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Abstract

Buildings subject to Energy Performance Contracts (EPCs) are usually quite complex public build-
ings, sometimes relatively old and usually barely documented from the technical standpoint. Gath-
ering comprehensive and reliable technical information is a time consuming and expensive process
that has to be carried out within the submission deadline. In these conditions, the standard ap-
proach to energy performance forecasting which uses detailed simulation is practically unfeasible.

This paper proposes a reduced-order modeling approach that is tailored to the EPC tendering
phase. The proposed methodology extends a third order building model, introducing explicit,
albeit still abstract, representations of the heating/cooling system, of the weather influence and
of the end-user gains. The extended parameter set reflects to a large degree the information
that is readily available in practical on-site surveying, or that can be easily calculated from that
information. As a consequence of the simplified physics, a knowledge driven, practical calibration
procedure, which provides an effective way of reducing uncertainty, is proposed. The calibration
procedure analyses the uncertainty present in the available knowledge and uses the constraints
imposed by the implemented physics on the parameters’ dynamic to assess their value estimation.

The modeling approach is exemplified through three case studies: the first one provides the
comparison of the reduced-order model predictions with the outcomes of a detailed model of a small
hospital, the second one is used to compare the reduced-order model predictions with the detailed
measurements of energy consumption of a real building, and the third case study exemplifies the
use in operational context with scarce information.

Keywords: Reduced-order modeling, Energy performance contracting, Model calibration,
Thermal modeling

1. Introduction

Energy Performance Contracts (EPC) are contractual obligations between a beneficiary and
an energy service provider (normally an Energy Service Company - ESCO), where budgets are
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established in relation to a contractually acknowledged level of energy performance [21, 36]. The
key features of EPCs can be summarized in a few points: (1) The EPC provider supplies all ser-
vices required to design and implement a comprehensive energy saving project at the customer’s
facility; (2) The energy efficiency investments are repaid directly from the energy savings and re-
lated financial savings; (3) The EPC provider assumes the contractually agreed performance risks
of the project; and (4) The EPC provider guarantees the achievement of the contractually agreed
level of savings and is obliged to compensate shortfalls in savings. According to the U.S. Depart-
ment of Energy [20], the adoption of the EPC format offers several benefits, such as guaranteed
improvements, cost savings and enhanced performance [35, 32, 22]. However, a number of barriers
still hinder the full application of EPC. The Transparense EPC project, an EU-wide survey [11],
reports that both ESCOs and beneficiaries suffer from the complexities introduced by the EPC
framework. Energy policies from individual European governments are mostly seen as ineffective
given the complexity of the EPC concept, the lack of trust in the EPC industry, low customer
demand and split incentives between landlord and tenants [34]. The financial crisis has had further
negative consequences on the implementation of EPC as it has become more difficult to borrow
money due to the increasingly stringent requirements of the financial companies.

In this scenario, obtaining finance to fund an EPC project is, rather unsurprisingly, a major
stumbling block for EPC providers and/ or EPC customers across the European Union. In fact,
a fundamental financial management issue characterizes the EPC concept. The overall balance of
EPCs strongly depends on the achievement of the planned energy performance in real operating
conditions, as the energy efficiency investments are repaid directly from the energy savings. Thus,
achieving the energy efficiency levels established at the design stage is fundamental. Consequently,
in EPCs more than in any other contractual form, the robustness of the financial set-up is critically
based on the reliability of the energy efficiency forecast [5, 17]. From the technical point of view
this aspect opens an unprecedented challenge for the energy audit and performance simulation
[10, 23, 15, 16].

Currently, ESCO technical departments implement building energy audits according to well
established procedures [4] [19]. The American Society of Heating, Refrigerating & Air-Conditioning
Engineers (ASHRAE) recommends Level II and Level III audits for capital-intensive modifications,
and is common in the EPC case. Both level II and III are information intensive. Level II audits
include an in-depth analysis of energy costs, energy usage and building characteristics and a refined
survey of how energy is used in the building, while Level III audits further include monitoring,
data collection and engineering analysis. Consequently, their implementation in the EPC call for
tenders phase, requires detailed technical knowledge of the building under contract, which usually
is not available.

In the majority of cases, uncertainty characterizes the technical information available in the
EPC call for tenders phase [7]. Buildings subject to EPCs are usually quite complex public buildings
(hospitals, schools, etc.) and sometimes relatively old. Very often there are significant gaps in the
technical information because of the many service, repair, modification events and the natural
aging of the building over time.

Comprehensive and reliable technical information gathering in such conditions is therefore a
time consuming and expensive process. Furthermore, the time that is usually available from the
call for tenders to the submission deadline is relatively short, hence, on-site surveys are necessar-
ily limited. In summary, most of the technical information necessary to the ESCO for accurate
tendering design is affected by uncertainty, if not completely missing. In many practical cases, the
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only energy consumption data available for establishing the baseline for the building is the energy
bill and, in many cases, it is not only related to the building under contract but also to other
buildings. In this scenario the standard approach to energy performance simulation, based on
the availability of a large amount of information, is practically unfeasible. A modeling procedure
specifically tailored to manage the uncertainty affecting the EPC framework is required.

