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Chapter 5 
Experiments in Sound and Music Quantum Computing 
 
 
Alexis Kirke and Eduardo R. Miranda 

Abstract. This chapter is an introduction to quantum computing in sound and music. 
This is done through a series of examples of research applying quantum computing and 
principles to musical systems. By this process, the key elements that differentiate 
quantum physical systems from classical physical systems will be introduced, and what 
this implies for computation, sound and music. This will also allow an explanation of 
the two main types of quantum computers being utilized inside and outside of 
academia. 

5.1   Introduction 

5.1.1 Background  

Max Plank was born in 1858 in Kiel, Germany, into a family of distinguished scholars 
in the fields of Theology (grandfather) and Law (father). He loved music and was an 
accomplished pianist. He had considered pursuing a career as a professional musician, 
but apparently the teenager was advised that he should better study something else. 
He ended up studying Physics at Munich University and came to be one of the most 
important scientists of the 20th century. Max Plank is one of the pioneers of Quantum 
Physics. 
 
In the beginning of the 20th century Plank demonstrated that energy of 
electromagnetic radiation could only be emitted or absorbed as bundled packs of 
energy, which he coined as quantum, or quanta in plural. The notion of quantum 
energy was a breakthrough from the long-established notion that energy was emitted 



or absorbed from matter continuously. Albert Einstein subsequently followed from 
Plank’s work and proposed that light was not continuous either, but made of particle-
like quanta, named as photons. The invention of the quantum opened a Pandora’s box 
of strange concepts that define our microscopic physical world, such as the notion that 
the energy of an electron in an atom is a quantized particle, which also behave as a 
wave. Strangely, it has been demonstrated that an electron in an atom could be in one 
place and then reappear in another without being anywhere in between. And more, 
particles can be linked is such strange way that changes to one instantaneously affects 
the other, even if they are very far apart from each other: this phenomenon is referred 
to as entanglement. The microscopic, atomic and subatomic world is mind-boggling. 

 
Metaphorically, think of the distinction that we often make between analogue and 
digital electronics: before the discovery of the quantum, the Universe was analogue. 
Now it is digital. It remains a mystery how the everyday world of Newton’s 
macroscopic physics emerges from the bizarre microscopic, atomic and subatomic 
world. Nevertheless, although we do not fully understand the world of quantum 
mechanics, scientists have been looking into harnessing it to develop computers 
operating on quantum principles. 
 
In the early 1980s Richard Feynman, from the California Institute of Technology, 
proposed the idea of developing a quantum mechanical computer. Subsequently 
David Deutsch,  a visiting professor at Oxford University, laid the foundations of the 
quantum theory of computation, which effectively kick-started research into building 
such machines (Deutsch 1985). 
 
Like classical computing, quantum computing works with bits – i.e. values of 0 and 1. 
In quantum computing these are called qubits. There are two main forms of quantum 
computing, which will be discussed in this chapter: traditional quantum computing 
and adiabatic quantum computing.  
 
One system we will examine in this chapter is a logic gate with qubits represented by 
light waves. This is a good example for discussing some advantages of quantum 
computing. Quantum light waves act like particles as well as waves (Shadbolt et al. 
2014); these particles are called photons. Most people are familiar with the light 
interference patterns seen during experiments at high school. This is normally 
explained as light wave peaks interfering with light wave troughs. However many 
experiments have also been done to show individual photons of the light build up 
interference patterns. The wave patterns seen in interference in fact summarize the 
probability of finding an individual photon at a particular point. The axioms of 
quantum mechanics say that one may only calculate the probability of particle being 
in a certain state. In fact before a particle is measured, it can be thought of as being in 
multiple possible states. It is this superposition of states and its implications that leads 
to the useful features of quantum computing. A qubit is actually a superposition of 
multiple bit-states, a property that leads of the speeding ups expected in traditional 
quantum computing (Shor 2006). 
 



The speed up in adiabatic quantum computers is due to a different but related effect, 
which will be discussed later in the chapter. 
 
5.1.1 Music and Quantum Physics  
 
The natural world has always been a rich source of inspiration for music. Vivaldi’s 
Four Seasons and Beethoven’s Pastoral Symphony immediately come to mind as two 
examples of classical music inspired by nature. And of course there is Holst’s The 
Planets, which is one of the most celebrated examples of music inspired by the solar 
system that I can think of. The ancient Greek philosophical maxim, that astronomy is 
for the eyes what music is for the ears, still inspires composers today. Indeed a 
plethora of approaches to composing music inspired by natural science has emerged 
since The Planets was composed a century ago, including approaches inspired and 
informed by Physics and indeed Quantum Physics. 
 
Even though initiatives to explore the potential of quantum computing for music 
emerged only very recently, concepts pertaining to Quantum Physics have been 
making their way into music technology and indeed musical thinking for decades. For 
instance, in the late 1950s composer Karlheinz Stockhausen published an article 
entitled “… How Time Passes …”  (Stockhausen 1959) where he introduces 
approaches to correlate different musical time scales. He proposed that the notions of 
pitch and rhythm should be viewed as one unified continuous time-domain 
phenomena. A number of musicologists objected this article. Nevertheless, despite its 
alleged musicological flaws, it introduces new ways of thinking about music, which 
were comparable with the way in which his contemporary physicists were looking 
into the natural world. 
 
Another example is the remarkable work on to stochastic music introduced by Iannis 
Xenakis in his book Formalized Music (Xenakis 1971). Here he laid out principles for 
composing music using mathematical processes based on statistical mechanics. For 
instance, to compose the piece Pithoprakta he developed a method to render a model 
describing Brownian motion - the erratic dance of tiny particles - into musical notes. 
The mathematical representations of music developed by Xenakis open the doors for 
developing representations of music based on stochastic models of quantum 
mechanics (Davidson 2007). 
 
A paper introducing the notion of acoustical quanta, published in 1947 by Hungarian-
British physicist and Nobel Prize winner Dennis Gabor (Gabor 1947) has been very 
influential in the field of computer music, as it paved the way for a sound synthesis 
technique referred to as granular synthesis (Miranda 2002). Not surprisingly, this 
method for representing and synthesizing sounds has been featured in various 
chapters in this volume. Gabor proposed the basis for a representation method, which 
combines frequency-domain and time-domain information of sound. His point of 
departure was to acknowledge the fact that the ear has a time threshold for discerning 



sound properties. Below this threshold, different sounds are heard as clicks, no matter 
how different their spectra might be. The length and shape of a wavecycle define 
frequency and spectrum properties, but the ear needs several cycles to discern these 
properties. Gabor called this minimum sound length as acoustic quanta and estimated 
that it usually falls between 10 and 30 milliseconds, according to the nature of both 
the sound and the subject. Gabor’s theory fundamentally suggested that a more 
accurate representation of sound is obtained by ‘slicing’ the sound into very short 
segments (grains, or ‘sound quanta’), and by applying a Fourier type of analysis to 
each of these segments. This granular representation of sound facilitates the 
development of models of music using the mathematical tools that are alike those 
used in Quantum Physics. For instance (Miranda and Maia Jr. 2005) introduced a 
method for granular sound synthesis using Walsh functions (Fine 1949) and 
Hadamard matrices (Wallis 1976).  
 
There have been an increasing number of practice-based musical projects inspired or 
informed by quantum mechanical processes, but the great majority of these still are 
metaphorical, based on simulation and/or not directly connected to actual quantum 
effects. 
 
