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CHAPTER 12 
 
Creative Music Neurotechnology with Symphony of Minds 
Listening 
 
Eduardo Reck Miranda1, Dan Lloyd2, Zoran Josipovic3 and Duncan Williams1 
 
Abstract 
A better understanding of the musical brain, combined with technical 
advances in Biomedical Engineering and Music technology are pivotal for the 
development of increasingly more sophisticated Brain-Computer Music 
Interfacing (BCMI) systems. BCMI research has been very much motivated by 
its potential benefits to the health and medical sectors, as well as to the 
entertainment industry. However, we advocate that the potential impact on 
musical creativity of better scientific understanding of the brain, and the 
development of increasingly sophisticated technology to scan its activity, 
should not be ignored. In this chapter we introduce an unprecedented new 
approach to musical composition, which combines brain imaging technology, 
musical Artificial Intelligence and Neurophilosophy. We discuss Symphony of 
Minds Listening, a composition for orchestra in three movements, based on 
the fMRI scans taken from three different people while they listened to the 
second movement of Beethoven’s Seventh Symphony. 
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12.1 Introduction 
 
BCMI research has been very much motivated by its potential benefits to the 
health and medical sectors, as well as to the entertainment industry. Yet, 
advances in the field tend be assessed in terms of medium, rather than 
content. For instance, let us consider the field of Music Technology. Much has 
been said on the improvement of technology for music recording and 
distribution, from vinyl records and K7 tapes to CDs and the Internet. 
However, not much is said on the impact of these media to creative 
processes. Have these media influenced the way in which music is 
composed? Likewise, not much has been said on the creative potential of 
BCMI technology. Might it lead to new ways to make music, or to the 
emergence of new kinds of music? 
 
We believe that the potential impact on musical creativity of better scientific 
understanding of the brain, and the development of increasingly sophisticated 
technology to scan its activity can be huge. Musicians have an unprecedented 
opportunity today to develop new approaches to composition that would have 
been unthinkable a few years ago. 
 
In this chapter we introduce an unprecedented new approach to musical 
composition, which combines brain imaging technology (Bremmer 2005), 
musical Artificial Intelligence (AI) (Miranda 2000), and new philosophical 
thinking emerging from Neurophilosophy (Churchland 2007). The first 
outcome of this approach is Symphony of Minds Listening, an experimental 
composition for orchestra in three movements, based on the fMRI scans 
taken from three different people while they listened to the second movement 
of Beethoven’s Seventh Symphony: a ballerina, a philosopher (co-author Dan 
Lloyd) and a composer (co-author Eduardo R. Miranda). In simple terms, we 
deconstructed the Beethoven movement to its essential elements and stored 
them with information representing their structural features. Then, we 
reassembled these elements into a new composition with a twist: the fMRI 
information influenced the process of reassembling the music. 
 
The chapter begins with a discussion on the philosophical ideas behind the 
work. Next, before delving into more technical details, it gives an overview of 
the compositional approach we have been developing. It follows with an 
introduction to the brain scanning and data analysis methods. Then, it 
introduces MusEng, the system that we developed to deconstruct and re-
compose music and demonstrate the core processes behind the composition 
of Symphony of Minds Listening.  



 
 
12.2 Neurophilosophy of Music 
 
The human brain is allegedly the most complex object known to mankind: it 
has circa one hundred billion neurones forming a network of an estimated one 
quadrillion connections between them. The amount of information that 
circulates through this network is huge.  The operation of individual neurones 
is fairly well understood nowadays, but an important piece of the jigsaw is 
missing: the way they cooperate in ensembles of millions has been fiendishly 
difficult to understand. This piece of the puzzle is important because it most 
probably holds the key to unlock our understanding the origins of the mind. 
 
There has been a school of thought, which considered that the mind is 
divorced from the brain. What is more, it has been suggested that minds 
would not even need brains to exist. Although the separation between mind 
and brain still has currency in some circles, nowadays it is common sense to 
consider the mind as resulting from the functioning of the brain. However, we 
do not have a clear understanding of how brain activity actually gives rise to 
the mind.  
 
Much research is being developed from a number of approaches all over the 
globe to understand how the brain gives rise to the mind. Our research is 
looking into establishing a musical approach to understand the brain. We 
believe that the brain can be viewed as a colossal, extraordinarily large 
symphonic orchestra and the mind as a correspondingly complicated 
symphony. The ‘mind as music’ hypothesis is explored in length in (Lloyd 
2011). 
 
At Plymouth University’s Interdisciplinary Centre for Computer Music 
Research we are looking into the relationship between music and a specific 
aspect of our mind: emotions. We hope to be able to determine which aspects 
of a musical composition elicit specific emotions on listeners. The hypothesis 
is that if one can predict which musical features are likely to cause the feeling 
of, say, joy or sadness, then it might be possible to build technology that 
would allow new music to steer our emotions more effectively. For example, it 
would be highly beneficial for humankind if physicians could have the option 
to prescribe a musical composition as part of the treatment to help take a 
patient out of depression. Not unlike chemists, future musicians could be 
trained with the skill to compose with specific musical ingredients aimed at 
inducing particular affect in listeners. Our work is aimed at making this 
ambitious dream a reality, but the challenges to achieve this are not trivial. 
 
Similar to the fact that we have unique fingerprints, which differ from person to 
person, our brains are also unique. Indeed, the mechanisms whereby we 
make sense of music differ from person to person. Even though all human 
brains share a common basic plan, the detailed neurological circuitry differs 
from one person to another. Unlike our fingerprints, however, our brain circuits 
are continually changing and this makes scientific research into unveiling how 
the brain functions rather challenging. Paradoxically, it seems that the more 



we study the brain, the more difficult it becomes to draw firm conclusions. A 
balance needs to be established between identifying the commonalities and 
acknowledging the differences of our brains. Symphony of Minds Listening is 
inspired by the later: it is an artistic expression of how different brains 
construct their own unique reality.  
 
