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This paper presents an analytical study on the thermal buckling analysis of axially loaded 

columns of thin-walled open section with non-uniform sectional properties. Critical loads 

related to flexural, torsional and flexural-torsional buckling of an I-section column subjected 

to an axial compressive load applied at the geometric centroid, under linearly varied non-

uniform temperature distribution scenarios are derived. The analysis is accomplished using 

traditional energy methods. The influences of thermal strain, non-uniform distribution of pre-

buckling stresses, and variation of pre-buckling stresses along the longitudinal axis of the 

column on critical buckling loads are examined. The present results highlight the importance 

of non-uniform sectional properties in the buckling analysis of columns of doubly symmetric 

section.  
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1. Introduction 

 

It is well-known that any axially loaded members of doubly symmetric section may have 

three distinct buckling modes, namely flexural, torsional and flexural-torsional modes, among 

which the flexural buckling load about the weak axis is almost always the lowest. Hence, in 

the design of doubly symmetric sections the torsional buckling load is usually disregarded. In 

non-symmetric sections, however, buckling will be always in the flexural-torsional mode 

regardless of its shape and dimensions. Thin-walled open mono-symmetric sections, such as 

angles and channels, can buckle in the flexural and flexural-torsional modes. Which of these 

two modes is critical depends on the shape and dimensions of the cross-section. Hence, 

flexural-torsional buckling must be considered in their design. This is normally done by 

calculating an equivalent slenderness ratio and using the same column strength curve as for 

flexural buckling. 

 

Note that the definition of “symmetry” used above to characterize the buckling behaviour of a 

member cannot be based purely on the geometry of the section but also need consider the 

mechanical properties of the section. For example, an I-section made of composite materials 

is doubly symmetric in terms of its geometry but may not be doubly symmetric in terms of its 

mechanical properties.1-4 Another example is when a doubly symmetric section is exposed to 

a fire on its one side, which causes a non-uniform distribution of temperature in the cross-

section.5-6 The non-uniform temperature leads to a non-uniform mechanical property, which 
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can turn the column from a flexural buckling to a flexural-torsional buckling. An excellent 

work was provided by Pi and Bradford in describing the lateral-torsional buckling of I-

section beams subjected to transverse loading under non-uniform temperature distribution. 6 

 

The theory of torsional and flexural-torsional buckling of thin-walled open section members 

subjected to axial compressive loads can be found from literature of textbooks and research 

articles.7-9 Apart from the theoretical study of torsional and flexural-torsional buckling, pre-

buckling10 and post-buckling11 of thin-walled open section members subjected to axial 

compressive loads were also discussed. The work involves the use of not only analytical 

methods9 but also finite element methods.12-13 

 

However, despite the considerable amount of work published in literature, there is very little 

work on the influence of non-uniform mechanical properties on the torsional and flexural-

torsional buckling of thin-walled open sections subjected to axial compressive loads. It is 

expected that if the mechanical property is not uniform in the cross section of a member, the 

bending centre of the member will not be at the geometric centroid of the section. In this case 

compressive loads applied at geometric centroid may cause the member to bend. The 

combined action of the compression and bending can lead the member to have a torsional or a 

flexural-torsional buckling. In this paper, an analytical study on the buckling analysis of 

axially loaded columns of thin-walled open section with non-uniform sectional properties is 

reported. Critical loads related to flexural, torsional and flexural-torsional buckling of an I-

section column subjected to an axial compressive load applied at the geometric centroid, 

under linearly varied non-uniform temperature distribution scenarios are derived. The 

analysis is accomplished using traditional energy methods. The non-uniform mechanical 

properties are assumed to be induced by the non-uniform temperature distribution in the 

section. The influences of thermal strain, non-uniform distribution of pre-buckling stresses, 

and variation of pre-buckling stresses along the longitudinal axis of the column on critical 

buckling loads are examined. The present results highlight the importance of non-uniform 

sectional properties in the buckling analysis of columns. 

 

2. Pre-buckling analysis 

 

Consider an I-section column subjected to an axial compressive load as shown in Fig. 1. Let 

bf and tf be the width and thickness of the flange, hw and tw be the depth and thickness of the 

web, respectively. Under a uniform temperature the Young’s modulus of the column is also 

uniform although its value may be dependent on the temperature. In this case the pre-

buckling stress of the column can be obtained using the traditional theory of axially loaded 

members. However, if the temperature in its cross-section is not uniformly distributed, the 

Young’s modulus of the column will be different at different points on the cross-section. In 

this case not only can the axial compressive load applied at geometric centroid cause the 

compression of the column but also it can lead to the bending of the column about its 

geometric principal axes.  