Different modeling approaches have been developed to suit contexts with varying objectives
and data availability [33]. Three general categories of building energy forecasting models have
been reported in the literature which include white-box (physics-based), black-box (data-driven),
and grey-box (combination of physics-based and data-driven) modeling approaches [3]. Black-box
models use monitored data to introduce the model parameters. Since a relatively large set of data
is required to achieve the necessary reliability in prediction, the back-box approach is not suited for
the information scarce EPC context. White-box models predict the energy behavior of buildings by
implementing a set of well-defined physical laws. Manual or computer aided parameter calibration
procedures are used to match the predictions with measured data [24]. The monitored data set can
be as limited as monthly energy consumption data. However, in many practical cases, the building
model is made of hundreds or thousands of parameters, making simulation computationally inten-
sive and calibration very complex. Flexible and efficient low-order white-box modeling approaches
have been developed mainly for efficient simulation at district and city scale, and for one-step
prediction in model predictive energy control systems [14]. Grey-box modeling is a mixed law-data
driven approach, which implements low-order building physics and uses statistical methods for
model identification [1]. Despite their reduced-order structure, grey-box models provide relatively
accurate energy performance predictions [27] once trained with monitored data. However, in spite
of the fact that grey-box models are not applicable in the EPC context because of the required
monitored data sets, reduced-order models remain expressive enough to capture the basic energy
behaviors of real buildings and to forecast energy consumption.

In summary, reduced-order, law-driven models, represent a good basis for implementing a
modeling framework for EPC. They have a high degree of generality, the same model structure
can be applied to a large number of building typologies. They require a limited set of information
and may, in principle, provide quite accurate predictions of energy consumption. Nevertheless, two
fundamental issues are still open. First, the structure of the reduced-order models developed so far
do not explicitly represent the information available in typical surveying phases. Some adaptations
to the model structure must be implemented to explicate the dynamics of the thermal gains, i.e. the
control of the heating/cooling systems and a number of schedules involving users and operations.
Second, and most important, the calibration phase should be arranged so that uncertainty can
be explicitly managed, and the achievement of sufficient reliable evidence to support the decision
maker.

Uncertainty analysis has been largely studied in the modeling field [30], usually in conjunction
with sensitivity analysis [28]. Uncertainty analysis is concerned with the lack of knowledge about
the environment and the system. Uncertainty derives from errors and approximations in data
measurement, parameter values and model structure. Uncertainty about the model structure can
be reduced through model identification. Uncertainty about model parameters can be reduced
by model calibration. The calibration of detailed building energy performance models, involving
thousands of input parameters is a highly under-determined problem, which yields multiple non-
unique solutions [2, 13, 3]. A methodology for calibrating detailed building simulation models
against the utility billing data is proposed by Reddy et al. [25, 26]. Their analysis points out a
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severe over-fitting issue in the calibration of detailed models based only on the monthly energy
consumption data, since, as they state, a satisfactory overall calibration to the utility billing data
will not guarantee accurate identification of the individual parameters in the simulation model.
Consequently, they propose a methodology for reducing the modeling parameters to a manageable
set, based on technical domain knowledge, and to use numerical calibration to adjust the reduced
set. An iterative methodology for identifying reduced-order model structures able to capture the
heat dynamics of buildings is proposed by Bacher and Madsen [1], by fitting a monitored dataset
using numerical-statistical methods applied to models of different order. As pointed out by Miletic
et al. [18], reducing parameter uncertainty through a blind algorithmic approach may result in
values that are far from the real set. In under-determined problems the positive and negative
effects of some parameters may cancel each other out, resulting in a significant deviation from the
real set, despite the final convergence of the calibration algorithm. Anchoring parameter values to
domain knowledge is generally acknowledged as a good strategy for overcoming the cancellation
issue.

In this paper, a third order building model [1] is adopted for representing the building thermal
behavior, including the heating/cooling system, the weather influence and the occupant gains.
Although the model is still abstract, the parameter set has been extended to reflect the information
that can be easily collected during the EPC tendering phase through data collection and on-site
surveying. The reduced-order model, taking into account the main physical dependencies among
the variables, helps to reduce the degrees of freedom for the calibration phase. A knowledge
driven practical calibration procedure, which provides an effective way of reducing uncertainty, is
developed in this paper. The procedure faces the uncertainty affecting the available knowledge by
exploiting the physical constraints for assessing the estimation of the unknown parameters.

The developed modeling approach is applied to three case studies, all concerned with rather
large buildings. The first case study will be used to compare the reduced-order model predictions
with the outcomes of a detailed model of a small hospital, which has been previously calibrated
on the real building. This will allow a detailed comparison among parameters that are not usually
available in monitored data sets. A second case study will be used to compare the reduced-
order model predictions with detailed measurements of energy consumption of a real building
controlled by a Building Energy Management System (BEMS), thus providing evidence about the
application of the proposed modeling approach to real cases, where uncertainty about the physical
and operational parameters is present. A third case study will be used to test the modeling
approach in an operational context with scarce information available.

The paper has the following arrangement. Section 2 details the model structure, its parameter
set and the calibration procedure. Sections 3, 4 and 5 introduce the first, the second and the third
case study respectively, detailing the calibration procedure and the prediction results. Section 6
concludes the essays discussing the limits of the current implementation and future works.