 
 
12.3 An Overview of the Approach 
 
Functional magnetic resonance imaging (fMRI) is a procedure that measures 
brain activity by detecting associated changes in blood flow. The 
measurements can be presented graphically by colour-coding the strength of 
activation across the brain. Figure 12.1 shows a typical representation of an 
fMRI scan of a person listening to music, displaying the activity of the brain at 
a specific window of time. In this case, each time window lasts for two 
seconds. The figure shows 14 planar surfaces, or slices, from the top to the 
bottom of the brain, and the respective activity detected in these areas. Figure 
12.2 is an example of an artistic 3D rendition of such an fMRI scan. It shows 
different areas of the brain, represented by different colours (that is, shades of 
grey), responding in a coordinate manner to the music.  
 
 

      
 

Figure12. 1: A typical representation of an fMRI scan, showing 14 slices of 
the brain. The actual scanning for this project comprised 36 slices snapshots 

taken every 2 seconds.  



 
 

   
 

Figure 12.2: An artistic 3D rendering of an fMRI scan. 
 
 

Each scanning session generated sets of fMRI data, each of which associated 
to a measure of the second movement of Beethoven’s 7th symphony. This is 
shown schematically in Figure 12.3.  

Figure 12.3: The result of a scanning section is a set of fMRI data for each 
measure of Beethoven’s piece. 

 
 
Firstly, the movement was deconstructed by means of MusEng, a piece of 
software, which extracted information about the structure of the Beethoven 



piece. Then, we programmed MusEng to use this information and the fMRI 
data to generate new musical passages.  
 
During the compositional phase, the fMRI information was used on a 
measure-by-measure basis to influence the composition. This procedure, 
which is shown schematically in Figure 12.4, involved diverse modes of data 
processing and transformation of Beethoven’s music. The resulting musical 
passages bore varied degrees of resemblance to the original.  
 
Not surprisingly, the fMRI scans differed amongst the three listeners. 
Therefore, brain activity from three different minds yielded three different 
movements in the resulting composition that resemble the original in varied  
ways. The instrumentation is the same as for Beethoven’s original 
instrumentation and each movement is named after the respective person that 
was scanned:  
 

• 1st Movement: Ballerina 
• 2nd Movement: Philosopher  
• 3rd Movement: Composer 

 
 

 
 

Figure 12.4: The fMRI data inform the re-assemblage of the piece.  
 
 

12.4 Brain Scanning: Materials and Methods 
 



The brain images were collected using equipment and parameters that are 
typical in Cognitive Neuroscience.  The scanner was a Siemens Allegra 3T 
head-only scanner with a head coil. (“T” stands for Tesla, a measure of 
magnetic field strength.  Contemporary scanners range from 1.5T to 7T.)  A 
T2-sensitive echo planar imaging (EPI) pulse sequence was used to obtain 
blood oxygenation level-dependent (BOLD) contrasts: TR = 2000 ms, TE = 30 
ms, 36 axial slices, 3 x 3 x 3 mm, 64 x 64 matrix in a 192 x 192 mm FOV. 
That is, each full-brain image took two seconds to collect, to yield 36 image 
slices of the brain.  Each slice comprised 64 x 64 picture elements, known as 
voxels or volume pixels. Thus, each image comprised approximated 150,000 
continuously varying voxels. 
 
Subjects heard the second movement of Beethoven's Seventh Symphony 
twice. The subjects were instructed to attend to the music with their eyes 
closed. The fMRI recording began with 30 seconds without music, then 460 
seconds of Beethoven, then 18 seconds without music, and finally the same 
460 seconds of Beethoven previously heard.  Thus each run generated 484 
images. 
 
 
12.5 fMRI Analysis 
 
The raw fMRI scans were first pre-processed following usual procedures for 
functional neuroimaging. These included correcting for head motion, morphing 
the individual brains to conform to a standard anatomical atlas, and spatial 
smoothing, which is a procedure that reduces random fluctuations by 
calculating a moving average of each voxel in the context of its spatial 
neighbours.  These pre-processing steps were implemented using Statistical 
Parametric Mapping software (Ashburner et al. 2013).   
 
Each of the 484 images produced 150,000 voxels, which are very complex for 
direct analysis.  Instead, the image series were further processed with 
Independent Component Analysis, abbreviated as ICA (Stone 2004).  
Informally, ICA separates ensembles of voxels that oscillate in unison.  These 
are unified as supervoxels representing temporally coherent networks of brain 
activity.  The coloured patches in Figure 12.2 are examples of independent 
components.  A total of 25 components were calculated for the three subjects 
in the experiment. 
 
In order to select which of these components might be musically significant, 
the activity of each component during the first pass through the Beethoven 
listening was compared to that same component during the second pass.  If 
these two segments of a component time series were correlated, we 
hypothesized that the activity was at least partly musically driven, since the 
stimulus, that is, the music, would be identical at the corresponding time 
points in the two passes through the music.   Although 25 independent 
component time series were identified, only the strongest 15 were selected to 
influence the compositional process. The order of strength of the selected 15 
ICA components is as follows: 25, 15, 14, 8, 5, 10, 11, 18, 6, 2, 4, 1, 17, 16 
and 13.  The time series were normalized to range from 0 to 9.  As a last step, 



the varying components were resampled to match the timing of the Beethoven 
score measure by measure. Thus, each time point was indexed to a measure 
of the Beethoven score. The movement comprises 278 measures, therefore 
each ICA component comprises a time series of 278 values, ranging from 0 
(meaning lowest fMRI intensity) to 9 (highest fMRI intensity). As an example, 
Table 12.1 shows the values of the first 5 strongest ICA components (that is, 
25, 15, 14, 8 and 5) for the first 10 measures of Beethoven’s music, yielded by 
the fMRI of the subject ‘composer’ the during the first listening pass in the 
scanner. 
 
