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Metal biogeochemistry of a mine contaminated estuarine-coastal system in SW Spain 

Charlotte Barbara Braungardt 

Abstract 

The aim of this project was to investigate the biogeochemistry and transport of 

metals in a river/estuarine system contaminated by acid mine drainage. The Rio Tinto and 

Rio Odiel drain a metalliferous mining area in the Iberian Pyrite Belt in the south-west of 

Spain. The pH values in the rivers were low (< 3) and dissolved metal concentrations were 

. extremely high, up to 2.6 m M Zn, 860 \M Cu, 6.0 jaM Cd and 72 n M U . The seasonal 

cycle of low precipitation and flash floods was identified as an important factor in 

generating the more severe contamination of the rivers with Fe, A l , Mn, Zn, Cu, N i , Co 

and Cd observed during autumn and winter, compared to spring and summer. 

The estuarine behaviour of dissolved Fe, Mn, Zn, Cu, N i , Co and Cd was primarily = 

controlled by pH. Apart from an addition of these metals from the sediment in the upper 

Tinto estuary, conservative mixing was observed up to pH ~ 5 (at S ~ 30), above which Fe, 

Mn , Zn, Cu, N i and Co were removed from solution. Voltammetric speciation studies 

showed that Cu complexing organic ligands (logK'cuL ~ 11-5, CL = 32 - 199 nM) in the 

estuary were saturated, and thermodynamic calculations indicated that the concentration of 

Cu^"^ reached values (pCu^"^ < 9) that are toxic to some marine and estuarine organisms. 

The estimation of fluxes indicated that the dissolved metal export from this system 

to thecoastal zone averages 101 d'̂  Zn, 2.3 t d"' Cu, 180 kg d"̂  N i and 236 kg d"̂  Co, with 

higher contributions during wet, compared to the dry seasons. On-line measurements of 

Zn, Cu and N i in the Gulf of Cadiz revealed metal plumes associated with the Tinto/Odiel 

system and the Guadiana and Guadalquivir rivers. As a result of entrainment by the 

Atlantic Ocean surface current flowing into the Mediterranean Sea, the metal 

contamination in waters of the Gulf of Cadiz is transported south and eastward. 
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Chapter 1 

Introduction 

Coastal systems are the mterface between fluvial/terrestrial and oceanic 

environments in which the fate of a chemical constituent is determined by a complex 

system of interactions and feedback loops between physical, biological and chemical 

processes. Coastal seas are important habitats and serve as breeding grounds for a 

multitude of oceanic species. Many coastal land regions are densely populated, and m 

some areas, coastal development, land erosion, over-fishing, municipal and mdustrial 

effluents and waste dumping has been detrimental to aquatic ecosystems. 

The European Land Ocean Interaction Studies (ELOISE) project is a recognition of 

the importance of the coastal seas to the health of the ocean, and the consequences of 

change for the global climate. ELOISE is jointly implemented by the European Union 

Marine Science and Technology (MAST) and Envuromnent & Climate programmes and 

represents a co-ordinated European input into the intemational Land Ocean Interactions in 

the Coastal Zone (LOICZ) project. The objectives of ELOISE reflect the multidisciplinary 

character of coastal research: 

• To determine the role of coastal seas in land ocean interactions in the perspective of 

global change; 

• To determine the regional and global consequences of human impact through 

pollution, eutrophication and physical disturbance on land-ocean interactions in the 

coastal zone; 
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• To formulate a strategic approach to the management of sustainable coastal zone 

research use and development, and to investigate information, policy and market 

failures that hamper sustainable coastal resources management; 

• To promote the development of a European scientific infrastructure for coastal zone 

research that can optimise both national and regional research and the benefits 

accruing from it. 

The work presented' in this thesis was carried out as part of the Tinto Odiel River 

Ocean Study (TOROS), a research project funded by the European Union in the framework 

of ELOISE. TOROS gave a unique opportunity to study the intricate connections between 

geographical and geological setting of a river/estuarine system, the exploitation of this 

position and its natural resources, the contamination of terrestrial and aquatic systems and 

its impact on the ecosystem (e.g. adaptation and biodiversity), and contaminant fransport. 

The Rio Tinto and Rio Odiel rise in the Iberian Pyrite Belt in the Spanish province 

of AndalucIa, southwest Spain. The Iberian Pyrite Belt is one of the most important metal 

sulphide deposits in the world and has been mined continuously for Cu, Zn and precious 

metals for thousands of years. Weathering of natural deposits and waste material infroduce 

metal-rich acidic effluent into the two rivers, which meet in a common estuary at the 

highly industrialised city of Huelva. The aims of TOROS were: 

• To quantify metal fluxes from the Rio Tinto and Rio Odiel into the Gulf of Cadiz; 

• To identify biogeochemical processes that determine metal behaviour in the 

estuary, where exfreme changes in physico-chemical parameters (e.g. pH 2 - 8) 

occur; 

• To investigate the fate of metals in tiie Gulf of Cadiz in relation to early diagenesis, 

hydrodynamics and biological activity; 
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• To record effects of human activity through historical times, firom ancient (pre-

Phoenician) to more recent mining activities, and industrial inputs; 

• To assess the possibility of reclamation and assist local policy makers in decisions 

regarding water resource management. 

The various aspects of the investigation were covered by eight research partners: 

• Franfoise Elbaz-Poulichet, University of Montpellier II, France: 

Project co-ordination, metal mmeralisation, fate of metals in the estuary (dissolved, 

particulate and sedimentary phases), isotopic signatiure of Pb; 

• Juan-Antonio Morales-Gonzales, University of Huelva, Spain: 

Local logistics during field campaigns, master variables and major ion analysis in 

dissolved phase, sedimentology and sedimentary record; 

• Maria Jesus Gutierrez de la Camara, INTA Madrid, Spain: 

Investigation of physical mixing and transport processes and chlorophyll 

distributions via remote sensing techniques, satellite image processing and aircraft 

based multispectral scanner; 

• Mario Chica-Olmo, University of Grenada, Spain: 

Geostatistics, remote sensing and geographical information systems, management 

of the TOROS database; 

• Nick Morley, University of Southampton, United Kingdom: 

Dissolved and particulate trace metals in offshore regions, metal fluxes, sediment-

water exchange, development of a near bottom water sampler; 

2 3 



• Eric Achterberg, University of Plymouth, United Kingdom: 

Biogeochemical behaviour of metals in the rivers and estuary using electrochemical 

speciation techniques (Cu and Ni), on-line high resolution metal monitoring (Zn, 

Cu, N i and Co) in the estuary and coastal sea; 

• Jean-Marie Beckers, University of Liege, Belgium: 

Development of a 3D linear model for the Gulf of Cadiz, comprising of a hydro-

dynamic model, a tracer model for metals arid advective fluxes and a coupled 

biological model; 

• Antonio Cruzado, CSIC/CEAB Blanes, Spain: 

Phytoplankton species and nutrient analysis in firesh, estuarine and coastal waters, 

including depth profiles. 

The long-term legacy of large scale niining operations has become the focus of an 

increasing number of scientific investigations. Such studies commonly aim at the 

quantification of the contamination resulting firom mining, ore processing and waste 

deposits, the biogeochemical fate, transport pathways and fluxes of pollutants in soil, 

water, air and biota, and possible remediation strategies. The release of metals in toxic 

quantities firom mining activities in the Iberian Pyrite Belt had visible effects on the 

appearance of the rivers receiving the. acid mine drainage, and on the community structure 

and biodiversity of the riverine and estuarine ecosysterh. The possible contamination of 

fi-esh water resources is of concern for agriculture and public health in the arid southwest 

of Spain. The Rio Tinto and Rio Gdiel represent the main transport system of mining-

related contammants and because of the short distance between source and sea, the marine 

ecosystem and food-chains are particularly affected. These issues are discussed in more 

detail in the introductions to each of tiie followmg chapters. 
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The research presented in this thesis was carried out for TOROS. The main aims 

were to determine the magnitude and seasonal variability of dissolved metal fluxes (Zn, 

Cu, N i , Co, Cd, Pb, M n and U) from the Rio Tinto and Rio Odiel, and to identify the 

processes that influence the biogeochemical behaviour of metals in the estuary. 

Furthermore, the dissolved fluxes from the estuary into the coastal sea were to be estimated 

and the fransport of metals in the Gulf of Cadiz to be investigated. 

Voltammetric techniques were found particularly suitable for the investigation of 

metal biogeochemistry in this system, because the linear range of the method can be 

extended from pico-molar to micro-molar metal concenfrations by choice of analytical 

parameters. Furthermore, anodic stripping voltammetry (ASV) and adsorptive catiiodic 

strippuig voltammetry (AdCSV) can be used for speciation studies, with a mmimum of 

sample freatment. These voltammetric techniques are discussed in Chapter 2. 

The analytical instrumentation used for voltammetry is portable, can be readily 

automated and has been used for on-line measurements of total dissolved Zn, Cu, N i and 

Co in the Huelva estuary and Gulf of Cadiz. The fresh water discharge from the estuary is 

very low, and as a consequence its salinity signal in the coastal sea is weak. Under these 

circumstances, it is of particular importance to study the development and dispersal of 

metal plumes with high spatial resolution and during different stages of the tidal cycle. The 

method and scope of applications of automated metal monitors during this research is 

described in Chapter 3. 

The following chapters are organised in an order that arises from the pursuit of the 

project's auns. Four surveys at all seasons were carried out, during which water samples 

were taken from the riverine end-members, the estuary over the whole salinity range and 

the coastal sea. 
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In Chapter 4, results firom the analysis of total dissolved metal concentrations in the 

rivers and estuary are presented. These, together with master variables determined in-situ, 

data contributed by other research partners and published work, are used to elucidate the 

metal geochemistry, suggest mechanisms causing seasonal variability and calculate flxixes 

of dissolved metals m this estuarme system. 

Results from high resolution on-line measurements of total dissolved Zn, Cu and N i 

in surface waters of the Gulf of Cadiz are presented in Chapter 5. The dispersal- and 

fransport of the metal signals from the major river systems are discussed by taking 

prevailing water circulation patterns into account. 

In Chapter 6 the distribution of dissolved metals in the rivers, estuary and shelf sea 

is revisited from the perspective of metal speciation. The highly acidic and metal-rich 

waters of the rivers were not suitable for voltammetric speciation studies, and had a low 

content of dissolved organic material. Thermodynamic equilibrium calculations were 

carried out m order to gain an insight into metal geochemistry of the rivers and upper 

estuaries. Results from voltammetric speciation studies were used to assess how the 

relative miportance of organic and inorganic ligands for tiie speciation of Cu changed 

between highly contaminated estuarine and more pristine coastal waters. 

Chapter 7 combines the conclusions from individual chapters to present an overall 

integrated description of the Tinto/Odiel river ocean system. Several questions remain 

unanswered, and these are listed as subjects that need fiurther research. 
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Chapter 2 

Voltammetric Methods 

2.1 ABSTRACT 

Trace metal concentrations (pico to nano mol 1'̂ ) commonly found in sea water 

present marine scientists with great challenges. These include the ininiinisation of 

contamination of samples during collection and processing, and the development of 

methods with suitably low detection limits, which may require the removal of interfermg 

matrix constituents. Stripping voltammetry offers several solutions to these challenges. 

High sensitivity can be achieved without the necessity of sample preconcentration or 

matrix removal. Portability of the instrumentation enables in-situ applications, and 

techniques for the study of metal complexation are available. 

This chapter reviews the basic functionality of voltanmietric instrumentation and 

describes stripping voltanmietry methods for total dissolved trace metal (Zn, Cu, N i and 

Co) analysis. The theory of speciation studies and ligand titrations is presented. The 

voltammetric methods used in the study of metal biogeochemistry ia Huelva Ria arid the 

Gulf of Cadiz are discussed, including analytical and instrumental parameters and 

analytical performance. 
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2.2 INTRODUCTION 

Sea water concentrations of many trace metals are low (< 10 M , e.g. Cu, N i , Zn, 

Co, Fe), while major ions (e.g. Ca'̂ '̂ , CI', Mg^^ and Na"^ are present at concentrations (up 

to 0.5 M) that cause interferences with several analytical methods used for trace metal 

analysis (e.g. ICP-AES and ICP-MS: Inductively Coupled Plasma - Atomic Emission 

Spectroscopy and Mass Spectroscopy, respectively and G F A A S : Graphite Furnace Atomic 

Absorption Spectroscopy). Preconcentration and matrix removal procedures have been 

developed to remove major ion interferences and to lower the limit of detection for these 

analytical techniques. For example, in preparation for sea water analysis using G F A A S , 

samples may be subjected to the complexation of the analyte with D D D C / A P C D 

(dipyrrolidine dithiocarbamate/ammonium pyrrolidine dithiocarbamate), followed by the 

extraction of the metal complex into chloroform, and back extraction m.to nitric acid. In 

this way, trace metals may be concentrated several hundred fold (Bruland et al. 1985). 

Solid-phase preconcentration techniques are also commonly used prior to G F A A S 

analysis, for example using Chelex colurrms (Bruland et al. 1985; Sunda, 1984). More 

recently, ICP-AES and ICP-MS techniques have been used with flow injection solid phase 

extraction for determinations of trace metals in sea water (Bloxham et al. 1994; Lan and 

Yang, 1994). The advantages of flow injection techniques with ICP-AES or ICP-MS 

detection lie in their high sensitivity, multi-element capability and reduced sample 

handling. Established methods have been used successfully for the analysis of trace metals 

at sea water concentrations, however, the necessary preconcentration/matrix removal steps 

increase the risk of contamination and the instrumental requirements preclude in-situ and 

ship-board deployment. 
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Since the 1960s, modifications of classical voltammetric techniques and advances 

in electronic signal amplification promoted the development of sensitive and selective 

voltammetric methods for the determination of trace metals in solution. Strippuig 

voltammetry is particularly suited for trace metal analysis, because a preconcentration step 

is an integral part of the measuring cycle. The advantages include reduced sample handling 

and high sensitivity. 

Voltammetry is based on the measurement of a current response as a fimction of a 

variable potential applied to an electrochemical cell. Stripping voltammetric techniques 

have been developed for more tiian 20 metals (van den Berg, 1989), some of which can be 

detected at extremely low concentrations (10'^° to 10'̂ ^ M). Some metals can be 

determined m a multi-elemental mode (Colombo and van den Berg, 1997a; van den Berg, 

1986b). Stripping voltammetry is suitable for speciation studies (van den Berg, 1991; van 

den Berg, 1989; van den Berg, 1988; Buffle, 1988), and the instrumentation is portable and 

can be automated, which enables ship-board or in-situ deployment (Achterberg and 

Braungardt, 1999; Colombo et al. 1997b; Tercier and Buffle, 1996; Achterberg and van 

den Berg, 1994a). 

Versatility and speciation capabilities were the reasons for choosing stripping 

voltammetry as the main analytical tool for investigations of metal biogeochemistry in the 

Huelva estuary and the associated coastal sea. Stripping voltammetric techniques were 

used for the analysis of total dissolved Zn, Cu, N i and Co in discrete samples (Chapter 4), 

and speciation studies were undertaken for dissolved Cu (Chapter 6). Voltammetric 

instrumentation was integrated into a fiilly automated system for high-resolution on-line 

ship-board trace metal determinations (Chapters 3 and 5). 
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2 . 3 STRIPPING VOLTAMMETRY 

2 . 3 . 1 I N S T R U M E N T A T I O N 

The principal components of a voltammetric analyser are a three-electrode cell, 

voltage generator, voltmeter, current meter and recorder. The working, reference and 

counter electrodes (WE, R E and CE, respectively) are immersed in the sample containing 

the analyte and a supporting electrolyte. The voltage generator controls the potential of the 

W E during the preconcentration step (deposition) and measuring cycle (potential scan). 

The potential of the R E remains constant. The C E serves to conduct current firom the 

source to the WE. During the potential scan, this current is measured and recorded as a 

function of the potential difference between W E and RE. 

hi the most basic case, the voltage is changed linearly at a fixed rate (mV s"̂ ) 

during the potential scan. Other waveforms, for example square wave (SW) and 

differential pulse (DP), have been developed to improve the separation between 

capacitative and faradaic components in the current signal. The faradaic current is 

proportional to the concentration of the analyte in solution, while the capacitative 

component is the xmdesired result of the electrical double layer, formed at the electrode 

surface (van den Berg, 1988). Other advantages of these waveforms are mcreased speed 

and sensitivity of the analysis, improved peak separation between analj^es and reduced 

interferences caused by surface active compounds in solution. The characteristics of these 

wave forms are well documented elsewhere (van den Berg, 1988; Buffle, 1988). 

Commonly used working electrodes for trace metal determmations m natural 

waters are the hanging mercury drop electrode (HMDE) and the mercury film electrode 

(MFE). Different kinds of MFEs are available and they can be formed by the deposition of 

Hg on various substrates (e.g. graphite, gold, semi-conductors), or by in-situ plating of Hg 

on glassy carbon. MFEs have a high surface area to volume ratio and excellent sensitivity 
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as a result of the high analyte enrichment factor during the preconcentration step (Mdta and 

Correia dos Santos, 1995). Recent improvements of microelectrodes (size < 10 ]xm) allow 

trace metal analysis at subnanomolar levels. Materials used for microelectrodes include 

gold, Hg plated carbon fibre and Hg plated iridium (Wang et al 1995; Amez del Pozo et 

al. 1994; deVitre era/. 1991). 

Voltammetric signals depend on the dimensions of the electrode, which must 

therefore be constant. Here lies the disadvantage of solid state electrodes, as they are prone 

to foulmg (e.g. by surfactants), which alters the effective surface area. Semi-permeable 

protective membranes have recently been introduced, in order to prevent the migration of 

potentially interfering compoxmds to the electrode surface (Tercier and Bufifle, 1996; Wang 

et al. 1987). The surface of the H M D E is a Hg drop, which is formed on the end of a glass 

capillary. A new electrode surface is produced for each measurement, which contributes 

greatly to the reproducibility and reliability of the H M D E . 

2 . 3 . 2 A D S O R P T I V E C A T H O D I C STRIPP ING V O L T A M M E T R Y ( A d C S V ) 

Adsorptive cathodic stripping voltammetry (AdCSV) is based on the adsorption 

onto the Hg surface of a complex formed between the metal (M) and an added, specific 

hgand (AL) (Equations 2.1 and 2.2). Any element that forms a chelate that wil l adsorb onto 

the electiode surface and that is reducible can be determined by this method. AdCSV 

methods employ specific Hgands for each metal, or groups of metals, determined 

sunultaneously. The formation of the M A L complex is pH-dependent, and therefore 

samples are buffered at a suitable pH. Table 2.1 shows some A d C S V ligand/buffer 

combinations for metals commonly analysed innatural waters at concentrations in the p M 

and n M range. 
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Table 2.1- Commonly employed ligands and buffers for the determination of trace metals in sea 
water using AdCSV (Campos and van den Berg, 1994; van den Berg, 1991; van den Berg, 1988; 
Donat and Bruland, 1988). . _ _ 
Ligand Metal(s) pH range Buffer (pH) 

Oxine Cd 7.5 - 8.5 HEPES (7.8) 

DMG Co 7.5 - 10 HEPES (7.8) or Borate (8.5) 

Nioxime Co 6.8 - 7.8 HEPES (7.8) 

DTPA Cr 6.0 - 6.8 acetate (6.2) 

Oxine Cu 6.0 - 9.0 HEPES (7.8) or Borate (8.5) 

Tropolone Cu 6.0 - 9.0 HEPES (7.8) or Borate (8.5) 

Catechol Cu 6.0-9.0 Borate (8.5) 

SA Cu 8.0 - 8.4 Borate (8.35) 

Nioxime Ni 6.8 - 7.8 HEPES (7.8) 

DMG Ni 7.0-10 HEPES (7.8) or Borate (8.5) 

Oxine Pb 7.0 - 8.5 HEPES (7.8) 

Oxine U 6.5 - 7.1 PPES (6.8) 

Catechol V 6.6 - 7.2 PIPES (6.8) 

APDC Zn 6.2 - 8.5 BES(7.3) or HEPES (7.8) 

NN Fe 6.8 - 8.0 PIPES (6.9) or HEPES (8.0) 

Oxine Cu and Zn HEPES (7.8) 

Oxine Cu and Cd HEPES (7.8) 

DMG Ni and Co HEPES (7.8) or Borate (8.5) 

APDC - ammonium pyrrolidine dithiocarbamate 
BES - A ,̂iV-bis(2-hydroxyethyl)-2-aminoethanesulphonic acid 
DMG - dimethylglyoxime 
DTPA - diethylenetriamjne pentaacetic acid 
N N - l-nitroso-2-napthol 
HEPES -iV-hydroxyethylpiperazine-i\^'-2'-ethanesulphonic acid 
Nioxime - cycIohexane-/,2-dione dioxime 
Oxine - hydroxy quinoline 
PPES - piperazine-A';iV-bis-2-ethanesuIphonic acid 
SA - salicylaldoxime 
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The analytical sequence for AdCSV is illustrated in Figure 2.1. Dissolved oxygen is 

removed from the sample by purging with an inert gas (N2, Ar, 100 - 200 s). This precludes 

possible interferences from redox reactions involving oxygen. During the following 

preconcenfration step a constant potential is applied, usually under conditions of forced 

convection (stfrring). The deposition potential is sUghtly more positive (by > 0.1 V) than 

the reduction potential of the analyte. During deposition, a minute fraction of the M A L 

complex forms a mono-molecular layer on the Hg surface (van den Berg, 1989). The 

preconcenfration efSciency is influenced by the deposition potential. A d C S V ligands either 

contain aromatic or other ring structures (e.g. 8-hydroxyquinoline (Oxme), 2-hydroxy-

2,4,6-cyclo-heptatrienone (Tropolone) or ammonium pyrrolidine dithiocarbamate 

(APDC)), or form ring structures upon chelating with the analyte (dimethylglyoxime 

(DMG)/Ni^'^. Therefore elecfrostatic and 7T-orbital interactions are considered important 

factors in the adsorption process of the M A L complex onto the Hg surface (van den Berg, 

1989). After a resting period (equilibration time), a potential scan to more negative 

voltages is carried out in the quiescent solution. At a potential specific to the analyte-ligand 

complex, the adsorbed metal is reduced (Equation 2.3) and stripped from the Hg surface. 

In some cases reduction of a group on A L occurs (e.g. when using the ligand Mordant blue 

9 for the analysis of xiranium, van den Berg, 1989). The recorded reduction current is 

measured as the height or area of the peak above the baseline. It is proportional to the 

metal concenfration in the cell. 

yM"* + zAL"-«^M^(AL)2' (2.1), 

M ^ A L V ^ - ™ ^ ^ M^(ALy^-""Urt,=d) (2.2), 

My(ALy'""™\adsorbcd) + e- ^ yM^"-')^ + zAL"" (2.3). 
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pH buffer, sample 
and ligand 

in voltammetric cell 

Forced convection De-aeration 
purge with N2 or Ar 

c^roor) ^ , , r , w = ^ ; ^ „ Deposltion potential Forced convection M between WE and RE 

Initial potential of scan „„ri„H 
between WE and RE H Quiescent penod 

and peak potential 
reduSnSr^m M mn't^nll^n"^^^^^^^ '^1^'^^ '^^ more negative potential — L j n « r ^ i ^ 

J . 

from HMDE 

Standard addition 
pipetted into cell 

J 

Formation of 
metal/added ligand 

complex (MAL) 

Preconcentration step 
deposition of MAL 
complex onto Hg 

Reduction of 
MAL complex 

Figure 2.1 - Sequence of steps carried out during a typical AdCSV analysis of trace metals. 
Usually, two standard additions, each increasing the initial current response by 100 %, are carried 
out. 
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The measuring cycle is repeated after standard additions, which serve to calibrate 

the measurement (Equations 2.4 - 2.6) . The standard additions should be of a concentration 

that increases the current response by at least 100%. This increase in current response is 

calculated to: 

Aip=ip,-ipo (2.4), 

where ipo and ipi are the current responses measured in the sample before and after 

the standard addition, respectively. The sensitivity of the method is: 

where A M is the concentration increase in the sample due to the standard addition. 

The analyte concentration C M can be calcidated: 

C M = ^ (2.6). 

2 . 3 . 3 A N O D I C STRIPP ING V O L T A M M E T R Y ( A S V ) 

A S V is limited to metals that form an amalgam with mercury (are soluble in Hg) 

and can be reduced to the metallic state at potentials between 0 and -1.5 V (within the 

stability boundaries of Hg and H2O). Although these criteria apply to many metals, A S V 

measurements in sea water have been successftil mainly for Cu, Pb, Cd and Zn. For other 

elements (e.g. In, Tl) A S V methods are not sensitive enough or hampered by interferences 

(van den Berg, 1991; van den Berg, 1988). 

In order to maintain the sensitivity during A S V analysis, the sample is buffered at a 

suitable pH. A S V measurements may be conducted in acidified samples (pH 2) . Also 

commonly used is acetate buffer (pH 4) , which allows the simultaneous determination of 
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Zn, Cu, Pb and Cd concentrations in one sample aliquot. After de-aeration, a deposition 

potential is applied, which is usually more negative (by 0.3 - 0.4 V) than the oxidation 

potential of the analyte. During deposition the analyte is reduced to the metallic state and 

collected into the H M D E or M F E by amalgamation with the Hg (forward direction m 

Equation 2.7). 

M"*+ne-+Hg<^M(Hg) (2.7) 

The potential scan starts at a value more negative than the oxidation potential of the 

metal and proceeds towards more positive values. At a specific potential the metal is 

oxidised and stripped from the Hg (reverse direction in Equation 2.7). The resulting 

oxidation current is measured and recorded. Standard additions and calculations are carried 

out as described in Section 2.3.2. 

The fimdamental difference between AdCSV and A S V is that the former is based 

on the adsorption of a M A L complex onto the electrode surface, while the latter depends 

on the dissolution of the metal in its elemental state m the Hg. During the stripping step in 

A d C S V the mono-molecular layer of M A L on the electrode surface is fully accessible to 

reduction, this allows fast potential scanning (e.g. with square wave modulation) and 

results in high sensitivity. By comparison, in A S V the speed of the stripping step is limited 

by the oxidation and diffusion kinetics of analj^e contained within the Hg (van den Berg, 

1991). 

2 . 3 . 4 INTERFERENCES 

Metal complexing organic ligahds (natural or anthropogenic) and surface-active 

compounds in the sample may interfere with stripping voltammetric techniques in various 

ways. Organic material may form strong complexes with trace metals (e.g. Zn, Co, N i , Cu 
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and Fe) in solution. A d C S V and A S V detect only the electrochemically reactive fraction of 

the dissolved metals in the sample, so a reduced signal can be caused by competition for 

the analyte by metal complexing ligands in the sample (van den Berg, 1991; van den Berg, 

1988). 

Competitive adsorption of organic compounds at the elecfrode surface can lower 

the sensitivity of A d C S V methods. Organic compoimds may produce a current peak during 

the stripping step, which may overlap with the analyte peak. At high concenfrations, 

surface-active compoimds may present a physical barrier to the adsorption or diffusion of 

the analyte onto or into the Hg elecfrode during AdCSV or A S V analysis, respectively (van 

den Berg, 1991; Buffle, 1988). In solutions containing surfactants the potential of the 

reduction or oxidation peak tends to shift to more positive values, or the current peak may 

split, producing several sub-peaks (Neeb, 1989), from which the analyte peak is not easily 

separated and quantified. 

For total metal determinations, interference caused by organic compounds can be 

eliminated by acidification followed by UV-irradiation. The U V photo-digestion desfroys 

most surfactants and organic complexing material, thus releasing metals as elecfro-

chemically reactive species (Yokoi et al. 1995; Achterberg and van den Berg, 1994b). 

Sample acidification releases metal ions complexed by inorganic ligands. In addition, 

acidification reduces the loss of analyte to the walls of the quartz tubes, which are used for 

the irradiation step (van den Berg, 1988). 

Interference during stripping voltammetry can arise from the formation of inter-

metallic compounds, either between the analyte and mercury elecfrode surface or other 

metals in solution present at high concenfrations. The magnitude of this interference 

depends on the stability constant of these compounds (Neeb, 1989). 
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Competitive adsorption of complexes formed between the added ligand with 

metals, other than the analyte, can cause interference. This can be alleviated by adding an 

excess of ligand to the sample. 

2 . 4 ELECTROCHEMICAL SPECIATION STUDIES 

In natural waters, dissolved metals may be present as free hydrated ions, 

inorganically complexed species and chelates with natural or anthropogenic organic 

ligands. The knowledge of total dissolved metal concenfrations does not provide sufficient 

information about the toxicity, biological availability and geochemical behaviour of metals 

in natural waters. A large number of frace metals are micro-nutrients, and are essential for 

the metabolism of aquatic organisms at low levels (e.g. Co, Cu, Fe and Zn). However, at 

higher concenfrations these metals may have toxic effects. For some metals (e.g. Cu, Zn, 

Cd and Ni) the free ionic species have been foimd to be the most biologically available 

form, because of their ability to pass through cell membranes of organisms, such as 

phytoplankton and macro algae (Campbell, 1995). The presence of organic ligands reduces 

the biological availability of metals, because they reduce the free metal ion concenttation. 

In addition, metal-organic complexes are commonly large and/or hydrophilic and thus 

unable to diffuse across cell membranes (Pettine et al. 1999; Campbell, 1995; Zhou and 

Wangersky, 1989; Buffle, 1988). 

The organic species involved in metal complexation reactions are thought to consist 

of a continuous spectrum of ligands of varying origin, structure, molecular weight and 

complexing properties, ranging from 1:1 co-ordination sites to polyfunctional chelators 

(Gerringa et al. 1995). The sources of organic metal complexing matter in sea water 

include humic and fiilvic acids, as well as phytoplankton and bacterial exudates and 

organic break down products of these organisms. 
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Oiily a few anal3^cal teckdiques (including stripping voltariimetry and chemilumi-

nescence, Sunda and Huntsman, 1991) have the sensitivity required for the direct 

determination of free and labile trace metal concenfrations in natural waters. Stripping 

voltammetry methods have been employed to determine metal redox speciation (Cr, As, 

Fe), the fraction of sfrongly (typically organically) complexed metals (e.g. Zn, Cu, N i , Co, 

Cd, Pb), and the concenfration of metal complexing (organic) ligands naturally present in 

water samples (e.g. Cu, N i , Fe) (Aldrich and van den Berg, 1998; Achterberg and van den 

Berg, 1997; Ruzic, 1996; Gledhill and van den Berg, 1995; Campos and van den Berg, 

1994; Donat and van den Berg, 1992; van den Berg et al. 1990; Nimmo et al 1989; van 

den Berg and Nimmo, 1987; van den Berg, 1986a). 

In the followmg, the term 'dissolved metal speciation' wi l l be used with respect to 

the operationally defined partitioning of metals in solution between elecfrochemically 

labile and non-labile dissolved metals. The labile fraction consists of the proportion of 

dissolved metal that is detected by the AdCSV or A S V method employed. It uicludes 

inorganic metal species and may include weak metal-organic complexes. The non-labile 

metal fraction is calculated from the difference between the measured total dissolved and 

labile concenfrations. For reasons of simplicity, the term 'organic' is used for ligands that 

form sfrong complexes with the metal and make up the non-labile fraction, however, this 

fraction does not necessarily include all organically complexed metals. 

Metal complexing organic matter in natural waters may be present in dissolved or 

colloidal form, or coating on particles. Thus, the operational definition of speciation 

measurements begins with the filfration. The dissolved metal concenfration in this study is 

defined as the concenfration measured in a sample after filfration using acid-cleaned W C N 

membrane filters with 0.45 \im pore size (cellulose nifrate, Whatman, 47 mm diameter) or 

0.4 \xm pore size (polycarbonate, Nuclepore, 125 mm diameter). This cut-off point is 
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thought to uiclude the fraction that is available to algae (Gledhill et al 1997). However, it 

does not allow for distinguishing between 'truly dissolved' trace metals and those 

associated with the fraction of the colloidal phase that is not retained by the filter. 

2 . 4 . 1 S P E C I A T I O N S T U D I E S W I T H A d C S V 

A d C S V speciation studies are based on the competitive equilibrixmi between the 

added ligand (AL) and the naturally present metal complexmg ligands (L) in the sample. 

The amoimt of analyte complexed with A L after equilibration represents the 'labile' metal 

concenfration ([MAL] = [Miab]) measured in the sample (van den Berg, 1988). The 

operational competition conditions, or detection window, of the speciation method can be 

confroUed by selecting a certain AdCSV ligand A L with a known conditional stability 

constant for the analyte, at a certain concenfration (Miller and Bruland, 1997; van den Berg 

and Donat, 1992). For example, Cu speciation has been studied using various AdCSV 

ligands, including (m order of increasuig sfrength of Cu complexes) Tropolone (Donat and 

van den Berg, 1992), Benzoylacetone (Mofifett, 1995), Catechol (Donat and van den Berg, 

1992), Salicylaldoxime (Campos and van den Berg, 1994) and Oxine (van den Berg, 

1986a). 

The theoretical relationships between the labile and total metal concenttations, the 

stability constants of the complexes involved, and their a-coefficients have been widely 

discussed in literature (Donat and van. den Berg, 1992; Zhang et al. 1990; van den Berg, 

1984), and are summarised m Figure 2.2 (Equations 2.8 - 2.19). M""^ is the n-valent metal 

of interest, and C M is its total dissolved and [M'] is its sum concenttation of inorganc 

complexes (Equations 2.8 and 2.9). Lj and Lx are inorganic and natural organic ligands, 

respectively, in the sample. The a-coefficients are a measure of the degree of complexation 

of the metal with a particular ligand, and are the proportion of the complexed relative to 

4 0 



the free metal concentration (Equation 2.11). a M L x and a M A L are the a-coefficients for the 

complex formation of the metal with Lx and A L , respectively (Equations 2.13 - 2.16). The 

coefficient a M A L defines the analytical competition strength of the complex formed 

between M " * and the added ligand, and its value is the centre of the detection window. In 

Equation 2.14 the presence of one ligand (Lx) is assumed. For several organic ligands auLxi 

= 2 ( K ' M L x i C L x i ) -

The stability constant describing the formation of a 1:1 complex M L is defined by 

Equation 2.18. The equilibrium between metal ions and organic hgands in solution is 

affected by morganic complexation of M""^ with anions (e.g. COs^", OH", S O / ' and CI') and 

by the association of organic ligands with major cations (e.g. Ca'̂ '̂  and Mg "̂*) and vwth Ef̂  

(Coale and Bruland, 1988). The conditional stability constant ( K ' ) takes side reactions of 

reactants and products into consideration. The relationship between the conditional 

stability constant ( K ' ) and the side reaction coefficients (a) is given in Equation 2.19 

(Ringbom and Harju, 1972a). The a-coefficient for the inorganic side reactions of M ( a M ' ) 

is given in Equation 2.12, whereby K M L J are the stepwise ionic-stiength corrected stability 

constants for the respective MLj complexes. P'MCAL)! is tiie conditional stability constant for 

the complex of M with i A L ions (Equation 2.13). K ' M L X and K ' M L J are the conditional 

stability constants for the complex MLx and the complex MLj, respectively. 

CAL> C L J and C L X are the concentrations of the added ligand, the natural inorganic 

ligands and organic ligands, respectively. C ' A L and C ' L X are the concentrations of the 

respective ligands not complexed with the metal of interest, whereby usually C A L » C M , 

so the assumption C ' A L = C A L can be made. 
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Labile metal concentration 

[ M ^ ] = [ M " 1 ( a „ + a ^ ^ ). (2.9) 

a-coefiicient for inoiganic side reactions 

c x « = i + Z K ^ A r 2 ] ^ (2-12) 

Stability constant for M + L = M L 
| M L ] 

K'MI [M"*]CL (2.18) 

Relationship between K ' ^ j , and d 

(2.19) 

Total dissolved metal concentration 

C „ = M ( a „ + a ^ + a ^ ) (2.8) 

[metal complex] 
a = — — i — n i n 

[free dissolved metal] ^ 

a-coefBcient of the MAL complex 

aMAL = l+EPW>C^ (2.13) 

Labileover total metal concentration 

X (2.15) 

Non-labile metal concentration 
[ M L J - C „ - [ M J (2.10) 

a-coefiScient of the M L complex 

""^i^KrjM-"!^ ' ' ' "" ' ' "^^-^^^ 
(ttht '^o-wJ'-^ (2.16) 

X 

Free dissolved metal concentration 

pM°*=-log (2.17) 

Figure 2.2 - Definition of labile and non-labile concentrations measured by AdCSV (Donat and van 
den Berg, 1992; Zhang et al 1990; van den Berg, 1988; van den Berg, 1984). 
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[Miab] and C M are measured by AdCSV, and the ratio (X) of labile over total metal 

concentration can be calculated (Equation 2.15). Titrations of samples with the metal of 

interest enables the calculation of C L X , K ' M L X and pM""^ (see Section 2.4.4). Values for aM-, 

and aMAL are obtained by correcting literature values for the ionic strength, pH and 

temperature of the sample, using methods described in literature (e.g. Donat and van den 

Berg, 1992; Dickson and Whitfield, 1981; Rmgbom and Still, 1972b). Values for p 'M(AL)i 

can be determined by titration against E D T A (Donat and van den Berg, 1992; Zhang et al. 