2. The reduced-order model

In this section the reduced-order model structure is discussed. Initially, the conceptual structure
of the model is introduced, then the implementation details in the Modelica language [9] are
discussed, finally the rationale of the calibration process is introduced.
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2.1. The conceptual structure

The conceptual structure of the reduced-order model is an extension of the third order model
proposed by Bacher and Madsen [1]. It is shown in Figure 1 using the same electrical symbol set. A
third order model has been selected as recommended by Reynders et al. [27], with the only addition
of the heat flow versus the ground, implemented as the series of a constant temperature Tground plus
the resistance Rg. Hence, Rie is the average resistance of the opaque envelope, Rea is the outdoor
air–envelope coupling resistance, Ria is the air infiltration and forced ventilation resistance, Rm and
Cm are the medium thermal resistance and capacity, Ce and Ci are the envelope thermal capacity
and the indoor air thermal capacity respectively. The system is modeled as a variable heat gain
Φh coupled with the environment by thermal resistance Rih and capacity Cih. The internal gains
Φu, the solar radiance through windows Φws and on the opaque surfaces Φos are modeled as
additional variable gains. Two schedules concerning system operation and occupancy have been
added, as well as the weather data set, to provide the time line of the external and internal gains.
Finally, two feedback control signals have been introduced to implement the thermostatic control
of the heating/cooling system on the indoor temperature Tin and on the heating system medium
temperature Tf . Furthermore, depending on the specific control configuration, the thermostatic
control of the indoor temperature can be changed with a climatic control based on the outdoor
temperature Tout.
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Figure 1: The conceptual schema of the grey-box model

2.2. The Modelica implementation

The conceptual structure of the reduced-order model has been implemented in the Modelica
language [8] using the Buildings library [31]. As in the conceptual schema, the Modelica model
is arranged in four main components: the Building, the Heating/Cooling System, the Occupancy
and the Weather (see Figure 2).

2.2.1. The building component

The building component (Figure 3) implements the Building Model block of the conceptual
schema (Figure 1). Its parameters are reported in Table 1. The envelope and interior wall resis-
tances and capacitances (Rie, Ce, Rm, Cm) are implemented as lumped thermal components from
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Figure 2: The Modelica implementation of the whole grey-box model

the Heat Transfer Modelica Standard Library. As in the conceptual model, a resistance-capacity-
resistance schema (Rie−Ce−Rie) is used to represent the building opaque envelope. A resistance-
capacity series (Rm − Cm) is used to represent the building’s internal partitions and slabs. The
building volume Vol and the indoor air volume Vair have been explicitly implemented, and, in order
to mirror more closely the data available in real situations, the Ria resistance of the conceptual
model, which regulates the heat flows provided by air infiltration and forced ventilation, has been
implemented using mass transfer physics through the air flow rate Lea and forced air ventilation
rate Vrt. The forced ventilation component is a standard Modelica mass flow source, which pro-
vides the target mass flow rate at the outdoor temperature. Three heat ports are provided to input
thermal gains from the external sources: occupants (Φu in Figure 1), solar radiance to internal
walls through windows (Φws in Figure 1) multiplied by Awin, Gv, and solar radiance to the external
opaque envelope (Φos in Figure 1) multiplied by Apq, Gv.

2.2.2. The heating/cooling system component

The heating/cooling systems component has been implemented as a thermostatically regu-
lated heat gain with internal control loops on the fluid temperature that can operate either in
heating/cooling mode providing positive/negative gains. The thermal source (Φh in Figure 1) is
modeled by the installed heating/cooling power Pow and efficiency Eff (see Table 1), as in the
conceptual model. It is coupled with the indoor environment through the resistance Rih and the
capacity Cih that approximate heat diffuser coupling resistances and the heating/cooling fluid ca-
pacitance. Two proportional/integrative (PI) feedback loops have been used to mirror the usual
heater/cooler control. Real heating/cooling systems operate between two fluid temperature thresh-
olds: usually the heater is switched off when the fluid temperature reaches the upper threshold to
avoid overheating and the cooler is switched off when the the fluid reaches the lowermost temper-
ature. The hysteresis range (parameter Hys) is referred to the set-point Setp. The implementation
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Figure 3: The Building component in modelica

of this nonlinear behavior, which limits the power transfer from the heater to the environment,
provides a more realistic dynamic of the fluid temperature and, consequently, of the indoor air
temperature. Finally, the system operation schedule Oper regulates the system on/off switch.

2.2.3. The weather and the occupancy components

The weather component calculates the solar gains through the windows, to the opaque envelope
and the external temperature from standard weather data files. The weather data file Wea is
imported by means of the ReaderTMY3 component of the Buildings library. Outdoor pressure and
temperature are made available through related Modelica heat and fluid ports. Both the direct
solar irradiation on a tilted surface and the hemispherical diffuse irradiation are computed using
an anisotropic sky model (Perez, 1990). Two components have been built on the basis of the
MixedAir class of the Buildings Library for the windows gains and opaque envelope calculations.
The eventual reduction of the total solar energy transmittance caused by the external shading is
then taken into account with the parameter G-value Gv that is calculated according to [6].

The occupancy component simply calculates the internal thermal gains by summing the contri-
butions due to the occupancy and equipment (Geq). A fixed thermal source Gp (default 130W for
each person) is multiplied by the estimated average amount of people visiting the building monthly
Occ.

