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Assessing the size of a twin-cylinder wave energy converter designed for
real sea-states

Dali Xua,1, Raphael Stuhlmeiera, Michael Stiassniea,∗

aFaculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel

Abstract

We discuss the hydrodynamics of a wave energy converter consisting of two vertically floating, coaxial

cylinders connected by dampers and allowed to heave, sway and roll. This design, viable in deep water

and able to extract energy independent of the incident wave direction, is examined for monochromatic

waves as well as broad-banded seas described by a Pierson Moskowitz spectrum. Several possible device

sizes are considered, and their performance is investigated for a design spectrum, as well as for more

severe sea states, with a view towards survivability of the converters. In terms of device motions and

captured power, a quantitative assessment of converter design as it relates to survival and operation is

provided. Most results are given in dimensionless form to allow for a wide range of applications.

Keywords: Wave energy; survivability; floating cylinders; broad spectra; deep water.

1. Introduction1

The intention of this study is two-fold, providing on one hand a rather comprehensive account of the2

hydrodynamics of a system of two coaxial, vertically–floating cylinders envisioned as a model for a wave3

energy converter (WEC), and subsequently assessing the size and survivability of this system for various4

sea–states. The optimal size of a floating–body WEC will depend significantly on the length of the waves5

typically encountered. This dependence highlights a major difficulty of floating-body WEC design: the6

WEC must be small enough to undergo significant motions, and so generate power, and yet large enough7

to be robust and survive the challenges of the marine environment.8

The system proposed here to model a WEC relies on the relative motion of two bodies, rather than9

on the motion of a body relative to a fixed frame (which may be either the sea bed or a bottom fixed10

structure), and is termed a wave-activated body or self-reacting device. Such devices may be installed in11
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deep water, where the large distance between the sea-bed and the surface might otherwise be prohibitive.12

The mooring system for such devices has the sole role of counteracting drift and current forces, allowing13

the weight of moorings and anchors to be relatively small (see [1] and references therein).14

Due to their ubiquity in ocean engineering, a rich literature exists on the interaction of water waves and15

cylindrical bodies. The radiation problem in heave only was addressed by Ursell in [2], and the scattering16

problem by Dean and Ursell [3]. Miles and Gilbert [4] later employed a variational approximation to17

provide the far field potential for scattering by a circular dock, along with the lateral forces on the18

dock. However, their results were subsequently found to contain several inaccuracies, in particular in19

their calculations of the radiation forces. This prompted Garrett [5] to take up the problem afresh, and20

establish the scattering forces for a circular dock. Subsequently, Black et al. [6] revisited the application of21

variational methods to the radiation and scattering problem by several cylindrical geometries, employing22

Haskind’s theorem to give the wave forces. This latter, variational approach did not yield the added23

mass and damping coefficients. Hence, some years later Yeung [7] studied the radiation problem of a24

vertical cylinder floating on the water surface and undergoing the combined motions of heave, sway and25

roll, and obtained these hydrodynamic coefficients. More recently, Bhatta [8] also gave the added mass26

and damping coefficient of a vertical cylinder undergoing heave motion, in terms of the two dimensionless27

ratios characterizing the problem (depth to radius and draft to radius). While prior work had focused on28

the finite depth case, more recently9 treated by means of an analytical approximation due to Leppington29

the forces on a truncated vertical cylinder in water of infinite depth.30

In the context of wave energy, the consideration of floating cylinders as models of WECs goes back at31

least to Berggren & Johansson [10], who approximated a device described by Hagerman by two floating,32

axisymmetric cylinders oscillating in heave, albeit without any considerations of captured power. More33

recently, Garnaud and Mei [11] revisited the single buoy with the intention of studying it in densely34

packed arrays, giving the captured power for buoys hanging from a large frame. Such a floating, single-35

cylinder absorber was also employed by Child and Venugopal [12] in their discussion of optimization of36

WEC arrays, by Borgarino et al [13] as a generic model to investigate wave interaction effects, and others.37

Similarly, Teillant et al [14] employ an axisymmetric, heaving two-body device for their study of WEC38

economics, without detailed hydrodynamic considerations. A slightly different fixed–reference WEC was39

considered by Engström et al [15], who added a sphere under the floating cylinder. This two-body40
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configuration of floating cylinder and submerged sphere was then assumed connected to the sea bed by a41

generator, and its performance analyzed. Zheng et al [16], in a generalization of Berggren & Johansson42

to three modes of motion, considered the hydrodynamics of two unconnected, coaxial floating cylinders,43

again without considering power capture. The power capture for a self-reacting device consisting of two44

vertical cylinders moving in heave was recently obtained for attacking monochromatic incident waves by45

Wu et al [17], albeit with a rather terse discussion of their results.46

The present work combines features of several previous studies, and considers the novel case of two47

floating cylinders, each allowed to move in all three modes of motion available to an axisymmetric body,48

connected by an idealized power take–off (PTO) represented by a linear damper of constant charac-49

teristics.2. Subsequent to a detailed description of the wave–structure interaction problem, based on50

eigenfunction expansion techniques, two main parameters characterizing the device size and damping51

coefficient are examined. The performance of WECs of different sizes, in terms of explicit values for the52

motions and captured power, is then given from solutions of the governing equations for various incident53

waves.54

We undertake our parametric study with an eye towards applications, and thus also consider irregular55

waves in the form of a Pierson-Moskowitz (PM) spectrum (see e.g. recent work on optimizing a floating56

box-barge under irregular waves by Bódai & Srinil [19]). While scatter diagrams may be available for some57

sites where an assessment of the wave resource has been carried out, where this is not the case estimates58

based on wind speed will need to be made. To this end, we present our data nondimensionalized on the59

basis of wind speed, which uniquely determines the PM spectrum. Values of significant wave height and60

peak period may be readily derived therefrom, and the data recast in these terms if desired. When an61

incident spectrum is considered, it is no longer possible to assign a simple value to the displacement in62

heave, sway, and roll of a floating body. To remedy this, the notion of significant displacement, derived63

from the spectral description of the sea surface, is introduced to give some quantitative information about64

the three motions of the device. This also allows for a measure of survivability for various WEC sizes65

and sea-states, by examining under which conditions the device displacements grow large. An illustrative66

grading system is devised to categorize the various performance metrics of the self-reacting WECs.67

The paper is organized as follows: in Section 2 we present the physical set-up of the problem. This68

2While studies on PTO control show a promising potential for enhancing performance, particularly for devices with a
narrow-banded natural response, practical and robust applications must still be developed (see Hong et al [18]).
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consists in presenting the twin cylinder WEC and characterizing its geometry, and subsequently presenting69

the PM spectra for design and survivability considerations. In Section 3 we present, very briefly, the basic70

mathematical formulation of the governing equations and sketch the solution procedure. Subsequently,71

we employ the hydrodynamic coefficients and forces found from solving the equations of Section 3 to72

characterizing WEC design under monochromatic waves in Section 4, and under irregular waves given73

by a Pierson-Moskowitz spectrum in Section 5. A discussion of these results with a view to applications74

is given in Section 6, which is subdivided into discussions of power capture, survivability, and a brief75

synthesis of the preceding sections. Finally, Section 7 presents some concluding remarks and perspectives.76

