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Abstract: Clusterin (CLU) has been associated with the clinical progression of Alzheimer’s disease
(AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention
given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found
blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report
the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE)
modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with
specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester
to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π
stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection
down to 1 pg/mL and a linear concentration range of 1–100 pg/mL with good sensitivity. Detection
of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that
of the calibration data. The proposed method facilitates the cost-effective and viable production of
label-free point-of-care devices for the clinical diagnosis of AD.

Keywords: clusterin; electrochemical biosensor; label-free immunosensor; cyclic voltammetry; square
wave voltammetry; screen-printed electrodes; Alzheimer’s disease

1. Introduction

Clusterin (CLU), also known as Apolipoprotein J (Apo J, a highly conserved heterodimeric
glycoprotein with molecular weight of 75–80 kDa), has attracted significant scientific attention as
it is involved in lipid export during cell differentiation and cell death [1] and can stabilize stressed
proteins in a refolding-competent state [2]. It is also implicated in aging and age-related diseases
such as neurodegeneration, diabetes, and atherosclerosis [3–5], and acts as a biomarker of cellular
senescence and oxidative stress [6]. CLU content in the plasma is found to be associated with atrophy
of the entorhinal cortex, baseline disease severity, and rapid clinical progression in Alzheimer’s disease
(AD) [7]. It is also found in longitudinal brain atrophy in mild cognitive impairment [8]. In addition,
CLU gene variants in association with amyloidogenic peptides and CLU contributes to limit amyloid-β
(Aβ) species misfolding and facilitates their clearance from the extracellular space [9].

To date, most biomarker studies on AD have focused on the use of cerebrospinal fluid (CSF) and
blood plasma levels of β-amyloid, tau, and phosphorylated tau in relation to clinical symptoms and
survival as diagnostic specimens [10–15]. However, prominent companies and research groups are
now realizing that the simplistic amyloid cascade hypothesis that was reasonable to propose 26 years
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ago is not a reasonable hypothesis any longer [16–18]. Besides, AD biomarker tests are either highly
invasive (requiring CSF collection) or expensive and labour-intensive (neuroimaging), making them
unsuitable for use in primary care, clinical office-based settings, or to assess drug efficacy in clinical
trials [19]. Note that the current clinical diagnosis for AD blood test is used to rule out other conditions
that may be responsible for mental impairment symptoms in suspected patients, such as thyroid
hormones and vitamin B12 levels, not the direct test of AD biomarkers mentioned above. Hence, the
development of a rapid and cost-effective means of providing routine screening of elderly patients
for AD is of paramount importance. An initial blood-based screening method for AD will be able to
reduce the financial burden of AD diagnosis in coming decades by a substantial drop of the need for
follow-up referral to expensive neuroimaging or CSF analysis [20,21].

Of the various plasma biomarkers investigated for AD, clusterin has been one that holds promise.
CLU is the third most associated late-onset Alzheimer’s disease (LOAD) risk gene according to
the AlzGene database [22]. In AD, various studies have shown elevated CLU levels in brain and
CSF. Thambisetty et al. (2010) found that CLU is associated with both hippocampal atrophy in AD
and mild cognitive impairment (MCI) subjects along with fast progressing, or more aggressive, AD.
Evidence from human cerebrospinal fluid, post-mortem brain, and transgenic animal models suggests
a plausible link between CLU and AD pathology [7]. To date, the detection of clusterin has been
performed by radioimmunoassay, immunohistochemistry, in situ hybridization, Western blotting, and
cDNA microarray (Table 1) [23–28]. Chung et al. has shown a proof-of-principle, semi-automated,
microfluidic point-of-care method of KIM-1 and Cystatin C detection in urine, and proposed that CLU
can also be adapted in their method [29]. However, no report has been found for the electrochemical
detection of clusterin.

Table 1. Detection of clusterin (CLU) by various methods. IHC: immunohistochemistry; ISH: in
situ hybridization; WB: Western blotting; cDNA-MA: cDNA microarray; NB: Northern blotting; LN:
lymphoid neoplasms; ALCL: anaplastic large-cell lymphoma.