2.3. The calibration process

The calibration process is indeed the most critical phase of the modeling procedure in the EPC
context. A sustainable calibration process makes modeling affordable and compliant with time and
cost limits of EPC. However, a monitored data set is often unavailable for most situations where
EPCs are actually proposed, and the minimization of the discrepancies, often significant, possibly
occurring between uncalibrated model predictions and the actual metered building energy use [3],
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Name Description Source Reliability
Building
Vol Building Volume Project data or survey High
Apq Opaque envelope area divided as per orientation

(e,w,n,s)
Project data or survey High

Awin Window area divided as per orientation (e,w,n,s) Project data or survey High
Gv Solar shading coefficient Project data, survey Medium
Rea Outdoor air - envelope coupling resistance Regulation High
Rie Averaged resistance of the opaque envelope Project data, survey High
Ce Heat capacity of the opaque envelope Project data, survey High
Rm Thermal resistance between the walls and furni-

ture and the interior air
Regulation High

Cm Heat capacity of the interior walls and furniture Project data, survey High
Rg Resistance between the interior and the ground Project data, survey Medium
Tg Surrounding ground temperature Literature, survey Medium
Vair Internal air volume Project data, survey High
Lea Air infiltration resistance Regulation[29] Low
Vrt Mass flow rate through forced ventilation Project data High
System
Rih Thermal resistance between the HVAC system

and the interior
Technical data-sheets Low

Cih Heat capacity for the HVAC system Technical data-sheets Medium
Eff Efficiency of the HVAC system Technical data-sheet Medium
Pow Installed heating/ cooling power Technical data-sheet High
Hys Hysteresis range of the thermostat Technical data-sheet High
Operation
Occ Average monthly occupancy level Monitored or interviews Low
Oper System operation schedule Monitored or interviews Medium
Setp Indoor temperature set-points Monitored or interviews Medium
Environment
Wea Weather data file Web High
Gp Heat gain per person Regulation High
Geq Heat gain due to fixed equipment and systems Survey Medium
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raises the issue of defining a model calibration procedure for the EPC operational context. Reducing
the model parameters to the limited set typically available in the EPC operating conditions, and
providing a knowledge driven calibration procedure, is the strategy proposed in this research to
make modeling sustainable in the EPC context.

The reduced-order model, detailed in section 2.2, is described by 25 parameters (Table 1), ar-
ranged in four classes. Among them, 14 parameters can be usually estimated quite reliably, 8 are
usually affected by some degree of uncertainty, and 3 are not so easily available or knowledgeable.
The calibration process is tailored to the structure of the reduced-order model and is aimed at
reducing the uncertainty affecting the parameters. The use of reduced-order models, which main-
tain the same structure for a large number of building typologies and the relative simplicity of
the implemented physics, allows the definition of a general calibration procedure. The calibration
baseline is established using the monthly energy consumption data of one year. Energy consump-
tion data of a second year are required for testing the prediction accuracy. Initial estimations of
parameter values are formulated on the basis of the available knowledge, either general technical
knowledge or specific information gathered through monitored data, surveys or interviews. Then
the parameters are adjusted iteratively until the simulated monthly energy consumption fits the
baseline. The calibration process is arranged in four phases, according to the four classes of param-
eters as shown in Table 1. Since the physics implemented in the reduced-order model are relatively
simple, it is possible to lay-out a number of practical calibration guidelines that give insights about
the consistency of the calibration results, thus substantially reducing the risk of over-fitting.

The calibration process is, therefore, arranged in four phases (see Figure 4).

1. Data Analysis - The first phase concerns data acquisition and analysis. The available techni-
cal information is collected through surveys and interviews, parameters are identified, calcu-
lated and ranked by assigning each one a certainty factor based on the quality of the available
information. The parameters that can be determined on the basis of reliable information are
fixed. The remaining parameters are ranked according to their uncertainty degree. In addi-
tion, the baseline is defined in this phase. It is worthwhile pointing out that in some cases,
especially in large building blocks, the energy supplied to the building and, consequently, the
baseline itself may be affected by high uncertainty.

2. System Calibration - The second phase is articulated in two steps and is aimed at achieving
the correct operating conditions of the heating/cooling system. Two calibration guidelines
can be defined for this phase.

The objective of the first step is to reach an effective system coupling with the indoor
environment. The simple heating/cooling system model is essentially described by four pa-
rameters: installed power Pow, efficiency Eff , thermal resistance Rih and capacitance Cih.
Installed power and efficiency are rather reliable parameters. They can be derived by the
analysis of technical data-sheets in the first phase. The heat capacity of the medium can also
be calculated quite reliably from available technical manuals. On the contrary, the value of
the coupling resistance may be rather uncertain because it is significantly affected by system
aging. Hence, the thermal resistance Rih must be regulated so that the transferred power is
enough to control the environment temperature. This condition can be effectively assessed by
plotting the heating/cooling medium temperature against the indoor air temperature. The
coupling resistance Rih should be reduced until indoor air temperature reaches a consistent
trend.