1990). 

2 . 4 . 2 S P E C I A T I O N S T U D I E S W I T H A S V 

A S V speciation methods directly measure the equilibrium concentration of free 

metal ions and labile metal complexes that dissociate to free metal ions during the 

preconcentration time at the deposition potential applied. The method relies on the kinetic 

stability of the non-labile metal fraction during analysis (Campos and van den Berg, 1994). 

The detection window of the method depends on the thickness of the elecfrode's diffusion 

layer, which determines the residence tune of a chemical species on the elecfrode surface. 

The relationship of tiiis residence time witii the dissociation rate constants of the Cu 

complexes shows whether a complex will dissociate or not (Kozelka and Bruland, 1998; 

Mota and Correia dos Santos, 1995; van den Berg, 1991). Kinetically labile complexes 

include inorganic metal species (e.g. carbonate, sulfate, chloro and free hydrated species) 

and may include a fraction of relatively labile organic complexes. The ASV-non-labile 

fraction consists of sfrong complexes (i.e. irreversible during ASV) , which are formed 

between the metal and organic ligands. The choice of the deposition potential and sample 

pH is critical (Plavsic et al 1982), the former operationally defines the metal species 

labile to the method, and the latter influences the chemical equilibrium in the sample. 
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Theoretical aspects of the, measurement of ASV-labile metal concentrations are 

sunilar to those of AdCSV, with the exception that there is no competition from an added 

ligand. Hence, with aMAL = 0, Equations 2.8 and 2.9 (Figure 2.2) become: 

CM=[M"n(aM. + aML) (2.20), 

[ M ^ ] = [M"^]a,, (2.21). 

Coale and Bruland (1988) assumed that A S V techniques measure predominantly 

the inorganic concentration of the analyte in sea water and suggested that the 

approximation [Miab] = [M'] can be made. From this the analytical competition strength of 

A S V methods can be estimated to approximate the inorganic side reaction coefficient of 

the analyte (aM', Equation 2.12). 

2 . 4 . 3 C O M P A R I S O N O F A d C S V A N D A S V S P E C I A T I O N M E T H O D S 

There are advantages using AdCSV over using A S V for speciation studies. The 

complexation between the metal of interest and the added AdCSV ligand is well 

characterised by its a-coefficients and conditional stability constants. Therefore, the 

competition between the added and the natural ligands is accurately known. During tiie 

measuring step the equilibrium between the metal ions and all ligands in the sample is not 

altered (Zhang et al. 1990). Furthermore, compared to A S V using a H M D E , the sensitivity 

of A d C S V is higher. Consequently, deposition times can be shorter with AdCSV, so that 

surface-active substances are less likely to be adsorbed onto the electrode surface and 

cause analytical interferences. 

The ASV-labile fraction depends on the stability of metal complexes and their 

dissociation kinetics. Thus, complexes with a fast dissociation velocity may not be 
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detected, because the dissociated metal is deposited at the electrode and is measured as part 

of the labile concentration. This phenomenon is emphasised at low metal concentrations, as 

the required long deposition time gives more opportunity for the dissociation of natural 

organic metal complexes to take place (Gerringa et al. 1995). 

In A S V , the analytical competition strength is not accurately known, but imder 

ideal conditions, it is approximately equal to the side reaction coefficient for the metal 

(ttM-). Therefore, the detection wmdow of A S V methods covers a lower range of stability 

constants, compared to A d C S V methods (see Sections 2.5.4.1 and 2.5.4.2). Analytical 

detection windows of voltarmnetric techniques are narrow in contrast to the wide range of 

complexation strengths of organic ligands present in natural water samples. It follows that 

labile metal concentrations measured with A S V and A d C S V are not duectly comparable. 

For example the centre of the detection window for the tropolone method (AdCSV) in sea 

water is in the range of logacuirop = 2.5 - 4.5 (Campos and van den Berg, 1994; Donat 

and van den Berg, 1992), while a-coefficients for ASV-labile Cu determinations can be 

expected in the range of logacu- = 1.1 - 1.3 at pH 7.5 - 8.2 (Coale and Bruland, 1988; 

Byrne e/flZ. 1988). 

2 . 4 . 4 LiGAND T I T R A T I O N S W I T H A d C S V 

Several studies have shown that the toxicity of Cu in sea water is not related to its 

total, but to its free ionic concentration (Cu^"^ (Gledhill et al 1991 \ Moffett and Brand, 

1996; Simkiss and Taylor, 1995; Anderson and Morel, 1978). It is therefore desurable to 

quantify the free cupric ion concenfration, estimate the system's capacity to complex 

additional Cu inputs and to determine the strength of the complexes involved (Sunda and 

Huntsman, 1991). This can be achieved by tifration of a sample with the metal of interest. 
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In preparation of an AdCSV metal titration, the sample is- divided into several 

aliquots (typically 10), to which an AdCSV ligand and buffer are added at suitable 

concentrations. To each aliquot (except one) a different concentration of the titration metal 

is added. After equilibration (typically 1 2 - 2 4 hours), the AdCSV-labile metal 

concentration is measured in each aliquot. The total dissolved metal concentration in the 

original sample is determined separately after UV-digestion of the acidified sample (pH 2). 

The calculation of the free metal ion concenfration ([M"*]), the concenfration of 

hgand(s) (CLX) that form non-labile complexes with the metal and thefr conditional 

stability constants ( K ' M L X ) require mathematical fransformation of the tifration data. A 

variety of methods have been suggested, including linear regression methods (e.g. van den 

Berg/Ruzic Imearisation, Zhang et al. 1990; van den Berg, 1984) and non-luiear 

regression of the Langmufr equation (Gerringa et al. 1995; Zhang et al 1990; van den 

Berg, 1984). Data fransformation using non-linear regression is preferable because it 

allows the calculation of asymptotic standard errors for the estimates of C L and K ' M L , while 

for the Imear regression method, a method for statistically meaningful error calculations is 

not available (Gerringa et al 1995). The majority of tifration data in tiiis study show 

ligand saturation and hence are linear fimctions. Therefore the data was not suitable for 

non-linear regression analysis, and the linear data fransformation, utilising tiie van den 

Berg/Ruzic plot, was used. 

The hnearisation after van den Berg/Ruzic is based on the linear relationship 

between the free metal ion concentration ([M"" ]̂) and the concenfration of M complexed by 

Lx ([MLx]), assuming that only one group of natural metal complexing organic ligand Lx is 

present: 

Q . = C ' , + [ M L J (2.22), 

4 6 



where C ' L X is the concentration of Lx not complexed with M (symbols explained in 

Section 2 .4.1) . The conditional stability constant for the formation of the complex MLx 

( K ' M L X ) is defined by: 

^ ^ - ^ n ^ (2.23). 

Substitution of C ' L X in Equation 2 .22 with Equation 2.23 gives the linear-

relationship: 

m = m ^ _ i _ (2.24). 

[ M L J K ' ^ C ^ 

The titration of a sample with the metal of interest (M), and m the presence of an 

AdCSV ligand (AL), yields a series of labile concentrations, [Miab]. The concentrations of 

the MLx complex in each aliquot [MLx] is calculated from the mass balance: 

[ M L J = C ^ - [ M , J (2.25), 

where C M is the total dissolved metal concenfration in the respective aliquot, which 

is calculated from the total dissolved metal concenfration in the original sample plus the 

added metal concenfration during the tifration. In the presence of A L , C M is given by: 

C M =[M'] + ^ [ M ( A L ) , ] + ^ [ M L J (2.26), 

where [M'] is the inorganic metal concenfration, and [M(AL)i] and [MLx] are the 

fractions of the metal complexed with A L and the natural ligands Lx, respectively (see 

Section 2.4.1). The measured labile concenfration [Miab] is the metal concenfration that 

equilibrates with A L : 

[M^] = [M'] + [M(AL)J (2.27), 
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whereby the inorganic metal fraction is included, because a-small constant-fraction 

of the added metal is not complexed, but remains as free ions in solution (Zhang et al. 

1990). The relationship between the current response (ip) of the AdCSV measurement and 

the labile metal concenfration is: 

i p = S [ M , J (2.28), 

where S is the sensitivity of the analytical method employed. S is calibrated by • 

standard additions of M to tifration aliquots in which the natural organic ligands have been 

saturated with a concenfration of M greater than C L X - h i this case, S is equal to the slope of 

a plot of Ip as a ftmction of C M - The free metal ion concenfration [M""^ is related to the 

labile concenfration via Equations 2.9 - 2.13 (see Figure 2.2). The conditional stability 

constant for the formation of M(AL)i (|3'M(AL)i) is: 

_ [M(AL)J 

PM(AL)i f M - ] [ A L ' ] ' ^ ^ ^' 

Substitution of [M"*] in Equation 2.24 witii Equation 2.9 (Figure 2.2) gives: 

[ M L J C ^ C ^ K ' ^ 

whereby tiie overall a-coefficient of M " ^ excludmg complexation by Lx, is: 

a - a w + a M A L (2-31). 

The total ligand concenfration (CLX) detected (within the detection window of the 

tifration method applied) can be calculated as follows. Equation 2.30 implies that a plot of 

[Miab]/[MLx] as a ftmction of [Miab] is linear (van den Berg/Ruzic plot). In this case, linear 

least-squares regression can be ajpplied to calculate the total ligand concenfration from the 

slope of the graph ( C L X = 1/slope), and the conditional stability constant from the y-
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intercept of the graph ( K ' M L X = a'/(intercept x C L X ) , van den Berg, 1984). The free ion 

concenfration can be calcvdated using Equation 2.9. In practice the free cupric ion 

concenfration was calculated using the thermodynamic equilibrium program MINEQL+ 

(Schecher and McAvoy, 1994; see Chapter 6). The a-coefficient of the complex MLx 

(OCMLX) can be calculated using Equation 2.14, whereby the concenfration of Lx not 

complexed by M (CLX-) can be determined usmg the Cu speciation model suggested by van 

den Berg and Donat (1992). 

Many tifrations of natural samples produce a linear van den Berg/Ruzic plot, 

suggesting the presence of only one group of ligands, while a curvature would indicate the 

presence of more than one class of complexing sites (Zhang et al. 1990; van den Berg, 

1984). However, it must be considered that the tifration covers a limited range of metal 

concenfrations, and that the range of detectable ligands is restricted by the detection 

window of the metiiod applied (Donat and van den Berg, 1992; Apte et al 1990). 

The detection window of the tifration depends on the detection lunit of the 

analytical method and its sensitivity to determine a small decrease in the current response 

caused by the complexation of the added metal with the natural ligand (Lx), rather than 

witii the added ligand (AL) (Zhang et al 1990; van den Berg, 1988). Therefore, the 

detection window is set by the relative magnitudes of a M A L and a M L x - It has been 

suggested that approximately two decades on either side of a M A L delimits the detection 

window for the accurate determination of a M L x (Donat and van den Berg, 1992). 

Natural organic metal complexmg material consists of a variable mixture of organic 

molecules with relative molecular weights between a few hmidreds and several thousands. 

Smaller organic molecules in natural waters have been isolated (e.g. amino acids), but the 

large groups of humic and frilvic acids, which contain a wide range of molecular sizes and 

structures, remain largely unidentified (Turner, 1995). Experiments indicated that the 
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properties of organic ligands describe a continuum of binding sites, rather than have 

boundaries which separate them into distinct classes (Campos and van den Berg, 1994; 

Donat and van den Berg, 1992; van den Berg and Donat, 1992; van den Berg et cil. 1990). 

Hence, different ligands (e.g. Lxi and La) identified from tifration results are 

representative of operationally defined groupmgs of ligands with similar metal bmdhig 

characteristics, which fall into the same detection window of the tifration method 

employed (Miller and Bruland, 1997). 

2 . 5 V O L T A M M E T R I C M E T H O D S E M P L O Y E D I N T H I S S T U D Y 

2 . 5 . 1 REAGENTS A N D E Q U I P M E N T 

M Q water was obtamed from an ulfra-clean water purification system, which 

consists of a reverse osmosis set-up (Milli-RO), followed by a deionisation stage (Milli-Q, 

resistancy R >18 M Q cm'^ botii Millipore). Hydrochloric acid (HCl), nitric acid (HNO3) 

and methanol of AnalaR grade (Merck) were purified by distillation in a sub-boiling quartz 

still. Ammonia (NH3) (AhalaR, Merck) was purified by isothermal distillation. Unless 

otherwise stated, these purified reagents were used throughout. 

Oxine solutions (0.1 M and 0.01 M) were prepared from 8-hydroxyquinoline (99%, 

Merck) in M Q water. Tropolone stock solution (0.1 M) was prepared from 2-hydroxy-

2,4,6-cycloheptatirienone (98%, Aldrich) in metiianol. D M G solutions (0.1 M and 0.01 M) 

were prepared from dhnethylglyoxime (99+%, Aldrich) in methanol. A P D C stock solution 

(0.1 M) was prepared from ammonium pyrrolidine dithiocarbamate (99%, Sigma) in M Q 

water. E D T A stock solution (0.092M) was prepared from ethylene-dinitrilotefraacetic acid 

(AnalaR, Merck) m M Q water. The pH value of E D T A solution was adjusted to pH 7.8 

using NH3, and dilutions (5 m M and 1 m M EDTA) were prepared with M Q . 
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A n aqueous HEPES pH buffer stock solution (1 M) was prepared firom iV-

liydroxyethylpiperazine-iV-2-ethanesulphonic acid (Biochemical grade, Merck) in M Q 

water. The pH value of HEPES was adjusted with N H 3 to give p H 7.8 m sea water (with 

O.OIM HEPES). Contamination of HEPES with Zn and Cu was reduced by addmg an 

excess of the metal complexing Ugand Oxine (50 pM) to the HEPES stock and passing the 

solution through a Sep-Pak C18 cartridge (pre-packed column of octadecyl carbon units 

chemically bonded to a silica gel support. Waters Corporation) (flow rate ca. 1 ml min"^). 

The Oxine and Oxine-metal chelates were retained on the C l 8 resin, thus removing metals 

firom the HEPES solution. Prior to buffer cleaning the C18 cartridge was conditioned by 

passing through H C l (0.1 M , 20 ml), M Q water (50 ml), methanol (10 ml), followed by 

M Q water (50 ml). The cleaning procedure of the buffer reduced the contribution of 

HEPES (0.01 M , final concentration) to the analysed metal concentration in the sample 

firom ca. 2 n M Zn and 0.8 n M Cu to < 0.2 n M Zn and < 0.15 n M Cu. The contribution of 

HEPES (0.01 M) to the N i concenttation was typically 0.1 n M N i . 

A Borate pH buffer stock solution (1 M) was prepared from ortho boric acid 

(Aristar, Merck). The pH value was adjusted with N H 3 to give pH 8.4 in sea water (0.01 M 

Borate, final concenttation). Contamination of Borate with N i was reduced by adding the 

metal complexing Hgand D M G (50 ]xM) to the Borate stock and passing it through a Sep-

Pak C18 cartridge, which had been conditioned as described ui the previous paragraph. 

Organic contaminants, including remaining ttaces of D M G , were removed from the Borate 

buffer by UV-irradiation (4 h, 400 W medium pressure Hg lamp, Photochemical Reactors). 

The cleaning procedure reduced the concenfration of N i contributed by Borate (0.01 M , 

fimal cone.) from ca. 0.7 n M N i to typically 0.04 n M N i . 

51 



For the calibration of voltammetric measurements, aqueous metal standards for Zn, 

Cu, N i , Co and mixed standards (Cu/Zn and Ni/Co) in a range of concentrations (10" ,̂ 10'^, 

10-̂  M) were prepared by dilution of Spectrosol Stock Solutions (Merck) in H C l (0.01 M). 

The preparation of reagents and standards, as well as the handling of samples in the 

laboratory, were carried out m a laminar-flow unit (Class 100, Model 56, Bassaire, 

Southampton). Cleaning procedures for sampling bottles, filter holders and other 

equipment are described in Chapter 3. 

2 . 5 . 2 I N S T R U M E N T A T I O N 

Voltammetric studies were carried out usmg a hanging mercury drop electrode 

(HMDE, V A 663 Stand, drop surface area A = 0.52 mm^ Metrohm), which was connected 

to a jiAutolab voltammeter (EcoChemie) via the interface for the mercmy electrode (IME, 

EcoChemie). On occasions, a P A R 303A H M D E , with electromagnetic stirrer (PAR model 

305) and Teflon® coated stirrer bar, was used together with an Autolab voltammeter 

(EcoChemie) and IME. The reference electrode was Ag/AgCl , filled with K C l (3.5 M), and 

all potentials given are with respect to this reference potential. The respective voltaimneter 

was connected to a personal computer (PC), which contioUed the analysis usuig 

specialised software (GPES, EcoChemie). The software provided an interface for the input 

of analytical conditions, such as the wave form (e.g. square wave or differential pulse) and 

then: parameters (step potential and amplitude, scan frequency or modulation frequency 

and interval time), the initial and final values for the potential scan, deposition potential 

and time etc. Another function enabled the semi-automatic calculation of the height or area 

of the current peak. 
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2 . 5 . 3 T O T A L D I S S O L V E D T R A C E M E T A L A N A L Y S I S 

Sample preparations for total dissolved metal analysis included filtration (see 

Chapters 3, 4 and 5), acidification (HCl, pH 2) and UV-irradiation. For UV-digestion, the 

acidified sample was transferred to acid-washed quartz glass tubes (30 ml volume, loosely 

covered with a Teflon® screw cap). Hydrogen peroxide (0.05% H2O2, final concentration) 

was added to aid the destruction of organic matter and maintain oxic conditions during the 

irradiation period. The samples were irradiated in a home-built U V unit (capacity 24 tubes) 

for three hours using a 400 W medium pressure Hg lamp (Photochemical Reactors). The 

sample temperature in the U V xmit was maintained at ca. 70°C with a fan. Each quartz tube 

was marked to monitor evaporation loss, which in most cases was negligible. However, 

high or persistent organic compounds ui some estuarine samples required prolonged 

irradiation times (up to 8 hours), and evaporation in these samples was compensated for by 

addition of M Q water. 

For analysis, sample aliquots (10 ml) were pipetted from the UV-tubes into the 

voltammetric cell (borosilicate glass, Metrohm), to which the appropriate buffer, N H 3 and 

A d C S V ligand had been added. The N H 3 was used to neutiralise the acidified sample. Table 

2.2 lists ligands and buffers used for AdCSV in this study. 

The analytical sequence (see Section 2.3.2) was carried out and, at each stage 

(before and after standard additions), the deposition/stripping/measurement cycle was 

repeated until the peak cunent remained constant (standard deviation of ca. 5% between 

measurements). In order to eliminate random errors and check analytical linearity, a 

minimum of two aliquots were analysed for each sample, and two standard additions (each 

doubling the initial peak height) were made m at least one of the sample aliquots. 
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Table 2.2 - Ligands and buffers used in AdCSV analysis of trace metals. Al l fmal concentrations in 
the voltammetric cell. HEPES: pH 7.8, Borate: pH 8.5, reduction potentials are approximate. 
Voltammetric Parameter Zn total Cu labile Cu total Ni/Co 

AdCSV ligand APDC Oxine Tropolone DMG 

Ligand concentration 200 pM 20 nM 200 pM 200 pM 

pH buffer HEPES HEPES HEPES HEPES/Borate 

Buffer concentration 0.01 nM 0.01 pM 0.01 H M 0.01 pM 

Deposition potential (V) -1.2 -1 -0.13 -0.9 

Reduction potential (V) -1.05 -0.43 -0.21 -0.93/-1.08 
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Square wave modulation was used throughout the study. Other voltarometric 

parameters - scanning frequency, step potential and amplitude, deposition potential and 

time, initial and final scan potential and stirring rate - were selected depending on the 

metal(s) of interest, thefr concenfration (see Chapter 3), and the nature of the sample 

matrix. 

2 . 5 . 4 S P E C I A T I O N STUDIES 

For labile frace metal determinations, samples were filtered shortly after collection, 

filled into acid-cleaned HDPE bottles (250 or 500 ml) and stored in the dark and at low 

temperature (4°C). Analysis (AdCSV or ASV) was carried out onboard ship within a few 

hours, or in a laboratory ashore within a maximum of 48 hours after collection. 

Zero second deposition measurements were carried out for all speciation studies, in 

order to determine the baseline for the analysis and check whether interfering peaks 

resulting from organic matter in the sample were present. Organic interference occurred in 

some samples, and could be usually eliminated through changes made to the analytical 

parameters (e.g. deposition time). Otherwise, such samples were taken out of the speciation 

series. The stirring rate and deposition times were adjusted according to the encountered 

metal concenfrations. 

2 . 5 . 4 . 1 C u S p e c i a t i o n S t u d i e s w i t h T r o p o l o n e 

Tropolone forms Cu complexes vwth a low stability constant compared to other 

A d C S V ligands (Donat and van den Berg, 1992). Therefore, the detection wuidow of the 

Tropolone method allows the determination of relatively weak Cu complexing organic 

ligands, which are generally present at high concenfrations in sea water (Miller and 
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Bruland, 1997; Donat and van den Berg, 1992; van den Berg et al. 1990). Previous studies 

have shown that the complexation of dissolved Cu is controlled by strong organic hgands, 

which are present in sea water at concentrations comparable to that of Cu. Weaker organic 

ligands become important for the complexation of Cu when the stronger ligands are 

saturated (Moffett et al. 1997). The latter was expected to be the case in the study area 

where high inputs of trace metals enter estuarine and coastal waters. Therefore, speciation 

studies in this work were focussed on the weaker ligands with the selection of Tropolone 

as AdCSV ligand. 

For the determmation of AdCSV-labile Cu, HEPES (0.01 M , pH 7.8) and 

Tropolone (200 | i M , final concentrations) were added to the voltammetric cell before 

adding the sample aliquot (10 ml), which was analysed immediately. The deposition was 

carried out at a potential of -0.13 V for 5 to 120 s (depending on sample) and with a 

stirring rate between zero and maximum (position 6). The potential scan (-0.13 V to -0.45 

V , step potential 2.44 mV, amplitude 25 mV) was carried out with a frequency of 50 Hz. 

The analytical competition sfrength of the AdCSV method is dej5ned as the a-

coefificient of the Cu-Tropolone complex. Tropolone forms two complexes with Cu, 

Cu(Trop)'' and Cu(Trop)2, so tiiat: 

acuT̂ p = 1 + K',„,„^ [Trop'] + P',„,„,, [Trop']^ (2.32), 

whereby the detection window typically spans one to two decades either side of 

occuTrop (Miller and Bruland, 1997; Campos and van den Berg, 1994). 

Values for K'cuTrori- at the appropriate salinity and pH 7.8 were calculated from the 

thermodynamic stability constant (KcuTrop+ = 8.35 at 25°C and I = 0.1; Martell and Smith, 

1977) as follows. The inorganic side reaction coefficient for Tropolone (arrbpO was 

calculated according to: 
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« T „ p . = 1 + [Mg^1K,,,„^ + [Ca-]K, , ,„ , + [Sr^1K3,„^ + [ H ^ K , (2.33). 

The stabiHty constants for complexes of Tropolone with Mg^"^, Câ "*", Sr̂ "*" and the 

acidity constant were taken firom Martell and Smith (1977) and corrected for ionic strength 

using the Davie's equation: 

logK' = logK + SAz= -0.31 (2.34), 

whereby logK is the stability constant for the equilibrium M + L = M L , and logK* 

is.log K corrected for ionic strength, S is the Debye-Hiickel slope (0.511 mol"^^ 1̂ '̂  at 25°C 

and 1 atm), z stands for ionic charge (Az^ = 2z^(products) - Sz^(reactants)) and le is tibie 

effective ionic stirength. The effective ionic strength and free major ion concentrations 

were calculated for the required salinities using an ion pairing model by van den Berg 

(based on Dickson and Whitfield, 1981). Usmg corrected stability constants and major ion 

concentrations, arrop- was calculated for different salmities using Equation 2.33. 

The conditional stability constant, logK'cuirop+j was calculated using: 

lOgK'cuTrcp. = lOgK'cuTrop. - logtt^^p, (2.35), 

where logK*cuTrop+ is the thermodynamic stability constant for the Cu-Tropolone 

complex, corrected for the reqmred ionic strength. 

Values for P'cuTrop2 at the pH value used in this study (pH 7.8) are not available 

from literature. Therefore, cccuTrop was calibrated in sea water of various salinities at pH 

7.8, usmg ligand competition agauist a known ligand (EDTA). For the calibration a 

titration with E D T A as detailed m literature (Donat and van den Berg, 1992; van den Berg 

and Nimmo, 1987) was carried out. Filtered (WCN, 47 mm diameter, 0.45 pm pore size, 

Whatman) and LTV-irradiated sea water (collected west of the Straits of Gibraltar, depth 76 
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m) of accurately known salinity (S = 36 .13) was diluted with M Q , so that (taking the added 

reagent volume into account) salinities of 35.6 and 25 .0 were used for the titrations. 

The procedure for preparing the titration series for this calibration and the 

equipment used has been described in detail for ligand titrations below (Section 2.6.5). 

Aliquots of the sea water containing Tropolone (300 j iM, final concentration) and HEPES 

bujEfer (0.01 M , final concentration, pH 7.8) and approximately 3 0 n M Cu were allowed to 

equilibrate with E D T A (pH 7.8, ca. 23 °C, > 3 6 hours) at a range of concentrations 

between zero (in triplicate) and 15 p M EDTA. Labile Cu concentrations were determined 

in all aliquots, using a deposition potential and time of -0 .13 V and 150 s, respectively and 

the potential scan (-0.13 V to -0 .45 V , step potential 2 .44 mV, amplitude 2 5 mV) was 

carried out with a frequency of 5 0 Hz. 

In presence of Tropolone and HEPES and in absence of EDTA, the Cu reduction 

current is: 

S a C 
. C u T ^ o ^ ^2.36), 

a C u + ^ C u T r o p - l 

where S is the sensitivity of the method. In tiie presence of Tropoione, HEPES and 

EDTA, the Cu reduction current is: 

i = ^ ^ W r c u (2.37). 
aCu+aCuTrop+ac„EDTA -2 

The a-coefficient for the Cu-EDTA complex is: 

<UHOTA = 1 + K ' ^ T A [ E D T A ' ] (2.38), 

where [EDTA'] is the concenfration of E D T A not complexed by Cu and can be 

approxunates to equal [EDTA]. The stability constants for the complex CuEDTA^" 
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( K C U E D T A ) and M"-^DTA^-" (for Ca^"", Mg^"", Sr^*, Na"" and were taken firom Martell 

and Smith (1977). Corrections for the inorganic side reaction coefficient of E D T A and for 

ionic strength were carried out in the same way as described above for logK*cuTroiH- The 

ratio of the current response in the presence over that in the absence of E D T A is: 

X = . ^ = °^cu+ac„T.op - l (.2.39). 
Ipo oc<^+acuTrop + a c ^ T A - 2 

Equation 2.39 was rearranged to enable the calculation of Ocuirop at the respective 

Tropolone concentration and salinity by using the values for X obtained from the titiations: 

ĉ cuTroop = ^ c . - X ( a , „ + a , ^ , , - 2 ) - l ^^^^^ 

From the calibrated values of acuTrop, values for P'cuTrop2 were calculated for 

different salinities (Table 2.3) using the rearranged Equation 2.32. The obtained values for 

logP'cuTrop2 at pH 7.8 were somewhat higher than those reported by Donat and van den 

Berg (1992) for pH 8.3 (e.g. S = 34.8: p'cuTrop2 = 10.00±0.12), altiiough tiie conditional 

stability constant of a complex is expected to decrease with decreasing p H value. However, 

within the analytical error (ca. 5%) and the uncertainty of the method (unknown) there is 

no difference between the values for logp'cuTrop2 obtained here and by Donat and van den 

Berg. The calculation of P'cuTrop2 at the desired salinities was based on a function 

(logP'cuTrop2 = 12.402xS"°'°^^) found describing the relationship between tiie values for 

iogP'cuTrop2 and salinity given in Donat and van den Berg (1992). 

With the use of salinity-adjusted K'cuTrop+ values and calculated P'cuTrop2 values, 

occuTrop was Calculated (Table 2.4) for the appropriate concentrations of tropolone used m 

speciation studies (0.2 mM) or ligand titrations (0.3 mM). 
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Table 2.3 - Values for acuTrop> aod PcuTrop2 obtamed by calibration against EDTA at S = 35.6 and 
25. 
Salinity [Tropolone] log K'cuEDTA IOgK'cuTrop+ log PcuTrop2 logacuTrop 

35.6 . 0.3 mM 10.16 5.83 10.18 3.20 

25.0 0.3 mM 10.31 5.98 10.27 3.30 

Table 2.4 - Values calculated for Ocuirops at different salinities and Tropolone concentrations for 
labile Cu determinations using 0.2 mM Tropolone and for ligand titrations using 0.3 mM 
Tropolone (pH 7.8). 
Salinity [Tropolone] logOCcuTrop Salinity [Tropolone] lOgCCcuTrop 

1.5 0.2 mM 5.06 33.5 0.3 mM 3.00 

5 0.2 mM 3.87 35.8 0.3 mM 2.96 

10 0.2 mM 3.74 36.0 0.3 mM 2.96 

15 0.2 mM 3.17 36.1 0.3 mM 2.95 

20 0.2 mM 2.99 36.3 0.3 mM 2.95 

25 0.2 mM 2.87 

30 0.2 mM 2.76 

37 0.2 mM 2.64 
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2 . 5 . 4 . 2 C u S p e c i a t i o n S t u d i e s w i t h A S V 

For some estuarine water containing very high metal concentrations (yM), A S V 

was used for Gu speciation studies. ASV-labile Cu was determined m aliquots of 10 ml, to 

which HEPES buffer (pH 7.8, 0.01 M) had been added. The deposition was carried out at a 

potential of -0.65 V for 5 to 30 s with a low stirring rate (0 - 2). The potential was scanned 

at 50 Hz between -0.65 V and -0.25 V (step potential 2.44 mV, amplitiide 25 mV). 

In an attempt to estimate the detection vwndow of the A S V speciation method, the 

inorganic side reaction coefficient for Cu (a'cu) was calculated for different salinities and 

the alkalmity determined in the estuary during the second survey (June 1996, Chapter 4). 

For this, an ion pairing model by van den Berg was used, which utilises the extended 

Debye-Htickel equation (2.41) with stability constants and values for B, C and D given in 

Turner and Whiffield et al. (1981) for the correction of ionic strengfli. The calculations 

were carried out for the sample pH during analysis (7.8, buffered by HEPES). 

l ogp ; = l o g I 3 ; + S A z ^ - ^ ^ + C I , + D ^ (2.41), 
1 + B^I^ 

where S and As? are as described for the Davie's Equation (2.34). At salinity ranges 

of S = 36 - 36.5, S = 33 - 35 and S < 32, the corresponding coefficients were logacu- =1.16 

-1.20, logacu- = 0.77 - 1.06 and logocu- < 0.55. The detection window depends on method-

specific parameters, which influence the dissociation kinetics of metal-organic complexes 

at the electrode (see Section 2.4.2). Therefore, the side-reaction coefficient may 

underestunate the value for the centre of the detection window. 
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2 . 5 . 5 L I G A N D T ITRATIONS 

Ligand titrations were carried out in order to estimate the concentration of Cu 

complexuig organic Hgands (CCULX) , then: conditional stability constant ( K ' C U L X ) , and 

calculate the free cupric ion concenttation, [Cu'^'^. For reasons given above (Section 2.5.4), 

Tropolone was selected as AdCSV ligand for the tittations. The calculation of the 

morganic side reaction coefficient for Cu (a'cu) has been given m Section 2.5.4.2. For the 

tittation calculations, it is insignificant in magnitude, compared to a'cuTrop, which was 

calculated for the Tropolone concenttation used in the tittations (0.3 mM) followuig the 

method described in Section 2.5.4.1. 

For the equilibration of samples with added Cu and Tropolone, non-expanded 

polystyrene portion cups (60 ml/2 oz, with Hds, Sweetiieart, USA) were used. Leaching 

experiments with M Q water and with H C l (pH 2) overnight showed no detectable 

contribution of Cu resultmg from tiie cups. The adsorption behaviour of the cups was 

assessed by equilibrating overnight buffered M Q water (pH 7.8, HEPES) spiked with Cu 

(5 and 50 nM) and one of two AdCSV ligands (Tropolone, 0.3 m M or Oxine, 20 pM). The 

maximum adsorption was observed in aliquots containing 50 n M Cu and Tropolone, and 

concenfrations of 44.5 ± 0.33 n M Cu (n = 3) were measured after 24 hours. In order to 

reduce Cu adsorption, the cups were equilibrated overnight with sea water, which had been 

prepared in the same way as the planned tifration (see below). After conditioning, the cups 

were rinsed with M Q water and dried in a laminar flow unit. The cups were conditioned 

only once, and the tifrations were carried out in order of increasing total Cu concenfrations. 

The cups were re-used after rinsing v^th M Q water and drying. Possible carry-over from 

previous ligand tifrations was assessed by equilibrating cups, previously used for high 

concenfrations (300 n M Cu), witii M Q water (with HEPES, pH 7.8 and Oxme, 20 jaM) 

overnight. A n increase of 0.6 ± 0.07 n M Cu was observed in the M Q water (n = 3), which 

was deemed negHgible. 
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For ligand titrations, sub-samples were taken from the filtrate for speciation studies 

into acid-cleaned HDPE bottles (500 ml). The samples were placed into a deep freezer in 

Spain as soon as possible, and maintained frozen with dry ice during fransport to the U K 

where they were stored in a freezer (-20°C). At the University of Plymouth, all ligand 

tifrations were carried out over a period of ten days, hi order to mauitain consistency of 

conditions and technique. Samples were placed into a fridge to defrost slowly (ca. 22 

hours, 4°C), and prepared within hours after defrostuig for tifration. 

The defrosted sample was accurately weighed (250 ml, taking the density of sea 

water at 4°C uito account) into a conditioned HDPE bottle. Buffer (HEPES, pH 7.8, 0.01 

M) and Tropolone (0.3 m M , final concenfrations) were added and the sample was mixed 

carefully. The sample was pipetted into 11 polystyrene cups (cup 0: 40 ml, cups 1 -10: 20 

ml each). To cups 1 -10, increasuig concenfrations of Cu standard were added and mixed. 

The maximum Cu concenfration added was one to six times its total dissolved Cu 

concenfration, which previously had been determined in acidified and UV-irradiated sub-

samples (see Section 2.5.3). The cups were covered with lids and left to eqmlibrate at room 

temperature (ca. 21°C) for ca. 15 hours in a laminar flow unit. Suitable deposition times 

and stirrer rates, which enabled the last tifration step to be measured within the linear 

range, were established in spiked sea water samples ahead of the tifration series. A 

complete list of concenfrations and tifration conditions is given in Table 2.5. 

After equilibration, aliquots (10 ml) were pipetted into the voltammetric cell and 

the reduction current was measured, using the parameters listed in Table 2.5. Decreasing 

current responses during the measurement of the first two aliquots without added Cu 

indicated the conditioning of the cell and results were discarded. Subsequent aliquots were 

measured in the order of increasuig concenfrations. 
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Table 2.5 - Parameters used for ligand titrations. Deposition potential was -0.13 V , scan jfrequency 
was 50 Hz, and the scan was from -0.05 V to -0.35V. Ccu: total dissolved Cu concentration in 
original sample (nM), Co - Cip: added Cu concentration (nM) for each titration step. 
Sample, April 1998 MZ4 MZ7 MZIO MZ21 MZ21 MZ16 
Ccu(nM) 104 177 220 38.3 38.3 107 
Deposition time (s) 2 2 1 45 70 I 
Stirrer setting (0...6) 1 1 1 5 5 1 
Equilibration time (s) 3 4 2 8 8 2 
Step potential (mV) 4.88 4.88 4.88 2.44 4.88 4.88 
Step amplitude (mV) 18 18 18 21 18 18 
Sensitivity (nA nM"') 0.101 0.103 0.070 0.719 0.824 0.081 
Co 0 0 0 0 0 0 
c, 10 10 10 5 2.5 10 
C 2 20 20 20 10 5 20 
Cs 30 30 30 15. 8 30 
C4 40 40 40 20 12 40 
C5 60 60 60 25 16 60 
Cs 80 80 80 40 20 80 
C7 100 100 100 50 25 100 
Cg 150 150 150 60 30 130 
C9 200 200 200 70 40 160 
Cio 250 250 250 80 50 200 
Sample, Oct. 1998 MZ3 MZ7 HR9 A l E5 F7 
Ccu(nM) 56.9 10.7 289 3.57 5.07 8.04 
Deposition time (s) 12 45 1 80 40 20 
Stirrer setting (0...6) 4 5 0 5 5 5 
Equilibration time (s) 8 8 0 8 8 8 
Step potential (mV) 4.88 2.44 4.88 4.88 4.88 4.88 
Step amplitude (mV) 18 21 18 18 18 18 
Sensitivity (nA nM') 0.294 0.801 0.044 1.06 0.626 0.286 
Co 0 0 0 0 0 0 
c, 5 2 20 1 1 1 
C 2 10 4 40 2 2 2 
C 3 15 6 60 3 3 3 
C4 20 8 80 4 4 4 
Cs 30 10 120 6 6 6 
Cs 40 12 160 8 8 8 
C^ 50 16 200 10 10 10 
Cg 60 20 300 12 12 12 
C9 80 25 400 16 16 16 
Cio 100 32 500 20 20 20 
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In order to determine the sensitivity, standard additions were made to several 

aliquots, for which ligand saturation had been indicated with a linear relationship between 

current response and added Cu concentration. 

