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Abstract. A visualisation method is presented that is intended to as-
sist evolutionary algorithm users with the parametrisation of their algo-
rithms. The visualisation method presents the convergence and diversity
properties such that different parametrisations can be easily compared,
and poor performing parameter sets can be easily identified and dis-
carded. The efficacy of the visualisation is presented using a set of bench-
mark optimisation problems from the literature, as well as a benchmark
water distribution network design problem. Results show that it is pos-
sible to observe the different performance caused by different parametri-
sations. Future work discusses the potential of this visualisation within
an online tool that will enable a user to discard poor parametrisations
as they execute to free up resources for better ones.

Keywords: Visualisation, Multi-objective, Optimisation, Water Distri-
bution Network Design.

1 Introduction

Visualisation remains an open problem within evolutionary computation (EC).
Recently, considerable effort has been expended in investigating methods for
visualising sets of solutions, with the aim of presenting the final set of generated
solutions to a decision maker so that one can be selected for implementation. The
visualisation of algorithm performance lags somewhat behind. Such visualisation
is an important avenue of research, as useful visualisations of algorithm operation
can help to reveal the inner workings of an evolutionary algorithm (EA), which to
a non-expert are a black box. By exposing the operation of an EA to a non-expert
user, the uptake of evolutionary computation by industry will be increased.

This paper presents a new visualisation that is intended to assist an algo-
rithm user when parametrising their algorithms. All varieties of EA require a
range of parameters to be set. Most, including genetic algorithms (GAs), dif-
ferential evolution (DE) and particle swarm optimisation (PSO) are extremely
sensitive to their parameters being set correctly, with a poor set of parameters
resulting in a poor set of solutions. The EC literature contains a range of ways
of characterising performance; in this work, multi-objective problems are consid-
ered, and algorithm performance is characterised in terms of convergence to the
true Pareto front and population diversity. Both of these aspects are revealed
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through the proposed visualisation, and a “good” parametrisation requires both
good convergence and population diversity.

The visualisation is demonstrated on well-known continuous test problems
from the literature (the DTLZ problem suite [7]). Problems are selected that will
demonstrate the algorithm’s performance on a range of problem characteristics.
As well as these problems, an industrial benchmark problem is demonstrated –
the water distribution network design problem. This is a combinatoric problem,
and represents a class of problem that are commonly optimised using EAs. The
paper is structured as follows: a brief survey of relevant visualisation approaches
is presented in Section 2 before the proposed visualisation is introduced in Sec-
tion 3. The experimental framework is discussed and the visualisation method
demonstrated in Section 4, before its results are discussed in Section 5. The final
section serves as a conclusion to the paper, as well as containing as discussion
of future work.

2 Background

2.1 Multi-objective Optimisation

This paper is concerned with continuous and discrete multi-objective optimisa-
tion problems. In both cases, consider a solution x, wherein xp is one of P deci-
sion variables. Solution quality is determined with a set of M objective functions
fm, forming an objective vector y:

y = (f1(x), . . . , fM (x)) . (1)

Relative solution quality is assessed using dominance, such that given two so-
lutions xi is superior to xj if it dominates xj . This is the case if it is no worse
than xj on all objectives and better on at least one (assuming a minimisation
problem, without loss of generality):

yi ≺ yj ⇐⇒ ∀m(yim ≤ yjm) ∧ ∃m(yim < yjm). (2)

If neither of two solutions dominate the other then they are called mutually
non-dominating. If a solution has no dominating solutions, it is said to be non-
dominated. The optimal set of solutions are called the Pareto set, which map
to the Pareto front in objective space. This is the mutually non-dominated set
of non-dominated feasible solutions, and represents the best possible trade-off
between the problem objectives. In order to produce a suitable estimate of the
Pareto front, the job of a multi-objective EA (MOEA) is to converge to a point
close to the Pareto front, and cover the front’s full extent.

2.2 Visualisation of Evolution

Of the visualisation work within EC, a considerable amount is focused on dis-
playing populations of solutions (e.g., [3, 15]). In particular, many-objective opti-
misation (wherein problems comprise four or more objectives) pose a particular



challenge for visualisation [15], as human decision makers can only comprehend
three or fewer spatial dimensions. Many-objective problems are not considered
herein, however current ongoing work is considering how they can be incorpo-
rated into the proposed framework.

