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An influential theory of spatial navigation states that the boundary shape of an environment is 

preferentially encoded over and above other spatial cues, such that it is impervious to 

interference from alternative sources of information. We explored this claim with three 

intradimensional-extradimensional shift experiments, designed to examine the interaction of 

landmark and geometric features of the environment in a virtual navigation task. In 

Experiments 1 and 2, participants were first required to find a hidden goal using information 

provided by the shape of the arena, or landmarks integrated into the arena boundary 

(Experiment 1), or within the arena itself (Experiment 2). Participants were then transferred 

to a different-shaped arena that contained novel landmarks, and were again required to find a 

hidden goal. In both experiments, participants who were navigating on the basis of cues that 

were from the same dimension that was previously relevant (intradimensional shift) learned 

to find the goal significantly faster than participants who were navigating on the basis of cues 

that were from a dimension that was previously irrelevant (extradimensional shift). This 

suggests that shape information does not hold special status when learning about an 

environment. Experiment 3 replicated Experiment 2, and also assessed participants’ 

recognition of the global shape of the navigated arenas. Recognition was attenuated when 

landmarks were relevant to navigation during the experiment. The results of these 

experiments are discussed in terms of associative and non-associative theories of spatial 

learning. 

 

Key words: Geometric module, Associative learning, Spatial learning, Navigation, ID-ED. 
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The ability to learn the location of significant objects within the environment is an 

integral part of life for both human and non-human animals. For non-human animals this 

ability permits the distinction of locations that signal the presence of food, water, shelter, or 

safety from prey. For humans, this ability permits us to travel back and forth between 

locations in a multitude of environments, both real (e.g. home, work, the shops) and virtual 

(e.g. in computer games). Studies have shown that a plethora of stimuli can be used to aid 

navigation, which include; the shape or boundaries of an environment (e.g. Pearce, Ward-

Robinson, Good, Fussell, & Aydin 2001), landmarks that are both distal and proximal to a 

goal location (Prados, Redhad, & Pearce, 1999; Roberts & Pearce, 1998; Save & Poucet, 

2000), the slope of the floor (Nardi & Bingman, 2009; Nardi, Newcombe, & Shipley, 2011; 

Nardi, Nitsch, & Bingman, 2010), as well as internally derived cues such as vestibular (e.g. 

Wallace, Hines, Pellis, & Whishaw, 2002), and somesthetic information (Lavenex & 

Lavenex, 2010).   

Many experiments have now demonstrated that learning to navigate towards a goal by 

using landmarks can be influenced by the presence of other environmental cues. For example, 

Chamizo, Manteiga, Rodrigo, & Mackintosh, (2006) demonstrated that rats’ ability to use a 

distal landmark to find a hidden goal was restricted if another landmark, more proximal to the 

goal, was co-present during the training trials (see also: Chamizo, Aznar-Casanova, & 

Artigas, 2003; Gould-Beierle & Kamil, 1999; Leising, Garlick, & Blaisdell, 2011; Roberts & 

Pearce 1999; Sanchez-Moreno, Rodrigo, Chamizo, & MacKintosh, 1999; Stahlman & 

Blaisdell, 2009). The ability of one cue to restrict, or interfere with, learning about another 

cue has also been demonstrated on numerous occasions in studies of classical conditioning 

using a variety of procedures (e.g. Jones & Haselgrove, 2011; Pavlov, 1927),  and has led to 

the suggestion that learning to navigate is underpinned by a general, associative, mechanism 

that is also responsible for learning in other, non-spatial, domains (Pearce, 2009).  This 

suggestion has, however, not gone unchallenged, as other authors have emphasised the 
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special status of information provided by the shape, or geometry of an environment for 

navigation (for reviews see Cheng, 2008; Jeffery, 2010; Lew, 2011; Pearce 2009). Cheng 

(1986) proposed that geometric information is processed in a dedicated module that is 

impervious to the influence of learning about landmark cues, and this position was 

vehemently championed by Gallistel (1990), who, in the context of discussing Cheng’s ideas 

and data, suggested: 

“...this organ [the geometric module] constitutes a module in Fodor’s (1983) sense; it 

works only with certain kinds of information, even under circumstances where other kinds of 

readily perceptible data are highly relevant to successful performance. Fodor termed this 

property of the module impenetrability.” (Gallistel, 1990, p. 208.) 

Doeller and Burgess (2008; see also: Barry, et al., 2006; Burgess, 2006, 2008; Cheng & 

Newcombe, 2005; Wang & Spelke, 2002; White & McDonald, 2002) have more recently 

suggested a notion reminiscent of the geometric module. They proposed that whilst landmark 

learning may obey the rules of associative learning (e.g. Mackintosh, 1975; Pearce & Hall, 

1980; Rescorla & Wagner, 1972),  

 

“...learning relative to environmental boundaries is incidental, occurring 

independently of behavioural error or the presence of other predictive cues” (Doeller & 

Burgess, 2008, p. 5912; see also Burgess, 2006, 2008). 

 

The converging prediction from these theories, which suggest that 

geometric/boundary information is processed in a modular fashion, is that landmarks should 

not interfere with learning about the shape of the environment and, indeed, several studies 

support this contention.  Cheng (1986) trained rats to find food that was hidden in one corner 

of a rectangular arena, which contained a distinctive landmark in each corner. In order to find 
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the food, rats could rely on the geometric information provided by the rectangular arena or on 

the unique landmarks located in each corner of the rectangle. Relying on the geometric 

information provided by the rectangular arena would lead rats to search in either the correct 

corner, or the diametrically opposite corner that is geometrically identical to the correct 

corner. The four unique landmarks, however, disambiguated all the corners of the rectangle 

from each other; thus, relying on the unique landmarks would lead rats to search only in the 

correct corner. When the landmarks were removed from the corners of the rectangle, rats 

searched in both the correct and diametrically opposite corners more often than in the 

remaining two corners. Thus, the presence of the more predictive landmark cues did not 

preclude learning that was based upon the less predictive geometry of the rectangle. Similar 

effects have frequently been demonstrated in other experiments with rats (Graham, Good, 

McGregor, & Pearce, 2006; Hayward, Good, & Pearce, 2004; Hayward, McGregor, Good, & 

Pearce, 2003; McGregor, Horne, Esber, & Pearce, 2009; Pearce et al., 2001; Wall, Botly, 

Black, & Shettleworth, 2004) as well as pigeons (Kelly, Spetch, & Heth, 1998), and with 

humans navigating in virtual environments (Doeller & Burgess, 2008; Redhead & Hamilton, 

2007, 2009). There are, however, a number of reports of landmark cues interfering with 

learning about geometric information. For example, in an overshadowing experiment by 

Pearce, Graham, Good, Jones, and McGregor (2006), an experimental group of rats was 

trained to find a goal that was hidden in one corner of a rectangular arena consisting of two 

long black walls and two short white walls. Relying on the geometry or the wall colours of 

each corner would lead the rats to the correct or the geometrically equivalent corner of the 

rectangle. For a control group the colour of the short and long walls changed, randomly, 

between trials; thus, only geometric information would permit navigation to the correct, or 

geometrically equivalent, corner. In a test trial conducted in an all-white rectangle, the control 

group spent significantly longer than the overshadowing group searching in the correct or 

geometrically equivalent corners. The clear implication of these results is that learning about 
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geometric information can be modulated by non-geometric information (Cole, Gibson, 

Pollack, & Yates, 2011; Horne, Iordanova, & Pearce, 2010; Horne & Pearce, 2009, 2011; 

Pearce et al., 2006; Prados, 2011;; Wilson & Alexander, 2008). 

In order to provide a reconciliation of these conflicting results, Miller and 

Shettleworth (2007, 2008) suggested an associative analysis of spatial navigation that does 

not make the assumption that learning about boundary geometry is impervious to interference 

by landmarks. Briefly, they suggested that the geometric information conveyed by the corners 

of an environment and landmarks, either within or outside the environment’s boundaries, are 

encoded as representational elements. These elements can compete for an association with 

the navigational goal (for example a platform in the case of a water maze) according to a 

modification of the learning rule proposed by Rescorla and Wagner (1972): 

 

ΔVE = α (λ-VL) PL    Equation 1. 

 

Here, VE is the strength of the association between a representational element and the 

navigational goal, α is the inherent (i.e. not modifiable) salience of the element, λ is the 

asymptote of learning supported by the goal (1 when it present, 0 when it is not), VL is the 

associative strength of all elements at a particular location and PL is the probability of 

choosing a particular location, which itself is defined as: 

 

PL=VL/ΣVL     Equation 2.  

 

Where, finally, ΣVL is the sum of the associative strengths of all locations. Incorporating PL 

into the learning equation permits Miller and Shettleworth to predict that the presence of a 

landmark will – under some circumstances - restrict learning about the geometry of an 

environment (i.e. overshadow it) but under other circumstances will not. Consider the case in 
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which a navigational goal is located in one corner of a rectangular arena which contains no 

landmarks. Equation 1 will ensure that the association between the geometric elements of the 

correct corner will become associated with the navigational goal. However, this learning will 

progress relatively slowly because the diametrically opposite, geometrically equivalent, 

corner will occasionally be visited and the goal will not be present – fostering extinction of 

the association between these elements and the goal. Now consider the case of an 

“overshadowing” group who again have a navigational goal located in one corner of a 

rectangular arena, but also have placed within that corner a distinctive landmark. Equation 1 

will ensure that the association between the geometric elements within the correct corner and 

the navigational goal will increase and, correspondingly, so too will the probability of visiting 

this corner. However the geometrically equivalent corner, which contains neither the goal nor 

a landmark, will not be visited so frequently – as it is not identical to the correct corner. 

Consequently, the elements shared by the correct and geometrically equivalent corners will 

tend to gain, but not lose associative strength (as the geometrically equivalent corner will be 

visited only infrequently). Relative to a control group, therefore, early in training the presence 

of a landmark might actually serve to enhance learning about the geometry of an environment 

undermining the overshadowing effect, which should eventually be observed with sufficient 

training. With certain parameters granted, Miller and Shettleworth (2007) were able to 

successfully simulate studies in which landmarks have successfully overshadowed learning 

about boundary geometry and, indeed, studies in which landmarks failed to overshadow 

learning about boundary geometry. 

 

By adopting and adapting the Rescorla-Wagner learning algorithm, the theory 

described by Miller and Shettleworth (2007; 2008) provides a compellingly simple 

explanation for both the presence and absence of cue-competition between navigation 

features. However, by using the Rescorla-Wagner model as its starting point, the Miller-
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Shettleworth analysis of spatial navigation also inherits a number of its limitations. One 

particular limitation is the assumption that the salience of representational elements (α) is 

fixed; this assumption precludes the Rescorla-Wagner model, and hence the model proposed 

by Miller and Shettleworth, from explaining the intradimensional-extradimensional (ID-ED) 

shift effect. The simple form of an ID-ED experiment comprises two stages of training and a 

set of stimuli drawn from two different dimensions (Mackintosh & Little, 1969). In the first 

stage, participants are trained that stimuli from one dimension are relevant to acquiring the 

outcome of the trial, while those from a second dimension are irrelevant. During the second 

stage of the experiment, novel stimuli from the dimensions used in stage one are presented. 