The second step of the system calibration phase concerns the control of the system oper-
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ation. In addition to the obvious daily on/off schedule, the power supplied by the system to
the indoor environment is regulated by a thermostatic loop. The system is switched on/off
when the indoor air temperature passes the set-point threshold, with a certain hysteresis.
In the reduced-box model, a single indoor air temperature approximates the average indoor
air temperature of the whole building. Since, especially in large buildings with high tem-
perature gradients among different rooms, a perfect air mix cannot be assumed. In fact,
the temperature that regulates the thermostatic loop is the one occurring around the real
thermostats, which may be quite different from the simulated average indoor air tempera-
ture. Consequently, an operational control mismatch may occur between the real and the
simulated cases. In order to minimize its effect, the thermostatic control loop constraint of
the reduced-order model must be relaxed by widening the hysteresis of the thermostat until
the simulated supplied power reflects the measured one. A general heuristic can be outlined
to drive the control mismatch mitigation. A shift in the thermostat control temperature af-
fects energy consumption when the indoor air temperature naturally tends to be around the
control set-point. This usually occurs during mid seasons, like late spring or early autumn.
Hot summers or cold winters are usually unaffected by this condition. Hence, as a general
rule, energy consumption mismatch occurring only in April, May, September or October can
be a symptom of this condition.

3. Building Parameters - The third phase concerns the adjustments of the remaining building
parameters which have a high degree of uncertainty. For example, one of the parameters that
usually is estimated with some difficulty is the external air flow rate due to air infiltration
and natural ventilation. External air flow due to the difference of pressure between indoors
and outdoors can be adjusted by means of the air infiltration parameter Lea. An overestima-
tion of this parameter will have an effect on energy consumption, as it increases the energy
consumption in winter and summer seasons, with either no effect or even a reduction in
energy consumption in the spring and autumn, depending on the outside temperature. The
effects of the variation of the parameter value can be easily observed, and the value adjusted
accordingly. This process can be carried out for all the physical parameters describing the
passive building components.

4. Operation Schedules - The fourth, and perhaps most critical, phase involves the adjustment
of the schedules of the internal gains. Different from the previous phase, this is essentially a
pure knowledge based operation. If perfect knowledge about occupancy has been collected
during the first phase, this step can be skipped, otherwise a monthly average occupancy
and equipment usage should be estimated based on observation and interviews. In fact, the
monthly adjustment operated during the schedule calibration can, at this time, in any case
produce a perfectly calibrated prediction of energy consumption. Hence, great care should
be posed to avoid trespassing reasonable values of the scheduled quantities.

The process can be iterated until calibration is reached. The final assessment phase is based
on the ASHRAE recommendations [4] using the Normalized Mean Bias Error (NMBE) and the
Coefficient of Variation of the Root Mean Square Error (CV-RMSE) indexes. In this phase, the
analysis of the distribution of the monthly error is particularly important. In some cases, anoma-
lies can be observed in one or two months that cannot be explained even after a many iterations.
Anomalies mean that the energy consumption forecast generally fits the baseline apart from in one
or two months. In perfectly informed contexts, anomalies imply a calibration failure. But in a
partially informed context, like in the EPC case, anomalies may be due to the lack of information
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Figure 4: The calibration process flow

or to untraced and localized events (such as occasional system malfunctioning or faults). Hence in
these cases, it is still possible to provide support to the decision maker by isolating anomalies and
excluding them from the calibration process. In the end, the decision maker will be provided with
a decision support scenario, made of the calibrated model, the related predictions and informa-
tion about the anomalies encountered during the model’s development, which represents the best
possible approximation of the operational context, given the available information.

In the following three sections we will discuss the accuracy that can be reached by the reduced-
order model in the prediction of energy consumption of three complex buildings, and we will
exemplify the application of the calibration process in real operational contexts. The first case study
demonstrates to what extent the reduced-order model is able to establish the energy consumption
prediction of a detailed model of a real building, that was previously calibrated on measured data.
By comparing the outcomes of a reduced and a detailed model, enables us to pinpoint details
characterizing the nature of the approximation. The second case study describes the calibration
process and the prediction results of the reduced-order model on a real building, whose BEMS
records detailed energy consumption. This case study has a twofold purpose. First, it explains
the effectiveness of the calibration process conducted, with an information set that represents a
typical EPC operational context. Second, the comparison of the energy prediction with the detailed
dataset of the real energy consumption points out the effect of the thermostat hysteresis parameter.
Finally, the last case study discusses a situation where anomalies are encountered and analyzed
within the modeling framework.
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3. The Hospital of Sant’Elpidio a Mare (Italy)

The community clinic is a seven-storey building located in Sant’Elpidio a Mare (Fermo, Italy).
The clinic has undergone several organizational rearrangements over recent years, that have de-
termined variations in terms of occupancy levels, number and typology of heated and non-heated
thermal zones. The building’s net heat surface area measured 2460 m2, and the gross heated vol-
ume was equal to 8127 m3. The building is made up of two blocks. The first was built in the
1970s and hosts all the wards and clinics of the hospital. The second block was built in the 1980s
and serves the rest of the building through a large staircase, a lift and some waiting rooms. A
reinforced concrete frame superstructure bears both blocks of the building. The blocks are built
using the traditional technologies of external masonry walls and hollow masonry unit partitions.
The insulation level of the envelope is quite low, due to the age of the external walls, windows
and roof. The whole building is old-fashioned and built using the technology that was typical of
the 1970s and 1980s in Italy. The energy performance is definitely worse than the standards and
regulations currently in force. At present, there is no mechanical air supply, hence the indoor air
quality is provided by infiltration and incidental air leakage through the building envelope. During
the on-site surveys, the personnel of the clinic stated that they usually open the windows when
they feel that the indoor air quality is no longer adequate. The medical ward was open on the
second floor, and the clinics were mainly accommodated on the first floor.