For instance,  the webpage “Listen to the Quantum Computer Music” is an interesting 
initiative (Weimer 2014). Two pieces of music are playable online through MIDI 
simulations. Each is a sonification of a well-known quantum computation algorithm. 
One is Shor’s Algorithm (Shor 2006), which is the factorization algorithm mentioned 
earlier. The other is a database search algorithm known as Grover’s algorithm (Grover 
2001). The offline sonification of quantum mechanics equations have also been 
investigated in (Sturm 2000), (Sturm 2001) and (O’ Flaherty 2009), with the third 
being an attempt to create a musical signature for the Higgs Boson at CERN before its 
discovery. Another paper defines what it calls Quantum Music (Putz and Svozil 
2015), though once again this is by analogy to the equations of quantum mechanics, 
rather than directly concerned with quantum physics. Certain equations of quantum 
mechanics have also been used to synthesize new sounds (Cadiz and Ramos 2014). 
The orchestral piece “Music of the Quantum” (Coleman 2003) was written as an 
outreach tool for a physics research group, and has been performed on various 
occasions. The melody is carried between violin and accordion. The aim of this was 
as a metaphor for the wave particle duality of quantum mechanics, using two 
contrasting instruments.  
 
We cite “Danceroom Spectroscopy” as an example of a quantum simulation 
performance (Glowacki 2012) where quantum molecular models generate live 
visuals. Dancers are tracked by camera and their movements treated as the movement 
of active particles in the real-time molecular model. Thus the dancers act as a 
mathematically accurate force field on the particles, and these results are seen in large 
scale animations around the dancers. 
 
There have been performances and music that use real-world quantum-related data. 
However most of these have been done offline, rather than using physics occurring 
during the performance. These include the piece “Background Count”: a pre-recorded 



electroacoustic composition that incorporates historical Geiger counter data into its 
creation (Brody 1997). Another sonification of real-physics data done offline was the 
“LHChamber Music” project (Alice Matters 2014), which used a harp, a guitar, two 
violins, a keyboard, a clarinet and a flute.  
 
One of the first real-time uses of subatomic physics for a public performance was 
“Cloud Chamber”, which was discussed Chapter 2 in this volume. In “Cloud 
Chamber” physical cosmic rays are made visible in real-time, and some of them are 
tracked by visual recognition and turned in to sound. A violin plays along with this, 
and in some versions of the performance, the violin triggered a continuous electric 
voltage that change the visible particle tracks, and thus the sounds. Cloud Chamber 
was followed a few years later by a CERN-created system, which worked directly, 
without the need to a camera. Called “Cosmic Piano”, it detects cosmic rays using 
metal plates and turns them into sound (Wired 2015).  
 
The previous two musical performances were live, and the data ware not quantum as 
such. They were quantum-related in that the cosmic rays and cloud chambers are 
subatomic quantum processes. However, they do not incorporate actual quantum 
computation in their music.  
 
As has been mentioned, this chapter will discuss two types of quantum computing: 
traditional (or gate-based) and adiabatic. Gate-based quantum computing involves 
implementing Boolean logic gates such as AND, OR and NOT, as quantum systems. 
The advantages of doing this are that before measurement, a quantum system is in a 
state of superposition, so a single physical quantum gate circuit will be represented as 
a superposition of a vast number of such circuits in parallel. With careful preparation 
it is possible for calculations to occur in this superposition state, thus leading to an 
immense speed up in calculations.  
 
A photonic quantum computer will now be introduced followed by work on to music 
and quantum computation has been developed at Plymouth University’s 
Interdisciplinary Centre for Computer Music Research (ICCMR).  

5.2   Photonic Quantum Computing 

The quantum computer set up utilized in this next section exactly simulates a quantum 
CNOT (Controlled NOT) gate. The CNOT gate acts on two quantum bits, or qubits; a 
qubit is the quantum-mechanical analog of a classical bit. CNOT is a two-bit gate 
where a control bit (referred to as C) stays the same but the other bit changes during 
an operation (i.e., from 0 to 1 or vice-versa) if C = 1 or stays the same if C = 0. In 
other words, a CNOT gate flips (|0> à |1>) the state of the target qubit if and only if 
the state of the control qubit is |1>. Various physical platforms for quantum 
computing have been proposed including ion traps (Kielpinski 2002) and 
superconducting qubits (Kelly et al. 2015). Here we consider a photonic quantum 
computer (Knill et al. 2001): a scheme for efficient quantum computation with linear 



optics in which information is represented in the quantum state of optical-frequency 
photons. 
      
In the hardware, photons are obtained by focusing a 404nm laser on to a piece of 
nonlinear crystal (Bisumuth Borate). This causes the crystal to probabilistically spit 
out 808nm photon pairs, in a process known as Type I spontaneous parametric down 
conversion. The chip, which performs several experiments that would each ordinarily 
be carried out on an optical bench the size of a large dining table, is 70mm by 3mm. It 
consists of a network of tiny channels, which guide, manipulate and interact single 
photons. Waveguides are made with a higher refractive index than their surroundings, 
so that photons can propagate along them by total internal reflection. The waveguides 
in the integrated optical device are made from silica and sit in a wafer of silicon, 
which allows things to be kept on a relatively small scale; the chip is 70mm x 3mm. 
     
Using eight reconfigurable electrodes embedded in the circuit, photon pairs can be 
manipulated. A schematic is shown in Figure 1. The circles with numbers in them are 
known as phase shifters, and will be discussed later. They are able to change the 
phase of the photons. The points where the lines meet are called beam splitters, which 
will be explained below, and also enable further quantum effects to be added to the 
calculation. 
 
 

 
 
 
Figure 1: Schematic of the Photon Quantum Computer showing photons being input 
on (1) and (3) and various phase shifter settings in the pathways. 
 
 
 

Table 1: Setting up inputs on the quantum CNOT 
 

Control Target Inputs to send photon in to 
0 0 1, 3 
0 1 1, 4 



1 0 2, 3 
1 1 2, 4 

 
The key elements are the inputs marked 1 to 4 in Figure 1. In this CNOT the inputs 
are each represented by two photons. These allow the inputs of the quantum CNOT to 
be specified, as shown in Table 1. 
 
The hardware and simulation systems are located at the University of Bristol and can 
be accessed with only a few seconds lag over the internet. A JSON web API is 
provided, which gives us full access to the CNOT. It can use any modern 
programming language (Mathematica, Python, Javascript, MATLAB ...) to talk to the 
Bristol servers through this API and get data. Below is an example API call, getting 
counts from the chip with all phases set to zero (i.e. the circles with floating point 
numbers in Figure 1 all set to 0). This is the Python code to make the call: 
 
counts = urllib2.urlopen(“http://cnotmz.appspot.com/experiment? 
phases=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0&accessToken=XXXXXXXXXXXXXXX”).read() 
 
The above calls will return data in the form: 
 
{"counts": {"2,3": 0, "1,3": 80, "1,4": 0, "2,4": 28}, "max": 80, "sum": 108} 
 
The call returns the number of photons detected across the output groups at the far 
right of Figure 1. It can be seen how these relate to qubit values using Table 1. In this 
example outputs 1 and 3 had a count of 80 simultaneous photons in the time segment. 
Changing the phase of the photons causes them to interfere destructively or 
constructively with each other.  
 
We will now give a brief introduction to how photonic quantum computers function, 
as they are different to some other forms of quantum computing.  Consider a subset of 
the sort of paths contained in the chip, as shown in Figure 2. The far left shows the 
inputs for the qubit: putting in a photon into (0) gives a qubit of value 0, an input in 
(1) gives a qubit of value 1. In the centre is a beam splitter, which splits the photon, 
and at the far right are the photon detectors that count the number of photons arriving 
in each path. 
 
If a single photon is put in through (0) or (1) 2000 times, then we would expect to 
detect the photon half the time at the top detector and half the time at the bottom 
detector. Between the beam splitter and the detectors, the photon is in what is known 
as a superposition state, it is “blurred” across paths 0 and 1. Adding another beam 
splitter gives Figure 3. If a photon is sent into (0) then as a result of the extra beam 
splitter is will always be detected at the lower detector for the following reason. At 
the first beam splitter it blurs across both paths, and at the second beam splitter these 
blurred paths interfere with each other behaving like light waves. This interference 



causes the probability of the particle being detected at the top detector to become 
zero. Thus the particle is always detected at the bottom detector. Technically this 
interference is happening to the spatial wave function. 