 

Let o be the geometric centroid of the I-section, oy and oz be the two corresponding 

geometric principal axes (see Fig. 2). Since for most cases the temperature distribution on the 

cross-section is symmetric about the web, for example when a protected I-section column is 

exposed to a fire on its one side, it is assumed here that the temperature varies only with the 

y-axis. Let T2 and T1 be the temperatures of upper and lower flanges, and E2 and E1 be the 

corresponding Young’s moduli of them (see Fig. 2). By using Euler-Bernoulli beam’s 
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assumption, the axial strain at any coordinate point (y, z) of the cross-section can be 

expressed as the sum of a membrane strain and a bending strain about z-axis as follows, 

xyo yzy  ),(           (1) 

where is the membrane strain and xy is the curvature of the column in the xy-plane (see 

Fig. 2). On the other hand, the total axial strain can also be decomposed in terms of the strain 

components generated by individual actions, 

th
E

zy 


 ),(           (2) 

where  is the axial stress, E is the temperature-dependent Young’s modulus, andth is the 

thermal strain. Solve  from Eqs. (1) and (2), yielding, 

)( thxyo yE             (3) 

The resultant force and moment on the cross-section requires the following equilibrium 

equations, 
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where Nx is the axial membrane force, Mz is the bending moment about z-axis, and v is the 

transverse deflection of the column in y-direction. Let, 
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where Af = tfbf and Aw = twhw are the cross-sectional areas of the flange and web, h = hw + tf is 

the distance between the midlines of upper and lower flanges,  is the thermal expansion 

coefficient, To is the ambient temperature. The above cross-section integrations are 

accomplished under the assumptions that the flanges have constant temperatures and the web 

has a linearly varied temperature from T1 to T2 and a linearly varied Young’s modulus from 

E1 to E2, respectively (see Fig. 2).  By using the notations defined in Eqs. (6)-(10), Eqs. (4)-

(5) can be expressed as follows, 

Toxxyoo SNSS   1         (11) 

121 Txxyo SvNSS           (12) 

By eliminating o from Eqs. (11) and (12) and noting that 
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The transverse deflection of the column for simply supported ends governed by Eq. (13) can 

be expressed as 
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where L is the column length,  P = -Nx is the axial compressive load, and k is defined as 
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The maximum deflection occurs at x = L/2 and is given by 
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It is apparent from Eq. (16) that, when kL→π, v(x) at x = L/2 tends ∞. This indicates that the 

maximum axial compressive load of the column is given by 
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Clearly, Pmax is also the critical load of the column for the buckling about z-axis. It is obvious 

that if the temperature is uniform, then S1 = 0 and Pmax reduces to the Euler critical buckling 

load. 

 

The curvature and the membrane strain can be calculated using Eqs. (14) and (11) as follows: 
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The pre-buckling stress distribution in flanges and web can be determined using Eq. (3) as 

follows: 

 

At the lower flange: 
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At the upper flange: 
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In the web: 



5 

 
































 





































 





)cos()sin(
)sin(

)cos(1)()(

2

)(

2

)(

2

2

12

1111221

12211221
3

kxkx
kL

kL

SSS

SSPSS
y

S

S

h

EEyEE

T
h

TTyTT

S

PS

h

EEyEE

o

ToTo

ow

o

wo

To

w



  (22) 

 

Note that the membrane strain and curvature are expressed as functions of x-coordinate 

because of the beam-column effect. Therefore the pre-buckling stress varies not only with y- 

but also with x-coordinates. However, it can be seen from Eqs. (20)-(22) that, for a given 

cross section, the pre-buckling stress is constant in each of the two flanges, whereas it varies 

parabolically in the web. The variation of pre-buckling stresses along x-axis is largely 

dependent on the value of k, which can be expressed as
maxP

P

L
k


 . If k→0, then

1)cos()sin(
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kxkx

kL

kL
. This indicates that, if P is much smaller than Pmax, then 

the variation of pre-buckling stresses with x-axis can be ignored. However, if P is close to 

Pmax, the variation of pre-buckling stresses with x-axis becomes infinite.  

