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Abstract

Background: Detection, isolation, and identification of individual virus infected cells during long term infection are critical
to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to
study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded
reporter genes. We have designed a novel Cre recombinase (Cre)-based murine system to overcome these problems, and
thereby enable tracking and isolation of individual in vivo infected cells.

Methodology/Principal findings: Murine gammaherpesvirus 68 (MHV-68) was used as a prototypic persistent model virus.
A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication,
producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this
limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP) was infected
with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and
macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which
expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression
could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.

Conclusions/Significance: The use of this novel Cre-based virus/mouse system allowed identification of individual latently
infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.
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Introduction

The study of host-virus interactions in individual cell populations

in vivo is important for the development of disease control strategies.

This is particularly the case for viruses which establish life long

latent or persistent infections, frequently within low numbers of cells

with minimal virus gene expression, often in a number of different

cell types. The ability to ‘‘mark’’ infected cells in a readily detectable

manner would significantly enhance the study of these virus

infections. One approach, which has been investigated for several

latent herpesvirus infections including herpes simplex virus,

pseudorabies virus and Marek’s disease virus involves insertion of

a reporter gene such as b-galactosidase or green fluorescent protein

within the viral genome [1–5]. This technique requires the use of a

latency associated promoter to overcome the general repression of

viral promoters during latency, including foreign promoters inserted

into the viral genome [6–9]. Even then, a latency associated

promoter may show tissue-specific expression. For example, the

HSV latency associated promoter has been shown to drive

expression of b-galactosidase long term in sensory neurons, but

the promoter is down-regulated in the CNS [10,11].

An alternative strategy that avoids many of the problems

associated with virally encoded reporter genes is to ‘mark’ the

infected cell using a reporter gene located within the host genome

that is activated upon virus infection. The Cre-recombinase (Cre)/

loxP site-specific recombination system has been used to mark cells

and tissues in vivo in nonviral systems investigating cellular

developmental patterns and differentiation [12–14]. In this system,

expression of a constitutively active reporter gene (eg b-

galactosidase or enhanced green fluorescent protein, EGFP) is

suppressed by the presence of an upstream stop codon flanked by

loxP sites (floxed). Cre expression results in excision of the floxed

stop codon allowing expression of the previously silenced reporter

gene. In vivo, the reporter gene can be activated by crossing the

reporter mouse with a mouse expressing constitutively active or

inducible Cre. Expression of Cre from a viral genome similarly

offers the potential to mark infected cells. As cells are permanently

marked by a single event and the reporter gene is located within

the host cell genome, this approach may also circumvent problems

associated with virus genome inactivation during latency.

In the present study, we have applied the Cre/loxP system to

investigate long-term in vivo infection with a prototypic latent/
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persistent gammaherpesvirus, murine gammaherpesvirus 68

(MHV-68, also known as murid herpesvirus 4). MHV-68 is closely

related to the human gammaherpesviruses Epstein-Barr virus

(EBV) and Kaposi’s sarcoma associated herpesvirus (KSHV)

[15,16]. Studies in mice have shown MHV-68 latency to be

complex and involve a number of cell types including B cells,

macrophages, dendritic cells and lung epithelial cells. In long term

infections, the virus appears to reside in memory B cells whereas

the contribution of other cell populations to maintaining the

infection is not well understood [17–19]. The balance between

true latent infection, where there is limited gene expression, and

persistent infection involving on-going replication also has not

been elucidated.

In the present study, we constructed a recombinant MHV-68

expressing Cre and screened a variety of mouse lines expressing a

Cre-activatable reporter gene for expression of the reporter

following infection. One mouse line, sEGFP7, which has highly

accessible loxP sites expressing EGFP in over 90% of haemato-

poietic cells activated in ovo [20], proved particularly suited for

these studies. In sEGFP7 mice, MHV-68 infection (based on

EGFP positive cells) was detected in mediastinal lymph nodes

(MLNs) up to 80 days post-infection and in the bone marrow at

least until 165 days after infection. Because of the high level of

EGFP expression in this reporter system, activated cells could be

sorted by FACS and virus gene expression analysed. This marker

system provides a novel approach for investigating the nature and

distribution of virus-infected lymphoid/heamopoeitic cells and the

role of these cells in the establishment and maintenance of latent/

persistent virus infections.

Materials and Methods

Mice
ROSA26 GFP mice (B6;129-Gt(ROSA)26Sortm2Sho were pur-

chased from the Jackson Laboratory, USA. ROSA26 lacZ mice

were supplied by Dr Annemieke IJpenberg, MRC Human

Genetics Unit, Edinburgh. C57BL/6 and BALB/c mice were

purchased from Harlan UK Ltd (Oxon, UK). The sEGFP7 mouse

strain [20] was a gift from Dr Alexander Medvinsky, Institute of

Stem Cell Research, University of Edinburgh. All work was

carried out under a UK Home Office license according to the

Animals (Scientific Procedures) Act 1986.

Virus infections
Virus working stocks were prepared by infection of BHK-21

cells as previously described [21]. 4–8 week-old mice were

anaesthetized with Halothane (Rhone Merieux Ltd, Harlow,

Essex, U.K.) and inoculated intranasally with 46105pfu virus in

40l sterile PBS. At various times after infection mice were killed by

CO2 asphyxiation and tissues harvested for virus assays or

histology.