2. Physical preliminaries77

2.1. Geometry78

The geometry and basic parameters of the twin-cylinder WEC are depicted in Fig 1. The Oxy plane is79

the still water surface and the z-axis points upwards. (r, θ) are polar coordinates in the horizontal plane,80

such that x = r cos θ and y = r sin θ. The upper cylinder floats on the water surface with a draft H1. To81

provide for flotational stability, it is important to note that the mass of this cylinder is not uniformly82

distributed, but is divided into two parts with drafts l1 and l2 and densities ρ1 and ρ2, respectively. The83

lower cylinder is entirely submerged with a draft H3, and like the upper cylinder is assumed divided84

into two parts with densities ρ3 and ρ4 and drafts l3 and l4, respectively. The distance between the two85

cylinders in equilibrium is H2. Both of them have the same radius R, and the water depth h is taken86

to be very large compared to the attacking wave length, with the intention of approximating deep-water87

conditions.88

As shown in Fig. 1, the two cylinders are connected by a continuously distributed dashpot, which89

connects the upper edge of the lower cylinder with the lower edge of the upper cylinder at r = R. The90

integrated dashpot coefficient is C, which results in a dashpot coefficient per length C
2πR . The dashpot91

is considered to represent a PTO, which generates energy from both the relative heave and roll motion92

of the cylinders.393

Since the two cylinders are axisymmetric, only these three modes are studied. The heave and sway94

motions will give rise to relative motions in z and x directions, respectively. For waves propagating in the95

3Due to the small effect of sway motions, it is not necessary to consider power take-off in the sway mode for this device
geometry.
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Figure 1: Schematic depiction of the WEC geometry.

x−direction, the two cylinders roll around the y-axis in the mean free surface (z = 0), yielding a relative96

angle about this axis.97

This formulation of the problem leaves us with thirteen parameters ({Hi | i ∈ {1, 2, 3}}, {lj , ρj |98

j ∈ {1, 2, 3, 4}}, R, and C) characterizing the WEC. Before proceeding, we will make several restrictions99

to ensure that the problem remains manageable; nevertheless, we shall see that a wealth of interesting100

phenomena and properties of the WEC are still accounted for.101

For simplicity, we will take the drafts and distance between the cylinders identical to their radius,

and denote the single size parameter by q, i.e.

H1 = H2 = H3 = R ≡ q. (1)

For the density distribution of the cylinders, we shall assume

ρ1 = ρ3 =
3

4
ρ, ρ2 = ρ4 =

3

2
ρ, l1 = l3 = 2l2 = 2l4 =

2

3
q, (2)

where ρ is the density of the water. Thus, the design problem is reduced to two parameters, a size q102

and dashpot coefficient C, whose interplay with incoming waves of certain frequencies is the issue at103

hand. We shall see that suspending the lower cylinder at a depth 2q below the still water surface has104

the desired effect of rendering its motion rather small, and thus creating a relatively stable point for the105

upper cylinder to react against.106

There are several reasonable criteria which may govern the design of a WEC. Evidently, the WEC107

should capture as much of the incoming wave energy as possible. At the same time, as economic viability108

5
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is the prime driver behind wave energy technology, the costs should be kept low; in practical terms, this109

may mean that device size should be kept small. Competing with this are concerns over the survivability110

of the converter, which dictate that displacements of the WEC not be too large under severe conditions,111

favoring larger devices. We shall return to these issues in detail in later sections.112

2.2. The Pierson Moskowitz spectrum113

One of the most common descriptions of a sea-state for engineering purposes is the unidirectional

Pierson Moskowitz (PM) spectrum, here given as a function of wavenumber k :

S(k) =
0.00405

k3
exp

{
−0.55411

g2

U4k2

}
, (3)

where U is the mean wind speed at a height of 10 m above the mean surface level, and g is the gravitational114

acceleration. This empirically derived formula gives the energy distribution for wind waves in deep water,115

and differs from the JONSWAP spectrum only by the addition of a spectral–peak enhancement factor.116

This spectrum (3) readily yields a number of important values associated with the sea-state:117

H(1/3) = 0.24181U2/g, (4)

kp = 0.66570g/U2, (5)

where H(1/3) is the significant wave height and kp is the wave number of the spectral peak for a given

wind speed U . This makes it easy to present subsequent results in an alternative form when desired. A

monochromatic wave with wavenumber kp and the same wave energy density as the PM spectrum will

have an amplitude

a0(kp) = 0.08549U2/g. (6)

For subsequent illustration it will be necessary to have some concrete, physical examples, which means118

specifying a sea-state via a wind speed value U. Our design conditions (denoted by a subscript d) will119

correspond to a wind speed Ud = 10 m/s, while we will consider two “severe states” (denoted by subscripts120

s1 and s2) with regard to the survivability, corresponding to wind speeds Us1 = 15 m/s and Us2 = 20121

m/s. These are summarized in Table 1.122

6
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Table 1: The wind speed U, significant wave height H(1/3), peak wavenumber kp, and peak wavelength λp = 2π/kp
associated with PM spectra used for design and survivability considerations.

Sd Ss1 Ss2

U (m/s) 10 15 20

H(1/3) (m) 2.47 5.55 9.87

kp (1/m) 0.065 0.029 0.016

λp (m) 96.30 216.67 385.19

3. Governing equations123

Our approach to solving the wave-structure problem for the twin-cylinder WEC relies on domain124

decomposition and eigenfunction expansion methods (in the context of floating cylinders, see Black &125

Mei [20], who give a comprehensive description of the method, or more generally, Linton & McIver [21],126

or Zheng et al [16] for a recent application to floating cylinders). As the full formulation is rather lengthy,127

we only indicate the most important equations, and refer the interested reader to work cited above.128

The fluid is assumed to be incompressible and inviscid, and the flow irrotational. Introducing a

velocity potential Φ(r, θ, z, t), and assuming periodic motion of frequency ω, the potential is separated

into the spatial and temporal parts,

Φ(r, θ, z, t) = φ(r, θ, z)eiωt, (7)

where φ(r, θ, z) satisfies the Laplace equation:

φrr +
1

r
φr +

1

r2
φθθ + φzz = 0, (8)

subject to the linearized boundary conditions on the free surface z = 0 and on the bed z = −h:129

φz − σφ = 0, on z = 0, r > R, (9)

φz = 0, on z = −h, (10)

where σ = ω2/g.130

At the interface between structure and fluid, the normal velocity of the structure must equal that of

the adjacent fluid particles, written in terms of the potential (7):