Fewer publications consider visualising the process of evolution itself. An
example that is directly relevant to this work is proposed in [5], which uses a
visualisation method to assess the stability of parameters for an EA used to solve
a single-objective cryptology problem. They define metrics over the parameter
space3 and perturb parameters to show the effect of moving them around within
a small neighbourhood. One of the first examples of visualisation work within the
EC field was [13], which proposed a set of standard tools for visualising solutions,
populations, and algorithm characteristics such as convergence. A similar system
was proposed by [12], which allowed a user to view the propogation of genetic
material throughout the execution of an EA (they optimised the 0/1 Knapsack
problem). Elsewhere, an example of a tool that seeks to visualise the evolution
process is GAVEL [10], which presents maps of populations of solutions in terms
of the genetic operators used to generate them. Other aspects of the tool show
the rate at which solutions are generated, as well as fitness information. A visu-
alisation developed for water distribution network (WDN) design was proposed
by [11] in which a visualisation of a single solution (a single WDN) is coloured
according to the frequency that each decision variable (an individual pipe diam-
eter) within the solution is perturbed. Within the realm of genetic programming
there have been various examples of visualising the ancestry of solutions (e.g.,
[4]).

3 Visualising Stability Within Multi-objective EAs

The method proposed herein visualises the stability of an algorithm’s parameters
by showing how important properties of a MOEA (such as convergence to the
Pareto front and diversity within the population) change over time for given
parametrisations of algorithms.

Fig. 1 shows a schematic describing the construction of the visualisation.
The plot itself is circular, and is designed to contain information about multiple
executions of an EA. Each point within the visualisation represents a single
solution within an algorithm’s population for a single generation, and has three
degrees of freedom: its angle from the origin, distance from the centre of the plot,
and its colour; each of these is used to convey an aspect of algorithm performance.
The choice of characteristic these variables are used to show is up to the user to
decide. Two important aspects of the execution of a MOEA are convergence, to
ensure that the algorithm generates solutions that are close to the true Pareto
front, and diversity, to ensure that the search population is properly explored.
This work utilises two well-known measures from the evolutionary computation

3 Herein the term parameter is used to refer to algorithm parameters; decision variable
is used to refer to an aspect of a solution’s design, to avoid confusion.
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Fig. 1: A schematic showing the placement of a solution within the visualisation.

literature to illustrate both characteristics across a set of algorithms optimising
benchmark test problems.

To show convergence, the hypervolume indicator [8] is employed. This pro-
vides a measure of dominated space between the current search population and
a reference point; in this work, the hypervolume of individual solutions is con-
sidered. A reference point is computed by taking the maximum value for each
objective seen at any point in the optimisation process. As the population con-
verges, the distance from this reference point increases. Hypervolume is used to
determine the angle θ by multiplying the hypervolume value (lying between 0
and 1 as a proportion of the space that could be dominated) by 2π. At the begin-
ning of an optimisation run, when working with randomly generated solutions,
points are typically scattered across the extent of the circle. As more optimal
solutions are generated, and the algorithm converges towards the true Pareto
front, this angle decreases and the population tend to be clustered around the
origin (shown by a dotted line and the label “O” in Fig. 1).

Diversity is evaluated using the crowding distance. Crowding distance pro-
vides a measure of the proximity of the nearest solution in each objective, and is
well-known for its use in the selection operator of NSGA-II [6]. It is important
to note the flexibility of the proposed method. In this work, hypervolume and
crowding distance have been used as well-known measures of convergence and
diversity that do not require a priori knowledge about the true Pareto front
(which is known for the continuous test problems tested later, but not for the
industrial benchmark problem also demonstrated). These indicators can be eas-
ily substituted for any measure required – for example, an indicator of decision
space diversity, or measures indicating (for example) velocities within a particle
swarm optimiser. These are aspects of ongoing work, which are not discussed
further in this paper.



4 Experimental Setup

In order to demonstrate the potential of the proposed method, continuous test
problems from the multi-objective literature are considered, before an industrial
benchmark is evaluated.

4.1 Continuous Test Problems

Three benchmark multi-objective problems from the literature are optimised
with three variants of a basic MOEA, and the various algorithm performances
are visualised. The test problems employed are a 2-objective DTLZ1 and a 3-
objective DTLZ2 [7], both of which have different problem characteristics. Both
are real-valued, with legal parameters in the range (0,1). To facilitate an easier
analysis of the visualisations, the MOEA works with a population size of 10.
DTLZ1 is known to be a harder problem than DTLZ2; as such, the optimiser
executes for 5,000 generations, while DTLZ2 is optimised for 500 generations.

