35] and psoriatic skin lesions [36], therefore the possibility of variations in the microbiological milieu at these sites of immune regulation has been considered. Support for involvement of the skin microbiome comes from reports of overexpression of endogenous antimicrobial peptides such as cathelicidins [36] and human beta-defensin 2 (hBD-2) [37] in psoriatic skin lesions, and simultaneously increased serum HBD-2 levels have been found in active psoriatic skin disease [37]. High hBD-2 levels have an immune-modulatory effect as well as chemotactic properties [37].

Furthermore, a recent review [38] of the functional and genetic studies in psoriasis and PsA have implicated genes affecting the skin barrier function, as well as the innate and adaptive immune systems in the pathogenesis of these diseases. Such studies add to the increasing evidence of the influence of the IL-23/IL-17 axis in psoriasis [39] and PsA [40], and the advent of effective treatments targeting the downstream IL-17 cytokine implicates the central role of the Th17 subset of T cells.

Interestingly, Ivanov et al. [41] demonstrated the importance of local microbiota in driving the Th17 cell repertoire and maintaining the balance between regulatory T cells (Treg) and Th17 cells in the gut, while Belkaid et al. [42] demonstrated the importance of local cutaneous microbiota in the modulation of T cell effector function in germfree and specific-pathogen-free mice: administration of an antibiotic cocktail to the mice did not affect the skin microbiota but did affect the gut. In germ-free mice the introduction of a skin commensal rescued the IL-17A production in the skin but not in the gut. Restoration of the immune response in germ-free mice by introduction of a skin commensal underlines the importance of the host-skin-commensal cross talk.

The skin microbiome is therefore being investigated to assess the host-microbe symbiotic relationship and to gain an understanding of its contribution to the pathology of skin diseases [43]. As PsA develops in individuals with psoriasis, examining the difference in skin microbe composition in those who develop PsA and those who do not may offer unique insights into its pathogenesis. This information may also help in stratifying individuals who may be predisposed to developing arthritis from among the psoriatic group. The potential for the discovery of variations in the pathogenesis depending on the combined host-microbiome characteristics may contribute to improving our understanding of the underlying mechanism of the disease in different subgroups and could ultimately lead to potential therapeutic targets for prevention and control of PsA.

Investigation of the skin microbiome: progress so far

Skin, the largest organ of the human body, is a complex and dynamic ecosystem hosting a multitude of microorganisms and is one of the main physical barriers of defence in humans. The interactions occurring in the skin, as an organ, include those between the human host cells, external microbes, other environmental factors and the existing resident microbial components. Cogen et al. [44] describe the various positive (where both species benefit) and negative (where one species benefits at the cost of the other) potential relationships between the skin flora and the human host. Technically the skin microbiome is the most challenging microbial milieu to study due to the difficulty of DNA extraction from a low bacterial biomass. Table 1 describes the main features of previous studies of the skin microbiome using culture-independent methods. These studies compared the skin microbiome between populations of different ethnicities and regions, between healthy and diseased skin, have explored inter and intra-personal variation of the skin microbiome, have assessed differences between various sampling and DNA extraction techniques and consequently have established a database of the healthy core skin microbiome.

Different techniques of sampling of the skin microbiome, namely skin swabs, scrapes and punch biopsies, have been assessed [45]. All three methods were able to capture a representative profile of the microbial community. Robust statistical analysis supported the existence of a core skin microbiome among healthy human subjects. In a follow-up study, the microbiome from 20 distinct skin sites in healthy individuals was analysed and showed that physiologically comparable sites harbour similar bacterial communities, but sebaceous skin sites are less diverse, less even and less rich than moist and dry sites [46].