Figure 5: The Hospital of Sant’Elpidio a Mare (Italy): north-west facade.

An energy efficiency project was initiated for this building in 2015, and a detailed model was
produced and calibrated on the 2013 energy consumption. In order to build a sound framework
for comparing the models outcomes, the same environmental data set is used both in the detailed
model and in the reduced model simulations, the reduced model parameters are calculated from
the parameters of the detailed model, and the climatic control logic of the heating system of the
detailed model has been copied in the reduced model. Hence, all the divergences between the two
models are due to the approximations introduced by the reduced-order modeling. Three simulation
outcomes are analyzed: the indoor temperature, the water supply temperature, the absorbed power
and the cumulative energy consumption for the calibration year (2013). As stated in [12], Figure 6
shows that the reduced model fits the reality well, here approximated by the detailed model for the
year 2013. Even if the internal air temperature of the reduced model is not representative of any
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Table 2: The Hospital of Sant’Elpidio a Mare (Italy): main features.

Feature Description

Location
- Latitude: 43.234252 N
- Longitude: 13.688765 E

Dimensions
- Floor area: 2471m2 (heated part)
- Volume: 9120m3 (heated part)

Envelope

- Exterior walls: plaster (0.01m), hollow brick (0.12m), air
gap (0.27m), brick (0.09m)
- Floor: plaster (0.01m), hollow slab (0.20m), reinforced
concrete (0.04m), screed (0.08m), flooring (0.02)
- Windows: single and double glazing

Heating/Cooling system - Boiler and radiators

Lighting - Lighting load: 11240W

Occupation - Monday to Sunday: 0:00 – 24:00

Operation - Absence of environmental control (open loop)

Consumptions - Annual fuel consumption for heating: 35836Sm3 (year 2013)

space inside the building, it falls inside the temperature range of the different zones of the detailed
model. The same holds for the water supply temperature. Absorbed power and cumulative energy
consumption almost overlap the detailed ones.

Comparison with the measured monthly energy consumption used for calibration (see Figure 7),
shows that the energy residuals do not overpass 10% during the heating months. In order to exclude
over-fitting, the calibrated model has been validated with data measured during the year 2015, thus
providing the very good results shown in Figure 8: NMBE = 0.15% and CV −RMSE = 5.23%.

4. The Library of the Universitat Politècnica de Catalunya in Terrassa (Spain)

The library of the Universitat Politècnica de Catalunya (UPC) (Figure 9) is located in Terrassa
(Spain), near Barcelona. The library is a three storey building. The ground floor contains some
shops and the building entrance. Reading rooms are located on the second and third floors, which
also hosts some offices and small meeting rooms. The library has a capacity of about 350 people,
and it is used from 9 am to 9 pm Monday to Friday. Sometimes it remains open during the
weekend. In August it is usually closed. The external walls are made of bricks separated by two
layers of insulation and an air gap. All the external facades have windows. South oriented windows
have aluminum louvre solar shadings. The current heating and cooling system is the result of a
renovation work carried out in 2012: it consists of five heat pumps that serve fan coil units. The
internal temperature is not extensively monitored, the thermostat set-up is the only available data
related to indoor temperature. Weather data was taken from a local weather station database. In
summary, the Terrassa UPC Library is a rather well known building. The basic characteristics of
the building are summarized in Table 3.

4.1. Model Calibration

1. Data Analysis - All the building data of Table 1 have been collected from the building’s
drawings and brief surveys. The available data can be considered highly reliable, except the
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(d)

Figure 6: Hospital of Sant’Elpidio a Mare (Italy): point-wise comparison between the detailed model (dashed line)
and the reduced model (solid line) for internal air temperature (a), water temperature (b), heating power (c) and
cumulative energy consumption (d).
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Figure 7: Hospital of Sant’Elpidio a Mare (Italy): measured energy consumption and residuals for the calibration
year (2013)
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Figure 8: Hospital of Sant’Elpidio a Mare (Italy): measured energy consumption and residuals for the validation
year (2015)
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Figure 9: Library of the Universitat Politècnica de Catalunya (Spain): south and est facades.

Table 3: Library of the Universitat Politècnica de Catalunya (Spain): main features.

Feature Description

Location
- Latitude: 41.563770 N
- Longitude: 2.021395 E

Dimensions
- Floor area: 797m2

- Volume: 9325m3

Envelope

- Exterior walls: brick (0.14m), expanded polystyrene
(0.04m), air gap, expanded polystyrene (0.04m), plaster-
board (0.025m)
- Floor: reinforced concrete, hollow slab (0.4m)
- Windows: single and double glazing (U-value
5.6W/m2K − 2.5W/m2K) with solar shadings

Heating/Cooling system - Heat pumps with fan-coil units

Lighting - Lighting load: 17868W

Occupation - Monday to Friday: 9:00am – 9:00pm

Operation - Set-point temperature: winter 21°C – summer 25°C
Consumptions - Annual electrical energy: 159674kWh (year 2014)

air infiltration rate, which may also depend on the building users window opening. The heat
exchange with the ground has been considered negligible, because of the absence of under-
ground spaces. The building’s heating/cooling system is controlled by a BEMS. Hence, a
detailed record of energy consumption is available and the energy consumption baseline can
be calculated exactly. The temperature control uses thermostats that are set to prescribed
temperature set-points. The building operators can increase or decrease the thermostat set-
points by one degree in order to adjust the internal comfort. This introduces some uncertainty
about the set-point value during the day. On the second floor, the mechanical ventilation
is supplied by an air-conditioning system. The forced air ventilation rate is therefore con-
trolled and can be assumed reliable. The building occupation is monitored by an entrance
tracking system and by sampling the occupancy level daily. Hence the occupancy data can
be considered reliable.