Construction of Recombinant Virus
Recombinant Cre expressing MHV-68 virus was constructed by

E/T recombination using a bacterial artificial chromosome (BAC)

containing the entire MHV-68 genome (kindly provided by Dr. U.

Koszinowski, Ludwig-Maximilians-Munchen, Munich)[22]. A

pcp015-based template plasmid (designated pcp015/Cre) contain-

ing the Cre gene under control of the RSV promoter and a 39

SV40 polyadenylation site was used as a template for generation of

the necessary PCR product for E/T recombination. The pcp015/

Cre also contains a FRT-flanked KanR marker for selection of

recombinants in bacteria (see below); and a synthetic intron within

the 59 coding region of Cre to restrict expression to eukaryotic

cells, as initially described by Smith and Enquist [23](Figure 1). E/

T recombination was performed essentially as described by Rue

[24]. The mutagenic PCR product was obtained from the

pcp015/Cre template by PCR amplification using mutagenic

primers MHVCre.for (59-GTGAGTGCTGACAGGCTTAAT-

AAAGAAAATGATTAAATGAAGTAAAACGACGGCCAGT-39)

and MHVCre.rev (59-GTTGTGTGTAGGAGGTGTGGAAA-

TAAAAACCCTTTAAAATTCAGGAAACAGCTATGAC -39).

These primers contain 41 nt homologous to the MHV-68

sequence flanking the site of insertion within the MHV-68 genome

and 17 nt homologous to the pcp015/Cre template. The Cre

cassette was inserted within the MHV-68 genome at nt 24700

between ORF11 and K3. E/T recombination was performed in

EL250s containing the MHV-68 BAC, and recombinants were

selected with chloramphenicol and kanamycin followed by Flp-

mediated removal of the FRT-flanked KanR marker. Recombi-

nant MHV-68 BACs were characterized by restriction digestion

combined with Southern analysis, as well as direct DNA

sequencing of the Cre expression cassette following PCR

amplification from the reconstituted viral genome.

Infectious virus was recovered from BAC DNA by Effectene

mediated transfection (Qiagen) into BHK cells. The BAC cassette

was removed from Cre-recombinant clones by self-excision. BAC

DNA was transfected into BHK cells in 6 well plates (Nunc). As

soon as colourless plaques (lacking the BAC cassette) were visible,

cultures were harvested and replated to limiting dilution in 96 well

plates. Wells containing single, colourless plaques were selected

and screened by PCR for intact Cre-recombinase.

Revertant BACs were made by allelic exchange using a shuttle

plasmid as previously described [22,25]. The wild type MHV-68

Hind I fragment (nt21965–26711) was cloned into the shuttle

plasmid pST76_SR and electroporated into DH10B cells

containing the Cre10–33 BAC. Transformed bacteria were then

propagated through a multi-step selection process and wild type

BAC was selected by PCR. Virus stocks were produced by

transfection of BAC DNA into BHK cells. BAC sequences were

excised from the reconstituted virus by passage through mouse

NIH 3T3 cells expressing Cre recombinase [26].

Southern Blot Analysis
Viral DNA was prepared from purified virions as previously

described [27]. 10 mg of viral DNA was digested with EcoRI,

fractionated on a 0.7% w/v agarose gel and transferred to nylon

membrane (Hybond
TM

-N+, GE Healthcare Ltd). The blot was

probed with [P32]dCTP labeled probes for MHV-68 (nt 21199–

25494) and Cre-recombinase. Hybridisation was carried out in

Ultrahyb (Ambion) according to manufacturer’s directions and

radioactivity detected by exposure to ECL film.

Growth of virus in vitro
Single-step and multi-step growth in vitro was analysed by

infection of BHK-21 cells in suspension for 90 minutes at a

multiplicity of infection 5 (single-step growth) and 0.05 (multi-step

growth). Cells were washed with Glasgow’s medium four times to

remove unbound virus before seeding into 24-well plates. At

specific times post-infection cells were harvested and infectious

virus was determined by plaque assay. All infections were carried

out in duplicate, and each infection titrated in duplicate.

Analysis of Infected Tissues
Tissues were analysed for infectious virus by plaque assay and

latent infection by infective centre assay as previous described

[28]. For histological analysis, tissues were harvested into 4%

In Vivo Virus Tracking
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buffered paraformaldehyde and frozen as previously described to

preserve EGFP fluorescence [29].

Immunohistochemistry
5–10 mm sections were cut onto poly-L lysine coated slides and

stored at 270uC until required. Sections were blocked for 1 hour at

room temperature with 10% normal goat serum in Tris-buffered

saline and stained with primary antibodies in 2% NGS for 1 hour at

RT. Antibodies used were as follows: CD45R/B220 (RA3-6BS,

Pharmingen) to detect B cells, MOMA-1 (AbDSerotec) for

metallophilic macrophages, MOMA-2 (AbDSerotec) and F4/80

(CI:A3-1, AbDSerotec) for macrophages. Secondary antibody was

goat anti-rat alexafluor 594 (Molecular Probes). Nuclei were stained

with TOPRO3 (Molecular Probes). Sections were mounted in

Moliol and imaged with a Leica TCS-NT confocal microscope.