Detection Method Organ Disease Reference

Radioimmunoassay Kidney, urine Nephrotoxicity [23]
IHC, ISH Breast Cancer [24]
IHC, WB LN ALCL [25]

IHC, cDNA-MA, WB/NB Liver Cancer [26]
RT-PCR, WB, IHC, ISH Kidney, urine Nephrotoxicity [27]

IHC, ISH Kidney, blood, urine Nephrotoxicity [28]

Herein, we report for the first time an electrochemical immunosensor for the detection of CLU.
A simple, low-cost biosensor was developed by modifying the carbon electrode with 1-pyrenebutyric
acid N-hydroxysuccinimide ester (Pyr-NHS) and immobilizing F(ab’)2 fragments of CLU antibody
to detect CLU antigen specifically. The Pyr-NHS linker utilizes a bifunctional molecule containing
succinylimide ester and a pyrene moiety to bind proteins to the carbon surface. Pyrene attaches to the
carbon surface by means of the π-π stacking or hydrophobic interactions and does not significantly
disturb the electronic structure of the screen-printed carbon working electrode. F(ab’)2 fragments
of an antibody possess some advantages over whole antibody in terms of close proximity to the
surface (within Debye length limit) [30], higher structural stability [31], improved detection limit [32],
and additionally reduce non-specific binding from Fc interaction. Wasowicz et al. showed that the
Fab’ oriented immobilization for the detection of protein improves the detection limit in comparison
to an immunosensor incorporating the whole IgG antibody [32,33]. Jarocka et al. also presented
similar results in their study in addition to a comparative study from earlier reports [34,35]. In our
study, cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements were used to
monitor the generation of each sensing layer and detection efficiency of CLU antigen in the presence
of a [Fe(CN)6]3−/4− redox system. The obtained results show the successful development of an
electrochemical biosensor with good selectivity and sensitivity to detect CLU. Compared to other
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assays, label-free electrochemical biosensors offer great promise as a robust tool for rapid, sensitive,
cost-effective analysis towards a truly disposable tool for screening of AD patients, and can be
promoted for point-of-care (POC) application.

2. Materials and Methods

2.1. Chemicals

Pyr-NHS, phosphate-buffered saline (PBS) tablet, poly(methyl methacrylate) (PMMA),
potassium ferrocyanide (K4Fe(CN)6), potassium ferricyanide (K3Fe(CN)6), potassium chloride (KCl),
ethanolamine, human plasma, and bovine serum albumin (BSA) at biochemical grade were purchased
from Sigma Aldrich (Dorset, UK); 100 µg CLU peptide (ab45815) and 1 mL of 0.02 mg/mL
complementary anti-CLU (ab39991) in PBS buffer were purchased from Abcam (Cambridge, UK) and
the prepared aliquots were stored at −20 ◦C. Pierce™ Mouse IgG1 Fab and F(ab’)2 Micro Preparation
Kit and Pierce™ Antibody Clean-up Kit were purchased from Fisher Scientific (Leicestershire, UK).

2.2. Screen-Printed Carbon Electrodes (SPCEs)

Screen-printed carbon electrodes (SPCEs) were purchased from Zimmer and Peacock (UK). These
electrodes incorporate a conventional three-electrode configuration, printed on ceramic substrates
(dimensions: 3.4 × 1.0 × 0.05 cm; length × width × height). Both working (disk-shaped 400 µm
diameter) and counter electrodes were made of carbon inks, whereas the reference electrode was made
of silver.

2.3. Electrochemical Measurments

Electrochemical CV and SWV measurements were performed with a potentiostat (DropSens,
Asturias, Spain) and controlled by DropView 8400 1.0 Software. All measurements were carried out at
room temperature. All measurements were conducted in a solution of 10 mM K3 [Fe(CN)6] and 10
mM K4[Fe(CN)6] containing 100-mM KCl as the supporting electrolyte, and the CV were recorded
from −0.2 to 0.5 V at a scan rate of 0.05 V/s without the application of any pre-conditioning potential
or accumulation time.

CV is a useful and widely used technique for the characterization of the electrochemical features
of electroactive species, but is not always sensitive enough to provide a detailed description of the
processes occurring [36]. In this way, SWV was also used for further characterization and to obtain
more distinctive electrochemical signatures. Voltammograms were obtained by sweeping the potential
from −0.15 V to +0.45 V with a step potential of 5 mV, an amplitude of 25 mV, and at a frequency of
15 Hz.

2.4. Preparation and Characterization of Antibody Fragments

Preparation of F(ab’)2 Fragments

Antibody fragments digested by ficin were used instead of whole antibody to avoid random
orientation of the antigen binding site toward the sensor surface leading to monolayer [37,38]. This
prevents loss of the biological activity of the antibody and displays a highly-controlled orientation that
is expected to maximize their antigen-binding efficiency with a concomitant increase in sensitivity and
selectivity (Figure 1c) [39–42].
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Figure 1. Schematic illustration of the electrochemical detection system. (a) The screen-printed
carbon electrodes (SPCE) electrode; (b–e) surface modification with linker, F(ab’)2 fragments of CLU
antibody (Anti-CLU F(ab’)2), bovine serum albumin (BSA), and CLU. Pyr-NHS: 1-pyrenebutyric acid
N-hydroxysuccinimide ester.