∂Φ

∂n
= Vn, (11)

7
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where Vn is the component of the structure’s velocity in the direction of the outward pointing normal

vector n, which may be applied at the equilibrium surface under the assumptions of linearity. Owing

to this very linearity, we continue with a decomposition of the problem into two parts: one due to the

waves (φS) scattered from the structure (which is assumed fixed) by the incident wave field, and one due

to the waves (φR) radiated by the motion of the structure, such that φ = φS + φR. φS is decomposed

further into the potential due to the incident wave φI and that due to the waves diffracted from the fixed

structure φD, where

∂φD
∂n

= −∂φI
∂n

on the body surface S. (12)

The remaining radiated part of the potential φR must then satisfy (11), where the normal velocities are131

to be determined from the equations of motion. We shall consider an incident monochromatic wave with132

amplitude a0, so that φI is known a priori.133

Introducing the as-yet unknown displacements of the upper (j = 1) and lower (j = 2) cylinder for the134

three modes of motion135

ζzj = ζzj0e
iωt for heave, (13)

ζxj = ζxj0e
iωt for sway, (14)

θj = θj0e
iωt for roll, (15)

where ζzj0, ζxj0 and θj0 are the complex amplitudes of the corresponding displacements, we can write

the boundary condition (11) for the spatial part of the total potential φ in the following form

φz = iωζz10 − iωθ10r cos θ, on z = −H1, r < R, (16)

φz = iωζz20 − iωθ20r cos θ, on z = −(H1 +H2), z = −(H1 +H2 +H3), r < R (17)

φr = iωζx10 cos θ − iωθ10(z0 − z) cos θ, on −H1 < z < 0, r = R, (18)

φr = iωζx20 cos θ − iωθ20(z0 − z) cos θ, on − (H1 +H2 +H3) < z < −(H1 +H2), r = R, (19)

where (16) is posed on the bottom of the upper cylinder, (17) on the top and bottom of the lower cylinder,136

(18) on the sides of the upper cylinder, and (19) on the sides of the lower cylinder. These conditions137

are supplemented by Sommerfeld’s radiation condition, requiring the diffracted and radiated waves to be138

outgoing as r → ∞. Due to the configuration of two axisymmetric floating cylinders, we must consider139

three fluid regions, one between the coaxial cylinders (region II), one between the lower cylinder and the140

8
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I I

Figure 2: Domain decomposition for the twin-cylinder problem.

bed (region III), and one outside the vertical extension of the cylinders (region I), as depicted in Figure141

2. Subsequently the scattering problem is divided into three problems, one in each subdomain, and the142

radiation problem for each of the three modes of each of the two cylinders is divided into three problems.143

The reader may appreciate the effort involved in keeping track of, solving, and subsequently matching144

solutions, of 21 problems for the potentials involved. These potentials are then applied in calculating the145

forces on the two cylinders, in the form of pressures from the surrounding fluid.146

The full expressions for the exciting, hydrodynamic, and hydrostatic forces are lengthy and will not147

be given. We note only that we have found excellent agreement between our results and published work148

[5, 7, 10, 16, 8, 11, 22].149

The forces due to the fluid, together with those due to the dampers are employed with Newton’s

second law to yield the body motions. The first two equations, (20)-(21), equate the vertical (heave)

forces with the masses and accelerations of the upper and lower cylinder, respectively. The next, (22)-

(23), are those for the horizontal (sway) forces. The final pair, (24)-(25), equate the torques about the

9
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y−axis to the angular acceleration times moment of inertia of the upper and lower cylinder, respectively.

Fz1 + Fz1→z1 + Fz2→z1 + Fhs,z1 + Fd,z1 = −ω2ζz10M1, (20)

Fz2 + Fz1→z2 + Fz2→z2 + Fhs,z2 + Fd,z2 = −ω2ζz20M2, (21)

Fx1 + Fx1→x1 + Fx2→x1 + Fy1→x1 + Fy2→x1 = −ω2ζx10M1, (22)

Fx2 + Fx1→x2 + Fx2→x2 + Fy1→x2 + Fy2→x2 = −ω2ζx20M2, (23)

Fy1 + Fx1→y1 + Fx2→y1 + Fy1→y1 + Fy2→y1 + Fhs,y1 + Fd,y1 = −ω2θ10I1, (24)

Fy2 + Fx1→y2 + Fx2→y2 + Fy1→y2 + Fy2→y2 + Fhs,y2 + Fd,y2 = −ω2θ20I2, (25)

The terms appearing in the above equations are given in Table 2.

Mi, i ∈ {1, 2} Mass of cylinder i.

Ii, i ∈ {1, 2} Moment of inertia of cylinder i about the y-axis.

Fxi, Fyi, Fzi, i ∈ {1, 2}
Exciting forces/torques on cylinder i in the x, y, and z di-
rections

Fαi→βj , i, j ∈ {1, 2}, α, β ∈ {x, y, z}
Hydrodynamic force/torque of the α motion of cylinder i
in the β direction of cylinder j.

Fhs,yi, Fhs,zi, i ∈ {1, 2}
Hydrostatic forces/torques in the y and z direction on cylin-
der i.

Fd,yi, Fd,zi, i ∈ {1, 2}
Forces/torques caused by the damping system in the y and
z direction on cylinder i.

ζxi0, ζzi0, θi0, i ∈ {1, 2}
Displacement amplitudes of cylinder i in sway (ζx), heave
(ζz), and roll (θ).

Table 2: Notation for terms appearing in (20)–(25). Terms with subscripted x or z are forces, and terms with subscripted
y are torques.

150

The masses and moments of inertia have the explicit form (see (1), (2))

M1 = M2 = ρπq3,

I1 =
73

108
ρπq5,

I2 =
757

108
ρπq5,

10
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and the damping forces are

Fd,z1 = −iωC(ζz10 − ζz20)eiωt,

Fd,z2 = iωC(ζz10 − ζz20)eiωt,

Fd,y1 = −1

2
iωCR2(θ10 − θ20)eiωt,

Fd,y2 =
1

2
iωCR2(θ10 − θ20)eiωt.