For participants undergoing an intradimensional (ID) shift, the same dimension remains 

relevant for the solution of the task, whereas for those undergoing an extradimensional shift 

(ED) the previously irrelevant dimension becomes relevant. For example, Trobalon, 

Miguelez, McLaren, and Mackintosh (2003), employed an ID-ED procedure in a spatial 

navigation task in which rats in an ID group received food when they visited the western, but 

not the northern, arm of a radial maze. Rats in an ED group received food when they visited 

an arm of the maze textured with wood, but not plastic. In stage 2 of the experiment, all rats 

were rewarded for running down the south-west arm, but not the south-east arm, of the same 

maze. The results indicated that rats in the ID group solved the task more readily in stage 2 

than did the rats in the ED group. In their discussion of the ID-ED effect, both Mackintosh 

(1975, p. 279) and Le Pelley (2004, p.212), argue that the observed retardation of learning in 

ED groups relative to ID groups, during the second discrimination, can only be explained by 

variations in the attention paid (α) to relevant or irrelevant stimuli. On this basis, therefore, it 

seems that Miller and Shettleworth’s theory is unable to provide an explanation for Trobalon 

et al’s demonstration of an ID-ED effect within the spatial domain. However, the theory 

provided by Miller and Shettleworth focused on how learning about spatial features (such as 

landmarks) interacts with geometry learning, and to date there exists no study that has 
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examined whether the ID-ED effect persists in spatial navigation when landmarks and 

boundary geometry are manipulated in such a way. This is slightly surprising because, as the 

name implies, the ID-ED shift procedure examines the effect of shifting either within or 

between different categories of stimuli (dimensions) on learning a task. The procedure is 

therefore intrinsically suited to addressing the interaction between landmarks and geometry in 

spatial navigation, yet, surprisingly, the ID-ED procedure has not been applied to this 

question.  

As the ID-ED shift procedure establishes one dimension as entirely irrelevant to the 

purpose of acquiring the goal, or outcome of a task, and a second dimension as fully 

predictive of the goal, the procedure is also ideal for testing the claims of Gallistel (1990) and 

Doeller & Burgess (2008), who suggest that learning about the geometry, or boundary, of an 

environment will be unaffected by other highly relevant data, or predictive cues. According 

to these analyses, even if the geometry/boundary of an environment is established as entirely 

irrelevant (and other cues as fully predictive) for navigation in stage 1 of the experiment, 

subsequent navigation based upon geometry/boundaries in stage 2 should be entirely 

unaffected. If this result were obtained it would constitute particularly strong evidence for the 

modular basis of geometry in spatial navigation. In contrast, should the current experiments 

demonstrate superior learning in participants undergoing an ID, rather than an ED, shift then 

the modular analysis of geometry in navigation will be undermined. Furthermore, should an 

ID-ED effect be observed it will be possible to make a more constrained theoretical 

interpretation of how landmarks and boundary geometry interact as the ID-ED effect is 

widely acknowledged to indicate the effect of learned attentional changes to cues (e.g. Esber 

& Haselgrove, 2011; Le Pelley, 2004; Mackintosh, 1975; for a related point, see: Le Pelley, 

Schmidt-Hansen, Harris, Lunter, & Morris, 2010). To avoid undue repetition, we restrict our 

discussion of these theories to the general discussion. 
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In the three experiments reported here, human participants were first trained that 

either landmarks or the geometric properties of the boundary of a distinctively shaped arena 

were relevant to finding a hidden goal in stage one. In stage two, novel landmarks were 

presented in an arena of a different shape and participants completed either an ID or an ED 

shift from stage one. According to theories which suggest that learning about geometric 

information does not interact with learning about landmarks during navigation (e.g. Cheng, 

1986), as well as Miller and Shettleworth’s (2007, 2008) associative theory, performing an 

ED shift should have no effect on performance relative to the ID group. A slightly different 

pattern of predictions can be derived from the analysis of spatial navigation provided by 

Doeller and Burgess (2008).  If learning about the boundaries of an environment occurs 

independently of behavioural error and is not prone to interference from learning about 

landmarks, then training that establishes the shape of an environment as irrelevant to finding 

the goal in stage 1 should not retard subsequent learning about the boundary shape in stage 2, 

at least relative to training in which the shape of an environment was not irrelevant in stage 1. 

In contrast, if landmark learning obeys general associative learning principles and is prone to 

interference from learning about boundary information, then training that establishes 

landmarks as irrelevant to finding the goal in stage 1 would be expected to produce retarded 

learning about landmarks in stage 2, again, relative to training in which landmarks has never 

been irrelevant. 

  

Experiment 1 

In stage one participants were trained to find a hidden goal that, on each trial, was 

always located in one of the four corners of a kite-shaped virtual arena, each of which was 

coloured a different shade of blue. We refer to the landmarks created by the shading of the 

corners of the walls as wall panels. The positions of these wall panels changed to different 
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corners on each trial. For half the participants in stage 1, the hidden goal could only be 

located with reference to information provided by the shape of the arena, thus information 

provided by the landmarks was irrelevant. For example, the goal might always be hidden at 

the most acute corner of the kite – the colour of which changed on a trial by trial basis. For 

the remainder of the participants, the hidden goal could only be located with reference to one 

of the four wall panels; information provided by the shape of the arena was irrelevant to 

finding its specific location. For example, the goal might always be hidden in the corner that 

was the darkest shade of blue – irrespective of which corner this shade was located. In stage 

two of the experiment, participants had to learn to find a hidden goal in a trapezium-shaped 

arena, the corners of which were four different shades of red. As before, the positions of the 

landmarks changed to different corners on each trial. During stage two, participants who 

completed an ID shift had to learn about a cue from the same dimension that was relevant to 

finding the goal in stage one. Thus, if the shape of the arena was relevant to finding the goal 

in stage one then it was also relevant to finding the goal in stage two (Group shape-shape). 

Likewise, if landmarks were relevant to finding the hidden goal in stage one then they were 

also relevant to finding the goal in stage two (Group landmark-landmark). Participants who 

completed an ED shift, however, had to learn in stage 2 about a cue from the dimension that 

was irrelevant to finding the goal in stage one. Consequently, participants who had learned 

the location of the goal with respect to the shape of the arena in stage one had to learn the 

location of the goal with respect to landmarks in stage two (Group shape-landmark), and 

participants who had learned the location of the goal with respect to landmarks in stage one 

had to learn the location of the goal with respect to the shape of the arena in stage two (Group 

landmark-shape). To assess navigational behaviour over the course of the experiment, both 

the time taken, and the distance traversed, to find the hidden goal was recorded on each trial. 

The latency to find the goal is a common measure in studies of spatial navigation both in 

animals (e.g. Pearce, Roberts & Good, 1998; Morris, 1981) and humans (e.g. Wilson & 
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Alexander, 2008), and path length measurements are also common in both animal (e.g. Bast, 

Wilson, Witter, & Morris, 2009) and human (e.g. Redhead & Hamilton, 2007) experiments. 

 

Method 

Participants 

48 participants were recruited from the University of Nottingham (31 female).  

Participants were randomly allocated to one of the four groups in the experiment, and were 

given course credit or £5 in return for participation. The age of participants ranged from 18 to 

28 years (mean = 19.31, SEM = .27). An additional £10 was awarded to the participant who 

completed the experiment in the shortest time. 

Materials 

All virtual environments were constructed, complied, and displayed using Mazesuite 

software (Ayaz, Allen, Platek, & Onaral, 2008; www.mazesuite.com), which were run on a 

standard Stone desktop computer, running Microsoft Windows 7. A large Mitsubishi 

LDT422V LCD screen (935 x 527 mm) was used to display the virtual environments. All 

virtual arenas were viewed from a first-person perspective, and a grass texture was applied to 

the floor of each arena. Using the 0-255 RGB scale employed by Mazesuite, the terracotta 

coloured walls in the kite and trapezium were defined as 204, 178, 127. Assuming a walking 

speed similar to that in the real world (2 m/s), the perimeter of the kite was 72m, with the 

small walls being 9m in length and the long walls 27m. The height of the arenas was 

approximately 2.5 m. The kite was configured such that it contained two right angles corners 

with the remaining two angles being 143.14º and 36.86º, and the isosceles trapezium 

contained angles of 48.19º and 131.81º. The perimeter of the trapezium was 63m, with the 
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smallest wall being 9m, the largest wall 27m, and the remaining two walls 13.5m in length 

(see Figure 1a). 

 

***Figure 1 about here *** 

 

Four pairs of coloured wall panels, each 1.13 m in length and approximately 2.5m in 

height, served as landmarks, and were located on either side of each corner in an arena. The 

four blue wall panels presented in the kite-shaped arena were defined as RGB; 25, 127, 102; 

25, 102, 127; 0, 25, 102 and 51, 102, 204, and the four red wall panels presented in the 

trapezium-shaped arena were; 127, 25, 51; 127, 51, 76; 10, 25, 102 and 51, 25, 76. The goals 

within the arenas were square shaped regions (1.08m x 1.08m, invisible to participants) that 

were always located 1.475m away from the walls of the arena, along on a notional line that 

bisected the corner in half. A third arena was also utilised in this experiment, which was 

designed to allow participants to become familiar with the controls of the experimental task. 

This exploration arena was a regular octagon configured of red walls (RGB: 229, 25, 51), 

with a grass texture again applied to the floor. There was no hidden goal present. Again 

assuming a walking speed of 2 m/s, each wall was of the exploration arena was 12m in 

length. Figure 1(b) shows a screen shot of an example of the kite-shaped arena used in 

Experiment 1. 

Procedure 

After signing a standard consent form, participants were given the following set of 

instructions on paper: 
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This study is assessing human navigation using a computer generated virtual environment. 

During this experiment, you will complete 48 trials. In each trial, you will be placed into a 

room that contains an invisible column. Your aim is to end the trials as quickly as possible by 

walking into the column.   

 

You will view the environment from a first person perspective, and be able to walk into the 

column from any direction using the cursor keys on the keyboard.  Once you’ve found the 

column a congratulatory message will be displayed and you should hit enter when you’re 

ready to begin the next trial.  You will always be in the centre of the arena when a trial 

begins, but the direction in which you face at the start of each trial will change.  

 

To start with, you may find the column is difficult to find. There is, however, a way of 

learning exactly where the invisible column will be on each trial. It’s a good idea to fully 

explore the environment on the first few trials, this will help you to learn where the column is 

going to be. 