F(ab’)2 fragments of CLU antibody (Anti-CLU F(ab’)2) were prepared by using Pierce™ Mouse
IgG1 Fab and F(ab’)2 Micro Preparation Kit. In short, a Pierce™ Antibody Clean-up Kit was used
to remove 0.5% added BSA from antibody solution. Immobilized ficin was equilibrated by swirling
the vial to obtain an even suspension. A wide bore pipette tip was used to place the 200 µL of the
33% slurry into the 0.8 L spin column, which was placed in a 2 mL microcentrifuge tube, followed
by centrifugation at 5000 × g for one minute. The pellet was washed with 0.5 mL of digestion buffer,
followed by centrifugation again at the same conditions. IgG sample was prepared in a Zeba Spin
Desalting Column with 100 µL of antibody sample by using a digestion buffer and centrifugation
as instructed on the kit. The fragments were generated by adding prepared IgG sample to the spin
column tube containing the equilibrated immobilized ficin. Digestion reaction was done by incubation
for 24–30 h for the generation of F(ab’)2 fragments with a table-top rocker at 37 ◦C. Samples were then
washed and purified according to the instructions of the preparation kit. Finally, antibody fragments
were characterized on Criterion XT 4%–12% Bis-Tris precast gradient gels according to the outlines
of the manufacturer (Bio-Rad, Hemel Hempstead, UK). Aliquots were diluted with 20 µL Laemmli
Sample buffer for the precast gel slots. Gels were run at 120 V constant, 0.09 A max for 2 h in a BioRad
Mini Protean II system, stained for Gel Code Blue (Pierce) and analysed using Image J software to
determine protein band intensities.

2.5. Surface Modification of SPCE Electrode

Screen-printed carbon electrodes were exposed to 2 mM Pyr-NHS for 4 h at 4 ◦C, followed
by methanol rinsing to remove free Pyr-NHS molecules. F(ab’)2 fragmented Anti-CLU antibodies
(20 µg/mL) in PBS (pH 7.4) were immobilized on the SPCE for 4 h at 4 ◦C and then rinsed with PBS
to remove unbound antibodies. Subsequently, 0.5% BSA in PBS was added and incubated for 4 h at
4 ◦C. After rinsing with PBS, the modified electrodes were incubated with different concentrations of
CLU at 37 ◦C for ~60 min. Essentially, the modification of the electrode surface requires several hours,
but it can be pre-prepared and stored at 4 ◦C. The detection of a single antigen concentration requires
incubation at 37 ◦C for 1 h, while SWV measurement takes approximately 3–5 min.

3. Results and Discussion

3.1. Characterization Using Non-Reducing Electrophoresis (SDS-PAGE)

Characterization of F(ab’)2 Fragments

Figure 2 illustrates the SDS-PAGE (12%) analysis of the full-length CLU antibodies and their
F(ab’)2 fragments under the non-reducing conditions. The column for F(ab’)2 in Figure 2 clearly shows
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one major band around 29 kDa, indicating that a significant amount of F(ab’)2 was produced. Both
columns of IgG-CLU present major bands around 50 kDa, which can be attributed to the prepared
whole CLU antibody. Column 3 shows the digest portion that contains Fab with Fc. A faint band is
visible around 30 kDa in both F(ab’)2 and digest columns, indicating that some Fab was produced due
to the reduction of F(ab’)2 during the enzymatic fragmentation process, which is expected according to
the data presented in the preparation kit manual.
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Figure 2. SDS-PAGE analysis (12% gel; non-reducing conditions) of the full-length CLU antibody and
their F(ab’)2 fragments: (column 1 is molecular weight marker; column 2 is F(ab’)2 fragments of CLU
antibody; column 3 is digest fragments; and columns 4–5 are full-length Anti-CLU IgG.

