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One sentence summary: Submesoscale Rossby waves are found along Antarctic Circum-

polar Current where they drive strong vertical circulations.

The eastward flowing Antarctic Circumpolar Current (ACC) plays a central

role in the global ocean overturning circulation (1) and facilitates the exchange

of water between the ocean surface and interior. Submesoscale eddies and

fronts with scales between 1�10 km are regularly observed in the upper ocean

and are known to be associated with strong vertical circulations and enhanced

stratification (2,3). Despite their importance in other locations, comparatively

little is known about submesoscales in the Southern Ocean. Here, we present

results from new observations, models, and theory showing that submesoscales

are qualitatively changed by the strong jet associated with the ACC in the Sco-

tia Sea, east of Drake Passage. Growing submesoscale disturbances develop
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along a dense filament and are transformed into submesoscale Rossby waves

which propagate upstream relative to the eastward jet. Unlike their counter-

parts in slower currents, the submesoscale Rossby waves do not destroy the

underlying frontal structure. The development of submesoscale instabilities

leads to strong net subduction of water associated with a dense outcropping

filament, and later the submesoscale Rossby waves are associated with intense

vertical circulations.

The ACC transports water between the major ocean basins and forms the linchpin of the

global Meridional Overturning Circulation (1). The ACC is composed of a series of inter-

connected jets, each associated with abrupt changes in density, or fronts. The Subantarctic Front

(SAF) and Polar Front (PF) are the strongest climatological fronts associated with the ACC.

Here, deep density surfaces (or isopycnals) outcrop to the sea surface, providing a pathway

along which water can upwell to the ocean surface, exchange heat, carbon, and oxygen with

the atmosphere, and return to the ocean interior (4). Indeed, the Southern Ocean is a significant

sink for anthropogenic carbon and heat (5, 6). Southern Ocean fronts and their associated jets

and eddies also represent a potential source of energy to drive enhanced submesoscale activity.

Although submesoscales are known to be active in the Southern Ocean (7,8), their structure and

dynamics have not been fully characterized.

Observations. The first attempt to directly observe the three-dimensional structure of sub-

mesoscales in the Southern Ocean was made as part of the Surface MIxed Layer Evolution at

Submesoscales (SMILES) project from April 18 to May 22, 2015 in a region east of Drake

Passage in the Scotia Sea. During the cruise, a large northward meander of the SAF (Fig. 1a)

was sampled at high resolution using towed bodies, a ship-mounted acoustic Doppler current

profiler (SADCP) and surface drifters. The meander was first surveyed with 25 sections be-

tween 25 and 40 km in length made with a towed Seasoar instrument during a time when the
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meander broke off to form an isolated mesoscale eddy (9). A transect through the northern

edge of the meander made on May 9th, before the eddy formation process, shows two opposing

fronts surrounding a cold, dense filament (Fig. 1b). The ‘outer’ front is associated with a very

sharp temperature contrast which is partially compensated by salinity. The ‘inner’ front with a

smaller temperature change is associated with a larger density gradient.

The cold filament and its associated fronts are embedded in a very fast current flowing

clockwise around the meander. The current is nearly depth-independent over the upper 200 m.

The top panel in Fig. 1b shows the velocity projected onto the direction perpendicular to the

section and averaged in the upper 200 m. We will refer to this as the ACC jet. Although the

ACC jet is wider than the fronts that it contains, the vertical component of the relative vorticity

is large, ranging from �0.4f to 0.5f , where f is the local Coriolis frequency.

High resolution satellite imagery on May 11th indicates the presence of submesoscale me-

anders of the sharp temperature gradient associated with the developing meander (Fig. 1a).

Qualitatively similar features have been observed before, notably along the Gulf Stream where

they have been called ‘shingles’ and ‘tongues’ (?, e.g.)]von1955,webster. Here, the observed

features have 5�15 km wavelengths and are embedded in a broad current with speeds in excess

of 1 m s�1, making them difficult to observe with traditional methods due to the fast timescales

associated with their advection. Immediately after completing a Seasoar survey of the newly

formed eddy, we repeatedly sampled a fixed line across the fronts with the towed moving vessel

profiler (MVP) (Fig. 1a). The winds were relatively weak during the Seasoar section and at the

start of the MVP survey (with wind stress, ⌧ < 0.1N/m2), although the wind became strong at

the end of the MVP survey (⌧ ' 0.25N/m2). A timeseries of the wind stress and direction is

shown in the SOM.