Three algorithms are selected for their different optimisation behaviours;
all three variants follow the same basic arrangement. The algorithm begins by
initialising a random search population, which is evaluated under the problem
objective functions. An elite archive, in which the current approximation to the
Pareto front will be stored, is initialised. The archive is passive, in that it does not
participate in the evolutionary process. At each generation, a child population is
generated by applying crossover and mutation operators, and is evaluated under
the objectives. The archive is updated, so that any newly dominated solutions
are removed, and any members of the child population that are not dominated
by members of the archive are added to it. Finally, elitist selection is applied to
the combined parent and child populations to select the parent population for
the next generation. The specific operators used to obtain specific optimisation
behaviours are now discussed.

In the first EA, single-point crossover is used to combine two candidate parent
solutions chosen at random. A child solution is created by joining the decision
variables prior to the crossover point on one of the parents with the decision
variables following the crossover point on the other. The child is then mutated
using an additive Gaussian mutation, and evaluated. To demonstrate different
parametrisations of the algorithm, the standard deviation of the Gaussian dis-
tribution from which the additive mutation is drawn is chosen randomly in the
range (0,1). The selection operator performs non-dominated sorting on the com-
bined parent and child populations. As solutions are added to the new parent
population, if the current non-dominated front contains more solutions than are
needed to fill the population then the number required are selected from that
front at random. This algorithm provides good convergence to the Pareto front,
and is able to cover its full extent, so providing an example of an optimiser with
good performance.

The second EA operates largely in the same way as the first. It generates so-
lutions using the crossover and mutation operators described above, and uses the



archive in the same way. The difference is in the choice of selection operator; av-
erage rank [2] is used to determined which solutions are carried forward into the
next generation. Average rank is a method proposed to deal with many-objective
optimisation problems, where non-dominated sorting is unable to provide suffi-
cient selection pressure to properly optimise [9]. It is formalised as follows:

r̄i =
1

M

M∑
m=1

rim, (3)

where rim is the rank of the i-th solution when ranked according to the m-th
objective. Having ranked the population, the top N solutions from the combined
parent and child populations are retained. On its own, average rank is able
to provide extremely good convergence to the Pareto front, but this is at the
expense of the diversity. The resulting approximation to the Pareto front is
clustered around the extremes of the front, where the lowest objective values,
and therefore the best ranks, are to be found. This is used herein as an example
of an optimiser suffering from premature convergence.

The final algorithm is a random search of the feasible space, and is used
to highlight an example of poor convergence. Rather than retaining the fittest
solutions, a population of N solutions is chosen uniformly at random from the
2N -member combination of the parent and child populations.

4.2 Water Distribution Network Design

In addition to the continuous test problems demonstrated in the previous sec-
tion, the algorithm is used to optimise a benchmark water distribution network
(WDN) design problem from the field of hydroinformatics. This problem is dis-
crete, requiring the identification of a set of pipe diameters that will form the
optimal WDN. The problem is multi-objective, with a candidate network eval-
uated both in terms of its cost and its hydraulic properties.

The New York Tunnels problem [14] comprises 21 nodes connected by 20
pipes. The correct diameter for each pipe must be identified, from one of 16
possibilities. Hence, the feasible search space is of size 2016 ≈ 6.55 × 1020. The
problem objectives are formulated as follows:

f1 =

K∑
k=1

(
1.1d1.24k × lk

)
, (4)

f2 =

N∑
n=1

((
ĥn − hn

)
> 0
)
. (5)

The diameter of the k-th pipe is given by dk, while lk represents that pipe’s
length. The head deficit for node n is specified by hn, and ĥn is the target head
deficit for that node.



Whereas the continuous problems are optimised with fifty parametrisations
of an additive Gaussian mutation, this problem must be optimised with combi-
natoric perturbations. The crossover portion of the MOEA is retained, and the
mutation operator is swapped with one of five different heuristics:

– Change by one size: a randomly chosen pipe’s diameter is replaced with
the next largest or smallest available diameter (also known as creep muta-
tion).

– Shuffle: a randomly selected block of diameters is randomly reordered.
– Ruin & recreate: the solution is replaced with an entirely new chromosome.
– Change pipe: a randomly chosen pipe’s diameter is replaced with a ran-

domly chosen available pipe.
– Swap: two randomly chosen pipe diameters are swapped.

As before, the algorithm operates with a population of 10 solutions and runs for
5,000 generations.

5 Results

5.1 DTLZ2

The first set of visualisation, shown in Fig. 2, demonstrates the optimisation
of DTLZ2. The figure presents a grid of nine visualisations. Each row shows a
different algorithm’s optimisation progress: the top row shows the Pareto sorting-
based algorithm; the second row is average rank, and the bottom row shows the
random selection strategy. In each case, the left-hand column shows the popula-
tion after selection in the first generation; the middle column shows generation 20
and the right-hand column shows the final search population. Each visualisation
shows the ten solutions comprising a population for each of the fifty algorithm
parametrisations.