The organic ligand concentration, its conditional stability constant for Cu 

complexes, and the free cupric ion concenfration were calculated as detailed in Section 

2.4.4, and the results are presented in Chapter 6. 

Test-titrations were carried out on three fresh samples in a laboratory of the 

University of Huelva. The tifrations were repeated imder equal conditions on defrosted 

samples at Plymouth, in order to assess the changes effected by the freezing process. The 

tifration of the sample T3 M Z 21 was carried out in friplicate to determine the 

reproducibility of the tifration method in defrosted samples. 

2 . 5 . 6 A N A L Y T I C A L PERFORMANCE 

The accuracy of the strippkig voltammetry methods employed was assessed for 

each series of experiments. Before each survey, new reagents and metal standards were 

prepared, and these were used to analyse certified reference materials (CRM). CRMs for 

river water (SLRS-2), estuarme water (SLEW-2) and coastal sea water (CASS-3, all 

National Research Council of Canada) were U V - irradiated in acid-leached quartz tubes. 

Total dissolved analysis of Zn, Cu, N i and Co were carried out using appropriate buffers 

and AdCSV-ligands according to the methods detailed in Section 2.5.3. The analysis was 

carried out repeatedly for each metal, and good agreement with the certified values was 

achieved tbroughout. Typical results are summarised in Table 2.6. 

A large batch (ca. 9 lifres) of aged frish Sea water (IRSW) was prepared as an 

internal reference material. The water was filtered and UV-irradiated on-line, following the 
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method described for the sample preparation during on-line voltammetric metal analysis in 

Chapter 3. IRSW was acidified (HCl, pH 1.6) and stored in an acid-cleaned HDPE 

container in the dark. Total dissolved metal concentrations (Zn, Cu, N i , Co, Cd) were 

determined against CRM-verified AdCSV and A S V methods. IRSW was used routinely 

for intra-laboratory calibrations and to verify the quality of standards and methods of 

analysis (Table 2.6). Typical values for reagent blanks, lunits of detection and Imear ranges 

of A d C S V methods are given in Chapter 3. 

The upper part of Table 2.7 compares results from ligand tifrations on fresh 

samples with those on frozen, stored and defrosted samples. For both samples the 

concenfration of Cu complexing hgands determined in defrosted samples was higher 

(factor 1.2 and 1.3 for M 4 and M 6, respectively) compared to that in fresh samples. 

Differences in the calculated conditional stability constant for the CuL complex (logK'cuO 

and the alpha coefficient ( logacuL) between fresh and frozen samples were small when the 

uncertainty (not quantified) of the method is taken into account. Changes leading to the 

different results may include the de-naturalisation of organic material in the sample, 

resulting in alterations in its complexing capacity for Cu. Moreover, the loss of labile Cu to 

the walls of the contauier would lead to an over-estimation of the ligand concenfration in 

the defrosted sample. 

For the calculations it was assumed that the difference in the labile Cu 

concenfration in fresh and defrosted samples was lost from the total Cu concenfration. 

It can be concluded that the preservation of the sample infroduced a high degree of 

error (20 - 30%) into the method, and considering other sources of uncertainty (e.g. 

analytical errors) it is possible that the error for the calculated ligand concenfrations 

exceeds 30%. 
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Table 2.6 - Typical results from analysis certified reference materials CASS-3 (coastal sea water), 
SLEW-2 (estuarine water) and SLRS-2 (river water) by AdCSV in batches of 10 ml. Confidence 
intervals refer to + 2 SD of the sample mean of n analysis. 'Overall mean' for IRSW refers to all 
contributing analysts and all methods (incl. ASV for Zn and Cu, and AdCSV with nioxime for Co). 
CRM Ligand/Buffer n AdCSV (nM) certified (nM) recovery (%) 

CASS-3 

Zn APDC/HEPES 8 17.7 ± 2.58 19.0 ±3 .82 93 

Cu Oxine/HEPES 4 8.17+ 1.05 8.14 ± 0.98 100 

Ni DMG/HEPES 6 6.48 ± 0.40 6.58 ± 1.06 99 

Co DMG/HEPES 5 0.53 ± 0.06 0.70 ± 0.15 76 

SLEW-2 

Zn Oxine/HEPES 5 15.8 ± 1.59 16.8+ 2.10 94 

Cu Oxine/HEPES 4 22.2 ± 2.54 25.5+ 1.73 87 

Ni DMG/Borate 3 12.7+ 1.05 12.1 ± 0.92 105 

Co DMG/Borate 5 0.82 ± 0.09 0.93 ± 0.14 88 

SLRS-2 

Zn APDC/HEPES 5 16.2 ± 0.77 15.9+ 1.40 102 

IRSW Ligand/Buffer n AdCSV (nM) IRSW mean (nM) n recovery (%) 

Zn APDC/HEPES 8 29.2 ± 2.1 28.1 ± 2.0 14 104 

Cu Oxine/HEPES 6 11.7+ 1.1 11.0 ± 1.0 19 106 

Cu Tropolone/HEPES 3 10.8 ± 0.8 11.0± 1.0 19 98 

Ni DMG/Borate 5 5.8 + 0.5 5.7 + 0.6 15 101 

Co DMG/Borate 4 0.34 ± 0.01 0.35 ± 0.02 11 100 
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Table 2.7 - Comparison of two ligand titrations (M 4 and M 6) carried out with fresh (F) and with 
defrosted (D) samples after several months of storage, using equal methods and conditions. 
Comparison of three ligand titrations carried out with defrosted sample MZ 21. The Tropolone 
concentration was 0.3 mM, the pH was buffered at 7.8. CUT and CUL - total dissolved and AdCSV 
labile Cu concentration, respectively, CUL % - proportion of labile Cu in percent, CL -
concentration of Cu complexing organic ligands fomring Cu complexes with tihe conditional 

Sample S pH CUT CUL CUL Method C L logK'cuL logOcuL 
field nM nM % nM 

M 4 35.7 8.04 193 88.7 78 F 87 11.7 4.7 

171 66.7 39 D 103 11.9 4.9 

M 6 36.1 8.07 126 64.2 69 F 51 12.1 4.8 

130 68.0 52 D 65 11.8 4.6 

MZ21 36.0 8.30 36.6 1.59 4.3 D 35 12.7 5.2 

D 38 12.0 4.7 

D 41 13.0 5.6 
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However, freezing did not affect the estimation of the stabiHty constant beyond the 

uncertainty inherent in the tifration method. With respect to ligand concenfrations the 

results confradict Apte and Gardner et al. (1990) , who reported that freezing as a technique 

for sample preservation for ligand tifrations showed good results. 

The reproducibility of the tifrations was assessed by calculating the standard error 

for the results from three tifrations on the same sample (Table 2.7, M Z 2l) . The errors 

remamed below 1 0 % for the ligand concenfration (CL = 38±2 .8 n M , n = 3 ) . The errors for 

the stability constant and the alpha coefficient of the CuL complex were half log units 

GogK'cuL = 12.6±0.5 and logacuL = 5 .2±0.5 , botii n = 3) . 

2 . 6 CONCLUSIONS 

Stripping voltammetry techniques have been chosen as the main analytical tool for 

the work presented here because of its sensitivity, speciation capabiHty, portability and 

adaptability to a wide range of concenfrations. The high sensitivity of stripping 

voltammetry methods enabled dfrect determination of frace metals at sea water 

concenfrations without preconcenfration steps. High sensitivity and portability enabled 

speciation studies to be carried out within hours of sample collection, and with minimal 

disturbance of the natural chemical equilibrium. 

Stripping voltammetry methods have limitations. The labile frace metal fractions 

and ligand concenfrations, which are determined by voltammetric speciation studies and 

ligand tifrations, are operationally defined. This limits the comparability of speciation 

results acqufred using different methods, and inter-comparison between different metals. 

Specific to this study, Cu speciation results from A S V and AdCSV studies were carried out 

at different detection windows, and therefore results are not directiy comparable. Ideally, 
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samples for ligand titrations should be analysed directly after collection, as the alteration of 

samples dioring storage may lead to speciation changes. Voltammetry has only lunited 

multi-element capabilities, compared to ICP-AES and ICP-MS methods. 

Overall, the stripping voltanmietric methods employed proved to be very suitable 

for this study. Good analytical performance was achieved. 
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Chapter 3 

On-line Monitoring of Dissolved Cu, Zn, Ni and Co in 

Huelva Ri'a and the Gulf of Cadiz 

3 . 1 ABSTRACT 

Geochemical processes in estuarine and coastal waters have an important temporal 

and spatial variability, resulting in changes in metal speciation and dissolved element 

concentrations. Therefore, surveys that are aimed to improve our imderstanduig of metal 

behaviour in such systems benefit firom high-resolution, interactive sampling campaigns. 

This chapter discusses a high-resolution approach to coastal monitoring and the 

application of an automated voltammetric metal analyser for on-line measurements of 

dissolved trace metals in the Huelva estuary and Gulf of Cadiz, southwest Spain. 

The fully automated, PC-controlled metal monitor consisted of the analytical 

voltanmietric system, a sample and reagent transport system, and a syringe pump for metal 

standard additions. The system provided calibrated measurements of total dissolved Cu, 

Zn, N i and Co with a frequency of about 15-20 min. Surface samples (3 - 4 m depth) were 

obtahied using a continuous pumping system. The sample was filtered and UV-digested 

on-line.-Adjustment of voltanmietric parameters enabled the application of this system in 

highly contaminated estuarine and relatively pristine offshore coastal waters. 

Steep gradients and sfrong tidal variability were observed in the dissolved metal 

plume extending from the Huelva estuary into the Gulf of Cadiz. Total dissolved metal 

concenfrations measured on-line in the Gulf of Cadiz ranged from less than 5 n M Cu (< 3 

n M Ni) ca. 50 km off-shore to 60 - 90 n M Cu (5 - 13 n M Ni) in tiie vicinity of tiie Huelva 
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estuary. During tidal cycle studies in the estuary, dissolved Zn and Cu ranged from n M to 

jxM concenfrations. 

The chosen examples demonsfrated the adaptability of the metal monitor to a wide 

range of envfronmental conditions in the dynamic waters of estuaries and coastal seas. The 

near real time acquisition of dissolved metal concenfratibns at high resolution provided the 

information necessary for investigating small scale geochemical processes and enabled an 

interactive sampling campaign. This chapter is' an adaptation of a pubUshed paper 

(Braungardt era/. 1998). 

3.2 INTRODUCTION 

The growth of envfronmental awareness, the infroduction of new envfronmental 

laws and the efficient management of coastal zones has presented science with a challenge 

tiiat requfres competence in many disciplines, including the understanding of biogeo

chemical processes that affect pollutant behaviour in estuaries and coastal waters. As a 

result, an increased effort is made to monitor physical and chemical parameters in marine 

systems. 

Coastal waters are highly dynamic and complex systems, which are often 

characterised by steep physical and chemical gradients, both on temporal and spatial 

scales. Pollutants can be carried into coastal waters by several pathways, including riverine 

and atmospheric sources, and industrial discharges. A number of processes act upon the 

chemical speciation of pollutants and, consequently, thefr relative associations vidth 

dissolved, colloidal and particulate phases in the water column. For example, important 

factors influencing dissolved frace metal concenfrations in estuarine and coastal waters 
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mclude fresh water inputs, pH, redox conditions, tidal mixmg and resuspension of 

sediment, colloid formation and coagulation, precipitatioui sorption, biological cycling and 

organic complexation (e.g. Muller, 1996; Stumm and Morgan, 1996; Morris et al 1986; 

Foerstner, 1983). 

The dynamic nature of coastal waters requfres monitoring activities of frace metal 

distributions with a frequency and spatial resolution similar to those at which processes 

occur that affect metal behaviour (Achterberg et al 1999). fri the marine analytical field, 

in-situ monitoring techniques are becoming more widely used, as such methods allow the 

analysis of constituents at a higher frequency than fraditional discrete samplmg sfrategies 

(Andrew et al 1994; Johnson et al 1985). Additional advantages of in-situ metiiods are a 

reduced risk of contammation and loss of analyte, as sample handling is kept to a 

minimum. Sample preservation, fransport, storage and land-based analysis become 

unnecessary, and speciation studies can be carried out with minimal disturbance of the 

chemical equilibrium. 

In-situ analysis of physical properties of bodies of water (e.g. temperature, 

pressure, conductivity) have a long fradition, and tiie measurement of fluorescence, 

turbidity, dissolved oxygen with mstiaraientation mounted on CTD systems during 

oceanographic surveys has become common practice (Klinkhammer et al 1997; Bearman, 

1995; Riley et al 1975). The development of automated instrumentation utilising 

segmented continuous-flow analysis (CFA) in the 1960s allowed ship-board on-line 

analysis of nifrate, nitrite, phosphate, silicate and ammo acids in sea water (Johnson et al 

1985; Riley al 1975). More recently, flow-injection analysis (FIA) has been used in-

situ in combuiation with a variety of detection methods includiag specfrophotometry 

(Fe(II), Fe(III) and nutrients) and chemiluminescence (Fe, Cu and Mn) (Bowie et al 1998; 

Bowie era/. 1995; Andrew era/. 1994; Coale er a/. 1992; Efrod era/. 1991). 
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Latest developments of ship-board trace metal monitoring techniques include fully 

automated on-line voltammetric analysers, which are robust, reliable and relatively cheap. 

Electrochemical methods, especially stripping voltammetry, are particularly suited for 

biogeochemical trace metal studies because of their capability to detect a wide variety of 

metals directly in differing sample matrices, and their applicability to (operationally 

defined) dissolved metal speciation (see Chapter 2). Successful applications of stiippmg 

voltammetiy in open ocean (Achterberg and van den Berg, 1994a), coastal (Achterberg et 

al. 1999; Braungardt et al 1998; Achterberg and van den Berg, 1996; van den Berg and 

Achterberg, 1994; Tercier and Buffle, 1993) and estiiarine waters (Whitworth et al 1998; 

Braungardt et al 1998) confirmed the suitability of this method for on-line surveys. 

This chapter discusses the application of an automated on-line metal monitor in the 

Huelva estuary and the Gulf of Cadiz, southwest Spain. This coastal system receives 

metal-rich water firom rivers, which rise m an miportant mming area and flow through 

industrial zones. As a consequence of the enhanced metal inputs and tidal water 

movements, high spatial and temporal variability of dissolved metal concentrations occur. 

The aun of the study was to gain a better understandmg of the complex physical and 

biogeochemical processes that affect the behaviour and variability of dissolved metal 

concentiations. Therefore, a high resolution in-situ on-line monitoring sttategy was the 

preferred option over discrete sample collection followed by land-based laboratory analysis 

of the trace metals. 

Stripping voltammetry methods were chosen because they enabled the use of a 

single analytical technique for dissolved trace metal determinations at concentrations 

ranging fiom pico to micro moles per litie in samples with a wide salinity range. A 

modification of the fully automated on-line voltammetric metal inonitoring system 

78 



described by Achterberg and van den Berg (1996 and 1994a) was used for the near real 

tune high resolution analysis of surface waters from the river bank and onboard ship. 

The automated application of Adsorptive Cathodic Stripping Voltammetry 

(AdCSV) methods allowed the direct determmation of dissolved Zn, Cu, N i and Co in 

natural water samples. The use of stripping voltammetry precludes laboratory-based pre

concenfration or matrix removal steps, which are required before analysis of salhie samples 

using Inductively Coupled Plasma - Mass Specfroscopy (ICP-MS) or Graphite Furnace 

Atomic Absorption Specfroscopy (GFAAS). 

3.3 T H E HUELVA ESTUARINE A N D COASTAL SYSTEM 

A n important objective of TOROS was to investigate tiie distribution and fransport 

of frace metal from tiie Tmto/Odiel estuarine system mto the Gulf of Cadiz (Figure 3.1). 

Shelf waters and sediments in the Gulf of Cadiz have been reported to be enriched with 

frace metals, especially Cu, Zn and Cd (Palanques et al. 1995; Van Geen et al. 1991). 

Published research suggested the Tinto and Odiel rivers as a possible source for metals to 

tills sea area (Van Geen er a/. 1997; Leblanc era/. 1995; Palanques er a/. 1995; Nelson 

and Lamothe, 1993). Surface waters in the Gulf of Cadiz move m a south-easterly 

direction, following the coast line, and are enfrained by the flow of Atlantic water through 

tiie Sfraits of Gibraltar (Ochoa and Bray, 1991). This has raised concerns about a possible 

enrichment of the western Mediterranean Sea with frace metals originating in the Gulf of 

Cadiz (Van Geen era/. 1991; Van Geen era/. 1988). 
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Figure 3.1 - Location of the Gulf of Cadiz, major rivers and the sulphide bearing Iberian Pyrite Belt 
in the southwest of the Iberian Peninsular. The inset shows the confluence of the Tinto and Odiel 
estuaries to form Huelva Ria. 
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Only the main characteristics of the study area are summarised here; a more 

detailed account is given in Chapter 4. The Rio Tinto and Rio Odiel are two small rivers, 

which originate in a heavily reworked area of metalliferous ironing in the Iberian Pyrite 

Belt (Leblanc et al. 1995) (Figure 3.1). The massive sulphide ore bodies in the Pyrite Belt 

are rich in metals, especially Zn, Pb and Cu, with traces of Cd, A g and Au. A long history 

of mining (Thombum, 1990) has left a legacy of large quantities of mme tailings, slag and 

processed ore within the catchments of the Rio Tmto and Rio Odiel. 

The two rivers have low average discharge volumes (annual mean: 3 m^ s"̂  and 15 

m^ s"\ respectively), with a large seasonal variation (Borrego-Flores, 1992). As a result of 

the oxidation of sulphides (see Chapter 4) in the catchment, the fresh water of the Tinto 

and Odiel rivers is exfremely low m pH (pH 2.2 - 3.5) and high in metal concenfrations 

(e.g. Rio Tmto: 0.3 - 2.6 m M Zn, 121 - 856 \M Cu, 1.2 - 16.7 \M N i and 0.78 - 6.0 yM 

Cd, see Chapter 4). The two rivers join in a common estuary (inset in Figure 3.1) at the city 

of Huelva, an important industrial cenfre in the southwest of Spain. Among the industries 

which discharge effluents into the estuary are paper and fertiliser plants, ore roastmg 

facilities, titanium dioxide and copper production plants, oil refineries and sewage works. 

3.4 METHODS 

3 .4 .1 REAGENTS 

The quality, preparation and purification of de-ionised water (MQ), reagents (HCl, 

HNO3, NH3, metiianol, Oxme, D M G , APDC, Borate, HEPES) and metal standard 

solutions have been described in Chapter 2. 

Mixed reagents for the on-lme voltammetric analysis were prepared on a daily basis 

from tiie appropriate stock solutions of HEPES, Borate, Oxine and D M G . Total dissolved 
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Cu and Zn were determined simultaneously in the presence of Oxine (2x10'^ M , final 

cone.) and HEPES (pH 7.8, 0.01 M). Total dissolved N i and Co analysis was carried out m 

the presence of D M G (2x10"^ M) and HEPES (0.01 M) during the first two TOROS 

surveys (November 1996, and June 1997). For the surveys in April 1998, and October 

1998, N i and Co was determined m the presence of D M G (2x10"^ M) and Borate (pH 8.4, 

0.01 M) (all final concentrations). The substitution of Borate for HEPES resulted in a 

better separation of the N i and Co peaks, probably as a result of the different pH. Addition 

of 250 III of mixed reagent to 10 ml samples in the voltammetric cell gave the required 

AdCSV ligand concenttations and pH values (method adapted fiom Achterberg and van 

den Berg, 1994b). 

Mixed standards for ICP-MS and ICP-AES were prepared fiom Specttosol Stock 

Solutions (Al , As, Cd, Co, Cu, Fe, hi, Mn, N i , Pb, U and Zn, Merck) in HNO3 (0.015 M) . 

For field work, several batches of each reagent and standard were packed 

separately in sealed plastic bags, in order to have a clean reserve should a bottle of reagent 

get spilled or contammated. 

3 . 4 . 2 CLEANING PROCEDURES FOR EQUIPMENT 

Sampling containers for dissolved ttace metal analysis were made fiom high 

density polyethylene (HDPE, Nalgene). Sample bottles were cleaned by soaking in 

detergent (Pyroneg, one week), followed by a rmse with distilled water. Subsequentiy the 

botfles were immersed in H C l (50%, Analar, one week), rinsed in M Q , immersed in HNO3 

(2 M , Analar, one week) and finally rinsed with copious amoxmts of M Q . The cleaned 

botties were filled with H C l (0.01 M , quartz distilled) and stored in two layers of scalable 

plastic bags. PTFE (Teflon®) containers, filter holders and other equipment were soaked m 
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detergent (Pyroneg), rinsed with distilled water and immersed in HGl (1 M , Analar), 

followed by a rinse with M Q . 

Membrane filters (WCN: cellulose nitrate, 47 mm, pore size 0.45 \xm, Whatman) 

were soaked in H C l (0.01 M , one day), rinsed and stored in M Q . 

Tubing for underway sampling was made j&om polyvinylchloride (PVC, braided, 

12 mm inner diameter, ID). Tubing for peristaltic pumps was made firom high-strength 

silicone (Altesil™, Altech) or Santoprene®. This tubing was cleaned by pumping detergent 

(Pyroneg) through, followed by deionised water, H C l (1 M , Analar, left in the tubuig 

several days), and M Q . A l l other tubing in contact with sample or reagents during on-line 

analysis was made ftom PTFE. PTFE tubing was cleaned by pumping H C l (0.1 M) 

through, followed by M Q . 

3 . 4 . 3 INSTRUMENTATION 

3 . 4 . 3 . 1 F i e l d I n s t r u m e n t a t i o n 

During the coastal survey on board the Spanish oceanographic vessel B/0 Garcia 

del Cid, a M A R K EI CTD package (Neil-Brown) was mounted on a 24 bottle rosette 

(General Oceanics). The CTD package included sensors for transmittance, fluorescence 

and dissolved oxygen, hi addition, conductivity and temperature were measured 

contuiuously (every 5 - 30 s) by a T/S system (SeaBird). The T/S sensors were mounted 

close to the sea water inlet of the conduit (PVC), which supplied the ship's laboratories. 

Salinity was calculated fiom both conductivity sensors and compared with calibrated 

measurements in discrete surface samples, taken from rosette-mounted bottles. 

During land-based surveys and estuarine ttansects with small boats, conductivity 

measurements were carried out with a combination Conductivity-Temperature-pH (CTpH, 
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purpose-built) meter and conductivity field instruments (model 52E, pHOX). For 

conversion to salinity, the instruments vî ere calibrated against a series of standards of 

known salinity (S = 0 - 35.6). Measurements of pH were carried out with the CTpH meter, 

combined with a pH glass electrode (Merck) and reference electrode (double junction 

Ag/AgCl , Merck), and with digital instruments (model HI 9025, H A N N A ) with 

combination electrodes (HANNA). The pH meters were calibrated on a daily basis with 

buffers for pH 4.0 ± 0.02 and pH 7.0 ± 0.02 (Merck). The redox potential (Eh) was 

measured using digital field mstruments (modeLHI 9025, H A N N A ) with a Combuiation 

Redox electrode. Each Eh measurement was compared with a ZoBell standard (theoretical 

Eh = 0.430 V against standard hydrogen electrode), and corrected accordingly. No 

corrections were made for temperature, as the error this introduces was deemed negUgible 

within the accuracy of the method (Nordstrom, 1977). Dissolved oxygen was measured 

with a digital field instrument (model YSI 55, Yellow Sprmg Industries, USA), which also 

provided temperature measurements. 

3 . 4 . 3 . 2 ICP-MS 

Total dissolved metal concentrations in samples from the Rio Tinto, Rio Odiel, and 

the upper Tinto and Odiel estuaries were analysed by ICP-MS. The instrument used was a 

PlasmaQuad PQ2+ Turbo (VG Elemental), fitted with a double pass spray chamber (Scott) 

and a nebuliser for high soHds (Galan). The analysis was carried out with the forward 

power set to 1350 W, and with the following gas flow rates: coolant gas 16 1 min ' \ 

auxiliary gas 1.0 1 min'^, and nebuliser gas 0.851 min"^ 
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3 . 4 . 3 . 3 V o l t a m m e t r i c E q u i p m e n t 

The determmation of dissolved concentrations of Zn, Cu, N i and Co in discrete 

samples taken m the Huelva estuary and Gidf of Cadiz -was carried out with two near 

identical systems, each consisting of a hanging drop mercury electrode (HMDE, V A 663 

Stand, Metrohm) connected to a pAutolab voltammeter (EcoChemie) and interface for the 

mercury electrode (IME, EcoChemie). Samples were analysed in batches (10 ml) under the 

control of specialised software ('GPES', EcoChemie), running on a PC. For details 

regarding voltammetry see Chapter 2. 

3 . 4 . 3 . 4 O n - l i n e V p l t a m m e t r i c M o n i t o r 

The continuous underway sampling with a torpedo-shaped fish (EGPPER-1) is 

illustrated in Figure 3.2. KIPPER-1 was designed and constructed specifically for this task 

from mild steel at the University of Plymouth. A braided tube (ID: 16 mm, PVC) was 

inserted into a bore that lead from the front of KIPPER-1, through its cenfre and out m 

front of the holding ring. The braided tube contained the sample pick-up tube (ID: 12 mm, 

PVC), leading to tihe peristaltic sample pump, which was positioned hi the ship's 

laboratory. The design and weight (ca. 40 kg) of KIPPER-1 ensured that the sampling 

hose pointed forward and was kept at a constant depth (ca. 4 m) at speeds between one and 

12 knots. KIPPER-1 was coated with metal-free epoxy-based paint (Intemational Pamt 

Ltd.). It was deployed from a winch oii a sfrong wfre about 3 m away from the side and 

about 4 m below the hull of the ship, which reduced the risk of sample contamination from 

the ship's hull. The braided tubing was attached to the lower part of the winch cable, which 

was covered with water resistant tape to reduce the risk of metal contamination. 

Continuous pumping (peristaltic piraip, Watson-Marlow with Santoprene® pump tubing, 
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ID: 15 mm.) of large volumes of sea water ( 1 - 2 1 min"^) flushed the pick-up tubing and 

allowed equilibration of the material (PVC) with the metal levels in the sampled water (van 

den Berg and Achterberg, 1994). 

A schematic diagram of the automated metal monitoring, system is shown in Figure 

3.3. From the peristaltic samplmg pump, PTFB tubing (ID: 0.6 mm) lead to the continuous 

on-line sample pre-treafctnent in two steps (filtration and UV-digestion) and to the 

automated metal monitor. On-line filtration was carried out with a tangential flow filtration 

unit made from an adapted Swinnex filter holder and fitted with a membrane filter (WCN, 

47 mm, pore size 0.45 |am). The blocking of filter pores by particles was rninimised by a 

high volxune cross-flow (0.5 - 1 1 min"'). Filter changes were necessary approximately 

every four hours in estuarine waters and once daily in coastal waters. 

Filfration was followed by on-line UV-digestion of dissolved organic matter. This 

step was necessary to break down surfactants and natural metal-complexing organic 

ligands, which may interfere with the voltammetric analysis of total dissolved metals 

(Achterberg and van den Berg, 1994b). The UV-digestion imit contained a medium 

pressure mercury vapour lamp (400 W, Photochemical Reactors) surrounded by a quartz 

glass coil (ID: 1.0 mm, length ca. 3.5 m). A fan attached to the U V unit ensured that the 

sample temperature remained around 70°C. The sample cooled to ambient temperature 

during its ttansfer from the UV-digestion unit to the voltammetric cell. 

The two voltanunetric systems described in Section 3.4.3.3 were converted into 

fully automated frace metal monitors for on-line analysis. Each metal monitor included a 

voltammeter, M E , elecfrode (HMDE), sample and reagent fransport system (SRTS) and 

syringe pump (Cavro), all of which were confroUed using a portable PC. 
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Figure 3.2 - Set-up for continuous underway sampling with KIPPER-1 for high resolution 
automated ship-board analysis of dissolved trace metals in surface waters. 
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Figure 3.3 - Schematic representation of the automated metal monitor. The continuous 
underway pumping system and sample pre-treatment (left box) is linked to the ftilly 
automated, computer controlled voltammetric metal monitor (right box), which operates in 
batch mode. 
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The monitors were identical, with the exception of the SRTS, which in system I 

was a commercially available unit (EcoChemie). The SRTS for system II was purpose-

built at the University of Plymouth for the TOROS project and provided identical functions 

to those of the EcoChemie unit. The automated analysis was carried out under the control 

of the 'EAS' software (EcoChemie), which had been modified to control the SRTS, the 

syringe pump, and to perform data quality verification and storage (see below). 

The path of the sample to and vwthin the SRTS is illustrated in Figure 3.3. A 

peristaltic pump conveyed the pre-treated sample to the sample loop (system I: 10.00 ± 

0.01 ml, system II: 9.90 + 0.01 ml; n = 8), which was enclosed by two inert three-way 

valves (coated with PTFE, Cole-Parmer). The valves were set in a position that allowed the 

flushing of tiie loop with sample water (ca. 15 ml). In this way, the wall of the tubing was 

equilibrated with the metal concentiation in the sample. After flushing, the valves were 

actuated to empty the water contained in the sample loop into the voltammetric cell by 

means of nitrogen gas (oxygen fiee N2, 1 bar). Subsequentiy a peristaltic reagent pump 

delivered mixed reagent (250 pi, PC-timed) to the voltammetric cell. After de-aeration of 

the sample (oxygen free N2) the measuring cycle was carried out. A syringe pump received 

signals from the PC software (RS 232 interface) specifying the volume of metal standard to 

be dispensed to the voltammetric cell for the intemal calibration of each measurement. 

After completion of the analysis, two more peristaltic pumps were activated, one to discard 

the sample, the other to carry out a rinsing cycle with M Q (3 x 12 ml, PC-timed). This 

prepared the cell for the next sample. PTFE tubing was used throughout the monitor, with 

the exception of the pump tubing, which was high sfrength silicone (AlteSil™, Altech) or 

Santoprene®. 
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Figure 3.4 - Flow diagram of software-controlled analytical cycle during automated analysis with 
the voltammetric metal monitor. The cycle starts with three voltanunetric scans and ends with data 
storage and printing of results. Details see text. Adapted from Achterberg (1993). 
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A flow diagram of the sample analysis cycle is presented in Figure 3.4. After three 

voltammetric scans (see Chapter 2), the average peak height (ipo) and relative standard 

deviation (RSD) was calculated. If the RSD was below a pre-set value (e.g. 8%), a 

standard addition was made. Three voltammetric scans were followed by the calculation of 

average peak height (ipi) and RSD. The RSD test was repeated and if passed the ratio ipi; 

ipO was calculated to test the increase in peak height. In case of i p i : ipo ^ 2, the sensitivity 

(S) was calculated by dividing the increase in peak height (Aip) by the concentration of 

added standard (AC). The analyte concentration in the sample aliquot was calculated as 

C = ipo/S. Data storage and printmg of the results conclude the measuring cycle. 

However, in case of a failed RSD test, a fourth scan was carried out. If the RSD test 

for the four scans failed, the scan that differed by more than the pre-set criterion firom the 

mean was discarded and a fifth scan was carried out. If the RSD test failed again, another 

scan was rejected, no additional scan was initiated and the RSD test following the 

calculation of the average peak height was ignored. If the standard addition was 

msujHicient to increase the peak height two-fold, another standard addition was carried out, 

the volume of which was estunated fiom the mcrease m peak height following the first 

standard addition. 

3 . 4 . 4 SAMPLING A N D ANALYSIS 

3 . 4 . 4 . 1 O n - l i n e M o n i t o r i n g o f d i s s o l v e d C u , Z n , N i a n d C o 

In June 1997, and October 1998, on-line metal monitoring was carried out almost 

continuously for eight days and seven days, respectively, onboard the B/0 Garcia del Cid. 

High resolution on-line measurements of dissolved metals were performed along estuarme 

transects and in the coastal sea, usmg two automated voltammetric metal monitors for the 

simultaneous analysis of Zn and Cu (system I), and N i and Co (system II). 
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On-line metal analyses were carried out during tidal cycle (TC) studies in the 

Huelva estuary. During TCs, the monitoring instrumentation was deployed at one 

geographical point over a 13-hour period to record a time series of the tidal variability of 

physico-chemical parameters and metal concentiations. In the upper and mid-estuary, TCs 

were carried out j&om a mobile laboratory (Ford Transit van) positioned on the bank of the 

estuary (Figure 3.5). A petiol generator (240V, 2.5 kW) was used to supply the power. A 

continuous sample pick-up was made up from a braided P V C hose (ca. 50 m length, ID: 12 

mm), the end of which was anchored some distance (typically 10 - 30 m) from the shore. 

The inlet was held ca. 50 cm below the surface by a PVC-covered lead doughnut and a 

float, which were fastened to the hose and the anchor with nylon rope. During the survey in 

October 1998, a TC was performed from the B/0 Garcia del Cid, which was anchored 

close to the mouth of the estuary. The KIPPER-1 was used as sample pick-up in the same 

way as described for underway monitoring. 

During the TC studies, discrete samples were taken at hourly intervals, either firom 

the shore or with the facilities available onboard ship (see Section 3.4.4.2). These samples 

were used for mter-comparison with results from the automated on-line analysis. 

On-line frace metal analysis was carried out using square wave adsorptive cathodic 

stripping voltanunetry (AdCSV, see Chapter 2). Before the analysis, the sample was 

purged for 120 and 200 s (Zn/Cu and Ni/Co, respectively) witii oxygen free N2 (Afr 

Liquide). In-between cathodic scans, the purge was repeated for a short time (15 s). The 

wide range of dissolved metal concenfrations in the Huelva estuary and Gulf of Cadiz 

requfred the adaptation of analytical parameters used. Typical parameters for the analysis 

of relatively pristine water in tiie outer Gulf of Cadiz and highly polluted estuarine water 

are given in Table 3.1. 
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Figure 3.5 - Set-up for contmuous sampling with an anchor and float, with the mobile laboratory 
stationed on the bank of the estuary. Sample is pumped through filter and UV-digestion unit into 
the automated metal monitor. 

Table 3.1 - Typical parameters for square wave cathodic stripping voltammetry during ship-board 
analysis of total dissolved Cu and N i in surface waters of the Gulf of Cadiz (nM range) and in the 
mid-Odiel estuary (low pM range). Values in brackets refer to the simultaneously analysed metal 
(i.e. Zn with Cu, and Co with Ni). nd - not determined. 
Voltammetric Parameter 
Concentration Range 

Cu (Zn) 

nM 

Ni (Co) 

nM 

Cu(Zn) 

low | i M 

Ni (Co) 

low [3M 

Deposition potential (V) -0.5 -0.8 -0.5 -0.97 

Deposition time (s) 40 40 0 2 

Stirrer setting (max. 6) 5 5 0 1 

Scan Frequency (Hz) 100 100 50 50 

Initial potential (V) -0.2 -0.8 -0.2 -0.8 

Final potential (V) -1.3 -1.2 -1.3 -1.2 

Step potential (mV) 2.4 2.4 4.9 4.9 

Modulation ampl. (mV) 25 25 10 10 

Reduction potential (V) -0.45 (-1.02) -0.97 (-1.04) -0.45 (-1.02) -0.97 (-1.04) 

LOD (nM) 0.48 (0.81) 0.21 (0.24) nd nd 

Linear range 25(35)nM 20 (25) nM 4 (7 ) |JM l (2 )nM 
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The calculation of tiie dissolved metal concentiation was based on one standard 

addition only. The linear range of certain sets of parameters (deposition time, stirring rate) 

was tested in the laboratory. Parameters were set at the beginning of an on-line survey 

according to the range of metal concentiations expected. Regular checks (on screen or print 

outs) were carried out in order to detect any calculated metal concentiations outside the 

Imear range of the set parameters, or the mitiation of multiple standard additions by the 

program (see Figure 3.4) in combination with non-linear current responses. When 

necessary, analytical parameters were adjusted when passing through areas of higher (or 

lower) concentiations during on-line surveys. The preconcentiation efficiency could be 

adjusted (factor 2 - 4) by changmg the stirrer rate witiiout interrupting the on-lme analysis. 