 

 
 
Figure 3: A simplified photon path and the result 

 
 

 
 
 
 
 

Figure 3: Photon system with an additional beam splitter. 
 

This interference effect can thus be manipulated using the phase shifters in the 
waveguides. Figures 4 and 5 show what happens when a phase shifter is added. 
Figure 4 applies a phase shift of 0.5π radians to the “part” of the blurred photon in 
that waveguide (hence the number 0.5 in the circle). This causes interference effects 
at the second waveguide leading to photon detection happening at top and bottom 
detectors with equal probability. 

 
The phase shifter in Figure 5 is set to 1π radians (hence the value 1 in the circle). This 
creates an interference effect in the second beam splitter that leads to the waves 
cancelling out for the bottom detector. Therefore, the photon will always be detected 
at 0. Different phase shifts would cause different probabilities of detecting the photon 
at different detectors. The demonstration of these interferences is a mathematical task, 
which – although not highly advanced – would require lengthy mathematical 
expansions; they will not be shown in this chapter. 



 

 
 
Figure 4: Photon system with an additional beam splitter. 
 
 

 
 
Figure 5: Photon system with an additional beam splitter. 
 

 
However looking at Figure 1, and the brief description of the JSON Web API earlier, 
it can be seen that the phases can be set in various paths dynamically and photon 
counts returned, over the Internet.  
 
The mathematical formulation of quantum mechanics – as supported by a multitude 
of experimental results for decades – has implications which cannot be explained in 
the way that we are used to explaining the physics we learned in high school and 
every day experience. One such implication, which most people are unaware of, is the 
question of what makes two particles separate from each other. For example what 
makes two light particles (photons) different objects? Consider the common sense 
notion of the separateness of say two wooden planks A and B, 100 metres apart. If 
you move plank A, plank B does not move. If you break plank B, plank A does not 
break. In fact most local actions and observations on planks A and B are independent 
of each other. Conversely, if you push the end of a plank, and another plank 100 
metres away moves, you would assume they are connected – perhaps by a piece of 
string or a rod. They in effect become one object – the “plank plus string plus plank” 



object. This is our common sense notion of things being separate independent objects, 
or one connected object. 
Things are not so simple at the subatomic level. In fact it is possible to use a process 
to generate two photons that are as separated as it is possible for two particles to be. 
They could be a million light years apart, not influencing each other by force fields. 
Yet it can be shown by the mathematics of quantum mechanics that doing something 
to photon A would affect photon B. Because there is no known force field or 
interaction between the photons during this process, then by our common sense notion 
of separate objects, the photons are not entirely separate objects. But they are, clearly. 
They are a million light years apart with no interaction. This process of being 
separated particles but in some sense not separated was intolerable to Einstein; and 
the fact that the mathematics of quantum mechanics enabled this to happen, proved to 
him quantum mechanics was wrong. A methodology was found to quantify these 
issues as a testable inequality called Bells Inequality (Shadbolt et al. 2012). 
Amazingly, when experiments were done in the 1960s, it was found that this 
inequality could be violated, thus implying that the entanglement predicted by the 
mathematics happened in the real world, leading to an avalanche of philosophical 
debate, which still continues. 
 
We do not wish to concern ourselves with this debate here, but wish to create a 
musical mapping from a quantum computer live whose results show the effects of 
entanglement. The quantum computer used here can generate entangled photons using 
beam splitters. Although the entangled photons are only separated by a tiny distance, 
from a physics point of view they are entirely “different planks”. They have no 
detectable physical interaction. Yet statistically they behave as if they are connected, 
are part of one larger object. It is these statistics that are amplified through the 
computer music system. 
 
Before explaining the mapping and control system, it is necessary to explicate an 
experiment that exhibits the effects of entanglement. Here is an analogical 
explanation of that experiment, the Prisoners’ Postman: two soldiers Alice and Bob 
are caught and placed as prisoners of war in separate huts either side of a compound, 
outside of hearing range of each other. Their jailor Eve is a kindly person but likes 
playing games. She tells each soldier that if they can give her some wrapping paper 
and something to put in it each morning, then she will send it as a present to one of 
their families. There are gaps under the prison huts and each day there is always a 
50/50 chance of Alice and Bob both finding either a stone or some old newspaper 
within a hands grasp. So once Alice and Bob have chanced across one or the other, 
Eve will ask each for the address of one of the families. Alice can give her own 
address or Bob’s, and Bob can give his own address or Alice’s (they know each 
other’s because they are old comrades-in-arms). But neither can know what the other 
has said. As long as they don’t both find only pebbles, and they both choose the same 
address, Jailor Eve will use one of the pieces of newspaper as wrapping and send the 
other item (be it pebble or scrunched-up newspaper) to that address. This as a sign to 
their family they’re alive and okay. If they choose different addresses, Eve will not 
send the package, except… Jailor Eve is as bored of hanging around the compound as 
Alice and Bob, so she invents a twist to make the daily game more interesting.  



 
Even if Alice and Bob provide different addresses, there is one case where Eve will 
still send a package. This is if Alice and Bob both fail to provide wrapping paper, i.e. 
they find only pebbles. In that case Eve will find some newspaper and wrap both 
pebbles for them and send the package randomly to one of the families. So to 
summarize: Alice and Bob get to send out a package to one of their families either if 
they both pick the same address and at least one of them finds wrapping paper, OR if 
they pick different addresses and they both only find pebbles. The question is: 
assuming that each has a 50/50 chance each day of finding a pebble or newspaper 
within reach, what strategy should Alice and Bob following in choosing addresses to 
increase the chance that at least one letter is sent? Oh and they do get a chance every 
so often to set a strategy, because extra prisoners come in in transit, so Alice and Bob 
are placed in the same hut for that one day, and then returned to isolation from each 
other. 
 
If Alice and Bob pick a random strategy, i.e. they randomly select an address whether 
they find paper or pebble, on average they will send out 1 letter every two days – i.e. a 
50% a day probability of success. If, after being in a hut together, they agree to select 
only Alice’s address for 7 days, and then only Bob’s address for 7 days, this will 
increase to a 75% a day probability of a parcel being sent. In fact both agreeing to 
select the same address at the same time is the optimal strategy. Over the years, if 
Alice and Bob try different strategies, they will still hit the upper maximum of 75%, 
because they cannot communicate before choosing the addresses. They are on 
different sides of the compound. It can be proved that without communication, the 
limit is 75% for any strategy because Alice’s knowledge is local to her, and Bob’s is 
local to him. 
 
To understand how this relates to the entanglement experiment, consider two photons 
generated by a beam splitter so they are entangled. After the photons have separated – 
Alice performs an operation on the photon based on her chosen address and whether 
she’s found a rock or a paper. Bob does a similar thing on his photon. So the state of 
the two photons now fully describes whether Alice and Bob can win and get a 
package sent. But neither photon can communicate or affect the other. When the 
photons are observed at the detectors, you would expect them to be in win state 75% 
of the time. In other words, there should be nothing Alice and Bob can do to win more 
than 75% of the time. 
 
However, it turns out that if Alice and Bob do the right experiment on the photon, 
then the photons are in a win state 85.36% of the time (to be precise it can be shown 
to be 0.25*[2+20.5]). There is a ten-point increase in the chance of Alice and Bob 
getting to send a package. If the entanglement is removed, or Alice and Bob go back 
to normal strategies, the probability goes down to 75%. In this case the photons are on 
a single quantum computer chip, but the experiment has been performed with photons 
on separate islands, and this increase has still been observed. The mathematics 
implies what Einstein called “spooky action at a distance” faster than the fastest 
possible speed in the universe (the speed of light).  
 