3.2. Electrochemical Characterization of the Modified Electrode

Electrochemical biosensors have been widely reported for the detection of dementia because of
their inherent sensitivity [43]. Therefore, CV was performed (and the response current vs. applied
potential plotted) to confirm the changes in the electrochemical properties after each electrode
modification step (Figure 3). Upon the self-assembly of the linkers on the surface of the SPCE
electrode, the peak current decreased from 4.40 to 3.76 µA (15%), reflecting an increase in the electron
transfer resistance. Subsequently, after the immobilization of the anti-CLU antibody, electron transfer
significantly increased (47%). This may be attributed to the available non-binding sites (i.e., free
NH3+ group) on the Anti-CLU F(ab’)2 immobilized SPCE that play an important role, resulting in
accelerated electron transfer between Anti-CLU F(ab’)2 and the SPCE. Note, that lysine contains a
primary amine (-NH2) in the side chain as an antibody functional group, also called epsilon-amine.
Owing to the positive charge of epsilon-amine at physiologic conditions, primary amines are usually
outward facing (i.e., on the outer surface) on proteins; thus, they are usually accessible for conjugation
without denaturing the protein structure. The epsilon-amines act as an electron donating group,
leading to n-doping on the SPCE surface. However, the magnitude of the current response decreases
after the immobilization of BSA due to blocking of the non-specific binding sites of Anti-CLU F(ab’)2

that hinder the electron transfer between the medium and electrode, indicating the immobilization of
BSA onto the Anti-CLU F(ab’)2/Pyr-NHS/SPCE bioelectrode [44].
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Figure 3. Cyclic voltammetry (CV) has been performed with 10 mM [Fe(CN)6]3−/4− system (1:1) and
100 mM KCl at 0.05 V/s scan rate at bare carbon, Pyr-NHS linker, Anti-CLU F(ab’)2, and BSA-coated
SPC electrodes.

3.3. Scan Rate Dependence of Peak Current

After performing the evaluation of the generated sensing layers, we also conducted sensing
experiments on the modified electrodes to characterize the redox process that is taking place
on C/Pyr-NHS/Anti-CLU-F(ab’)2/BSA modified electrodes. This study has been conducted in
[Fe(CN)6]3−/4− solution containing KCl with a scan rate from 10 to 100 mV/s (Figure 4a). With
increase in the scan rate, there was an increase in both the cathodic and anodic peak currents,
accompanied by a small shift and increased peak-to-peak separation. The linearity dependence
is also confirmed by the regression coefficient (R2) value (R2 = 0.91 for Ipa and R2 = 0.96 for Ipc), and is
indicative of a surface-controlled diffusion and quasi-reversible process. This reveals that the electron
transfer between [Fe(CN)6]3−/4− solution and electrode could be easily performed, and it was a
surface-confined electrochemical process. The values of the slope, intercept and correlation coefficient
are given in Figure 4b. The diffusion co-efficient (D) value of the redox species from the electrolyte to
the C/Pyr-NHS/Anti-CLU-F(ab’)2/BSA immunoelectrode was calculated using the Randles–Sevcik
equation [44]:

Ip = (2.69 × 105)n3/2 AD1/2Cv1/2

where Ip is the peak current of the immunoelectrode (Ipa anodic and Ipc cathodic), n is the number
of electrons involved or electron stoichiometry (1), A is the surface area of the immunoelectrode
(1.26 × 10−3 cm2), D is the diffusion co-efficient. C is the concentration of redox species (10 mM
[Fe(CN)6]3−/4−), and v is the scan rate (50 mVs−1). The D value has been obtained to be
1.11 × 10−5 cm2s−1.

The surface concentration of the C/Pyr-NHS/Anti-CLU-F(ab’)2/BSA immunoelectrode can be
estimated from the plot of current versus potential (CV) using the Brown–Anson model [44], via the
following equation:

Ip =
n2F2γAv

4RT

where n is the number of electrons transferred (1), F is the Faraday constant (96,485.34 C mol−1),
γ is the surface concentration of the corresponding electrode (mol cm−2), A is the surface area of the
electrode (1.26 × 10−3 cm2), v is the scan rate (50 mVs−1), R is the gas constant (8.314 J mol−1 K−1),
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and T is room temperature (25 ◦C). The surface concentration of C/Pyr-NHS/Anti-CLU-F(ab’)2

(8.81 × 10−8 mol cm−2) was higher than that of the SPCE (6.41 × 10−8 mol cm−2) electrode.
The value of the heterogeneous electron transfer rate constant (Ks) obtained for the

C/Pyr-NHS/Anti-CLU-F(ab’)2/BSA immunoelectrode was calculated from the Lavrion model [45]:

Ks =
mnFv
4RT

where m is the peak-to-peak separation (0.25 V), n is the number of transferred electrons (2), F is
the Faraday constant (96,485.34 C mol−1), v is the scan rate (50 mVs−1), R is the gas constant
(8.314 J mol−1 K−1), and T is room temperature (25 ◦C). The value of Ks was found to be 0.24 s−1 for
m = 0.25 V, which indicates fast electron transfer between the immobilized antibodies and electrode at
the SPCE interface.
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3.4. Quantitative Detection of CLU Using Electrochemical Measurement

The electrochemical response studies (Figure 5a) of the C/Pyr-NHS/Anti-CLU F(ab’)2/BSA
immunoelectrode have been performed as a function of CLU concentration (0~150 pg mL−1) in 10 mM
[Fe(CN)6]3−/4− solution containing 100 mM KCl using the SWV technique by sweeping the potential
from −0.15 V to +0.45 V with a step potential of 5 mV, an amplitude of 25 mV, and at a frequency of
15 Hz. Here, SWV measurement was performed for BSA/Ab/Pyr NHS/C surface at 0 pg mL−1CLU
as a control experiment. The peak values were obtained through DropView 8400 1.0 Software, which
showed the decrease of the peak current intensities with the increase of CLU concentration. The
signal reduction was caused by the blockage of the surface, making the electron transfer process
between the C/Pyr-NHS/Anti-CLU F(ab’)2 surface and [Fe(CN)6]3−/4− system more difficult. The
peak value was around 0.14 V, corresponding to the biochemical reaction between Anti-CLU F(ab’)2

and CLU. The data were fitted to a single three-parameter exponential raise to maximum equation(
y = y0 + a

(
1 − e−bx

))
using SigmaPlot 13.0 software (solid blue line in Figure 5b), where y is the

accumulated current response (µA), y0 is the background current or current at saturation (µA), a is
the initial current response (µA), b is the kinetic constant (slope of the fitting curve—regarded here
as sensitivity), and x is the CLU concentration (pg mL−1). The fabricated electrochemical sensor
exhibited a good detection range 1—100 pg mL−1 toward CLU with nonlinear regression co-efficient
of 0.952 (Figure 5b). A linear fit is also shown in the inset of Figure 5b. The sensitivity of the fabricated
immunoelectrode calculated from the slope of the fitting curve was found to be 0.013 µA pg−1 mL−1.
The sensitivity was lower, as the NH3 of the CLU will donate electron charge at the interface with



Sensors 2018, 18, 308 8 of 12

SPCE electrode. This will reduce the p-doping level of the electrode [46]. The addition of a high
concentration of CLU (above 1 ng mL−1) had an impact on the SWV signals response due to the
saturation of sensor surface (data not shown). A limit of detection of 1 pg mL−1 was calculated for the
biosensor following the method described by Armbruster et al. [47].
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3.5. Selectivity and Validity of the Sensor

To test the specificity to detect CLU, the developed sensor was incubated with 10 pg mL−1 insulin
and the obtained SWV signal was compared with CLU at the same concentration (Figure 6). The SWV
signal did not change significantly after the addition of insulin. The small shift in the signal may
be attributed to unspecific adsorption on the sensor surface. In contrast, a noticeable response was
achieved after addition of CLU due to the formation of an antibody–antigen complex. These results
confirm the selectivity of the fabricated biosensor to detect CLU protein.
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To test the analytical applicability of the proposed method, human plasma sample (reconstituted
from lyophilized plasma, Sigma-Aldrich p9523, Dorset, UK) serving as blank was spiked with CLU
antigen in two different concentrations: 10 pg mL−1 and 100 pg mL−1. This was performed in triplicate,
and only by following SWV data. The recoveries obtained were 62.60% and 77.70%, respectively, to that
of the calibration data (Table 2). For pg mL−1 concentration level, these recovery percentages are
expected [48]. Overall, the results were found accurate in close-to-real conditions and validate the
analytical applicability of the proposed method.

Table 2. Determination of CLU in spiked plasma samples (n = 3).