Beethoven 
Measure 

ICA 
25 

ICA 
15 

ICA 
14 

ICA 
8 

ICA 
5 

1 7	
 

5 5 5 2 
2 5	

 

5 8 5 8 
3 7 3 5 5 6 
4 5 8 3 5 2 
5 5 7 4 4 4 
6 6 6 4 5 3 
7 7 8 5 6 3 
8 4 6 3 4 3 
9 6 6 4 5 4 

10 5 7 5 5 3 
 

Table 12.1: The values of the strongest 5 ICA components for the first 10 
measures of Beethoven’s music yielded by the subject ‘composer’. 

 
 
To accompany the premiere of Symphony of Minds Listening, the ICA data 
were animated on a large screen projection behind the orchestra.  The whole 
brain appeared as a transparent frame, derived from a standard anatomical 
template.  Within this image, each component was assigned a distinct color, 
and brightened and faded according to the intensity of component activity at 
each time point.  The animations were created using Matlab software 
(MathWorks 2013), using custom-made functions. The remaining of this 
chapter focuses on the compositional process and the MusEng software.  
 
 
12.6 The Compositional Process 
 
The actual composition of Symphony of Minds Listening is primarily the work 
of the first co-author and involved a number of creative stages and practices, 
some which were not systematically documented. That is to say, the 
compositional process involved manual and computer-automated procedures.  
 
There generally are two approaches to using computer-generated materials in 
composition, which we refer to as the purist and utilitarian approaches, 
respectively. The purist approach to computer-generated music tends to be 
more concerned with the correct application of the rules programmed in the 
system, than with the musical results per se. In this case, the output of the 



computer tends to be considered as the final composition. The composer 
would not normally modify the music here, as this would meddle with the 
integrity of the model or system. At the other end of the spectrum is the 
utilitarian approach, adopted by those composers who consider the output 
from the computer as raw materials for further work.  Here composers would 
normally tweak the results to fit their aesthetic preferences, to the extent that 
the system’s output might not even be identifiable in the final composition. 
Obviously, there is a blurred line dividing these two approaches, as practices 
combining aspects of both are commonly found. Symphony of Minds Listening 
tends towards the utilitarian approach.  
 
The composition of the piece evolved in tandem with the development of 
MusEng. MusEng was programmed with Artificial Intelligence to learn musical 
information from given examples and use this information to generate new 
music. Incidentally, a few of MusEng’s functionalities were firstly applied 
manually to compose a section of the piece, before they were implemented in 
software to aid the composition of other sections. Indeed, a number of 
compositional processes did not make it into the software on time. The 
symphony had a deadline to be delivered for its premiere in February 2013, at 
Peninsula Arts Contemporary Music Festival, in Plymouth, UK. The software 
development, however, is still in progress. And other pieces are planned and 
the compositional approach is being refined as we write this chapter. 
 
For a discussion on how science and technology can inform and inspire the 
act of musical composition the reader is referred to (Miranda 2013) and 
(Miranda 2014). Both references advocate the use of computers as assistants 
to the creative process, rather than as autonomous composing machines.  
 
For the composition of Symphony of Minds Listening, the first step was to 
deconstruct the score of Beethoven’s piece into a set of basic materials for 
processing. These materials were subsequently given to MusEng as input for 
a machine learning phase, which will be explained in more detail in the next 
section of this chapter.  
 
First of all, Beethoven’s piece was divided into 13 sections: 

• Section 1: from measure 1 to measure 26 
• Section 2: from measure 26 to measure 50 
• Section 3: from measure 51 to measure 74 
• Section 4: from measure 75 to measure 100 
• Section 5: from measure 101 to measure 116 
• Section 6: from measure 117 to measure 138 
• Section 7: from measure 139 to measure 148 
• Section 8: from measure 149 to measure 183 
• Section 9: from measure 184 to measure 212 
• Section 10: from measure 213 to measure 224 
• Section 11: from measure 225 to measure 247 
• Section 12: from measure 248 to measure 253 
• Section 13: from measure 254 to measure 278 

 



The 13 sections informed the overarching form of the 3 movements of the 
new symphony. This provided a template for the new piece, which preserved 
the overall form of the original Beethoven movement. Indeed, MusEng did not 
learn the whole Beethoven piece at once. Rather, it was trained on a section-
by-section basis and the musical sequences for the respective new sections 
of the new movements where generated independently from each other. For 
instance, Section 1 of the movement Ballerina has 26 measures and was 
composed based on materials from the first 26 measures of Beethoven’s 
music. Next, Section 2 has 24 measures and was composed based on 
materials from the next 24 measures (26 - 50) of Beethoven’s music, and so 
on.  
 

 
 

Figure 12.5: Block diagram of the overall compositional process. 
 
A block diagram portraying the compositional procedures is shown in Figure 
12.5. The blocks with thicker lines represent procedures that can be 
influenced and/or controlled by the fMRI. After the segmentation of the music 
into 13 sections the flow of action bifurcates into two possibilities: manual 
handling of the segments (left hand side of Figure 12.5) and computerised 
handling with MusEng (right hand side of Figure 12.5). A discussion of manual 
handling is beyond the scope of this chapter, but as an example we can show 
the transformation of Section 1 of Beethoven’s original into the opening 
section of Ballerina.  Figure 12.6 shows the first 10 measures of Beethoven’s 
music focusing on the parts of the violas, violoncellos and double basses. 
Figure 12.7 shows how those measures were recomposed to form 10 



measures for the opening of the first movement of the new symphony. Note 
the visible rhythmic transformation of measures 4, 6, 8 and 10. 
 

 
 

Figure 12.6: The first 10 measures of Section 1 of Beethoven’s music, 
showing the viola, violoncello and double bass parts. 

 

 
 

Figure 12.7: Ten measures from the opening of Ballerina, the first movement 
of Symphony of Minds Listening, showing the viola, violoncello and double 

bass parts. 
 
