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a b s t r a c t

A graphene/Si Schottky junction solar cell is commonly fabricated by using the top-window structure.
However, reported devices have many drawbacks such as a small active area of 0.11 cm2, s-shape in the J-
V curves, recombination process of charge carriers at the graphene/textured Si interface, high cost and a
complex fabrication process. Here, we report a novel graphene/Si Schottky junction solar cell with a back
contact-structure, which has bene�ts of a simpler fabrication process, lower fabrication cost, and larger
active area in comparison with a device fabricated with the previous structure. Additionally, we found
that the PMMA residue left on graphene surfaces is the key to eliminate the s-shape in the J-V curves.
Thus, the deep UV treatment of the CVD graphene is applied within the wet transfer process to effec-
tively remove the PMMA residue, suppress the behavior of s-shaped kink in J-V curves and enhance the
solar cell ef�ciency. As a result, the recorded power conversion ef�ciency of 10% is achieved for graphene/
textured Si devices without chemical doping and anti-re�ection coating, and this value is improved to
14.1% after applying chemical doping. Doped devices also show great stability and retain 84% of the
ef�ciency after 9 days storage in air.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The attractive properties of graphene, such as near-zero band-
gap, high electrical conductivity, high mobility, �exibility, and high
transparency have stimulated a lot of research interest [1]. One of
the promising applications for graphene is in a graphene/silicon
Schottky junction solar cell. To fabricate this device, there are two
structures reported so far [2]. The �rst structure is with a top-
window as shown in Fig. S1a [3]. The maximum ef�ciency of this
device is 12.4% after applying the optimal native oxide of Si sub-
strates, forming gas and chemical doping of graphene [4]. However,
reported devices with this structure generally have some serious
disadvantages such as, a small active area of about 0.11 cm2, high
cost and a complex fabrication process. Additionally, applying the
texturing process to this structure causes serious recombination
process of carriers at the graphene/textured Si interface for devices
as graphene layers are placed on the textured side of Si substrates
[5,6]. Recently, graphene/Si Schottky solar cells based on a top-grid
, ahmed.198381@yahoo.com
structure (see Fig. S1b) have been reported as having a larger active
area, lower cost and an easier fabrication process, in comparison
with devices fabricated with the top-window structure [2].
Nevertheless, the performance of prepared devices with a gra-
phene area larger than 0.1 cm2 is degraded. Moreover, fabricated
devices suffer from absorption loss due to the front grid electrode
and a distinctive s-shaped kink in the measured J-V curves. In
several devices based on the top-window structure [3,4,6e11],
there was also a distinctive s-shaped kink in the measured J-V
curves. In fact, the s-shaped kink affects the performance of gra-
phene/Si Schottky solar cells by reducing the �ll factor [3,7e14]. It
has been reported that there are many reasons for the s-shaped
kink effect. For example, it was suggested that the s-shape is due to
the limitation of accessible states for the holes in graphene [10,14].
It was also stated that this effect attributes to carrier recombination
losses at the graphene/Si interface, and this could be reduced by
using GO as a passivation layer for the silicon surface [15]. In several
cases, the s-shape could also be eliminated when the graphene
doping level is enhanced using chemical doping or electrostatic
gating [8e10,14], but after sometime the s-shape would be
observed again in the J-V curves [16]. In a recent study [17], it has
been described that this shape is completely eliminated by
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reducing the PMMA residue and enhancing p-doping in graphene
using a forming gas treatment with a speci�c mixed ratio (Ar/H2
(50:50)) at 400 �C. Using this procedure Song et al. [4] found that
there was still an s-shape in the J-V curves of devices treated with
the forming gas at 350 �C for 2 h, and it was stated that this issue
could be eliminated by applying the optimal native oxide of Si
substrates [4]. It has also been reported [18e20] that the forming
gas treatment does not remove the PMMA residue properly. To
date, the main reason for the existence and subsequent removal of
the s-shape kink in the J-V curve is still unclear!