Plasma Sample CLU Spiked (pg mL−1) CLU Found (pg mL−1) Recovery (%)

S#1 10 8.07, 6.17, 4.54 62.60
S#2 100 86.70, 77.85, 68.55 77.70

4. Conclusions

The present work reports a proof-of-principle electrochemical immunosensor for the detection
of CLU on SPCEs for the first time. This platform—which is based on modified screen-printed
electrodes—is a low-cost and robust detection platform. The immunosensor shows broad detection
range (1~100 pg mL−1), high sensitivity (0.013 µA pg−1 mL−1), and selectivity to CLU. Additionally,
the detection limit (1 pg mL−1) is very low compared to the average concentration of CLU found in
AD patients (~2.50 µg mL−1 according to ADNI database). The detection of protein in spiked plasma
was demonstrated, and satisfactory recovery percentages of 62.60% and 77.70% for 10 pg mL−1 and
100 pg mL−1 concentrations were obtained, respectively, to that of the calibration data. Related to AD
biomarkers in blood, the possibility of measuring a group or panel of different proteins is a desirable
objective to provide faster and more accurate diagnostics. Simultaneous detection of the possible AD
biomarkers in blood such as complement factor H, α-2-macroglobuline, apolipoprotein E, pancreatic
polypeptide, and clusterin would be necessary on a multiplexed electrochemical immunosensor
platform. However, additional efforts are necessary for the simultaneous detection of biomarkers, since
each protein type might have high differences in threshold levels and would vary in their detection
sensitivity levels [49]. Along with this electrochemical system, paper-based and amperometry-based
microfluidic methods would provide the advantages of working on small volumes, with short assay
period, high sensitivity, and accelerated kinetic processes [50–52]. Finally, the obtained results should
facilitate the application of these antibody-functionalized SPCE surface modifications for biosensing
and the development of a promising platform for clinical diagnosis in the future.

Acknowledgments: We acknowledge the financial support from the UK EPSRC under grant No. EP/M006301/1
and EU H2020 MSCA-ITN-ETN BBDiag project under grant No. 721281. Samar Damiati would also like to thank
School of Computing, Electronics and Mathematics (Faculty of Science and Engineering), University of Plymouth,
UK for the guest-researcher position.

Author Contributions: K.I. and S.D. conceived and designed the experiments; K.I. and S.D. performed the
experiments; K.I., S.D. and G.P. analyzed the data; K.I., S.D., J.S. and A.S. contributed reagents/materials and
participated in a full and extensive discussion; K.I. and S.D. co-wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Ahuja, H.S.; Tenniswood, M.; Lockshin, R.; Zakeri, Z.F. Expression of clusterin in cell differentiation and cell
death. Biochem. Cell Biol. 1994, 72, 523–530. [CrossRef] [PubMed]

2. Poon, S.; Easterbrook-Smith, S.B.; Rybchyn, M.S.; Carver, J.A.; Wilson, M.R. Clusterin is an ATP−independent
chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state.
Biochemistry 2000, 39, 15953–15960. [CrossRef] [PubMed]

http://dx.doi.org/10.1139/o94-070
http://www.ncbi.nlm.nih.gov/pubmed/7654325
http://dx.doi.org/10.1021/bi002189x
http://www.ncbi.nlm.nih.gov/pubmed/11123922


Sensors 2018, 18, 308 10 of 12

3. Garden, G.A.; Bothwell, M.; Rubel, E.W. Lack of correspondence between mrna expression for a putative
cell death molecule (SGP-2) and neuronal cell death in the central nervous system. Dev. Neurobiol. 1991, 22,
590–604. [CrossRef] [PubMed]

4. Mackness, B.; Hunt, R.; Durrington, P.N.; Mackness, M.I. Increased immunolocalization of paraoxonase,
clusterin, and apolipoprotein ai in the human artery wall with the progression of atherosclerosis. Atertioscler.
Thromb. Vasc. Biol. 1997, 17, 1233–1238. [CrossRef]

5. Trougakos, I.P.; Poulakou, M.; Stathatos, M.; Chalikia, A.; Melidonis, A.; Gonos, E.S. Serum levels of
the senescence biomarker clusterin/apolipoprotein j increase significantly in diabetes type ii and during
development of coronary heart disease or at myocardial infarction. Exp. Gerontol. 2002, 37, 1175–1187.
[CrossRef]

6. Antonelou, M.H.; Kriebardis, A.G.; Stamoulis, K.E.; Trougakos, I.P.; Papassideri, I.S. Apolipoprotein
j/clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress
and senescence. PLoS ONE 2011, 6, e26032. [CrossRef] [PubMed]

7. Thambisetty, M.; Simmons, A.; Velayudhan, L.; Hye, A.; Campbell, J.; Zhang, Y.; Wahlund, L.-O.; Westman, E.;
Kinsey, A.; Güntert, A. Association of plasma clusterin concentration with severity, pathology, and
progression in alzheimer disease. Arch. Gen. Psychiatry 2010, 67, 739–748. [CrossRef] [PubMed]