After the displacements of the cylinders are obtained, the captured power can then be calculated as

follows:

Pa =
1

2
Cω2(ζz10 − ζz20)(ζ∗z10 − ζ∗z20) +

1

4
Cω2R2(θ10 − θ20)(θ∗10 − θ∗20), (26)

where ζ∗zj0 and θ∗j0 are the complex conjugates of ζzj0 and θj0, respectively.151

4. Design of the WEC for monochromatic waves152

We now undertake to examine the design of the WEC, based on the three parameters characterizing the153

environmental conditions ρ, g, and U, the two WEC parameters q and C, and the seven WEC performance154

parameters calculated from the wave-structure interaction problem Pa, ζx10, ζx20, ζz10, ζz20, θ10 and θ20.155

An application of Buckingham’s π theorem [23] yields that there will be nine dimensionless quantities that156

characterize this problem: q
U2/g , C

ρU5/g2 , Pa

ρU7/g2 ,
ζzj0
U2/g ,

ζxj0

U2/g , and θj0, where j ∈ {1, 2} again denotes the157

upper and lower cylinder, respectively. In the sequel, we will make use of a ∼ to denote nondimensional158

variables, i.e., the nine dimensionless quantitites above will be q̃, C̃, P̃a, ζ̃zj0, ζ̃xj0, and θ̃j0.159

4.1. The WEC in heave motion under a monochromatic wave160

For simplicity of presentation and ease of understanding we initially consider only the heave mode,161

motivated by the fact that, while sway and roll are generally coupled, they are both independent of heave.162

The response of the WEC under incoming monochromatic waves is first considered, where our physical163

test-case corresponds to a monochromatic wave of wavelength 96.3 m (equal to that at the peak of the164

design spectrum Sd) and an amplitude ad = 0.87 m, such that the total energy density of the wave is165

equal to that of Sd, see (6) and Table 1.166
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4.1.1. Step 1: determination of the WEC’s size167

We first choose the dashpot coefficient C to be zero, which means that the two cylinders are freely

floating. In this case, once the incident monochromatic wave is given, the only WEC parameter to be

determined is q. Dimensional analysis can then be applied to the problem of determining the quantity

of interest q for the motions of the upper cylinder ζz10 and the lower cylinder ζz20 separately. Once

again, Buckingham’s π theorem yields that, for the variables ρ, g, U, q, and ζzj0, there exist exactly two

nondimensional quantities, which must be related by a relation

ζ̃zj0 = Ψ1j(q̃). (27)

The maximum displacement of the cylinder j as a function of size q̃ thus corresponds to the extrema of168

Ψ1. Equation (27) is plotted in Figure 3 for the upper and lower cylinders.169

Figure 3: Displacement amplitudes for each of the two freely floating cylinders (C = 0) under the design monochromatic

wave. ζ̃z10: upper cylinder, thick line; ζ̃z20: lower cylinder, thin line.

As we are ultimately interested in relative displacements of the cylinders, the global maximum of170

Ψ11 (ζ̃z10) and the local maximum of Ψ12 (ζ̃z20) which occur at q̃ = 0.97 yield the chosen design size.171

4.1.2. Step 2: determination of the dashpot coefficient C172

The maximum displacement in Fig. 3 is related to the resonance between the cylinders and the incident173

monochromatic wave. The introduction of a damper, while changing the magnitude of the displacement,174

can be shown to have no effect on the location of the resonant maximum, which remains q̃ = 0.97 (see175

Fig. 3) even for various values of C. Thus, the size of the WEC determined from the freely floating case176
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is used to specify the damping coefficient C.177

Given the unique relationship between q and ζzj0, independent of C, described above, the dimensional

analysis yields an equation

P̃a = Ψ2(C̃; q̃), (28)

where Ψ2 is plotted in Fig. 4 for the WEC size as determined in the last section (q̃ = 0.97).178

Figure 4: The relationship between the captured power P̃a and the dashpot coefficient C̃ for the heave motion induced by

the design monochromatic wave, where q̃ = 0.97.

We elect to determine the dashpot coefficient C from the maximum of captured power Pa in Figure179

4, calculated from the heave terms only in (26). This results in C̃ = 0.32 and P̃a = 0.0034.180

Thus, the WEC design for a monochromatic wave has been determined. Taking the design wave181

introduced in the beginning of Section 4 as a physical example, the WEC has the dimensions q = 9.9m182

and C = 3.3× 105Ns/m, and can capture Pa = 3.5× 105 Watt from a monochromatic wave 96.3 m long183

and 0.87 m in amplitude.184

4.2. General motions of the WEC in monochromatic waves185

Having treated the simpler case of heave-only motion, we now consider the general case in which the186

WEC is additionally allowed to undergo sway and roll motions. Akin to the previous section which only187

dealt with the heave motion, the design procedure of the WEC in the general case is also divided into188

two steps, as illustrated in detail below.189
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4.2.1. Step 1: Determination of the WEC’s size q190

We start once again with the freely floating case, where the dashpot coefficient C = 0. Using the191

equations of motion (20)-(25), we can obtain the displacements of the two cylinders in the x and z192

directions, and the angle around the y axis.193

Once the monochromatic wave is given, or equivalently, once the mean wind speed for the corre-194

sponding PM spectrum is given (recall that this can be used to specify a monochromatic wave for design195

purposes by (6)), the physical process of determining the size of the WEC can be written in the following196

dimensionless form:197

ζ̃zj0 = Ψ1j(q̃), (29)

ζ̃xj0 = Ψ2j(q̃), (30)

θj0 = Ψ3j(q̃), (31)

where ζzj0 and ζxj0 denote the amplitudes of the vertical and horizontal displacements respectively, θj0198

is the amplitude of the angle around the y axis, and j = 1, 2 corresponds to the upper and lower cylinder,199

respectively. We now seek the maxima of the functions Ψ1j ,Ψ2j and Ψ3j , which correspond to the six200

curves presented in Fig.5.201

Due to the increase in number of modes, the picture of the displacements is more complex than in the202

preceding section. It may be observed that the heave mode is decoupled from the sway and roll modes,203

yielding again the global maximum at q̃ = 0.97. The sway and roll modes are coupled, and are observed204

to present a global maximum for relative displacement at q̃ = 0.61, resulting in an ambiguous situation205

for determining the size of the WEC.206
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(a) upper cylinder (b) lower cylinder

Figure 5: Displacement amplitudes of the two freely-floating cylinders (C = 0) in heave, sway and roll under the design

monochromatic wave. ζ̃zj0: amplitude of the vertical displacement; ζ̃xj0: amplitude of the horizontal displacement; θj0:

amplitude of the angle around the y axis. j = 1, 2 correspond the the upper and lower cylinders, respectively.