FACS analysis and sorting
Lymphocytes were teased from mediastinal lymph nodes,

resuspended in FACS buffer (PBS, 1%BSA, 0.1% sodium azide)

and stained with rat anti-mouse CD19 phycoerythrin (Caltag) and

hamster anti-mouse CD69 Tricolor (Caltag). Cells were gated on

EGFP positive lymphocytes and double stained populations were

sorted on a FACS Vantage with DiVa option (BD Bios-

ciences).

PCR
For analysis of transcription of ORF11 and K3 in vitro, C127

murine epithelial cells were infected at a multiplicity of infection of 5

and incubated for 18 hr at 37uC. Monolayers were washed twice with

ice-cold PBS and RNA was extracted with RNAwiz (Ambion)

according to the manufacturer’s instructions. Contaminating DNA

was removed by treatment with DNAseI (DNA-Free, Ambion). For

analysis of sorted populations DNA and RNA were extracted from

sorted EGFP positive cells using the PicoPure DNA and the PicoPure

RNA extraction kits (Arcturus) respectively according to the

manufacturer’s instructions. cDNA was prepared from 5 mg RNA

or, for the sorted populations, total RNA recovered and PCR was

carried out as previously described [30] using the following primers:

Figure 1. Construction of recombinant MHV-68 expressing Cre-recombinase. A. Structure of the viral genome surrounding the insertion
site. Diagram shows the site of insertion, position of restriction sites and probes used for Southern analysis. B. EcoRI digests of BAC DNAs. o 11.4 kb in
wild type and revertant reduced to 10.4 in mutant clones. * shows bands containing 100 bp repeats. C. Southern blot of wild type (WT), Cre10–33 and
Cre-REV virus DNA digested with EcoRI and probed with an MHV-68 specific probe (nt 21199–25494) and a probe for Cre-recombinase.
doi:10.1371/journal.pone.0006492.g001
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K3F 59- GGGTATCAGGACAAG GGGTAG -39, K3R 59-

GAGCTACTACACTACCTCCTG -39; ORF11for 59- GGT-

GGA CTTTAAGCCCGATG -39; ORF11rev 59 –GGC AGC

TTC ACT GAC ACC AG 39; ORF73FOR: 59- TAGATCCAGGT-

GATCCTGTGGC -39; ORF73REV: 59- CCGCATAATC-

CATCTGATCCAT -39). PCR products were fractionated on an

agarose gel and visualized with ethidium bromide.

For quantitation of viral load in vivo DNA was prepared from

mediastinal lymph node cells harvested at day 5 post-infection

using the PureLink Genomic DNA Purification Kit (Invitrogen).

Real-time PCR for quantification of viral genome load was carried

out on 100 ng lymphocyte DNA using a Rotor-Gene (Corbett)

with the intercalating dye SYBR green. Regions of the M11,

ORF73 and M4 genes were amplified with specific primers

(ORF73QPCRfor 59-CGTCTGTCTCTCCTACATCTAAAC-

C-39; ORF73QPCRrev 59-CACCAACACTTCCCTCATCC-39;

M4-RTFor 59-CAC CTG AGA TCA AGT CTA TCG-39; M4-

RTRev 59-GTC GCA TAA CCA TGT CCA CG-39) and all

products analysed by a melt curve to confirm specificity. DNA

load was quantitated using cloned DNA and results were

normalized with a GAPDH real-time PCR.

Results

Construction of MHV-68 virus expressing Cre
To enable detection of virus infected cells in vivo, a virus expressing

a modified intron containing Cre-recombinase [23] was constructed

by mutagenesis of a MHV-68 bacterial artificial chromosome (BAC)

[22]. Linear recombination was used to insert a cassette containing

Cre under control of the RSV LTR into the MHV-68 genome

between the ORF11 and K3 genes at nt24700 (Figure 1A). Three

independent clones designated 6–3, 9–16 and 10–33 were selected.

Correct insertion of the Cre expression cassette within the MHV-68

BAC genome was confirmed by restriction digestion of BAC DNA

(Figure 1B) followed by Southern analysis, as well as by direct DNA

sequence analysis of a PCR product spanning the insertion site (data

not shown). Revertant BAC was constructed by allelic exchange and

confirmed as detailed above for Cre recombinant clones. Because

BAC recombination can result in loss of internal repeats, recombi-

nant BAC DNA preps were digested with EcoRI and monitored for

changes in repeat fragments. One clone, 6–3, showed a reduced

number of 100 bp repeats and therefore was not used for further

analysis. No other differences in repeats between the recombinant

clones and the parent were detected by this technique although all the

BAC clones seem to have lost their 40 bp repeat (Figure 1B). Virus

was reconstituted by transfection of BAC DNA into MHV-68

permissive BHK cells. The presence of BAC sequences has been

shown to attenuate reconstituted MHV-68 virus [31]. Therefore

BAC sequences were removed from Cre expressing clones by self-

excision in BHK cells, indicating that the RSV LTR promoter is

active during lytic infection or by passage through a Cre-expressing

cell line (revertant). Once the BAC cassette was removed, the viral

genome was stable. Restriction digest followed by Southern blot

analysis of purified viral DNA was carried out to confirm the

genotype of the virus. Figure 1C shows that the expected digestion

pattern was observed. Virus stocks were monitored by PCR to

confirm the genotype routinely.