The MVP observations confirmed the presence of submesoscale meanders along the sharp

temperature front. To visualize the approximate three-dimensional structure of the temperature
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field, we adopt a frozen field hypothesis and convert the time of each section into an ‘advected

distance’ by multiplying the time-elapsed since the first section by a constant velocity charac-

teristic of the depth-averaged velocity in the mixed layer (1.2 m s�1). The result, shown in Fig.

1c suggests that the meanders have a spacing of 5�15 km . The meanders extend to the base of

the mixed layer (120� 160 m), with evidence of intrusions of cold water crossing to the warm

side of the thermal front.

These observations raise a number of intriguing questions. For example, are the subme-

soscale meanders generated locally through an instability of the filament or fronts, and if so,

what is the source of their energy? Why do the meanders appear very close to the center of the

ACC jet, and how does the jet influence their formation and evolution? Do the submesoscale

currents enhance subduction of surface water? We will address these questions here.

Frontal instability. To address the first of the questions listed above, we analyzed the

linear stability of an idealized representation of the observed density and velocity which forms

the ‘basic state’. The idealized density section (black contours, Fig. 1b, lower panel) consists

of two opposing fronts in a 100 m deep mixed layer. Below the mixed layer is a pycnocline

with a weaker horizontal density gradient and a large vertical stratification. The velocity is

taken to be in thermal wind balance with the density field, with the addition of a broad ACC

jet perpendicular to the buoyancy gradient with a sinusoidal shape, a wavelength of 50 km,

and a maximum velocity of 1.2 m s�1 (dashed line, Fig. 1b, top panel). The idealized section is

assumed to be independent of the along-stream direction (parallel to the ACC jet), and curvature

of the front is neglected. Further details of the idealized section are given in the SOM.

The Seasoar section (Fig. 1b) has small regions with fq < 0, where q ⌘ (f k̂ + ⇣) ·rb is

the potential vorticity, f is the Coriolis parameter, k̂ is the local vertical unit vector, ⇣ = r⇥ u

is the relative vorticity, and b is the fluid buoyancy. As a result, conditions at the fronts are

favorable for symmetric instability (10, 11). However, the motion associated with symmetric
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instability is, by definition, independent of the along-front direction (12), and hence symmetric

instability is unlikely to cause the observed meanders. To restrict our analysis to other possible

instabilities, we exclude symmetric instability by adding a constant stratification to the basic

state with a buoyancy frequency N0 = 2.5⇥ 10�3 s�1, which is sufficient to ensure fq > 0.

Despite the idealizations introduced above, the stability analysis is still complicated by the

fact that the basic state is two-dimensional with variation in the cross-stream and vertical di-

rections, rendering the equations describing the evolution of linear perturbations non-separable.

To overcome this problem, we use a time-stepping method to isolate the most unstable features.

The velocity and density are first decomposed into background and perturbation components:

u(x, y, z, t) = u(y, z)̂ı + u0(x, y, z, t), ⇢(x, y, z, t) = ⇢(y, z) + ⇢
0(x, y, z, t), (1)

where x, y, and z denote the along-stream, cross-stream, and vertical directions, and the overbar

denotes the background state. We further decompose the perturbation variables using a Fourier

transform, e.g.

u0(x, y, z, t) = bu(k, y, z, t)eikx, (2)

where ·̂ denotes the complex amplitude associated with along-stream wavenumber, k. Since

linear perturbations evolve independently, each Fourier mode can be solved separately. We

timestep the equations describing the evolution of the complex amplitude until the fastest grow-

ing instability is isolated with a constant exponential growth rate. Further details of this method

are provided in the SOM.

The most unstable features develop along the outer front with an along-front wavelength of

about 12.5 km (Fig. 2a). This is consistent with the observed spacing between meanders and

supports the hypothesis that these features are generated through a submesoscale instability.

The kinetic energy associated with the most unstable perturbations grows via the buoyancy flux

(solid red line, Fig. 2a), indicative of mixed layer instability (MLI), an ageostrophic baroclinic
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instability (13). The horizontal and vertical shear production remove energy from the most un-

stable perturbations and transfer energy to the mean flow, thereby reducing the growth rate. The

negative horizontal shear production is also associated with an up-gradient flux of momentum

towards the center of the ACC jet. Suppression of baroclinic instability by horizontally sheared

barotropic flow has been noted before and has been termed the ‘barotropic governor’ (14). The

barotropic governor is less effective at the outer front where the horizontal shear is smaller than

at the inner front, explaining why the instabilities at the outer front grow faster, despite the fact

that the outer front is weaker than the inner front.