The path on the right hand side of the block diagram in Figure 12.5 represents 
the computer handling of the segments with MusEng. This will be explained in 
more detail in the next section.  



 
Finally, once a new segment has been generated, it is orchestrated and 
appended to the respective score of the new movement accordingly. The 
fMRI occasionally influenced the instrumentation and the orchestration. For 
instance in Philosopher, the second movement, different ICA components 
were associated to groups of instruments of the orchestra (e.g., ICA 25 = 
violins and violas, ICA 15 = trumpets and horns, ICA 14 = oboes and 
bassoons, and so on); these associations changed from section to section. 
Then, for example, if the flute is to play in a certain measure x of Philosopher, 
the ICA activation value of the respective component in measure x of 
Beethoven’s music would define how the flute player should produce the 
notes. We defined various tables mapping ICA activations to instrumental 
playing techniques and other musical parameters. For instance, Table 14.2 
shows a mapping of ICA activations onto musical dynamics.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 12.2: Mapping ICA activation values onto musical dynamics. 
 
As a hypothetical example, let us consider a case where the flutes would play 
the sequence shown in Figure 12.8 in measures 5, 6 and 7 of the third 
movement: Composer. If we assume that the flute is associated to ICA 8, then 
according to the values shown in Table 12.1, the activations for measure 5, 6 
and 7 are equal to 4, 5 and 6, respectively. Thus, the dynamics attributed to 
these 3 measures would be as shown in Figure 12.9. 
 

 
 

Figure 12.8: Three new measures for the flutes. 
 
 
 

Activation Dynamics 
0 ppp 
1 ppp 
2 pp 
3 p 
4 mp 
5 mf 
6 f 
7 ff 
8 fff 
9 fff 



 
 

Figure 12.9: The measures from Figure 12.8 with added dynamics informed 
by fMRI information. 

 
 
12.7 The Musical Engine: MusEng 
 
MusEng has three distinct phases of operation: a learning phase, a generative 
phase and a transformative phase.  
 
The learning phase takes a musical score and analyses it in order to 
determine a number of musical features. A dataset comprising these features 
and rules representing the likelihood of given features appearing in the data 
are then stored in memory. At the generative phase, these data inform the 
generation of new sequences, which should ideally resemble the sequences 
that were used to train the system in the first phase. Finally, at the 
transformative phase, the outcome from the generative phase is modified 
according to a number of transformation algorithms. It is in this final phase 
that the fMRI information is used to influence the resulting music. Note that we 
are not interested in a system of rules that reproduces an exact copy of the 
original music. Rather, we are interested in producing new music that 
resembles the original. Hence the transformative phase was added to further 
modify the results from the generative phase. The role of fMRI information is 
to control the extent of the transformations. Essentially, stronger activity in a 
given ICA component of the fMRI data results in larger amounts of 
transformation in the musical outcome. 
 
MusEng reads and outputs musical scores coded in the MIDI format. MIDI 
(Musical Instrument Digital Interface) is a protocol developed in the 1980's, 
which allows electronic instruments and other digital musical tools to 
communicate with one another. Music notation software  normally has an 
option to save and read files in this format. This is useful because it is 
straightforward to make a MIDI file representing the Beethoven symphony to 
train the system. MusEng outputs can be loaded into any suitable music 
notation software for further work and adjustments. 
 
MusEng only processes monophonic musical sequences, that is, sequences 
of one note at a time. Obviously, Beethoven’s movement is a polyphonic 
orchestral symphony. To circumvent MusEng’s monophonic limitation we 
developed two approaches to process the music. In the first approach we train 
the system with the part of one instrumental voice of the orchestra at a time 
(violins, violoncellos, etc.) and then we generate sequences for those 
respective parts individually. In the second approach we reduce the orchestral 
music to one monophonic voice and then generate various monophonic 
sequences, which are subsequently orchestrated.  
 



 
12.7.1 Learning Phase 
 
MusEng implements an adapted version of iMe (short for Interactive Musical 
Environments), a system developed at Plymouth University’s Interdisciplinary 
Centre for Computer Music Research with Marcelo Gimenes (Miranda and 
Gimenes 2011). MusEng takes a MIDI file as an input and extracts the 
following 5 features from the encoded music: 

• Pitches of the notes 
• Melody directions between successive notes in a sequence 
• Melody intervals; i.e., the amount of change between the pitches  

of successive notes in a sequence 
• Note durations 
• Modalities implied by groups of notes in a sequence 

 
 
These features are stored as event-based vectors, referred to as musicodes. 
Table 12.3 shows the musicodes for the first two measures of the musical 
excerpt shown in Figure 12.10. 
 

 
Figure 12.10: An example of a musical sequence. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
Table 12.3:  Musicodes for the first two measures of the musical sequence in 

Figure 12.10. The rows correspond to the event number, or in this case, 
number of notes in the sequence: the first two measures comprise a total of 9 

notes. 
 
Melody direction can be -1, 0, or +1, referring to descending, motionless, or 
ascending movement. The current note in a sequence is compared with the 
previous note; the very first note in a sequence therefore returns a value 
equal to 0. Melody intervals are represented in terms of half steps, which are 
also calculated with reference to the current note’s distance from the previous 
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 1 2 3 4 5 6 7 8 9 
Melody 

direction 
0 -1 +1 -1 0 +1 +1 -1 -1 

Melody 
interval 

0 5 2 4 0 1 1 1 1 

Event 
duration 

120 120 120 120 60 60 120 60 60 

Note 
pitch 

E5 G#4 B5 E4 B5 C5 D5 C5 B5 

Modality E Maj 
A harmonic min 

A min 
C Maj 



note. Again, the first note in the sequence returns a value equal to 0. With 
note durations, the value 240 is assigned to quarter notes, and other 
durations are calculated with reference to this value; e.g., half notes are equal 
to 480 and eighth notes are equal to 120. Values for pitches are readily 
extracted directly from the corresponding MIDI code; for instance MIDI 21 = 
Note A0, MIDI 23 = Note B0, MIDI 24 = Note C1, and so on. 
  