4.2.2. Step 2: Determination of the dashpot coefficient C207

As in the preceding section, we now suppose that the size of the WEC is given. The captured power

Pa then depends on the dashpot coefficient C. The determination of optimal power absorption as a

function of dashpot coefficient is described in dimensionless form by

P̃a = Ψ4(C̃; q̃), (32)

where, as we have seen, there is some flexibility in choice of q. The function Ψ4 is plotted in Fig. 6 for208

both q̃ = 0.61 and q̃ = 0.97. For the device operating optimally in heave (q̃ = 0.97, thick line) there is209

a unique maximum at C̃ = 0.34 with P̃a = 0.0035 (denoted Case E), very close to the heave-only case210

discussed in Section 4.1. For the roll–sway optimized device (q̃ = 0.61, thin line) there are two local211

maxima C̃ = 0.035 and C̃ = 1.34, with corresponding P̃a = 0.0012 and 0.0013, (denoted Case A1 and212

A2, respectively).213

The situation for monochromatic incident waves is summed up in Table 3, which shows the nondi-214

mensional size, optimal damping, captured power, and displacement amplitudes for the cases discussed215

above. As we have observed, introducing roll and sway motions leads to a two-fold branching in the design216

procedure. Firstly, in free motion, one value of q̃ is found to yield the largest roll and sway displacements,217

while another value yields the largest heave displacements. While the heave-optimized case has a unique218

maximum P̃a as a function of damping, the roll/sway-optimized case admits two local maxima of P̃a, one219
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Figure 6: The captured power Pa of the WEC in the combined motions versus the dashpot coefficient C. Thin line:
q

U2/g
= 0.61; thick line: q

U2/g
= 0.97.

with relatively low, the other with relatively high damping C̃, compared to the heave case (see Figure 6).220

This opens up the possibility that the overall optimal design may not coincide with a design optimized221

for roll/sway or heave alone, but occupying some middle ground. The performance of such intermediate222

devices (Cases B, C, and D), as well as devices somewhat larger than Case E (Cases F, G and H) is223

explored for the monochromatic design wave in Table 3. In each of Cases B through H, a damping C has224

been chosen to maximize the captured power.225

Table 3: The size, damping, captured power and displacement of 3-mode WECs in monochromatic waves.

Cases: A1 A2 B C D E F G H

q̃ 0.61 0.61 0.70 0.79 0.88 0.97 1.06 1.15 1.24

C̃ 0.035 1.34 0.90 0.67 0.51 0.34 0.56 1.09 1.91

P̃a 0.0012 0.0013 0.0015 0.0021 0.0028 0.0035 0.0028 0.0020 0.0015

ζ̃z10 0.11 0.089 0.093 0.11 0.14 0.19 0.13 0.063 0.039

ζ̃z20 0.036 0.053 0.033 0.026 0.023 0.021 0.0097 0.0042 0.0031

ζ̃x10 0.12 0.063 0.060 0.055 0.050 0.048 0.047 0.040 0.038

ζ̃x20 0.018 0.016 0.015 0.013 0.012 0.011 0.0093 0.0069 0.0057

θ10(rad) 0.70 0.041 0.052 0.069 0.068 0.056 0.042 0.028 0.022

θ20(rad) 0.028 0.031 0.021 0.014 0.0094 0.0066 0.0051 0.0035 0.0027

Here we see that a shift in device size from the smaller, primarily rolling/swaying devices, towards226

larger, primarily heaving devices has a positive impact on captured power, up to device E. Thereafter, an227

increase in device size leads to a reduction in captured power, as the larger devices operate preferentially228

at smaller wavenumbers.229
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This situation is depicted in Figure 7, which shows P̃ ∗a ≡ P ∗a /(ρU3), the dimensionless captured power230

per unit wave amplitude squared, where P ∗a ≡ Pa/a
2
0. To illustrate the associated displacements, Figure231

8 shows the displacement in heave for the upper cylinder ζz10 divided by a0. Note that for case A1, the232

maximum value of ζz10(k)/a(k) is 4.4 (not shown).233

(a) Case A1, A2, B and C (b) Case D and E

(c) Case F, G and H

Figure 7: The dimensionless captured power per unit wave amplitude square P ∗
a (k)/(ρU3) under different monochromatic

waves as a function of wavenumber.
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(a) (b)

Figure 8: The dimensionless displacement Âz1 = ζz10/a0 of the upper cylinder in the combined motions under different

monochromatic waves.(a)vertical displacement of cases A1, A2, B and C; (b)vertical displacement of cases D, E, F, G and

H.

5. Design of the WEC for a PM spectrum234

Up to this point, we have considered WEC design for monochromatic waves. In brief: a given wind235

speed U determines the two necessary parameters, wavenumber kp and amplitude a0 from (6). With a236

monochromatic wave fully described by (kp, a0), we may initially assume freely floating cylinders, and237

choose their size q̃ for maximum displacement in roll and sway (as these modes are coupled), for maximum238

displacement in heave, or at some intermediate value. In each case, a damping C̃ is chosen to maximize the239

captured power for this incident design wave, leading to the cases A1 through H above. As demonstrated240

in Figures 7 and 8, the motions and performance of a device designed for a wave (kp, a0(kp)) may change241

considerably for other waves.242

For practical reasons, our primary interest must be focused on irregular waves, where we may elect243

to tune the device to operate optimally at the peak of the spectrum, but must consider its performance244

for a broad band of incident waves. Under irregular waves it is no longer possible to give a single value245

for the displacements of each floating cylinder. We begin with some preliminaries regarding the behavior246

of the WEC in irregular seas.247
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For a monochromatic wave, the absorbed power Pa (see (26)) and displacements ζαj0 are written as

Pa(q, C, k, a0) ≡ a20P ∗a (q, C, k),

ζαj0(q, C, k, a0) ≡ a0Âαj(q, C, k),

θj0(q, C, k, a0) ≡ a0Âyj(q, C, k).

where j = 1, 2 denotes the upper and lower cylinders, P ∗a is the absorbed power per unit wave amplitude

square, and Âαj with α ∈ {x, y, z} denote the relative amplitudes of sway, roll and heave motions,

respectively. For a given spectrum S(k) the total absorbed power by a device of type (q, C) is

P total
a =

∫ ∞
0

2P ∗a (k)S(k)dk. (33)

Just as the spectrum describes the distribution of wave energy among different frequencies, and allows

for statistical inferences such as a definition of the significant wave-height, so analogously we may consider

a displacement spectrum

Eαj(k) ≡ S(k)(Âαj)
2, (34)

and define the significant displacement by

H
1/3
αj = 4 ·

(∫ ∞
0

Eαj(k)dk

)1/2

. (35)

Here H
(1/3)
α (α = x, y, z) is the the distance from the displacement’s trough to crest and248

ζ
(1/3)
zj0 =

1

2
H

(1/3)
zj , (36)

ζ
(1/3)
xj0 =

1

2
H

(1/3)
xj , (37)

θ
(1/3)
j0 =

1

2
H

(1/3)
yj , (38)

are the so-called “significant amplitudes of the displacement” in z and x directions, and the angle around249

y axis, respectively.250

Applying the concepts developed above to the problem of power absorption from an incident, broad-251

banded sea, we evaluate the above expressions for the spectra introduced in Section 2. The results are252

given in nondimensional form in Table 4, which shows the captured power and displacement amplitudes253

for the spectra Sd, Ss1 and Ss2, nondimensionalized by U = Ud. This may be compared to the analogous254

Table 3 for the monochromatic case. In the following section, we turn to a discussion of these results.255
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Table 4: The dimensionless captured power P̃ total
a along with nondimensional significant amplitudes of displacement in

heave ζ̃
(1/3)
zj0 , sway ζ̃

(1/3)
xj0 , and roll θ

(1/3)
j0 (rad), for the WECs A1 through H attacked by a design spectrum Sd, a severe

spectrum Ss1 (Us1 = 1.5Ud), and a second severe spectrum Ss2 (Us2 = 2Ud).