The ACC jet not only influences the growth rate associated with MLI, it also controls which

front is the most unstable. To show this, we repeated the linear stability analysis without the

ACC jet included in the basic state. When the ACC jet is removed, the growth rate associated

with the fastest growing mode increases by a factor of 2.3 as the vertical shear production

becomes a significant source (Fig. 2a). Remarkably, without the ACC jet, the most unstable

mode shifts from the outer front to the inner front where the horizontal density gradient is

larger (Fig. 2b).

Nonlinear evolution. To examine the nonlinear evolution of the submesoscale instabilities

and their influence on the evolution of the fronts, we used fully nonlinear, nonhydrostatic numer-

ical simulations starting with the same idealized initial conditions described above. The model

domain was 50 km in both horizontal directions and 200 m in the vertical direction. The flow

is uniform in the along-stream (x) direction. The simulations use free-slip, adiabatic, rigid lid

boundary conditions at the top and bottom of the domain and are therefore unforced by wind or

surface heating/cooling. Gridpoints were uniformly spaced with a resolution of about 100 m in

the horizontal directions and 1 m in the vertical. Unresolved motions were parameterized with

constant Laplacian viscosity and diffusivity with coefficients of 0.3 m2 s�1 and 3⇥10�5 m2 s�1

in the horizontal and vertical directions, respectively. Growing modes are seeded using random
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perturbations with an amplitude of 1 mm s�1.

As in the linear stability analysis, we ran simulations with and without the ACC jet. Without

the ACC jet, a submesoscale instability first develops along the inner front with an along-stream

wavelength of about 12.5 km, consistent with the location and scale of the most unstable mode

predicted from the linear stability analysis. After about 10 days of simulation time, four distinct

cyclonic submesoscale eddies develop. These eddies interact with each other and eventually fill

the domain with a field of submesoscale fronts and eddies (Fig. 3a, upper left inset).

The nonlinear evolution of the submesoscale instabilities is dramatically different in the

presence of the ACC jet. Here, a submesoscale instability first develops along the outer front.

As the submesoscale wave develops, it rolls up into a billow-like structure (Fig. 3a, upper

right inset) before an instability develops on the inner front. Later, the submesoscales interact

nonlinearly and lead to a state with temperature filaments and eddies on a broader range of

scales (Fig. 3a, lower right inset). Remarkably, the zonal frontal structure remains intact in this

case.

The relative distortion of the temperature front can be quantified by calculating the equiva-

lent contour length,

Leq(T, t) =

"
@
@A

R R
|rhT |2dA

(@T/@A)2

#1/2

, (3)

where A(T, t) is the horizontal surface area occupied by water with temperature less than T

and rh is the horizontal gradient operator (15, 16). Here, we define Leq as the average of

Leq over the temperature range 3�C  T  4.5�C and compare this with L0, the value of

Leq associated with the initial conditions. In both simulations, Leq increases as submesoscale

instabilities develop and distort the temperature contours, and in both cases the growth of Leq

saturates after 25� 30 days (?) (note, the long spinup time is partly due to the small amplitude

of the disturbances used to initialize the models.) When the ACC jet is present Leq < 5L0,

significantly smaller than in the simulation without the ACC jet (Fig. 3a). For comparison,
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when normalized by the length of an undisturbed temperature contour, the MVP observations

give Leq ' 1.5L0. This is somewhat smaller but generally within one standard deviation of the

prediction from the model with a jet when sub-sampled at the approximate resolution of the

observations. In contrast, without an ACC jet, the saturated value of Leq is more than 20 times

larger than L0.

Submesoscale Rossby waves. The ACC jet transforms the developing instabilities into

submesoscale Rossby waves. Upstream phase propagation is evident in the model at the center

of the outer front (Fig. 3b). The phase propagation is consistent with Rossby waves supported

by the local gradient of potential vorticity. Although the velocity and density in the model are

non-trivial functions of depth and cross-stream distance, a simple dispersion relation for quasi-

geostrophic (QG) Rossby waves can be written by assuming that stratification is constant in the

mixed layer, the mixed layer base is rigid, and the Rossby nubmer is small:

! = kcp = uk +
�� + uyy

|k|2 + n2⇡2

R2
ML

, (4)

where ! and cp are the frequency and phase velocity, n is the vertical mode number, RML =

NMLHML/f0 is the mixed layer deformation radius, and NML and HML are the buoyancy fre-

quency and depth associated with the mixed layer. The power spectrum of the cross-stream

velocity, calculated along the center of the front, shows distinct peaks coinciding with the dis-

persion relation for barotropic (n = 0) and mode 1 mixed layer baroclinic (n = 1) Rossby

waves. Note that dispersion curves for deeper baroclinic modes with penetration into the ther-

mocline lie between the indicated lines.