3 . 4 . 4 . 2 D i s c r e t e S a m p l e s 

During TC studies in the upper estuary, discrete surface samples were taken from 

the shore. Water was collected with a bucket (attached to a nylon rope) which was thrown 

into the water from the shore. The bucket was rinsed three times before it was used to rinse 

and fill an acid-cleaned container (10 1) with sample. Filfration (WCN, pore size 0.45 |am) 

was carried out within two hours of collection. For frace metal determinations, acid 

cleaned Nalgene filter holders (500 ml) and vacuum hand-pumps were used in a 'clean 

space' set up in the mobile laboratory. Between samples, the filter holder was rinsed with 

M Q . The ffrst batch of filfrate (100 - 150 ml) was used to rinse filter paper and filter holder 

with the sample. Filfration blanks (MQ) were filtered before the ffrst sample and between 

two samples at some stage during the TC, and analysed with the discrete samples in 

Plymoutii. The filtered samples were acidified (ElNOa, pH 2) in a laboratory at the 

University of Huelva. Analysis of total dissolved Zn, Cu, N i and Co, among other metals, 

was carried out by ICP-MS. For the analysis the samples were diluted (> 50 tunes) in 
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HNOs (0.015 M) , in order to reduce interference from the saline matrix. Indium (10 |J.g 1 , 

Specfrosol, Merck) was used„as intemal standard in all samples, blanks and standards to 

compensate for instrumental drift during analysis. Certified reference material (SLRS-2) 

was used to verify the analytical performance. 

During the TC at the mouth of Huelva estuary, discrete samples were taken from 

Niskin bottles, which were deployed on the CTD rosette of the B/0 Garcia del Cid and 

fired at a depth of seven to eight mettes. Trace metal clean Niskm bottles (NERC, 

Southampton Oceanography Centte, SOC), that had been modified for open ocean ttace 

metal work and contained no intemal metal parts were used throughout the survey (Morley 

et al. 1993). Samples were filtered (WCN, pore size 0.45 |am) within two hours of 

collection in a laminar flow hood set up in the ship's wet laboratory following the 

procedure described above. Samples were acidified with H C l (pH 2) onboard and analysed 

with voltammetric methods at the University of Plymouth. For voltammettic analysis of 

total dissolved Zn, Cu, N i and Co samples were subjected to LTV-irradiation (see Chapter 

2). Square wave A d C S V was carried out in batches of 10 ml: Zn in the presence of 200 |aM 

A P D C and 0.01 M HEPES, Cu in the presence of 20 | i M Oxfrie and 0.01 M HEPES, N i 

and Co simultaneously in the presence of 200 | i M D M G and 0.01 M Borate. The scanning 

frequency was 50 Hz, and typical values were 2.44 mV for step potential and 25 mV for 

step amplitude. The deposition time ranged between 5 s and 60 s, depending on the metal 

concenfration encoimtered. 

M Q blanks were analysed on a daily basis and before the analysis of discrete 

samples. To 10 ml of M Q the appropriate reagents were added at the same concenfration as 

for sample analysis (see previous paragraph). Voltammetric parameters were set as for 

sample analysis, with the exception of an extended deposition period of 60 s (Zn, Cu, and 

Ni) or 120 s (Co, Cd), and a scanning frequency of 10 Hz. 
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3.5 RESULTS A N D DISCUSSION 

3 . 5 . 1 A N A L Y T I C A L PERFORMANCE 

Typical values of M Q blanks gave concentrations of 0.35 - 0.5 n M Zn, 0.25 - 0.35 

n M Cu, 0.05 - 0.1 n M N i . Blank concentrations of Co and Cd were below the limit of 

detection (see followmg paragraphs). The metal concentrations foimd in M Q blanks were 

the combined result of metals in M Q (typically 0.2 n M Zn, 0.2 n M Cu), and contamination 

m pH buffer (HEPES, Borate) and AdCSV ligand (Oxme, D M G , APDC). Though care 

was taken to work as clean during field work, as imder normal laboratory conditions, 

experience showed that metal concentiations in blanks during surveys were more variable 

and somethnes higher than in the laboratory in Plymouth (e.g. June survey: maximum 

concentiation in reagent blank was 0.46 ±0 .16 n M Cu). Contamination intioduced during 

handling of tiie aliquot in field situations may have been the cause for this. For metal 

concentiations in filter blanks see Chapter 4. 

For the determmation of tiie limits of detection ( L O D ) , sea water fiom the Gulf of 

Cadiz was analysed in batches using multi-elemental determmations with AdCSV and 

conditions as for on-line analysis and with the voltammetric parameters for the 

concentiation range < 20 n M (Table 3.1). The sea water concentiations were 3.8 ± 0.27 n M 

(LODzn = 0.81 nM) for Zn (n = 4), 2.61 ± 0.16 n M (LODcu = 0.48 nM) for Cu (n = 5), 

2.88 + 0.07 n M ( L O D N I = 0.21 nM) for N i (n = 4), 0.49 ± 0.11 n M (LODco = 0.33 nM) for 

Co (Table 1). The L O D was calculated as three times the standard deviation. 

For single element determinations in discrete samples, the L O D was lowered to 

LODzn = 0.27 nM, LODcu = 0.21 nM, LODwi = 0.21 n M and LODco = 0.28 nM, by 
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optimising voltammetric parameters for individual metals, and using A P D C instead of 

Oxine as AdCSV ligand for Zn (Table 3.2). 

The linear range of the AdCSV method was determined in laboratory experiments, 

using the on-line parameters listed m Table 3.1. With parameters used for the 'nM' range, 

the linear range was 35 n M Zn, 25 n M Cu, 20 n M N i and 25 n M Co. By lowering the 

stirring rate during deposition, decreasing the deposition time, and altering the scanning 

parameters and deposition potential, the linear range for direct analysis without sample 

dilution was extended to 7 \iM Zn, 4 |aM Cu, 1 |aM N i and 2 p-M Co (parameters as for 

'low |J,M' range ia Table 3.1). 

The accuracy of the analytical methods, including calibration, was verified by the 

analysis of certified reference materials. For stripping AdCSV techniques, estuaruie water 

(SLEW-2) and coastal sea water (CASS-3) were U V - irradiated and several batches were 

analysed after neutralisation with quartz distilled NH3 for total dissolved Zn, Cu, N i and 

Co. During each ICP-MS run five aliquots of river water (SLRS-2), were analysed using 

the same instrument parameters as for blanks, standards and samples. Good agreement of 

analytical with certified Values was achieved (see Chapter 2 for AdCSV, Chapter 4 for 

ICP-MS). 

The reproducibility of on-line analysis with the automated metal monitor was 

determined using filtered, UV-hradiated and acidified (HCl, pH 2) sea water, which was 

sampled in the vicinity of Plymouth. This sea water contauied Zn, Cu, N i and Co values at 

concentrations sunilar to levels observed in the coastal waters of the Gulf of Cadiz. Several 

aliquots of this water were analysed in automated on-line mode for Zn with Cu and N i with 

Co in multi-elemental mode. In order to adjust the pH of the acidified aliquots, NH3 was 

added to the voltammetric cell with the mixed reagent. 
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Table 3.2 - Parameters and reagents for the determination of limits of detection in sea water 
samples. LOD calculated as three times standard deviation of the mean. HEPES - pH 7.8, Borate -
pH 8.4. : 
Voltammetric Parameter Zn Cu Ni Co 

AdCSV ligand APDC Oxine DMG DMG 

pH buffer HEPES HEPES Borate Borate 

Deposition potential (V) -1.2 -1 -0.9 -0.95 

Deposition time (s) 60 60 60 120 

Stirrer setting (max. 6) 5 5 5 5 

Scan Frequency (Hz) 100 50 50 50 

Initial potential (V) -0.8 -0.2 -0.8 -0.8 

Final potential (V) -1.3 -0.6 -1.2 -1.2 

Step potential (mV) 2.4 2.4 2.4 2.4 

Modulation ampl. (mV) 25 25 . 25 25 

Reduction potential (V) -1.05 -0.43 -0.93 -1.08 

LOD (nM) 0.27 0.21 0.21 0.28 

97 



The relative standard deviation in this experhnent was 6.3 % for Zn (44.8 ± 2.82 

nM, n = 15), 5.9% for Cu (23.2 ± 1.38 n M , n = 16), 7.4% for N i (10.4 ± 0.77 nM, n = 13) 

and 6.1% for Co (1.9 ± 0.12 nM, n = 13). Values determmed during batch analysis (n = 3) 

of this sample were in good agreement with the on-line analysis (42.9 + 2.3 n M Zn, 22.4 ± 

0.78 n M Cu, 9.89 ± 0.52 n M N i and 2.0 + 0.13 n M Co). Errors given represent one 

standard deviation of the mean concentration. 

3 . 5 . 2 ENVIRONMENTAL D A T A 

Two tidal cycle studies and a coastal survey are used to illustrate the suitabiUty of 

the metal monitor for the extreme fluctuations of physico-chemical parameters and metal 

concentrations in the highly contaminated Huelva estuary and the adjacent coastal sea. 

3 . 5 . 2 . 1 T i d a l C y c l e S t u d y a t H u e l v a B r i d g e 

The TC at Huelva Bridge was carried out in June 1997. Huelva Bridge crosses the 

estuary downstream from where the narrow and highly branched Ria del Odiel becomes 

wider to form the Huelva estuary (Figure 3.6). The location was chosen to monitor the 

water with the lowest possible salinity at a point that was accessible with the mobile 

laboratory. 

The exfreme conditions with respect to metal concenfrations and sample matrices 

encoimtered during this TC made the semi-automated dilution (x 100) of samples during 

parts of the automated on-luie analysis necessary. 
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Figure 3.6 - Locations of tidal cycle studies at Huelva Bridge and off the mouth 
of the Huelva estuary. 
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Figure 3.7 - Time series of conductivity, pH and dissolved Cu over a full tidal 
cycle at Huelva Bridge in June, 1997. The lower part shows on-line 
voltammetric measurements of Cu jfrom the river bank and results from ICP-
MS analysis of discrete samples, taken parallel at hourly intervals. Error bars 
refer to the maximum error of ± 8 % between repeated scans during on-line 
analysis (AdCSV), and to standard deviation of sample replicates during 
discrete analysis (ICP-MS). LW and HW: low and high water at Mazagon 
harbour (situated at the mouth of Huelva estuary). 
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Figure 3.7 shows the time series recorded at Huelva Bridge. Conductivity and pH 

minima indicated that at this location low water occurred approximately one hour later (ca. 

11:00 h) than at the mouth of the estuary (vertical dashed line marked ' L W ) . The salinity, 

calculated from conductivity, varied between S = 9.0 and S = 34.8. Results from the on

line monitoring (closed cfrcles in Figure 3.7) during the TC show that total dissolved Cu 

concenfrations increased steeply during the ebb tide and reached a maximum of 121 pM, 

which coincided with the minimiun conductivity and pH. 

Discrete samples were analysed by ICP-MS, and results for total dissolved Cu 

(squares in Figure 3.7) compared well with the on-line frend. Sunilar observations were 

made for Zn, N i and Co (data not presented). It is apparent from the comparison of the two 

sets of data that on-line high resolution monitoring provided the time and concenfration of 

the Cu maximum, while the discrete sample analysis failed to fully resolve the tidal 

variability during the monitored period. 

From the close agreement between discrete and on-luie data it follows that 

contamination from carry-over between samples during on-line measurements was 

minimal. Because the two sets of data resulted from the analysis of different samples, and 

not sub-samples of one another, no dfrect statistical comparison was made. Small 

differences in the results for Cu between the on-lme and discrete samples are likely to have 

been genuine differences in the samples, which were taken with a spatial distance of a few 

mefres from each other by the sample-pick up and from the shore, respectively. This inter

comparison of samples and analytical methods showed that the on-line monitoring 

produced good quality data in exfreme sampling matrices and over a wide range of metal 

concenfrations. 
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3 . 5 . 2 . 2 S h i p - b o a r d T i d a l C y c l e a t M a z a g o n 

In October 1998, a TC was carried out on board the B/0 Garcia del Cid, which was 

anchored about three kilometres off the mouth of the Huelva estuary (Figure 3.6). The 

strong marine influence on water composition at this location was reflected in the small 

salinity range encountered during the TC (S = 36.33 - 36.35, Figure 3.8), and the salinity 

tune series did not yield information related to flood and ebb tides. 

Total dissolved Zn was analysed on-line by AdCSV and the ligand Oxme (multi-

elemental determination of Zn with Cu), while discrete samples were analysed by AdCSV 

using the ligand A P D C (single-elemental determination of Zn). The Zn concentration in 

discrete samples agreed well with the results from on-line analysis. The slightly lower 

concentrations in some discrete samples could be the result of differences in sampling 

position. Discrete samples were taJcen at a depth of seven to eight metres, compared to on

line analysis for which the water was pumped firom a depth of three to four metres, using 

KIPPER-1. During a ship-board TC, the contamination risk firom the ship while anchored 

is higher than during steaming. Tidal movement is slow and, therefore, the sampled water 

may have been in contact with the ship's hull for a sufficient tune to pick up contamination, 

and surrounding water may have been mixed with cooling water fi-om the ship's engine. 

However, the vessel was allowed to swing on anchor and the sample pick-up was deployed 

fi-om a winch off the side of the ship. Therefore, except during slack water, it is likely that 

KIPPER-1 was under less influence from these sources of contamination than the Niskin 

bottles deployed firom the stem of the ship. Under these circumstances, it is difficult to 

judge whether or not contamination from the vessel influenced either or both sets of data, 

and its possible magnitude. 
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Figure 3.8 - Time series of conductivity and dissolved Zn over a full tidal cycle 
off the mouth of Huelva estuary, October, 1998. The lower part shows ship
board on-line voltammetric measurements of Zn and results from AdCSV 
analysis of discrete samples, taken parallel at hourly intervals. Error bars refer 
to the maximum error of ± 8 % between repeated scans during on-line analysis 
(AdCSV), and the standard deviation of sample replicates during discrete 
analysis. L W and HW: low and high water at Mazagon harbour. 
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A broad peak of total dissolved Zn (100 - 136 nM) was observed around tlie time of 

low water. A gradual decrease of the Zn concentration followed, reaching a plateau of 31 -

38 n M , which represented the background concentration in nearshore waters of the Gulf of 

Cadiz. The high number of data points (n = 41) from on-line analysis gives a clearer 

picture of the frend m dissolved Zn concenfrations, compared to the discrete samples (n = 

13). Furthermore, high-resolution time-series can be used with greater confidence for the 

calculation of metal fluxes across the mouth of an estuary, compared to results from a 

single sample collected at the mouth of an estuary during conventional fransects. 

3 . 5 , 2 . 3 O n - l i n e M o n i t o r i n g i n t h e G u l f o f C a d i z 

During the ffrst part of the coastal survey, the B/0 Garcia del Cid cruised for four 

days between the coast line and the 500 m depth contour in the Gulf of Cadiz. During this 

period, a total of 52 separate discrete depth profiles were obtained, for which the vessel 

stopped at each sampling station. Contmuous underway sampling was carried out in 

parallel and the voltammetric metal monitor operated ahnost continuously onboard ship. 

Interruptions of on-line analysis (10-30 minutes) were necessary occasionally to retrieve 

data for safe storage. About 250 on-line measurements were completed with each of the 

monitoring systems during steaming and while the vessel was on station. Figure 3.9 

illusfrates the high spatial resolution attainable with the automated monitoring approach 

(3.5 - 4.5 km between measurements along the cruise frack), compared witii tiie spacuig of 

discrete sampling stations (ca. 10 -15 km). 
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Figure 3.9 - Comparison between the resolution of discrete sampling stations (stars) and on-line 
automated measurements (circles) of Cu in the Gulf of Cadiz, June, 1997. 
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Contour plots of total dissolved Cu and N i concentrations in surface waters of the 

Gulf of Cadiz are shown in Figure 3.10 and Figure 3.11, respectively. The gridding method 

used to create the contour plots is described m Chapter 5. Enhanced metal levels were 

observed around the mouths of the Huelva (15 n M Cu, 5 n M Ni) and the Guadalquivir (20 

n M Cu, 15 n M Ni) estuaries. Metal concentrations decreased with increasing distance from 

the coast to levels below 5 n M Cu and 3 n M N i at the seaward limit of the sampling area. 

This decrease can be explained by the mixing of metal-polluted estuarine with more 

pristine North Atlantic waters (see Chapter 5). Dissolved metal concenfrations measured 

during this survey are comparable to those published by van Geen et al. (1991), who 

reported typical dissolved metal concenfrations over the Spanish shelf of 6.6 rmiol kg"' Cu 

and 3.4 nmol kg' ' N i , and levels of 8 - 21 nmol kg' ' Cu and 3 - 6 nmol kg' ' N i some 40 km 

to the southwest of the Guadalquivfr estuary. 

The waters of the Guadalquivfr river and estuary have been reported to have a 

lower metal concenttation (9.5 - 16 nmol kg' ' Cu and 2 1 - 7 9 nmol kg' ' N i , (Van Geen et 

al. 1991); 27 - 86 n M Cu and 20 - 48 n M N i , this study), compared to levels observed at 

the mouth of the Huelva estuary (50 - 600 n M Cu and 7.5 - 290 n M N i , this study, see 

Chapter 4). However, the metal signal from the Guadalquivfr river at the time of sampluig 

extended farther mto the Gulf of Cadiz than the Huelva river plume (Figure 3.10 and 

Figure 3.11). The more distinct Guadalquivfr metal plume, compared with that from the 

Huelva, was related to the higher discharge volume of the Guadalquivfr (annual mean: 

Guadalquivfr 164 m^ s'', Huelva 18 m^ s'', Palanques et al. 1995; Borrego-Flores, 1992). 

Moreover, the state of the tide at the time of the ship's passage can have an important 

influence on the frace metal concenfrations encountered, as wil l be discussed in Section 

3.5.2.4. The distribution of dissolved metals and salinity in the Gulf of Cadiz this wil l be 

discussed in detail in Chapter 5. 
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Figure 3.10 - Total dissolved Cu (nM) distribution in the Gulf of Cadiz, June, 1997. The contour 
plots were created jfrom ca. 250 on-line measurements, performed on-line during four days of 
steaming onboard B/0 Garcia del Cid. 
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Figure 3.11 - Total dissolved Ni (nM) distribution in the Gulf of Cadiz, June, 1997. The contour 
plots were created from ca. 250 on-line measurements, performed on-line during four days of 
steaming onboard B/0 Garcia del Cid. 
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3 . 5 . 2 . 4 T i d a l V a r i a b i l i t y o f t h e H u e l v a E s t u a r y P l u m e 

The second part of the coastal survey in June was dedicated to the investigation of 

development and the tidal variability of the Huelva estuary metal plume. During this part 

of the survey, a spatial resolution of 1.5 - 2 km for the on-line .metal measurements was 

achieved by reducing the cruise speed from eight to four knots,' and the ship steamed 

continuously without stopping for discrete sampling. Figure 3.12 shows dissolved Cu 

concentrations along a cruise track, which was followed twice. On day 15, 2.5 hours after 

low water (LW), concentrations of 60 - 80 n M Cu were measured to the southeast of the 

Huelva estuary. One day later, concentrations were considerably lower (13 - 14 n M Cu) 

when the same area was sampled around the time of high water (HW). On both days, Cu 

concentrations increased steeply upon returning to the estuary, whereby Cu levels were 

higher on day 15 at L W (> 500 nM), than on day 16, when the vessel returned two hours 

ahead o f L W ( > 200 nM). 

The observed variations in metal concentrations illustrate the unportance of tidal 

movement for the timing of nearshore coastal surveys, and the value of a sampling regime 

with high spatial resolution. Observed metal concentrations off the Huelva Ria during the 

first part of the survey (Figure 3.10 and Figure 3.11) and on day 16 suggested this estuary 

to be a mmor contributor of Cu and N i to the Gulf of Cadiz. However, the analysis during 

day 15 showed that highly contaminated water is discharged from Huelva Ria with the ebb 

tide. The combination of the low fresh water volume with high metal cbncenfrations 

caused small salinity changes in the vicinity of the Huelva Ria to be accompanied by 

marked tidal gradients in dissolved metal concenfrations. Monitoring exercises performed 

during different states of the tide are therefore requfred for the investigation of estuarine 

plumes, especially where low water discharges are combined with high contammant 

concenfrations. 
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Figure 3.12 - On-line ship-board measurements of total dissolved Cu in the plimie of the Huelva 
estuary during two consecutive days. The size of cu-cles relates to the concentration; the cruise 
direction is indicated by arrows. The star denotes the first measurement of each day. On day 15 
(16) the survey began 2.5 hours after LW (1 hour before LW) and took 10 hours (12.5 hours). LW, 
HW - low and high water at Mazagon harbour. 
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3.6 CONCLUSIONS 

On-line analysis of total dissolved Zn, Cu, N i and Co was carried out with two fully 

automated voltanunetric metal monitors ui the Huelva estuary and Gulf of Cadiz. The in-

situ apphcation of automated AdCSV methods in waters with a wide range of salinities (S 

= 9 - 36.7) and metal concentrations (nM - pM) was possible because analytical parameters 

were adapted to the sample matrix and the metal level encountered, and each measurement 

was calibrated by standard additions. 

Comparisons between on-line and discrete samples confirmed the high quality of 

the acquired data, during laboratory experiments and during tidal cycle studies in the field. 

Careful planning of the sampling succession and intermediate acid-cleaning of the under

way samplmg system was important in order to reduce the risk of cross-contamination and 

enable to move from areas of high to those of low dissolved metal concentrations. 

On-line data was acquured at a rate of four to five measurements an hour, providmg 

information about the timing and magnitude of dissolved metal maxima during tidal cycle 

studies. By comparison, the full resolution of small-scale features was left to chance by 

discrete sampling at hourly intervals from the shore. Therefore, high-resolution monitoring 

exercises in estuaries are a valuable tool for geochemical studies, as the resulting data can 

be used with a higher level of confidence, than data gathered at lower resolution. 

In the Gulf of Cadiz, the on-line analysis,revealed clearly defined areas of elevated 

dissolved metal concenfrations associated with discharges from the Huelva and 

Guadalquivfr estuaries. Near real time metal analysis enabled the close investigation of 

tidal variations in the Huelva estuary plimie and facilitated an uiteractive sampling 

campaign, which was of particular value in this system, which is characterised by small 

salinity changes and sfrong metal concenfration gradients. The data collected during on-
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line analysis highlighted the importance of a high-resolution approach to contaminant 

monitoring at different states of the tide. Especially in highly dynamic coastal systems, the 

undertaking of a single survey would only provide a snap-shot of the state of the coastal 

envuomnent and may therefore result in erroneous conclusions to be drawn. 
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Chapter 4 

Dissolved Trace Metals in Rio Tinto, Rio Odiel and their 

Common Estuary 

4 . 1 ABSTRACT 

This chapter uitroduces the geographic and geologic setting of the Rio Tmto and 

Rio Odiel and outlines the natural and industrial processes that lead to the high level of 

contamination found hi the rivers and their common estuary. 

Observed dissolved metal concentrations in the lower reaches of the rivers were 

extremely high, resultuig ui a combined mean daily flux of ca. 27 t Zn, 13 t Mn, 9.3 t Cu, 

210 kg N i , 480 kg Co, 93 kg Cd, 180 kg Pb and 5.2 kg U into the estuary. The mam source 

of this metal contamination was the discharge of acid mine drainage generated in the 

metalliferous niining area of the Iberian Pyrite Belt. VariabiHty in riverine metal load is 

discussed, and it is postulated that a seasonal cycle dependent on rainfall may have been an 

important factor in influencmg this variability. The observed removal of metals from 

solution at low pH values (< 2.5) may be explained by redox-cycluig uiduced by micro

organisms. 

The estuarine behaviour of dissolved Fe, Mn, Zn, Cu, N i , Co and'Cd was congruent 

fri the upper reaches of both estuarine branches. In the Ria del Tinto an initial mcrease in 

dissolved metal concenfrations was attributed to remobilisation from the sediment, 

whereby reductive dissolution, acid-leaching and injection of metal-rich interstitial waters 

may have been important processes. Downsfream of this dissolved metal maximum, the 

behaviour of Fe, Mn, Zn, Cu, N i , Co and Cd was broadly conservative during all surveys. 

114 



A similar behaviour was observed in the Ria del Odiel. h i the upper estuarine regions, the 

low pH value was the controUmg factor for the metal behaviour. Removal of Zn, Cu, N i 

and Co from solution was observed at near-sea water salinities (S > 30) and pH values 

above five, and this process was largely complete for Zn, Cu, N i and Co at p H ~ 7.0. 

Cadmium remained conservative throughout the estuary. Lead exhibited stiong removal in 

the low saliiuty region because of its high particle affinity. The distribution of U was 

dominated by strong industrial sources within the estuary. 

Estuarine metal fluxes to the Gulf of Cadiz were estimated usmg a sunple 

extiapolation method. Results showed that the annual dissolved export of Zn (3700 t), Cu 

(850 t), N i (68 t) and Co (86 t) from Huelva Ria is several times higher than that reported 

in literature for some of the most polluted European rivers, including the Humber and 

Rhone. 

4.2 INTRODUCTION 

The utilisation of metals has a long history. Records of mining-related dispersion of 

metals in the envfronment during Phoenician and Roman periods have been found in 

fluvial sediment cores (Morales, 1999a) and in ice cores (Rosman st al. 1997). The 

intensification of metal exfraction from the 18* century on has left a legacy of dereliction 

and contanunation in mining areas. Soil, afr and water pollution are ubiquitous around 

active mines, and in many cases metal contammation has entered ground water resources 

or tiie food chaui (Featiierstone and O'Grady, 1997; Van Geen et al 1997; Miller et al 

1996; Jordao et al 1996; Gao and Bradshaw, 1995; Bowell and Bruce, 1995). Abandoned 

mines and tailings are potentially long-term sources of contamination, and the remediation 
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of water and soil quality is often expensive (Thornton, 1996). A thorough understandmg of 

the (bio)geochemistry of metal pollution in each particular case is needed in order to. be 

able to assess the impact on the enviroimient and biota and develop an effective 

remediation strategy. 

The biogeochemistry of metals released by mining activity is complex, and the 

impact of the pollution created depends largely on the geochemical character and 

neutralisation capacity of the receiving enviromnent. In areas of sulphide mineralisation 

the production of acid mine drainage (AMD) is a central process. Natural weathering, 

microbial activity and mining-related processes lead to the oxidation of sulphides, 

releasing metal-rich acid dramage (Bonnissel-Gissinger et al. 1998; Krauskopf and Bird, 

1995) . The presence of acidophilic bacteria and U V hght enhances redox cyclmg of 

sulphur, iron and other metals in acidic waters (Kkby and Elder Brady, 1998; Ehrhch, 

1996) . Neutralisation of A M D upon mixing with alkaline river or sea water leads to the 

precipitation of iron and other metals and the formation of ochres and metal-rich coatings 

on particles m the sediment (McCarty et al. 1998). Although the solubility and biological 

availabihty of metals to aquatic life is thus reduced, environmental hazards can arise firom 

the remobilisation of metal enriched sediments caused by changes in physical or chemical 

conditions, for example pH, redox potential and river flow. 

Estuarine systems exhibit very different characteristics, dependmg on the chemistry 

and morphology of the river catchment, geographic location (climate), biological 

productivity and anthropogenic influences. As a result, the metal/salmity relationships in 

estuaries may be conservative or deviate firom the theoretical dilution line. In any study of 

estuarine metal biogeochemistry, it is desirable to understand the solute/particle and 

colloidal interactions, sediment characteristics and transport, nutrient status, biological 

activity, metal speciation as well as chemical and physical master variables of the system. 
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Although many of these pomts were addressed within the TOROS programme, limitations 

in time and fundmg prohibited a comprehensive investigation of all aspects of the estuarine 

chemistry and biology. 

Interactions between dissolved and particulate phases have been considered 

important control mechanisms for the behaviour of metals in estuarine systems for a 

number of decades (Stumm and Morgan, 1996; Sholkovitz, 1978; Turekian, 1977). Benoit 

et al. (1994) suggested that the dissolved concentration of metals in shallow estuaries is 

mainly controlled by re-suspension of colloidal and particulate matter firom bottom 

sediments, and by the establishment of a steady-state kinetic or an equilibrium partitioning 

of metals between the dissolved and solid phases. Gibbs (1986) highlighted the importance 

of riverme particles as carriers of trace metals to estuaries. Experiments showed that 

differential coagulation (related to composition and size) of mineral particles upon the 

initial stages of estuarine mixing (salinity S < 1) resulted in a segregation of settiing floes 

containing different proportions of adsorbed tiace metals. Moreover, the chemical 

behaviour of elements determine their dissolved speciation, which ui turn influences their 

estuarine behaviour. For example, flocculation of humic acids during estuarme mixing 

generally has a more pronounced effect on the removal of Cu, than of Zn or Cd from 

solution, because tiie speciation of the former is domhiated by organic and of the latter by 

inorganic complexation (Zwolsman et al 1997 and references therein). However, Benoit et 

a/. (1994) found in six Texan estuaries that the colloidal fraction of Cu, as detemuned by 

ulfrafilfration m filfrate (0.4 |im) usmg a 10 k Dalton filter, is small compared to that in the 

truly dissolved phase. 

The behaviour of each metal varies between estuaries and differences have been 

observed in some cases within estuaries. Hereby, seasonal differences in fluvial discharges 

and primary productivity, leading to changes in tiie redox conditions and the concen-
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trations of metal complexing organic ligands can be of particular importance (Zwolsman et 

al. 1997). Conservative mixing with sea water has been observed for a variety of metals, 

mcludmg Cu (Elbaz-Poulichet et al. 1996; Shiller and Boyle, 1991), N i (Paucot and 

WoUast, 1997; Shiller and Boyle, 1991; Wmdom et al. 1988) and Pb (Elbaz-Poulichet et 

al 1996). At near-neutral pH the non-reactive dilution of river with sea water has been 

explained with the short residence tune of water in estuaries of large rivers (e.g. Amazon, 

Mississippi), or with the complexation of dissolved metals (e.g. Cu) by" organic Ugands. 

The time necessary to reach equilibrium in adsorption/desorption processes may be in the 

order of days or weeks (Comber et al 1996). 

Conversely, the rapid formation of colloids (Fe, Mn, organic material), then: 

flocculation and settling has been well documented for the initial stages of estuarine 

mixing. At near-neutral pH values the scavenging of trace metals by freshly formed sohds 

and the adsorption onto particles resulted in a pronounced removal of frace metals from 

solution m many estuaries (Zwolsman and Van Eck, 1993; Johnson and Thornton, 1987; 

Ackroyd a/. 1986; Duinker, 1980). 

The phenomenon of dissolved metal maxima at low or mid-salinities is well knovra 

for Cd (Zwolsman et al 1997; Kraepiel et al 1997; Shiller and Boyle, 1991; Elbaz-

Poulichet et al 1987). Experimental data suggests that desorption of Cd from particles in 

estuaries takes place as a resuh of increasing ionic sfrength and the formation of stable 

chloride complexes (Comans and van Dijk, 1988). The addition of Mn, Zn, Cu, Cd, Co 

and/or N i to the dissolved phase during estuarine mixing has been observed, and in some 

estuaries this occurred after an mitial decrease in dissolved concenfrations m the low 

salmity zone (Simpson et al 1998; Chiffoleau et al 1994; Zwolsman et al 1993; 

Zwolsman and Van Eck, 1993; Windom et al 1988; Ackroyd et al 1986; Morris et al 

1986; Morris et al 1982 and references therein). Where anthropogenic inputs were 
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excluded, the mobilisation of metals from the solid phase was attributed to: (a) desorption 

from riverine or re-suspended particles in the high turbidity zone, (b) infusion of pore 

waters, (c) reductive dissolution from oxidised sediment layers in concurrence with the re-

mineralisation of organic matter, (d) exposure of sediments and oxidative dissolution of 

sulphides from deeper sediment layers, (e) localised acidification due to the oxidation of 

fron sulphides and organic matter, and/or (f) cyclical shifts between oxidising and reducing 

conditions during inundation. 

Hereby, metals exhibit differential behavioiir. For example, the distribution of N i 

and Co hi salt-marsh sediments of the Scheldt estuary has been exclusively linked to the 

redox cycle of Mn, while Cd, Cu, Pb and Zn were associated with Fe and M n 

oxyhydroxides and tiieir cycling at the oxic/suboxic boundary (Zwolsman et al. 1993). 

The degree of net mobihsation from sediments depends not only on oxidation or reduction 

rates of the mineral phases involved, but also on the processes acting upon the metal once 

dissolved. Of particular importance are metal solubihty, organic (e.g. Cu, Ni) or inorganic 

(e.g. Cd) complexation of the dissolved species, sorption, precipitation or co-precipitation 

with newly forming solid phases in the oxic water column (Sunpson et al. 1998; Millward 

and Turner, 1995; Zwolsman et al. 1993; Yeats and Loring, 1991). 

This chapter discusses the geochemical behaviour of dissolved frace metals in the 

Rio Tinto and Rio Odiel, which rise in one of the world's most important sulphide 

mineralisations, the Iberian Pyrite Belt. The Tinto/Odiel river-ocean system is unusual in 

its character. The rivers originate ca. 100 km from the sea in the arid southwest of Spain 

and carry low water volumes (combined mean ~ 18 m s ), which are highly influenced by 

A M D . The observed low pH values are slowly neufralised in the estuarine mixing zone, 

where industrial discharges compUcate the pollution chemistry. Elevated frace metal 

concenfrations are carried into the coastal sea, where dispersal, complexation, biological 
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uptake, as well as colloid and particle interactions may act upon the distribution of metals 

and their partitioning. 

The socio-economic and ecological interest of the Tinto/Odiel system is apparent 

fi-om its location. The city of Huelva is an important port, industrial base and population 

centre, where 250,000 inhabitants are exposed to air, water and soil pollution and the 

consumption of local sea food is tiaditional. The tourism resort of Punta Umbria is located 

to the west of the Huelva estuary. A n important ecosystem, the Marismas del Odiei, a 

Nature Park with European Union status as a Special Area for the Protection of Buds and a 

UNESCO Biosphere Reserve is formed by salt marshes and barrier islands on the western 

boundary of the estuary. In the east, a string of beaches, camping grounds and hotels 

separate the Huelva estuary from the Donana National Park, a wetland located in the delta 

of the Guadalquivfr and Guadiamar estuaries. 

The aims of the research presented in this chapter were: 

• to establish the sources and quantitative variation of metal contamination in the 

Tinto/Odiel system, 

• to define and understand the geochemical behaviour of dissolved frace metals m the 

estuary, and 

• to evaluate the contribution of the Tinto/Odiel system to the metal load ui the Gulf 

of Cadiz. 

The objectives in the pursuit of these aims were: 

• to carry out surveys of the rivers, estuary and coastal sea during different seasons, 

• to measure master variables during the surveys, e.g. pH, conductivity, temperature, 

dissolved oxygen concenfration and redox potential, 
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• to take samples for laboratory analysis of total dissolved trace metal and dissolved 

organic carbon concentrations, and 

• to estimate trace metal fluxes from the estuary into the coastal zone. 

In order to gain a broad understanding of the riverine water composition a range of 

frace metals were investigated, fron, M n and A l were chosen because of thefr geochemical 

importance and redox sensitivity (Fe and Mn), and Zn, Cu, Pb and Cd as indicators specific 

to the mineralisation in the mdning area. Cobalt, N i and U were studied because these 

metals are not sfrongly enriched in the Iberian Pyrite Belt, and U was interesting because 

of its additional anthropogenic sources in the estuary. The investigations focussed on Zn, 

Cu, N i and Co for estuarine and sea water studies, because of their biogeochemical 

importance and toxicity (Forstner, 1980) and the different concenfration factors in the local 

geology. 