Herein, we demonstrate a graphene/Si Schottky solar cell with a
new back-contact structure, which has bene�ts of larger active area
(0.19 cm2), more effective applying texturing process within the
fabrication process to reduce the re�ected light from the front of Si
substrates, simpler fabrication process and lower fabrication cost in
comparison with a device fabricated with the top-window struc-
ture. We also introduce a deep UV (DUV) treatment in air for 20 min
to effectively remove the PMMA residue and suppress the s-shape
in J-V curves. Additionally, the DUV treatment is applied between
30 and 60 min to reduce the PMMA residue more and enhance p-
doping in graphene, resulting in a further improvement in the solar
cell ef�ciency. The chemical doping is also employed to further
improve the solar cell ef�ciency.
2. Experimental section

2.1. Device fabrication

To texture the front surface of substrates, n-type (100) single c-
Si substrates with a resistivity of 2e3 Ucm�1, 0.19 cm2 area and
thickness of 200 mm were cleaned in a solution NH4OH:H2O2: H2O
(1:1:5) for 10 min. Afterwards, substrates were immersed in 25 wt%
KOH solution for 2 min to remove the saw damage. Then, optimal
solution of KOH/IPA/DI H2O using process c (see Section 3 in
supporting information) was used for texturing the front surface
of Si substrates. To prepare solar cell devices, both textured and
non-textured silicon substrates were cleaned with an RCA pro-
cedure to eliminate the metal ion contaminations. At that moment,
Si substrates were immersed in a diluted 2% HF solution for 30 s to
remove the oxide layer. Later, passivation process was achieved by
exposing both substrates for ambient air for 2 h [4,21,22]. Subse-
quently, 3.3 � 3.3 mm2 monolayer CVD-graphene area, which is the
recommended area to obtain a high graphene/Si solar cell ef�ciency
[2,4], was directly transferred onto the central area of Si substrates
(see Fig. 1b, c and d) using the process in our previous work (see
supporting information) [23]. At that time, Cr/Ag layers were
formed as cathode on the backside (unpolished side) of substrates
as shown in Fig.1e. For a grid electrode, Cr/Au layers, which provide
a low resistance contact to the graphene layer [22,24,25], were
created onto the surface of graphene. To obtain p-doped graphene
sheets, 65%HNO3 was applied for 60 s.
2.2. Device characterization

X-ray photoelectron spectroscopy (XPS) (Kratos AXIS Ultra DLD
spectrometer, monochromatic Al Ka emission at 1486.6 eV with an
operating power of 150 W) was used to examine the amount of
PMMA residue on the transferred graphene surface. The photo-
voltaic characteristics of solar cell devices, which were calibrated
by a standard Si solar cell, were measured using a keysight B1500A
Semiconductor Analyser and a solar simulator under AM1.5 con-
ditions, with an illumination intensity of 100 mW/cm2. PVE300
system was used to obtain the external quantum ef�ciency (EQE) of
the solar cells.
3. Results and discussion

To overcome the disadvantages of fabrication process for re-
ported graphene/Si Schottky junction solar cells, the new gra-
phene/Si Schottky junction solar cell with a back-contact structure
is prepared as shown in Fig. 1. The DUV treatment for 20 min in our
previous work as shown in Fig. 1c was also applied before removing
the PMMA layer in order to effectively remove the PMMA layer with
less residue [23]. The device structure is shown in Fig. 1f, and it has
a number of advantages. In particular, the active area of our device
is increased for the same recommended area of graphene sheet
[2,4], compared with those of the previous devices (see Figs. S1a,
S1b and S1c in supporting information). This means that the
number of photons absorbed is higher and leads to an increase in
the solar cell ef�ciency as con�rmed by the external quantum ef-
�ciency data described later. The second advantage of this structure
is that texturing process could effectively be involved within the
fabrication process of devices. In this case, the process is only
applied to the front surface of Si substrates, and graphene layers are
placed on the non-textured side of Si substrates. This would avoid
the recombination process of carriers between the graphene and
textured surface of Si substrates, which occurred in the reported
work [5]. The Schottky junction in this structure is formed at the
interface between the graphene and silicon as shown in Fig. 2a. As
shown in this �gure, carriers are generated throughout the whole Si
wafer thickness by the incident light.

Then, generated carriers will be separated by the built-in �eld at
the graphene/Si junction. After that, electrons and holes will move
in opposite directions, resulting in the generation of the photo-
current [3,26]. Fig. 2b shows the current density-voltage (J-V)
characteristics of graphene/n-Si Schottky junction solar cells
treated with and without DUV. It can be noticed that there is s-
shape in the J-V curve (black line) of a device based on the back-
contact structure and acetone treatment. The short-circuit current
density (JSC), open circuit voltage (VOC), �ll factor (FF) and power
conversion ef�ciency (PCE) of this device were 19.5 mA/cm2,
0.415 V, 23% and 1.87%, respectively. In contrast, there is a typical J-V
curve (blue line) of a device based on the back-contact structure
and DUV treatment for 20 min. The values of photovoltaic param-
eters for this device were 32.9 mA/cm2, 0.41 V, 35% and 4.7%,
respectively. It is clear that minimizing the PMMA residue would
eliminate the s-shape, resulting in an increase of the FF by 55%
compared with that of the sample treated with acetone only.