Characterisation of recombinant virus in vitro
In order to determine whether insertion of the Cre-recombinase

cassette affected growth of the recombinant virus, replication of

the Cre expressing viruses 9–16 and 10–33 was compared with

wild type (WT) BAC derived virus, PHA-4 and a revertant

constructed from the 10–33 BAC clone (REV) in vitro. Figure 2

shows single- and multi-step analysis of the viruses. The kinetics of

the one- step growth curve showed a delay in the growth of 10–33

and 9–16 when compared with the revertant or wild type MHV-

68. Both clone 9–16 and clone 10–33 also showed delayed growth

at early times in the multi-step analysis.

To determine whether insertion of the Cre expression cassette

affected transcription of the surrounding genes, C127 cells were

infected with WT or Cre10–33 and expression of K3 and ORF11

which flank the Cre insertion site was analysed by RT-PCR.

Figure 2C shows no difference in transcription of K3 and ORF11

in the Cre10–33 compared to WT-infected cells.

Characterisation of recombinant virus in vivo
Growth of viruses in vivo was assessed by intranasal infection of

BALB/c and C57Bl/6 mice. Similar results were observed with

both strains of mice and initial results showed that viruses derived

from 9–16 and 10–33 behaved identically. All further analysis was

therefore carried out with 10–33 derived virus (Cre10–33). Cre10–

33 replicated within the lung, although virus titres were consistently

lower than those obtained with wild type or revertant virus

(Figure 3A). The Cre10–33 virus was cleared with similar kinetics to

WT virus. Following replication in the lung, MHV-68 establishes

latent infection in the lymphoid system, initially within the

mediastinal lymph node where virus is associated with macrophag-

es, dendritic cells and B cells. The virus undergoes a B cell-

associated viraemia to infect other tissues such as the spleen where

the latent infection resides in the germinal centres. Latent infection

in lymphoid tissues is accompanied by lymphoproliferation.

Levels of latent virus in the mediastinal lymph nodes (MLN)

were determined by reactivation assay and quantitative PCR.

Assays for pre-formed infectious virus were carried out to confirm

that the reactivation assay was detecting latent virus and any

infectious virus was subtracted from the figures obtained in the

latency assay. In the majority of samples, infectious virus (Cre10–

33, WT or REV) was not detected in the MLNs. When infectious

virus was detected, the levels were always ,10% of the values of

latent virus. Five days pi, the number of latently infected cells in

the MLNs ranged from 12–634 cells per total lymph node for WT

and REV infected mice and 12–488 cells/MLN for the Cre 10–33

infected mice (Figure 3B). These data indicate that the initial phase

of latency established in Cre10–33 infected mice is similar to that

in mice infected with WT and REV.

However, by day 14, the Cre10–33 viral DNA load in the MLN

was around 10 fold lower than in WT or REV infections (Figure 3D)

and there few reactivatable cells present in the MLN (Figure 3C;

20–1340 infective centres per MLN for wild type and REV vs 0–50

for Cre10–33). These results are consistent with failure of Cre10–33

infected cells to amplify to the same extent as WT infected cells.

Analysis of latent infection in the spleen by reactivation assay

(Figure 3E) showed that Cre10–33 could not establish latent

infection at the same level as wild type at any time point and

resulted in lower levels of lymphoproliferation (Figure 3F).

These experiments indicate that insertion of the Cre-recombi-

nase cassette into MHV-68 has resulted in attenuation of the virus.

However, the virus is clearly capable of establishing latent

infection in the lymphoid system and therefore provides a useful

tool to determine whether virus encoded Cre-activation of a floxed

reporter in mice is able to identify latently infected cells in vivo.

Tracking virus infection of cells in the lymphoid system
In initial in vivo studies using Cre10–33, we were consistently

unable to detect EGFP or lacZ expressing cells by fluorescent

imaging or b-gal staining of infected ROSA26 EGFP or lacZ Cre

reporter mouse strains (data not shown). However, following

In Vivo Virus Tracking
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infection of the sEGFP7 mouse line [20] EGFP was readily

detected in MLN and spleen at various time points after infection.

This mouse strain expresses EGFP under control of the PGK

promoter. Expression has been studied in detail in the haemato-

poetic tissues and shown to be high level, readily detected by

FACS in all cell types and stable over long periods of time.