4.3 ENVIRONMENTAL SETTING 

The study area is situated in Huelva Province, southwest Spain. The area is hot and 

arid, with a high solar irradiation (1800 kWh m^ a'') and low annual precipitation (390 mm 

a'') (Izquierdo et al, 1997), The studied water courses drain parts of the Sierra de Aracena, 

on the western foothills of the Sierra de Moreno, and flow to the Spanish southem Atlantic 

coast, the Gulf of Cadiz. 
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4 .3 . 1 M E T A L M I N I N G I N T H E IBERIAN PYRITE B E L T 

The Iberian Pyrite Belt covers an area of about 250 km x 40 km, reaching from 

near the Portuguese Atlantic coast to the Guadalquivfr river valley in the east (Figure 4.1). 

More than 80 known deposits contained ca. 1700 Mt of sulphide ore (mined and reserves), 

and therefore, the Iberian Pyrite Belt is considered one of the most important sulphide 

mineralisations in the world (Leistel et al. 1998b). 

It is postulated that the ore deposits in the Iberian Pyrite Belt were formed during 

the Devonian period, by precipitation from hydrothermal fluids during a time of intense 

submarine volcanism. At thefr base associated stockwork formed, which is rich in pyrite 

(FeS2), chalcopyrite (CuFeSa) and other Cu ores. The outer and upper parts of the ore 

bodies contafri typically 50% S, 42% Fe, 2 - 8% Cu and 1 - 5 g f ' A u , and Pb-Zn-Ag 

enrichment is commonly found (Pons and Morales, 1998; Leistel et al. 1998a). The 

sulphide deposits formed were bmied by marine sediments, generating a volcano-

sedimentary series, which was folded into steeply dipping ore bodies in the late 

Carboniferous period (Thombum, 1990). Exposure and intense weathering of exposed 

sulphide ores resulted in the formation of metal enriched gossans with jarosite ores ((H, 

Na, K , NH4)Fe3(S04)2(OH)6) at thefr base (Leistel et al 1998b). 

The gossans and surroundfrig mineraUsations of the Iberian Pyrite Belt usually 

contain high concenfrations in Fe, Zn, Cu, Pb, Ag , As, Sb, B i , A u and Sn, and low values 

m M n and N i , while Co was found to be variable (Leistel et al 1998b; Sfrauss et al 1977). 

Calculations carried out by Van Geen et al (1997) illusfrated the exfreme enrichinent of 

the ores m the mmmg area with S (Enrichment Factor, EF = 1900), Pb, Zn and Cu (EF = 

630, 190 and 120, respectively) and moderate enrichment with Fe and Co (EF < 10) with 

respect to average crastal element concenfrations after Taylor (1964). The enrichment 

factors of A l , M n and N i (EF < 0.5) showed a sUght depletion of these metals in the area. 
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Secondary minerals (especially gossans) were worked for Cu, A g and A u by 

Phoenicians and Romans and possibly even earlier cultures (Leblanc et al. 1995; 

Thombum, 1990). More recently, mining activities in the Iberian Pyrite Belt intensified in 

the 16*̂^ century and again in the 19* century, when the Cu mines of the Rio Tinto were 

developed (Thombum, 1990). The location of important mines, mostly abandoned now, in 

the central mining area of the Iberian Pyrite Belt are presented in Figure 4.2. 

Underground mining, practised since Roman times, was relatively inefficient, 

leaving ca 85% of the ore in-situ. It was not imtil the intioduction of open cast mining and 

new methods of imderground mmmg m the late 19* century that efBciency mcreased, but 

so did the volume of overburden. At the same time, metallurgical processes were 

improved, enabling the tieatment of low-grade ores and old mine tailings. 

In addition to smelting, hydro-metallurgical processing became unportant, a system 

that produced a copper-rich Hquor, which was subsequently precipitated onto iron surfaces, 

for example rail tiacks, was developed (Thombum, 1990). The processing of ore 

accelerated the natural enrichment of water courses with metals and created air pollution, 

causing health problems and impoverished the vegetation in the mining district (Pons and 

Morales, 1998). In recent decades, ore was extiacted predominantiy for the production of 

sulphuric acid with sidelines in the production of Cu concentiate (20%) fiom low grade ore 

and overburden, and the processhig of gossans (cyanidation) to manufacture bullions 

containing 80% A g and 10% A u (Morales, 1998a). Today, the industiial landscape of the 

mining district is shaped by processuig facilities, opencast pits, overburden material, slag, 

processed ore and dams, which collect leachate before it is discharged into local water 

coiirses. 
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Figure 4.1 - The location of the Iberian Pyrite Belt and Gulf of Cadiz on the 
southem Iberian Peninsular. 

Figure 4.2 - Locations of important mines and affected river systems in the main 
mining area of the Iberian Pyrite Belt. Adapted from Achterberg et al (1999) and 
Bowler (1995). 
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4 . 3 . 2 Rio T I N T O A N D R I O O D I E L 

The area around the Mmas de Rio Tinto forms the centre of sulphide mining in the 

Iberian Pyrite Belt. It is located within a drainage basin covering 3352 W , which IS 

shared almost equally between the Rio Tinto and the Rio Odiel. Several small tributaries to 

the Guadiana and Guadalquivir (Figure 4.2) arise at the fringes of this mining area 

(Palanques aZ. 1995). 

The Rio Tmto and Rio Odiel are 83 and 126 km in length, respectively and have an 

aimual mean water discharge of approximately 3 m^ s"' and 15 m^ s"', respectively. Located 

m the arid southwest of Spain, river flow is directly related to rainfall (Borrego et al. 

1997), which is highly variable. During the summer the Rio Tinto may dry completely, 

while a high proportion (typically > 90 %) of the annual discharge occurs during a few 

days of wmter floods between October and March (Borrego-Flores, 1992). Long-term 

records from a gauging station in the Rio Tinto at Niebla (Morales, 1998b) show a cyclical 

pattern in the mean annual water discharge (Figure 4.3), which appears to be related to the 

North Atlantic Oscillation (Rodwell and Folland, 1999). Monthly long-term averages in 

water discharge indicate a distinct division into a wet autumn/winter and a dry 

spring/summer season. 

The Rio Tuito and Rio Odiel have the potential for considerable environmental 

impact, because of the high proportion of A M D in their upper reaches and thefr proximity 

to the sea. Cenfral m the production of A M D is the oxidation of sulphides of the form 

MeS2 (e.g. pyrite), which releases metals, sulphate and protons into aquatic systems: 

FeS2(s) + H20 + V202 ^ Fê ^ + 2S04̂ - + 2 i r (4.1), 

Fe^^ + V4O2 + ^ Fê "" + V2H2O (4.2), 

Fe^^+3H20 Fe(OH)3(s) + 3Hf' (4.3), 
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Fe^* + 2i4 H2O + V4O2 ^ Fe(0H)3 (s) + 2et (4.4), 

and, at low pH values (pH < 3.5): 

FeS2 (s) + 8H2O + MFe^"" t ; 15Fe^* + 2S04^- + 1SH" (4.5). 

The oxidation of pyrite (Reaction 4.1) occurs abiotically or by direct bacterial 

oxidation. Reaction (4.4) is predominantly abiotic at pH > 4.5 and slows down as the pH 

decreases. Below pH 4.5 the rate of this process is determined by bacterial activity. At 

lower pH values, reaction (4.2) is solely dependent on bacterial oxidation, and its rate 

determmes the rate of the chemical reaction (4.5). The processes described in equations 

(4.1) and (4.3) - (4.5) contribute to the progressive lowering of pH (Krauskopf and Bird, 

1995; Salomons, 1995; Banks et al. 1997). 

In the Rio Tmto and the upper Rio Odiel, ochre deposits can be found in the river 

beds, on boulders and along the banks. Hudson-Edwards et a/. (1999) identified purple-red 

alluvium derived fiom the mine tailings, pyrite-rich and orange-laminated alluvium, Fe-

rich cement, as well as sands and silts m the bed and overbank sediments of the Rio Tmto. 

Both rivers rise near each other and are similar in appearance in their upper 

reaches. The strong A M D character of the rivers is maintamed with low pH and high metal 

concentrations to the fiesh water limit at Niebla and Gibraleon, respectively (Figure 4.4). 

Copper and iron sulphates crystallise naturally in the hot climate along the bank of the Rio 

Tinto and historically these were collected as raw materials for medicines and dye-stuffs 

(Thombum, 1990). The precipitation of ochre is regarded as a major removal mechanism 

of iron fiom solution in A M D affected streams (McCarty et al. 1998; Webster et al. 1998; 

Boult et al. 1994). At low pH ochre formation may be accelerated by bacterial activity 

(Kuby and Elder Brady, 1998 and references therem; Ehrlich, 1996; Miller et al. 1996). 
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Figure 4.3 - Mean annual (A) and mean monthly (B) water discharges at a gauging 
station in the Rio Tinto atNiebla, from observations during the hydrological years 
of 1966/67 to 1991/92. The station has been out of service since 1996. Prepared 
from Morales (1998). 

Figure 4.4 - The Tmto/Odiel estuarine system. SJdP - San Juan del Puerto, HB -
Huelva Bridge. 
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Solids formed firom A M D may be well defined crystalline minerals or amorphous 

metal hydroxides and poorly crystalhsed oxyhydroxides. It has been shown that sulphate is 

an important constituent m some AMD-derived solids (Kirby and Elder Brady, 1998; 

Ehrlich, 1996; Wmland et al. 1991; Bigham et al 1990). 

Mining activity in the catchment of the Rio Odiel is less intense compared to that in 

the Rio Tinto, and a dam in the upper reaches of the Rio Odiel retains some of the metal-

rich suspended load (Nelson and Lamothe, 1993). As a result, the conditions in the lower 

Rio Odiel are less extreme with respect to dissolved concentrations of AMD-typical 

constituent (S04^', Fe, Zn, Cu, Co, Cd, A l and pH), compared to those in the Rio Tinto. A t 

the fiesh water limit of the Rio Odiel at Gibraledn, the river bed is formed by coarse sand, 

pebbles and boulders. The appearance of the river varies. Filamentous green algae growing 

on boulders have been observed in clear water, and on other occasions, the river bed was 

smothered with ochre deposits. 

Amils et al (1998) found tiiat algae and bacterial slunes in the Rio Tmto were 

associated with ochre layers and iron oxide concretions in the river bed, an occurrence also 

observed ui other mine adits and A M D affected rivers (Chapman et al 1996). A complex 

microbial community has been reported to thrive in the Rio Tinto, and its biodiversity has 

been compared to that in rivers of 'normal' pH (Amils et at. 1998). Amils et al observed a 

micro organism population that consisted of 95% bacteria, 4% algae and 1% fimgi 

(averaged over the seasons and length of river). Identified primary producers were mainly 

photosynthetic algae (65% of biomass) and prokaryotic chemolithotiophs ( lO' cells ml''), 

which derive their energy from sulphides. Diatoms appeared in dense blooms at several 

points in the river. Heterofrophic bacteria, filamentous fimgi and yeasts were also 

identified in biofilms on boulders, and in the river bed some predatory species were found. 
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Amils et al. suggested that this community of acidophiles takes part in the creation and 

maintenance of the unique conditions found in the Rio Tinto. 

4 . 3 . 3 R i A D E L T I N T O , R I A D E L O D I E L A N D H U E L V A R I A 

The Tinto/Odiel estuarine system can be divided into two shallow upper estuarine 

sections (Ria del Tinto and Ria del Odiel) and the navigable lower section (Huelva Ria) 

(Figure 4.4). It is located along a tide-dominated mixed-energy mesotidal coast with a 

mean tidal amplitude of 2.5 m (1.15 m and 2.8 m, at neap and spring tides, respectively). 

More extreme values may occur at equinox neaps and sprmgs, with tidal ranges between 

0.5 and 4 m, respectively. Huelva Ria is a well mixed estuary with a tendency to become 

partially mixed durmg spring tides. 

The upper tidal limit of the Ria del Tinto is located at a low weir, ca. 50 metres 

upstream firom a Roman bridge at Niebla. Between Niebla and San Juan del Puerto (SJdP, 

Figure 4.4), the upper estuary remams a narrow (10 - 30 m) and shallow (up to a few 

metres) channel. This fluvial part of the Ria del Tinto is similar to the Rio Tinto in 

appearance, and probably rarely experiences saline intrusion. Approximately one kilometre 

upstream of the road bridge at San Juan del Puerto, the estuary opens into a wide (several 

hundred meters) and shallow mudflat and salt marsh, which extends some distance 

downstream of the bridge. The abundance of fine sedmient and mineral phases Qarosite 

and otter hydrated sulphates, Borrego-Flores, 1992) identifies this area as the upper 

mixing zone. Downstieam of the bridge, the Ria del Tinto is navigable with a rigid 

inflatable boat (RIB) at high water. The main chaimel meanders through vegetated marsh 

and mudflats and deepens and widens after two to three kilometies into the lower Ria del 

Tinto. In this section, discharges from a cellulose factory and sewage works enter the 

estuary (Figure 4.5). The salt marshes on the northem bank of the lower Ria del Tinto have 

129 



been used to deposit pyrite ash from the ore processing industry (now grassed over) and 

are still used to stocljpile phosphogypsum, which is a by-product of phosphate fertiliser 

industry (Martinez-Aguirre and Garcia-Leon, 1997). Leachate from the phosphogypsum 

lagoons (4 - 6 m depth, ca. 4x10^ m^, Elbaz-Poulichet et al. 1999) contafriing frace 

elements (e.g. PO4, As, Pb and F), radioactive elements (e.g. U and Th) (Elbaz-Poulichet et 

al 2000; Martinez-Aguirre and Garcia-Leon, 1996), entered the estuary until a closed 

water cycle was constructed in spring 1998 (Morales, 1999a).-

The limit of tidal influence in the Ria del Odiel is not restricted by a physical 

barrier. It is located somewhere between a narrow tidal channel (Cano del Fraile) and the 

village of Gibraleon. The Caiio del Fraile is the main channel of the highly branched upper 

estuary. It leads through a densely vegetated salt marsh, and is partially navigable with a 

RCB at high water. The estuary widens some 100 mefres upsfream of Huelva Bridge, which 

forms the (arbifrary) boimdary with the Huelva Ria. 

The upper part of the Huelva Ria, between the Ria del Odiel and the confluence 

with the Ria del Tinto, is characterised by the industrial zone of Huelva on the eastern 

bank, and the Marismas del Odiel on the western bank (Figure 4.5). hi the 1960s and early 

1970s, an uidusfrial cenfre was developed between the city of Huelva and the bank of 

Huelva Ria. The industries include plants producmg titanium dioxide from Ausfralian 

black beach sand (ilmenite), fertiliser from North African phosphate rock, copper 

concenfrate and sulphuric acid from local ores, and other metallurgic industries xmder the 

umbrella of the Association of Chemical and Base Industries from Huelva (AIQB). In 

addition there is a ship yard, salinas for the production of indusfrial salt and a power 

station. Effluents from various mdustrial plants were discharged unfreated until 1985, 

when some confrol of industrial water disposal was infroduced (Borrego-Flores and 

Morales, 1998). 
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Figure 4.5 - The Tinto/Odiel estuarine system, showing the urban and industrial developments of 
Huelva in the context of agricultural land and nature reserves. The Marismas del Odiel, a Natural 
Park and UNESCO Biosphere Reserve are located to the west of Huelva Ria, and the reserve of the 
Estero Domingo Rubio is located between the lower Ria del Tinto and oil refineries. 
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However, direct discharges have been reported since then, including the continued 

release of dissolved and particulate Pb, U , Th and Ra-isotopes and phosphate firom the 

fertiliser industry (Perianez et al. 1996; Martinez-Aguirre and Garcia-Leon, 1996; 

Marthiez-Aguirre Of/. 1994b). 

The Marismas del Odiel on the western bank of the estuary are to some extent 

protected firom the influence of industrial and mining pollution by a circulation pattern that 

allows sea water from the Gulf of Cadiz to enter the salt marshes dfrectly. However, a 

study of halophytes (e.g. Zostera noltii, Spartina ssp.) in the Odiel salt marshes showed 

elevated concenfrations of Fe, Zn, Mn, Cu, Ti , Pb, As, N i and Cr, especially in specimens 

from the lower marsh. The concenfrations of Cu, Pb and Zn in the plants were considerably 

higher than levels mducing toxic effects in plants from non-polluted sites, indicatuig 

adaptations to long-term metal contamination (Luque et al. 1999). 

The lower Huelva Ria has been extended to the town of Mazagon by the 

construction of a breakwater, which is several kilomefres long. The main sea port is 

situated below the confluence witii the Ria del Tinto. Oil refineries are located between the 

harbour and tiie natural reserve of the tidal creek Estero Domingo Rubio. The main 

channel of Huelva Ria is dredged to ca. 12 meters, with its deepest point at the sea port (> 

20 m). 

4.4 METHODS 

4 . 4 . 1 R E A G E N T S A N D E Q U I P M E N T 

The quality, preparation and purification of de-ionised water (MQ), reagents (HCl, 

HNO3, NH3, metiianol, Oxine, D M G , A P D C , Borate, HEPES) and metal standard 

solutions for voltammetric methods have been given m Chapter 2, and for ICP methods 
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have been given in Chapter 3. Cleaning procedures for sampling bottles, filter holders and 

other equipment have been described in Chapter 3. 

For the determination of suspended particulate matter (SPM) concenttations, filter 

membranes (WCN, 47 mm diameter, 0.45 jim pore size) were dried to constant weight 

(50°C) and weighed. 

Filter holders (glass), sampling bottles (brown glass), tweezers (metal) and filters 

(OFF, 47 mm diameter, 0.7 jam pore size, Whatman) in contact with samples for dissolved 

organic carbon analysis (DOC) were ashed (450°C, > 4 hours) and wrapped into ashed 

aluminiimi foil for storage and ttansport. Special glass vials (10 ml), fitting into the sample 

changer of the DOC analyser, were also ashed. 

4 . 4 . 2 I N S T R U M E N T A T I O N 

4 . 4 . 2 . 1 F i e l d I n s t r u m e n t a t i o n 

Field instrumentation used during surveys onboard the Spanish B/0 Garcia del Cid 

and portable instruments for field measurements of conductivity, pH, temperature (T), 

dissolved oxygen (DQ) and redox-potential (Eh), togetiier with appropriate cahbration 

procedures, have been detailed in Chapter 3. 

4 . 4 . 2 . 2 I n s t r u m e n t a t i o n f o r T r a c e M e t a l A n a l y s i s 

Two near identical voltammetric systems were used for ttace metal analysis. The 

instrumentation used for discrete samples has been described in Chapter 2, and the 

automated voltammetric metal monitor for on-lme trace metal analysis has been described 

in Chapter 3. The total dissolved metal analysis in discrete samples using ICP-MS was 
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carried out as detailed in Chapter 3. For ICP-AES analysis of discrete samples a Varian 

Liberty 200 instrument was used. 

4 . 4 . 2 . 3 D i s s o l v e d O r g a n i c C a r b o n 

The analysis of dissolved organic carbon was carried out with the high temperature 

catalytic oxidation method (HTCO) using a Shimadzu TOC-5000 analyser and sample 

changer (78 positions). The oxidation column was a quartz tube filled with Shimadzu 

catalyst (0.5% Pt on AI2O3). 

4 . 4 . 3 S A M P L I N G P R O T O C O L 

The following sections give a detailed account of the discrete samples taken during 

the four scientific surveys, carried out within the TOROS programme: 

TOROS 1: 18 - 28 November 1996, 

TOROS 2:4 -21 June 1997, 

TOROS 3:10-29 April 1998, 

TOROS 4: 4 - 21 October 1998. 

The discrete samples taken during the surveys are given in chronological order in 

Table 4.1, and the sample locations are given in Figure 4.6 to Figure 4.12. Also mentioned 

in Table 4.1 are the times when on-line trace metal measurements were carried out, 

typically at a frequency of three to four analysis per hour for Cu, Zn, N i and Co. 
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Table 4.1 - Discrete samples obtained and on-line trace metal monitoring activities during the river 
and estuarine studies of the four TOROS surveys. FW - fresh water, SR - sample at San Juan del 
Puerto, TR - samples in Rio Tinto or Ria del Tinto, OR - samples in Rio Odiel, HR - Huelva Ria. 
TC - tidal cycle study, OL - on-line metal determination. GdC - B/0 Garcia del Cid, RIB - rigid 
inflatable boat. CN - Club Nautico, HB - Huelva Bridge, MZ - Ma2ag6n. 
TOROS 1, Nov'96 Day Sample ID: TOR-96-11- Method Remark 

FW, Rio Tinto 19 1 river bank 

FW, Rio Odiel 19 2 river bank 

Transect Ria del Tinto 19 3-12 RIB 

Transect Ria del Odiel 20 18-24 RIB parallel to 13-17 

Transect Huelva Ria 20 13-17 small craft parallel to 18-24 

Transect Huelva Ria 20 25-33 small craft following 24 

Transect Huelva Ria 25 44-50 Popeye CN to HB, OL Cu, 
Zn, Ni , Co 

Transect Huelva Ria 25 50-64 Popeye HB to MZ, OL Cu, 
Zn, Ni , Co 

TOROS 2, Jun '97 Day Sample ID: TOR-97-06- Method Remark 

TC, La Rabida 6 7-19 jetty OL Cu, Zn, Ni , Co 

TC, Huelva Bridge 8 20-32 estuary bank OL Cu, Zn, Ni , Co 

Transect Huelva Ria 15 HRl-HR13,G47bis GdC OL Cu, Zn, Ni , Co 

Transect Ria del Odiel 16 0R1-0R7 RIB 

Transect Ria del Tinto 17 SRI ,TRl-TRIO PTB 

Transect Huelva Ria 18 HRlbis - HR13bis, G47tris GdC OL Cu, Zn, Ni , Co 

FW, Rio Odiel 20 G l river bank 

FW, Rio Tinto 20 NI river bank 
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Table 4.1 - continued. 

TOROS 3, Apr'98 Day Sample ID: TOR-98-04- Method Remark 

FW, Rio Tinto 11 N l river bank 

FW, Rio Odiel 11 G l river bank 

TC, Mazagon harbour 12 M 1 - M 1 2 estuary bank OL Cu, Zn, Ni , Co 

TC, Club Nautico 16 C N l - CN13 jetty OLCu,Ni ,Co 

TC, Huelva Bridge 18 TC13 - TC25 estuary bank OL Cu, Zn 

TC, Mazagon 21 M Z l -MZ12 Cirry Tres OL Cu, Zn, Ni , Co 

Transect Huelva Rfa 24 HRI-HRIO Cirry Tres 

Transect Ria del Tinto 25 TRl-TRIO, TR2-2,TR7-7 RIB 

Transect Ria del Odiel 27 ORO - 0R7 RIB 

TOROS 4, Oct. '98 Day Sample ID: TOR-98-10- Method Remark 

FW, Rio Tinto 4 Rio Tinto E l river bank mining area 

FW, Rio Tinto 6 R T E 2 - 4 river bank between Niebla and 
mining area 

FW, Rio Odiel 6 ROEl,E2,E2a,E3 river bank between Gibraleon 
and mming area 

TC, Huelva Bridge 8 TC01-TC13 estuary bank OL Cu, Zn, Ni, Co 

Transect Ria del Tinto 15 TR 1 -10 RIB day 

Transect Huelva Ria 16 HR13-HR7,HR3-HR1 GdC 

Confluence 16 G48/96, G48/97 GdC 

SJ, Ria del Tinto 17 SJ bridge 

FW, Rio Tinto 18 NI river bank 

FW, Rio Odiel 18 G l river bank 

Transect Ria del Odiel 18 OR 1-7 RIB 

TC, Mazagon 19/20 G47/MZ 1 - 13 GdC OLCu,Zn,Ni , Co 
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Figure 4.6 - TOROS 1: Sampling positions in Ria del Tinto, Ria del Odiel and Huelva 
Ria, 19 and 20 November 1996. 

Figure 4.7 - TOROS 1: Sampling positions in Huelva Ria, 25 November 1996. 
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Figure 4.8 - TOROS 2: Sampling positions in the Rfa del Tinto (TR) and Ria del Odiel 
(OR), and Huelva Rfa (HR) in June 1997. The transect in Huelva Rfa was repeated 
during the same survey, revisiting the sampling positions (HR bis). 
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Figure 4.9 - Positions of tidal cycle studies, carried out during TOROS 2, 3 and 4 
surveys in the Huelva Ria. June, 1997: La Rabida and Huelva Bridge; April 1998: 
Huelva Bridge, Club Nautico, and Mazagon, position 'T3'; October 1998: Huelva 
Bridge and Mazagon, position 'T4'. 
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Figure 4.10 - TOROS 3: Sampling positions in the Ria del Tinto, Ria del Odiel, and 
Huelva Ria, April 1998. 

Figure 4.11 - TOROS 4: Sampling positions ui the Rfa del Tinto, Ria del Odiel and 
Huelva Rfa, October 1998. 
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Figure 4.12 - TOROS 4: Sampling positions in the Rio Tinto and Rio Odiel, between the fresh 
water end-member stations (Niebla, NI and Gibraleon, G l , respectively) and the upper reaches in 
the mining district of the Iberian Pyrite Belt. Embede de Cobre, Emb. de Gossan and Emb. de Agua 
are alkaline impoundments in which effluent from cyanidation processes is collected. 
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A l l bulk containers and sample bottles were acid washed as described in Chapter 3. 

Buckets (PVC) used for sample collection were acid washed initially and rinsed thoroughly 

with sample water ahead of each use. Between individual parts of the sampling campaign 

buckets were soaked overnight with H C l (10% v/v). A l l other contamers used for sample 

collection were rinsed twice with sample water before the sample was taken. Filled sample 

bottles were packed in a double layer of re-sealable plastic bags and stored in large plastic 

containers. Bulk contauiers were protected from contanunation with large plastic bags. 

During estuarine surveys measurements of conductivity, pH, temperature, dissolved 

oxygen, and during TOROS 2, 3 and 4, redox potential were carried out with suitable field 

instruments (see Chapter 3). 

Fresh water samples were collected from the river banks. Sample bottles (HDPE, 

see Chapter 3) were dipped directly into the water, rinsed, filled, and packed. Sample 

locations for the fresh water end-members were at Niebla in the Rio Tinto and at Gibraleon 

m the Rio Odiel. During TOROS 4, additional river samples were taken at sample 

locations between the source of the rivers in the mining area and Niebla and Gibraleon. 

The additional stations were selected from sites that are visited regularly by the local 

envfrorraient agency, the Jimta de Medio Ambiente de Andalucia (Medio Ambiente, 1998). 

In the upper estuaries samphng was restricted by accessibility. In the Ria del Tmto, 

the most upsfream sampluig station was the road bridge at San Juan del Puerto, from which 

a bulk sampling container (10 1) was filled with a bucket on a rope, hi the Ria del Odiel, 

the most upsfream sampling station was located in the channel Cano del Fraile, the exact 

position of which depended on the navigability during the survey (Figure 4.6, Figure 4.8, 

Figure 4.10 and Figure 4.11). 

In the shallow upper parts of tiie estuaries, sample collection along fransects was 

carried out using a RIB. When possible, sampling was started at high water at the most 
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upstream point navigable. Sampling criteria were conductivity changes and important 

discharge locations withm the estuary, for example effluent from the cellulose factory and 

sewage, works in the RJa del Tinto. 

In the lower Ria del Tinto, a small craft (ca. 5 m, glass fibre) was used for sample 

collection. Bulk contauiers (2, 5, or 10 1) were dipped into the water over the side of the 

boat. In Huelva Ria, a variety of vessels were used for sample collection. During the 

TOROS 1 survey, a small vessel {Popeye, ca. 12 m, glass fibre) was used for three axial 

fransects (Figure 4.6 and Figure 4.7). Bulk contamers were filled using a purpose-built, 

hand-operated vacuum pump and' siphon arrangement (Morley, University of 

Southampton). During TOROS 2 and 4 surveys, Huelva Ria samples were collected 

onboard B/0 Garcia del Cid, using 'clean' Niskin bottles (Chaper 3) mounted on the ship's 

CTD rosette (Figure 4.8 and Figure 4.11, respectively). During the TOROS 3 survey, 

Popeye's sister-vessel {Cirry Tres) was used for estuarine sample collection (Figure 4.10). 

Surface samples were collected with a custom-made PTFE sampler (2 x 0.5 1 bottles), 

deployed from a hydrographic wire (Kevlar™) and activated witii a messenger 

(EFREMER, France). Depth samples were collected dfrectly into sample bottles with a 

bottom-weighed acid washed P V C hose and peristaltic pump (Watson & Marlow). 

For land-based tidal cycle studies (TCs) a mobile laboratory was parked on the 

bank of the estuary for the deployment of two automated voltammetric metal monitors and 

for filttation work (Chapter 3). TCs were carried out m the lower RIa del Odiel from the 

estuary bank at Huelva Bridge (TOROS 2, 3 and 4), at the confluence from a jetiy at Club 

Nautico (TOROS 3) and from a jetty at La Rabida (Figure 4.9). Discrete samples were 

taken at hourly intervals from the estuary bank or jetty, using a bucket and bulk container 

(101). During the TOROS 3 and 4 surveys, TCs were performed onboard ship {Cirry Tres 

and B/0 Garcia del Cid, respectively), while the vessels were anchored off Mazagon at the 
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mouth of the estuary. Onboard Cirry Tres, the contmuous sample pick-up was made from a 

short length (ca. .5 m) of bottom-weighed P V C hose, which was lowered into the water off 

the side of the vessel, to a depth of ca. two mefres. On bord B/0 Garcia del Cid, KIPPER-1 

was used as sample pick-up. Discrete samples were taken at hourly hitervals with means 

available on the vessels, as described m the previous paragraph. The on-line analysis of 

Cu, Zn, N i and Co was carried out as described for river bank and ship-board deployment 

of the metal monitor in Chapter 3. 

Conductivity and temperature measurements were taken using field histruments on 

Popeye and Cirry Tres, and ship-board equipment on the B/0 Garcia del Cid (Chapter 3). 

hi Huelva Ria sub-samples were taken in glass bottles for salmity measurements by 

accurately calibrated salinometers (Portasal 8410, Guildline, Canada) at the Institute of 

Marine Sciences (IMS at University of Plymouth) or at the Southampton Oceanography 

Centte. 

Sub-samples for the analysis of dissolved organic carbon (DOC) were taken during 

the TOROS 2, 3 and 4 surveys for all riverine and estuarine samples (see Table 4.1). 

Different metiiods were applied for the preservation and storage of the samples, as 

described in Section 4.4.4. 

4 . 4 . 4 T R E A T M E N T O F DISCRETE S A M P L E S 

Bulk containers were commonly used for initial sample collection, so that sub-

samples could be distributed between different groups witiiin the TOROS project. Sub-

samples were taken for filttation m a protected envfronment (class 100 laminar flow) after 

agitation. Samples collected from the river bank or from aboard small vessels were filtered 

on return to the laboratory at the University of Huelva, within 24 hours of sample 

collection. Discrete samples taken onboard B/0 Garcia del Cid were filtered hi the ship's 
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laboratory immediately after collection. Dming land-based T C studies, filtration was 

carried out within a maximvmi of two hours after collection in a protected space 

constructed in the mobile laboratory. 

River and estuarine samples for trace metal analysis were filtered using acid 

leached cellulose nitrate membrane filters (WCN, 47 mm diameter, 0.45 pm pore size, 

Whatman), fitted into acid-washed Nalgene filter holders (500 ml, polycarbonate). 

Vacuum was drawn with hand pumps. Between samples, the filter holder was rinsed with 

M Q . The first batch of filttate (100 - 150 nU) was discarded. Filttation blanks (MQ) were 

obtained before the first sample in a filttation series, and between two samples at some 

stage during the filttation. During two estuarine surveys and TCs at Huelva Bridge 

(TOROS 2 and 3), samples were pressure filtered (N2, oxygen-fiee, 1 - 2 bar) by a 

colleague (Herzl, University of Plymouth), usmg acid-washed polycarbonate filters (125 

mm diameter, 0.4 | im pore size, Nuclepore) fitted into an acid-washed home-built Teflon® 

filter holder. Filter holders and tweezers for filter membrane handling were acid-washed 

overnight (0.1 M H C l and 0.01 M HCl , respectively) between filttation series. 

Samples from the Ria del Tinto and Ria del Odiel were acidified witii HNO3 (pH < 

2) m preparation for ICP-MS or ICP-AES analysis. Samples from the lower estuary were 

acidified with H C l (pH 2) for total dissolved frace metal analysis using stripping 

voltammetry. Fresh water samples from tiie Rio Tinto and Rio Odiel were diluted (x 100) 

m HNO3 (0.015 M HNO3) immediately after filfration. This was done to prevent the 

precipitation of Fe solids during storage. 

Sub-samples for the determination of S P M concenfrations were filtered separately, 

using dried and pre-weighed filters. Filfration was carried out using a dedicated filter 

holder (Nalgene, 250 ml) and a vacuum hand pump. When polycarbonate filters were used 

for frace metal filfration, S P M filfration was carried out on separate filter papers usmg the 
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same iSltration method as for the dissolved phase. The filter membranes containing the 

retained S P M were rinsed free of sea salt with M Q and sucked dry under vacuum, then 

folded and stored in individual Petri dishes. 

During the TOROS 2 survey, sub-samples from the usual filfration procedure were 

taken for dissolved organic carbon (DOC) determinations. The samples were poured 

dfrectly from the filter imit into polystyrene containers (Sterilin, 30 ml) and acidified to pH 

< 2 by the addition of 180 jxl phosphoric acid (50% v/v, Aristar, Merck) to 30 ml sample. 

Care was taken to exclude afr when closing vials (polyetiiylene cap). During TOROS 3, 

DOC samples were collected separately in ashed glass botties (250 ml). The samples were 

vacuum filtered (hand pump), using an ashed glass filfration unit and filters (GFF, 0.7 |Jin 

pore size, 47 mm diameter, Whatman). The initial 100 - 150 ml of filfrate was used to rinse 

the filter and filfration unit and was discarded. The filtered samples were fransferred into 

glass ampoules (25 ml), which had been cracked open just prior to use. The samples were 

acidified as described above and the ampoules were sealed immediately using a blow

torch. Between samples, the filfration unit was rinsed with M Q . During TOROS 4, sub-

samples from the usual filttation procedure (see above) were filled mto glass ampoules and 

tteated as described for the TOROS 3 survey. Filter banks (MQ) were taken during all 

surveys. DOC samples were stored m the dark and refiigerated (4°C) ahead of analysis. 

During ttansport to the U K the samples were stored in cool boxes with ice packs. 

4 . 4 . 5 A N A L Y T I C A L M E T H O D S 

A sxmimary of analytical methods applied to discrete samples is given in Table 4.2. 
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Table 4.2 - Analytical methods applied to discrete samples collected during TOROS surveys. For 
sample IDs and sampling methods refer to Table 4.1. FW - fresh water of Rio Tinto and Rio Odiel. 
Trace metal analysis refers to total dissolved concentrations, nd - not determined. 
TOROS 1, Nov'96 Cu,Zn,Ni,Co Fe, A l Mn, U , Pb DOC 

FW ICP-MS ICP-AES ICP-MS nd 

Transect Ria del Tinto ICP-MS ICP-AES ICP-MS nd 

Transect Ria del Odiel ICP-MS ICP-AES ICP-MS nd 

Transect Huelva Ria AdCSV <LOD <LOD nd 

TOROS 2, Jun '97 Cu, Zn, Ni , Co Fe ,Al Mn,U,Pb DOC 

FW ICP-MS nd ICP-MS HTCO 

Transect Rfa del Tinto ICP-MS nd ICP-MS HTCO 

Transect Rfa del Odiel ICP-MS nd ICP-MS HTCO 

Transect Huelva Ria AdCSV nd <LOD HTCO 

TC, La Rabida ICP-MS nd ICP-MS HTCO 

TC, Huelva Bridge ICP-MS nd ICP-MS HTCO 

TOROS 3, Apr '98 Cu, Zn, Ni, Co Fe, A l Mn, U, Pb DOC 

FW ICP-MS nd ICP-MS HTCO 

Transect Rfa del Tinto ICP-MS nd ICP-MS HTCO 

Transect Rfa del Odiel ICP-MS nd ICP-MS HTCO 

Transect Huelva Rfa AdCSV nd <LOD HTCO 

TC, Mazagon harbour AdCSV nd <LOD HTCO 

TC, Club Nautico" ICP-MS nd ICP-MS HTCO 

TC, Huelva Bridge ICP-MS • nd ICP-MS HTCO 

TC, Mazagon* AdCSV nd <LOD HTCO 

TOROS 4, Oct. '98 Cu,Zn,Ni, Co Fe, A l Mn,U,Pb DOC 

FW ICP-MS nd ICP-MS HTCO 

Transect Rfa del Tinto ICP-MS nd ICP-MS HTCO 

Transect Rfa del Odiel ICP-MS nd ICP-MS HTCO 

Transect Huelva Rfa AdCSV nd <LOD HTCO 

Confluence AdCSV nd <LOD HTCO 

TC, Huelva Bridge ICP-MS nd ICP-MS HTCO 

TC, Mazagon* AdCSV nd <LOD HTCO 

" Data from these tidal cycle studies is not presented here, but used in Chapter 6. 
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4 . 4 . 5 . 1 V o l t a m m e t r y 

Stripping voltammetry was used for the determination of total dissolved concentra

tions of Zn, Cu, N i and Co in samples collected m Huelva Ria (Table 4.2). Filtered and 

acidified samples were UV-digested and analysed at the University of Plymouth usmg 

A d C S V methods, as described in Chapter 2. 