In general, the number -2 is used to represent the absence of data in a 
musicode vector. Thus, the note pitch musicode for a musical rest would be 
equal to -2. With respect to the implied modality of segments, the system 
creates a label specifying a tonal pattern and indicates when the estimation is 
ambiguous. For example, in the first measure of the music shown in Figure 
12.10, the system sees E, G#, and B, as an E Major chord, but the G# has 
also implied A harmonic minor.  
 
As we shall see below, MusEng builds a musical memory in terms of small 
segments of music. Ideally, the system would segment the music based on 
perceptual criteria. The original iMe system sported such a method, inspired 
by Gestalt psychology (Eysenck and Keane 2005). However, for this project 
we programmed MusEng to segment the music according to a user specified 
number of measures; e.g., every measures, or every two measures, or every 
three and so on. The rationale for this decision is that we wanted to 
synchronise the fMRI analysis to the input score by handling the fMRI data 
on a measure-by-measure basis, as it was shown schematically in Figures 
12.3 and 12.4. Therefore, it made more sense to establish the measure as a 
reference value to segment the music. 
 
MusEng’s memory consists of a series of Feature Tables (FTs), which 
comprise vectors of musicodes for material that the system has been 
exposed to. As the musicodes are extracted from incoming measures, the 
system may or may not create new FTs, depending on whether the 
respective musicodes have already been seen by the system. If a certain 
vector of musicodes is identical to one that has been previously seen by the 
system, then the system updates the relevant FT by increasing a weighting 
factor, represented by the variable ω (Equation 12.1). This variable is 
generated by summing the total number of FTs, and then dividing the 
number of instances of each individual FT by the total. In essence this 
becomes a simple moving average. In Equation 12.1 the value of ω indicates 
the weighting factor associated with a given FT (or FT). The variable x 
represents the number of instances of a given FT in the series, and n the 
total number of FT in the series. 
 

                                          (12.1) 
 
This moving average has the effect of lowering the value of ω for vectors of 
musicodes that do not appear as often as more frequently ones, in the same 
way that it raises the value of ω for more commonly used vectors, to a 



maximum value of 1.0. The value of ω informs the probability of a given 
musical segment being generated later on by the system.  Typically, a 
decrease in the value of ω causes the system to ‘forget’ to utilise the 
corresponding FT entry in the subsequent generative phase. 
 
In order to illustrate how MusEng’s memory is built, let us examine a 
hypothetical run through the sequence previously shown in Figure 12.10, 
commencing with an empty memory. The first measure (Figure 12.11) is 
analysed and the respective musicodes are generated. For the sake of clarity, 
this example will focus on three of the five features: melody direction (dir), 
melody interval (int), and event duration (dur).  
 

 
Figure 12.11: The first measure for the example analysis. 

 
MusEng creates in its memory the first feature table, FT1, with musicodes 
derived from the first measure of the training sequence (Figure 12.11) as 
follows: 
 

dir = {0, -1, +1, -1} 
int = {0, 5, 2, 4} 
dur = {120, 120, 120, 120} 
ω = 1/1 or 1.0 

 
Then, the system creates FT2 with musicodes extracted from the second 
measure of the training sequence (Figure 12.12) as follows: 
 

dir = { 0, +1, +1, -1, -1 } 
int = { 0, 1, 1, 1, 1 } 
dur = { 60, 60, 120, 60, 60 } 
ω = 1/2 or 0.5  
 

 
 

Figure 12.12: The second measure for the example analysis. 
 
Next, MusEng creates FT3, with musicodes from the third measure of the 
training sequence (Figure 12.13) as follows: 
 

dir = { 0, +1, 0 } 
int = { 0, 1, 0 } 
dur = { 120, 120, 240 } 
ω = 1/3 or 0.33 
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Figure 12.13: The third measure for the example analysis. 
 

 
The fourth and fifth measures are processes next but MusEng does not create 
new FTs in these cases because they are repetitions of previous measures; 
that is, their respective musicodes have already been seen by the system. In 
this case, only the values of ω for the respective FTs are adjusted accordingly. 
Thus, at this point of the training phase, the ω values for each FT are as 
shown in Table 12.4. 
 

 FT1 FT2 FT3 
ω 1/5 = 0.2 2/5 = 0.4 2/5 = 0.4 

 
Table 12.4: Values of ω after three FTs have been created and stored in 

memory, calculated by dividing the number of instances of a given FT by the 
total number of FTs analysed. 

 
MusEng’s memory after the training phase, complete with 3 FTs is shown in 
Table 12.5. It is important to stress that particular FTs gain or lose perceptual 
importance depending on how often the system is exposed to them. Notice, 
therefore that FT2 and FT3 have higher ω values than that of FT1, because 
they appeared twice. 
 
 dir int dur ω 
FT1 0, -1, +1, -1 0, 5, 2, 4 120, 120, 120, 120 0.2 
FT2 0, +1, +1, -1, -1 0, 1, 1, 1, 1 60, 60, 120, 60, 60 0.4 
FT3 0, +1, 0 0, 1, 0 120, 120, 240 0.4 
 
Table 12.5: MusEng’s memory after being trained with the musical sequence 

shown in Figure 12.5. 
 

 
12.7.2 Generative Phase 
 
At the generative phase, MusEng generates new FTs by mutating the 
musicodes of an existing FT towards those of another FT in memory. This 
process is influenced by the values of ω: FTs with larger ω values are 
selected more often than FTs with smaller ω values. Note that we wrote: 
‘tend to be selected’. This is because MusEng uses a Gaussian distribution 
function to make this selection. 
 