Downwelling. Comparing the horizontal slices of temperature at 50-m depth from the

model with an ACC jet, it is evident that the water associated with the cold filament (defined

by temperatures < 1.5�C) occupies less horizontal surface area after 60 days of model time

than at 30 days or the initial state (Fig. 3a, right insets). The observations also suggest active
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subduction of the filament water. Comparing the Seasoar section (Fig. 1b) with a composite of

the later MVP sections (Fig. 4a) reveals that the filament water which was seen at the surface

in the Seasoar section is only seen near the base of the mixed layer in the MVP survey. An

along-stream average of the temperature from the model reproduces the slumping of the cold

filament (compare Figs. 4a and 4b) which then spreads out at the base of the mixed layer. Note

that the very cold water appearing in the bottom left of Fig. 4a was not included in the model

initial conditions where temperature was initially depth-independent with a minimum value of

about 1.2 �
C. In the model, the water that began in the filament forms periodic intrusions of

cold water on the warm side of the outer front, qualitatively similar to those seen in Fig. 1c. Be-

cause the initial condition was in thermal wind balance and the model does not include surface

forcing or mesoscale eddies, subduction in the model can be directly linked to submesoscale

activity.

In the later stages of the model simulation, the submesoscale Rossby waves are associated

with intense vertical circulations. The rms vertical velocity and mean density, calculated using

an along-stream (x) average at a depth of 50 m, are shown in Fig. 5a and 5b. In the model with-

out the ACC jet (Fig. 5a), the rms vertical velocity reaches a maximum value of approximately

50 m day�1 as instabilities develop at the inner front, a value consistent with previous models

of submesoscale flows (17–19). When the ACC jet is included in the model the rms vertical

velocity is significantly larger (approximately 100 m day�1) and large rms vertical velocities

are maintained until the end of the simulation. The simulation also exhibits a strong internal

gravity wave field which leads to large rms vertical velocities on the flanks of the jet.

The submesoscale instabilities drive subduction of the cold, dense filament initially found

between the inner and outer fronts. The total volume of water with potential density �✓ >

26.95 kg m�3 passing through a horizontal plane at 50-m depth is similar for both simulations

(Fig. 5c), although with the ACC jet the rate of subduction is weaker (' 6, 500 m3
/s) but
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more sustained than in the absence of the ACC jet. Subduction eventually ends once the dense

filament sinks to the base of the mixed layer (Fig. 4), which is a consequence of the unforced

simulations in a periodic horizontal domain. In reality, re-supply of dense water to the filament

or vertical mixing in response to intermittent storm events could sustain subduction. Note that

the subduction rate decreases by about a factor of 10 if we exclude the ‘inner’ front from the

model initial conditions (see SOM), although the qualitative features of the simulations with

and without ACC jets remain very similar.

Implications. The results presented here indicate that the strong currents associated with

the ACC confine submesoscales to a localized region near the core of the ACC jet and support

submesoscale Rossby waves. In the absence of wind, surface cooling, or large scale confluence,

net subduction of water in a dense filament occurs during the development of submesoscale

instabilities. Following the equilibration of submesoscale instabilities and development of sub-

mesoscale Rossby waves, the net subduction rate slows but large localized vertical velocities

persist near the center of the ACC jet (Fig. 5b,c).

To put the model subduction rate in context, we can attempt to extrapolate the simulation re-

sults to the full ACC. The dense filament where subduction was observed occupied the potential

density class�✓ = 26.95�27.01 kg m�3. Using the methodology described in (4), the total sub-

duction induced by mesoscale and larger scale motion in this density class within the Southern

Ocean is 2.9 Sv. Based on climatological frontal position (20) and mixed layer temperature and

salinity (21), this density range outcrops along 6787 km of the Polar Front (PF) and 2381 km

of the Subantarctic Front (SAF). Our simulations indicate a subduction rate of about 6.5⇥ 10�3

Sv integrated over the 50-km long dense filament. If the same subduction rate occurs across

the full length of the PF and SAF, these estimates would imply 0.9 Sv of subduction at the PF

and 0.3 Sv of subduction at the SAF within the same density class. This estimate implies that

submesoscales can induce 1.2 Sv of subduction in this density class, a significant rate compared
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to the 2.9 Sv subducted by larger scale motions.

The estimates above were based on the observed density section (Fig. 1b) with two fronts

surrounding a dense filament. Removing one of these fronts from the initial condition and

keeping the ‘outer’ front with a smaller potential density change of 0.05 kg/m3 reduces the

subduction rate by about a factor of 10 (see SOM). The strength and structure of the ACC

fronts varies in space and time (22). There might also be significant seasonal variability in the

submesoscale activity (23, 24) which is not taken into account in this estimate. Additional ob-

servations or numerical simulations could help to better quantify the influence of submesoscales

on subduction along the ACC.