 

This session should take around 30-40 minutes. If at any point you wish to stop this session, 

please notify the experimenter and you’ll be free to leave without having to give a reason 

why. Your results will be saved under an anonymous code, and kept confidential throughout. 

 

 

The person who takes the least time to complete this experiment will win a £10 prize! 

 

Participants were sat not more than 100 cm from the screen, and first provided with the 

opportunity to move around the octagonal exploration arena for two 30 s trials using the four 

keyboard cursor keys. Presses on the “up” and “down” cursor keys permitted the participant 
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to move forwards and backwards within the arena, respectively. Presses on the “left” and 

“right” cursor keys permitted the participant to rotate counter-clockwise and clockwise within 

the arena, again respectively. Following these exploration trials, participants pressed enter to 

begin the first experimental trial. In the kite-shaped arena, participants began each trial at a 

point located halfway between the apex and obtuse corners, and in the trapezium shaped 

arena at a point half way along a notional line from the centre of the shortest wall to the 

centre of the longest wall. The direction in which participants began facing was randomised 

for every trial. Generating every possible configuration of four landmarks in the four corners 

of the arenas produced 24 different trials for both the kite- and the trapezium-shaped arenas. 

Each of these arenas was presented once to each participant, the order of which was 

randomized for each participant independently. Participants were first required to complete 

24 trials in the kite shaped arena (Stage 1), before completing 24 trials in the trapezium 

shaped arena (Stage 2). On each trial, participants were required to find the hidden goal by 

using the four cursor keys as described above. There was no time limit for any trials, thus, 

each trial ended only when the hidden goal was found. Once the hidden goal had been found, 

participants could no longer move within the arena and a congratulatory message 

(Congratulations, you found the goal!) was displayed on screen using the default font and 

character size in Mazesuite. Participants pressed enter to begin the next trial.  

During stage 1 for participants in Groups Shape-Shape and Shape-Landmark, and 

during stage 2 for participants in Groups Shape-Shape and Landmark-Shape, the goal was 

located in the same corner of the arena on each trial. Each of the 4 wall panels was located in 

the goal corner on 6 trials, and in non-goal locations on the remaining 18 trials. During stage 

1 for participants in Groups Landmark-Landmark and Landmark-Shape, and during stage 2 

for participants in Groups Landmark-Landmark and Shape-Landmark, the goal was located 

adjacent to the same wall panel on each trial. Each of the 4 corners contained the goal on 6 

trials, and did not contain the goal on the remaining 18 trials. 



16 
 

Full details of stage 1 and stage 2 counterbalancing are given in the appendix. We 

draw the reader’s attention, however, to the counterbalancing employed for Group shape-

shape, which was arranged such that any direct transfer of local geometric cues from the kite 

to the trapezium would not aid performance. For instance, if the goal in the kite was located 

in a corner where the right hand wall was long and the left hand wall short, the goal position 

in the trapezium would always be located where the left hand wall was longer than the right 

hand wall. Similarly, if the goal location in the kite was in the acute or obtuse angled corners, 

then in the trapezium the goal would be located in an obtuse or acute angled corner, 

respectively.  

Results & Discussion 

An alpha value of .05 was adopted for all statistical tests in this and the following 

experiments. Figure 2 shows the latency, in seconds, from the beginning of each trial to enter 

the region defined as the hidden goal for the four groups during the 24 trials of stage 1 of the 

experiment. The mean latencies in the four groups decreased across this stage of the 

experiment, but there was little indication of any differences between the groups.  A two-way 

analysis of variance (ANOVA) of individual latencies, with the variables of relevant cue in 

stage one (landmarks or shape) and trial (1-24) revealed a significant main effect of trial, 

F(23, 1058) = 55.55, MSE = 212.55, reflecting that the latency to find the goal decreased over 

trials. There was no main effect of relevant cue F(1, 46) = 1.05, MSE = 751.87, however, 

there was a significant Trial x Relevant Cue interaction, F(23, 1058) = 1.72, MSE = 212.55. 

Simple main effects analysis revealed shorter latencies to  find the goal in the landmark-, than 

in the shape-relevant groups on trial 1, but the reverse pattern on trial 3, Fs(1, 1104) > 7.86, 

MSE = 235.02. However, no significant differences in performance were noted by the end of 

stage 1. 

***Figure 2 about here*** 
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The mean latency to find the goal during stage 2 are shown in the top panel of Figure 

3 for groups Shape-Shape and Landmark-Shape, and in the bottom panel of Figure 3 for 

groups Landmark-Landmark and Shape-Landmark. It can be seen that both groups that 

performed an ED shift (Groups Landmark-Shape and Shape-Landmark) showed longer 

latencies to find the goal relative to the appropriate ID groups (Groups Shape-Shape and 

Landmark-Landmark). A three-way ANOVA of individual latencies to find the goal, with the 

variables of shift (ID or ED), relevant cue in stage two (shape or landmarks), and trial (1-24) 

revealed a significant main effect of trial F(23, 1012) = 9.65, MSE = 155.94, of shift, F(1, 44) 

= 43.12, MSE = 871.22, but no effect of relevant cue F<1. Crucially, there was a significant 

Shift x Trial interaction, F(23, 1012) = 1.71, MSE = 155.94. Simple effects analysis of this 

interaction revealed that the  ED shift groups, overall, were significantly slower to find the 

goal than the ID shift groups on trials 2-13, 15, 17, 19, and 21-24, Fs(1, 1056) > 3.961, MSE 

= 185.75. There was no Shift x Relevant cue interaction F(1, 44) = 2.12, MSE = 871.22, 

however, there was a Relevant cue x Trial interaction F(23, 1012) = 2.84, MSE = 155.94. 

Simple main effects analysis revealed that participants who were navigating on the basis of 

landmarks were significantly quicker at finding the goal on trials 1 and 2 than participants 

navigating in the basis of shape, Fs(1, 1056) > 19.16, MSE =185.75. The three-way 

interaction was not significant F(23, 1012) = 1.06, MSE = 155.94. 

Analysis of path length data can be found in the online supplementary materials 

accompanying this paper. For the sake of brevity, it is sufficient, here, to note that a three-

way ANOVA of individual distances traversed, with the variables of shift (ID or ED), 

relevant cue in stage two (shape or landmarks), and trial (1-24) revealed  that the interaction 

between Shift and Trial was significant F(23, 1012) = 1.76, MSE = 540.56. Simple main 

effects analysis revealed that the ED groups travelled a greater distance to find the goal than 

the ID groups on trials 2-10, 12-13, 15, 17, 19, 21-22, and 24 Fs(1, 1056) > 4.45, MSEs = 

592.38. 
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 ***Figure 3 about here*** 

Establishing either landmarks or the geometry of the environment as relevant to 

navigation influences the speed at which novel stimuli drawn from these stimulus categories 

are subsequently learned about. Specifically: (1) When landmarks have successfully guided 

navigation in the past then subsequent navigation using information provided by the 

geometry of the arena is retarded relative to a group who initially navigated using geometry. 

(2) When information provided by the geometry of the arena has successfully guided 

navigation in the past then subsequent navigation using landmarks is retarded relative to a 

group who initially navigated using landmarks. Analysis of path length data revealed that the 

longer latencies noted in the two ED groups, relative to the appropriate ID groups, did not 

reflect a general slowing. Instead, the longer latencies observed in the former groups were, at 

least in part, caused by increased distances traversed in the ED groups relative to the ID 

groups. Result (1) is difficult to reconcile with the proposals of Doeller & Burgess (2008), 

who suggested that learning about the boundary of the environment is impervious to the 

influence of learning about information from landmark information and, importantly, that 

learning relative to boundaries occurs independent of behavioural error. Results (1) and (2) 

are difficult to reconcile with both Cheng’s (1986) modular analysis of spatial learning and 

Miller and Shettleworth’s (2007; 2008) associative theory of spatial learning. The former 

theory proposes that geometric information is encoded in a module that can neither influence, 

nor be influenced by learning about landmarks. The latter theory proposes that attention paid 

to navigational elements is fixed; thus precluding it from explaining any demonstration of a 

spatial ID-ED effect. 

The stimuli employed as landmarks in Experiment 1 were coloured panels that were 

spatially integrated into the boundaries of the arenas during stages 1 and 2. This choice of 

stimuli has a number of theoretical implications, two of which we will consider now. First, it 
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has been suggested that learning may result in the acquisition of orienting responses to cues 

that are important to the solution of a discrimination (Spence, 1940, 1952). If these cues are 

subsequently established as unimportant to the solution of a discrimination (as in the case of 

an ED shift) then acquisition will be retarded because orienting responses will be made to the 

(now) irrelevant cue, potentially hindering the perception of the relevant cue. This analysis 

shifts the locus of the effect of the ID-ED shift to a more peripheral orienting mechanism than 

the analysis of the effect provided by theories of learning such as Mackintosh’s (1975) which 

assumes the effect is the consequence of a more central change in the attention that is paid to 

a stimulus despite it being perceived. By demonstrating, here, an ID-ED effect when the 

features of the arena relevant to finding the goal are spatially integrated with the features of 

the arenas that are irrelevant makes it unlikely that that the current results were a 

consequence of a more peripheral strategy (c.f. Pearce, Esber, George, & Haselgrove, 2008). 

Second, although coloured wall panels have been considered as landmarks by some authors 

(e.g. Pearce et al., 2006), it seems entirely reasonable to argue that such features are integral 

components of the boundary of the arena (e.g. Wilson & Alexander, 2010). If this is accepted, 

then it may be argued that Experiment 1 only goes so far as to demonstrate that  information 

contained within a geometric, or boundary, module is able to interact – a possibility that is not 

entirely ruled out by analyses such as those proposed  by Cheng (1986), and Doeller and 

Burgess (2008). Experiment 2 was therefore conducted to address this matter, and examined 

whether discrete landmarks that are spatially separated from the arena boundary can influence 

navigation that is based on information that is provided by its shape (and vice versa). 

 

Experiment 2 

Experiment 2 replicated the design of Experiment 1, but in place of coloured wall panels, 

coloured spheres that were present in each corner of an arena served as landmarks. The 
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spheres were spatially separated from the boundaries of the environment, such that in a 

horizontal plane the full 360 degrees of the sphere could be viewed, and were suspended at a 

height that enabled participants to walk under them. In stage 1, four spherical landmarks of 

different shades of blue, were located in the four corners of the kite-shaped arena used in 

Experiment 1. In stage 2, four spherical landmarks of different shades of red, were located in 

the four corners of the trapezium-shaped arena used in Experiment 1. For Group Shape-Shape 

the hidden goal was again always located in the same corner of the kite, and the same corner 

of the trapezium, no matter which landmark was present in that corner in either arena. For 

Group Landmark-Landmark, the goal was always under the same landmark in the kite or 

trapezium, no matter which corner the landmark occupied in each arena. For Group Shape-

Landmark, the hidden goal remained in the same corner of the kite no matter what landmark 

was present in the corner, but in the trapezium the goal then remained under the same 

landmark no matter which corner it was in. Finally, for Group Landmark-Shape, the hidden 

goal remained under the same landmark in the kite shaped arena no matter which corner the 

landmark was in, but in the trapezium remained in one corner no matter which landmark was 

present in that corner.  