The very first measure of a newly generated structure is typically informed by 
the first FT in memory (FT1). Let us consider this as the source FT for the 
mutation. A second FT, the target FT, is selected from memory according to 
the values held in memory for the variable ω – as mentioned above, FTs with 
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higher ω values tend to be selected as targets more often than FTs with 
lower ω values.  
 
The generative process is illustrated below by means of a simple example 
using the memory from the previous learning phase, but considering a 
mutation on a single musicode only: melodic direction (dir). Therefore, let us 
assume the memory scenario shown in Table 12.6. 
 

 FT1 FT2  FT3 
dir 0, -1, +1, -1 0, +1, +1, -1, -1 0, +1, 0 
ω 0.2  0.4 0.4 

 
Table 12.6: A memory scenario with three FTs. 

 
In order to generate a new measure, the dir musicode of the source FT1 will 
be mutated towards the respective musicode values of a target FT. In this 
case, both FT2 and FT3 have the same ω so there is an equal chance of FT2 
or FT3 being selected as the target FT, and a smaller chance of FT1. Let us 
assume that FT2 is selected as the target.  Thus, FT2’s dir musicode is 
applied to FT1’s dir musicode to produce a mutation (represented in bold) as 
follows:  
 

{0, +1, +1, -1, -1} + {0, -1, +1, -1} = {0, 0, +1, -1, -1}.  
 
Note that the dir musicode has outlying maximum and minimum values of +1 
and - 1, hence only the second value is actually mutated (+1) + (-1) = 0. 
Therefore the newly generated FT contains a dir musicode of  {0, 0, +1, -1, -1}. 
 
Mutating other musicodes (melody interval, event duration, note pitch, etc.) 
would yield more variation. Mutations are possible across all musicodes in a 
similar manner, with the only exception being mutations in modality. These 
are accomplished by a process of transformation whereby the intervals 
between successive absolute pitches in the given FTs are forced to conform 
to pre-set intervals for major, minor, or diminished modes.  
 
 
Finally, the new FT is rendered into a musical measure (Figure 12.14) and 
saved into a MIDI file.  
 

 
 

Figure 12.14: The musical rendering of the new FT that was generated by 
mutating the dir musicode from FT1 and FT2. 

 
The above example only showed the generation of a single measure. For 
longer musical sequences, further FTs are generated by using the next FT in 
memory as the source FT and mutating it with a target FT that again, is 
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selected according to the value of the variable ω of all other FTs stored in 
memory. 
 
 
 
12.7.3 Transformative Phase 
 
The transformative phase comprises a number of transformation algorithms 
that modify a given musical sequence, three of which will be explained in this 
section. 

 
Although there are some differences in the specific processing undertaken 
by each algorithm, the basic signal flow is quite similar for all of them. The 
generated input signal is modified towards values given by one of the 
transformation algorithms. With most of the transformation algorithms, the 
amount of modification is scaled according to the fMRI data. The fMRI data, 
or more specifically the data extrapolated from the fMRI scans by ICA 
analysis, is referred to as the fMRI_index. This data is provided to MusEng 
on a ten-point scale with values between 0 and 9. In order to use the fMRI 
index as a control signal (CS) for the transformation algorithms, MusEng first 
scales the data to a range between 0.1 and 1.0. The system applies the 
following simple scaling process to the value of the fMRI_index (Equation 
12.2). 
 

CS = {(fMRI_index + 1) * 0.1}                              (12.2) 
 

A difference value d between the input and the transformed musicodes is 
also calculated. This difference is then multiplied by the CS to give a final 
scaled modifier value: SMV. The SMV is summed with the input signal to 
directly transform the output. This gives a degree of fMRI-controlled 
variability in each transformation: a high fMRI_index value will result in larger 
transformations to the music, whereas a low fMRI_index value will result in 
smaller transformations.  
 
Below are examples of three of the transformation algorithms, which illustrate 
the effect of varying the fMRI_index: pitch inversion, pitch scrambling, and 
pitch delta.  
 
 
12.7.3.1 Pitch inversion algorithm 
 
Given an input musical sequence, the pitch inversion algorithm creates a 
new sequence, which is effectively the input sequence turned upside-down. 
For instance, a sequence rising in pitch would descend in pitch after being 
passed through this transformation. In order to illustrate this, let us consider 
the measure produced in generation phase example, as shown in Figure 
12.14. Incidentally, this measure will be used as the starting point for the 
following two transformation examples as well. 
 



The melody interval musicode for this measure is {0, 0, 3, 2, 1} and the note 
pitch musicode is {B4, B4, D5, C5, B4}. In this case the MIDI values are 71, 
71, 74, 72 and 71, respectively; MIDI uses a range of 128 pitch values. There 
are a variety of ways to accomplish a pitch inversion, including diatonic and 
chromatic options, or inversions around a specific sounding pitch. MusEng 
processes pitch inversion simply by subtracting the current MIDI pitch value 
from 128, and substituting in the resulting natural number as the new pitch 
value. For instance, the transformed pitch values for our example created 
using this technique would be as follows: (128 - 71 = 57), (128 - 71 = 57), 
(128 - 74 = 54), (128 - 72 = 56) and (128 - 71 = 57). 
 
The resulting MIDI values are 57, 57, 54, 56 and 57, yielding the following 
pitch sequence {A3, A3, F#3, G#3, A3}. Note that the inverted sequence 
maintains the original melody interval musicode of {0, 0, 3, 2, 1}, whilst giving 
an upside down melody, as shown in Figure 12.15. 
 

 
Figure 12.15: Newly inverted sequence, after transformation of measure in 

Figure 12.14. 
 

The example above assumed a maximal fMRI index value of 9, which once 
scaled to create a CS gives 1.0. However, as mentioned in the introduction 
to this section, varied degrees of transformations is also possible by scaling 
the amount of transformation according to the value of the fMRI_index. The 
difference between the input and the transformed pitches is multiplied by the 
CS, before being summed with the input to create the final transformed 
output value (Equation 12.3).  
 