Cases: A1 A2 B C D E F G H

q̃ 0.61 0.61 0.70 0.79 0.88 0.97 1.06 1.15 1.24

C̃ 0.035 1.34 0.90 0.67 0.51 0.34 0.56 1.09 1.91

Sd

P̃ total
a 7.01× 10−5 0.00065 0.00081 0.0010 0.0011 0.0010 0.0011 0.00089 0.00086

ζ̃
(1/3)
z10 0.22 0.097 0.096 0.11 0.12 0.14 0.12 0.094 0.071

ζ̃
(1/3)
z20 0.044 0.065 0.040 0.030 0.027 0.025 0.021 0.017 0.013

ζ̃
(1/3)
x10 0.10 0.077 0.073 0.068 0.064 0.059 0.056 0.054 0.051

ζ̃
(1/3)
x20 0.022 0.019 0.018 0.016 0.015 0.014 0.012 0.011 0.0093

θ
(1/3)
10 0.60 0.050 0.059 0.073 0.084 0.096 0.068 0.045 0.032

θ
(1/3)
20 0.012 0.015 0.0093 0.0058 0.0039 0.0027 0.0020 0.0016 0.0012

Ss1

P̃ total
a 0.00016 0.0025 0.0030 0.0037 0.0043 0.0046 0.0061 0.0060 0.0074

ζ̃
(1/3)
z10 0.37 0.31 0.29 0.29 0.32 0.35 0.34 0.31 0.29

ζ̃
(1/3)
z20 0.15 0.25 0.18 0.14 0.13 0.12 0.11 0.11 0.10

ζ̃
(1/3)
x10 0.25 0.21 0.22 0.21 0.21 0.21 0.20 0.19 0.19

ζ̃
(1/3)
x20 0.090 0.076 0.081 0.081 0.078 0.075 0.070 0.065 0.060

θ
(1/3)
10 0.98 0.16 0.14 0.17 0.21 0.29 0.23 0.16 0.12

θ
(1/3)
20 0.13 0.17 0.11 0.075 0.058 0.046 0.039 0.034 0.029

Ss2

P̃ total
a 0.00019 0.0044 0.0049 0.0056 0.0064 0.0068 0.0097 0.011 0.014

ζ̃
(1/3)
z10 0.55 0.54 0.51 0.52 0.53 0.56 0.56 0.54 0.53

ζ̃
(1/3)
z20 0.34 0.47 0.39 0.33 0.30 0.29 0.28 0.27 0.27

ζ̃
(1/3)
x10 0.45 0.42 0.42 0.42 0.42 0.42 0.42 0.41 0.40

ζ̃
(1/3)
x20 0.20 0.19 0.19 0.20 0.20 0.19 0.19 0.18 0.17

θ
(1/3)
10 1.07 0.317 0.21 0.22 0.27 0.37 0.31 0.24 0.19

θ
(1/3)
20 0.31 0.40 0.25 0.18 0.14 0.12 0.10 0.088 0.077

6. Discussion256

As have mentioned above, several competing criteria exist in determining WEC size. Those we shall257

consider in depth are limited to power capture, which naturally should be maximized, and survivability258

as assessed from the device motions.259

We note that the Cases A1 through H presented above are ordered by increasing size q which may be260

assumed correlated to the cost per device, all other things being equal. Due to the burgeoning state of261

wave energy technology, it seems premature to speculate any further about cost, given that it depends262

not only on device size, but also design specifics such as materials and component costs, as well as costs263
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related to regular maintenance or major overhaul, both factors which will in turn be affected by size.264

In the following sections, we will delve into a detailed analysis of the WEC behaviour with a view to265

power capture and survivability. Subsequently, a synthesis of these two viewpoints is attempted, bearing266

in mind the primary aim of providing quantitative information relating to the design of oscillating body267

converters in a range of different, broad-banded sea states.268

6.1. Power capture269

The most straightforward metric to evaluate concerns the power captured by a WEC. For a design PM270

spectrum Sd corresponding to a wind speed Ud = 10 m/s, and severe spectra Ss1 and Ss2 corresponding271

to Us1 = 15 m/s and Us2 = 20 m/s, respectively, the dimensional size, damping and absorbed power of272

WECs A1 through H are presented in Table 5.273

Table 5: Dimensional absorbed power Pa (Watt) for cases A1 through H, for an incoming monochromatic wave (Pm
a ) and

the design PM spectrum with U = 10 m/s (P d
a ), both with the same energy density of 3.7 KJ/m2. Also given are the

absorbed power for the severe spectra Ss1 (P s1
a ) and Ss2 (P s2

a ).

Cases: A1 A2 B C D E F G H

q [m] 6.2 6.2 7.1 8.1 9.0 9.9 10.8 11.4 12.7

C (·105) [Ns/m] 0.364 14.0 9.37 6.98 5.31 3.54 5.83 11.3 19.9

Pma (·105) [W] 1.25 1.35 1.56 2.19 2.92 3.64 2.92 2.08 1.56

P da (·105) [W] 0.0730 0.672 0.849 1.04 1.14 1.06 1.17 0.931 0.893

P s1a (·105) [W] 0.165 2.65 3.13 3.80 4.43 4.77 6.36 6.27 7.73

P s2a (·105) [W] 0.197 4.62 5.09 5.88 6.67 7.10 10.1 11.0 15.0

We recall the monochromatic wave used for device design, with a wavelength of 96.3 m and an274

amplitude of 0.87 m, with an energy density of 3.7 KJ/m2 equal to that of the design PM spectrum275

parametrised by a wind-speed U = 10 m/s. The picture which emerges from comparing the absorbed276

powers in the monochromatic and spectral cases is quite striking. While the narrow-banded response of277

device A1 (see Figure 8(a)) yields a performance comparable to slightly larger devices for monochromatic278

waves, power absorption is dramatically lower for an incident PM spectrum.279

Likewise, though the heave-optimized device E is clearly superior to devices of similar size (D and F)280

for monochromatic waves, this situation sees a dramatic reversal in the case of incident irregular waves.281

That devices either larger or smaller than the heave-optimum outperform it for irregular seas clearly282

demonstrates the pitfalls of a design based on monochromatic waves.283

Dimensional values of captured power are also provided for the two severe spectra, Ss1 corresponding284
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to a wind speed Us1 = 15 m/s, or an energy density of 18.7 KJ/m2, as well as Ss2, corresponding to a285

wind speed Us2 = 20 m/s and an energy density of 59.6 KJ/m2. As expected, the larger devices benefit286

most from this increased wave resource, while a sea composed of increasingly long waves (λp for Ss1 is287