The phenomenon of entanglement is at the heart of traditional quantum computing, 
and relates to instantaneous statistical correlations between measurements, even when 
they are physically separated and have no causal connection. One methodology used 
to quantify incidences of entanglement is by Bells Inequality (Shadbolt et al. 2012). 
What will be partially explained here is the CHSH inequality (Clauser 1969) a more 
practical form of Bell’s ground-breaking work. The CHSH methodology defines four 
methods of measuring simultaneous photon events across outputs 1 to 4 in Figure 1. 
These four methods involve setting all the phase shifters on the right hand side of 
Figure 1 to four different sets of values (the values will be described later). For each 
set, an experiment is run. The four sets are usually labelled A, A’, B and B’. CHSH 
says that if reality is local then for the two measurements with settings A, A’ and B, 
B’: 
 
 CHSH = E(A, B) + E(A, B’) + E(A’, B) −E(A’, B’) <= 2  (1) 
 
where E is the quantum correlation, defined for the qubits in Table 1 as: 
 

E = (N00-N01-N10+N11 )/ NTotal     (2) 
 
where N is the count at the detectors of the detected qubits. To investigate this with 
the photonic quantum chip, the four measurement configurations in Equation 1 are 
activated by setting the last four phase shifters on the right hand side of the schematic 
in Figure 1. A and A’ are the two settings for the top two, B and B’ the settings for the 
bottom two. The quantum correlation in Equation 2 is then given by: 
 

E = 9[P(1, 3)+P(2, 4)−P(1, 4)−P(2, 3)]     (3) 
 

where: 
 

P(x, y) =N(x, y) / [N(1, 3)+N(2, 4)+N(1, 4)+N(2, 3)]   (4) 
 

Where N(x,y) is the number of coincident photons counted at x and y detectors in 
Figure 1, in the same time segment. The reason for multiplying by 9 is “post-
selection”. The chip has 9 more output states that the qubit states, so we throw these 
away and multiply up the output states of interest.  
 
Most phase values for A, B, A’ and B’ will lead to the CHSH value in Equation 1 
being less than or equal to 2, thus satisfying local realism. However the following 
settings violate classical local reality (in other words lead to instantaneous 
correlations between physically separated and non-communicating qubits). First set 
the left hand side phases as shown in Figure 8: 1.5, 1.0, 1.5 and 0.0 (i.e., 1.5π, π, 1.5π 
and 0 radians). 
 
Then for A set the top two phase shifters on the right hand side to 0.5 and 1.75, for A’ 
set them to 0.5 and 1.25. For B set the lower two on the left hand side to 0.5 and 1.5, 
and for B’ to 1.0 and 1.0. The settings for [A,B], [A,B’], [A’,B] and [A’,B’] are 
shown in Figures 9 to 12 respectively. Having set these up, if you actually run 



sufficient experiments on the photonic computer and take the average value of the 
CHSH, it will be closer to 2.6 than to 2. The theoretical limit can be shown to be 
2*sqrt(2).  
 
In fact these detector settings give the maximally entangled states for the photons, i.e.; 
qubits. Figure 11 shows how adjust the phases on the right hand side of the schematic 
can move the CHSH values between the classical limit and outside the classical limit. 
 

 
Figure 6: Fixed settings of first four phase shifter.  
 
 

     
 
Figure 7: Phase shifter settings for E(A,B), in Equation 1. 
 

   
 
Figure 8: Phase shifter settings for (A,B’) in Equation 1. 



               
 
Figure 9: Phase shifter settings for E(A’,B) in Equation 1. 
 

 
 
Figure 10: Phase shifter settings for E(A’,B’) in Equation 1. 
 
There are a number of simulated quantum computers available on the Internet 
(Quantiki Wiki 2015). However the uniqueness of the Bristol computer is twofold. 
Firstly it is a photonic quantum computer, whose inputs and outputs are based on 
simultaneous photon arrival rates. This "tempo" of photon detection fits well with 
PMAP (Pulsed Melodic Affective Processing), which will be explained later in this 
next section. Secondly the simulator is actually designed - by hardware experiment 
and theory - to accurately reflect the hardware system and its interface. 
 
Thus by designing any system using their online simulator, then once the hardware 
system has been re-commissioned, the code can simply have its call structure replaced 
and it will become a hardware QC application.  
 



 
Figure 11: How phase changes effect the Bell CHSH number calculated 
 
A number of musifications have been done of the simulated QC at Bristol. For 
example, an orchestral simulation that sonifies calculations based on simultaneous 
photon counts from the four outputs. An output of the musification algorithm is 
shown in Figure 12. The experimental parameters from which the lines are calculated 
are labelled ‘BN’ for Bell CHSH number, ‘cb’ for simultaneous photon count 
quantum expectation and ‘c’ for the simultaneous photon count. There are two Bell 
Number lines: one with shorter durations, the first line, and one with longer durations 
in the second line. These are both calculated from the same Bell Number, but 
differentiated to give the desired timbral, pitch and rhythmic effects.  
 
For example the longer BN pitch is calculated as MIDI1 pitch 42 minus the Bell 
Number for 5 bars, and then 40 minutes the Bell Number for the next 5 bars after that. 
The shorter BN pitches are calculated alternately as MIDI pitch 72 plus the Bell 
number times 4, and MIDI pitch 70 plus 4 times the Bell number, for all 10 bars.  For 
each Bell number value, 10 bars of music are generated. Similar calculations are 
performed for the c and cb lines: e.g. the pitches for the c line is calculated 
deterministically from c13, c23, c14, and c24 in that order. 
 
All pitches are moved to the nearest note in C major or minor before being finalised. 
The choice of major or minor depends on the values of c13, c23, c14, and c24. Within 
certain bounds of these values the minor mode is chosen, otherwise the major mode is 
chosen. An example of the effect of this sonification, as the QC is forced towards 



entanglement through gradual phase adjustments, is available on SoundCloud (Kirke 
2015a). Note that this particular example involves the manual orchestration of the 
four lines in Figure 12 across an orchestral simulator.  
 

 
 

Figure 12: Example of the output of the musification algorithm. 

5.3 Controlling the QC with Music  

In addition to the musification, a virtual machine was designed that enabled the QC to 
driven towards entanglement using a form of computation based on music.  
 
The concept of the Virtual Machine has been around for many decades (Goldberg 
1974). The best-known virtual machines are probably the Java Virtual Machine 
(Freund and Mitchell 1999) and those that allow Apple users to run Microsoft 
Windows (VMWare Inc. 2015), and Docker for Linux (Seo 2014). These virtual 
machines allow the execution of software, which was either not designed for the 
supporting hardware or is not designed for any particular supporting hardware. Some 
of the most pervasive virtual systems are the server virtualization used in cloud 
computing services; this allows one computer to think it is multiple computers, each 
with their own OS (Guohui and Ng 2010). Some of the implementations of this 
approach use up server processing in the virtualization process (Huber et al. 2011), 
but this is felt to be outweighed by the advantages it brings. One recent and successful 



example of a research virtual machine is the neural network spread across multiple 
machines in Stanford’s Deep Learning system (Coates et al. 2013). The purpose of 
this virtual machine is to speed up operations on the neural network training at a 
lower cost.  
 
The virtual machine referred to in this chapter is not aimed at reducing computation 
time. It is more in the philosophy of the Mouse and Graphical User Interface – also 
known as Window, Icon, Mouse and Pointer (WIMP). WIMP did not increase 
processing power on computers when they were added. In fact they reduced it 
(Garmon 2010) because of the requirements for bitmapped screens and windows and 
so forth. However there are many tasks now that would be unfeasibly slow for us 
without WIMP. Furthermore there are some tasks, which would be unimaginable 
without WIMP, for example modern digital photo manipulation. Similarly high level 
programming languages at first seemed much slower than machine code. However 
they opened up the world of software to powerful new ways of thinking which could 
never have been achieved by the machine code programming approach. Changing the 
mode of Human Computer Interaction opens up opportunities for increasing the 
usefulness of computers, even though it can on the lowest level slow it down. 
 