New _pitch = {Input_pitch+((Input_pitch - transf_pitch)*[(fMRI_index+1)*0.1])}                                                                                            

 
(12.3) 

 
Let us examine what happens if we assume an fMRI_index equal to 5, which 
yields a CS equal to 0.6. In this case, we would expect an output 
approximately half way between the original pitch and the inversion; in other 
words, an almost neutral set of intervals. First, the difference d between the 
maximal inversion and the input signal for each of the musicode values 
needs to be calculated as follows:  
 

d = {(57 – 71), (57 – 71), (54 – 74), (56 – 72), (57 – 71)}  
d = {-14, -14, -20, -16, -14} 

 
Then, the scaled modifier values are calculated by multiplying the difference 
values by the value of CS: 
 

SMV= {(-14 * 0.6), (-14* 0.6), (-20 * 0.6), (-16 * 0.6), (-14 * 0.6)} 
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SMV = {-8.4, -8.4, -12, -9.6, -8.4} 
 
Finally, the SMV values are summed with the original input to give a 
transformed set of output values:  
 
New_pitches = {(71 - 8.4), (71 - 8.4), (74 – 12), (72 - 9.6), (71 - 8.4)} 
New_pitches = {62.6, 62.6, 62, 62, 62.6} 
 
Pitch values are rounded up to the nearest whole number as per the MIDI 
standard, giving a transformed set of pitch values equal to {63, 63, 62, 62, 
63}, which is rendered as {D#4, D#4, D4, D4, D#4}, as shown in Figure 12.16. 

 
 

Figure 12.16: Sequence after inversion with fMRI_index = 5, giving a nearly 
neutral set of pitch intervals. 

 
 
12.7.3.2 Pitch scrambling algorithm 
 
In simple terms, the pitch scrambling algorithm orders the pitch values of the 
input signal into a numerical list, which is then re-ordered randomly. This 
provides a stochastic component to the transformation algorithm. Using the 
same measure as for the previous example (Figure 12.14) as a starting point, 
let us examine the result of applying this transformation. The process is as 
follows: 

• Input pitches: {71, 71, 74, 72, 71} 
• Order pitches in ascending order: {71, 71, 71, 72, 74} 
• Scramble the order of pitches randomly: {74, 72, 71, 71, 71} 
• Output pitches: {74, 72, 71, 71, 71} 

  
In this case, the output would be rendered as {D5, C5, B4, B4, B4}. Re-
running the transformation, a further three times would give further variants, 
for example: {72, 74, 71, 71, 71}, {71, 74, 72, 71, 71} and {71, 74, 71, 72, 71}, 
rendered as {C5, D5, B4, B4, B4}, {B4, D5, C5, B4, B4} and {B4, D5, B4, C5, 
B4}, respectively, as illustrated in Figure 12.17. 
 

 
 

Figure 12.17: The result from applying the pitch scrambling algorithm four 
times on the same input.  

 
 
As with the pitch inversion algorithm, the value of fMRI_index can be used to 
create a control signal with which the amount of transformation can be varied. 
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In order to illustrate this, let us assume an fMRI_index equal to 3. This gives 
a CS value of 0.4.  

Considering the same input measure as before (Figure 12.14) and the 
transformed values from the first pitch scramble shown in Figure 12.17, the 
value of d, between the first scramble and the input signal is calculated as 
follows: 
 

d = {(74 – 71), (72 – 71), (71 – 74), (71 – 72), (71-71)}  
d = {3, 1, -3, -1, 0} 

 
The scaled modifier values are then calculated by multiplying the difference 
values by CS = 0.4:  
 

SMV = {(3 * 0.4), (1 * 0.4), (-3 * 0.4), (-1 * 0.4), (0 * 0.4)} 
SMV = {1.2, 0.4, -1.2, -0.4, 0} 

 
Finally, the SMV values are summed with the values of the original input to 
give a transformed set of output values:  
 

New_pitches = {(71+1.2), (71+0.4), (74-1.2), (72-0.4), (71-0)} 
New_pitches = {72.2, 71.4, 72.8, 71.6, 71} 

 
As before, pitch values are rounded up to the nearest whole number as per 
the MIDI standard, giving a transformed set of pitch values equal to {72, 71, 
73, 72, 71}, which is rendered as {C5, B4, C#5, C5, B4}, as shown in Figure 
12.18. Note that the output is significantly closer in overall structure to the 
unscrambled input than the first scrambled transformation shown in Figure 
12.17, with only the first and third notes having changed here.  
 

 
 

Figure 12.18: Transformed output created by pitch scrambling algorithm 
assuming fMRI_index = 3.  

 
 
12.7.3.3 Pitch delta algorithm 
 
Pitch delta represents the rate of change in the pitch values in each measure. 
The algorithm works by calculating the difference between the initial pitch 
and the successive pitch in each pair of notes. The pitch delta value is then 
used to transform the input pitch by summing the two values together 
(Equation 12.4). 
 

New_pitch = {(successive_pitch - initial_pitch) + initial_pitch} 
 

 (12.4) 
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Assuming the same input as for the previous examples (Figure 12.14), with a 
string of note pitch values equal to {71, 71, 74, 72, 71}, the delta values for 
this transformation are calculated as follows: 
 

1) Delta_1 = {(71 – 71) + 71} 
Delta_1 = 0  
New_pitch_1 = 71 (no change) 

 

2) Delta_2 = {(71 – 71) + 71} 
Delta_2 = 0  
New_pitch_2 = 71 (no change) 

 

3) Delta_3 = {(74 – 71) + 74} 
Delta_3 = 3 
New_pitch_3 = 77  

 

4) Delta_4 = {(74 – 72) + 74} 
Delta_4 = 2 
New_pitch_4 = 76  

 

5) Delta_5 = {(72 – 71) + 72} 
Delta_5 = 1 
New_pitch_4 = 73 

 
The transformed output would therefore comprise a pitch string of {71, 71, 77, 
76, 73}, which is rendered as {B4, B4, F5, E5, C#5}, as shown in Figure 
12.19. Thus, the application of the pitch delta algorithm gives the effect of 
exaggerating the melodic intervals from a given measure; large intervals 
become even larger, whilst melodies with little or no interval between 
successive notes remain unchanged.  
 