4 . 4 . 5 . 2 ICP-MS 

Total dissolved Zn, Cu, N i , Co, Cd, U , Pb and M n m riverme and estuarine samples 

(Table 4.2) were analysed using ICP-MS, because trace metal concentrations in these 

samples was too high for stripping voltammetric methods. The analysis was carried out in 

diluted (> 50 times, 0.015 M HNO3) samples, as described m Chapter 3. 

4 . 4 . 5 . 3 ICP-AES 

Total dissolved Fe and A l were determined for the first survey in samples from the 

upper estuaries (Table 4.2) usmg ICP-AES. hi order to reduce matrix effects, samples were 

diluted (> 50 tunes, 0.015 M HNO3). The analysis was carried out with the following 

mstrumental parameters: Photo multiplier tube voltage: 650 V , power: 1 kW, plasma gas 

flow: 15 1 min"', and auxiliary gas flow: 1.51 min"', viewmg height 2 mm. 

4 . 4 . 5 . 4 D i s s o l v e d O r g a n i c C a r b o n ( D O C ) 

The HTCO mstrument for DOC analysis was calibrated using standard solutions of 

Na2C03 and NaHC03 for inorganic carbon (0 - 20 mg C f ' ) , and potassium hydrogen 

phthalate for total carbon analysis (0 - 20 mg C1"'). 
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The ashed glass vials for the sample changer were rinsed three times with the 

sample before they were finally filled with the sample and placed into the autoinatic 

sample changer. The first four positions (1 - 4) and last four positions (75 - 78) were 

occupied by procedure blanks and check samples (NaaCOs, NaHCOs and potassium 

hydrogen phthalate, 12 mg C T ' ) , followed by three analytical blanks, which were prepared 

fiom M Q and phosphoric acid (Aristar, pH 2). The remaining positions were filled with 

filter blanks and samples. A dust cover was placed onto the sample changer and the 

automated analysis was initiated. 

Principle steps in the automated measuring cycle were the injection of sample 

through a stainless steel tube and glass syringe pump into the oxidation column, which was 

located m the furnace (680°C). The mjection volume was 200 pi. In the oxidation column 

the dissolved carbon was converted to CO2 by the HTCO process. The combustion 

products (CO2, H2O, etc.) passed with a carrier gas (ultia-pure O2) through a halogen 

scrubber before it entered the non-dispersive mfiared (IR) detector. The CO2 signal was 

recorded and the total carbon concentiation (CTC) was calculated using an integration 

system (peak area) and the calibration curve determined earlier. For the analysis of 

morganic carbon the sample was injected into the reaction vessel for inorganic carbon (IC), 

where it was allowed to react with H3PO4 (25% v/v., Aristar, Merck). This converted IC 

(carbonate, bicarbonate, magnesium carbonate etc.) to CO2, which was tiansported with 

the carrier gas to the IR detector. The inorganic carbon signal was recorded and tieated as 

described for total carbon. The concentiation of DOC was calculated by subtiacting Cic 

fiom CTC- A l l calculations were carried out by software integrated mto the HTCO analyser. 

In order to rinse and condition the instrument for each sample, three injections of 

M Q were followed by three injections of sample before each sample analysis. The analysis 

for both TC and IC was repeated three tunes. 
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The HTCO method for DOC analysis withthe Shimadzu TOC 5000 instrument and 

associated analytical challenges have been discussed widely (Cauwet, 1994; Benner and 

Strom, 1993; Chen and Wangersky, 1993; Sugimura and Suzuki, 1988). 

4 . 4 . 5 . 5 S a l i n i t y 

hi the upper part of the Tinto and Odiel estuaries, the use of salinity to describe the 

degree of mixing with sea water is erroneous, because of the high concentration of ions 

derived firom the mining area. Different methods were used to measure the influence of sea 

water. L i order to be consistent, salinity was chosen for all data representations, although 

chlorinity would have been more appropriate for estuarine data. 

For tidal cycle studies, salinity was calculated from calibrated conductivity 

measurements. For estuarine fransects the salinity was calculated fiom chlormity 

measurements supplied by the research partner F. Elbaz-Poulichet (University of 

Mon^eUier II). For samples taken from aboard BfO Garcia del Cid m June, salinity was 

determined usuig calibrated data from the ship's underway conductivity instruments and 

CTD supplied by A . Cruzado et al. (1999; 1998). 
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4.5 RESULTS 

4 . 5 . 1 A N A L Y T I C A L P E R F O R M A N C E 

4 . 5 . 1 . 1 V o l t a m m e t r y 

Methods and typical analytical perfonnance for the analysis of certified reference 

materials, using stripping voltammetry, have been discussed in Chapter 2. Typical values 

for reagent blanks, limits of detection and Imear ranges of A d C S V analysis have been 

given in Chapter 3. 

Filtiation blanks, taken during the filtiation of samples from Huelva Ria and tidal 

cycle studies (TCs) were analysed using voltammetric methods as described for M Q blank 

determinations m Chapter 3. Blanks taken at the start of a filfration series, i.e. with acid 

washed filter holders imder field-conditions, typically contained 0.5 - 0.6 n M Zn, 0.3 - 0.5 

n M Cu and ,0.1 n M N i (this includes the reagent blank). Values for Co were below the 

detection limit of the metiiod appHed (LODco = 0.28 nM, see Chapter 3). Filfration blanks 

taken between two samples during a filfration series contauied less than 2% of the Zn, Cu, 

N i and Co concenfrations of the sample, which was filtered prior to the blank. 

4 . 5 . 1 . 2 I C P - M S 

With each ICP-MS analysis session of riverine and estuarine samples, several 

aliquots (n = 4) of undiluted riverine C R M (SLRS-2, National Research Council of 

Canada) were analysed. Generally, the results of this analysis (Figure 4.13) agreed well 

with the certified values for Zn, Cu, N i , Co, Mn, Cd, Pb and U . Some results have a high 

uncertamty, mcludmg Zn, Cu, N i , Cd and Pb (TOROS 1), Pb (TOROS 2) and U (TOROS 

4). 
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Figure 4.13 - Analysis of certified reference material for river water (SLRS-2) using ICP-MS. The 
white bar represents the certified values in SLRS-2, the bars marked T l - T4 stand for analysis for 
TOROS 1-4 surveys. Error bars denote two standard deviations of the mean (n = 4). Results of the 
lead analysis in TOROS 2 samples were not used. 
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Dissolved metal concentrations analysed by Elbaz-Poulichet (University of 

Montpellier II, ICP-MS analysis) in riverine and estuarine samples agreed within 10-15% 

with the results from this study. Therefore the results for metals that carry high errors in 

C R M analysis can still be used vfiHi some confidence. Samples processed by Elbaz-

Poulichet were filtered using membranes with 0.2 pM pore size, which retain bacteria such 

as Thiobacillus ferrooxidans (Kirby and Elder Brady, 1998). The agreement between the 

two sets of data indicates that the sample treatment (acidification) in this study inhibited 

bacterial activity that could influence dissolved trace metal concentiations during storage. 

Fourteen aUquots of tiie blank (0.015 M HNO3 in MQ) were analysed by ICP-MS. 

The mean of the blank ± standard deviation were: M n 55: 0.63 ± 0.15 n M (0.45), N i 60: 

2.88 ± 0.05 n M (0.16), Co 59: 0.85 ± 0.02 n M (0.08), Zn 66:1.08 ± 0.14 n M (0.42), Cu 65: 

0.71 ± 0.15 n M (0.46), Cd 111: 0.75 ± 0.04 n M (0.13), Pb 206: 0.35 ± 0.03 n M (0.09), and 

U238: 0.009 + 0.002 n M (0.005). The limit of detection (LOD), given m brackets in nM, 

was calculated as three times the standard deviation of the mean. 

4 . 5 . 1 . 3 ICP-AES 

For the ICP-AES analysis no certified material was analysed to verify the analytical 

accuracy of the method. However, an inter-laboratory and inter-method comparison was 

carried out with the results of Elbaz-Poulichet (University of MontpeUier II, ICP-MS 

analysis) and Morley (Southampton Oceanography Centre, G F A A S analysis). The results 

for Fe and A l hi samples from the Ria del Tinto and Ria del Odiel between the three 

laboratories involved agreed witiim 10-15% for most samples. 
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4 . 5 . 1 . 4 H i g h T e m p e r a t u r e C a t a l y t i c O x i d a t i o n ( H T C O ) 

The Shhnadzu TOC 5000 was cahbrated m automatic mode overnight ahead of 

sample analysis. At the time of analysis no certified reference materials for DOC analysis 

were available, hi order to evaluate the stability and analytical performance of the 

instrument, check samples of known composition (KHP, NaaCOs and NaHCOs) and 

uistiimient/reagent blanks were analysed with each series of sample analysis. Maintenance 

(change of reagents, cleaning etc.) and re-calibration were carried out i f the analysis of 

check samples for K H P showed a deviation larger than 10% fiom the specified value, or i f 

the blanks were high in organic carbon. 

Some K H P check samples appeared to have a small concentiation (ca. 0.3 mg 1'' C) 

of IC present. Comparison between this unexpected IC concentiation witii IC m the mean 

uistrument/reagent blank values (0.47 mg P' C) indicated that a similar level of IC was 

present in the M Q , or that the IC signal resulted from instrumental background. Because of 

the instrumental set-up of the available TOC analyser no sparge was carried out to remove 

carbon dioxide present in the acidified samples. As a result, the signal for total and 

inorganic carbon included any dissolved CO2 present in the sample, and this lead to an 

over-estimation of the carbon concenfrations. Ideally, the results for DOC should have 

been largely independent (within the analytical precision) from this artefact because the 

dissolved CO2 concenfration in the sample was subfracted as part of Cic from CTC to yield 

CDOC- However, current literature recommends the removal of CO2 before sample analysis 

(WilHams et al. 1993) and therefore, while tiie results of this study are a good indication 

of frends, they should be freated with caution with respect to thefr accuracy. 

The instrument/reagent blank for the analysis was prepared from acidified M Q 

(H3PO4, Aristar, Merck, ca. pH 2). The D O C values (33 - 45 |aM C, mean 39 ± 9 |LIM C ) 

were high compared to those reported in the literature for platmised quartz catalysts 
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(5 yM C, Cauwet, 1994; 6 jj,M C, Benner and Strom, 1993), but were within the range 

reported for platinised alumina catalysts (10 - 50 yM C, Hedges et al. 1993). Blanks 

prepared with acidified deionised water (H3PO4, Aristar, Merck, ca. p H 2) had similar 

carbon concentrations (45 ± 6 y.M C, n = 5) as the M Q blanks. Potential sources of carbon 

in the blank were the water used to prepare it, the reagent acid and components witiiin the 

mstrument (Sugimura and Suzuki, 1988). It has been suggested that the platinised alurcdna 

catalyst is the largest contributor to DOC in blanks. This has been attributed to the 

adsorption of CO2 onto the catalyst's carrier material (AI2O3), and subsequent desorption 

and transport of CO2 with the carrier gas stieam leading to the detector (Cauwet, 1994; 

Benner and Stiom, 1993). 

Both, calibration and sample analysis were affected by the instrumental 

contribution to DOC and therefore, the blank value was subtiacted fiom the measurements. 

Estuarine samples analysed in this study contained medium to high D O C concentiations 

(0.12 - 6.6 m M C). The carbon concentiation measured in blanks hitioduced a high level of 

uncertainty to results for samples witii low DOC concentiations. 

Dissolved organic carbon concentiations in blanks taken before a filtiation series 

and between samples of low carbon concentiations were similar to the instrument/reagent 

blank values (43 ± 3 . 3 | i M C). Shghtiy higher DOC concentrations were observed in 

blanks filtered within a series of samples firom the upper estuarine areas (57 ± 6.8 |i.M C), 

where DOC concentiations reached l o w m M levels. 

The DOC concentiations determined ui M Q filtered through acid leached cellulose 

nitrite membrane filters (WCN, 0.45 jim pore size) fitted mto Nalgene filter holders (500 

ml, polycarbonate) were not elevated, compared to DOC concenttations m M Q filtered 

through ashed GFF filters (0.7 jim pore size). Any contribution in DOC fiom the W C N 

membranes was probably masked by the high background value for DOC in the 
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instrument/reagent blank, which resulted mainly from the catalyst. When comparing the 

results from the two filfration methods the differences in pore size and membrane 

characteristics have to be considered, because it is likely that the fraction of organic 

material (particulate organic matter, colloids, bacteria, viruses) ui the filfrate varied 

between the two methods (Lee and Henrichs, 1993). 

The reproducibiHty of the DOC analysis was assessed with a series of samples of 

different concenfrations (0.15 - 1.6 m M C). The relative standard deviation (RSD) was 

determined for the analysis of: (a) three injections automatically carried out within the 

analytical protocol of the instrument, (b) aliquots in several sample changer vials (n = 4) 

filled from one sample ampoule and (c) aliquots from several sample ampoules containing 

sub-samples of each other (n = 5). In experiment (a) and (b), RSD values ranged from 0.25 

- 3.3%. In experiment (c), values of RSD = 0.1 - 8.9% were determmed (mean 2.8%), 

whereby the highest tmcertainty (RSD = 8.9%) was attached to the sample with the lowest 

concenfration (0.15 m M C). 

In addition to the consfraints mentioned above the preservation for DOC samples 

from the TOROS 2 survey may have lead to the desorption or loss of organic matter from 

or to the container walls, and/or an exchange of gases through the walls of the container or 

lid. The method of storing DOC samples in heat-sealed ampoules has been shown not to 

mduce storage effects (Hedges et al 1993). 
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4 . 5 . 2 T O R O S 1 - A U T U M N / W I N T E R S U R V E Y 

Dissolved metal concentrations, salinity, pH, temperatmre, total sulphate and 

dissolved oxygen (DO) concentrations in the Rio Tinto at Niebla and Rio Odiel at 

Gibraleon are given in Table 4.3. The salinity was calculated j&om sample chlorinity 

determined by Elbaz-Pouhchet usuig capillary ion analysis. Sulphate concentrations were 

supplied by Elbaz-Poulichet (Elbaz-Poulichet et al. 1999). Dissolved oxygen (field 

instrument) was provided by M . Lopez (Morales et al. 1999c). 

Total dissolved concentrations of Fe, Mn, A l , Zn, Cu, N i , Co, Cd, Pb and U , pH 

and sulphate concentiations observed during the TOROS 1 survey were plotted versus 

salinity for ttansects in the Ria del Tinto (Figure 4.14), the Ria del Odiel (Figure 4.15) and 

the Huelva Ria (Figure 4.16). For the Huelva Ria, plots of metal/salinity relationships 

kiclude tiie most downstieam samples fiom tiie Ria del Odiel (Figure 4.16, also Figure 

4.19, Figure 4.24 and Figure 4.28 below). Sulphate concentiations were supplied by Elbaz-

Poulichet. The concenttations of Fe, A l and Pb in the Huelva Ria were below the detection 

limit of the method. 
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Table 4.3 - TOROS 1: Master variables and total dissolved metal 
concentrations in the fresh water end-members of the Rio Tinto (N 1) 
and Rio Odiel (G 2) in November 1996. The error given represents 
one standard deviation of the mean (three measurements during ICP-
MS or ICP-AES analysis). 
TOR-96-11- Niebla, N 1 • Gibraleon, G 2 

Salinity' 0.086 0.075 

pH 2.47 2.84 

T(°C) 19.3 18.0 

SO4 (mM)' 27.1 12.5 

Qi(ls-')' 100 400 

Zn(^M) 612 ± 2 356 ± 1 . 

Cu (nM) 460 + 2 136 ± 1 

Ni (pM) 4.70 ±0.12 4.65 ±0.11 

Co (liM) 9.56 ± 0.06 7.61 ± 0.05 

Cd(nM) 1382+ 12 602 ± 16 

Fe(mM) 10.9 ±0.1 0.91 ± 0.01 

Al(mM) 3.55 ± 0.02 2.34 ±0.01 

Mn(iaM) 172 ± 1 202 ± 1 

Pb (pM) 3.06 ±0.20 0.23 ± 0.02 

U(nM) 30.3 ± 1.5 25.3 ± 0.5 

' From chlorinity supplied by F. Elbaz-Poulichet, Univ. Montpellier II. 
^ From M . Lopez, University of Huelva. 
^ Estimated from data supplied by J. A . Morales, University of Huelva. 

168 



Salinity Salinity 

Figure 4.14 - TOROS 1: Sulphate, pH and total dissolved metal concentrations plotted versus 
salinity in the Ria del Tinto between Niebla and the confluence with Huelva RIa (samples 1,3-12, 
November 1996). Error bars represent the analytical error (± la) for three scans during ICP-MS or 
ICP-AES analysis. S04 '̂ concentrations are from F. Elbaz-Poulichet, University of Montpellierll. 
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Salinity Salinity 

Figure 4.15 - TOROS 1: Sulphate, pH and total dissolved metal concentrations plotted versus 
salinity in the Ria del Odiel between Gibraleon and Huelva Bridge (samples 2, 18 - 29, November 
1996). Error bars and SO/ ' concentrations as for Figure 4.14. 
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Figure 4.16 - TOROS 1: pH and total dissolved metal concentrations plotted versus salinity in the 
Huelva Ria (samples 22 - 29, 30 - 33, 13 - 17 November 1996). Samples 22 - 29 were included to 
visualise the connection between the Ria del Odiel and Huelva Ria. Error bars represent the 
analytical error (± ICT) calculated from three scans for ICP-MS analysis and repeat aliquots for 
voltammetric methods, respectively. 
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4 . 5 . 3 T O R O S 2 - SUMMER SURVEY 

Dissolved metal concentrations, salinity, pH, temperatm-e, total sulphate and 

suspended particulate matter (SPM) concentrations in the Rio Tmto at Niebla and Rio 

Odiel at Gibraleon are given m Table 4.4. The salinity was calculated from chlormity, 

which was suppHed by Elbaz-Poulichet, as were sulphate concenhrations (Elbaz-Poulichet, 

1999a). S P M concentrations were provided by Herzl.. 

Estuarine master variables (pH, alkaluiity, acidity. Eh, temperature, SPM), DOC, 

SO4 and total dissolved metal concentrations were plotted versus salinity for transects 

taken in the Ria del Tinto (Figure 4.17), the Ria del Odiel (Figure 4.18) and m Huelva Ria 

(Figure 4.19). Iron measurements were supplied by Morley. Sulphate concentrations were 

supplied by Elbaz-Pouhchet. Alkalinity, acidity. Eh and S P M were determined by Herzl. 

Lines linking data points in tiie Huelva Ri'a plots were omitted hi order to increase clarity. 

Estuarine master variables and total dissolved metal concenttations measured 

during tidal cycle studies are plotted versus tune (GMT). The positions of all TC studies 

are given hi Figure 4.9. Figure 4.20 shows results from on-line measurements of total 

dissolved Zn, Cu, N i and Co acquired durmg a TC under Huelva Bridge. Mmima in 

salinity and p H couicided with maxima in dissolved metal concenfrations, and this 

occurred a short time ahead of low water at the mouth of the estuary. In Figure 4.21 metal 

concenfrations measured in the discrete samples collected over a 12-hour period from the 

jetty at L a Rabida are presented in order to illusfrate the differential behaviour of Zn, Cu 

and Cd, compared to U and Pb. Dissolved maxhna of Cd, Zn and Cu comcided with low 

water, but the pattern of salinity variations did not agree with the tidal stage. This was 

possibly the result of disturbed water circulation patterns close to the confluence of three 

estuarine systems (Huelva Ria, Ri'a del Tinto and Estero Domingo Rubio). 
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Table 4.4 - TOROS 2: Master variables and total dissolved metal 
concentrations in the fresh water end-members of the Rio Tinto (N 1) 
and Rio Odiel (G 1) in June 1997. The error given represents one 
standard deviation of the mean. 
TOR-97-06- Niebla, N I Gibraleon, G1 

Salinity' 0.07 0.03 

pH 2.21 3.00 

T(°C) 19.5 18 

SO4 (mM)' 8.64 5.52 

02(mgr')^ 13.4 10.7 

SPM.(mgr')^ 21.4 -
Qi(ls-')^ 80 300 

Zn(]jM) 295 ±42 141 ± 2 

Cu(|xM) 121 + 11 51.4 ±0.7 

Ni (pM) 1.78 ±0.44 1.47 ±0.07 

Co (loM) 3.71 ± 0.22 2.44 ± 0.08 

Cd(nM) 782 ± 80 430 ±102 

Fe(mM)^ 1.69 0.039 

Al(mM) 2.35 ± 0.02 0.765 ±0.011 

Mn(|aM) 112±2 72 ± 1 

Pb (pM) 4.13 ±0.15 0.277 ± 0.041 

U(nM) 28.7 ±3.3 17.7 ±5.3 

From chlorinity supplied by F. Elbaz-Poulichet, Univ. Montpellier II. 
^ From V. Herzl, University of Plymouth, sample at G l did not yield 

enough SPM to be measured. 
' Estimated from data supplied by J. A. Morales, University of Huelva. 

From N Morley,- Southampton Oceanography Centre. 
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Salinity Salinity 

Figure 4.17 - TOROS 2: Sulphate, pH, alkalinity, acidity. Eh, temperature, SPM, DOC and total 
dissolved metal concentrations plotted versus salinity in the RIa del Tinto between Niebla and the 
confluence with Huelva Ria (samples TR 1-10, NI , June 1997). Error bars represent the analytical 
error (± la) for three scans during ICP-MS or ICP-AES analysis. 
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Salinity Salinity 

Figure 4.18 - TOROS 2: Sulphate, pH, alkalinity, acidity. Eh, temperature, SPM, DOC and total 
dissolved metal concentrations plotted versus salinity in the Ria del Odiel between Gibraleon and 
Huelva Bridge (samples OR 1-7, G l , June 1997). Error bars as for Figure-4.17. 
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4 . 5 . 4 T O R O S 3 - S P R I N G S U R V E Y 

Dissolved metal concentrations, salinity, pH, Eh, temperature, total sulphate, DO 

and S P M concentrations in the Rio Tinto at Niebla and Rio Odiel at Gibraleon are given hi 

Table 4.5. The salinity was calculated from chlorinity, which was suppHed by Elbaz-

Poulichet, as were sulphate concenfrations (Elbaz-Poulichet, 1999a). Eh and DO were 

measured by Herzl (with field histrument and by Winkler tifration, respectively, 

unpublished data). S P M was provided by Lopez (Morales et al. 1999c). 

Estuarine master variables (pH, alkalinity, acidity. Eh, temperature, SPM), DOC, 

SO4 and total dissolved metal concenfrations were plotted versus salinity for fransects 

taken in ttie Ria del Tmto (Figure 4.22), the Ria del Odiel (Figure 4.23) and m Huelva Ria 

(Figure 4.24). Sulphate concenfrations were supphed by Elbaz-Poulichet. Alkalinity, 

acidity. Eh and S P M were determined by Herzl. 

Figure 4.25 shows results from on-line measurements of total dissolved Zn and Cu, 

and concenfrations of Mn , Cd, Pb and U measured hi discrete samples taken during a tidal 

cycle study at hourly intervals at Huelva Bridge. Salinity calculated from conductivity 

measurements, pH, DOC and SPM concenfrations are also shown. Maxima in dissolved 

Zn, Cu, N i and Co concenfrations coincided with minima in salinity and pH, which 

occurred a short time ahead of low water at the mouth of the estuary. In confrast, the 

dissolved U minimum coincided with minima in pH and salinity, uidicating the fransport of 

U from a source downsfream of Huelva Bridge during the flood tide. 
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Table 4.5 - TOROS 3: master variables and total dissolved metal 
concentrations in the fresh water end-members of the Rio Tinto (N 1) 
and Rio Odiel (G 1) in April 1998. The error given represents one 
standard deviation of the mean. . 
TOR-98-04- Niebla, NI Gibraleon, G l 

Salinity' 0.03 0.01 

pH 2.56 3.20 

Eh (mV)^ 551 552 

T(°C) 15.3 15.7 

SO4 (mM)' 23.2 6.14 

02 (mg ly 20.3 8.06 

SPM(mgr')^ 15.5 -
Qi( l s -y 80 380 

Zn(pM) 355 + 3 192 ±10 

Cu (MM) 175 + 5 72.2 ±2.2 

Ni(nM) 1.15 + 0.02 2.05 ±0.03 

Co (pM) 6.42 ± 0.68 4.66 ± 0.25 

Cd(nM) 796 ± 8 424 ± 48 

Mn(pM) 72.7 ± 2.6 130 ± 4 

Pb(pM) 0.496 ±0.016 1.3 ±0.1 

U(nM) 10.9 ± 0.3 18.2 ±1.2 

' From F. Elbaz-Poulichet, Univ. Montpellier II. 
^ From V. Herzl, University of Plymouth. 
^ From M . Lopez, University of Huelva, sample at G l did not yield 

enough SPM to be measured. 
^ Estimated from data supplied by J, A. Morales, University of Huelva. 
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Salinity Salinity 

Figure 4.22 - TOROS 3: Sulphate, pH, allcalinity, acidity, Eh, temperature, SPM, DOC and total 
dissolved metal concentrations plotted versus salinity in the Ria del Tinto between Niebla and the 
confluence with Huelva Rfa (samples TR 1-10, NI, April 1998). Error bars represent the analytical 
error (± la) for three scans during ICP-MS analysis. 
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Salinity Salinity 

Figure 4.23 - TOROS 3: Sulphate, pH, alkalinity, acidity. Eh, temperature, SPM, DOC and total 
dissolved metal concentrations plotted versus salinity in the Ria del Odiel between Gibraleon and 
Huelva Bridge (samples OR 0-7, G l , April 1998). Error bars as for Figure 4.22. 
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Figure 4.24 - TOROS 3: Sulphate, pH, alkalinity, acidity, temperature, SPM, DOC and total 
dissolved metal concentrations plotted versus salinity in Huelva Ria between Huelva Bridge and 
Mazagon (samples HR 1-13, April 1998). Error bars represent the analytical error (± la) calculated 
from three scans for ICP-MS analysis and repeat aliquots for voltammetric methods, respectively. 
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Figure 4.25 - TOROS 3: Tidal cycle at Huelva Bridge. Cu and Zn concentrations were measured 
on-line and total dissolved Mn, Cd, Pb and U concentrations were measured in discrete samples. 
The analytical standard deviation were typically < 10% and were omitted to enhance the clarity of 
the graph. At Mazagon high water was at 7:51 h and low water was at 13:58 h GMT. 
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4 . 5 . 5 T O R O S 4 - A U T U M N S U R V E Y 

Dissolved metal concentrations, salinity, pH, Eh, temperature, total sulphate, DO 

and S P M concentrations in the Rio Tinto at Niebla and Rio Odiel at Gibraleon are given in 

Table 4.6. The salinity was calculated firom conductivity measurements. Table 4.7 gives 

the dissolved metal concentrations in samples taken fiom both rivers between thehr upper 

reaches in.the Iberian Pyrite Belt and the respective fresh water end-members (Niebla and 

Gibraleon, Figure 4.12). 

Estuarine master variables (pH, Eh, temperature and SPM) and total dissolved 

concenfrations were plotted versus salmity for ttansects taken in the Ria del Tinto (Figure 

4.26), tiie Ri'a del Odiel (Figure 4.27) and m Huelva Ria (Figure 4.28); 

Figure 4.29 shows results from on-line measurements of total dissolved Zn and Cu, 

and concenfrations of Mn, Cd, Pb and U measured in discrete samples taken at hourly 

mtervals during a tidal cycle study at Huelva Bridge. Also shown are the development of 

salinity, pH, D O C and SPM concenttations over time. Maxima in dissolved concenttations 

of Zn, Cu, Cd, and M n coincided with a minimum in pH, indicating low water. A second 

maximum in the Cu concenttation was observed at mid-tide. The variability in salinity was 

low and did not reflect tidal stage, possibly because the water was not homogeneously 

mixed throughout the estuary, and the sampling location close to the bank of the estuary 

did not allow for a representative sample to be taken. 
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Table 4.6 - TOROS 4: master variables and total dissolved metal 
concentrations in the fresh water end-members of the Rio Tinto (NI) 
and Rio Odiel (Gl) in October 1998. The error given represents one 
standard deviation of the mean. 
TOR-98-10- Niebla, N 1 Gibraleon, G1 

Salinity' 0.96 1.81 

pH 2.26 2.83 

Eh (mV) 606 482 

SPM (mg r') 14.5 1.6 

DOC (mM) 0.69 ± 0.02 0.15 ±0.01 

Qi(ls-')' 100 400 

Zn(jiM) 2590 +143 425 ± 6 

Cu(pM) 856 ±11 74.4 ±1.8 

Ni (pM) 16.8 ±2.2 3.59 ± 1.22 

Co (pM) 38.8 ± 0.9 8.53 ±0.12 

Cd(nM) 6007 ± 500 674 ±48 

Mn(pM) 775 ± 19 400 ±3.09 

Pb(pM) 0.635 ± 0.063 0.931 ±0.061 

U(nM) 71.7 ±5.2 22.8 ±3.0 

From conductivity measurements. 
Estimated from data supplied by J. A. Morales, University of Huelva. 
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Table 4.7 - TOROS 4: pH, Eh, temperature and total dissolved metal concentrations in the Rio 
Tinto (TR) and Rio Odiel (OR) between their source in the niining area and the estuary in October 
1998. The error represents one standard deviation of the mean, nd - not determined, nr - not 
reliable. 
Rio Tinto T R E 1 T R E 2 T R E 3 T R E 4 

Salinity 0.04 0.06 0.06 0.03 

pH 2.60 2.42 2.27 2.35 

Eh (mV) nd 433 569 575 

T(C) nd 20.5 20.8 21.0 

Zn(|jM) 4098 ± 32 3351 ±73 4861 ±36 1555 ±45 

Cu (pM) 1505 ±20 1339 ±19 1481 ±12 526 ± 5 

Ni (pM) 18.9 ±0.5 19.0 ±1.5 21.8 ±2.4 9.42 ± 0.77 

Co (pM) 63.0 ± 1.0 53.2 ±0.4 67.6 ± 0.4 23.4 + 0.1 

Cd(nM) 8915 ± 649 7572 ±440 10840 ± 245 3280 ± 295 

Mn(pM) 1034 ±14 890 ± 5 1240 ±12 460 ± 8 

Pb(nM) 2604 ±-204 2252 ±268 518±30 603 ± 763 

U(nM) 108 ±13 93.4 ± 6.6 127 ± 5 43.3 ±3.9 

Rio Odiel O R E l O R E 2 O R E 2 a O R E 3 

Salinity 0.02 0.03 0.03 0.02 

pH 2.98 2.60 2.58 2.76 

Eh(mV) 492 429 478 503 

T(C) 20.7 22.8 21.3 20.6 

Zn(pM) 590 ± 13 620 ± 13 780 ± 14 510±4 

Cu(pM) 356 ± 6 264 ± 7 312±7 77 ± 0.4 

Ni(pM) .7.24 ± 1.03 20.5 ± 0.4 13.5 ±4.7 3.84 + 0.48 

Co (pM) 19.0 ± 0.7 18.6 ±0.8 21.0 ±0.4 8.58 ±0.13 

Cd(nM) 2064 ± 278 1808±101 2224 ±186 811 ±245 

Mn(pM) 610 ± 13 694 ± 13 797 ± 3 440 ± 13 

Pb(nM) nr 1265 ±109 1480 ± 94 1111 ±79 

U(nM) 69.3 ± 4.5 70.0 ± 5.3 76.8 ± 16.0 18.0 ±1.3 
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Figure 4.28 - TOROS 4: pH, alkalinity, acidity, temperature, SPM, DOC and total dissolved metal 
concentrations plotted versus salinity in Huelva Ria between Huelva Bridge and Mazagon (samples 
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Figure 4.29 - TOROS 4: Tidal cycle at Huelva Bridge. Salinity was determined from conductivity 
measurements. Total dissolved Zn and Cu were measured on-line, Mn, Pb, Cd and U were 
determined in discrete samples. The analytical standard deviation were typically < 10% and were 
omitted to enhance the clarity of the graph. At Mazagon low water was at 11:34 h and high water 
was at 17:52 hand GMT. 

181 



4.6 DISCUSSION 

4 . 6 . 1 FRESH W A T E R END-MEMBERS 

4 . 6 . 1 . 1 S o u r c e a n d M a g n i t u d e o f C o n t a m i n a t i o n i n t h e R i v e r s 

The firesh water end-members showed the typical characteristics of small rivers 

stiongly affected by acid nunc drainage (AMD). The low pH values in the Rio Tinto and 

Rio Odiel (pH 2.21 - 2.56 and pH 2.83 - 3.20, respectively. Table 4.3 - Table 4.6) 

correspond to tiie range commonly reported for A M D (pH 2.0 - 3.5) (Bigham et al. 1990). 

Sulphate was the dominant anion in the rivers (Rio Tmto: 8.6 - 27.1 m M ; Rio Odiel: 5.5 -

12.5 mM). The pH values, metal and sulphate concentiations in the rivers were comparable 

to other stiongly polluted water courses and other mine drainage systems (Table 4.8). 

Dissolved concentiations of A l , Pb, Mn, Fe, Zn, Cu, N i , Co and Cd resembled 

previous observations in tiie Rio Tinto and Rio Odiel (Table 4.8 and van Geen et al. 

(1997): 3.2 m M A l , 240 p M Mn, 19 ^ M Co and 0.43 ^iM Pb). 

Reported activity of U isotopes illustiated that levels m the Rio Tinto and Rio Odiel 

exceeded those in unperturbed river systems (Martmez-Aguhrre et al. 1994b). More tiian 

99% of the total ^ ^ U and ^^"^U were present in the dissolved phase, which was the result of 

the dissolution of U solids at the low pH values encountered in the Tinto/Odiel system 

(Martinez-Aguirre et al. 1994b). At low p H values and under oxidismg conditions U is 

present as U(VI) and forms soluble cationic species, e.g. uranyl ion, VtO-i^ (Sandino and 

Bruno, 1992). In comparison to other rivers, the dissolved U concentiations in the Rio 

Tinto and Rio Odiel were more than one order of magnitude higher (11 - 72 n M U in fiesh 

water end-members) than the average of value found in river water world-wide (ca. 1 n M 

U , Martm and Whitfield, 1983). 
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Table 4.8 - Total dissolved metal concentrations and pH values in various AMD affected waters, 
'nr' - not reported, 'ca.' - values estimated from graphs. Values marked with' refer to concentrations 
given in mmol kg"' for Fe and SO4, and in pmol kg"' for Zn, Cu, Cd in the source. 
Location pH Fe(mM) Zn(pM) Cu(iaM) Cd (|iM) S04(mM) 

Rio Tinto' 1.5-2.1 nr 770-1500 530-950 3-5 nr 

Rio Tinto^ 2.6 8.8* 920* 390* 2* 30* 

Rio Tinto^ 2.7 3.0 520 222 1.3 nr 

Guadiamar'' <3 ca. 0.02-11 1700 255 m nr 

Afon Goch^ <3 0.7-4.6 241 - 645 71-949 0.09 -17 nr 

Berkeley Pit^ 2.8 6.9 4300 2500 m 60 

Pare Mine^ nr nr 41 nr 2.4 nr 

Daylight Creek^ ca. 2.7 ca. 4 ca. 1300 ca. 130 ca. 7 ca. 11 

Deep Adit' 3.3-3.8 1.5-4.4 887- 1575 16-160 1.7-5.3 13-19 

Levant Mine'° 2.1-4.4 0.02 - 6.5 nr nr nr 25-117 

Camon" 3.1-5.6 0.11-0.52 109-184 4.1 - 1.75 nr nr 

Aitik Cu Mine'^ 3.8 0.04 89 299 nr 14 

King River'^ (max) 4.6 0.152 nr 110 nr nr 

' River water (Leblanc et al. 1995). 
^ River water (van Geen et al 1997). 
^ River water, mean of four surveys in 1997/98 (Medio Ambiente, 1998). 
" River water, upper reaches, Spain (Albaiges et al 1987). 
^ River water, Wales, U K (Boult et al 1994). 
^ Mining pit lake, Montana, USA (Miller et al 1996). 
^ Mine tailings leachate, Wales, U K (Gao and Bradshaw, 1995). 
^ Mme tailings leachate. New South Wales, Australia (Chapman et al 1996). 
' Copper and sulphur mine adit, Avoca mining area. Republic of freland (Gray, 1998). 
'° Mine drainage, Cornwall, UK (Bowell and Bruce, 1995). 
" River Camon, Cornwall, UK (Johnson, 1986). 
'- Mine tailings leachate, Sweden (Stromberg and Banwart, 1994). 
'̂  River water, affected by AMD form Mt Lyell Cu mine, Tasmania, Australia (Featherstone and 
O'Grady, 1997). 
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The low p H and high sulphate and dissolved metal concentrations in the two rivers 

can be attributed to metal sulphide oxidation in the mining district of the Iberian Pyrite 

Belt. Conditions that favoured sulphide oxidation in this region include the warm arid 

climate, resulthig in the under-saturation of mine tailings with water and the availability of 

oxygen therein (Stromberg and Banwart, 1999; Miller et al. 1996). In addition, the large 

amount of mine tailings within the river catchments provide a high surface area. Although 

redox conditions and dissolved oxygen in the rivers were not measured during all surveys, 

there was no evidence for anaerobic/reducing conditions in the waters at any time. 