The temporal variation of the skin microbiome has been explored in several studies [46-50]. Although the time
<table>
<thead>
<tr>
<th>Author/year</th>
<th>Aims/objectives of the study</th>
<th>Number of subjects</th>
<th>Site of sampling</th>
<th>Specimen collection</th>
<th>Platform used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekio et al. (2005) [56]</td>
<td>Analysis of skin microbiota</td>
<td>n = 5 healthy individuals</td>
<td>Forehead</td>
<td>Swab scrub</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Dekio et al. (2007) [50]</td>
<td>Comparison of skin microbiota between atopic dermatitis patient and healthy controls</td>
<td>n = 1 atopic dermatitis patient and 10 healthy controls</td>
<td>Facial skin</td>
<td>Swab scrub</td>
<td>Terminal restriction fragment length polymorphism</td>
</tr>
<tr>
<td>Gao et al. (2007) [49]</td>
<td>Skin microbiota on the volar forearm to determine bilateral conservation</td>
<td>n = 6 healthy volunteers</td>
<td>Volar forearm bilaterally midway between the wrist and elbow</td>
<td>Skin swab</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Gao et al. (2008) [52]</td>
<td>Compare bacterial populations in psoriatic lesions, from unaffected skin in subjects with psoriasis and from skin from healthy persons</td>
<td>n = 12; 6 healthy subjects and 6 subjects with psoriasis</td>
<td>Psoriatic plaques and normal skin from forearm</td>
<td>Skin swab</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Grice et al. (2008) [45]</td>
<td>To determine resident skin microbiota of the antecubital fossae in healthy humans</td>
<td>n = 5 healthy volunteers</td>
<td>Bilateral non-overlapping regions of the antecubital fossa</td>
<td>Skin swab, scrape and punch biopsy</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Fierer et al. (2008) [48]</td>
<td>Analysis of the diversity of hand surface bacteria and factors such as sex, handedness and time since last hand-washing</td>
<td>n = 59 healthy volunteers</td>
<td>Palmar surface of the hand</td>
<td>Skin swab</td>
<td>454</td>
</tr>
<tr>
<td>Costello et al. (2009) [47]</td>
<td>Obtain an integrated view of the spatial and temporal distribution of the human microbiota</td>
<td>n = 9 healthy volunteers</td>
<td>18 skin sites</td>
<td>Skin swab</td>
<td>454</td>
</tr>
<tr>
<td>Grice et al. (2009) [46]</td>
<td>Analysis of intrapersonal variation between microbiota at different skin sites</td>
<td>n = 10 healthy volunteers</td>
<td>20 skin sites</td>
<td>Skin swab</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Gao et al. (2010) [57]</td>
<td>Develop qPCRs to enumerate total bacterial and fungal populations and determine the most common bacterial and fungal genera in different locations on human skin</td>
<td>n = 8 healthy adults</td>
<td>11 skin sites</td>
<td>Skin swab</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Fierer et al. (2010) [58]</td>
<td>Use skin-associated bacteria as fingerprints for forensic identification</td>
<td>n = 14 healthy individuals</td>
<td>Ventral surface of the distal joint of each fingertip, axilla or entire palmar surface</td>
<td>Skin swab</td>
<td>454</td>
</tr>
<tr>
<td>Egert et al. (2011) [59]</td>
<td>Identify active members of the human axillary microbiota</td>
<td>n = 10 healthy males</td>
<td>Bilateral axilla</td>
<td>Skin scrub specimen</td>
<td>Sanger sequencing</td>
</tr>
<tr>
<td>Staudinger et al. (2011) [60]</td>
<td>Assess the microbiota on the forearm and forehead and the influence of make-up</td>
<td>n = 11 healthy individuals</td>
<td>Forehead and forearm</td>
<td>Skin scrape (cotton swab for 1 min)</td>
<td>Sanger sequencing</td>
</tr>
</tbody>
</table>

(continued)
intervals varied from a few hours to several months, different methodologies were employed and the sites investigated varied in these studies, the skin microbiome was found to be stable in an individual over time. Furthermore, analysis of two analogous sites (left and right side of the body) [49] showed a high level of conservation of the bacterial community at any moment in time. The more extensive sample size from the Human Microbiome Project [51] is now providing the database for the core microbiome of healthy humans. In that study, the core operational taxonomic units (OTUs; defined as the number of distinct 16S rRNA sequences at a certain cut-off level of sequence diversity) were defined as those that were present in at least 95% of all the samples for a given body site. The relative abundance (84–0.021%) of the core OTUs varied between subjects, but the notable feature was that the most abundant OTUs tend to be present in more subjects than the less abundant OTUs overall.