Persistent subduction of water in a specific density class would require a mechanism to re-

supply water in this density class to fronts or filaments along the ACC. Our simulations do not

show a significant change in the volume associated with each density class (see SOM), suggest-

ing that another process is needed. Net advection of dense surface water towards the front or

water mass transformation are two candidates. Our simulations exclude net advection towards

the front due to the periodic boundary conditions. Wind and air-sea heat fluxes are likely im-

portant factors in contributing to water mass transformation, and both of these processes were

excluded from the simulations.

The subduction of mode water, which occurs north of the SAF in the Scotia Sea (4, 25),

is intimately linked to the Southern Ocean sink of anthropogenic heat and carbon (5, 6, 26).

Although our observations were limited in time and space, high-resolution numerical models

could help to quantify the influence of submesoscales on water mass subduction along the ACC

fronts. Submesoscale processes are not presently resolved in climate models and quantifying

their associated subduction rates has the potential to improve estimates of the ocean uptake of

heat and carbon.

The fronts associated with the ACC are known to act as barriers to lateral mixing (27, 28),
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although much of the past work in this area has not directly considered the influence of sub-

mesoscales. Here, we find that the ACC jet restricts submesoscale activity to the center of the

front and supports submesoscale Rossby waves, and the front is much less distorted by subme-

soscales than it would be if the jet were absent. The large reduction in equivalent temperature

contour length (Fig. 3a) implies a strong reduction in the effective horizontal diffusivity asso-

ciated with stirring by submesoscale motions (29). Regional variations in the confinement of

submesoscales at ACC fronts could modulate lateral mixing rates in the Southern Ocean. This

could have important implications for the exchange of surface waters between the Southern

Ocean and the surrounding ocean basins.

Submesoscales have been shown to enhance primary production by upwelling nutrient-rich

water into the euphotic layer (3,30) and reducing light limitation (31–33). Although chlorophyll

concentrations in the Southern Ocean are generally low, elevated concentrations have been ob-

served near major fronts (34). The influence of submesoscale physics on primary production

in the Southern Ocean is not well understood, but future observational campaigns and model-

ing studies could help quantify this influence. In particular, the very large vertical velocities

reported here (Fig. 5b) could stimulate primary production along the front by bringing nutrients

up into the euphotic layer (35).

One of the remarkable features of the simulation with a strong ACC jet is the coherence of

the front at the end of the model simulation. The linear stability analysis shows that the ACC

jet reduces the growth rate of submesoscale instabilities, but it does not fully stabilize the flow.

The mechanisms behind the jet-induced equilibration of the front remain unknown. Building

a dynamical description of this process will be important to predicting properties of the fully-

developed system including the frontal width and the size of the submesoscale eddies. This

will also be an important step in extrapolating the results presented here to other regions of the

global ocean.
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Materials and Methods

Numerical Simulations: The numerical simulations use a code developed and described in

(36). The code solves the non-hydrostatic, incompressible, Boussinesq equations. The numer-

ical method combines a pseudo-spectral method in both horizontal directions with a second-

order accurate centered finite difference method in the vertical direction. The timestepping

algorithm uses a mixed third-order accurate Runge-Kutta scheme and Crank-Nicolson for the

viscous/diffusive terms. The non-hydrostatic pressure is treated using the projection method

of (37). The 2/3 de-aliasing method (38) is used to prevent spurious aliasing associated with

the Fourier transform applied to the nonlinear advection terms. The initial conditions are de-

scribed in detail in the Supplementary Material.

Linear stability analysis: The linear stability analysis reported in Figure 2 was performed by

time-stepping the linearized governing equations. A two-dimensional basic state was first pre-

scribed using the initial conditions described in the Supplementary Material. The basic state

varies only in the cross-front (y) and vertical (z) directions. All fields are decomposed into

departures from the basic state, e.g. u = u(y, z) + u
0(x, y, z, t). The equations for departures

from the basic state (e.g. u
0) were then linearized, assuming small departures from the basic

state (e.g. u0
<< u). A Fourier transform was then applied in the along-front (x) direction to

yield a set of equations for the complex Fourier amplitudes (e.g. û(k, y, z, t)). A set of discrete

along-front wavenumbers (k) was chosen. For each wavenumber, the linearized equations for

the Fourier amplitudes was time-stepped until the exponential growth (or decay) rate reaches a

steady state. At the start of each time-stepping loop, the Fourier amplitudes were seeded with a

set of random perturbations with uniform amplitude in Fourier space.