The ideal situation is shown by the top row, presenting results for the Pareto
sorting approach. As can be seen, the solutions have progressed around the arc
of the visualisation, and are clustered around the zero angle line. This indicates
that most of the populations have converged to a good approximation of the
Pareto front, as their hypervolume is close to the optimal observed value. Some
of the populations have not quite converged. The final population is repeated in
Fig. 3, which shows this in more detail. Six of the parametrisations have been
highlighted – those shown in blue have converged, and those shown in red have
not. Recalling that the distance from the centre of the visualisation represents
the standard deviation of the additive Gaussian mutation applied to the chosen
parameter, this is intuitively correct. Small Gaussian mutations are known to
provide better convergence than larger ones, which cause behaviour closer to a
random walk through the space. Returning to Fig. 2, the diversity within the
population is also good. As can be seen, the colours of the points representing
solutions are a mixture of light blues and oranges. This indicates a mixture of
solutions with medium crowding distances, and suggests that the algorithms



(a) Gen 0 (b) Gen 20 (c) Gen 499

(d) Gen 0 (e) Gen 20 (f) Gen 499

(g) Gen 0 (h) Gen 20 (i) Gen 499

Fig. 2: Visualisations of DTLZ2. The top row shows the populations generated by
using the basic GA; the middle row shows corresponding results for the average
rank optimiser, and the bottom row for the random solution generation algo-
rithm. Colour indicates crowding distance – a low crowding distance is shown in
blue, high distances are in red.



Fig. 3: The final set of populations for the algorithm using Pareto sorting to
optimise DTLZ2. The blue group show better convergence than the red group.

have not suffered from a loss of diversity (which would be shown by exclusively
small crowding distances – blue solutions, in the visualisations).

The bottom two rows show less satisfactory behaviour of the optimisers. The
middle row shows a set of results for an optimiser using average rank. At first
glance, the optimiser has performed well; the solutions are very well converged
to the true Pareto front. In fact, they are closer to the optimal set of solutions
than those generated using Pareto sorting. Unfortunately, this convergence is
premature, and is at the expense of the diversity within the population. As
can be seen, the solutions are generally dark blue, indicating a low crowding
distance. The effect of this can be seen in the example Pareto front shown in Fig.
4, which shows two final estimated Pareto fronts from the last generation of the
average rank optimiser. In both cases, the solutions (shown with black crosses)
are generally clustered around the edges and corners of the true Pareto front
(samples of which are shown with grey dots). Though these solutions are very
close to the front (with a few exceptions, which are too close to minimising one of
the objectives that they are extremely difficult to dominate) they do not properly
cover the front. A large proportion of the true Pareto front is unexplored by the
optimiser, and the resulting solution set does not properly describe the trade-off
between objectives. The final row has the opposite problem: optimised using
a random selection operator, there is very little selection pressure to drive the
population to the Pareto front. As a result, the populations do not converge, as
shown by the large spread of solutions that have not reached the zero angle line.
The populations have, however, retained their diversity. As was the case with
the Pareto sorting example, solutions are coloured between blue and orange.



(a) 2 objectives (b) 3 objectives

Fig. 4: Exemplar Pareto front approximations for DTLZ2 obtained using average
rank selection. Black crosses show the generated solutions; grey dots are samples
from the true Pareto front. The optimiser has clearly preferred the corners of the
front, with some poor solutions remaining in the archive from early generations.

5.2 DTLZ1

Fig. 5 presents two snapshots from the execution of DTLZ1 using the Pareto
sorting optimiser (generations 33 and 96). As can be seen, by this early stage
in the optimisation process the algorithm has already made substantial progress
in converging toward the true Pareto front – the solutions are all in the bottom
section of the visualisation. What is interesting in these visualisations is that it is
possible to observe the algorithm dealing with the deceptive fronts present in the
test problem. These are locally optimal regions of the search space on which the
algorithm becomes stuck, and as can be seen this is occurring during these two
generations. Whereas for DTLZ2, smaller mutations were causing more rapid
convergence than larger ones, here, the opposite is true. Larger mutation values
are causing those populations to converge faster than their slower counterparts,
which are struggling to generate mutations strong enough to escape the deceptive
fronts on which they have become trapped. Though they will eventually escape,
it will take longer with smaller mutations. That said, as the populations reach
the true Pareto front, smaller mutations will induce the desired exploitative
behaviour that will cover the entire front.