Preliminary assessment of psoriatic plaques has shown that there is a difference in the skin microbiome between the plaques and the normal skin in individuals with psoriasis [52]. The Blaser lab [52] compared the microbiota in psoriatic plaques with that of normal skin in six individuals with psoriasis and also the normal skin in six healthy controls. Fahlen et al. [53] compared the skin biopsies from psoriasis plaques from 10 individuals with psoriasis with skin biopsies from control individuals undergoing wide excision of skin lesions without any past or family history of psoriasis. Both studies found similar results, with increased Firmicutes (one of the major bacterial phyla including most of the Gram-positive genera) in the psoriatic plaques and a higher ratio of Streptococcus/Propionibacterium in the psoriatic plaques compared with controls. Some differences between the studies were noted, but were thought to arise because of variations in the sampling methods and the unmatched nature of the control skin obtained for analysis in the study conducted by Fahlen et al. [53]. In both studies, psoriasis patients had stopped topical treatment for at least 2 weeks prior to the sampling and were not on any systemic treatment, thereby reducing the possibility of treatment confounding the results.

Preliminary assessment of psoriatic plaques has shown that there is a difference in the skin microbiome between the plaques and the normal skin in individuals with psoriasis [52]. The Blaser lab [52] compared the microbiota in psoriatic plaques with that of normal skin in six individuals with psoriasis and also the normal skin in six healthy controls. Fahlen et al. [53] compared the skin biopsies from psoriasis plaques from 10 individuals with psoriasis with skin biopsies from control individuals undergoing wide excision of skin lesions without any past or family history of psoriasis. Both studies found similar results, with increased Firmicutes (one of the major bacterial phyla including most of the Gram-positive genera) in the psoriatic plaques and a higher ratio of Streptococcus/Propionibacterium in the psoriatic plaques compared with controls. Some differences between the studies were noted, but were thought to arise because of variations in the sampling methods and the unmatched nature of the control skin obtained for analysis in the study conducted by Fahlen et al. [53]. In both studies, psoriasis patients had stopped topical treatment for at least 2 weeks prior to the sampling and were not on any systemic treatment, thereby reducing the possibility of treatment confounding the results.

Non-invasive skin swabs were the sampling method of choice in most studies. However, the yield of bacterial DNA from swabs can be low, reflecting the low biomass of the bacteria resident on the skin. Several DNA extraction techniques have been used and Flores et al. [54] compared the direct PCR approach against the DNA extraction/purification approach to determine if yields were similar. The consensus was that the direct approach was faster but resulted in lower bacterial yields, so it may not be appropriate if multiple PCR-based assays are required. However, the newer, commercially available DNA extraction kits have improved the yield of bacterial DNA from skin swabs.

The PCR primers used in the different studies varied with respect to the regions selected for amplification in the 16S rRNA gene. The majority of the published studies have used primers that cover nearly all the hypervariable
regions in the 16S rRNA gene. The latest studies [51, 53, 54] have restricted the choice of region to V3-V5. This is because sequences from the V3-V5 primers were significantly more accurate relative to data generated from V1-V3 or V6-V9 primers when tested using the Roche 454 platform [55]. The primary NGS platform to be utilized for microbial work was the Roche 454, due to its ability to produce long maximum (1000 bp) read lengths; when this platform was used, the sample size studied was greatly increased (a few hundred individuals) compared with the use of Sanger sequencing technologies (tens of subjects). The cost, throughput, speed, flexibility and high volume of data output of the newer benchtop sequencers (MiSeq, Ion Torrent), although generating shorter read lengths, are promising and warrant their use in larger-scale studies to provide greater power.