Method 

Participants 

32 participants were recruited from the University of Nottingham (24 female).  

Participants were again randomly allocated to one of the four groups in the experiment, and 

were given course credit or £5 in return for participation. The age of participants ranged from 

18 to 37 years (mean = 21.2, SEM = 0.84). An additional £10 was awarded to the participant 

who completed the experiment in the shortest time. 

Materials 
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The monitor, computer equipment and all arenas were exactly the same as those used 

in Experiment 1, with the exception of the landmarks which, for the current experiment, were 

discrete spheres 90 cm in diameter instead of coloured wall panels. The spherical landmarks 

were constructed using Blender software (www.blender.org) and imported into Mazesuite.  

The blue spheres used in stage 1 of the experiment were defined as RGB; 0.000, 0.540, 

0.640; 0.159, 0.326, 0.800; 0.000, 0.123, 0.720 and 0.000, 0.464, 0.800, and the red spheres 

used in stage 2 as; 0.635, 0.239, 0.640; 0.640, 0.000, 0.392; 0.512, 0.000, 0.314 and 0.238, 

0.131, 0.465. Within the arenas, the landmarks were 1.475m away from the apex of each 

corner, on a notional line that bisected the corner in half. The walls of both the kite shaped, 

and trapezium shaped arenas were a uniform terracotta colour throughout the experiment (see 

Experiment 1, Methods). Figure 1 (c) shows a screen shot of an example of the trapezium-

shaped arena used in Experiment 2 and Experiment 3 

Procedure 

The procedure for Experiment 2 was identical to Experiment 1. 

Results and Discussion 

Figure 4 shows the mean latency of the 4 groups to find the hidden goal during the 24 

trials of stage 1. In keeping with the results of Experiment 1, learning progressed at a similar 

rate in the four groups and the asymptotes of performance were similar. A two-way ANOVA 

of individual latencies to find the goal, with the variables of relevant cue in stage one 

(landmarks or shape) and trial (1-24), revealed a significant main effect of trial, F(23, 690) = 

26.11, MSE = 139.05. There was no main effect of relevant cue, F(1, 30) = 2.20, MSE = 

727.87 and no significant interaction between Relevant cue and Trial, F<1. 

***Figure 4 about here*** 



22 
 

The mean latencies to find the goal during stage 2 are shown in the top panel of 

Figure 5 for groups Shape-Shape and Landmark-Shape, and in the bottom panel of Figure 5 

for groups Landmark-Landmark and Shape-Landmark. In keeping with the results of 

Experiment 1, both groups that performed an ED shift (Groups Landmark-Shape and Shape-

Landmark) showed longer latencies to find the goal relative to the appropriate ID groups 

(Groups Shape-Shape and Landmark-Landmark respectively). There was an indication that 

this effect seemed was more sustained in the groups undergoing shape relevance training in 

stage 2 than groups who groups undergoing landmark relevance training in stage 2. A three 

way ANOVA of individual latencies to find the goal, with the variables of shift (ID or ED), 

relevant cue in stage two (shape or landmarks) and trial (1-24), revealed a significant main 

effect of trial, F(23,644) = 12.70, MSE = 76.72, and a significant main effect of shift, F(1, 28) 

= 10.92, MSE = 968.61, confirming that those performing an ED shift were, overall, slower to 

find the goal than those performing an ID shift. The main effect of relevant cue approached 

significance, F(1, 28) = 3.69, p = .065, which indicated that there was a trend towards 

participants finding the goal quicker when landmarks were relevant compared to when shape 

was relevant. Importantly, a significant Shift x Trial interaction was obtained, F(23, 644) = 

3.13, MSE =76.72. Simple main effects analysis revealed that, overall, participants 

performing an ED shift were significantly slower to find the goal than participants 

performing an ID shift on trials 2-9, Fs(1, 672) > 5.035, MSE = 11.89. The interaction 

between Relevant cue and Shift was not significant, F(1, 28) = 2.18, MSE = 968.61, nor was 

the Relevant cue x Trial interaction, F(23, 644) = 1.43, p = .08, although there was a trend for 

groups navigating on the basis of landmark to learn stage two quicker than groups navigating 

on the basis of the shape of the arena. Finally, the three-way interaction was not significant, F 

<1. 

As with Experiment 1, full path length analyses for Experiment 2 can be viewed in the 

online supplement to this paper. Here, we note that individual distances traversed were 
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treated with three-way ANOVA, which incorporated variables of shift (ID or ED), relevant 

cue in stage two (shape or landmarks), and trial (1-24). A significant interaction between 

Shift and Trial was obtained F(23, 644) = 2.70, MSE = 259.87. Participants in the ED groups 

traversed significantly greater distances to find the goal, compared to the ID groups, on trials 

2-7, 9, and 15 Fs(1, 672) > 4.01, MSEs < 331.86. 

***Figure 5 about here*** 

The results of Experiment 2 replicate and extend the generality of the results from 

Experiment 1: participants were slower to find a hidden goal when the cues relevant to 

navigation were from a dimension that had previously been irrelevant, rather than relevant, 

for navigation. Again, the longer latencies observed in the ED groups relative to the ID 

groups were, at least partly, due to the longer distance traversed in the former groups relative 

to the latter. Experiment 2 used intra-arena stimuli that were spatially separated from the 

arena boundary as landmarks, instead of the coloured wall panels employed in Experiment 1. 

It is difficult to argue that these stimuli were encoded by participants as boundary 

information. It thus seems that the current experiment constitutes a demonstration that 

learning about a landmark interfered with learning about the geometric properties of an arena. 

These results are, therefore, inconsistent with theories that suggest boundary cues enjoy a 

special status, in that learning to them does not follow general associative principles of 

behavioural error and are not susceptible to interference from local landmark information 

(e.g. Doeller & Burgess, 2008), or theories that emphasize a similar special status for 

geometric information (e.g. Cheng, 1986; Gallistel, 1990).  

The retardation of navigation observed in the two ED groups (Groups Landmark-

Shape and Shape-Landmark) was, of course, a retardation relative to navigation in the two ID 

groups (Groups Shape-Shape and Landmark-Landmark). It is conceivable, therefore, that the 

results of Experiment 1 do not reflect a retardation of learning in the ED groups. In keeping 
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with the proposals of modular theories of geometric navigation (e.g. Cheng, 1986), it is 

possible that navigation in the two ED groups in stage 2 was, in fact, entirely un-affected by 

navigation in stage 1. The difference observed between the ID and ED groups could, instead, 

reflect a facilitation of learning in the two ID groups – a possibility that is not explicitly 

prohibited by the aforementioned theories. This analysis encounters difficulty when 

explaining exactly why navigation should be facilitated in Group Shape-Shape. The 

geometric features of the goal location in stage 1 were deliberately chosen so as to not convey 

any advantage to participants when they moved to stage 2 of the experiment. Thus, if the goal 

was in an acute (or obtuse) corner in stage 1, then it was located in an obtuse (or acute) corner 

in stage 2. Similarly, if the goal was located, for example, in a corner that had a short wall to 

the left of a long wall in stage 1, then it was located in a corner that had a long wall to the left 

of a short wall in stage 2. Thus, any direct transfer of geometric information pertaining to the 

goal location from stage 1 to stage 2 would, if anything, hinder, rather than facilitate 

navigation.  

For Experiment 1, the landmarks were spatially integrated into the corners of the 

arena boundary, whereas in the current experiment the landmarks were displaced from the 

arena boundaries. The results of Experiment 2 would therefore seem to be open to the 

peripheral orienting account described in the discussion of Experiment 1. Although it is not 

possible to fully rule out this analysis for Experiment 2, as can be seen in Figure 1 (c), the 

landmarks were located sufficiently close to the corners of the arena that any orienting 

response made towards a landmark cue coincided with an orienting response toward the 

geometry of the corner that the landmark occupies. Similarly, any orienting response made 

towards a given corner of the arena will coincide with an orienting response towards the 

landmark placed in that corner. On this basis, therefore, it seems unlikely that peripheral 

orienting mechanisms provide an adequate explanation of the pattern of results observed. 
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Experiment 3 

At face value, Experiment 2 seems to constitute a challenge to theories of navigation 

that confer a special status to the global shape of the environment. However, Experiment 2 

failed to provide any evidence that, as a consequence of navigation, participants acquired an 

allocentric representation of the global shape of the arena – a representation that “cognitive 

map” theories (e.g. Cheng, 1986; O'Keefe & Nadel, 1978)  predicts will be extracted as a 

consequence of navigation. It is difficult to know, therefore, how much of a challenge 

Experiment 2 poses to these theories. This issue is particularly salient when one considers the 

results of spatial learning experiments conducted with rats, which provide evidence for a 

much more local encoding of geometry. Pearce, Good, Jones and McGregor (2004), for 

example, trained rats to find a hidden goal in the corner of a rectangular arena in which the 

right hand wall was long and the left hand wall was short. Pearce et al. suggested that if 

subjects had used the global features of the rectangle to find the hidden goal, then placing 

them in a novel kite-shaped arena should disrupt performance. The results of test trials in the 

kite shaped arena did not conform to this prediction: rats preferentially searched first in the 

corner of the kite in which the right hand wall was long and the left hand wall short (see also: 

Cheng, 2005; McGregor, Jones, Good, & Pearce, 2006). Pearce et al. suggested that the local 

geometric features that were common to both the rectangular and kite-shaped areas (e.g. the 

conjunction of a short wall and a long wall) were used to guide navigation. However, these 

results do not rule out the possibility that, in addition to the encoding of local features, global 

boundary information (unique to the rectangular arena) was also encoded during training. By 

the same token therefore, any experiment that is claimed to constitute a challenge to the 

assumptions of theories of navigation which assume the presence of a global representation 

should also comprise some evidence for such a global representation - evidence which 

Experiments 1 and 2 (as well as other related cue competition experiments; e.g. Pearce et al., 

2006) are lacking. Experiment 3a and 3b sought to replicate the findings of Experiment 2, in 
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addition to assessing whether participants formed any knowledge of the global shape of the 

arena and, more importantly, whether this information was influenced by the relevance 

training provided by the ID-ED task. Experiment 3a was an exact replication of Experiment 

2, but with the addition, at the end of the experiment, of a shape recognition task following 

stage 2 of the ID-ED task. Experiment 3b was a close replication of Experiment 2, except that 

the participants began by navigating in the trapezium shaped arena in stage 1, following 

which participants navigated in the kite shaped arena during stage 2. The shape recognition 

task was also administered at the end of Experiment 3b. For the shape recognition task at the 

end of Experiments 3a and 3b, participants were presented with black and white “target” 

pictures of a kite and a trapezium and “distracter” stimuli, similar in form to the targets (a 

triangle and a parallelogram, respectively). Participants were required to report whether or 

not the shapes presented at test matched those explored during the preceding navigation 

stages. If the training in stages 1 and 2 of this experiment permitted participants to extract a 

global, allocentric, representation of the shapes of the kite and trapezium shaped arenas, then 

they should be able to distinguish these targets from the distracters. This being the case, it 

would provide evidence for the presence of global encoding of the shape of the arena as a 

consequence of exploration within it. At the same time, however, if performance on this 

recognition task were influenced by relevance training with landmarks then we would also 

have evidence that a global representation of shape is susceptible to interference from local 

landmarks – a possibility that, as we have outlined earlier, is prohibited by a variety of 

theories of spatial navigation (e.g. Cheng, 1986; Doeller & Burgess, 2008, Gallistel, 1990). 