The numerical method used in the linear stability solver is similar to that used in the fully

nonlinear simulations, except that second order centered finite differences are used to calculate

derivatives in the y and z directions. The time-stepping method uses the same third-order ac-
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curate Runge-Kutta / Crank Nicolson method as in the nonlinear simulations and the projection

method is used to calculate the non-hydrostatic pressure.
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Figure 1: (a) Map of survey site with temperature (color, main panel) and dynamic topography
(ADT), and locations of the Seasoar section and MVP survey with surface temperature (colored
dots) and surface velocity vectors. (b) Seasoar section from 9 May with depth-averaged along-
front current speed (top) and temperature and potential density (bottom panel, color shading and
white contours). The corresponding model initial conditions (model ICs) are also shown. The
potential density contour interval is 0.01 kg m�1. (c) MVP survey conducted on 15 May at the
location indicated in panel (a). The time of each section is converted to ‘advected distance’ by
multiplying the approximate speed of the ACC jet (1.2 m/s). The top surface shows temperature
from the MVP, averaged above 20 m depth (shading), and from the ship’s flow through intake
(colored dots). The 3� C isotherm is interpolated into along-track, advected distance, and depth
coordinates and displayed as a gray isosurface.
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Figure 2: Linear stability analysis of the model initial conditions shown in Fig. 1b. (a) Pertur-
bation energy source terms for a basic state with (solid) and without (dotted) the ACC jet. Blue
dots indicate the most unstable mode. (b) Density perturbations associated with the most un-
stable mode with (solid blue) and without (dotted blue) the ACC jet. Surface density contours
(red) and the ACC jet profile (black) are also shown.
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Figure 3: (a) Equivalent temperature contour length, Leq, as defined in Eq. 3, normalized by its
minimum value, L0, and averaged from 3� 4.5�C (solid lines). Shaded regions indicate ± one
standard deviation about the average over the temperature range. Dashed lines indicate the mean
value of Leq from each model, subsampled (with 4 km x 400 m resolution) to approximate the
spacing of the MVP measurements. Insets show the temperature at a depth of 50 m. (b) Space-
time diagram of the streamwise velocity at 50 m depth and a cross-stream distance of 4.25 km
for the late stages of the model simulation with a jet included. Note that the velocity associated
with the ACC jet at this location has been subtracted from u. White dashed lines have a slope
equal to the phase speed calculated from Eq. (4) with the indicated along-stream wavelengths
and independent of the cross-stream direction. (c) Power spectrum associated with the along-
stream velocity at the same cross-stream distance as in panel (b), calculated for the full duration
of the model with an ACC jet. Solid white and black lines indicate the dispersion relation from
Eq. (4) for mixed layer baroclinic modes (n = 1) and barotropic modes (n = 0). In both cases,
the cross-stream wavenumber is set to zero.
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1 Observations

Two different towed CTD (conductivity, temperature and depth) bodies were used for hydro-

graphic data collection during the SMILES research cruise aboard the RRS James Clark Ross.

The Seasoar collected data from the surface to 200-m water depth in a to-yo pattern with a Sea-

bird Electronics, Inc. SBE49 FastCAT CTD sensor which sampled at 16 Hz. With a tow speed

of 8 knots (4.1 m s�1), the maximum horizontal spacing between dives is 200 m.

The Moving Vessel Profiler (MVP) also collected data at 25 Hz with an AML Oceano-

graphic 7027 CTD. Towed at 4 knots (2.1 ms�1), the MVP free-falls to a depth of 300 m and

is winched back up to the surface. The horizontal separation of a dive-climb cycle is approxi-

mately 1 km. A temperature-conductivity cell lag correction of 4 ms is applied to the measured

temperature data.
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Figure S1: Wind stress (N /m2) and wind angle (degrees from east) calculated using the algo-
rithm from Large et al. , 1981.

An Ocean Science 75 kHz acoustic Doppler current profiler (ADCP) collected horizontal

velocities in 8-m depth bins. Data from 30-m to the depth of the towed CTDs are used in this

paper (200 m Seasoar, 300 m MVP).

The CTD and ADCP data processing, detailed in Adams et al., 2017, produced datasets on

a 0.5 km by 2 m regularly-spaced grid. Potential density anomaly (kg m�3) is calculated for

both CTD datasets using ITS90 referenced to the surface.

Thermosalinograph, or underway Oceanlogger CTD, data was collected at the ships intake

located at approximately 4-m depth. The recorded Oceanlogger data had a temporal resolution

of 3 to 5 s. The underway temperature data (Figure 1b) is interpolated to regular 10-s intervals

which yields a horizontal resolution of 20 m during the MVP survey.