Given the growth in virtual computing, unconventional computing has the opportunity 
to greatly expand its possible modes, limiting computation only by imagination; 
hence the field of Unconventional Virtual Computation (UVC). There has been a 
significant amount of work using simulation to run unconventional computation; 
however these have been designed to simulate a hardware or wetware system (Jones  
2010; Bull et al. 2008; Spector et al. 1999). 
 
An implementation of a hybrid unconventional computation system is described 
below: a virtual PMAP processor (Kirke and Miranda 2014) linked to the photonic 
quantum system. The PMAP processor will be used to control the Bristol photonic 
quantum system, driving it towards a maximally entangled output state.  

5.4  HYBRID UVC AND QC 

 
It has been shown previously that the Quantum Computer in the Cloud can achieve 
entanglement in the CNOT gate (Shadbolt et al. 2012) and also that PMAP can be 
used to control non-musical adaptive processes (Kirke and Miranda 1999; Kirke and 
Miranda 2014).  The interest here is to examine how the two can be combined to create 
a form of Hybrid Computer which is part Unconventional Virtual Computation and 
part Quantum Computation. It is particularly of interest utilizing PMAP and a 
photonic QC. Being essentially spike-based, PMAP is particularly suited to dealing 
with data which is rhythmic and has a tempo. Simultaneous photon arrival counts 
have some of these properties. To examine this link in the first place, the simplest 
possible process will be created. A PMAP circuit will be designed which attempts to 
move the QC towards entanglement and keep it there. Although this in itself has no 



explicit computational usage, it would be a demonstration of the ability of UVC 
(PMAP) to interface with work with a quantum computer. The circuit in Figure 13 is 
the basis for this. The design process behind this circuit will be explained.   
 
During the following experiments, the input of the QC is held at simultaneous 
photons on 1, 3 (input 0, 0). The output counts of photon simultaneous arrivals are 
sampled every second and these become the counts S13, S23, S14, and S24 seen in Figure 
14. These arrival rates are converted by a simple linear transform into tempos for a 
PMAP stream. So the higher the output count, the higher the music tempo. The 
pitches of the PMAP streams do not vary in this calculation, and so are simply just a 
repeating figure consisting of middle C and middle E. So S13, S23, S14, and S24 will 
be PMAP streams of tempos proportional to C13, C23, C14, and C24 respectively, 
each with a pitch form [C,E,C,E,C,E, …] or [1, 4, 1, 4, 1, 4, …].  
 
Looking at Equation 5, the combination of counts is replaced by musical ANDs 
(MANDs) done on the four PMAP streams. The negative signs in the combination are 
replaced by a musical NOT (MNOT) on the negative input of the MAND gate. Thus 
Equation 5 becomes: 

 
E = MAND(S13,S24, MNOT(S14), MNOT(S23)]   (5) 

 
which is what is implemented in the top part of Figure 1. However then the 
calculation of the entanglement measure requires four such calculations like Equation 
5 to be performed with the different phase shifter settings in Figures 7, 8, 9 and 10. 
 
The MSHIFT object is simply a musical shift register. So at each of the four 
calculation step it stores an output from the MAND gate being input to it. This is 
synchronized with the phase change process. So for the each of the four phase value 
sets required to calculate the Bell CHSH number (Figures 7, 8, 9 and 10) the melody 
from Equation 5 is stored in the MSHIFT register. Equation 1 (for calculating Bell 
CHSH) is approximated using the MAND for combination, and the MNOT for 
negative values, giving Equation 6. 
 
 CHSH-PMAP = MAND(MNOT(MSHIFT1), MSHIFT2, MSHIFT3,  
 MSHIFT3)       (6) 
 
 



 
 
Figure 13: Circuit which is the basis for an example PMAP / QC hybrid process 
 
This produces a PMAP output whose tempo is then used in the “Tempo à  Δα” 
object to calculate a phase shifter setting for each of the four sub-experiments. The 
phase shifter which is adjusted by the PMAP circuit is that seen in the top left of 
Figures 7, 8, 9 and 10. This corresponds to α in Figure 11. It can be seen the optimal 
value is 0.5 (i.e. 0.5π) to maximize entanglement. So each time CHSH-PMAP is 
calculated, it will result in a melody whose tempo is converted into a change delta as 
follows. If the tempo of the current CHSH-PMAP stream is greater than the tempo of 
the previous CHSH-PMAP stream, then the delta is left unchanged. If the tempo is 
less than the previous tempo, then the delta is adjusted as in Equation 7. 

 
delta à -0.5delta       (7) 

 
Then at each iteration we have: 
 
 α à α + delta       (8) 
 
If the PMAP circuit based on Equations 5 and 6 is somehow representing the CHSH 
calculation in Equation 1, then increases in tempo should be correlated to increases in 
entanglement and vice-versa. Thus the effect of Equations 7 and 8 should be to cause 
α to converge to the point of maximum entanglement, i.e 0.5π.  
 
To explain this more clearly. Suppose that α is set to 0.6π and delta is set to 0.1, and 
the first calculation (where α = 0.6π) gives a tempo of T1 from Equation 6. Then the 



delta is applied to give α = 0.7π, i.e. (0.6+delta)π. Suppose that gives a tempo of T2 
from Equation 6.  
 
If T1 < T2, i.e. if the tempo is increasing, then the next value of α will be α = 0.8π. 
But if T2 < T1, i.e. if the tempo decreases, then delta = -0.5*delta, i.e. delta = -
0.5*0.1 = -0.05. So the next value of the phase shifter will be α = (0.7-0.05)π = 0.65. 
Then if the next tempo T3 is such that T3 > T2, delta will remain unchanged, so the 
next value will be α = (0.65-0.05)π = 0.6. This is the algorithm that is being 
implemented by the “Tempo à  Δα” object in Figure 15. It is claimed that the 
combination of this object, and the PMAP and the QC system are sufficient to move 
the qubits to close to maximum entanglement, and to keep them there.  
  
If the PMAP circuitry consistently approximates the Bell CHSH calculation, then the 
system will clearly always converge – as it is using a form of gradient descent with 
decreasing gradient; and Figure 11 shows there are no local maxima. The maximum 
that the simulation can reach is a Bell Value of approximately 2.54. It was indeed 
found that the QC / PMAP system always converges to near a Bell CHSH value of 
2.54, with the α values close to 0.5 + 2.N for N = 0,1,2,…, because the maxima in 
Figure 11 actually occur at α = (0.5 + 2.N) π. Thirty examples were run, each starting 
at a random α between 0 and 2π, and with a random initial delta between 0 and 1. 
Examples of 4 such runs are shown in Figure 14.  
 
 

 
 
Figure 14: Four examples of Bell CHSH convergence using PMAP 
 
It can be seen in Figure 14 that the examples are clearly converging to a value just 
over 2.5 (the maximum possible being approximately 2.54). This convergence is 



driven by the changing tempo on the output of the PMAP circuit (the output of the 
second MAND in Figure 13). The tempos for these four examples can be seen in 
Figure 14. The second MAND output for eight iterations of an actual convergence 
example is available on SoundCloud (Kirke 2015b).  
 
Looking at twenty eight of the thirty example runs, average errors during convergence 
are shown in Figure 16. The reason only 28 are included is that two of the runs 
became stuck in local maxima. Run 12 stuck at Bell CHSH value between 2.4 and 
2.5, corresponding to phase alpha of around 0.6π rather than 0.5π. So this was still 
close to maximum entanglement. However run 13 became stuck in a local maximum 
a long way from the quantum region:  a Bell CHSH of 0.7, which corresponded to a 
phase α of around 1.84π. 

 
 

 
 
Figure 15: The four examples of Bell CHSH convergence using PMAP from Figure 
14, shown with their tempo outputs on the second MAND in Figure 13. 

 



 
 
Figure 16: The mean error during convergence across 28 examples run, across twenty 
iterations. 
 