8. Thambisetty, M.; An, Y.; Kinsey, A.; Koka, D.; Saleem, M.; Gϋntert, A.; Kraut, M.; Ferrucci, L.; Davatzikos, C.;
Lovestone, S. Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive
impairment. Neuroimage 2012, 59, 212–217. [CrossRef] [PubMed]

9. Charnay, Y.; Imhof, A.; Vallet, P.G.; Kovari, E.; Bouras, C.; Giannakopoulos, P. Clusterin in neurological
disorders: Molecular perspectives and clinical relevance. Brain Res. Bull. 2012, 88, 434–443. [CrossRef]
[PubMed]

10. Blennow, K.; Vanmechelen, E.; Hampel, H. Csf total tau, aβ42 and phosphorylated tau protein as biomarkers
for alzheimer’s disease. Mol. Neurobiol. 2001, 24, 87. [CrossRef]

11. Herukka, S.-K.; Hallikainen, M.; Soininen, H.; Pirttilä, T. Csf aβ42 and tau or phosphorylated tau and
prediction of progressive mild cognitive impairment. Neurology 2005, 64, 1294–1297. [CrossRef] [PubMed]

12. Wallin, Å.; Blennow, K.; Andreasen, N.; Minthon, L. Csf biomarkers for alzheimer’s disease: Levels of
β-amyloid, tau, phosphorylated tau relate to clinical symptoms and survival. Dement. Geriatr. Cogn. Disord.
2006, 21, 131–138. [CrossRef] [PubMed]

13. Pesaresi, M.; Lovati, C.; Bertora, P.; Mailland, E.; Galimberti, D.; Scarpini, E.; Quadri, P.; Forloni, G.; Mariani, C.
Plasma levels of beta-amyloid (1–42) in alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging
2006, 27, 904–905. [CrossRef] [PubMed]

14. Freeman, S.H.; Raju, S.; Hyman, B.T.; Frosch, M.P.; Irizarry, M.C. Plasma aβ levels do not reflect brain aβ
levels. J. Neuropathol. Exp. Neurol. 2007, 66, 264–271. [CrossRef] [PubMed]

15. Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in alzheimer
disease. Nat. Rev. Neurol. 2010, 6, 131–144. [CrossRef] [PubMed]

16. Le Couteur, D.G.; Hunter, S.; Brayne, C. Solanezumab and the amyloid hypothesis for alzheimer’s disease.
Br. Med. J. 2016. [CrossRef] [PubMed]

17. Wang, Y.; Yan, T.; Lu, H.; Yin, W.; Lin, B.; Fan, W.; Zhang, X.; Fernandez-Funez, P. Lessons from anti-amyloid-β
immunotherapies in alzheimer disease: Aiming at a moving target. Neurodegener. Dis. 2017, 17, 242–250.
[CrossRef] [PubMed]

18. Hajipour, M.J.; Santoso, M.R.; Rezaee, F.; Aghaverdi, H.; Mahmoudi, M.; Perry, G. Advances in alzheimer’s
diagnosis and therapy: The implications of nanotechnology. Trends Biotechnol. 2017. [CrossRef] [PubMed]

19. Khan, T.K.; Alkon, D.L. Alzheimer’s disease cerebrospinal fluid and neuroimaging biomarkers: Diagnostic
accuracy and relationship to drug efficacy. J. Alzheimer’s Dis. 2015, 46, 817–836. [CrossRef] [PubMed]

20. Alzheimer’s, A. 2015 alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2015,
11, 332.

21. Schneider, P.; Hampel, H.; Buerger, K. Biological marker candidates of alzheimer’s disease in blood, plasma,
and serum. CNS Neurosci. Ther. 2009, 15, 358–374. [CrossRef] [PubMed]