The pH of A M D is partially controlled by the weathering of minerals that co-exist 

with the sulphides, and which may consume or produce hydrogen ions upon dissolution. 

The high A l concentration in rivers with low pH values can be attributed to the weathering 

of aluminosilicates (sandstones, clays, slates or siUcious ore) hi waste rocks (Banks et al. 

1997) . Compared to metal sulphides, the weathering rate of silicates is slow (Stromberg 

and Banwart, 1994), and the exposure of carbonates to weathering was probably low in the 

catchments of the Rio Tinto and Rio Odiel. Therefore, alkalmity generation from the 

dissolution of silicates and carbonates in this A M D system was limited. 

Sfrong sources for Zn, Cu, Pb, Co, Cd, M n and U were evident m the upper 

reaches of the Rio Tmto and Rio Odiel during the TOROS 4 survey (Table 4.7). This was 

also evident in published data (Hudson-Edwards et al. 1999; Nelson and Lamothe, 1993) 

and quarterly surveys of water quality conducted by the local environment agency (Medio 

Ambiente, 1998). A n example is given in Figure 4.30, which shows high metal 

concenfrations in two channels (Stations T3 and T3A, locations see Figure 4.12) that 

supply tailings leachate (pH 1.6 - 2.3) to the upper Rio Tinto (data from Medio Ambiente, 

1998) . 
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Dissolved levels of Fe Zn, Cu, Co, Cd and sulphate were consistently higher and 

pH values lower in the Rio Tinto, compared to the Rio Odiel. This may be explained by the 

less intense mining in the catchment of the Rio Odiel and a dam in the upper reaches of the 

Rio Odiel that partially retains eroded material (Nelson and Lamothe, 1993). hi addition, 

overflow &om an alkalme mine tailings pond {Embede de Gossan, pH 9 - 10) enters the 

headwaters of the Rio Odiel (Figure 4.12). This input is comparatively depleted in metals 

and wil l result in the dilution of the metal rich waters firom the upper Odiel and a slight 

increase in pH, which may lower the solubility of metals. 

Fluctuations of dissolved Zn, Cu, Cd, N i , Co and M n concentrations along the 

length of both rivers were observed in October 1998 (Table 4.7) and are evident in Figure 

4.30. The lowest metal levels were observed farthest downstream, at Niebla and Gibraleon. 

The highest concentrations of Zn, Cu, Cd and Pb in river sediments (Table 4.9) have been 

reported for the headwaters of the Rio Tmto and Rio Odiel (Hudson-Edwards et al. 1999; 

Medio Ambiente, 1998; Nelson and Lamothe, 1993). Hudson-Edwards et al showed that 

primary minerals derived from mine tailings (purple-red alluvium) contauied higher 

concenfrations of Zn, Cu, Pb and Mn, compared to secondary minerals formed in the 

sfream bed. The down sfream frend of decreasing dissolved and sediment metal 

concenfrations could be the combined effect of a lunited fransfer of dissolved metals into 

solid phases, the mixing with less polluted water (seepage or tributaries), the leaching of 

metals fiom sediment and the progressive mixing of contaminated with less contammated 

sediment with increasing distance from the mining area. 

Mid-river increases of dissolved frace metal levels may be attributable to the in-

sfream oxidation of metal sulphide grains and a flux of metal rich fluids from suboxic or 

anoxic sediments in the Rio Tinto, and/or to the contribution of dissolved metals from 

AMD-polluted tributaries in the Rio Odiel (e.g. via the Rio Oraque, Figure 4.2 and Figure 
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4.12). Similar fluctuations have been observed by Nelson and Lampthe (1993) and the 

Medio Ambiente (1998). 

Dissolved N i was foimd to be less enriched in the upper reaches of the rivers 

compared to the other trace metals studied. This is consistent with the relatively low N i 

content in the mineralisation of the river catchments. Nickel concentrations hi the 

dissolved phase (Table 4.7) and hi the sediments (Table 4.9) (Medio Ambiente, 1998) of 

the two rivers were lower in the headwaters, compared to downstream sites. This suggests 

mputs of N i to the system from additional sources, possibly surrounding soils (Van Geen et 

al. 1997) or the dissolution of river bed rock at low pH (Elbaz-PouUchet et al 1999). The 

relatively constant concenfrations of M n in the dissolved phase and sediments (Medio 

Ambiente, 1998) and its low concenfration hi secondary mmerals m the alluvium (Hudson-

Edwards et al 1999) suggests that the main source of this metal may be the bed rock, 

rather than the mining area and that it is not removed from solution within the river. 

The high sedunent concenfrations of Pb reported in Table 4.9 (Hudson-Edwards et 

al 1999; Medio Ambiente, 1998; Nelson and Lamotiie, 1993) and tiie continuously 

decreasmg dissolved concenfrations (Table 4.7) of this metal m the rivers reflect the low 

mobility of Pb sulphides, tiie low solubility of oxidised Pb species (Gray, 1998) and the 

affinity of Pb for soHd phases. 
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Figure 4.30 - Graphs prepared from data given in the annual survey report for 1997 by the Medio 
Ambiente (Medio Ambiente, 1998). Dissolved Fe, Zn, Cu and Ni in the Rio Tinto (stations T8, 
T i l , T18 and T19), and two AMD drainage channels (stations T3 and T3A) for April, June and 
September 1997 and January 1998. The location of the sampling stations are marked on the map in 
Figure 4.12. 
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Table 4.9 - Metal concentrations in sediments (< 63 pM) of the Rio Tinto (T..) and Rio Odiel (O..) 
reported for the year 1997 analysed by atomic absorption spectroscopy (Medio Ambiente, 1998). 
Locations of the sampling sites are given in Figure 4.12. A l l concentrations are given in mg kg'' 
sedmient. 
Medio Ambiente Mn Zn Cu Cd Pb Ni 

T3 129 510 1080 3.2 1110 3 
T 8 95 1480 977 4.4 13400 9 
T i l 140 843 731 2.5 7140 10 
T18 166 547 647 1.7 3000 12 

T19 168 340 352 2.3 462 6 

0 9 442 424 911 0.9 712 9 

0 19 306 531 1200 0.6 1940 12 

0 35 387 323 397 <LOD 632 24 

0 26* 363 392 436 <LOD 210 18 

Nelson efflZ.' Mn Zn Cu Cd Pb N i 

Rio Tinto 150-300 <200-3000 150- 1500 0.1-7 100-2000 <5-15 

Rio Odiel 150- 1500 < 200- 1500 150- 1500 0.1-7 100-2000 7-150 

}I.-B. etal} Mn Zn Cu As Pb Fe 

Fe cement 35 480 320 230 1400 94000 

Orange 26 27 84 750 3100 68000 

Purple 36 - 140 60 - 1200 200 - 1500 160-250 1200 - 7600 5300 - 47000 

* O 26 was taken in Rio Oraque, a tributary to the Rio Odiel (between station 019 and 035). 
' Metal concentrations in river sediment were analysed with semiquantitative spectrographic 
analysis. '<' indicates values below the lower limit of detection (Nelson and Lamothe, 1993). 
^ Metal concentrations in alluvium of the Rio Tinto. Analysis were carried out in Fe-rich cement 
from tihe upper reaches, orange laminated and tailmgs-derived purple-red alluvium from the lower 
Rio Tinto (Hudson-Edwards et al. 1999). 
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4 . 6 . 1 . 2 R i v e r F l o w a n d S e a s o n a l V a r i a b i l i t y 

River discharge m Huelva Province is directly related to rainfall (Morales, 1998b), 

which varies considerably between the seasons and between years (Figure 4.3). Therefore, 

the volume of A M D and 'clean' water entering j&om tributaries and hence the composition 

of the Rio Tinto and Rio Odiel wi l l be influenced by precipitation. However, 

meteorological data (Morales, 1999b) indicated that all surveys were carried out after 

periods of low or no ramfall, which was evident in similar low river flows encountered 

during all surveys. 

Dissolved trace metal concentrations in the fresh water end-members were higher 

and more variable m autumn and winter (e.g. Rio Tinto: 0.61 - 2.59 m M Zn, 1.38 - 6.01 

pM Cd), compared to spring and summer surveys (e.g. Rio Tuito: 295 - 355 pM Zn, 782 -

796 n M Cd). Additional data from a limited sampling campaign during high river flow in 

February 1998 was provided by Moriey and Elbaz-Poulichet (unpubhshed data. Table 

4.10). The February survey showed that with increased river flow the observed p H values 

for both rivers were higher and the total dissolved concenfrations of Mn, Cu, N i , Cd and U 

below those oT the autumn/wfriter TOROS surveys, but largely comparable with values 

observed during the spring/summer surveys. A survey of the Rio Tinto carried out by 

Garcia-Vargas et al (1980, reported in: Nelson and Lamothe, 1993) showed higher 

dissolved Cu, Zn, Fe and M n concenfrations in dry seasons, compared to wet seasons. 

However, the paper does not indicate whether the survey was carried out at the beginning 

(autunm) or end (late winter) of the wet season. Dissolved Fe, Zn, Co and N i 

concenfrations hi the rivers duruig the hydrological year 1997/98 (Figure 4.30, Medio 

Ambiente, 1998) were highest in September and lowest in January. 
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Table 4.10 - pH and total dissolved total dissolved metal 
concentrations in the Rio Tinto at Niebla and Rio Odiel at Gibraleon 
in February 1998. The samples were collected by N . Morley, the 
analysis carried out by F. Elbaz-Poulichet. 
February 1998 Niebla Gibraleon 

pH 2.94 3.63 

Cu (iLiM) 130 70 

Ni (pM) 0.76 1.57 

Cd (nM) 590 290 

Mn(pM) 48.1 80.6 

U(nM) 13.7 11.3 
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The presented evidence suggests a. seasonal cycle. At the height of the dry, warm 

season a shortage of moisture within mine tailings prevented the formation of leachate at 

sufficient quantities to reach the rivers. As a consequence, lower dissolved metal concen

trations were observed in the rivers. At the beginning of the rainy season the amount of 

A M D entering the rivers increased, as highly concentrated leachate in tailing ponds and 

ditches collected during dryer periods was washed into the rivers, lowering the water pH. 

The higher water velocity carried more eroded material from the mining area into the rivers 

and led to the re-suspension of bed sediments. It is likely that metal desorption, acid 

leaching and dissolution from suspended particles added to the dissolved metal load. The 

disturbance of sediment may have released metal-rich interstitial waters and exposed 

deeper anoxic sediment zones to oxidismg conditions m the water column. Prolonged 

intense precipitation resulted in the gradual reduction of dissolved and suspended metal 

concenfrations hi the rivers. This occurred because dilution took effect and river sediments 

would have been scoured from the river bed and fransported out of the system. As a result, 

comparatively low dissolved metal concenfration and rivers devoid of ochre precipitates 

would be observed at the end of the wet season. With lower precipitation during spring, 

dissolved metal concenfrations increased towards summer and the more quiescent river 

flow allowed the accretion of ochre in the river bed. 

Sunilar cycles of river-flow related fluctuations of dissolved metal loads have been 

observed in the Rhone river (Elbaz-Poulichet et al. 1996), in acidic woodland sfreams m 

New Jersey (Sherrell and Ross, 1999) and a number of AMD-affected systems. For 

example, the mobilisation of ochre from the river bed has been observed during periods of 

high river flow in the Guadiamar (Figure 4.2), which drauis the mining area of Aznalcollar 

to the east of the Rio Tinto (Albaiges et al. 1987). Dissolved Fe concenfrations in the upper 

Guadiamar were low in January, increased throughout spring, declined in summer and 

hicreased rapidly at the beginning of tiie wet autumn season. In the King River, Tasmania, 
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the increase of dissolved trace metal concentrations during flood events was attributed to 

the release of acidic interstitial water, which had been generated during the in-situ 

oxidation of sulphides settled under conditions of low river flow (Featherstone and 

O'Grady, 1997 and references therein). 

4 . 6 . 1 . 3 G e o c h e m i s t r y a n d M i c r o b i o l o g y o f AI\/1D 

A mineralogical study of Rio Tmto sediments (Hudson-Edwards et al. 1999) 

concluded that sedimentation of Fe and sulphate bearing minerals from the river water 

takes place. The contamination of the alluviimi with Ag , As, Cu, Pb and Zn was most 

pronounced in primary minerals eroded from mine tailingSj but important concenfrations of 

these metals were also associated vwth various secondary mineral phases. However, no 

mechanism that could be responsible for the reduction in dissolved metal concenfrations in 

acid (pH 1.5) waters of the lower Rio Tinto was elucidated. 

The answer may lie in microbial processes, the importance of which is illusfrated hi 

Figure 4.31 for the fron cycle. Under acidic conditions (pE < 4) abiotic fron oxidation is 

slow (Chapman et al 1996; Pronk and Johnson, 1992). Comparisons of fron oxidation 

rates obtained from field studies with those fiom abiotic laboratory experiments indicated 

that oxidation mediated by acidophilic bacteria may outweigh the abiotic rate by several 

orders of magnitude (Kirby and Elder Brady, 1998). Rapid formation of Fe(III) sohds as 

hydroxides, oxides, oxyhydroxides, phosphates or sulphates has been found to follow 

bacterial oxidation m aerobic systems (Ehrlich, 1996; Bowell and Bruce, 1995; Tuovinen 

et al 1994; Carlson and Lindstiom, 1992). In addition, the variability in water chemistry 

may be related to seasonal fluctuations in temperature, as temperature influences the 

kinetics of abiotic and biotic A M D generation and metal sohd/solution interactions (MiUer 

et al 1996; Krauskopf and Bird, 1995). 
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Figure 4.31 - Chemical and biological pathways in the iron cycle. M - microbially mediated, C -
chemically mediated, M ' - microbial at neutral pH, C^ - chemical at neutral pH when O2 tension is 
high, RH - organic molecules (as reducing agents), A - any one of the cations (Na* NHj* or 
H3O*) involved in the formation of jarosite. After Ehrlich, 1996. 
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The microbes involved in the iron cycle are acidophiles, some of which derive their 

energy and reducmg power from the oxidation of ferrous iron, reduced sulphur species 

(H2S, S°, SiOs^") and metal sulphides (among others). Commonly studied is the mesophilic 

(with respect to temperature) Thiobacillus ferrooxidans, which oxidises ferrous iron 

around p H 2 and, depending on the strain observed, growth occurs at a pH range between 

1.5 and 6.0 (Webster et al 1998; Ehrlich, 1996). The temperature range of T. ferrooxidans 

is 15 - 45 °C, with maxhnum activity and growth at 30 - 35 °C (Ehrhch, 1996; Noike et al 

1983). Other examples of sulphide oxidising bacteria are the halo-tolerant T. prosperus, 

Leptospirillum ferrooxidans (optimum growth at pH 1.5 - 2) and the acid-tolerant 

Metallogenium (pH 3.5 - 6.8, optimimi at pH 4.1) (Ehrhch, 1996; Pronk and Johnson, 

1992). Accordmg to Amils et a/.(1998) mesophihc acidophilic microbes occur in the Rio 

Tinto. 

Thermophilic bacteria identified hi the Rio Tinto (e.g. Sufolobales, Amils et al 

1998) probably origmated in the mine tailuig heaps, where temperatures are elevated above 

ambient levels by the heat released during sulphide mineral oxidation (Niemela et al 

1994). Various acidophihc organisms (including some fungi) are able to oxidise sulphide 

ores of a multitude of metals (e.g. Fe, Mn, Cr, Zn, Cu, As, N i , Sb, Ga, Cd, Pb and Mo). In 

addition, the ferric iron released into solution during this process acts as a further oxidant 

on metal sulphides (MS + 2Fe^^ ^ M^"" + S° + 2Fe^^ (Miller et al 1996; Ehrlich, 1996 

and references thereui; Tuovinen et al 1994). 

The immediate precipitation of ferric iron produced by iron oxidising bacteria has 

been observed at p H > 1.6 (Ehrlich, 1996 and references thferein). The formed ochres, 

which are mainly poorly crystallised (amorphous) iron (oxy)hydroxides, may contain a 

significant amount of sulphate (e.g. schwertmannite: Fe808(OH)6S04 and jarosite: 

(H,Na,K)Fe3(S04)2(OH)6) (Bigham et al 1996; Bigham et al 1990) and have high surface 
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reactivity for the scavengmg of other trace metals m solution. Hudson-Edwards (1999) 

reported the presence of secondary minerals, including Fe oxides, hydroxides, oxyhydrox

ides and oxyhydroxysulphates in the sediment of the Rio Tinto. While primary iron 

minerals contained higher concentrations of Zn, Cu, Pb and As, compared to secondary 

mineral phases, a certain degree of metal scavenging duruig the formation of secondary Fe 

minerals was evident. 

Co-precipitation and adsorption of cations onto Fe oxyhydroxides is known to be 

important in systems with pH > 5. In more acidic waters (pH < 4), co-removal of trace 

metals with iron has been found to be less pronounced (McCarty et al. 1998). This has 

been attributed to the electrostatic repulsion generated by the presence of positive charges 

on mineral and particle surfaces, either in form of cationic species (e.g. Fê "̂ , FeOH^'^ and 

Fe(0H)2'*) or due to the protonation of adsorption sites at low pH (Bonnissel-Gissmger et 

al. 1998; KJrauskopf and Bud, 1995; Bowell and Bruce, 1995; Groot et al. 1987). 

Electrophoretic mobility experiments carried out in October 1998 by a colleague (Herzl, 

personal communication) showed that suspended particles from the Tinto and Odiel rivers 

and their upper estuaries carried an overall positive charge, which decreased at higher pH 

and salmity values. This phenomenon has resulted in the absence of a strong removal of 

dissolved Fe and other metals in the rivers and the low salinity zone of the Tinto and Odiel 

estuaries (see Section 4.6.2), and this is in contrast to metal behaviour commonly observed 

in estuaries not affected by A M D . 

The presence of T. ferrooxidans has been found to enhance trace metal adsorption 

to oxides formed from A M D , and this was associated with the supply of adsorptive 

surfaces in the form of cell membranes, or to a change hi tihe mechanism of oxide 

precipitation (Webster et al. 1998). Microbal precipitation of Fe and M n may be effected 

by enzymatic or non-enzymatic processes, whereby ferrous or ferric iron is either 

195 



deposited within the organism or passively accumulated on its cell surface (e.g. in 

Metallogenium) (Ehrlich, 1996 and references therein; Pronk and Johnson, 1992). 

No evidence was found for the formation of colloids in the rivers (pH < 3.2), 

neither visual (the water was clear at all times) nor from an ulfra-filfration experiments 

carried out during the TOROS 2 survey by a colleague (Herzl, personal communication). 

Colloidal matter has been found to be low or absent in other A M D affected river systems, 

for example the Camon m southwest England (Johnson, 1986 and references thereui). 

Furthermore, thermodynamic equilibrium speciation modellmg of the fiesh water system 

indicated that none of the considered dissolved species had reached saturation 

concentiations (see Chapter 6). Therefore, microbal precipitation of Fe and M n and 

scavenging of frace metals by these freshly precipitated phases may be of particular 

unportance in the studied system. 

Once solid phases exist, concretion (i.e. growth of solid metal phases on existing 

sedunents or particles) may accelerate the removal of metals from solution. Concretion has 

been shown to be an abiotic mechanism of frace metal removal from solution at low pH (< 

3) m A M D polluted sfreams (Chapman et al 1996). Such deposits (Fe-rich cements, 

jarosites and schwertmannite as overgrowths on pyrite) have been found in the Rio Tinto 

(Hudson-Edwards et al. 1999). Some of these phases contained anomalous amounts of Cu 

and relatively low concenfrations of Pb, Zn and As. High concenfratioiis of As, Cu and Zn 

have been reported for yellow and white precipitates (gypsum: CaS04-2H20, alunogen: 

Al2(S04)3-17H20 and Fe oxyhydroxysulphates), which form on pyrite-rich surfaces. 

T. thiooxidans and other mesophilic heterofrophic acidophiles are able to utiUse Fe 

for respfration (Pronk and Johnson, 1992). The mentioned stiain is capable of aerobic 

Fe(III) reduction at pH values around 2.5, because the Fe(II) produced by the organism 

does not readily auto-oxidise at pH < 5 (Ehrlich, 1996). V ia this pathway, amorphous ferric 
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hydroxides, hydrous ferric oxides (e.g. lepidocrocite: y-FeOOH and goethite: a-FeOOH) 

and crystalline compounds (schwertmannite, jarosite) can be reduced, dependmg on the 

bacterial stram uivolved (Pronk and Johnson, 1992). Fiirthermore, anaerobic bio-reduction 

of Fe(III) and Mn(rV) can be important in sub-surface sediments (Ehrlich, 1996). 

A n important aspect in the iron redox cycle occurring in shallow rivers may be 

photo-induced reduction and dissolution of Fe(ni) (hydr)oxides (e.g. lepidocrocite, 

goethite and hematite: a-FeaOs) under acid and aerobic conditions. Experiments 

(Sulzberger and Laubscher, 1995; Miles and Brezonik, 1981) showed that dissolved 

organic matter (oxalate, formate, humic or fulvic material) acted as reducing agent during 

the photo-reduction of Fe(III), which was followed by re-oxidation of Fe(II) to Fe (IE). 

In sununary, the higher temperatures and increased light mcidence in summer, 

compared to winter, is likely to accelerate redox-cycling (biotic and abiotic) m the river 

systems. In the shallow, aerobic Rio Tinto and Rio Odiel, photo-reduction, dissolution and 

re-oxidation of iron may be mechanisms of transferring Fe from thermodynamically stable 

mineral phases into more soluble species. These processes influence the redox behaviour 

of other metals (e.g. Fe(II) can reduce Mn(ni, W) oxides, Stunun and Morgan, 1996) and 

the dissolution/desorption and co-precipitation/adsorption of frace metals associated with 

Fe oxyhydroxides and Fe oxyhydroxysulphides. Enhanced microbial activity may lead to 

enhanced sulphide oxidation rates and enable the precipitation and accretion of sohd Fe 

phases at low pH values. Witiiout further investigations (e.g. in-situ study of microbial 

oxidation and reduction rates, frace metals associated with precipitated mineral phases) the 

effects of the above mentioned metal dissolution-precipitation and redox processes on 

seasonal variability caimot be ascertained. It appears that the amount of moisture available 

for A M D generation and fransport and the influence of acidophilic micro-organisms could 

play a major role in regulatmg the metal chemistry of the Rio Tinto and Rio Odiel. 
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4 . 6 . 2 GEOCHEMISTRY IN T H E ESTUARY 

Although the range of metal concentrations observed in the riverine end-members 

were similar to A M D affected systems in many locations, the estuarine system of the Rio 

Tinto and Rio Odiel is relatively vmique. The proxhnity of the A M D source to the coast, its 

intensity and industrial v/astQ discharges into the mixing zone created estuarine conditions 

that are rarely encountered or studied. 

The tidal ranges during the surveys were 2.07 m (TOROS 1), 1.54 m (TOROS 2), 

2.91 m (TOROS 3) and 1.86 m (TOROS 4). However, the sea water intrusion at the tune 

of sampling not only depends on tidal ranges, but also on wind force, atmospheric 

pressure, fresh water discharges and the timing of the survey. Figure 4.32 shows the spatial 

extent of the tidal intrusion as a plot of pH and salhuty versus distance. In both upper 

estuaries, the sea water intrusion reached farthest upstream during the TOROS 4 surveys 

(T4), compared to the other surveys. During TOROS 4 the low salmity mixing zone could 

not be sampled because of the limited navigability of the upper tidal channels. 
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Figure 4.32 - Salinity and pH of four transects (TOROS 1, 2, 3 and 4) plotted over distance from 
the estuary's mouth at Mazagon. A: Ria del Tinto from the fresh water end-member atNiebla to the 
confluence and from there to Mazagon. B: Ria del Odiel from the fresh water end-member at 
Gibraleon to Huelva Bridge and to Mazagon. 
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4 . 6 . 2 . 1 p H , A c i d i t y , A l k a l i n i t y a n d S u l p h a t e 

During the TOROS I and 2 surveys, low p H values (2.4 - 3.7) were maintained 

throughout the Ria del Tinto. Steep pH gradients were observed only near the confluence 

with Huelva Ria, where the salinity reached values above 30 (Figure 4.14 and Figure 4.17). 

The low pH in the upper estuary resulted firom the strong riverme source of A M D . In the 

lower Ria del Tinto phosphoric acid, sulphuric acid and fluoride are released firom 

phosphogypsum deposits (Elbaz-Poulichet et al. 1999) located at the northem bank (Figure 

4.5), and HF is formed in the estuary. In the vicinity of the deposits, evidence for the acidic 

discharge (pH 1.5) was given by elevated sulphate concentrations (Figure 4.14 and Figure 

4.17), high phosphate concentrations (TOROS 2: PO4 > 270 \M, Cruzado et al. 1998) and 

high fluoride levels (1997: F = 6.8 - 11 mg 1"̂  at low water; Medio Ambiente, 1998), 

compared to those found in the upper mixing zone (TOROS 2: PO4 = 44.7 | i M , Cruzado et 

al. 1998, 1997: F < 1.8 m g l ' ' at low water; Medio Ambiente, 1998). 

In April and October 1998 the neutralisation of the pH started farther upstream 

(Figure 4.32) and at lower sahnities (Figure 4.22 and Figure 4.26), compared with earHer 

surveys. This mdicates that less acid entered the Ria del Tinto during TOROS 3 and 4 firom 

the phosphogypsum deposits, than during TOROS 1 and 2. According to Morales (1999a), 

the construction of a closed water cycle for the phosphogypsum deposits began to take 

effect in spring 1998, vidth a reduction of acidic effluent entering the lower Ria del Tinto, 

which then stopped completely later that year. The observed decrease in phosphate levels 

between June 1997 and October 1998 (TOROS 4: PO4 = 17.6 - 26.2 fxM, Cruzado et al. 

1999) was indicative of the effects of the closed water cycle. The nutrient decrease was not 

the result of depletion through primary production, as total chlorophyll concentrations in 

this part of the estuary were approximately 10 times lower in October compared to June 

(Cruzado e/«/. 1999; 1998). 
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The pH values hi the Ria del Odiel increased steadily with increasing salinity 

during all surveys and neutral pH values were reached in the upper Huelva Ria (Figure 

4.15, Figure 4.18, Figure 4.23, Figure 4.27 and Figure 4.32). At salinities above 30 the pH 

values observed in the Ria del Odiel were between 5.2 and 7.8, with lowest values in 

autumn/winter and spring. The high salhiity (S >36) values observed in the lower Huelva 

Ria reflected the mixmg of a small voliune of river water with high-salinity coastal sea 

water, in which surface-salmities between 35.9 and 36.5 were observed during TOROS 

surveys (see Chapter 5). 

The high level of sulphate observed during the TOROS 1 survey (November 1996) 

may be partially explained by the high concentrations of this anion in the firesh water end-

members of the Rio Tinto and Rio Odiel and the discharges fiom phosphogypsum deposits 

in the lower Ria del Thito. In addition, effluent from fertihser factories in the upper Huelva 

Ria may have contributed to mahitaining elevated SO4 concenfrations (SO4 = 40 m M at S 

= 35) throughout the estuary. These discharges were traceable in June 1997, when elevated 

phosphate concenfrations were observed m the upper Huelva Ria (stations H R 1 and HR 2: 

PO4 = 51 - 60 pM, compared to station H R 11: PO4 = 5.6 pM; Cruzado et al. 1998). 

Sulphate concenfrations during the subsequent surveys (TOROS 2 and 3) remained 

below 40 m M in the Ria del Tinto and below 30 m M fri the Ria del Odiel, where a 

conservative mixing of the anion was observed. The discharge from the phosphogypsum 

deposits during the dry summer period (June 1997, TOROS 2) were probably low and, in 

April 1998, discharges had been reduced. During these two surveys estuarine sulphate 

concenfrations in Huelva Ria were around the sea water level (28 m M , Stumm and 

Morgan, 1996) at salmities above 35. 

The total acidity decreased witii increasing salinity in both upper estuaries (Figure 

4.17 and Figure 4.18). Before the acid discharges from the phosphogypsum ceased hi the 
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Ria del Tinto, carbonate alkalinity was detected only in an advanced stage of mixing (S > 

32.2, pH > 5.8, TOROS 2). In contrast to this, the acidity of the Ria delOdiel was lower 

throughout and alkalinity was detected at mid-salinities and lower p H values (S > 17.5, pH 

> 4.4, TOROS 2). In accordance with conservative mixing, the carbonate alkalinity 

iacreased from zero to values typical for sea water (2.3 - 2.6 meq T^ Stumm and Morgan, 

1996) at salinities above 36. 

4 . 6 . 2 . 2 S u s p e n d e d P a r t i c u l a t e M a t t e r 

The turbidity maxhnum zone (TMZ) in the Ria del Tinto was located between the 

bridge at San Juan del Puerto and the ceUulose factory (Figure 4.5). S P M concenfrations 

reached maxima around S = 11 (253 mg T )̂ and S = 8 (272 mg T )̂ during the TOROS 2 

and 3 surveys, respectively. In October 1998, no samples were taken for S P M between the 

fresh water end-member and estuarine water of S =25.1, so that the presence of a T M Z 

and its magnitude remained imcertain. In the Ria del Odiel, no distinct T M Z was observed 

in any of the fransects. In Apri l 1998 (Figure 4.23), a sample with elevated S P M concen

fration was taken in the mid-Odiel (OR 4, S = 16.5, Figure 4.10), however, this could have 

been an artefact of sampling in the shallow waters. The S P M concenfration in the Ria del 

Odiel increased with the salinity to a level between 20 and 60 mg r \ which was 

approximately the range of SPM concenfrations found in Huelva Ria. This SPM 

concenfration range appears to be typical for Huelva Ria and has been used for S P M 

modellmg by Perianez et al. (1996). 
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4 . 6 . 2 . 3 E h , D O C a n d D i s s o l v e d O x y g e n 

The redox potential (Eh) in the fully oxygenated fresh water end-members was 

between 480 and 600 mV during TOROS 2, 3 and 4 surveys. In the upper estuaries a 

gradual decline in Eh values was concurrent with the increase in pH, and levels between 

270 and 400 mV were reached in the lower Ria del Tinto and Ria del Odiel during the 

TOROS 2 and 3 surveys. Eh expressed as ps is the hypothetical activity of elecfrons and it 

is inversely related with pH as a result of several redox equilibria (mainly involving 

species of C, 0 , N , Fe, M n and S) that occur in natural waters (Stumm and Morgan, 1996). 

During TOROS 4 a more rapid decrease to 110 and 200 mV was observed in the 

RIa del Tinto and Ria del Odiel, respectively. The low Eh values in the mid-Tinto estuary 

coincided with a minimum hi dissolved oxygen and high D O C concenfrations in the 

vicinity of the cellulose factory (S = 24 - 28, Figure 4.26). Samples contauiing an 

important proportion of effluent from this plant during TOROS 2 and 3 surveys had higher 

pH values (7.9), lower Eh values (170 - 220 mV) and higher temperatiires (24 - 29 °C) and 

DOC concenfrations (6.6 mM), compared to the main stieam estuarine water. The localised 

oxygen and Eh minimum can therefore be attributed to an increased, biochemical oxygen 

demand (resulthig from the degradation of organic matter) and elevated temperatures 

associated with the factory's effluent. 

Dissolved organic carbon concentiations in the Ria del Tinto during the spring 

survey (April 1998: 0.27 - 0.39 mM) were comparable to levels generally found in the Ria 

del Odiel and Huelva Ria. Levels were sunilar to those found in other populated and 

industrialised estuaries, for example the Sevem (0.08 - 0.58 m M C, Mantoura and 

Woodward, 1983), but higher than levels found in coastal surface waters of the 

Mediterranean Sea in March (ca. 0.08 mM) and July (0.08 - 0.2 mM) (Cauwet et al. 1997). 

High DOC concenfrations were associated with effluent from the cellulose factory hi tiie 
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Ria del Tinto during in June 1997 aad October 1998 (6.6 and 2.2 m M C, respectively), and 

DOC levels values declined towards the confluence where concentrations around 0.37 m M 

were reached. In June 1997, maxima of chlorophyll-a (chl-a = 342 (xg 1'' Cruzado et al. 

1998) and DOC coincided, suggestmg a contribution of organic matter from primary 

producers. In Apri l and October 1998, chl-a levels were lower (maxima 90 |ag T̂  and 38 jj,g 

r\ respectively Cruzado et al. 1999; Elbaz-Poulichet et al 1999b) than in June 1997 and it 

appears that variations in factory effluents determined D O C levels in the RJa del Tinto. 

DOC concenfrations in the Ria del Odiel (0.13 - 0.44 m M C) and Huelva Ria (0.1 -

0.38 m M C) were lower and less variable compared to those in the Ria del Tinto. Minima 

in DOC levels were generally found in the upper Ria del Odiel and towards the sea water 

end-member. The higher DOC values occurred m the upper Huelva Ria, possibly as a 

result of effluent from a raw sewage channel and enhanced productivity supported by 

nutrient-rich effluent from fertiliser factories. Generally, DOC is thought to behave 

conservatively in estuaries (Mantoura and Woodward, 1983), but ui the Tinto/Odiel system 

additional sources of DOC within the estuary and effluent from tiie fertihser industry, 

promoting primary productivity, masked such behaviour. 

4 . 6 . 2 . 4 G e o c h e m i s t r y o f Fe, A I , M n , Z n , C u , N I , C o a n d C d 

Ria del Tinto and Ria del Odiel 

In the upper RIa del Tinto and Ria del Odiel the dissolved concenfrations of Fe, A l , 

Mn, Zn, Cu, N i , Co and Cd reflected the variability of their riverine sources, with higher 

concenfrations in autumn/winter (TOROS 1 and 4), compared to spring/summer (TOROS 

2 and 3). The concentiation gap between wet and dry seasons was more pronounced in the 

Rio Tinto than the Rio Odiel, and this was mirrored in metal levels foimd in the upper 

mixing zone of thefr estuaries. 
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Zinc, Cu and Cd are particularly enriched in the Iberian Pyrite Belt and may be 

viewed as tracers of the fate of AMD-related discharges. The comparison of their estuarine 

distribution with that of Fe, A l , Mn, N i and Co affirms their common riverme soiuce and 

similar geochemical behaviour in the estuary (Figure 4.14, Figure 4.15, Figure 4.17, Figmre 

4.18, Figure 4.22, Figure 4.23 and Figure 4.26 - Figure 4.28). Multivariable correlation 

calculations mdicated strong positive correlation (R^ > 0.90) between Fe, A l , Mn, Zn, Cu, 

N i , Co and Cd in the RIa del Tmto and Ria del Odiel/Huelva Ria for all four surveys. A 

strong negative correlation was found between these metals and salinity (R^ > 0.85), 

mdicatmg that the behaviour of dissolved Fe, A l , Mn, Zn, Cu, N i , Co and Cd in the estuary 

was broadly conservative. Deviations from the conservative behaviour are discussed in the 

following paragraphs. 

In the Ria del Tinto, the early stages of mixing were characterised by an increase hi 

total dissolved concenfrations of Fe, A l , Mn, Zn, Cu, N i , Co and Cd to levels above those 

in the fresh water end-members (Figure 4.14, Figure 4.17, Figure 4.22 and Figure 4.26). 

The maxfrna occurred at different salinities (S = 0.93 - 7.7), but within a narrow range of 

pH values (pH = 2.43 - 2.61). On plots of dissolved Mn, Zn, Cu, N i , Co or Cd versus pH 

(Figure 4.33, Co and M n not shown), the profiles of all four surveys overlap closely. This 

indicates an important influence of pH on the metal geochemistry in the Ria del Tinto and 

to a lesser extent in the Ria del Odiel. 