217 m, and for Ss2 is 385 m, see Table 1) begins to saturate the power capture capabilities of the smallest288

devices. In the following sections on survivability and grading of WECs, we shall explore the feasibility289

of operating WECs in such large sea states.290

6.2. Survivability291

We come now to the less well-defined of the two concepts with a bearing on the performance of a292

twin-cylinder WEC: survivability. The disparity between the motions and resulting loads experienced by293

a WEC in normal operation, and those during severe conditions may be immense. Following Brown et294

al [24] we distinguish between the reliability of a WEC, related to failure during normal operation, and295

survivability.296

While it is clear that WECs must be robust in design, as during a ten-year operational period a297

converter may expect to see some tens of millions of waves, during particularly severe events, power298

production will need to be halted in order to avoid damage to the device or loss of station-keeping.299

Table 6: Relative heave displacements versus draft ζrz = (ζ
(1/3)
z10 −ζ(1/3)z20 )/q, and relative roll displacement θr = θ

(1/3)
10 /(π/2)

A1 A2 B C D E F G H

Sd

ζrz 0.29 0.05 0.08 0.10 0.11 0.12 0.09 0.07 0.05

θ1 0.38 0.03 0.04 0.05 0.05 0.06 0.04 0.03 0.02

Ss1

ζrz 0.36 0.10 0.16 0.19 0.22 0.24 0.22 0.18 0.15

θ1 0.62 0.10 0.09 0.11 0.13 0.18 0.15 0.10 0.08

Ss2

ζrz 0.34 0.11 0.17 0.24 0.26 0.28 0.26 0.24 0.21

θ1 0.68 0.20 0.13 0.14 0.17 0.24 0.20 0.15 0.12

We have developed an example framework for survivability for the twin-cylinder WEC in the three300

spectral sea states considered, which is presented in Table 6. The maximum allowed relative vertical301

travel ζ
(1/3)
z10 − ζ

(1/3)
z20 is limited to q/3, while the maximum allowable roll is 30◦. Those cases which exceed302

these values are marked red (PDF only). A vertical travel between q/4 and q/3 or a roll between 22.5◦303

and 30◦ is marked orange, while a vertical travel of between 0.15q and 0.25q or a roll between 13.5◦ and304
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22.5◦ is marked yellow (PDF only). Device motions smaller than these are marked green (PDF only).305

Recall that these nondimensional quantities depend only on the relations Us1 = 1.5 ·Ud and Us2 = 2 ·Ud306

as specified in Section 2, and the concomitant changes in significant wave-height and peak wavenumber.307

For illustrative purposes, if the design spectrum Sd is generated by a fresh breeze (Ud = 10m/s, or308

5 Beafort, 2.47 m H(1/3)), then the first severe state Ss1 may be thought generated by a high wind (7309

Beaufort, 5.5 m H(1/3)). The second severe state Ss2 occurs under conditions between gale and severe310

gale (8–9 Beaufort, 9.9m H(1/3)). These extremely harsh conditions represent an energy density more311

than 16 times that of the design spectrum, and may be expected to challenge the device design. Note312

that the nondimensional form of the results allows for a free choice of Ud depending on the conditions of313

interest.314

While the increase in significant wave-height between the design spectrum Sd and the severe case Ss2315

may seem dramatic, there is no doubt that such conditions will be encountered within the operational316

life of a WEC. For example, while deep water conditions for the Eastern Mediterranean off Israel’s coasts317

may see significant wave heights greater than 2 m only 6 % of the time, and wave heights in summer318

rarely exceed 1–1.5 m, nevertheless storms with H(1/3) in excess of 5 m occur almost yearly. The 10-year319

return period significant wave height is nearly 7 m, which clearly falls within the expected operational320

life of a converter.321

From a pure survivability standpoint, it is immediate only that the smallest converter A1 is not viable.322

In particular, the very small damping of this configuration (see Table 5), while allowing for efficient323

power capture from the roll mode, also leads to overly large displacements even for design conditions.324

With survivability as the central aim of design, larger structures will necessarily fare better, though the325

differences between devices D, E, and F are in practice rather small. While other authors (e.g. Maisondieu326

[25] or Brown et al [24]) have investigated survivability of WECs, they have been forced to do so without327

reference to the hydrodynamics and actual displacements of a floating device, but rather purely based on328

estimations of the incident wave power.329

6.3. Grading WEC sizes330

We shall now make a preliminary attempt to sum up the results of the preceding sections. The331

intricacies of WEC economics, as well as the many factors which are outside the scope of the present332

study, such as moorings, specifics of the PTO, control strategies, power conversion and transmission,333
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and other environmental factors from seasonal variability to extreme events, will need to be taken into334

account for a fuller analysis. For specific full-fledged designs, detailed information about performance335

and survival may be sought through tank testing of scaled devices and CFD simulations (see e.g.26). In336

addition, WEC cost will not be considered, and is likely to impact significantly the ultimate design.337

The lessons to be drawn from our comparison will likely change as wave-power technology matures.338

In a parallel with the development of wind power over the past four decades, current commercial and339

prototype oscillating-body WECs may be rather small, and situated in shallow water with the intention340

of keeping costs down. It may be expected that future developments will lead naturally to a move into341

the more powerful wave-regimes further offshore (see Stiassnie et al [27] for a discussion).342

As an example, while there is a 15 % reduction in absorbed power between Case E and Case H343

(coincident with a 24 % increase in radius q) under the design spectrum, the corresponding increase in344

absorbed power for severe case Ss2 is upwards of 60 %. The fact that, off the Eastern Mediterranean345

Coast, some 45 % of average wave power comes during storm events that occur only 5 % of the time346

indicates the utility of the larger design [28]. This is compounded by the increase in potential survivability347

of the larger devices as indicated in the previous section. On the other hand, focusing on less frequent,348

high-energy sea-states may mean that the WEC is operating below capacity for significant portions of349

time.350

Depending on the variability of the wave-energy resource, more or less weight may ultimately be351

given to each of the considerations just outlined. The fact that the larger devices exhibit smaller relative352

motions may also be a benefit for their reliability, in terms of limiting loading during normal operation.353