22. Bertram, L.; McQueen, M.B.; Mullin, K.; Blacker, D.; Tanzi, R.E. Systematic meta-analyses of alzheimer
disease genetic association studies: The alzgene database. Nat. Genet. 2007, 39, 17. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/neu.480220605
http://www.ncbi.nlm.nih.gov/pubmed/1919566
http://dx.doi.org/10.1161/01.ATV.17.7.1233
http://dx.doi.org/10.1016/S0531-5565(02)00139-0
http://dx.doi.org/10.1371/journal.pone.0026032
http://www.ncbi.nlm.nih.gov/pubmed/21998749
http://dx.doi.org/10.1001/archgenpsychiatry.2010.78
http://www.ncbi.nlm.nih.gov/pubmed/20603455
http://dx.doi.org/10.1016/j.neuroimage.2011.07.056
http://www.ncbi.nlm.nih.gov/pubmed/21824521
http://dx.doi.org/10.1016/j.brainresbull.2012.05.006
http://www.ncbi.nlm.nih.gov/pubmed/22617144
http://dx.doi.org/10.1385/MN:24:1-3:087
http://dx.doi.org/10.1212/01.WNL.0000156914.16988.56
http://www.ncbi.nlm.nih.gov/pubmed/15824371
http://dx.doi.org/10.1159/000090631
http://www.ncbi.nlm.nih.gov/pubmed/16391474
http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.004
http://www.ncbi.nlm.nih.gov/pubmed/16638622
http://dx.doi.org/10.1097/NEN.0b013e31803d3ae4
http://www.ncbi.nlm.nih.gov/pubmed/17413317
http://dx.doi.org/10.1038/nrneurol.2010.4
http://www.ncbi.nlm.nih.gov/pubmed/20157306
http://dx.doi.org/10.1136/bmj.i6771
http://www.ncbi.nlm.nih.gov/pubmed/28034844
http://dx.doi.org/10.1159/000478741
http://www.ncbi.nlm.nih.gov/pubmed/28787714
http://dx.doi.org/10.1016/j.tibtech.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/28666544
http://dx.doi.org/10.3233/JAD-150238
http://www.ncbi.nlm.nih.gov/pubmed/26402622
http://dx.doi.org/10.1111/j.1755-5949.2009.00104.x
http://www.ncbi.nlm.nih.gov/pubmed/19840034
http://dx.doi.org/10.1038/ng1934
http://www.ncbi.nlm.nih.gov/pubmed/17192785


Sensors 2018, 18, 308 11 of 12

23. Aulitzky, W.K.; Schlegel, P.N.; Wu, D.; Cheng, C.Y.; Chen, C.-L.C.; Li, P.S.; Goldstein, M.; Reidenberg, M.;
Bardin, C.W. Measurement of urinary clusterin as an index of nephrotoxicity. Proc. Soc. Exp. Biol. Med. 1992,
199, 93–96. [CrossRef] [PubMed]

24. Redondo, M.; Villar, E.; Torres-Munoz, J.; Tellez, T.; Morell, M.; Petito, C.K. Overexpression of clusterin in
human breast carcinoma. Am. J. Pathol. 2000, 157, 393–399. [CrossRef]

25. Wellmann, A.; Thieblemont, C.; Pittaluga, S.; Sakai, A.; Jaffe, E.S.; Siebert, P.; Raffeld, M. Detection of
differentially expressed genes in lymphomas using cdna arrays: Identification of clusterin as a new diagnostic
marker for anaplastic large-cell lymphomas. Blood 2000, 96, 398–404. [PubMed]

26. Lau, S.; Sham, J.; Xie, D.; Tzang, C.; Tang, D.; Ma, N.; Hu, L.; Wang, Y.; Wen, J.; Xiao, G. Clusterin plays an
important role in hepatocellular carcinoma metastasis. Oncogene 2006, 25, 1242–1250. [CrossRef] [PubMed]

27. Ishii, A.; Sakai, Y.; Nakamura, A. Molecular pathological evaluation of clusterin in a rat model of unilateral
ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol. Pathol. 2007, 35, 376–382. [CrossRef]
[PubMed]

28. Dieterle, F.; Perentes, E.; Cordier, A.; Roth, D.R.; Verdes, P.; Grenet, O.; Pantano, S.; Moulin, P.; Wahl, D.;
Mahl, A. Urinary clusterin, cystatin c,[beta] 2-microglobulin and total protein as markers to detect
drug-induced kidney injury. Nat. Biotechnol. 2010, 28, 463–469. [CrossRef] [PubMed]

29. Chung, H.J.; Pellegrini, K.L.; Chung, J.; Wanigasuriya, K.; Jayawardene, I.; Lee, K.; Lee, H.; Vaidya, V.S.;
Weissleder, R. Nanoparticle detection of urinary markers for point-of-care diagnosis of kidney injury.
PLoS ONE 2015, 10, e0133417. [CrossRef] [PubMed]

30. Kim, J.P.; Lee, B.Y.; Hong, S.; Sim, S.J. Ultrasensitive carbon nanotube-based biosensors using
antibody-binding fragments. Anal. Biochem. 2008, 381, 193–198. [CrossRef] [PubMed]

31. Buijs, J.A. Immunoglobulins and Their Fragments on Solid Surfaces. Ph.D. Thesis, Landbouwuniversiteit
Wageningen, Wageningen, The Netherlands, 1995.
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