5.3 Water Distribution Network Design

Figs. 6 and 7 present the results for the WDN design problem. Fig. 7 shows the
different mutation heuristics used to solve the problem, each of which is shown
on its own ring within the visualisation. The left-hand plot shows the initial
generation, with a random spread of solutions in the top portion of the visual-
isation. The second plot shows generation 20, and the populations are moving



(a) Gen 33 (b) Gen 96

Fig. 5: Two snapshots of the Pareto sorting MOEA optimising DTLZ1. The left-
hand visualisation shows the population during generation 33, while the right-
hand shows generation 96. Those optimisers with larger standard deviations are
advancing faster than those generating smaller mutations, as the optimiser is
temporarily stuck on deceptive fronts. This can be seen by the outer cluster of
solutions being further around the circle than the inner cluster, in both cases.
Eventually, all populations converge over time to the true front. Again, colour
indicates diversity.

Fig. 6: The estimated Pareto fronts generated by the optimisers for the New York
Tunnels problem.



(a) Gen 0 (b) Gen 20 (c) Gen 4999

Fig. 7: Visualisations of algorithm performance. Each ring represents a different
perturbation heuristic. 1: change by one size; 2: change pipe; 3: ruin and recre-
ate; 4: shuffle; 5: swap. Position indicates convergence while diversity is shown
according to the solution colour.

into the lower portion of the visualisation, indicating that they are starting to
converge. By the final plot, three of the five heuristics have mostly converged.
These include the change by one size heuristic and the change pipe heuristic,
which are known to work well on such problems [16]. Neither the ruin and recre-
ate heuristic or the swap heuristic have converged. This is intuitively correct, as
the ruin and recreate heuristic does not learn from one generation to the next,
and the swap heuristic is incapable of introducing novel genetic material. This is
confirmed by the Pareto front approximation generated in each case, and shown
in Fig. 6 (neither front has converged toward the knee identified by the other
heuristics). That said, from observing the colouring in Fig. 7, the swap heuristic
has the most diverse population. The effect of this is to generate a more extensive
Pareto front approximation, again, as shown in Fig. 6.

6 Conclusions

This paper has presented a visualisation tool designed to address the issue of
identifying good parametrisations of EAs. By allowing algorithm users to directly
compare the effect of different parametrisations on the ability of the algorithm
to converge and retain population diversity, it is possible for a user to select a
good parameter scheme without requiring an indepth understanding of how their
specific algorithm operates on their given problem. The properties shown here
demonstrate convergence in terms of the hypervolume of solutions at a specific
generation, which increases as the population converges toward the Pareto front,
and the crowding distance of the population, which in the presence of a loss of
diversity will decrease. This work showed the potential for using these character-
istics to understand algorithm operation; however the flexibility of the proposed



method allows for any indicator of algorithm performance to be represented.
As well as demonstrating the work on continuous test problems, an industrial
benchmark problem – optimising the design of water distribution networks – was
demonstrated.

Having demonstrated the efficacy of the basic method, there are various as-
pects of future work. While it has effectively visualised GA performance, current
work is evaluating its use for other types of algorithms. Two examples are differ-
ential evolution (DE) and particle swarm optimisation (PSO), the performance
of both of which is highly dependent on their chosen parameters. In addition, the
current version of the visualisation somewhat neglects the multi-objective nature
of the problems demonstrated. A useful addition to the visualisation would in-
clude information about the current approximation to the Pareto front, and the
trade-off between objectives, and work is also continuing to study how this can
best be incorporated into the visualisation. As discussed earlier, a prominent
difficulty with this is the extension of the tool to the many-objective problem
arena. Two aspects of this are difficult; in the first, representing many-objective
problems is known to be difficult, and though methods have been proposed, any
method would have to be incorporated into the framework proposed herein (or
something like it). In the second, this work has relied on the hypervolume as a
measure of convergence to the true Pareto front. Hypervolume calculations are
too expensive to compute for even modestly large numbers of objectives. Cur-
rent work is investigating the use of Monte Carlo sampling to avoid having to
compute the exact hypervolume (as used in the HypE algorithm [1]), as well as
identifying that can be used in its place. An important aspect of this is finding
indicators that do not require knowledge of the true Pareto front, so that the
method can be used with industrial problems.

The ultimate aim of this tool is to use it online, so that the progress of
the optimiser can be seen as the algorithms are running. That way, the user can
identify which parametrisations are not producing usable solutions, and they can
be halted to direct their resources to more productive instances. This represents
a considerable step forward from the current position of the method, and will
require the use of high performance computing to facilitate the processing needed
to produce the visualisations in real time. It will, however, result in an extremely
valuable way of benchmarking algorithm parametrisations that is likely to be of
great use to industrial practitioners.
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