2. System Calibration - The system installed power Pow, efficiency Eff and capacitance of the
medium Cih have been determined from technical data sheets. The thermal resistance Rih has
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been adjusted by calibration. Figure 10 shows the plots of the heating/cooling medium tem-
perature against the indoor air temperature and the set-points. The coupling resistance Rih

has been reduced until indoor air temperature reaches a consistent trend. The left side shows
a cooling regime trace where the resistance is too high and the indoor air temperature (solid
line) cannot reach the horizontal line of the set-point, while the system medium temperature
(dashed line) is constantly below. On the right side, the resistance has been reduced until
the indoor temperature is reasonably around the set-point. When the system is switched
off, during the night, the system medium temperature reaches the indoor air temperature.
After this first calibration step ASHRAE figures are NMBE= -33.37% and CV-RMSE =
22.94% using the 2014 calibration data-set. The high mismatch is due to a severe negative
bias in the mid-seasons. From March to May and in September and October, the outdoor
temperature is relatively close to the set-point. In that operating condition, the difference
between the temperatures used for the system control, i.e. the real thermostat temperature
measured in a particular point of the buildings and the approximated indoor temperature of
the reduced-order model, may cause severe divergence from the baseline.
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(b)

Figure 10: Library of the Universitat Politècnica de Catalunya (Spain): system medium temperature (dashed line),
indoor air temperature (solid line) and set-point plotted with overestimated Rih (a) and calibrated Rih (b).

It is possible to mitigate the mid-season forecasting mismatch by loosening the control con-
straints of the reduced-order model, by extending the hysteresis gap of the thermostat. This
lets the indoor temperature fluctuate around the set-point during the mid seasons, but does
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not affect the cold and hot seasons because of the higher temperature difference between out-
doors and indoors. Hence, the thermostat hysteresis Hys has been adjusted to compensate
for the gradients of the internal temperature eventual. Figure 11 shows the energy trans-
fer rates monitored by the BEMS during the April and May months (solid dark line), the
simulated one during the same period before the hysteresis adjustment (solid gray) and the
calibrated simulation (dashed). It can be seen that opening the hysteresis parameter ad-
justs the simulated energy transfer during the April-May months. The same can be seen for
September-October. The other months remain unaffected. This behavior is due to the fact
that during mid season months, the control is more dynamic, as the outdoor temperature is
close to the indoor comfort threshold. The system calibration phase achieves a very good
NMBE= 0.54% and CV-RMSE = 9.03%.

Figure 11: Library of the Universitat Politècnica de Catalunya (Spain): measured and simulated heating power with
different thermostat hysteresis values.

3. Building Parameters - Almost all the building parameters were fixed in the Data Analysis
phase except from the air infiltration flow rate Lea. Its calibration does not significantly
improve the final result, achieving NMBE = -0.47% and CV-RMSE = 8.11%.

4. Operation Schedules - The occupancy schedule was fixed in the data analysis, and the system
operation was derived from the monitored energy supply data. Heat gains due to equipment
was adjusted during the data analysis phase based on the fact that, as the building is a
library, it is likely that students will use a laptop during their visit.

The final assessment, shows that the reduced-order model was able to match the energy con-
sumption of the library building (see Figure 12), and to extrapolate reliably the energy consumption
for subsequent years (see Figure 13). Just two calibration steps have been necessary to achieve
NMBE= -0.47% and CV-RMSE = 8.11% using the 2014 calibration data-set. Forecasted energy
consumption for the year 2015 is calculated using the parameter set calibrated with the 2014 data-
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Figure 12: Library of the Universitat Politècnica de Catalunya (Spain): calibration result for year 2014 of the
reduced-order model.

set. The 2015 forecasts shows 1.63% NMBE and 11.04% CV-RMSE. No further iterations are
necessary.

5. The Smeaton Building in Plymouth (UK)

The third case study is the Smeaton Building on the Plymouth University Campus located in
Plymouth, UK (Figure 14). The technical knowledge about the Smeaton Building was affected
by severe uncertainty, principally about the system parameters, the energy consumption and the
occupancy schedules. Formulating a detailed model of the building’s operating conditions was
practically impossible within the time and cost boundary of a typical EPC tendering phase. As a
forecast of the energy consumption is still required, this case study demonstrates how the modeling
process can still be used for formulating the best possible explanationation of the observed building
behaviour.

The Smeaton Building is a four-story building. The net floor area is about 2484 m2 and the
floor to ceiling height is about 2.90m. The exterior surface of the boundary walls is made of
sandwich panels, while the interior surface is made of concrete blocks with an air gap and bricks,
then finished with plaster. On the ground floor, there are no sandwich panels on the external
facade. The building has single glazing on the south side, and double glazing on the north side.
Every window has internal shades. The occupation profile is not monitored and it is different for
each room because a lot of teaching rooms are present.