 

3. Torsional and flexural-torsional buckling analysis 

 

The aforementioned buckling is presented under the assumption that the column will buckle 

in the plane of principal axis without accompanying rotation of the cross section. This 

assumption appears reasonable for the doubly symmetric cross section but becomes doubtful 

if cross-sections have only one axis of symmetry or none at all. Geometrically, I-section 

columns are doubly symmetric about the two principal axes. However, when the temperature 

is not uniformly distributed in their cross sections their mechanical properties are not 

symmetric. Experience has revealed that columns having open section with only one or no 

axis of symmetry show a tendency to bend and twist simultaneously under axial 

compression.1-3 The ominous nature of this type of failure lies in the fact that the actual 

critical load of such columns may be less than that predicted by the buckling load shown in 

the above section due to their small torsional rigidities. 

 

Since the I-section discussed here is symmetric about y-axis, but not about z-axis because of 

the temperature variation along the y-axis. For the convenience of analysis, two parallel 

reference axes are used. One is the z-axis of passing through geometric centroid o and the 

other is the zs-axis of passing through shear centre s (see Fig. 3). Let ys be the distance 

between the centroid and shear centre, which can be expressed as follows,  
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When the column has a torsional or a flexural-torsional buckling, the strain energy stored in 

the column in the adjacent equilibrium configuration can be calculated based on the sum of 

strain energies of the upper flange, lower flange and web. According to the displacement 

components defined for a buckled column as shown in Fig. 3, the following strain energy 

expressions can be obtained: 
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For the upper flange 
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For the web 
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where ws is the lateral translation displacement of the section,   the angle of twist of the 

section about the shear centre,  
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There is no warping strain energy in the strain energy expression of each component. This is 

because the flanges and web are treated independently here and each has a rectangular cross-

section for which the warping constant is very small and can be ignored. However, this does 

not mean that there is no warping for the whole section. The warping strain energy of the 

section is represented by the bending strain energy related to the angle-of-twist terms in the 

strain energy expression of each component. This is a novelty and it avoids the difficulty in 

dealing with the warping of the I-section when the mechanical properties are not uniform in 

the section. 

 

The loss of potential energy of external loads during buckling is equal to the product of the 

loads and the distances they travel as the column takes an adjacent equilibrium position, 

which are expressed as follows:9,14,15 
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For the upper flange 
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For the web 
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 is the polar radius of gyration of the flange section with respect to its 

own centroid. The variation of the pre-buckling stresses can have significant effect on the 

buckling behaviour16-20 and thus it is important to split the section into components for which 

the potential energy of pre-buckling stresses can be calculated directly.  

 

For the column with simply supported ends, the torsional and/or flexural-torsional buckling 

displacements ws(x) and (x), that satisfy the simply supported boundary conditions at x = 0 

and x = L, can be assumed to be  
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where C1 and C2 are constants to be determined. Eqs. (31) and (32) are substituted into Eqs. 
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Eqs. (20)-(22), (30) and (31) are substituted into (27)-(29) to furnish 
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where  = √(P/Pmax) is the dimensionless load. From the principle of minimum potential 

energy, when the torsional or flexural-torsional buckling occurs, the following equation 

holds, 
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where  = (U1 + U2 + U3) + (W1 + W2 + W3). The substitution of Eqs. (33)-(38) into Eq. (39) 

yields 

 

0)())(()( 2

121222221111  BABABAPF      (40) 

 

in which 

 








 


































2

)(

2

321

2211

2

2

1

3

2

2

1

2

2

2

1

1

2

11

y

yy

IEE
IEIE

L

L

C

U

C

U

C

U
A


 

 

   

 
   

  














 






























































































































 










 























 

















62
tan

4

24)(

2

222
tan

4

24)(

3

3232

4

)()(
2

12

21

1

2

2

2

12

11

1

2

1

12

2

2

12

11

20211021

21

221121

2

1

3

2

2

1

2

2

2

1

1

2

11

EE
hEE

S

S

SSS

SSPSSLth

h

S

S
E

h

S

S
E

SSS

SSPSSLtb

ETTTETTT
EE

S

PSLth

ETTETTEE
S

PSLtb

C

W

C

W

C

W
B

w

oo

ToToww

ooo

ToToff

o

Toww

oo

o

Toff





















 

  
wsyyy

yIEEhIEIE
L

L

CC

U

CC

U

CC

U
A

3211122

2

21

3

2

21

2

2

21

1

2

12
)(

4



























 

 



9 

 

      

   
















 








 






























































































































 








 









 























 

