 

Method 

All procedural, material, and apparatus details for the navigation stages of Experiment 

3a were identical to those reported in Experiment 2. Experiment 3b was also identical to 
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Experiment 2, except that the order of arenas was reversed, thus, counterbalancing the order 

of presentation of arenas. For clarity, during stage 1 of Experiment 3b, participants completed 

24 trials in the trapezium shaped arena which contained four red landmarks and, in stage 2, 

participants completed 24 trials in the kite shaped arena which contained four blue 

landmarks. Only details pertaining to the shape recognition task are reported in the following 

section. 

Participants 

A total of 96 participants were recruited from the University of Nottingham (44 male).  

Participants were again given course credit or £5 in return for participation. An additional 

£10 was awarded to the participant who completed each experiment in the shortest time. 

Experiment 3a 

The age of participants ranged from 18 to 47 years (mean = 22.79, SEM = .71). Participants 

were allocated to each of the four groups in pseudo-random manner to ensure an equal 

number of males (6) and females (6) were present in each group. 

Experiment 3b 

The age of participants ranged from 18 to 30 years (mean = 20.52, SEM = .34). Participants 

were again pseudo-randomly allocated to each group to ensure there were the same number 

of males (5) and females (7) in each group. 

Materials 

  Black lined and white filled pictures of a kite (on screen wall lengths of 35mm and 

108mm) and trapezium (on screen wall lengths of 35mm, 108mm, and 69mm) were created 

using Microsoft PowerPoint 2007. Pictures of an isosceles triangle (on screen wall lengths of 

108mm and 60mm) and a regular parallelogram (on screen wall lengths of 86mm and 
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60mm), were also created as distracter stimuli. All stimuli were presented on a white 

background. This task was run on a standard sized (476.6 mm x 268.1 mm) computer 

monitor. Experimental events were controlled and responses recorded by psychopy (Peirce, 

2007; www.psychopy.org). 

4.1.3 Procedure 

Following the ID-ED task, the shape recognition task was administered, during which 

participants were then sat not more than 1m in front of a standard sized computer monitor and 

presented with the following, on screen instructions: 

For the final stage of the experiment you will be presented with pictures of different shapes. It 

is your task to decide which of these shapes match the shapes of the arenas that you 

previously navigated. 

Please press "Y" if you think you were in the shape before. 

Please press "N" if not. 

Take as much time as you need to make your decision. 

<Press the space bar to continue> 

On each trial a kite, trapezium, triangle or parallelogram was presented in the centre 

of the computer monitor. Each picture was presented in two different orientations during the 

task. The kite and triangle were each presented once with their most acute corner facing the 

left hand side of the computer monitor, and once with their most acute corner facing the right 

hand side of the computer monitor. The trapezium was presented once with its smallest side 

facing the top of the monitor and once with its smallest side facing the bottom of the monitor. 

On both trials, the parallelogram was presented with its two longest sides running parallel to 

the top of the monitor. On one trial, the two acute corners were to the top right and bottom 

left of the shape, on the other trial the two acute corners were to the top left and bottom right 
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of the shape. The order of presentation of the 8 stimuli was randomised independently for 

each participant. Below each picture, centred, were the following on screen instructions: 

Were you in this shape? (Y/N) 

Trials were self-paced, with each trial terminating when the participant pressed either the “Y” 

or “N” key. The subsequent trial began immediately after the termination of the preceding 

trial.  

After all 8 trials, the screen was cleared and participants received on screen instructions to 

contact the experimenter. 

Results and Discussion 

As Experiments 3a and 3b were two halves of a counterbalanced procedure, data from 

the two experiments were collapsed together in both the analysis of navigational behaviour, 

and in the analysis of the shape recognition task. 

Intradimensional-Extradimensional shift 

 Figure 6 shows the latency to find the hidden goal, in seconds, during the 24 trials of 

stage 1 in the four groups. All groups showed a reduction in the latency to find the goal as 

trials progressed, although it appeared that the groups for which landmarks were relevant may 

have found the goal quicker early in training. A two-way ANOVA of individual latencies to 

find the goal, with variables of relevant cue in stage one (landmarks or shape) and trial (1-

24), revealed significant main effects of relevant cue F(1, 94) = 4.37, MSE = 521.67, trial 

F(23, 2162) = 96.82, MSE = 95.33, and a significant interaction between Relevant cue and 

Trial F(23, 2162) = 4.80, MSE = 95.33. Simple main effects analysis of the interaction 

revealed that groups for which landmarks were relevant were quicker to find the goal on trials 

1 and 4 only Fs(1, 94) > 9.75, MSEs < 931.28.  
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***Figure 6 about here*** 

The mean latencies to find the goal during stage 2 are shown in the top panel of 

Figure 7 for groups Shape-Shape and Landmark-Shape, and in the bottom panel of Figure 7 

for groups Landmark-Landmark and Shape-Landmark. In keeping with the results of 

Experiments 1 and 2, both groups that performed an ED shift (Groups Landmark-Shape and 

Shape-Landmark) showed longer latencies to find the goal relative to the appropriate ID 

groups (Groups Shape-Shape and Landmark-Landmark, respectively). A three-way ANOVA 

of individual latencies to find the goal, with the variables of shift (ID or ED), relevant cue in 

stage 2 (shape or landmarks), and trial (1-24) revealed significant main effects of shift F(1, 

92) = 57.00, MSE = 580.17, trial F(23, 2116) = 23.61, MSE = 85.62, but not relevant cue 

F<1. Importantly, the interaction between Shift and Trial was significant F(23, 2116) = 4.83, 

MSE = 85.62. Simple main effects analysis of this interaction revealed that while there was 

no difference between the ID and ED groups on trial 1 F<1, the ED groups were significantly 

slower to find the goal on trials 2-24 Fs(1, 92) > 4.81, MSEs < 311.26. The two-way 

interaction between Relevant cue and Trial was not significant F<1, but the interaction 

between Relevant Cue and Shift was significant F(1, 92) = 5.50, MSE = 580.17. Simple main 

effects analyses revealed that, for both landmark and shape relevance, the ED groups were 

significantly slower to find the goal in stage 2, overall, than the ID groups Fs(1, 92) > 13.55, 

MSEs = 24.17. There was no difference in the time taken to find the goal during stage 2, 

overall in the ID groups F<1, although in the ED groups the landmark-shape group were, 

overall, quicker to find the goal in stage 2 compared to the shape-landmark group F(1, 92) = 

5.54, MSE = 24.17. Finally, the three-way interaction between Shift, Relevant Cue, and Trial 

was not significant F(23, 2116) = 1.45, MSE = 85.617.  

Full path length analyses can again be viewed in the online supplement to this paper. 

The three-way ANOVA of individual distances traversed to find the goal, with the variables 
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of shift (ID or ED), relevant cue in stage 2 (shape or landmarks), and trial (1-24), yielded a 

significant interaction between Shift and Trial F(23, 2116) = 4.32, MSE = 351.13. Simple 

main effects analysis revealed that, on trial 1, there were no differences in the distances 

traversed by the ID and ED groups F<1, but that the ED groups traversed a significantly 

greater distance to find the goal than ID groups on trials 2-19, and trials 21-24 Fs(1, 92) > 

6.03, MSEs < 1398.40. 

***Figure 7 about here*** 

Recognition task 

During the recognition test, it is possible that the two distractor stimuli (parallelogram 

and triangle) both acted as foils for each of the two target stimuli (kite and trapezium). As 

such, the total number of “Yes” responses to the kite target pictures  and “No” responses to 

the triangle and parallelogram distracter pictures were summed, and divided by the total 

number of responses made to these pictures to calculate a percent correct score for the Kite 

arena. Similarly, the total number of “Yes” responses to the trapezium target pictures  and 

“No” responses to the triangle and parallelogram distracter pictures were summed, and 

dividing this number across the total number of responses made to these pictures to calculate 

a percent correct score for the trapezium arena.  

Figure 8 shows the mean percent correct recognition for the shapes navigated in stage 

1 and stage 2 for each of the four groups. First, and consistent with the notion that navigation 

permitted the extraction of allocentric representations of the shapes of the arenas, recognition 

of the stage 1 and stage 2 target shapes was good in all four groups. It appeared though, that 

while both ED groups displayed equivalent performance, Group shape-shape had higher 

recognition scores than Group landmark-landmark. First, one sample t-tests were conducted 

to assess if individual recognition scores for the navigated shape in stage 1 and stage 2 of the 

experiment were above chance. In the shape recognition task, four out of the eight presented 
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shapes matched the navigated arenas, giving a chance level of 50%. However, in the 

calculations previously described, a maximum of two correct “Yes” responses to target 

shapes were summed with four responses made to the distracter pictures, giving a chance 

level of 33.33%. Taking the conservative value of a 50% chance level, recognition of the 

navigated shapes in both stage 1 and stage 2 were above chance in all four groups ts(23) > 

3.33. Second, individual percent correct scores were treated with a three-way ANOVA, with 

variables of shift (ID or ED), relevant cue in stage one (shape or landmarks), and arena (stage 

1 or stage 2). This revealed no significant effects of shift, or arena Fs(1, 92) < 1.20, MSEs < 

756.41, although there was a simple main effect of relevant cue F(1, 92) = 4.98, MSE = 

756.41. There was, however, a significant interaction between Shift and Relevant cue F(1, 

92) = 4.98, MSE = 756.41. Simple main effects analysis of this interaction revealed a 

significant difference between the shape-shape and landmark-landmark groups F(1, 92) = 

9.95, MSE = 378.20: participants in the shape-shape group displayed significantly better 

recognition of the navigated shapes compared to participants in the landmark-landmark 

group. There were no differences in shape recognition between the shape-shape and 

landmark-shape group, the landmark-landmark and shape-landmark group, or the shape-

landmark and landmark-shape groups Fs(1, 92) < 2.57, MSEs = 378.20. Returning to the 

results of the overall ANOVA, The Shift x Arena, and Relevant cue x Arena interactions 

were not significant Fs(1, 92) < 1.54, MSEs = 271.80, and neither was the three-way 

interaction, F<1. 