A timeseries of the wind stress and direction is shown in Figure S1 along with the duration

of the Seasoar section (Seasoar Leg 13) and MVP surveys shown in Figure 1 of the main text.

The wind stress was calculated using the algorithm described in Large et al. , 1981. The winds

were relatively weak during the Seasoar section and at the start of the MVP survey. The wind

stress became larger (⌧ > 0.2N/m2) at the end of the MVP survey.
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2 Numerical simulations

The computational domain is 50km in each horizontal directions and 200m in the vertical direc-

tion. A uniform grid with 512 gridpoints is used in each horizontal direction and 121 gridpoints

are used in the vertical direction with higher resolution near both boundaries. The maximum

vertical grid spacing is 2.1m and the minimum vertical grid spacing is 1.0m.

Periodic boundary conditions are applied to all variables in the horizontal direction. Since

the density and temperature fields are not periodic in the y-direction, a constant background

gradient is subtracted from both fields such that departures from this background gradient are

periodic. This technique has been used in several previous studies (e.g. Taylor and Ferrari, 2010,

Thomas et al. 2013). This method effectively preserves the density and temperature difference

across the domain in the y-direction.

Free-slip (no-stress) boundary conditions are applied to the horizontal velocity at the top

and bottom of the computational domain. The vertical velocity is set to zero at both boundaries.

A no flux condition is applied to density and temperature at the upper boundary, and at the lower

boundary the density and temperature gradient match their initial values (see initial conditions

below).

The horizontal and vertical viscosity and diffusivity in the model were set to h = ⌫h = 0.3

m2 s�1 and v = ⌫v = 3 ⇥ 10�5 m2 s�1. These values were determined by fixing the ratio of

the horizontal and vertical components based on the squared ratio of the horizontal and vertical

grid spacing, i.e.
h

v
=

✓
�x

�z

◆2

. (1)

The coefficient of diffusion was then adjusted to give the smallest value possible without allow-

ing buildup of spurious grid-scale noise.
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3 Model initial conditions

Here, we describe the initial conditions used for the linear stability analysis and nonlinear nu-

merical simulations. Since we use a linear equation of state, we describe the density in terms of

a single dynamical variable, in this case the fluid buoyancy (b ⌘ �g⇢/⇢0). The initial buoyancy

is prescribed by first defining three distinct vertical layers, the mixed layer for z > �100m, the

transition layer for �140m < z < �100m, and the thermocline for �200m < z < �140m,

where z is the distance from the ocean surface (with +z upward). The variation in buoyancy in

the cross-front (y) direction is taken to be independent of depth:

b(y) =
�
�4.5⇥ 10�4m

s2

�
(tanh((y � LY/2 + 1.74km)/2km) + 1)

+
�
2.5⇥ 10�4m

s2

�
(tanh((y � LY/2� 5.5km)/2km) + 1) .

where LY/2 is the center of the domain in the spanwise direction. The vertical stratification

varies in each layer with a constant vertical buoyancy gradient in the mixed layer and thermo-

cline:

N2
ML = 6.5⇥ 10�6s�2

N2
thermocline = 4⇥ 10�5s�2.

The stratification in the transition layer is set by linearly interpolating between the buoyancy at

the top of the thermocline and the bottom of the mixed layer, where the mixed layer buoyancy

is offset by an additional +1.25⇥ 10�3ms�2.

Temperature was treated in the model as a passive scalar, consistent with the assumption of

a linear equation of state. For simplicity, the initial temperature was assumed to be independent
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Figure S2: Profiles of the buoyancy (blue), temperature (red), and depth-averaged velocity
(green) associated with the model initial conditions (model ICs) and the linear stability analysis.

of depth and along-front distance. Specifically, the initial temperature field was:

T (y) = (3�C) � (0.3�C) (tanh((y � LY/2 + 1.74km)/1.5km))

+ (1.5�C) (tanh((y � LY/2� 5.5km)/1.5km)) .

The initial velocity field included a component in thermal wind balance with the buoyancy

field. The reference level (where the thermal wind velocity is zero) was taken to be the middle of

the mixed layer (z = �50m). In addition, in some simulations an additional depth-independent

‘ACC jet’ is added to the initial velocity field with the form:

UACC =
�
0.6ms�1

�
cos

✓
2⇡

LY
(y � LY/2� 3km)

◆
+ 0.6ms�1.