It is also observed that reduction of this residue would also
enhance the JSC. This indicates that PMMA residue would act as
traps for generated carriers during their transmits at the interfaces
through the solar cell device, leading to an increase in the recom-
bination process [23,27]. Recently, it has been con�rmed that this
residue would also affect the separation process obtained by the
built-in �eld for generated carriers at the junction of graphene/Si
[17]. This data also shows that the VOC of the sample is slightly
decreased after DUV treatment. This means that graphene becomes
less p-doping [23,28]. Hence, this con�rms that removing the
PMMA residue is the key to eliminate the s-shape in J-V curves of
graphene/n-Si Schottky junction solar cells. It has also been shown
that applying DUV treatment for 20 min is faster, safer and easier to
remove the PMMA residue and eliminate the s-shape, compared
with that of recent work [17]. To compare the performance of our
device, a device with active area of 0.11 cm2 was prepared using the
top-window structure. Fig. 2b compares the J-V curves of graphene/
n-Si Schottky junction solar cells fabricated with both structures.
The JSC, VOC, FF and PCE of the device fabricated with the top-
window structure were 26.7 mA/cm2, 0.41 V, 31% and 3.4%,
respectively. It is obvious that an increase in the active area of our
device results in an improvement of the PCE by 40%, compared with



Fig. 1. Fabrication process of graphene/Si Schottky junction solar cells. (a) Si substrate after cleaning process and leaving in air for passivation process for 2 h. (b) Transferring
PMMA/graphene (Gr) onto the center of Si substrate. (c) Exposing PMMA/Gr to the DUV of 254 nm at 180 �C. (d) Removing PMMA layer by acetone treatment. (e) Creating Ag/Cr
cathode. (f) Forming Au/Cr grid. (A colour version of this �gure can be viewed online.)
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that of the previous device. Hence, applying the back contact
structure within the fabrication process of graphene/Si solar cells is
a smart idea to increase the active area of solar cell with using the
recommended area of graphene sheets. Fig. 2c shows the external
quantum ef�ciency (EQE) spectra of both devices. As shown in this
�gure, an EQE of the device fabricated with back-contact structure
was about 65% in the wavelength range of 400e950 nm, whereas it
was 53% for the device fabricated with top-window structure
within the same range. It is clear that the EQE spectrum of our
device shows a signi�cant increase in the number of electron-hole
pairs generated and collected after increasing the active area of
device, compared with that of the device fabricated with top-
window structure. In addition, our device shows the highest EQE
spectrum in comparison with those for reported pristine graphene/
Si Schottky junction solar cells prepared with top-grid and top-
window structures [2,25]. Based on the EQE-setup method [29],
the calculated values of JSC were 31.6 and 25.8 mA/cm2 for devices
fabricated with back-contact and top-window structures, respec-
tively, which were in agreement with those experimentally ob-
tained from J-V curves in Fig. 2b. The effect of DUV treatment for
longer periods (between 30 and 65 min) on the performance of this
device was also systematically investigated. Average results of
measured photovoltaic parameters for each exposed device are
shown in Fig. 3.

As observed in Fig. 3a, the VOC and JSC signi�cantly increased to
0.51 V and 33.8 mA/cm2, respectively after DUV exposure of PMMA/
graphene for 60 min. These enhancements improved the FF to 39%
and PCE to 6.7% as shown in Fig. 3b. There were two reasons for this
improvement. The PMMA residue was further minimized by
applying the DUV for longer time than 20 min as con�rmed by X-
ray photoelectron spectroscopy (XPS) (see Fig. S5), in comparison
with that of graphene layers treated with DUV for 20 min. The
second reason results from the p-type doping effect obtained by
DUV in graphene when samples were exposed to the DUV for
longer than 20 min periods. This doping was investigated using
Raman spectroscopy. Raman data shows that there was a signi�-
cant blue shift in the spectrum of graphene sheet exposed to the
DUV for 60 min, compared with that of a sample treated for 20 min
as illustrated in Fig. S4. This con�rms that applying this treatment
for longer than 20 min would enhance p-doping in graphene
[17e20,30]. The I2D/IG peak intensity ratio of exposed graphene for
20 min was around 2, and it was 1.8 for graphene treated for 60 min.
It can also be observed that there is no D band in the spectrum of
exposed graphene for 60 min. This data indicates that the trans-
ferred graphene layer with DUV for 60 min was still a high-quality
monolayer [31]. This means that the mechanism of the DUV
treatment between 30 and 60 min is to further reduce the PMMA
residue and enhance p-doping in graphene, resulting in a further
improvement in the solar cell ef�ciency.