1262
tan

4

24)(

2

222
tan

4

24)(

2

664

4

21121

2

2

2

12

11

2

1

1

1

22

2

2

12

11

10120212

2

10120212

21

3

2

21

2

2

21

1

2

12

EE
h

EE

S

S

SSS

SSPSSLth

h

S

S
E

h

S

S
E

SSS

SSPSSLhtb

ETTETTEE

S

PSLth

ETTETTEE
S

PSLhtb

CC

W

CC

W

CC

W
B

w

oo

ToToww

ooo

ToToff

o

Toww

o

Toff





















 

    
3212211

2

321

2

1211

2

2

2

3

2

2

2

2

2

2

2

1

2

22

)()(2
4

)(2
8

JGGJGJG
L

yIEEhIEIE
L

L

C

U

C

U

C

U
A

wsyyy



























 

    

   
















 








 





































































































































 








 









 























 

























40122
tan

4

24)(

2

2242
tan

4

24)(

60

5454

124

)(
42

12211

2

2

2

12

11

3

1

2

1

1

2

2

2

2

2

12

11

2021102121

3

221121

2

2

2

2

3

2

2

2

2

2

2

2

1

2

22

EE
h

EE

S

S

SSS

SSPSSLth

h

S

S
E

h

S

S
Er

h

SSS

SSPSSLtb

ETTTETTTEE

S

PSLth

ETTETTEE
S

PS
r

hLtb

C

W

C

W

C

W
B

w

oo

ToToww

oo

f

o

ToToff

o

Toww

oo

o

To

f

ff





















 

Eq. (40) is a nonlinear algebraic equation about the axial compressive load P. For a given 

column with given distributions of temperature and mechanical properties, one can find the 

roots, P, of Eq. (40). The lowest root represents the critical buckling load.  

 

It should be pointed out here that, due to the bending effect involved in the pre-buckling 

analysis, the term related to the loss of potential energy of external loads is not linearly 

proportional to the axial compressive load P. Thus, the classical method of buckling analysis 

which is to find the smallest eigenvalue in the eigen-equation cannot be used directly here. 

 

4. Numerical examples 

 

A commercially available I-section column with section dimensions, hw = 138.8 mm, bf = 

152.2 mm, tf = 6.8 mm, tw = 5.8 mm, is considered herein for numerical illustration. The 

reduction of Young’s modulus due to elevated temperatures is given in Table 1, which is 

obtained from steel design manual. Four different temperature distributions defined in Table 
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2 are discussed in this numerical example. The thermal expansion coefficient and ambient 

temperature are taken as  = 1.4x10-5 and To = 20 oC in all cases. 

 

Figure 4 shows the pre-buckling stress distributions on the end cross-section of the column in 

four different temperature distribution cases, in which the axial compressive load is taken as 

P = y(2Af + Aw) where y = 275 MPa is the yield strength of steel. It can be seen from the 

figure that the stresses in the two flanges are very close although they have different 

temperatures. The variation of stresses in the web depends on the temperature difference 

between T2 and T1. The larger difference between T2 and T1 leads to a larger variation in web 

stress. The highest stress is found at near the geometric centre of the web element. Figure 5 

shows the pre-buckling stress distributions on the middle cross-section of the column in four 

different temperature distribution cases. Owing to the bending effect, the stress distributions 

in the middle section of the column are quite different from those in the end section of the 

column. In the former the stress is approximately symmetric about z-axis, indicating that the 

column is nearly in a pure compression; while in the latter the stress in the flange of low 

temperature is much greater than that in the flange of high temperature, indicating that the 

column is subjected to not only compression but also bending. 

 

Under uniform temperature an I-section column will always buckle in a flexural mode. 

Whether the flexural mode is bending about y-axis or z-axis depends on which flexural 

rigidity is weaker. When the temperature is non-uniform, however, the I-section column will 

buckle in the flexural-torsional mode owing to the non-uniform mechanical properties 

induced by the non-uniform temperature. To demonstrate this, Fig. 6 shows the critical loads 

of the column in four different temperature distribution cases, in which Pmax and Pmin 

represent the critical loads of the flexural buckling about z-axis defined by Eq. (17) and y-axis 

defined by Eq. (41), Pcr1 and Pcr2 represent the critical loads of the flexural-torsional buckling 

calculated from Eq. (40) with and without taking into account the bending effect in pre-

buckling stress (i.e. for Pcr2 the pre-buckling stress is taken at the end section of the column 

and its variation with x-axis is ignored),  
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      (41) 