In order to ease the CFL constraint on the timestep, the numerical simulations were done in a

reference frame moving in the +x direction with half of the maximum jet speed. Cross-front

profiles of the buoyancy, temperature, and ACC jet are shown in Figure S3.
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4 Subduction estimate

The subduction rate from the simulation is extrapolated to the ACC for the density class of the

dense filament (26.95 kg m�3 < �✓ < 27.01 kg m�3). Circumpolar climatological positions of

the SAF and PF, based on altimetry (Sallee et al. 2008), are used here to approximate the frontal

locations. Incremental frontal lengths (distance between two adjacent frontal positions) are

compared with a mixed layer density climatology (Pellichero et al. 2016). Cumulative frontal

lengths are computed for each front as the cumulative sum of incremental frontal lengths that are

located within the specified density class (see Fig. 1). The resulting cumulative frontal length

of the SAF (PF) is 2381 km (6787 km). A subduction estimate for the ACC is estimated by

applying these cumulative frontal lengths to the horizontal subduction rate from the simulation

(6.5 ⇥10�3 Sv / 50 km = 0.13 m2/s). This yields the reported submesoscale-driven subduction

values of 0.9 Sv (PF) and 0.2 Sv (SAF), or 1.1 Sv in total.

For comparison, we also calculate a larger-scale subduction estimate for the same density

class. The annual average subduction analysis from Sallee et al. 2010 (Fig. 10) is applied to

the filament density class and yields a circumpolar estimate of 2.9 Sv. Processes considered in

this estimate include Ekman, lateral induction and eddy-induced subduction.

Subduction in the model is largely adiabatic. Figure ?? shows probability density functions

(PDFs) of the potential density �✓ for each simulation. For reference, the PDF at t = 10 days

is also shown, before submesoscale instabilities develop. Here, we chose t = 10 days instead

of the initial condition at t = 0 because weak diffusion in the first 10 days reduces noise in the

PDF due to jumps in density associated with the model grid. The shape of the PDF at t = 0 and

t = 10 days are not significantly different. There is very little change in the PDFs at the end of

each simulation, indicating that the water parcels approximately maintain their original density.

The initial conditions in the model consisted of two opposing fronts surrounding a dense
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Figure S3: Probability density functions (PDFs) of potential density at the end of each simu-
lation. For comparison, the same PDF is also plotted from the simulation with a jet at t = 10
days before submesoscale instabilities develop.

cold filament (see Fig. 1b in the main text and Fig. S3). These were called the ‘outer front’ and

‘inner front’, indicating their position relative to the center of the meander. The ‘outer front’

was associated with a larger temperature contrast, but due to partial compensation by salinity

it had a smaller density contrast than the inner front. In order to test the sensitivity of the

model subduction on the existence of a dense filament and strength of the fronts, two additional

simulations were run with the inner front removed and with and without the ACC jet.

The calculation of the subduction volume from Fig. 5c of the main text was repeated for

the new simulations and is shown in Fig. S4. The density class used to calculate the subducted

volume in Fig. 5c is not present in the new simulations. Instead, the subduction volume was

calculated for water with temperatures less than 1.5�C. The same initial condition for tem-

perature was used in all simulations (see Fig. 1b and Fig. S3), although since density is the

dynamic variable in these simulations, temperature acts as a passive tracer. For comparison, the
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subduction volume for the simulations in the main text with a dense filament are also shown.

The subduction volume for the simulations with just the outer front is significantly smaller

than the corresponding simulations with a dense filament. Note that the change in density across

the outer front is quite small, 0.052 kg/m3, compared with 0.094 kg/m3 across the inner front.

Filaments are also known to be more susceptible to rapid sharpening (filamentogenesis) than

fronts (frontogensis), see e.g. McWilliams, 2016. In the simulation with an outer front and an

ACC jet (dashed blue line), the subduction takes place over a slightly longer time period than

in the case with a dense filament. As a result of the smaller subducted volume and longer time

interval over which subduction takes place, the subduction rate in the simulation with just the

outer front and a jet is about 10 times smaller than the simulation with a dense filament and a

jet.

Despite the differences in the magnitude of subduction, the presence of the ACC jet plays a

similar role in the two sets of simulations. Specifically, in both sets of simulations subduction

occurs more rapidly without a jet, but subduction is sustained for a longer period with a jet. In

both cases, the net subducted volume is similar at the end of the simulations with and without a

jet. One notable difference is that in the simulation with an outer front and no jet, the subducted

volume decreases after reaching a maximum at about 20 days, indicating a period of upwelling.

A brief period of downwelling occurs in the simulation with a filament and no front between

13-14 days, although the amplitude in terms of subducted volume is much smaller. The causes

of the downwelling events is not clear.
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