This mechanism is the same of that of the forming gas, but the
forming gas would not effectively remove the PMMA residue
[18e20], compared with DUV treatment. Furthermore, it has been
con�rmed that the p-doping obtained by DUV light is more effec-
tive than that obtained by forming gas method as the I2D/IG ratio of
graphene will be around 1 after annealing process. In addition,
forming gas method has to be carried out in vacuum for few hours
[17e20], whereas the DUV treatment was applied in air for 1 h.
Hence, applying DUV treatment between 30 and 60 min is more
effective, faster, safer and easier to remove the PMMA residue and
enhance p-doping in graphene, in comparison with that of forming
gas treatment. We have tried to further improve the performance of
devices by applying the DUV for longer time. The VOC and JSC slightly
increased to 0.52 V and 33.9 mA/cm2, respectively after treating
PMMA/graphene devices for prolonged DUV exposure as shown in
Fig. 3a. However, the FF and PCE observably decreased to 33% and
5.8%, respectively due to the s-shape in J-V curve (red line) as shown
in Fig. 4. To show that the PMMA residue was the main reason for
the s-shape, XPS was also employed. Fig. 5a shows the C 1s core-
level spectra of the treated sample for 65 min. It is obvious from
this �gure that there are �ve peaks, the black peak represents the
overall XPS curve, the red peak (Sp2) corresponds to graphene, and
the other peaks (Sp3, CeO and C]O) indicate the PMMA residue
[17,23,28]. The peaks attributed to the PMMA residue can be clearly
observed in Fig. 5a.

This indicates that irradiation of PMMA/graphene sheets for
longer time than 60 min resulted in over baking of the PMMA layer,
and this caused PMMA residue on the graphene surface after
acetone treatment, resulting in the s-shape. Raman data also shows
that there is a D band in the spectrum of exposed graphene for
65 min (see Fig. S4). This states that the transferred graphene with
DUV for 65 min was not a high-quality monolayer. Hence, it is
recommended that the DUV treatment should be applied between
20 and 60 min within the wet transfer process of CVD-graphene in
order to remove the PMMA residue and improve the performance



Fig. 2. (a) Schematic energy diagram of device and photoexcited electron transfer. (b)
J-V characteristics for the graphene/Si Schottky solar cells fabricated with top-window
and back-contact structures. (c) External quantum ef�ciency (EQE) spectra of devices
fabricated with both structures. (A colour version of this �gure can be viewed online.)
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of graphene devices. The in�uence of annealing in forming gas
(argon/hydrogen (9:1)) on the elimination of s-shape is also studied
in this work. After transferring PMMA/graphene onto a Si substrate,
PMMA layer was removed by acetone. Then, the sample was
annealed in forming gas at 300 �C and 6x10�7 Torr for 2 h. Fig. 4
shows the J-V curve (black line) of an annealed device. The JSC,
VOC, FF and PCE of this device were 33.1 mA/cm2, 0.42 V, 29% and 4%,
respectively. It can be observed that the JSC, VOC and PCE of this
device were improved as a result of reducing the PMMA residue
and increasing the doping in graphene [17e20], compared with
that of the sample treated with acetone only. However, there is still
a s-shape in the J-V curve of the annealed device. This means that
forming gas could not ef�ciently eliminate the s-shape in J-V curve
of graphene/Si Schottky junction solar cells.

XPS data also verify that there was PMMA residue on the
annealed graphene for 120 min as shown in Fig. 5b. This states that
forming gas (Ar/H2 (9:1)) treatment would not remove the PMMA
residue effectively as also con�rmed in reported work [18],
compared with DUV treatment between 20 and 60 min. This is a
further con�rmation that removing the PMMA residue is the key to
eliminate the s-shape of graphene/Si Schottky junction solar cells.