Discussion

The studies that are currently available in the literature with respect to the skin microbiome are limited in number. The majority have attempted to assess the normal skin microbiome using culture-based methods and to answer basic questions regarding the spatial and temporal association and stability of the microbiological milieu. The Human Microbiome Project is now developing a database of the core microbiome of different ecological niches of the human body. The temporal stability of the microbiome has been demonstrated and studies have ascertained the existence of differing microbial communities in the different ecological niches of the skin. This information is important to enable characterization of the normal composition of the microbiome. The studies that have looked at disease conditions have shown variations from the normal in a number of conditions. Further work needs to be done to build upon these important results. The establishment of causality of a microorganism would require replication of previous work and further detailed functional characterization of the microbiome.

The explosion in NGSs will certainly be helpful for undertaking high-throughput parallel sequencing at a reduced cost and should pave the way for genotypic and functional characterization of the complex microbial communities in a relatively short time. However, being aware of the shortcomings of these methods, namely short read length, primer bias, sequencing errors and depth of sequencing in the different methods employed, is essential to develop robust databases. The Human Microbiome Project has attempted to standardize procedures to enable researchers worldwide to replicate and continue to expand this work. Computational capacity and constant improvements in the pipelines available for the analysis of the immense datasets generated by high-throughput sequencers is an essential requirement for obtaining valid data. This latter aspect is currently the bottleneck in many studies and is a problem that requires concerted effort in terms of development of user-friendly tools for data analysis and wider training of suitably qualified personnel.

Just as knowledge of the inflammatory pathways in RA paved the way for the use of the biologic anti-TNF treatments, knowledge of the skin microbiome in PsA may be the first step towards future progress in therapeutics and early identification. Our current knowledge of the skin microbiome in psoriasis suggests an alteration in the microbiota of psoriatic plaques. Investigation of the psoriatic plaques in PsA will determine if there is further compromise in the skin barrier that may explain the drivers of inflammatory arthritis. This may also help in developing strategies for PsA prevention in patients with psoriasis or delaying the onset of joint disease. Extending the application to characterization of the microbiome in the gut and determination of the microbial variation between inflammatory bowel disease with or without PsA may also be enlightening.

In comparing psoriasis and PsA, however, potential confounders such as therapy, ultraviolet light exposure and skin type pose a challenge to the interpretation of these findings. Functional characterization work through metatranscriptomic studies, such as those currently being undertaken in the NIH Human Microbiome Project, will help to clarify the significance of microbial flora. As described by Grice and Segre [2], characterizing and analysing the human microbiome is vital for an understanding of this essential yet overlooked component of human immune regulation and important contributor to tissue metabolism and homeostasis. Defining the role of the microbiome in complex diseases like PsA, which has a very strong genetic contribution, but where the causality cannot be explained solely by host genetics, has the potential to impact our understanding of the disease pathogenesis.

<table>
<thead>
<tr>
<th>Rheumatology key messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>The skin microbiome is an intriguing candidate environmental factor in PsA.</td>
</tr>
<tr>
<td>Different approaches have been used to study the skin microbiome, and each has its strengths and weaknesses.</td>
</tr>
<tr>
<td>16S rRNA gene sequencing is ideal for bacterial microbiome hypothesis generation in PsA.</td>
</tr>
</tbody>
</table>

Acknowledgements

M.C. is funded by the National Institute for Health Research Manchester Musculoskeletal Biomedical Research Unit Fellowship Award. This work is supported by Arthritis Research UK (grant ref 20385). This work has not received any financial support or other benefits from commercial sources. The authors do not have any financial interests that could potentially create a conflict of interest with regard to the work presented in this review.

Disclosure statement: A.B. receives consultancy and/or research grants from Eli Lilly, Pfizer and Abbvie. P.H. received consultancies and small educational grants from Amgen, Wyeth/Pfizer and Abbvie. All other authors have declared no conflicts of interest.
References