These local maxima in the PMAP system, which are not present in the quantum 
computer, are not surprising, given how different the modalities are in the calculation: 
quantum versus PMAP. What is surprising is that only two of them were found in 30 
runs, and that only one of them actually “broke” the functionality of the system. Even 
with the outliers included, the average Bell CHSH value across all 30 runs after 20 
iterations was 2.45 and standard deviation 0.34, with most of the standard deviation 
coming from a single outlier. 
 
A form of attractor diagram is show in Figure 17 – plotting the average phase alpha 
(divided by 2π) during convergence against the mean tempo on the output of the 
PMAP circuit – for the 23 examples that converged to 0.5π. The average starting 
point is around 0.7 and all then converge to an α of around 0.5π at a tempo just under 
140. For five of the examples, the starting point and delta meant that it converged to 
2.5π rather 0.5π, which is also the same maxima of the Bell CHSH curve. These are 
in shown Figure 20. 
 
 



 
 
Figure 16: Mean Tempo vs. Mean Phase α/2π	for	23	of	the	30	examples	
	

 
Figure 18: Tempo vs. Phase α/2π	for	5	Examples	which	converge	towards	2.5	



 
Given the non-triviality of the Bell CHSH calculation, it is unlikely that the PMAP 
circuit is causing the convergence by chance. However to further examine this, 
various elements in the PMAP circuit were adjusted to confirm the system did not 
converge for any similar PMAP circuit. Firstly the MNOT after the MSHIFT register 
from Figure 13 was removed. This was then replaced, and the first MAND was 
changed to a MOR. Ten runs were done for each of these conditions. For the first the 
average final Bell value after 20 iterations was 0.85 with standard deviation 0.72. For 
the second it was average value 0.94 with standard deviation 0.89.  This compares 
unfavourably with the 30 runs with the Figure 13 set-up – the average bell value 
(including the outlier) was 2.45 and standard deviation 0.34. 
   
In terms of PMAP’s originally envisioned functionality – giving insight into the 
computation process – do the PMAP melodies give insight into what is occurring? 
Suppose two virtual “probes” are placed into the circuit in Figure 13 at the output of 
the first MAND and the output of the second MAND gate. At maximum bell value 
achievable – 2.538 – the tempo on the output of the first MAND is 142, and the tempo 
at the output of the second MAND is also 142. Away from the maximum bell values 
these tempos are different. Also the further away the PMAP system is from 
entangling the photons the lower those tempos are. This means that listening to the 
PMAP data at these two points can have three effects: 
 

• It gives an insight into the process development – the closer the system 
comes to entanglement, the more in synch the two PMAP streams will 
sound. 
 

• It gives an emotional insight into what is occurring: higher tempo in a major 
key communicates higher “happiness” (Kirke and Miranda 2014). Thus the 
closer the system gets to fulfilling its aim (maximum entanglement of qubits) 
the happier it sounds. This fulfills one of PMAPs aims to give an emotional 
insight into calculations. 

 
 

• It gives an insight into the process itself. A non-expert might observe that for 
the system to achieve entanglement requires the outputs of the two MANDs 
to be higher and more similar tempos. So it might start the non-expert 
thinking along the lines of what photon output counts would lead to this 
tempo. This provides another model of considering the nature of the 
entanglement equations, which may be more understandable to an individual 
unfamiliar with quantum computing. 

 
Although this particular PMAP process is not a practical one – we know how to 
entangle qubits – it gives a demonstration of how more useful processes could also be 
given greater transparency thanks to unconventional virtual computing, as well as 
how UVC can be combined with other forms of computation to give consistent 
functionality. 
 



The purpose of this section of the chapter has been to introduce the concept of 
Unconventional Virtual Computing (UVC). In particular a form of UVC has been 
introduced called PMAP. It has been applied in a simple hybrid system involving a 
UVC and a simulated photonic quantum computer. The UVC successfully kept the 
quantum computer qubits in a state of entanglement using gradient descent. It also 
showed how UVC can give insight into the computation going on, in novel ways.  
 
It is interesting to note that this not the first time sound has been used in quantum 
computing: researchers at the University of Bristol Centre for Quantum Photonics 
have used a system involving photo-diodes, a tone generator and a loudspeaker to 
detect the location of Hong-Ou-Mandel dips (Hong et al. 1987) in hardware photon 
beam splitters. However – and putting aside any contributions to UVC - to build a 
music-based system which can interface with real single photons, real quantum 
systems which we can't see and which are actually entangled, is to our knowledge a 
new contribution.  
 
This part of the chapter has been written from the point of view that with the 
increasing virtualization of computers, and the recognition that this year’s virtual 
computers are as fast as the hardware computers of 10 years ago, it is becoming clear 
that we are only limited in our modes of computation by our imagination. Given that 
improvements in computer efficiency are not always due to increasing computation 
speed, UVC has the potential for speeding up working with computers by making 
their processes more human-understandable.  
 
In terms of speeding up hardware computers themselves, the next section is about 
commercial quantum computers that are showing potential for large speed increases. 
 

5.5  ADIABATIC QUANTUM COMPUTING 

As of the time of publishing this chapter, there is only one company making quantum 
computers available commercially (Warren 2013). These computers are based on 
adiabatic quantum computing (Albash et al. 2015). Quantum computers discussed so 
far have focused on quantum implementation of Boolean logic gates such as AND, 
OR and NOT. An adiabatic quantum computer implements a different form of 
computation reminiscent of connectionist computing: what is known as an Ising 
model (Lucas 2013). Ising models were originally used to describe the physics of a 
magnetic material based on the molecules within it. As well as electrical charge, each 
of these molecules has a property known as spin; their spin can be +1 or -1. The total 
energy E(s) of the a collection of molecules with spin si can is modeled by: 
 
 

    (9) 



 
 
si is the spin value of molecule i, and hi represents the external magnetic field strength 
acting on that molecule. Jij represents the interactions between each molecule and its 
nearest neighbours. An adiabatic quantum computer attempts to find values of si to 
minimize the value of E(s), for a given set of of hi and Jij. The user sets the values of 
hi and Jij. Such a minimizer can be implemented using non-quantum hardware. 
However significant speedups are expected through the use of quantum hardware. 
Such hardware is now being sold by the Canadian company D-Wave.  
 
There is an ongoing debate about how the D-Wave adiabatic computer truly functions 
and what speedup it can provide; but recent results have suggested large speed 
increases for quantum hardware (Neven 2016).  This is thought by some to be due to 
quantum tunnelling (Katzgraber 2015). When searching for low E(s) states, a 
quantum system can tunnel into nearby states. Quantum tunnelling allows physical 
systems to move to states in ways that would not be possible in the classical 
Newtonian view of the world. The systems "tunnels" through to the new, usually 
inaccessible, state instantly.  
 
On the face of it, it may not seem significant that quantum computers can be built to 
solve only one this problem type. However over a period of 28 years, more than 
10,000 publications came out in areas as wide as zoology and artificial intelligence on 
applications of the Ising model (Bian et al. 2010). Any problem that can be modeled 
using elements interacting pairwise with each other, and involves minimizing some 
measure of the interaction, has the potential for being modeled as an Ising problem.   
 
To understand how to formulate problems on an adiabatic quantum computer, a 
simple musical 8 qubit problem. Looking at the Ising Equation 9, if the si are replaced 
by qi (as is usual in D-Wave notation) then the equation would be written, for 8 
qubits: 
 

E(q) = h1q1 + h2q2 + h3q3 + h4q4 + h5q5 + h6q6 + h7q7 + h8q8 
+ J1, 2 q1q2 + J1,2 q1q3 + J1,4 q1q4 + J1,5 q1q5 + ... 
+ J2,1 q2q1 + J2,3 q2q3 + J2,4 q2q4 + J2,5 q2q5 + ... 
... 