sEGFP7 mice were infected with Cre10–33 or WT virus, and at

days 4, 8, 12, 16, 28 and 80 pi MLNs were removed, frozen and

10 mm cryostat sections were prepared from each entire lymph

node. Figure 4A shows confocal images of EGFP positive cells in

Figure 2. In vitro characterisation of CreMHV-68 virus. To compare replication of Cre expressing MHV-68 clones 10–33 or 9–16 with wild type
PHA-4 and a revertant of 10–33 Cre-REV virus, BHK cells were infected with 5pfu/cell (single-step, A) or 0.05pfu/cell (multi-step B) and titred after
harvesting at specific time points post-infection. The data represent the mean +/2 the standard deviation. C. RT-PCR for detection of K3, ORF11 or
b2actin transcripts in C127 cells infected for 18 h with wild type (WT) or CreMHV-68 (Cre) or mock-infected.
doi:10.1371/journal.pone.0006492.g002
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representative sections at day 4 and day 12 pi. The sections were

examined by UV light microscopy and EGFP positive cells were

counted (Figure 4B). On day 4 pi, an average of 70 EGFP positive

cell was detected/lymph node. By day 8 post-infection, the

average number of positive cells/lymph node rose to over 6000,

and remained at this elevated level (4000–6000 cells) on days 12

and 16 pi. At later time points the average number of

EGFP positive cells/lymph node decreased and ranged from 50

to 150. Importantly, EGFP positive cells were still detectable 80

days pi. Thus, although the numbers of cells in the MLN

harbouring Cre10–33 virus, as determined by the reactivation

assay, appeared to be low at 2 weeks pi (,50 infective centres, see

Figure 3C), the large number of EGFP positive cells indicates that

a latent infection was readily detected at this time (Figure 4B),

reinforcing our conclusion that Cre10–33 can establish a latent

infection.

From initial replication in the MLN, MHV-68 is believed to be

disseminated to other tissues by infected B cells. Consistent with

Figure 3. In vivo characterisation of CreMHV-68 virus. BALB/c mice were infected intranasally with wild type MHV-68 (WT), Cre-recombinase
expressing MHV-68 (Cre10–33) or revertant virus (REV). Tissues were removed at various times and assayed for infectious virus by plaque assay, for
latent virus by a reactivation assay and for viral DNA by Q-PCR. A. Infectious virus in the lung; B. Latent virus in mediastinal lymph node (MLN) at day
5; C. Latent virus in the MLN day 14; D. Viral DNA load in MLN at day 14; E. Latent virus in the spleen; F. Spleen cell numbers. Solid line indicates mean.
doi:10.1371/journal.pone.0006492.g003

In Vivo Virus Tracking
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this model, EGFP positive cells were detected in the spleen at day

12 (Figure 4A) and at subsequent times pi (data not shown). To

determine whether virus infected cells could be detected outside

secondary lymphoid organs, cytospins prepared from bone

marrow at days 16, 28, 80 and 165 were screened from EGFP

positive cells. Small numbers of EGFP positive cells (,1 in 106)

were detected at day 28 (Figure S1) and were still detectable at day

165 pi (Figure 4C). Together these results show that the system

provides a powerful method of tracking virus infection in different

tissues in vivo.

Phenotyping of EGFP positive cells
The phenotype of EGFP positive cells in the MLNs of Cre10–

33 infected sEGFP7 mice was determined by confocal microscopy

of cryostat sections stained with antibody to B cells (B220) or a

mixture of anti-macrophage antibodies (MOMA1, MOMA2 and

F4/80) capable of detecting several macrophage subtypes. Figure 5

shows that EGFP positive B cells and macrophages were readily

detected at days 4 and 12pi providing direct visual evidence for

infection of these cell types and opening up the possibility of

selecting specific infected cells for further study.

Isolation of EGFP positive cells by flow cytometry
The large number of positive cells present in the MLNs at days 12–

16 pi suggested that isolation of virus positive cells by FACSorting

might be possible. The ability to select virus infected cells in this way

would make analysis of virus and host transcriptomes in specific cell

populations readily obtainable. Therefore, MLNs from sEGFP7 mice

infected with Cre10–33 or WT were analysed for EGFP expression.

Figure 6 shows that it was possible to detect EGFP positive cells in the

MLNs of Cre10–33 infected sEGFP7 mice by FACS analysis. In an

analysis of individual MLNs from 5 mice at day9 and 15 mice at

day16, the mean percentage of EGFP+ cells was 0.25% of the gated

lymphocyte population and ,0.2% of the total population. Up to

19000 EGFP+ cells could be isolated from an individual MLN.

Representative data are shown in Table 1. Double staining of MLNs

for the B cell marker CD19 showed that the majority of the EGFP

positive cells were B cells (Figure 6A-C). EGFP cells were isolated by

Figure 4. Detection of EGFP positive cells in vivo. A. EGFP positive
cells in MLN and spleen of sEGFP7 mice infected with Cre10–33. Top
panels show EGFP only, bottom panels, EGFP plus TOPRO3 nuclear
staining. B. Total number of EGFP positive cells in MLNs over the course
of infection. Cell numbers determined by microscopy. Error bars
represent standard deviations from mean. C. EGFP positive cells in bone
marrow 165 days post-infection. Images obtained with a Leica confocal
microscope. Magnification640, negative; 663, positive.
doi:10.1371/journal.pone.0006492.g004

Figure 5. Phenotype of EGFP positive cells in the MLN of
sEGFP7 mice infected with Cre10–33. A-H day 4; I-P day 12. A-D
show images of MOMA1 positive macrophage, E-H and M-P show
detection of B220 positive B cells; I-L show macrophages stained with a
combination of anti-macrophage antibodies, MOMA1, MOMA2 and F4/
80. Sections imaged with a Leica confocal microscope. Magnifica-
tion663.
doi:10.1371/journal.pone.0006492.g005

In Vivo Virus Tracking
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FACSorting, DNA and RNA were extracted and analysed by PCR

and RT-PCR for the presence of virus genome and transcripts.