***Figure 8 about here*** 

In keeping with the results of Experiment 2, navigating on the basis of stimuli drawn 

from one dimension retarded subsequent navigation if the relevant stimuli were drawn from a 

different dimension, in terms of both time taken and distance traversed to find the hidden 

goal. To reiterate a point made earlier, the retardation of Group landmark-shape relative to 



33 
 

Group shape-shape is not predicted by theories that state boundary information is processed 

in a fashion immune to interference from learning about landmarks (e.g. Cheng, 1986; 

Doeller & Burgess, 2008; Gallistel, 1990), nor by the theory proposed by Miller and 

Shettleworth (2007; 2008).  

Experiment 3 is particularly novel in its use of the final shape recognition test to 

assess participant’s allocentric representation of the arenas navigated. Importantly, and 

contrary to theories that suggest this knowledge is acquired independently of the presence of 

the other cues, knowledge of the allocentric structure of the shape of the environments was 

modulated by varying the relevance of the shape and/or the landmarks. The shape-shape 

group displayed good recognition of the target stimuli following training in which the shape 

of the arena was relevant to finding the goal throughout the experiment. Training in which the 

shape of the arena was irrelevant for finding the goal throughout the experiment limited the 

extent to which the global structure of the boundaries was encoded and, ultimately, rendered 

it less recognisable at test for the landmark-landmark group. Clearly then, acquisition of 

knowledge about the global boundary structure of an environment is affected by the presence 

of other, non-boundary, cues. It is, perhaps, not surprising that the recognition scores in the 

ED groups did not differ considering that, in both groups, for one half of the experiment, the 

boundary shapes of the arena were relevant to finding the goal, whereas for the remainder of 

the experiment the landmarks were relevant.  

General Discussion 

In three experiments, participants were required to find a hidden goal in a virtual 

arena that contained distinctive landmarks. Either the shape of the arena, or the location of 

the landmarks, was made relevant to navigating towards the hidden goal. In each experiment, 

participants were faster to find the goal, and traversed a shorter distance to find the goal, 

when the dimension relevant to finding the goal was the same as during previous sessions of 
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navigation. These results were obtained when the landmarks were spatially integrated into the 

boundary of the arena (Experiment 1), or when they were spatially separated from the 

boundary as intra-arena cues (Experiments 2 and 3). Experiment 3 revealed that participants’ 

ability to recognise the shape of the arenas that they had previously navigated was influenced 

by whether shape had been established as relevant to finding the goal during the first stage of 

the experiment. 

As we have noted earlier, these results are difficult to reconcile with theories of 

spatial learning that place an emphasis on the special status of the shape of an arena in 

navigation. According to a number of theories (e.g. Cheng, 1986; Gallistel, 1990) learning 

about the shape of an arena involves the acquisition of a representation of the geometric 

relations of the arena that is impervious to interference from learning about landmark 

information. The results of Experiment 3 are, in particular, relevant to this suggestion. 

Participant’s recognition of the overall shape of the arenas was significantly greater than 

chance, a result compatible with the formation of an allocentric representation of the 

geometry of the arenas. However, recognition of the navigated arenas in the experiment was 

impaired if landmarks were relevant throughout the duration of the experiment, relative to if 

shape was relevant throughout the experiment. Previous studies of the interaction of 

landmarks and shape cues in studies of either human or animal spatial learning have not 

reported any measure of participants’ allocentric knowledge of the shape of the arena 

previously navigated (e.g. Doeller & Burgess, 2008; Pearce, et al., 2004; Redhead & 

Hamilton, 2009). To the best of our knowledge, therefore, the current results constitute the 

first demonstration of an interference of the global representation of the shape of an arena by 

local landmarks.  

The results of the current experiments permit further constraints to be placed upon 

explanations of spatial navigation that have, as their basis, associative theories of learning. 
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The ID-ED effects noted in the three experiments here are inconsistent with the proposals of 

Miller and Shettleworth (2007, 2008). Their model assumes that the salience of stimuli (α) is 

fixed, and for an associative model to be capable of explaining ID-ED effects, changes in the 

attention paid to relevant and/or irrelevant dimensions must be permitted (Le Pelley, 2004; 

Mackintosh, 1975). Mackintosh’s (1975) theory of associative learning is an example of an 

associative theory that does exactly that. According to Mackintosh, the change in the 

associative strength of a target cue (ΔVT) progresses according to equation 3, which is similar 

to Equation 1: 

 

ΔVT = αT (λ-VT)    Equation 3. 

 

Here, αT is the attention paid of the target cue, β is a learning rate parameter determined by 

the properties of the outcome, and λ is the asymptote of learning supported by the outcome. 

Crucially, according to Mackintosh (1975), the attention paid (α) to a cue increases if it is a 

better predictor of the outcome than all other cues present on a trial, and decreases if it is no 

better a predictor of the outcome than all the other cues present on a trial. The rules specified 

by Mackintosh for determining these increases and decreases to a target cue (T) are shown in 

Equations 4a and 4b: 

 

ΔαT > 0 if │λ- VT│< │λ- Vr│      Equation 4a. 

ΔαT < 0 if │λ- VT│≥ │λ- Vr│   Equation 4b. 

Where Vr is the sum of the associative strength of all available cues, minus VT (that is 

to say, the remainder). The size of the change in α is assumed to be proportional to the 

magnitude of the inequalities in Equation 4a and 4b. Thus cues which are good predictors of 
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subsequent events will enjoy an increase in their salience – or attention. Irrelevant cues that 

are poor predictors of subsequent events, however, suffer a reduction in their attention (see 

also: Esber & Haselgrove, 2011; Le Pelley, 2004). In order to explain instances of the ID-ED 

effect, Mackintosh proposed that attention generalizes among stimuli in proportion to their 

similarity (p. 292). Consequently, attention should generalize more between cues that are 

drawn from the same dimension (such as the common features of two different environmental 

shapes, or two different sets of landmarks) than between cues that are drawn from different 

dimensions. On the basis of these two proposals, it is relatively straightforward to understand 

why learning, in stage 2, was slower in the two ED groups than the two ID groups. Training 

in stage 1 in groups Landmark-Landmark and Landmark-Shape should ensure that, by the 

end of this stage, attention will be higher to the relevant landmarks within the arena than its 

irrelevant shape. In contrast, stage 1 training in groups Shape-Shape and Shape-Landmark 

should ensure that attention is higher to the relevant shape of the arena, than the landmarks 

within it. This training should benefit stage 2 learning in groups Landmark-Landmark and 

Shape-Shape, as the high attention paid to the relevant cues in stage 1 of the training, will 

generalize to the cues that continue to be relevant in stage 2. However, the same will not be 

true for Groups Landmark-Shape and Shape-Landmark. For these two groups, the high 

attention acquired to the relevant cues in stage 1 will generalize to cues that are subsequently 

irrelevant to learning in stage 2 – hindering performance in the task. 

In addition to providing an explanation for the ID-ED effects observed in the 

experiments reported here, Mackintosh’s (1975) model might also be able to provide a 

reconciliation of the conflicting findings from spatial overshadowing experiments that were 

presented in the introduction. According to Mackintosh’s theory, cues which enter the 

experiment with, inherently, high salience will enjoy gains in attention if they are learned 

about in compound with a cue that is of a lower inherent salience (which itself will suffer a 

loss in attention). This process will permit the cue that is more salient to overshadow the less 



37 
 

salient cue, but not vice versa. It is possible, therefore, that failures of a landmark to 

overshadow a boundary shape may be due to the landmark possessing low unconditional 

salience relative to the shape and, likewise, successes of landmarks overshadowing boundary 

shape may be due to the landmark possessing high unconditional salience relevance to the 

shape. Such one-way overshadowing is not uncommon in non-spatial literature (e.g. 

Mackintosh, 1975; Miles & Jenkins 1973), and recent work within the spatial field has linked 

the relative salience of landmark and shape cues to the direction of overshadowing that is 

observed (see Kosaki, Austen, & McGregor, 2013; Redhead, Hamilton, Parker, Chan, & 

Allison, 2012). Such failures of overshadowing are not only limited to instances of salience 

asymmetry, however. If both cues enter the experiment with particularly high unconditional 

salience, the theory proposed by Mackintosh anticipates no overshadowing at all. Thus, if 

both the landmark and shape cues in previous overshadowing experiments were both of an 

unconditionally high salience, than the landmark would fail to overshadow learning based 

upon the shape of the boundary,  and vice versa.  Although evidence consistent with this 

prediction has been obtained in non-spatial domains (Mackintosh, 1976), it remains to be 

determined whether a comparable effect can be observed in spatial overshadowing 

experiments. 

Our discussion thus far has focused on theories of navigation that have applied the 

principles of associative learning to the spatial domain (e.g. Miller & Shettleworth 2007, 

2008). However, it is appropriate to also consider the role of more explicit, verbally 

mediated, processing mechanisms in adult human spatial navigation. For example, it seems 

conceivable that participants in groups who received training in stage 1 in which the shape of 

the kite was relevant to finding the goal  (Groups Shape-Shape and Shape-Landmark) may 

have acquired a declarative statement in the first stage of the experiment that  assisted 

navigation. For example: “the goal is located in the corner of the arena where the long wall 

is to the left of the short wall, irrespective of the colour of the landmark that is there – so 
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ignore that”. Acquisition of such a statement could be expected to (a) facilitate subsequent 

learning that is based upon the shape of a new environment and/or impede subsequent 

learning that is based upon landmarks (Experiments 1-3); and (b) mediate recognition 

performance on the basis of the “long wall is to the left of a short wall”, feature that verbal 

representations of the training and test stimuli will have in common (Experiment 3). An 

experiment conducted by Hermer-Vazquez, Spelke & Katsnelson (1998) seems to provide 

support for the role of explicit linguistic mechanisms in spatial navigation. They required 

adult participants to locate a hidden goal in a rectangular room that had a blue panel attached 

to one of the shorter walls. Performance on this task was significantly attenuated when it was 

performed along with a verbal shadowing task, but not a nonverbal rhythm-clapping task. 