1. Data Analysis - Information about the Smeaton Building systems were collected by visual
inspection, measurement and interviews carried out during approximately a one day survey.
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Figure 13: Library of the Universitat Politècnica de Catalunya (Spain): energy consumption forecast for year 2015
of the reduced-order model.

Figure 14: The Smeaton Building (UK): south facade.
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Table 4: The Smeaton Building (UK): main features.

Feature Description

Location
- Latitude: 50.374800 N
- Longitude: -4.139861 E

Dimensions
- Floor area: 6621m2

- Volume: 19469m3

Envelope

- Exterior walls: sandwich panels (0.093m), concrete
blocks (0.300m), air gap (0.180m), bricks (0.105m), plas-
ter (0.013m)
- Floor: cast concrete (0.200m), insulation (0.130m), screed
(0.100m), linoleum (0.005m)
- Windows: single 6mm glass in south facade, double
3mm/13mm air glass in north, east and west facades.

Heating/Cooling system - boiler and radiators (with forced ventilation).

Lighting - N.A.

Occupation - Monday to Sunday 07:00 - 22:00

Operation - Set-point temperature: winter 20°C
Consumptions - Annual electrical energy: 466899kWh (August 2014-July 2015)

As the building’s heating energy is supplied by a boiler shared with other buildings, and
no direct metering was available, the supplied heating power and the energy consumption
baseline had to be extrapolated, assuming a proportion between supplied energy and floor
surfaces. Under these severe uncertain conditions, the calibration process was principally
aimed at finding out a credible parameter arrangement based on the evidence provided by
the simulated internal energy dynamic.

2. System Calibration - The supplied power parameter was increased until the system was able
to drive the indoor temperature to the set-point of 20°C. Then, in a second step, the system
efficiency was adjusted to minimize the energy consumption offset. These two initial steps
mostly affected the NMBE factor.

3. Building Parameters - The third phase involved the ventilation rate, which was adjusted to
compensate for mismatches between cold and mid-season months, improving CV-RMSE.

4. Operation Schedules - The occupancy assumption was also affected by a high degree of uncer-
tainty, as no monitoring data was available. Hence, an average daily occupancy rate, based
on interviews, was used.

After three steps, a promising NMBE= -1.03% and CV-RMSE = 17.86% were reached. Figure
15 shows the baseline and the simulated energy consumptions for the heating months. Nevertheless,
according to [4] the model was not yet calibrated. This is essentially due to the prediction mismatch
in May, which amounts to 46% (see Figure 15). In order to decide if this is an anomaly, a threshold
on the 99.9% confidence interval (CI99.9) is computed for the absolute value of the residuals. By
using the consumption estimations reported in Figure 15, the corresponding range is CI99.9 = 22%.
Since the 46% of prediction mismatch in May largely exceeds the confidence interval range, it can
be considered anomalous. In fact, eliminating the May mismatch results in a calibrated model, with
NMBE= 3.40% and CV-RMSE = 7.06%. There may be multiple causes for the May mismatch. It
could have been caused by unknown operational conditions, system maintenance or other totally
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occasional and unknown factors. But it is unlikely that the mismatch could be the result of a
simulation fault. In fact, a detailed analysis of the simulation results suggest that the low predicted
consumption in May was due to favorable climatic conditions, an event that is known with good
certainty. This observation supports the likelihood that the energy consumption mismatch could
be due to an external event, and that the simulation results provide a valid explanation of the
building’s energy behavior. Of course, the validity of the explanation is further supported by the
validity of the initially made assumptions.
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Figure 15: Smeaton Building in Plymouth (UK): calibration result for year 2014 of the reduced-order model.

6. Conclusions

A new modeling approach has been developed in this paper to address the energy audit for EPC
tenders, in which the common situation of limited and uncertain information about the building
prevails. A general reduced-order model structure was developed in Modelica language and has
been discussed in detail. The calibration process is presented and applied to three different case
studies relative to three different climatic zones and intended uses. A detailed Modelica model
has been developed for the Hospital of Sant’Elpidio a Mare (Italy), and it was calibrated and
used as a frame of reference for assessing detailed energy consumptions and temperatures, usually
not available in real buildings. The simulation results showed that the energy and temperature
trends of the reduced model are sufficiently close to that of the detailed model. The same reduced
model was then compared with the energy measures for the calibration year (2013) and a forecast
year (2015), ensuring compliance with ASHRAE recommendations in both cases. The developed
calibration procedure was then applied and discussed in relation to the Library of the Universitat
Politècnica de Catalunya in Terrassa (Spain), for which the reduced-order model was able to match
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the measured energy consumption both for the calibration (2014) and the forecast year (2015). In
both case studies the model showed a good generalization capacity: the error affecting the forecast
energy consumption are largely within in the ASHRAE. The Smeaton Building in Plymouth (UK)
was then used as a case study for a building with scarce and highly uncertain information. The
developed calibration procedure was applied and discussed, and yielded satisfactory results for all
but 1 month for which, an anomaly is detected in the energy data. This papers also shows the
diagnostic ability of the reduced model, which could help the technical department tendering for
EPC to select the most reliable energy data. Further research would be needed to integrate the
thermal model with air quality and comfort models in order to better control occupants’ comfort
and for managing forced ventilation.
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