Figure 6D shows that viral DNA was detectable in the EGFP positive

population and the latency associated transcript ORF73 was readily

detected.

Activated B cells were selected by FACSorting of EGFP+,

CD19+, CD69+ cells from MLNs at day16 pi. Analysis of these

cells by quantitative RT-PCR demonstrated the presence of the

latency associated transcript ORF73 (Figure 6E) but expression of

the lytic cycle gene M4, which is more readily detectable than

ORF73 in lytically infected cells [32] could not be detected thus

providing evidence for latent infection in this cell population. The

system thus provides a powerful means of isolating individual

infected cell populations and potentially enabling fundamental

questions to be addressed.

Discussion

We have developed a novel system to detect and characterise

virus-infected cells in vivo. The system exploits a Cre-expressing

virus and mice containing EGFP under the control of a floxed

transcription stop codon. MHV-68 was used to model infection of

the lymphoid system enabling fundamental questions to be

addressed on the kinetics of latent infection, the detection of

novel sites of latency and the potential to explore host and virus

gene expression in individual infected cells at different stages

following infection. A key feature of this model was the availability

of the sEGFP7 mouse strain as other mouse strains investigated did

not allow detection of infected cells.

The Cre-loxP system has been used to identify neurons latently

infected with HSV. This involved a Cre expressing HSV and the

ROSA26R mice carrying a lacZ reporter [33]. In our model we

were unable we were unable to detect lacZ expression in the

lymphoid system of ROSA26R mice, possibly reflecting lower

promoter activity in this tissue. Further, the use of an EGFP reporter

has the advantage that live cells can be detected and sorted without

the need to carry out ex vivo staining. A related approach relying on

tissue specific expression of Cre-recombinase and an EGFP gene

preceded by a ‘‘floxed’’ stop codon inserted into the MCMV

genome has been used to track lytic infection in vivo. In this system,

lytically infected cells express EGFP and progeny virus permanently

encode activated EGFP gene. Thus the contribution of different cell

types to lytic virus replication and spread of infectious virus can be

tracked. This system, however, unlike the system described here

does not mark latently infected cells [34].

The presence of the Cre cassette clearly attenuates the virus

both in vivo and in vitro. In vivo the virus replicates less efficiently in

the lung and, whereas the early stages (day 5) in the establishment

of a latent infection are similar to wild type virus, by day 14 the

number of latently infected cells as determined by the infective

centre assay is greatly reduced and the viral DNA loads are

around 10 fold less than wild type. These data together with

the numbers of EGFP+ cells in the MLN at day 16 measured

by both FACS and microscopic analysis are consistent with a

failure of the virus to amplify to the same levels as wild type

virus.

The reason for the attenuation is not clear. The RSV LTR is

active during lytic infection, as shown by the ability of the BAC to

self-excise, and the ability to detect EGFP expression in the MLN

where the predominant infection is latent strongly suggests it is

active during at least the early stages of latent infection. It is

possible that RSV promoter activity within the virus genome alters

the activity of viral promoters. Consistent with this idea, the

insertion of the lacZ under the human cytomegalovirus immediate

early promoter has been shown to alter the replication of MHV-68

in vivo [35]. Downstream effects from the RSV promoter could

affect virus replication both in vitro and in vivo. Attenuation of virus

replication in the lung and latent virus load in the spleen may be

related to EGFP expression although the sEGFP7 line is on a

C57Bl/6 background and EGFP has been reported to have a

minimal immunogenic effect in this mouse strain [36]. In

preliminary experiments we have found that depletion of CD8

T cells in Cre10–33 infected sEGFP7 mice results in 1006higher

levels of reactivatible virus in the spleen at days 12 and 20. It is

possible, therefore, that the RSV promoter is driving expression of

a virus gene which is a CD8 target.

Although the virus is attenuated, it can to establish a latent

infection. Within the MLN, the number of infected cells increased

over the first week reaching a plateau around day 8 and remained

elevated for a further 8 days. By 4 weeks post-infection, the

number of infected cells had decreased. The kinetics of latent

infection are similar to those demonstrated by infective centre

assays as a measure of reactivation from latency and by Q-PCR as

a true measure of cells harbouring viral DNA. The method

defines an ‘acute phase’ of latency in which there is a rapid

expansion of latently infected cells that act as a reservoir for

seeding by the vascular system to other tissues. In this model,

EGFP positive cells are detected in the spleen by day 12 post-

infection and in the bone marrow there are infected cells present

from day 28 to at least 165 days post-infection. The bone marrow

has been identified as a site of latent infection [37] but the nature

of the infected bone marrow cell has not been determined. This

technique offers the potential for identifying the infected bone

marrow cells and for detecting and identifying other novel

infected cell types.

EGFP+ cells in the MLN can be selected by FACS presenting a

powerful approach to investigate in detail transcription patterns in

cells of different phenotypes at different time points during the course

of infection. We have sorted EGFP+ CD19+ CD69+ cells and

quantified ORF73 and M4 expression in this population providing

evidence that the cells are latently infected. Analysis of virus gene

expression in B cell subsets isolated by FACSorting has shown that,

14 days pi, virus gene expression is restricted and depends on the

differentiation stage of the B lymphocyte [17]. The technology we

describe offers the potential to enhance and extend these studies using

Table 1. Percentages of EGFP+ cells in mediastinal lymph
nodes and numbers of cells recovered from total lymph node
by FACSort.