  + J8,1 q8q1 + J8,2 q8q2 + J8,3 q8q3 + J8,4 q8q4 + ... + J8,7 q8q7 (10) 
 
D-Wave computers use what is known as a chimera graph (Isakov et al. 2010), a 
portion of which shown in Figure 18. Looking at the bottom left of the Figure 18, an 8 
qubit subset q1 to q8 can be seen. The complete connection equation for this subset of 
8 qubits is actually: 
 

E(q) = h1q1 + h2q2 + h3q3 + h4q4 + h5q5 + h6q6 + h7q7 + h8q8 
+ J1,5 q1q5 + J1,6 q1q6 + J1,7 q1q7 + J1,8 q1 q8 
+ J2,5 q2q5 + J2,6 q2q6 + J2,7 q2q7 + J2,8 q2 q8 
+ J3,5 q3q5 + J3,6 q3q6 + J3,7 q3 q7 + J3,8 q3 q8 
+ J4,5 q4q5 + J4,6 q4q6 + J4,7 q4 q7 + J4,8 q4 q8                                                         (11) 



 
There are no cross terms between the first four qubits or the last four.  
 
Note there are three D-Wave models: the D-Wave One, D-Wave Two and D-Wave 
2X - with 128, 512 and 1000+ qubits respectively. All results in this chapter are run 
on D-Wave 2X hardware. All three models use the same chimera graph structure. 
 
 
5.6 Harmonising Music with D-Wave 
 
A basic harmony tool will be presented to help demonstrate D-Wave programming. 
Called qHarmony, it will generate options for a set of white piano notes that can be 
constructed as a "reasonably" assonant chord, and which can harmonize a user-
provided white piano note. This problem will be approached by mapping the notes of 
the scale of C Major to qubits,. The qubits connections in the D-Wave will be 
designed so that qubits representing notes that are closer together on the keyboard, 
contribute to a higher energy than qubits representing notes that are further away from 
each other on the keyboard. Before designing the connections, the chimera graph 
must be addressed. Because of the chimera graph, it is not so intuitive to consider a 
note-qubit mapping such as: 
 
  [c, d, e, f, g, a, b, C] <--> [q0,q1,q2,q3,q4,q5,q6,q7] 
 
The left hand side of this mapping refers to the eight-note C major scale, with 'C' 
referring to the note an octave above 'c'. In such a mapping it would be natural to 
think of qubits q0 and q1 as being "close" on the piano keyboard. However they are 
not far or close, they are not connected at all in the chimera graph. Qubits q0 and q4 
are connected in the chimera configuration in Figure 19. Similarly qubits q1 and q2 are 
not connected, however qubit q1 and q5 are connected. Looking at Figure 19 it can be 
seen that q0 connects to q4, q4 connects to q2, q2 connects to q5 and so forth up to q7. 
Thus the qubit to note mapping is done as follows: 
 
 [c, d, e, f, g, a, b, C] <--> [q0,q4,q1,q5,q2,q6,q3,q7]  
 
This mapping can be represented as what qHarmony calls an Adjacency Function 
A(n): 
 
 A(n) =  2n  ; n < 4     (12) 
  2(n-4)+1 ; otherwise 
 
In this equation, the n-th note in [c, d, e, f, g, a, c, C] will map to the A(n)-th qubit. 
Using an adjacency function allows a simpler equation to be written for the J values 
that are sent to the D-Wave. Consider the following settings for J: 
   
 Ji,j = 7 - 2*abs(A(i)-A(j))      (13) 
  
 hi = 0 



 
 

  
 
Figure 19: Part of a chimera graph for a D-Wave computer 
 
To see the effect of the equations look at Table 2 and the resulting Table 3. If the 
qubits for notes c and d are both switched on, then by Equation 11, a value of 5 will 
be added to the energy. Whereas if note 0 (c) and note 7 (C) are switched on, a value 
of 7 will be subtracted from the energy. Now because the hi are all 0 and the system is 
trying to minimize the sum E(q) , it will "prefer" the interval [c, C] to [c, d], because it 
leads to a lower energy. The second interval would be considered less consonant by 
most than the first interval. Similarly it will "prefer" the interval [d, b] to [b, C] (most 
would consider the first interval to be more consonant than the second). This 
highlights the basis of the algorithm - attempting to create reasonably consonant 
chords by reducing the occurrences of too many notes that are only a tone or a semi-
tone apart. 
 

Table 2: Relative energy contributions when qubit pairs are switched on 
 

 q0 q1 q2 q3 
q4 5 5 1 -3 
q5 1 5 5 1 
q6 -3 1 5 5 



q7 -7 -3 1 5 
 
 

Table 3: Mapping of Table 2 to musical note labels 
 
 
 
 
 
 
 
 
To actually use qHarmony system, some of the hi values need to be set to non-zero 
before calling the D-Wave 2X. The values are set based on the notes that it desired for 
the D-Wave to harmonize with. Suppose you wish to harmonize with the n-th note of 
the scale, then the complete set of equations are: 
 
 Ji,j = 7 - 2*abs(A(i)-A(j))  
 
 hA(i) =  -7  ; i = n     (14) 
  1  ; otherwise 
   
The effect of this setting of hA(i) is to give the n-th note of the scale (the A(i)-th qubit) 
far more influence on the energy calculation. If the D-Wave 2X switches on the 
related qubit, it will potentially reduce the energy far more than switching on other 
qubits. 
 
The n-th note selected in Equation 14 is called the Input Note. Different input notes 
lead to the D-Wave 2X outputs shown in Table 4. The D-Wave can be made to return 
multiple results in order of increasing energy, which is how they are shown in the 
table. Note that Table 4 has already been translated from qubits to notes, using the 
inverse of the adjacency function in Equation 12. 
 
It is possible to convert the notes into chords. Although this is not a 100% objective 
process (some note sets can represent multiple chord symbols) it is interesting to 
notice is that the lowest energy output leads to chords in a minor key for 5 out of 8 of 
the input notes. Whereas taking the second lowest energy leads to chord progressions 
in a major key for 6 out of 8 notes. This observation is used to create a further control 
input for the user in qHarmony. They can request an increased chance of major or 
minor harmonization.  
 
A prime motivation for looking at quantum computing for music is that a quantum 
computer has a non-deterministic output. The results can change from run to run, in 
an unpredictable but structured way. This is helpful in music generation systems to 
avoid lock-in, always generating the same material. It is actually possible to input 
more than one note for harmonizations by qHarmony. It is simply a case of setting the 

 c e G b 
d 5 5 1 -3 
f 1 5 5 1 
a -3 1 5 5 
C -7 -3 1 5 



weights of multiple note qubits to -7. This allows an extension of Table 4 to, for 
example, Table 5. 
 
 

Table 4: Example chord outputs from the qHarmony algorithm 
 
 Input 

Note: 
None c d e F g a b C 

Lowest 
energy 
output: 

 dfb 
 

ceaC 
 

dgb 
 

ceaC 
 

dfb 
 

dgb 
 

ceaC 
 

dgb 
 

ceaC 
 

Other 
low 
energy 
outputs: 

dgb cefac 
 

dfb 
 

cefaC 
 

dfgb 
 

dfgb 
 

cefaC 
 

dfb 
 

cefaC 
 

ceaC 
 

cegaC 
 

 cegaC 
 

cefaC 
 

cegaC 
 

cegaC ceaC 
 

cegaC 
 

     degb 
 

fgb 
 

degb 
 

dfab dfgb 
 

dgb 

       dg 
 

 degb 
 

dfb 
 

 
 
 

Table 5: Example chord outputs  with two note constraints from the qHarmony 
algorithm 

 
 Input 

Note: 
cd cf de cb Ab ga bC fg 

Lowest 
energy 
output: 

 cdfaC 
 

cefaC 
 

degb 
 

cegbC 
 

dfab 
 
 

cegaC 
 

cegbC 
 

dfgb 
 

Other 
low 
energy 
outputs: 

dgb cfaC 
 

ceaC dgb ceaC dgb dgb dfgb 

dfb dfb deb dfb cefaC cegC dfb cegaC 

  ceaC   ceaC cdfab  dfgb  
  df      cdeC  
        cefabC  
 
 
The D-Wave 2X processor will now be used to generate a harmony for a simple tune. 
qHarmony is actually a hyrbid algorithm: part quantum computing, part classical 
computing. The classical algorithm takes as input a melody, and a list of mark-ups for 
where the melody is to be harmonized, the nnotes to be input to the quantum harmony 
generator, and whether the user would prefer major harmonies, minor harmonies or 
either. It then moves through the melody, calling the quantum algorithm described 
above at each harmony point. If a minor harmony is preferred, it selects the lowest 
energy output, if a major harmony the second lowest energy output. If neither is 



constrained, it randomly selects  one of the quantum computer's lowest energy results. 
Note that if more than one input note is used, then the system ignores the major / 
minor request, on the basis that its limited model 8 qubit is unable to deal usefully 
with too many constraints. 
 