 
Figure 12.19: Transformed output created by the pitch delta algorithm. 

 
As with the previous cases of transformations, the above example assumed 
a maximal fMRI_index value, but the effect of the transformation can be 
mediated by reducing the value of the fMRI_index. This is illustrated in the 
following example.  
 
Let us assume the case of fMRI_index = 2. This gives a CS value of 0.3. 
With such a low value for the control signal, we should expect only a small 
amount of pitch delta transformation.  
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As before, we will use the input signal shown in Figure 12.14, this time with 
the transformed values from the full pitch delta transformation shown in 
Figure 12.19, to the difference d, as follows: 
 

d = {(71 – 71), (71 – 71), (77 – 74), (76 – 72), (73 – 71)}  
d = {0, 0, 3, 4, 2} 

 
The scaled modifier values are then calculated by multiplying the difference 
values by the CS value, which is equal to 0.3:  
 

SMV = {(0 * 0.3), (0 * 0.3), (3 * 0.3), (4 * 0.3), (2 * 0.3)} 
SMV = {0, 0, 0.9, 1.2, 0.6} 

 
Finally, the SMV values are summed to the original input to give a new 
sequence of pitch values:  
 

New_pitches = {(71 + 0), (71 + 0), (74 + 0.9), (72 + 1.2), (71 +0.6)} 
New_pitches = {71, 71, 74.9, 73.2, 71.6} 

 
As with the previous transformation examples, pitch values are rounded up 
to the nearest whole number, giving a transformed sequence of pitch values 
of {71, 71, 75, 73, 72}, which is rendered as {B4, B4, D#5, C#5, C5}, as 
shown in Figure 12.20. The exaggerating effect of the pitch delta has been 
radically mediated by the value of CS, with a much smaller amount of 
change seen in the transformed output than in the full pitch delta 
transformation shown in Figure 12.19. 
 

 
Figure 12.20: Transformed output created by pitch delta algorithm with a 

relatively low fMRI_index value of 3.  
 
The generative potential of a composition system that incorporates 
transformative processes, such as that offered by MusEng, is high.  
 
 
12.8 Concluding Remarks 
 
Research into BCMI often is devoted to technical aspects of building BCMI 
systems, which is not surprising giving the plethora of technical difficulties that 
need to be addressed to implement a decent system. In this chapter, 
however, we ventured to explore the creative potential of the science and 
technology behind BCMI research: Music Neurotechnology.  
 
We introduced an approach to music composition informed by the notion that 
the neural patterns and the corresponding mental images of objects and 
events around us are creations of the brain prompted by the information we 
receive through our senses. In the case of music, even though humans have 
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identical mechanisms for processing the basics of sound, music as such is a 
construction of the brain. Indeed, there is increasing hard evidence that this 
construction differs from person to person. When we listen to music, sounds 
are deconstructed as soon as they enter the ear. Different streams of 
neuronally coded data travel through distinct auditory pathways towards 
cortical structures, such as the auditory cortex and beyond, where the data 
are reconstructed and mingled with data from other senses and memories, 
into what is perceived as music. 
 
Metaphorically speaking, the compositional approach that we developed to 
composer Symphony of Minds Listening did to the Beethoven score what our 
hearing system does when we listen to music: sounds are deconstructed as 
they enter the ear and are relayed through various pathways towards cortical 
structures, where the data is then reconstructed into what is perceived as 
music.   
 
We would like to highlight that the composition of the piece evolved in tandem 
with the development of the MusEng software. Some of MusEng’s 
functionalities were firstly applied manually to compose a section of the piece, 
before they were implemented in software to aid the composition of other 
sections. The compositional practice therefore informed the design of the 
software, and the design of the software influenced the compositional practice. 
We believe that this is an important shift of paradigm from most scenarios of 
using computers in music. A piece of software is often developed from 
abstract specifications and tested only after it has been almost fully 
implemented. Moreover, composers are often confronted with software that 
does not always do what they need to do. Our paradigm to systems 
development may not as cost-effective as more standard methods, as it 
requires much more time to develop. However, it opens a significant 
opportunity for composers to actively participate in the design process. As we 
continue developing this work, more and more procedures emerging from the 
left hand side of the block diagram in Figure 12.5 will certainly make its way to 
the right hand side. 
 
We believe that Music Neurotechnology provides musicians with an 
unprecedented opportunity today to develop new approaches to music that 
would have been unthinkable a few years ago. This chapter unveiled only the 
tip of the iceberg. 
 
 
12.9 Questions 
 

1. How would you define the emerging field of Music Neurotechnology? 
	

2. What do you understand by the ‘mind as music’ hypothesis? 
	

3. Explain the metaphor that Symphony of Minds Listening is intended to 
express artistically. 

	



4. What is the point of composing each movement of the symphony 
based on the fMRI scan of a different person? 

	

 
5. Explain what it ICA and its role in the project presented in this chapter.   

 
6. What are the approaches to using computer-generated materials in 

musical composition discussed in this chapter? Discuss the differences 
between them, and the advantages and disadvantages of each 
approach. 
 

7. Can you envisage an approach to use computers in music beyond the 
ones discussed in this chapter? 
 

8. What is the rational for dividing Beethoven’s piece into 13 sections 
before processing it with MusEng? 
 

9. Why MusEng apply transformations to the music? 
	

10. Create a new kind of transformation for MusEng and explain it in detail. 
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