Mouse
number

Day post-
infection

% lymphocytes
EGFP+

Number of cells
sorted/MLN

1 9 0.1 10000

2 9 0.1 4231

3 9 0.1 3959

4 16 0.1 2800

5 16 0.1 3704

6 16 0.1 2399

7 16 1.6 18938

8 16 0.1 5742

9 16 0.1 10397

19 16 0.1 2107

doi:10.1371/journal.pone.0006492.t001
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pure populations of virus infected cells at time points where the

proportion of virus infected cells within the sorted cell populations is

very low. This will be particularly important in analysing small

numbers of latently infected cells situated in different tissue

compartments, where a variable state of latency may exist.

In summary, the application of Cre-loxP technology provides

new opportunities to study the molecular basis of persistence/

latency in cells of the immune system identified at different times

after infection. Furthermore, one important application of this

approach is the discovery of new cell types associated with

persistent/latent virus infection.

Supporting Information

Figure S1 EGFP postive cells in bone marrow 28 days post

infection. Images obtained with a Leica confocal microscope.

Magnification663.

Found at: doi:10.1371/journal.pone.0006492.s001 (1.95 MB TIF)

Figure 6. FACS analysis of lymphocyte population of MLNs from sEGFP7 mice 16 days after infection. A. sEGFP7 mouse infected with
wild type virus (negative control); sEGFP7 mice infected with Cre (10–33) unstained (B) or stained (C) with CD19-PE; D. DNA from sorted EGFP positive
cells was subjected to PCR using primers for MHV-68 ORF73 together with positive (MHV-68 DNA) and negative (H2O) controls. E. Quantitative RT-PCR
for viral transcripts in EGFP+ CD19+, CD69+ cells. When quantitative PCR was carried out on equivalent amounts of DNase treated RNA, GAPDH was
undetectable and copy numbers of ORF73 were ,0.05 of those of cDNA.
doi:10.1371/journal.pone.0006492.g006

In Vivo Virus Tracking

PLoS ONE | www.plosone.org 9 August 2009 | Volume 4 | Issue 8 | e6492



Acknowledgments

The authors would like to thank Dr A. Medvinsky (Institute for Stem Cell

Research, University of Edinburgh) for the generous gift of mice. We

would like to thank Dr D. L. Court (National Cancer Institute-Frederick,

MD) for the kind gift of the EL250 recombinogenic bacteria used in this

study.

Author Contributions

Conceived and designed the experiments: BD MJ AAN. Performed the

experiments: BD SR DD YL IB WR OS. Analyzed the data: BD AAN.

Wrote the paper: BD MJ AAN.

References

1. Dienglewicz RL, Parcells MS (1999) Establishment of a lymphoblastoid cell line

using a mutant MDV containing a green fluorescent protein expression cassette.
Acta Virol 43: 106–112.

2. Lachmann RH, Efstathiou S (1997) Utilization of the herpes simplex virus type 1
latency-associated regulatory region to drive stable reporter gene expression in

the nervous system. J Virol 71: 3197–3207.

3. Shimeld C, Efstathiou S, Hill T (2001) Tracking the spread of a lacZ-tagged
herpes simplex virus type 1 between the eye and the nervous system of the

mouse: comparison of primary and recurrent infection. J Virol 75: 5252–5262.
4. Marshall KR, Lachmann RH, Efstathiou S, Rinaldi A, Preston CM (2000)

Long-term transgene expression in mice infected with a herpes simplex virus

type 1 mutant severely impaired for immediate-early gene expression. J Virol 74:
956–964.

5. Boldogkoi Z, Erdelyi F, Sik A, Freund TF, Fodor I (1999) Construction of a
recombinant herpesvirus expressing the jellyfish green fluorescent protein.

Luminescence 14: 69–74.

6. Parcells MS, Dienglewicz RL, Anderson AS, Morgan RW (1999) Recombinant
Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a

marker gene within the context of the MDV genome. J Virol 73: 1362–1373.
7. Lachmann RH, Brown C, Efstathiou S (1996) A murine RNA polymerase I

promoter inserted into the herpes simplex virus type 1 genome is functional
during lytic, but not latent, infection. J Gen Virol 77 (Pt 10): 2575–2582.

8. Ecob-Prince MS, Hassan K, Denheen MT, Preston CM (1995) Expression of

beta-galactosidase in neurons of dorsal root ganglia which are latently infected
with herpes simplex virus type 1. J Gen Virol 76 (Pt 6): 1527–1532.

9. Lokensgard JR, Bloom DC, Dobson AT, Feldman LT (1994) Long-term
promoter activity during herpes simplex virus latency. J Virol 68: 7148–7158.

10. Smith C, Lachmann RH, Efstathiou S (2000) Expression from the herpes

simplex virus type 1 latency-associated promoter in the murine central nervous
system. J Gen Virol 81: 649–662.

11. Scarpini CG, May J, Lachmann RH, Preston CM, Dunnett SB, et al. (2001)
Latency associated promoter transgene expression in the central nervous system

after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene
Ther 8: 1057–1071.

12. Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, et al. (1996) Conditional gene

targeting. J Clin Invest 98: 600–603.
13. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting.

Methods Mol Biol 180: 175–204.
14. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the

mouse. Methods 24: 71–80.

15. Efstathiou S, Ho YM, Hall S, Styles CJ, Scott SD, et al. (1990) Murine
herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr

virus and herpesvirus saimiri. Journal of General Virology 71: 1365–1372.
16. Nash AA, Dutia BM, Stewart JP, Davison AJ (2001) Natural history of murine

gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356:
569–579.

17. Marques S, Efstathiou S, Smith KG, Haury M, Simas JP (2003) Selective gene

expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77:
7308–7318.

18. Flano E, Kim IJ, Woodland DL, Blackman MA (2002) Gamma-herpesvirus
latency is preferentially maintained in splenic germinal center and memory B

cells. J Exp Med 196: 1363–1372.

19. Flano E, Kim IJ, Moore J, Woodland DL, Blackman MA (2003) Differential
gamma-herpesvirus distribution in distinct anatomical locations and cell subsets

during persistent infection in mice. J Immunol 170: 3828–3834.

20. Gilchrist DS, Ure J, Hook L, Medvinsky A (2003) Labeling of hematopoietic

stem and progenitor cells in novel activatable EGFP reporter mice. Genesis 36:
168–176.

21. Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA (1992) Virological and
pathological features of mice infected with murine gamma-herpesvirus 68.

Journal of General Virology 73: 2347–2356.

22. Adler H, Messerle M, Wagner M, Koszinowski UH (2000) Cloning and
mutagenesis of the murine gammaherpesvirus 68 genome as an infectious

bacterial artificial chromosome. Journal of Virology 74: 6964–6974.
23. Smith GA, Enquist LW (2000) A self-recombining bacterial artificial

chromosome and its application for analysis of herpesvirus pathogenesis. Proc

Natl Acad Sci U S A 97: 4873–4878.
24. Rue CA, Jarvis MA, Knoche AJ, Meyers HL, DeFilippis VR, et al. (2004) A

cyclooxygenase-2 homologue encoded by rhesus cytomegalovirus is a determi-
nant for endothelial cell tropism. J Virol 78: 12529–12536.

25. Wagner M, Ruzsics Z, Koszinowski UH (2002) Herpesvirus genetics has come of

age. Trends Microbiol 10: 318–324.
26. Stevenson PG, May JS, Smith XG, Marques S, Adler H, et al. (2002) K3-

mediated evasion of CD8(+) T cells aids amplification of a latent gamma-
herpesvirus. Nat Immunol 3: 733–740.

27. Macrae AI, Dutia BM, Milligan S, Brownstein DG, Allen DJ, et al. (2001)
Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus

important for acute pathogenesis. J Virol 75: 5315–5327.

28. Dutia BM, Clarke CJ, Allen DJ, Nash AA (1997) Pathological changes in the
spleens of gamma interferon receptor- deficient mice infected with murine

gammaherpesvirus: a role for CD8 T cells. Journal of Virology 71: 4278–4283.
29. Shariatmadari R, Sipila PP, Huhtaniemi IT, Poutanen M (2001) Improved

technique for detection of enhanced green fluorescent protein in transgenic

mice. Biotechniques 30: 1282–1285.
30. Dutia BM, Roy DJ, Ebrahimi B, Gangadharan B, Efstathiou S, et al. (2004)

Identification of a region of the virus genome involved in murine gammaher-
pesvirus 68-induced splenic pathology. J Gen Virol 85: 1393–1400.

31. Adler H, Messerle M, Koszinowski UH (2001) Virus reconstituted from
infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpes-

virus 68 acquires wild-type properties in vivo only after excision of BAC vector

sequences. J Virol 75: 5692–5696.
32. Ebrahimi B, Dutia BM, Roberts KL, Garcia-Ramirez JJ, Dickinson P, et al.

(2003) Transcriptome profile of murine gammaherpesvirus-68 lytic infection.
J Gen Virol 84: 99–109.

33. Wakim LM, Jones CM, Gebhardt T, Preston CM, Carbone FR (2008) CD8(+)

T-cell attenuation of cutaneous herpes simplex virus infection reduces the
average viral copy number of the ensuing latent infection. Immunol Cell Biol 86:

666–675.
34. Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, et al. (2008) The major

virus-producing cell type during murine cytomegalovirus infection, the
hepatocyte, is not the source of virus dissemination in the host. Cell Host

Microbe 3: 263–272.

35. Clambey ET, Virgin HWt, Speck SH (2000) Disruption of the murine
gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation

from latency. Journal of Virology 74: 1973–1984.
36. Skelton D, Satake N, Kohn DB (2001) The enhanced green fluorescent protein

(eGFP) is minimally immunogenic in C57BL/6 mice. Gene Ther 8: 1813–1814.

37. Cardin RD, Brooks JW, Sarawar SR, Doherty PC (1996) Progressive loss of
CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+

T cells. Journal of Experimental Medicine 184: 863–871.

In Vivo Virus Tracking

PLoS ONE | www.plosone.org 10 August 2009 | Volume 4 | Issue 8 | e6492