For convenience, all these four critical loads are normalised using Pmaxo, which is the value of 

Pmax at ambient temperature, i.e. when T2 = T1 = 20 oC. It can be seen from Fig. 6 that, among 

the three critical loads, Pcr1 is always smallest. This demonstrates that when there is a 

temperature difference between the two flanges, the column will buckle in the flexural-

torsional mode. It is worth noting that if the bending effect is ignored in the calculation of 

pre-buckling stresses, the critical load of flexural-torsional buckling coincides with that of 

flexural buckling about the y-axis unless there is a huge temperature difference between the 

two flanges. This highlights the importance of considering bending effect in pre-buckling 

analysis.  

 

5. Conclusions 

  

This paper has presented an analytical study on the buckling analysis of axially loaded 

columns of thin-walled open section with non-uniform sectional properties. Critical loads 

related to flexural, torsional and flexural-torsional buckling of I-section columns subjected to 

axial compressive loads applied at geometric centroid, under linearly varied non-uniform 

temperature distribution scenarios have been derived. The influences of thermal strain, non-

uniform distribution of pre-buckling stresses, and variation of pre-buckling stresses along the 
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longitudinal axis of the column on critical buckling loads have been discussed using 

numerical examples. From the obtained results the following conclusions can be drawn: 

 

 Non-uniform distribution of temperature can lead to non-uniform distribution of 

mechanical properties. The non-uniform of both the temperature and mechanical 

properties can significantly affect the pre-buckling stress in axially loaded columns. 

 When the bending effect is taken into account in the pre-buckling stress analysis, the 

buckling analysis becomes a nonlinear problem, which cannot be treated using the 

classical eigenvalue analysis method.  

 The doubly symmetric I-section column subjected to an axial compressive load 

applied at its geometric centroid will buckle in the flexural-torsional mode when the 

temperature distribution is not uniform. The critical load of the flexural-torsional 

buckling is smaller than the critical load of the flexural buckling about either principal 

axis.  

 The pre-buckling bending has significant influence not only on the value of the 

critical load but also on the mode of flexural-torsional buckling. 

 Although the present study focuses on the flexural, torsional, and flexural-torsional 

buckling of columns caused due to linearly varied non-uniform temperature along the 

axis parallel to web line, the concept and the method itself can be applied to the 

general columns with non-uniform mechanical properties when subjected to axial 

compression. 

 

Finally, it should be pointed out that the study presented in the paper deals with only the 

elastic buckling and there is no material yield. For some cases, however, material yield may 

occur prior to the buckling because of the effect of high temperature. In this case, a full 

nonlinear analysis is needed in order to calculate the failure load.    
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Table 1. Reduction of Young’s modulus at different temperatures 

 

T (oC) 20 100 200 300 400 500 600 700 800 

E (GPa) 210 210 210 168 147 126 65.1 27.3 18.9 

 

 

Table 2. Parametric values employed in different cases 

 

Case  T1 (
oC) T2 (

oC) E1 (GPa) E2 (GPa) 

1 200 300 210 168 

2 200 400 210 147 

3 200 500 210 126 

4 200 600 210 65.1 
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Figure 1. (a) Column with axial compression. (b) Deformed shape. 

(c) Definition of internal forces. 

 

 

 
 

Figure 2. (a) Cross-section. (b) Temperature distribution. (c) Young’s modulus distribution. 

(d) Coordinate system. (e) Strain distribution. (f) Membrane strain. (g) Bending strain. 

 

 

 
 

Figure 3. Definition of displacements in flexural-torsional buckling (points o and s represent 

the geometric centroid and shear centre of the cross-section). 
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Figure 4. Axial stress distribution on the end section of column (section dimensions: hw = 

138.8 mm, bf = 152.2 mm, tf = 6.8 mm, tw = 5.8 mm, L = 3000 mm). (a) Case 1. (b) Case 2. 

(c) Case 3. (d) Case 4. 

 

 

 
 

 

Figure 5. Axial stress distribution on the middle section of column (section dimensions: hw = 

138.8 mm, bf = 152.2 mm, tf = 6.8 mm, tw = 5.8 mm, L = 3000 mm). (a) Case 1. (b) Case 2. 

(c) Case 3. (d) Case 4. 
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Figure 6. Variation of critical load with column length (section dimensions: hw = 138.8 mm, 

bf = 152.2 mm, tf = 6.8 mm, tw = 5.8 mm). (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. 
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