Ultimately, an effort will have to be made to weigh the additional cost of a larger device against the354

increase in survivability. Both of these in turn will need to be weighed against the potential of continuing355

operation during high-energy events, while sustaining a slight performance decrease for low-energy sea356

states.357

7. Conclusions358

We have investigated in detail the hydrodynamics of a model WEC consisting of two floating, axisym-359

metric cylinders connected at their upper and lower perimeters by a continuously distributed damper –360

allowing power capture from heave and roll modes. While other authors have studied various aspects361
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of the problem of floating cylinders, the present work addresses for the first time a twin cylinder WEC362

allowed to move in three degrees of freedom. The inclusion of a floating, submerged cylinder as a mechan-363

ical reference for power extraction makes this design viable in deep water. With further development of364

the wave energy industry, it may be anticipated that WECs will follow wind turbines in moving further365

offshore, making such self-reacting devices more and more relevant [27].366

Our design procedure initially focused on optimizing device behavior for a damper of constant charac-367

teristic in monochromatic waves. At the outset, the heave-only case was considered, presenting a simple368

situation where a single device (characterized by a size parameter q and a damping parameter C), coin-369

ciding with the resonant maximum of a freely floating body, outperformed all others. Allowing the device370

also to sway and roll was seen to introduce additional complexity, and a differentiation was observed371

between devices operating preferentially in roll/sway and those operating preferentially in heave.372

Despite the multiplicity of possible designs when the device is allowed to undergo heave, sway, and roll373

motions, the monochromatic case presents a clear picture from the standpoint of power absorption: the374

device closest to heave resonance is found to perform best. This conclusion is an artifact of the idealization375

represented by the monochromatic theory – a fact established by the subsequent investigation of WEC376

performance under an irregular sea.377

For our design purposes, a Pierson-Moskowitz spectrum, characterized by wind speed, was chosen378

to evaluate the designs obtained from the monochromatic case. Under this spectrum, the maxima of379

absorbed power were found to shift markedly with respect to the monochromatic case, reflecting the need380

for separate design considerations for real sea states. Larger values of absorbed power under the design381

spectrum were found for devices slightly larger and slightly smaller than the monochromatic optimum,382

raising the question of how to determine device sizing in light of other criteria.383

To this end, we have devised some example metrics for grading the sizes of our twin-cylinder WEC. We384

note that wave energy presents particular difficulties in many respects. While a fixed offshore structure385

may be designed for survival with very high safety factors, this is inappropriate for oscillating body386

WECs; by their nature, they must undergo the largest possible motions in order to extract energy. At387

the same time, device loading should be minimized to avoid fatigue and failure. Taking into account388

the fact that WECs may be expected to be operational for on the order of 25 years (see Starling [29]),389

and it becomes clear that survival is a paramount issue. We have presented an example approach to390
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quantitatively evaluate the competing aims of survivability and power extraction within the framework391

of our floating twin-cylinder device.392

To a certain extent all renewable energy technologies, WECs more than most, cannot control their393

operating conditions, but must work within their environment, subject to the resulting fluctuations of394

the resource. It must be expected that, like wind turbines, oscillating body WECs will be designed with395

a “survival mode”, when normal operation cease, and the device changes its characteristics in order to396

avoid extreme loads. (We might note that overtopping WECs or oscillating water-columns, due to a397

different working principle and resulting size, will likely have a very different survivability analysis than398

oscillating body designs.) This may mean increasing the damping, altering the water plane area or mass399

(see Stallard et al [30]), or other approaches (see Coe and Neary [31]). Due to the nascent state of400

commercial wave-energy technology, it is difficult to offer concrete design recommendations based on the401

results for floating twin-cylinders. Our discussion does bear out the fact that a slight over-engineering402

may be preferable, given the large relative contribution of infrequent, high-energy events to the annual403

energy budget at many sites, and the demands of survival and robustness. We believe these results to404

be applicable more broadly to oscillating-body converters, constrained in size as they are by the incident405

wavelength, indicated by the striking similarities in performance between our twin-cylinder configuration406

and a single bottom-referenced cylinder.407

Acknowledgements408

This research was supported by the Israel Science Foundation (Grant 464/13).409

[1] F. Cerveira, N. Fonseca, R. Pascoal, Mooring system influence on the efficiency of wave energy410

converters, International Journal of Marine Energy 3-4 (2013) 65–81. doi:10.1016/j.ijome.2013.411

11.006.412

[2] F. Ursell, On the heaving motion of a circular cylinder on the surface of a fluid, Quart. Journ. Mech.413

and Applied Math. 2 (1949) 218–231.414

[3] R. G. Dean, F. Ursell, Interaction of a fixed semi-immersed circular cylinder with a train of surface415

waves, Tech. rep., MIT Hydrodynamics Laboratory Tech. Rep. no. 37 (1959).416

[4] J. Miles, F. Gilbert, Scattering of gravity waves by a circular dock, Journal of Fluid Mechanics 34417

(1968) 783–793.418

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[5] C. J. R. Garrett, Wave forces on a circular dock, Journal of Fluid Mechanics 46 (1971) 129–139.419

[6] J. L. Black, C. C. Mei, M. C. G. Bray, Radiation and scattering of water waves by rigid bodies,420

Journal of Fluid Mechanics 46 (1) (1971) 151–164. doi:10.1017/S0022112071000454.421

[7] R. W. Yeung, Added mass and damping of a vertical cylinder in finite-depth waters, Applied Ocean422

Research 3 (3) (1981) 119–133.423

[8] D. D. Bhatta, Computation of added mass and damping coefficients due to a heaving cylinder,424

Journal of Applied Mathematics and Computing 23 (1-2) (2007) 127–140.425

[9] W. Finnegan, M. Meere, J. Goggins, The wave excitation forces on a truncated vertical cylinder426

in water of infinite depth, Journal of Fluids and Structures 40 (2013) 201–213. doi:10.1016/j.427

jfluidstructs.2013.04.007.428

[10] L. Berggren, M. Johansson, Hydrodynamic coefficients of a wave energy device consisting of a buoy429

and a submerged plate, Applied Ocean Research 14 (1) (1992) 51–58.430

[11] X. Garnaud, C. Mei, Comparison of wave power extraction by a compact array of small buoys and431

by a large buoy, IET Renewable Power Generation 4 (6) (2010) 519–530. doi:10.1049/iet-rpg.432

2009.0166.433

[12] B. F. M. Child, V. Venugopal, Optimal configurations of wave energy device arrays, Ocean Engi-434

neering 37 (16) (2010) 1402–1417. doi:10.1016/j.oceaneng.2010.06.010.435

[13] B. Borgarino, A. Babarit, P. Ferrant, Impact of wave interactions effects on energy absorption in large436

arrays of wave energy converters, Ocean Engineering 41 (2012) 79–88. doi:10.1016/j.oceaneng.437

2011.12.025.438

[14] B. Teillant, R. Costello, J. Weber, J. Ringwood, Productivity and economic assessment of wave439

energy projects through operational simulations, Renewable Energy 48 (2012) 220–230. doi:10.440

1016/j.renene.2012.05.001.441

[15] J. Engström, M. Eriksson, J. Isberg, M. Leijon, Wave energy converter with enhanced amplitude442

response at frequencies coinciding with Swedish west coast sea states by use of a supplementary443

submerged body, Journal of Applied Physics 106 (6). doi:10.1063/1.3233656.444

27