However, an attempt to replicate this effect by Hupbach, Hardt, Nadel and Bohot (2007) was 

not successful. Similarly, Ratcliff & Newcome (2008) were unable to replicate Hermer-

Vazquez et al. when the experiment was (a) appropriately counterbalanced and (b) preceded 

by clear instructions and a practice trial. Perhaps most problematic for advocates of the role 

of verbal mechanisms in spatial navigation is the observation by Bek, Blades, Siegal & 

Varley (2010) that performance on the task described by Hermer-Vazquez et al is comparable 

in participants with and without aphasia, even under conditions of verbal load where, 

presumably, any residual verbal competency is blocked. On the basis of these data, therefore, 

the contribution of explicit verbal encoding in spatial navigation is not compelling.  

Alternatively, it is possible that controlled processing influences the impact of 

attentional processes on stimuli that are relevant or irrelevant to the solution of a task (e.g. De 

Houwer, Hermans & Eelen, 1998; Posner & Snyder, 1975). A recent study by Le Pelley 

Vadillo &  Luque (2013)  is pertinent to this issue. In stage 1 of their experiment, Le Pelley et 

al. employed a learned predictiveness task in which participants were required to categorize a 

compound of two stimuli into one of two different groups. The stimuli were drawn from two 

different dimensions (colour or line orientation) wiht one of the dimensions of the compound 
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being predictive of category membership, whilst the other dimension was irrelevant – a 

design formally equivalent to  the training given to  the participants in stage 1 of the current 

experiments. Once stage 1 of their experiment task was complete, Le Pelley et al employed a  

dot-probe task in which participants had to respond as quickly as possible upon presentation 

of the probe. The results showed that response times were faster to the probe when it had 

been spatially cued by stimulus that was relevant rather than irrelevant to the categorization 

task in stage 1 – a result consistent with the idea that  attention came to  be biased more 

towards the relevant than the irrelevant stimulus. However, this effect was only observed 

when the interval between the stimuli from the categorization task, and the probe was 250 

ms. when this interval was 100 ms, the effect was abolished. Le Pelley et al suggested that 

this result was not consistent with the idea that learned changes in attention result in changes 

in controlled, effortful processing – otherwise the effect should be more, not less, pronounced 

with a longer inter-stimulus interval. Instead, Le Pelley et al. suggest that their results are 

more consistent with a rapid, associative process (e.g. Mackintosh, 1975). A comparable 

effect has also been demonstrated in the automatic evaluation of relevant and irrelevant 

information in adult human contingency learning (Le Pelley, Calvini & Spears, 2013). It 

remains to be determined whether the results of the current experiments are a consequence of 

effortful, perhaps verbally mediated, cognitive processes, or instead more automatic 

mechanisms; indeed, it was not the goal of the current experiments to test between these two 

alternatives.  However, converging evidence from studies that have looked either at the role 

of verbal processes in spatial navigation, or effortful vs automatic processing in learned 

predictiveness and irrelevance, provide little reason to expect the contribution of effortful, or 

verbally mediated, cognitive processes in the current experiments.  

It is appropriate to consider, at this juncture, the relevance of the current experiments 

to other studies that have investigated the effects of stimulus relevance on learning, both in 

general, and more specifically in the domain of spatial learning. The results of many studies 
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are now converging upon the conclusion that establishing a set of cues as relevant to 

acquiring a goal, or trial outcome, results in these cues acquiring more attention than the cues 

from another set that are irrelevant to acquiring the goal (for a review see: Le Pelley, 2010). 

As we have seen in the current experiments, as well as other demonstrations of the ID-ED 

effect (e.g. George & Pearce, 1999; Mackintosh & Little, 1969; Roberts, Robbins, & Everitt, 

1988), learning about cues is faster when they have, in the past, been established as relevant 

rather than irrelevant predictors of goals – a result that is consistent with the idea that these 

cues are attracting more attention, and are hence, more associable (see also: Le Pelley & 

McLaren, 2003). Furthermore, experiments have shown that relevant cues: are less prone to  

the attentional blink than are irrelevant cues (Livesey, Harris, & Harris, 2009); support a 

superior “Posner cueing effect” (Le Pelley, 2010); and attract more eye gazes (Le Pelley, 

Beesley, & Griffiths, 2011) than irrelevant cues. Although studies of the influence of 

relevance training on stimulus attention are widespread in non-spatial literature, we are aware 

of only two reports in which this issue has been studied in the domain of spatial learning, 

both of which investigated whether the associability of a cue is influenced by prior relevance 

training.  The first report, by Trobalon, Miguelez, McLaren, and Mackintosh (2003), was 

outlined in the introduction. The second report, by Cuell, Good, Dopson, Pearce and Horne 

(2012), trained rats in a Place Group to find the location of a hidden goal with reference to 

the shape, and the extra-maze cues, of a distinctively-shaped water maze while laminated 

cards attached to the wall of the water maze were irrelevant. Rats in a Landmark Group were 

required to find the goal with reference to laminated cards that were attached to the walls of 

the water maze, while the distinctive shape of the arena and extra-maze cues were irrelevant. 

During a subsequent test stage, place cues were relevant for a new discrimination. The results 

indicated that the place cues better controlled searching for the goal in the Place Group than 

in the Landmark Group. The results of the experiments presented here join this more general 

class of studies demonstrating the role of stimulus relevance on associability in spatial 
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learning. Where they distinguish themselves, of course, is with the more specific conclusions 

that can be drawn about the influence of relevance training on the representation of the shape 

of the arena being navigated. Given that relevant cues have been shown to attract more eye 

gazes than irrelevant cues in studies of predictive learning in humans (Le Pelley et al., 2011), 

it would be interesting to assess if shape or landmark relevance training alters overt attention 

to these cue dimensions. Eye-tracking procedures, in which sampling times and distributions 

of visual foci are recorded, have been utilised in virtual navigation procedures previously 

(e.g. Mueller, Jackson, & Skelton, 2008; Hamilton, Johnson, Redhead, & Verney, 2009), and 

would offer a potential approach to address this issue. 

Although modular theories of geometric information processing continue to be a 

matter of theoretical influence (e.g. Gallistel & Matzel, 2013; Spelke & Lee, 2012; Jeffrey, 

2010), it is relevant to note that Cheng has recently explored how a view-based navigational 

theory might succeed in explaining spatial navigation (Stürzl, Cheung, Cheng & Zeil, 2008. 

See also: Cheng, 2005; 2008; Cheng & Newcombe, 2005). The details of this analysis are 

beyond the scope of this paper; however, in brief, this theory uses a function to determine the 

difference between the current global image and stored global images of nearby locations. 

Gradient descent is then used to model the movement of the organism away from the current 

position and towards locations successively closer to the goal. Although this theory has 

enjoyed some success in explaining how learning in an environment of one shape can transfer 

to an environment of another shape (Cheung, Stürzl, Zeil & Cheng, 2008), the results of the 

current experiments may prove to challenge it, as the theory uses veridical images to 

represent the environmental stimuli, unadjusted for variations in attention. The theory 

proposed by Sturzl et al., therefore, seems to encounter the same problem when attempting to 

explain the basic ID-ED effect as Miller & Shettleworth’s (2007, 2008) model.   

One problem that any theory of spatial navigation, associative or otherwise, has to 

address is how participants are able to correctly identify, from a novel perspective, the arena 
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that had previously been navigated. Similar view-independent recognition effects have been 

reported elsewhere (e.g. Christou & Bulthoff, 1999; Hock & Schmelzkopf, 1980), but it must 

be acknowledged that, in the field of object recognition at least, demonstrations of complete 

viewpoint invariance are difficult to obtain (Farah, Rochlin, & Klein, 1994; Rock, Wheeler, 

& Tudor, 1989). Biederman (1987) suggested that an object (and by generalization, a view) 

could be recognised from a different perspective so long as the similarity between the views 

is sufficiently high, and so long as the relationship between the components of the views were 

not altered. Although the similarity of the components used during the navigation and 

recognition tests of Experiment 3 was particularly low, it is conceivable that recognition was 

achieved by matching the relationships between the components of the scenes. For example, 

during navigation within the kite-shaped arena, participants will encounter particular 

structural conjunctions of wall lengths (long-short, short-short, short-long and long-long) – 

the same conjunctions that are present in the plan view of this arena. Although it remains to 

be determined exactly how such conjunctions could be matched when the components upon 

which they are based are so different, the encoding of such structural information has been 

investigated and modelled from the perspective of associative learning (George, Ward-

Robinson, & Pearce, 2001; Haselgrove, George, & Pearce, 2005).  

In any case, the results of the three ID-ED experiments reported here imply that 

geometric information acquired from spatial navigation is not impervious to the influence of 

non-geometric information. With appropriate modification that acknowledges the role of 

learning on attention, associative analyses of spatial learning will provide an explanation of 

these experiments, as well as a reconciliation of extant conflicting findings. What might be 

more challenging for these theories, however, is an explanation for variations in the 

recognition of the shape of a navigated arena from a novel viewpoint. 
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Appendix 

Complete counterbalancing details where K1, K2, K3, K4 represent corners of the kite, T1, 

T2, T3, T4 represent corners of the trapezium, B1, B2, B3, B4 represent the blue landmarks 

present in the kite shaped arena, and R1, R2, R3, R4 represent the red landmarks present in 

the trapezium shaped arena. 

 

Group Stage one Stage two Arena corners 

 

Shape-Shape    

 K1 T1  

 

 

 K1 T2 

 K2 T3 

 K2 T4 

 K3 T2 

 K3 T4 

 K4 T1 

 K4 T3 

   

Landmark-Landmark   

 B1 R1 

 B1 R3 

 B2 R2 

 B2 R4 

 B3 R1 

 B3 R3 

 B4 R2 

 B4 R4 

    

Landmark-Shape    

 B1 T4  

 

 

 

 

 

 

 B1 T1 

 B2 T2 

 B2 T3 

 B3 T4 

 B3 T1 

 B4 T2 

 B4 T3 

   

Shape-Landmark   

 K1 R1 

 K1 R3 

 K2 R2 

 K2 R4 

 K3 R1 

 K3 R3 

 K4 R2 

 K4 R4 
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Figure Legends 

 

Figure 1: (a) Plan views of the two arenas, with apparent wall length indicated. Circles 

represent one of the four possible goal locations in each arena; x represents the starting 

location of participants. (b) Screen shot of an example the kite-shaped arena used in 

Experiment 1. (c) Screen shot of an example of the trapezium shaped arena used in 

Experiments 2 and 3. 

Figure 2: Mean Latencies of the four groups to find the hidden goal in stage 1 of Experiment 

1. Error bars show 1 +/- standard error of the mean. 

Figure 3: Top Panel. Mean Latencies of Groups Shape-Shape and Landmark-Shape to find 

the hidden goal in stage 2 of Experiment 1. Bottom Panel. Mean Latencies of Groups Shape-

Landmark and Landmark-Landmark to find the hidden goal in stage 2 of Experiment 1. Error 

bars show 1 +/- standard error of the mean. 