As an example consider the melody in Figure 20. Harmonies will be generated with 
the following constraints: 
 

• Using the first note of the bar as the input note, with major / minor 
unconstrained 

• A second run using the first note of the bar as the input note, with major / 
minor unconstrained - to show quantum fluctuations 

• Using the first and last notes of the bar as the input notes, with major / minor 
unconstrained 

• Using the first note of the bar as the input note, with bars 1-5 major 
harmonies are requested, bars 6-12 minor, 13 to the end major 

 
The results, using the hardware quantum computer D-Wave 2X, are shown in Figures 
21, 22, 23 and 24.  

 
 
Figure 20: Example melody to send to hybrid algorithm 
 
 
There are a few things worth noting about these figures. The most obvious is that the 
quality of harmonies produced is not particularly high. There are two main reasons for 
this. The first is that only an 8 qubit system was used (to simplify this introduction to 
adiabatic quantum programming). This limits the harmonies to white notes. Such a 
constraint is rare in most mainstream composition. However, introducing adiabatic 
quantum computing with a larger number of qubits (say 13 qubits) would have 
required much concentration on the issues of the chimera map. The connectivity of 
the D-Wave 2X outside of 8 qubit segments becomes more complex, as seen in Figure 
20.  
 
Furthermore, for introductory purposes, it was desired to use a simple harmony 
generation algorithm that didn't incorporate past results. qHarmony takes no account 



of the context of previous harmonies. For example if a composer uses an Am/C chord 
to harmonize a melody segment, then that choice of chord will effect the next chord. 
Not so in this simplified example above. However, the example does fulfil its function 
- introducing the basics of the chimera configuration constraints, and showing how 
one should "think" when using an adiabatic QC (in terms of E(s), hi and Jij). 
 

 
 
Figure 21:  Melody in Figure 20 harmonized using the first note of the bar as the 
input note, with major / minor unconstrained. 
 

 



 
 
 
Figure 23: A second harmonization using the same method as Figure 22. 
 

 
 
Figure 24: Harmonization of Figure 21 using the first and last notes of the bar as the 
input notes, with major / minor unconstrained. 
 
 

 



 
Figure 24: Harmonization of Figure 20 using the first note of the bar as the input 
note, with bars 1-5 major harmonies are requested, bars 6-12 minor, 13 to the end 
major. 
 
 
The harmonization in Figure 21 (constrained by one note, and no key mode 
constraint) is a fairly acceptable, if not traditionally optimal, harmony. The 
harmonization in Figure 22 has the same constraints but provides an alternative 
presented by the quantum computer. These two harmonizations are sufficiently 
different to highlight alternative harmonic properties of the melody to a composer. 
Figure 23's harmonies sound comparatively unusual and unresolved. This is because 
the a second note is added to the constraints in each bar - and those second notes are 
mostly what would be described as passing notes in the melody - rather than 
significant harmonic notes.  
 
The final example in Figure 24 returns to the one-note constraint, and adds a 
constraint of preferring certain bars to be minor and certain to be major. It is an 
attempted constraint because the major / minor division depends on what energy 
solutions are returned by the D-Wave 2X - and this itself is non-deterministic. The 
algorithm returns bars 2-5 as major (all correct); bars 6-12 are correctly minor except 
for bars 8 and 9; bars 13-15 are incorrectly minor but 16 is major as requested. This 
could be viewed as an "accuracy" of 66%. This is a misnomer as it is precisely the 
uncertainty that provides part of the motivation for quantum computer music.  
 
qHarmony only takes advantage of one aspect of quantum computing: its non-
deterministic nature and ability to return multiple results. However the quantum part 
of the algorithm is so simple that it does not require the potential speed-ups available 
from quantum computers. The D-Wave 2X has over 1000 qubits available, and enters 
states of superposition and entanglement during its calculations. Even the simple 8 
qubit algorithm above will have utilized these quantum states in coming to the results 
in Figures 21, 22, 23 and 24.  
 
However a much more complex and constrained problem would be required to utilize 
all advantages of quantum computing. Constraint-based and spectral composition, 
together with musical/sonic pattern matching algorithms are areas which may benefit 
from adiabatic quantum computing, due to their potential computational complexity. 
In essence, any complex musical problem that can be fully or partially modelled as an 
Ising system, could benefit from adiabatic quantum computation. 

5.7 Final Remarks 

This chapter has introduced research into quantum computing and music. This was 
done through a series of examples of research applying quantum computing and 
principles to musical systems. By this process, the key elements that differentiate 



quantum physical systems from classical physical systems were introduced, and what 
this implied for computation. This allowed an explanation of the two main types of 
quantum computers being utilized inside and outside of academia: gate-based 
quantum computing and adiabatic quantum computing.  
 
For gate-based computing, an example was given of an active sonification of a 
simulated CNOT-MZ gate and a hybrid system using musical computation and the 
same CNOT-MZ. For adiabatic quantum computing, an example was given of a 
simple harmony generation system using an actual hardware quantum computer, 
rather than a simulated one. The harmony algorithm made use of the non-
deterministic multi-result nature of the quantum computing, but not of the potential 
speed up. 
 
The idea of quantum computer music still is incipient. It is difficult to predict how it 
might develop from here. In this chapter we introduced a number of concepts and 
ideas, which are still in the early stages of development not only on the technical side 
but also on the musicological side. New musical concepts and compositional 
approaches need to be developed in terms of quantum thinking. New quantum 
mechanics-compatible representations of sound and compositional problem 
formulations need to be developed for a truly new approach to music: quantum 
computer music. One vein that seems to have greater potential for further 
development concerns granular sound synthesis. Gabor’s notion of acoustic quanta is 
susceptible to the mathematical tools routinely used to describe the mechanics of 
quantum computing. 
 
Did Max Plank ever envisage that his work might end up influencing the future of 
music too?  
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5.9 Questions 
 
1. What is one key difference between quantum and classical physics? 
2. What properties of quantum systems provide the speed up advantage over classical 
computers? 
3. Name two proposed substrates for traditional quantum computing. 
4. What is wave-particle duality? 
5. What property of photons is manipulated by a photonic quantum computer? 



6. What is the difference between a NOT gate and a CNOT gate? 
7. What is a beam splitter? 
8. What is entanglement? 
9. Why is the CHSH inequality used instead of the original Bells inequality? 
10. What is the classical limit? 
11. What is the quantum correlation? 
12. How many experiments are required for each Bell's inequality calculation? 
13. What is the difference between sonification and musification? 
14. What is the difference between unconventional computation and unconventional 
virtual computation? 
15. What form of calculation do traditional quantum computers use, as opposed to 
adiabatic quantum computers? 
16. What was an Ising model originally designed to simulate?  
17. What do the hi and Jij represent in an Ising model? 
18. What does an adiabatic quantum computer attempt to do with the energy E(s)? 
19. Calculate the energies of some example 8 qubit lists using the two note harmony 
system E(s) equation. 
20. How might you turn the two-note harmony system into a system that encourages 
dissonance? 
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