Due to the novelty of our structure, texturing process could
effectively be involved within the fabrication process to reduce the
re�ected light from the front surface of Si substrates (see Fig. 6a).
Thus, the average diffused re�ectance (R) of the textured substrate
using process c (see Table S3 and Fig. S6) could be reduced from 39%
to 13% within the range of 400e700 nm. Fig. 6b shows the J-V
characteristics of graphene/n-textured Si before and after applying
chemical doping. As shown in this �gure (black line), the values of
JSC, VOC, FF and PCE for the graphene/n-textured Si device were
40 mA/cm2, 0.51 V, 49% and 10%, respectively. This means that the
PCE was increased by 60% in comparison with that of non-textured
substrate devices. To the best of our understanding, the PCE of 10%
is a new record for graphene/Si solar cells prepared without
chemical doping and anti-re�ection coating reported to date
[2,4,6,32].

After treating graphene sheet with 65% HNO3 vapor for 60 s, the
corresponding values of the photovoltaic parameters were
40.8 mA/cm2, 0.61 V, 57% and 14.1%, respectively. It is clear that the
measured J-V curve (red line) of the doped device displayed a
noteworthy enhancement in photovoltaic performance compared
to that of the non-treated device with HNO3. The improvement of
solar cell performance after the doping process was a result of the
enhancements in JSC, VOC and FF, unlike reported devices treated
with HNO3 [4,8]. This attributes to the improved electrical con-
ductivity of graphene after reducing the PMMA residue and
chemical doping process [23,33]. To study the stability of the
chemical doped devices, samples were kept in ambient conditions
for 9 days. The measurement of J-V curves was repeated during that
time. The average results of measured photovoltaic parameters
during 9 days are shown in Fig. 7. It can be noticed from these
�gures and Table S2 that the drop in the performance of treated
devices is mainly because of the decrease of VOC. This is because the
chemical dopants gradually evaporate during this time [16,34]. It is
also clear from Fig. 6b that the J-V curve (blue line) of the doped
device is still without s-shape after 9 days, and the PCE of this
device was 11.83%. This means that the device retains 84% of the
ef�ciency after storage. This also indicates that our devices showed
more stability than those treated with HNO3 in the reported work
[16]. Thus, removing the PMMA residue on graphene surfaces plays
a vital role in the stability of chemical doped graphene/Si Schottky
junction solar cells. The doping level of the graphene layer de-
creases with time due to evaporation and reduces the overall ef�-
ciency of the cell.



Fig. 3. (a) and (b) Improvements of VOC, JSC, FF, and PCE of irradiated devices by DUV for different periods. (A colour version of this �gure can be viewed online.)

Fig. 4. J-V characteristics of graphene/n-Si Schottky junction solar cells treated with
forming gas at 300 �C for 120 min and DUV at 180 �C for 65 min. (A colour version of
this �gure can be viewed online.)

Fig. 5. (a) and (b) XPS results of treated graphene on SiO2/Si substrates with DUV at 180 �C f
to graphene, and the others indicate PMMA residue. (A colour version of this �gure can be
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4. Conclusions

We demonstrated the role of a back-contact structure on the
graphene/Si Schottky junction solar cell ef�ciency. With this
structure, the short-circuit current density was improved by
around 25% compared with that of the device fabricated with the
top-window structure. The issue of recombination processes for
charge carriers at the graphene/textured Si interface was also
prevented by using this structure. Besides, we practically found that
PMMA residue is the key to eliminate the s-shaped kink in J-V
curves of graphene/Si Schottky junction solar cells. This shape was
successfully eliminated using the DUV treatment in air for 20 min.
Additionally, applying the DUV treatment between 30 and 60 min
could further reduce the PMMA residue and enhance p-doping in
graphene, leading to a further improvement in the solar cell ef�-
ciency. After applying the texturing process and chemical doping,
the power conversion ef�ciency of 14.1% was obtained for gra-
phene/Si Schottky junction solar cell. This device also showed great
stability after 9 days storage, and it could retain about 84% of the
ef�ciency. This work presents a feasible way to preparing low-cost
and high-performance graphene/Si Schottky junction solar cells.
or 65 min and forming gas at 300 �C for 120 min, respectively, the red peak corresponds
viewed online.)



Fig. 6. (a) Schematic of graphene/textured Si Schottky junction solar cell, indicating SiO2 as the passivation layer. (b) J-V characteristics for graphene/textured Si devices before and
after doping process. (A colour version of this �gure can be viewed online.)

Fig. 7. (a) and (b) Photovoltaic parameters of chemical doped graphene/Si Schottky junction solar cells during 9 days storage in air. (A colour version of this �gure can be viewed
online.)
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