Figure 4: Mean Latencies of the four groups to find the hidden goal in stage 1 of Experiment 

2. Error bars show 1 +/- standard error of the mean. 

Figure 5: Top Panel. Mean Latencies of Groups Shape-Shape and Landmark-Shape to find 

the hidden goal in stage 2 of Experiment 2. Bottom Panel. Mean Latencies of Groups Shape-

Landmark and Landmark-Landmark to find the hidden goal in stage 2 of Experiment 2. Error 

bars show 1 +/- standard error of the mean. 

Figure 6: Mean Latencies of the four groups to find the hidden goal in stage 1 of Experiment 

3. Error bars show 1 +/- standard error of the mean. 

Figure 7: Top Panel. Mean Latencies of Groups Shape-Shape and Landmark-Shape to find 

the hidden goal in stage 2 of Experiment 3. Bottom Panel. Mean Latencies of Groups Shape-
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Landmark and Landmark-Landmark to find the hidden goal in stage 2 of Experiment 3. Error 

bars show 1 +/- standard error of the mean. 

Figure 8: Mean percent correct recognition of the shapes navigated during stage 1 and stage 2 

in the four groups of Experiment 3. Error bars show 1 standard error of the mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



56 
 

 

 

 

 

Figures 

  



57 
 

 (a) 

 

(b) 

 

(c) 



58 
 

 



59 
 

 



60 
 

 



61 
 

 



62 
 

 



63 
 

 
  



64 
 

 
  



65 
 

 

 

 

 

Supplementary Materials 

 

 

  



66 
 

Experiment 1 

Results 

Figure S1 shows the mean distances traversed, in virtual units, from the beginning of 

each trial to enter the region defined as the hidden goal for the four groups during the 24 trials 

of stage 1 of the experiment. Similar to the latency data, mean distances traversed in the four 

groups decreased across this stage of the experiment. A two-way analysis of variance 

(ANOVA) of individual distances traversed, with the variables of relevant cue in stage one 

(landmarks or shape) and trial (1-24) revealed a significant main effect of trial, F(23, 1058) = 

55.09, MSE = 597.81, but no main effect of relevant cue F<1. The interaction between Trial 

and Relevant cue was on the threshold of conventional significance F(23, 1058) = 1.59, MSE 

= 597.81, p = .05. Simple main effects analysis revealed that landmark relevant groups 

traversed shorter distances to find the goal on trials 1 and 4, but that the shape relevant group 

traversed shorter distances on trial 3. However, no significant differences in performance 

were noted by the end of stage 1. 

***Figure S1 about here*** 

The mean distance traversed, in virtual units, to find the goal during stage 2 are shown 

in the top panel of Figure S2 for groups Shape-Shape and Landmark-Shape, and in the 

bottom panel of Figure S2 for groups Landmark-Landmark and Shape-Landmark. It can be 

seen that both groups that performed an ED shift (Groups Landmark-Shape and Shape-

Landmark) showed longer latencies to find the goal relative to the appropriate ID groups 

(Groups Shape-Shape and Landmark-Landmark). A three-way ANOVA of individual 

latencies to find the goal, with the variables of shift (ID or ED), relevant cue in stage two 

(shape or landmarks), and trial (1-24), revealed a significant main effect of trial F(23, 1012) = 

6.59, MSE = 540.56, and shift F(1, 44) = 59.42, MSE = 1784.20, but no main effect of 
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relevant cue F<1. The interaction between Shift and Relevant cue was not significant F(1, 44) 

= 3.60, MSE = 1784.20. The interaction between Trial and Relevant cue was significant F(23, 

1012) = 2.15, MSE = 540.56. Simple main effects analysis revealed that the ED groups were 

travelled more distance during the 24 trials of stage 2 than the ID groups Fs(1, 44) > 16.88, 

MSEs = 1784.20, but there were no differences between the two ID groups, or between the 

two ED groups Fs (1, 44) < 2.78, MSE = 1784.20. Importantly, the interaction between Shift 

and Trial was significant F(23, 1012) = 1.76, MSE = 540.56. Simple main effects analysis 

revealed that the ED groups were travelled a greater distance to find the goal on trials 2-10, 

12-13, 15, 17, 19, 21-22, and 24 Fs(1, 1056) > 4.45, MSEs = 592.38. 

***Figure S2 about here*** 

Experiment 2 

Results 

Figure S3 shows the mean distance traversed, in virtual units, of the 4 groups to find 

the hidden goal during the 24 trials of stage 1. In keeping with the results of Experiment 1, 

learning progressed at a similar rate in the four groups and the asymptotes of performance 

were similar. A two-way ANOVA of individual latencies to find the goal, with the variables 

of relevant cue in stage one (landmarks or shape) and trial (1-24), revealed a significant main 

effect of trial, F(23, 690) = 23.92, MSE = 477.35. There was no main effect of relevant cue, 

and no significant interaction between Relevant cue and Trial, Fs<1. 

***Figure S3 about here*** 

The mean distances traversed, in virtual units, to find the goal during stage 2 are 

shown in the top panel of Figure S4 for groups Shape-Shape and Landmark-Shape, and in the 

bottom panel of Figure S4 for groups Landmark-Landmark and Shape-Landmark. In keeping 

with the results of Experiment 1, both groups that performed an ED shift (Groups Landmark-
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Shape and Shape-Landmark) showed longer latencies to find the goal relative to the 

appropriate ID groups (Groups Shape-Shape and Landmark-Landmark respectively). A three 

way ANOVA of individual latencies to find the goal, with the variables of shift (ID or ED), 

relevant cue in stage two (shape or landmarks) and trial (1-24), revealed a significant main 

effect of trial F(23, 644) = 9.45, MSE = 259.87, and of shift F(1, 28) = 16.88, MSE = 

1987.56, but no main effect of relevant cue F(1, 28) = 2.62, MSE = 1987.56. The interaction 

between Shift and Relevant cue was not significant F(1, 28) = 1.06, MSE = 1987.56, nor was 

the interaction between Relevant cue and Trial F(23, 644) = 1.51, MSE = 259.87. 

Importantly, the interaction between Shift and Trial was significant F(23, 644) = 2.70, MSE = 

259.87. Simple main effects analysis revealed that the ED groups traversed greater distances 

to find the goal that ID groups in trials 2-7, 9, and 15. The three-way interaction was not 

significant F(23, 644) = 1.07, MSE = 259.87.  

***Figure S4 about here*** 

Experiment 3 

Results 

 Figure S5 shows the distance traversed to find the hidden goal, in virtual units, during 

the 24 trials of stage 1 in the four groups. All groups showed a reduction in the distances 

traversed to find the goal as trials progressed, although it appeared that the groups for which 

landmarks were relevant may have found the goal quicker early in training. A two-way 

ANOVA of individual distances traversed to find the goal, with variables of relevant cue in 

stage one (landmarks or shape) and trial (1-24), revealed significant main effects of trial 

F(23, 2162) = 92.14, MSE = 312.54, but not relevant cue F(1, 94) = 3.56, MSE = 1321.48. 

The interaction between Trial and Relevant cue was also significant F(23, 2162) = 3.62, MSE 

= 312.54. Simple main effects analysis of the interaction revealed that groups for which 
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landmarks were relevant traversed shorter distances to find the goal on trials 1 and 4 only 

Fs(1, 94) > 6.68, MSEs < 2946.45.  

***Figure S5 about here*** 

The mean distances traversed, in virtual units, to find the goal during stage 2 are 

shown in the top panel of Figure S6 or groups Shape-Shape and Landmark-Shape, and in the 

bottom panel of Figure S6 for groups Landmark-Landmark and Shape-Landmark. In keeping 

with the results of Experiments 1 and 2, both groups that performed an ED shift (Groups 

Landmark-Shape and Shape-Landmark) showed longer latencies to find the goal relative to 

the appropriate ID groups (Groups Shape-Shape and Landmark-Landmark, respectively). A 

three-way ANOVA of individual latencies to find the goal, with the variables of shift (ID or 

ED), relevant cue in stage 2 (shape or landmarks), and trial (1-24) revealed significant main 

effects of trial F(23, 2116) = 15.24, MSE = 352.13, and shift F(1, 92) = 54.73, MSE = 

2242.10, but not relevant cue F<1. There was no interaction between Shift and Relevant cue 

F(1, 92) = 2.93, MSE = 2242.10, or between Trial and Relevant cue F<1. There was, 

however, a significant interaction between Shift and Trial F(23, 2116) = 4.32, MSE = 352.13. 

Simple main effects analysis revealed that the ED groups traversed significantly greater 

distances to find the goal on trials 2-19, and 21-24 Fs(1, 92) > 6.03, MSEs < 782.20. Finally, 

returning to the results of the ANOVA, The three-way interaction was not significant F(23, 

2116) = 1.45, MSE = 352.13. 

***Figure S6 about here*** 
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Figure Legends for supplementary materials 

 

Figure S1: Mean distances traversed of the four groups to find the hidden goal in stage 1 of 

Experiment 1. Error bars show 1 +/- standard error of the mean. 

Figure S2: Top Panel. Mean distances traversed of Groups Shape-Shape and Landmark-

Shape to find the hidden goal in stage 2 of Experiment 1. Bottom Panel. Mean distances 

traversed of Groups Shape-Landmark and Landmark-Landmark to find the hidden goal in 

stage 2 of Experiment 1. Error bars show 1 +/- standard error of the mean. 

Figure S3: Mean distances traversed of the four groups to find the hidden goal in stage 1 of 

Experiment 2. Error bars show 1 +/- standard error of the mean. 

Figure S4: Top Panel. Mean distances traversed of Groups Shape-Shape and Landmark-

Shape to find the hidden goal in stage 2 of Experiment 2. Bottom Panel. Mean distances 

traversed of Groups Shape-Landmark and Landmark-Landmark to find the hidden goal in 

stage 2 of Experiment 2. Error bars show 1 +/- standard error of the mean. 

Figure S5: Mean distances traversed of the four groups to find the hidden goal in stage 1 of 

Experiment 3. Error bars show 1 +/- standard error of the mean. 

Figure S6: Top Panel. Mean distances traversed of Groups Shape-Shape and Landmark-

Shape to find the hidden goal in stage 2 of Experiment 3. Bottom Panel. Mean distances 

traversed of Groups Shape-Landmark and Landmark-Landmark to find the hidden goal in 

stage 2 of Experiment 3. Error bars show 1 +/- standard error of the mean 
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Figure S1 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ea

n
 d

is
ta

n
ce

 t
ra

v
er

se
d
 t

o
 f

in
d
 t

h
e 

g
o
al

Trial

Group Shape-Shape

Group Landmark-Landmark

Group Shape-Landmark

Group Landmark-Shape



72 
 

Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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