During the TOROS 1,2 and 3 surveys the disfribution of dissolved Fe, Mn, Zn, Cu, 

N i , Co and Cd between the maxhna and the confluence of the Ria del Tinto with Huelva 

RIa (S = 30.4 - 32.2, pH = 2.7 - 6.6) was govemed by conservative dilution with sea water 

(Figure 4.14, Figure 4.17 and Figure 4.22). 
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Figure 4.33 - Comparison of total dissolved Zn, Cu, Ni, Co, Mn and Cd concentrations observed 
during TOROS surveys 1, 2, 3 and 4 in the Ria del Tmto and Ria del Odiel (left and right colunn, 
respectively) plotted versus pH. 
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In October 1998 (TOROS 4), a removal of Fe, Mn, Zn, Cu, N i , Co and Cd from 

solution in the upper region of the Ria del Tinto at mid-salinities (S < 25, pH < 4.4) can be 

inferred from the metal/salinity profiles. The lack of data points in this region does not 

allow a more detailed discussion. However, it is likely that the somewhat higher pH and 

salinity encountered during this survey shifted the zone of metal removal upstieam, 

compared to preceding surveys. 

In the Ria del Odiel estuarine mixing of dissolved Fe, A l , Mn, Zn, Cu, N i , Co and 

Cd appeared to be broadly conservative up to salmity and pH values around 31 and 6.2, 

respectively (Figure 4.15, Figure 4.18, Figure 4.23 and Figure 4.27). Slight removal during 

the early stages of mixing may have occurred during the TOROS 1 survey, and slight 

addition was mdicated durmg TOROS 2 for Mn, Cu and A l and during TOROS 3 for M n 

and Co. However, the curvature in the metal profiles from the latter surveys may be an 

artefact of variability in concenttation, because the river end-members were not collected 

on the same day as estuarhie samples. The behaviour of ttace metals during TOROS 4 m 

the Ria del Odiel cannot be inferred because of the lack of samples from the mixing zone. 

During the TOROS 1 survey, re-suspension of bed sediment in the shallow upper 

Ria del Tinto (close to San Juan del Puerto) was observed during sampling. In samples 

from the TOROS 2 fransect, maxhna in dissolved Fe, A l , Mn, Zn, Cu, N i , Co and Cd 

comcided with a S P M concenfration peak in the low salmity zone. In April 1998 (TOROS 

3) high S P M concenfrations (~ 200 mg T )̂ coincided with the dissolved metal maxhna, but 

tiie S P M peak (270 mg 1"̂ ) occurred hi the sample directly downsfream from the metal 

maxhna. Assuming the absence of an extemal source in the upper Ria del Thito, the 

observed increase in dissolved metals must have resulted from a reworking of the 

sediments. 
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Published work affirmed the estuarine sediment as strong potential source for the 

(re)mobihsation of dissolved metals. High concentiations of Fe, Mn , Zn, Cu, N i , Cd, Pb 

and U in surface sediments have been observed in the Ria del Tinto, Ria del Odiel and the 

Odiel salt marshes (Medio Ambiente, 1998; Izquierdo et al. 1997; Albaiges et al. 1987; 

Stenner and Nickless, 1975). Borrego e/ al. (1997) and Izquierdo et al. (1997) reported tiie 

presence of pyrite grains and metal sulphides associated with remains of microorganisms 

and foraminifera in the salt marshes of the estuary. Generally, reported sediment Zn, Cu 

and Cd levels hi the Tinto and Odiel estuaries were comparable with those hi other A M D 

affected systems (e.g. Restionguet Creek, Dulas Bay, Table 4.11), but very much higher 

tiian those reported for other estuaries and coastal salt marshes of the Gulf of Cadiz (e.g. 

Guadiamar, Guadiana, Bay of Cadiz) and hi other estuaries affected by general industrial 

wastes (e.g. Humber, Mersey). 

Elbaz-Poulichet et al (1999b) suggested that organic material originating firom the 

cellulose factory m tiie upper Ria del Tinto may have acted as reducmg agent, resulting m 

the dissolution of metal oxides fiom surface sediment. The lack of a metal maxhnum in the 

low salinity zone of the RIa del Odiel supports this argument. In the Ria del Odiel there 

was no stiong source of organic matter and this was reflected in the lower D O C levels, 

compared to the upper Ria del Tinto. In addition, the morphology of the upper Ria del 

Odiel (narrow channels, reed-beds) indicates a more quiescent, less reactive environment, 

compared to the open and sparsely vegetated mudflats of the Ria del Tinto. This would 

differentially influence another proposed metal mobilisation mechanism, the disturbance of 

deeper, anoxic sediment layers at tunes of high river flow or other high-energy situations 

(wmd/wave action, tidal advance). Sub- or anoxia in sub-surface sediment layers was 

indicated by the black colour of the mud and presence of partially decomposed organic 

debris m sub-surface sediment layers of the lower Ria del Tinto mud-flats (Morley, 

personal communication). According to Borrego et al (1997), the C/S ratio in sediments of 
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sub-tidal channels and salt-marshes (3.4 - 7.0) of the estuary was indicative of favourable 

conditions for sulphur reduction. Similar observations have been made in other A M D 

affected estuaries, where reducing conditions were mdicated by the presence of metal 

sulphides and H2S and evidence for (bacterial) S04̂ " reduction (Parkman et al. 1996). 

Moreover, the infusion of metal-rich interstitial waters into the water column and 

the dissolution and leaching of metals from mineral phases freshly exposed to low pH 

values (< 2.7) may have contributed to the observed mcrease in dissolved Fe, Mn, Zn, Cu, 

N i , Co and Cd m the upper Ria del Tmto. Durmg the TOROS 2 and 3 surveys, Elbaz-

Poulichet (1999b) observed a decrease in particulate Fe concenfrations coinciding with the 

dissolved metal maxima hi the upper RIa del Tinto mixing zone. Once released, the metals 

were probably mamtained in solution by the effects of tihe low pH at S < 30, and by 

complexation with hiorganic (e.g. chloride, sulphate) and organic Ugands present m tihe 

water column (Zwolsman and Van Eck, 1993). 

The deposition of metals m the sediments of the Ria del Tmto is evident from the 

high concenfrations reported hi literature (Table 4.11). Sediment concenfrations of Mn, Zn, 

Cu and Cd reported for the upper R[a del Tinto mixing zone (Table 4.11, San Juan del 

Puerto, location see Figure 4.4) were lower than the concenfrations of these metals found 

in the lower Ria del Tmto, tihe lower RIa del Odiel and the Odiel salt marshes. This 

supports the suggestion that the deposition of metals in the sediment was more irnportant in 

the lower estuary, compared to the upper Ria del Tinto and/or that sediments in the upper 

Ria del Tinto were re-worked and mobilised metals fransported downsfream as dissolved 

and/or particulate species. In addition, industrial inputs may have contributed to the 

sediment load of metals in the mid-estuary. 

209 



Table 4.11 - Total metal concentrations (pg g ) in sediments of the Tinto/Odiel estuarine system, 
control.sites. in_south-west Spain and estuaries receiving metal contamination, 'm' - not reported. 
Some values were rounded to significant figures. 
Location Mn Zn Cu. Cd Pb Fe 

San Juan' 87 340 550 1.8 670 nr 
Odiel HB' 320 310 1360 4.4 470 m 

Odiel SIVÎ  560 1000 220 9 120 40200 

La Rabida^ nr 3100 1400 4.1 1600 nr 

Mazagon^ nr 42 6.5 0.9 6.0 nr 

Cadiz SM" 530 98 31 0.3 26 7500 
Cadiz Bay^ nr 6 2 1.1 6 nr 

Guadiamar* nr 59 26 nr 11 nr 

Ayamonte' nr 148 30 1.1 26 nr 

Dulas Bay* nr 3800 6600 nr nr 46000 

L V 0 8 ' 11900 620 120 <30 <200 lu: 
L V 1 6 ' 34200 2550 760 30 470 nr 

Restronguet'" 485 2820 2400 1.5 340 49100 

Mersey'" 1170 380 84 1.2 120 . 27300 

Humber'" 1020 250 54 0.48 110 35200 

Axe'« 250 76 12 0.17 26 14000 
' San Juan del Puerto, location of extended mud flats in the upper RIa del Tinto. Huelva Bridge is 
located between the lower Ria del Odiel and Huelva Ria (Medio Ambiente, 1998). 
^ Bacuta saltmarsh of the Ria del Odiel (Izquierdo et al. 1997). 
^ La Rabida is located on the lower Ria del Tinto, Mazagon at the mouth of Huelva Ria (Stenner 
and Nickless, 1975). 

San Carlos saltmarsh. Bay of Cadiz, south-west Spam (Izquierdo et al. 1997),. 
^ Inner Bay of Cadiz, south-west Spain (Stenner and Nickless, 1975). 
* Guadiamar saltmarsh and estuary (mean), south-west Spain (Albaiges et al. 1987). 
' Lower Guadiana estuary, south-west Spain (Stenner and Nickless, 1975). 
* Ochre sample from the Afon Goch estuary, Wales, UK (Parkman et al. 1996). 
' Ochre and limonites from Levant Mine, Cornwall, UK. L V 08: water pH 2.1, L V 16: water pH 
5.8 due to salt water mixing (Bowell and Bruce, 1995). 
'° Restronguet Creek in the Fal estuarine system, Cornwall, received AMD from abandoned Sn 
mine. Mersey and Humber estuaries (UK) are affected by industrial discharges. The Axe can be 
seen as U K background (Bryan and Langston, 1992). 
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The near-conservative behaviour observed for dissolved Fe, Mn , Zn, Cn, N i , Co 

and Cd in the Ria del Tinto between the metal maxima and the confluence, and in the 

upper Ria del Odiel (S < 30) is not uncommon in estuaries affected by acid discharges, ha 

estuarine waters with moderately acid pH (< 5) the observed conservative mixing of Fe and 

M n has been attributed to the slow oxidation of Fe(II) to Fe(in) and of Mn(n) to Mn(rV) 

(Millward and Marsh, 1986). Experiments in sea water showed that adsorption of Zn, Cu, 

Cd and Pb to gpethite occurred at pH values above 5.5, 4.0, 6.0 and 4,0, respectively 

(Balistrieri and Murray, 1982). In the Tinto/Odiel system, removal by adsorption may have 

been hampered by electrostatic repulsion due to the protonation of particle surfaces at the 

prevailing lowpH (see Section 4.6.1.3). 

Huelva Ria 

Tidal cycle studies at Huelva Bridge during TOROS 2, 3 and 4 studies indicated a 

steep increase of total dissolved Zn, Cu, N i , Co and Cd concentrations at low water (Figure 

4.20, Figure 4.25 and Figure 4.29). Coinciding with this increase were minima hi pH, 

clearly indicatmg the riverine origm of the enhanced metal concentrations. The dissolved 

metal/salinity relationship at Huelva Bridge was linear during TOROS. 2 and 3 surveys 

(Cu: R^ = 0.82 and 0.72; Zn: R^ = 0.73 and 0.81, respectively, significant at 1% confidence 

level), mdicatmg conservative mixing at this pomt of the estuary over wide salmity and pH 

ranges (TOROS 2: S = 11 - 35, pH = 3.5 - 6.4; TOROS 3: S = 35.0 - 36.6, pH = 8.2 - 8.3). 

During TOROS 1, the removal of Zn, Cu, N i , Co and M n from solution observed m 

the lower Ria del Odiel (at S > 32, pH > 5.3) continued m samples from the Huelva Ria 

fransect. Less pronounced was the removal of these metals during the spring (TOROS 2: at 

S > 33.5, p H > 6.85) and summer (TOROS 3: at S > 29, pH > 5.7) surveys. The possibility 

that complexation of dissolved metals (especially Cu) by stiong organic Hgands may 
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maintain metals in solution at times of high primary productivity is discussed in Chapter 6. 

Cadmium behaved largely conservatively during all four surveys, and this may be 

explained vdth the formation of soluble complexes with chloride (Chapter 6). The overall 

conservative behaviour of dissolved Cd and the removal of Zn and Cu hi the Tinto/Odiel 

estuarine system has been reported previously (Van Geen et al. 1997). 

The observed removal from solution of Fe, Mn, Zn, Cu, N i and Co in this estuary 

at near-sea water salinity may be explained by dissolved/solid interactions, which were 

unpeded by the low pH values encountered in the low salinity regions, but occurred upon 

neufralisation of pH hi the mid-estuary. Thermodynamic speciation calculations (Chapter 

6) indicated that the formation and flocculation or precipitation of Fe, A l and M n 

oxyhydroxides may play an important role hi the removal of Fe and M n and co-removal of 

other metals m Huelva Ria. Other possible removal processes mclude the adsorption of 

metals onto particles or organic coatmgs on particles, the flocculation of organic matter 

and the scavenging of metals with newly formed solids. Palanques et al. (1995) reported 

the enrichment of fine sediment in the cential Gulf of Cadiz with Fe, Zn, Cu, N i , Co, Cr 

and Pb, but not Cd. Thefr conclusion suggested that metal-contaminated floes and particles 

were fransported from Huelva Ria into the Gulf of Cadiz, where they settled as fine 

sediment on the shelf and slope. 

Samples taken just below the surface during rapid ttansects of Huelva Ria (TOROS 

1 and 3) show a steady increase of salinity with distance from the river end-member. 

Compared to this, samples taken with Niskm bottles at 5 - 10 m depth (TOROS 2 and 4) 

over several hours had a more erratic salinity distribution. As a result metal/salinity 

profiles of Huelva Ria from these surveys are difficult to compare and interpret. "When 

plotted versus distance an overall downsfream decrease in dissolved Cu, Zn, N i , Co and Cd 

concenfrations becomes apparent (Figure 4.34 - Figure 4.37). 
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During TOROS 3, the metal removal coincided with a peak hi S P M concentrations, 

suggesting that adsorption onto particles took place, h i October 1998 (TOROS 4), maxhna 

in the S P M concentration in the upper Huelva Ria (between 15 and 20 km from Mazagon) 

coincided with additions of Zn, M n and Cd to estuarhie waters, while N i and Co showed 

no concurrent increase in concenfration. It is likely that industrial discharges from metal 

processing facilities and fertiliser factories in the upper Huelva Ria may have contributed 

to the increase in both SPM and metal concenfrations: 

The increase in dissolved metal concenfrations at a distance of 12 to 15 km from 

Mazagon has been observed durmg TOROS 1 (Zn, Cu, N i , Co and possibly Cd), TOROS 2 

(Zn and lesser so Cu, Mn, N i , Co, Cd) and TOROS 3 and 4 (Mn, Zn, Cu, N i , Co and Cd). 

These mid-estuarine metal peaks occur at the confluence between the Ria del Tmto and the 

Huelva Ria and are probably the result of the mixing of Ria del Tinto water containing 

higher dissolved metal concenfrations (factor 1.3 - 3.3 for Mn , 1.8 - 4.4 for Zn, 1.2-11.8 

for Cu, 2.1 - 9.2 for N i , 1.3 - 3.9 for Co and 1.5 - 3 for Cd ) witii tiiat of tiie Huelva Ria. 

Comparison with other AMD-affected systems 

No system was foimd that could be directly compared with tiie low p H range and 

high dissolved metal concenfrations hi the Ria del Thito. However, conditions observed m 

the lower Ri'a del Odiel and Huelva Ria were comparable to other AMD-affected estuaries, 

such as the Fal (Comwall). In this system only a small proportion of the riverine A M D 

input of Co, Cd, Mn , N i and Zn into the Resfronguet Creek was retamed within tiiis branch 

of the estuary, but removal of dissolved metals was observed in the main estuary at near-

sea water salmity (Bryan and Gibbs, 1983). Confrary to the Ria del Tinto, and a result of. 

the higher pH values in Resfronguet Creek, most of the riverine Cu, Pb and As was 
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removed from solution in tiie upper Resfronguet Creek with flocculating fron oxides and 

humic substances (Bryan and Langston, 1992; Bryan and Gibbs, 1983). 

Similar observations were made in other AMD-affected estuaries. The King River, 

Tasmania, receives drainage from the Mt Lyell Cu mine and enters a semi-enclosed coastal 

bay (Macquarie Harbour) via a small delta. In an experhnent inducmg a sudden increase in 

river flow, the removal of dissolved Fe and Cu (maximum riverine concenfrations: 150 \iM 

Fe and 110 i^M Cu, see Table 4:8) upon mixing with sea water was observed at S < 10 

(Featherstone and O'Grady, 1997). Mixing experiments showed that particle mteractions 

played a minor role in dissolved Cu behaviour. The loss of Cu from solution was attributed 

to the co-removal of Cu with newly formed Fe(III) oxyhydroxides and existing Fe colloids, 

which flocculated upon the rapid increase in pH during estuarine mixuig. Metal removal 

was also evident from sequential leaching experiments on sedhnents collected hi the Afon 

Goch estuary (Dulas Bay, Wales, total metal concenfrations see Table 4.8 and Table 4.11) 

(Parkman et al. 1996). This study indicated tiiat an hnportant proportion of Zn and Cu was 

adsorbed onto reducible Fe phases (e.g. Fe oxyhydroxides and oxyhydroxysulphates) in the 

ochre. In black mud, Cu was predominantiy extiacted during the oxidising step, suggestmg 

the association with organic matter or acid-stable sulphide minerals hi sub-oxic or anoxic 

sediment layers (Parkman et al. 1996). Luther et al. (1996) attributed the precipitation of 

dissolved Fe from acidic (pH < 3) salt marsh pore waters to the precipitation of Fe-humic 

complexes. 

Summary 

Overall, the accumulated evidence leads to the suggestion that the aggregation of 

metal rich sediment in the upper Ria del Tinto mixmg zone predominantly occurred during 

quiescent periods (e.g. low water) through the deposition of eroded material, microbial 
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activity and concretion processes similar to those discussed for the firesh water end-

member (see Section 4.6.1.3). The presence of high DOC concentiations m the upper Ria 

del Tinto could have resulted in the reductive dissolution of metals fiom the sediment, but 

also m the precipitation of acid-hisoluble Fe-organic complexes. The sedhnents in the 

upper Ria del Tinto were reworked by the advancing tide, resulting in the release of metals 

into the water colimm, which were tiansported downstteam and, as a result of the low pH 

values, dissolved metals were subjected to conservative mixing with sea water (before 

October 1998). Remobilisation of metals was not observed in the Ria del Odiel, probably 

because this branch of the estuary is a lower energy environment, has no stiong mputs of 

organic matter and less microbial activity, compared to the Ria del Thito. Removal of 

dissolved metals hi the estiiary occurred at saluiities greater than 30 and pH values above 

five. The surveys indicated that this process is largely completed m the lower Huelva Ria 

(S > 36, pH ~ 7.0). In the Ria del Tinto, metal profiles from the last survey showed a 

decrease in dissolved metal concenttations at mid-salinity, indicating that the closure of the 

phosphogypsum drahiage water cycle had an important impact on the metal geochemistry 

m the Ria del .Tmto. 

4 . 6 . 2 . 5 G e o c h e m i s t r y o f L e a d 

The dissolved distributions of U and Pb in the Tinto/Odiel system were in conttast 

to tiiose of Fe, A l , Mn, Zn, Cii , N i , Co and Cd durmg tiie fust tiiree TOROS surveys. Intiie 

Ria del Tinto, Pb was rapidly removed from solution at low salmity (< 3.5), from 3060 n M 

to 80 nM, 4130 n M to 510 n M and 500 n M to 230 n M Pb during TOROS 1,2 and 3, 

respectively (Figure 4.14, Figure 4.17 and Figure 4.22). During TOROS 1 and 2 a shght 

increase in the dissolved concenfration was observed at S = 12 and 7.7, respectively. Lead 

concenfrations in the remainder of the Ria del Tfrito declined gradually to levels around 50 
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n M Pb at S ~ 30 andpH = 2.9 - 3.7 (TOROS 1 and 2) and below 10 n M at S ~ 30 and pH ~ 

6.3 during TOROS 3 and 4 (Figure 4.26). The tidal cycle at L a Rabida m June 1997 

(Figure 4.21) clearly showed the contrasting behaviour of U and Pb, compared to Zn, Cu 

and Cd. Dissolved U and Pb maxhna occrured at mid-ebb tide, indicating that the dominant 

source of these metals was different (phosphogypsum) from that of Zn, Cu and Cd 

(fluvial). 

In upper mixing zone of the Ria del Odiel, a sUght addition of dissolved Pb was 

observed during the first survey and some removal during TOROS 2 and 3. Lead mixed 

conservatively between S = 5 and approximately S = 30, whereby concenfrations below 10 

n M Pb and 20 - 50 n M Pb were reached m Huelva Ria durmg TOROS 2 and 4, 

respectively (Figure 4.15, Figure 4.18, Figure 4.23 and Figure 4.27). Additions of 

dissolved and particulate Pb in the upper Huelva Ria have been attributed to discharges 

from the fertiUser industry (Martmez-Aguirre and Garcia-Leon, 1996). However, the tidal 

cycle in June 1997 (TOROS 2) showed a sfrong riverine somrce of U and Pb at the 

boimdary between Ria del Odiel and Huelva Ria (Huelva Bridge, Figure 4.20). 

The concurrence of Pb removal and mobihsation of Fe, A l , Mn, Zn, Cu, N i , Co and 

Cd in the upper Ria del Tinto mixing zone suggests that the reworkuig of sediment (see 

Section 4.6.2.4) favoured both phenomena. Lead is known to have a high affinity for the 

particulate phase (Balistrieri and Murray, 1984) and humic substances (Yu et al. 1996), 

however, experiments usually focused on media witii near-neufral pH values. Simpson et 

al (1998) demonsfrated tiie low solubility of PbS during a H C l (1 M) leachuig experiment 

and its resistance to oxidation upon resuspension into an oxic water column. This could 

accoimt for the immunity of Pb for mobilisation in the upper estuary. In an acidic (pH 4.4 -

6.3) woodland sfream in New Jersey, Sherrell and Ross (1999) observed lower particulate 

fractions of Pb (76%), A l (43%), Cu (30%), Zn (5%) and Cd (< 7%) tiian commonly found 
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in U.S. East Coast rivers. The metal concentration m the > 0.45 yim fraction exceeded the 

dissolved cbncenfration only for Pb. Adsorption of Pb onto goethite has been observed at 

low p H values (< 5) in marine envfronments by Balistiery and Murray (1982), who also 

showed that the sorption of Pb to goethite in sea water occurs at lower pH values, 

compared to that of Cu, Zn or Cd. In the Whagaehu River, New Zealand, which receives 

metal-rich acid (pH 0.6 -1.2) overflow from a volcanic lake, Pb was found to be adsorbed 

to the surface fine grained sedhnents at low pH (< 3), while Cu, Zn and M n were 

associated with mmeral lattices of larger grains (Deely and Sheppard, 1996), Therefore, it 

is possible that Pb is scavenged out of solution by Fe and M n oxyhydroxides and Fe-humic 

complexes hi the upper mixing zone, while other frace metals are released upon the tidal 

reworking of the sediment. The less pronounced decrease in dissolved Pb concenfrations in 

the upper Ria del Odiel may then be related to the generally lower reactivity in this part of 

the estuary. 

4 . 6 . 2 . 6 G e o c h e m i s t r y o f U r a n i u m 

In confrast to Fe, Mn, Zn, Cu, N i , Co and Cd the dissolved distribution of U was 

domhiated by mputs within the estuary. Durhig the TOROS 1, 2 and 3 surveys, dissolved 

U concenfrations hicreased from 32.2 nM, 28.7 n M and 10.9 n M in the riverine end-

member to 288 nM, 220 n M and 50.9 nM, respectively m tiie lower Ri'a del Tinto. The 

dissolved U maxima were located between the phosphogypsum deposits and the cellulose 

factory (Figure 4.5). There is unequivocal evidence that the fertiliser mdustiy located at 

Huelva Ria and its wastes in the form of phosphogypsum deposits on the bank of the lower 

RIa del Tinto are sources of phosphate, U , ̂ '°Pb and other radio-isotopes to this estuarine 

system (Elbaz-Poulichet et al. 1999 and 1999b; Martinez-Aguirre and Garcia-Leon, 1997 

and 1996). Phosphate ores contain up to 300 |ag g'̂  U (Martinez-Aguure and Garcia-Leon, 
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1997) . Concentrations of 11 \xg g U (dry weight) were found in a sample from the 

phosphogypsum deposits at the lower Ria del Tinto (Elbaz-Poulichet et al. 1999). The low 

pH values hi the estuary favoured the dissolution of solid U~ phases. Phosphate 

distributions, which are hidicative of phosphogypsum discharges, exhibited similar profiles 

to that of dissolved U durhig TOROS surveys (Elbaz-Poulichet et al 1999; Cruzado et al 

1998) , indicating that a plug of water containing phosphogypsum effluent had been 

relocated by the rising tide to a position upsfream of its source. The declhae in U 

concenfrations between the maximum and the confluence may have been the result of 

dilution and sorption processes at near to sea water salinities and pH values. 

The mixing behaviour of dissolved U was broadly conservative m the Ria del 

Odiel, where concentiations decreased from 17 to 25 n M U in the riverine end-member to 

concenfrations below 4.5 n M U at near to sea water salmities (TOROS 1, 2 and 3). The 

conservative mixing in this part of the estuary may be explained by the presence of soluble 

U(VI) complexes under tiie oxidising conditions and low pH (< 3) (Sandino and Bruno, 

1992). These conditions prevented the formation of sohd U phases and limited the 

precipitation of Fe (oxy)hydroxides and thus effective scavenging of U . 

In the upper Huelva Ria, effluent from the fertiliser industry has been identified as 

source of U (Martinez-Aguirre and Garcia-Leon, 1997 and 1996; Martinez-Agufrre et al 

1994a), and elevated concenfrations in the vicinity of these factories have been observed 

during the TOROS 3 and 4 surveys. The tidal cycle studies carried out under Huelva 

Bridge during TOROS 3 and 4 surveys (Figure 4.25 and Figure 4.29) showed that 

dissolved U was fransported into the lower Ria del Odiel with the rising tide. 

Conservative behaviour of U , as well as removal from solution has been observed 

in otiier estuaries (Church et al. 1996; Maeda and Windom, 1982). In the Huelva RIa, U 

from sfrong riverine and estuaruie sources are stored in marsh sediments with such 
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efficiency that water with near-neutral pH in Huelva Ria contained lower U concentrations 

compared to average sea water (ca. 13.5 n M , Martm and Whitfield, 1983). Martinez-

Aguirre et al. (1994a) has attributed this to the co-precipitation U with amorphous 

ferromanganese oxyhydroxides and deposition in the Odiel salt marshes. A major removal 

mechanism of U fiom sea water is the diffusion of dissolved U into suboxic sediments, 

where it is reducedto less soluble species (Klmkhanuner and Pahner, 1991). 

In the lower estuary, dissolved U concentiations were similar to typical levels in 

sea-water, except during TOROS 4, when unusually high concentiations were maintained 

throughout Huelva Ria (50 - 76 n M U). It is not likely tiiat an extieme increase m industrial 

discharges was the cause of the high U levels, as they were fahrly evenly distributed 

throughout the estuary, and there was no evidence for enhanced phosphate concentiations 

related to the factories. Therefore, the source of the additional U during the TOROS 4 

survey remains uncertain. Durhig the same survey, lower U concentiations were observed 

in the RIa del Tinto, compared to previous surveys, and this was attributed to the 

intioduction of a closed water cycle for phosphogypsum deposits. The slight increase hi 

dissolved U close to the confluence is probably the result of mixmg with Huelva Ria water. 

Generally, tiie distribution of U hi the Tinto/Odiel system verifies earlier 

suggestions that little or none of the U that enters the estuary in the dissolved phase is 

exported to the coastal zone (Elbaz-Poulichet et al. 1999). However, the last survey 

suggested that exceptions exist. Experiments in other estuaries (Amazon shelf. Long Island 

Sound) suggested tiiat the oxidised U(VI) is adsorbed onto newly formed Fe 

(oxy)hydroxides, and both metals are re-mobilised under more reducing conditions (Barnes 

and Cochran, 1993). Several studies found a correlation between solid/dissolved U 

partitioning and the redox cycle of sulphur species, which indicated that microbes are 

important in the diagenesis of U (Church et al. 1996; Barnes and Cochran, 1993; 
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Klinkhammer and Palmer, 1991). In the Tinto/Gdiel system, it is possible that important 

amoimts of U may be eroded from the sediment and fransported out of the estuary during 

flood events and winter storms, and during the dredging of harbour sediments. 

4 . 6 . 3 D I S S O L V E D M E T A L F L U X E S 

4 . 6 . 3 . 1 R i v e r i n e M e t a l F l u x t o t h e E s t u a r y 

The water discharge conditions in the Rio Tmto and Rio Odiel were sunilar during 

the four TOROS surveys. However, the river water flow varies greatly between seasons 

and between years (see Figure 4.3). Therefore, the flow conditions and metal 

concenfrations observed during the four surveys were not representative for all possible 

scenarios hi this system. For example, more than 90% of the annual rainfall may occur 

durhig a few days hi winter (Borrego-Flores, 1992), and the ochre layer covering the bed 

of the rivers has been found to be removed during the resulting floods (Morales, personal 

communication). It is likely that the majority of the annual sediment fransport occurs 

during wmter flood events, for which the volume and metal content of S P M carried from 

the estuary into the coastal sea is unknown. The storage of contaminants in estuarine 

sediment and release during times of exfreme flow has been observed in other systems, for 

example the Mississippi (Shiller and Boyle, 1991) and the River Eel (California) (WoUast 

and Dumker, 1982). From a long-term study (21 years) of the River Eel, WoUast and 

Duinker estimated that 90% of the sediment discharge occurs within 10% of the time. 

Dilution and re-suspension of bed sediment during floods will lead to a reduction in the 

dissolved and an increase in the suspended particulate metal load carried by the rivers. 

Particulate metal concenfrations were analysed by colleagues, but not for all surveys, and 

detailed data was not available in time to be included in the flux calculations. However, 

SPM concenfrations were low in the .fresh water end-members and preliminary particulate 
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metal data (TOROS 4: sequential extraction of particulate Zn; Herzl, unpublished data) 

indicated that the metal flux was predominantly carried in the dissolved phase. The error 

introduced by not considering particulate metal fluxes during winter floods may be very 

large and the calcxilated flux wi l l be an estimation for 'normal' flow conditions only. 

Mean annual gross metal fluxes from the Rio Tinto and Rio Odiel were calculated 

m order to estimate the magnitude of contamination entering the estiiary. The calculations 

of fluxes from very limited hydrological data requfred a number of simplifications and 

assumptions. Calculations were based on the long-term average monthly river water 

discharge for the Rio Tmto for the period between 1966 and 1992 (Figure 4.3). River 

discharge is dfrectly related to rainfall and therefore the ratio between the flow rates of tiie 

two rivers can be assumed to be constant. From sporadic flow rate measurements (Morales, 

1999b) the OdiehTinto flow rate ratio was calculated to 4.6 ± 0.6, and this value was used 

to estimate the long-term average monthly river water discharge for the Rio Odiel from the 

data available for the Rio Tinto. 

Following from the discussion in Section 4.6.1.2 the presence of a seasonal link to 

variability in river water composition wil l be assumed for the calculations of mean annual 

metal fluxes. The chosen procedure gives discharge-weighted gross metal fluxes and 

emphasises seasonal variability hi metal concentiations and river water flow rates: 

F , , = K | ] Q a (4.6). 

The mean seasonal river water flow rates (Qa) were calculated by averaging the 

long-term monthly river flow rates for March - May (spring), June - August (summer), 

September - November (autumn) and December - February (v/inter). The mean seasonal 

water flow rates were 196 and 900x10^ m^ d"' (autiimn), 263 and 1224 xlO^ m^ d"̂  (spring) 

and 10 and 48 xlO'' m"̂  d'' (summer) for the Rio Tinto and Rio Odiel, respectively. No 
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complete data set of metal concentrations was available for the winter season. Mean 

seasonal dissolved metal fluxes were calculated by multiplying the instantaneous metal 

concentrations by the respective mean seasonal water flow rate (1 d"'). The results were 

added and corrected for the time factor and units to gain the mean annual dissolved gross 

metal flux for the Rio Tinto and Rio Odiel. The results are presented m Table 4.12. 

Because of the linear relationship between river flow and rainfall and the assumed 

constant factor between the water flow rate of the two rivers, the magnitude of dissolved 

metal flux followed the pattern of the metal concentrations. With the exception of the last 

survey (TOROS 4) the contribution of the Rio Odiel to the dissolved flux of Zn, Cu, N i , 

Co, Cd and U to the estuary was higher than that of the Rio Thito. The hiput of Fe firom the 

Rio Tinto to the estuary was substantially larger than that from the Rio Odiel during all 

surveys, while Pb did not exhibit a distinct pattern. 

A large uncertainty is attached to the results. The variability in the long-term river 

flow data was ca. 90%, the variability of the dissolved metal data was between 80 and 

130% for the Rio Tinto and 30 - 80% for the Rio Odiel (dependmg on the metals 

considered), and for the analytical error 10% was assumed. Error propagation carried out 

for the calculation of the total gross dissolved flux from the Rio Tinto and Rio Odiel 

resulted in relative standard deviations between 70% and 150% for Mn, U , N i , Co, Pb, Zn, 

Cu and Cd. Furthermore, the accuracy of the flux calculation depends on whether the 

instantaneous metal concentiations were representative for mean seasonal conditions. From 

the cyclical nature of annual and inter-aimual river flow it can be inferred that a reliable 

flux estimation for this system would requfre at least monthly sampling for about 10 years. 

At best, the fluxes calculated for the Rio Tinto and Rio Odiel offer an approximation for 

comparisons with other A M D affected systems, for which published fluxes are often 

estimates of a similar nature and accuracy. 
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Table 4.12 - Gross riverine metal flux from Rio Tinto and Rio Odiel to their estuaries calculated as 
explained in text. Global riverine fluxes of metals were taken from estimates Of rivers of low or no 
pollution by Martin and Meybeck (1979), 'global p' - global riverine particulate metal flux, 'global 
d' - global riverine dissolved metal flux, 'fraction' - the percentage of the combined Tinto and Odiel 
dissolved metal flux with respect to the global riverine dissolved flux. * From Chester (1990), 
dissolved flux up-scaled from net fluvial fluxes of the US eastern seaboard by Kremling (1985). 
(ta-') Rio Tinto Rio Odiel Total Global P Global D Fraction D 

Zn 4300 5600 9900 5400000 1100000 0.90 
Cu 1800 1600 3400 1550000 370000 0.92 

Ni 24 53 77 2325000 • 82280 0.94 
Co 66 110 180 310000 7480 2.3 
Cd 17 17 34 - 4600* 0.74 

Mn 1000 3500 4500 162750000 306680 1.5 

Pb 17 50 67 2325000 37400 0.18 

U 0.5 1.4 1.9 2635000 1496 0.13 
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Compared to the Tmto/Odiel system, the mean flux of Cu and Zn from the Camon 

river, Comwall (1992: 20 and 3601 a"', respectively) was lower by several factors (Bryan 

and Langston, 1992). Dissolved metal fluxes of shnilar magnitude, but different 

composition compared to the Tinto/Odiel system were reported for discharge from an 

acidic crater lake in New Zealand (Deely and Sheppard, 1996), with values o f 20 - 251 a"' 

Cu and Cd, 400 - 5001 a'̂  Pb and N i , 1000 - 30001 a"̂  Zn and 20000 - 20000001 a ^ A l , Fe 

and M n . The last example illusfrates the great uncertainties associated with flux 

calculations. 

The comparison with the annual global metal fluxes compiled by Martin and 

Meybeck (1979) and Chester (1990) for major rivers (Table 4.12) shows that the combmed 

flux of the Rio Tinto and Rio Odiel is of importance on a global scale, even when 

considering that Martin and Meybeck's global gross flux estimates were based on rivers 

with low or no pollution. Accordmg to these estimates the contribution of the Tmto/Odiel 

rivers to global riverine metal fluxes would be 2.3% Co, 1.5% M n , 0.9 - 0.94% Zn, Cu and 

N i , 0.74% Cd, 0.18% Pb and 0.13% U . 

4 . 6 . 3 . 2 E s t u a r i n e D i s s o l v e d M e t a l F l u x 

Recent publications (Regnier and Steefel, 1999; Jarvie et al. 1997; Dyer, 1997; 

Webb et al. 1997; Lane et al. 1997; Millward et al 1996; Morris and Allen, 1993) offer a 

variety of approaches for tiie calculation of estuarine metal, nutiient and particle fluxes into 

coastal zones. Most of the applied models require a detailed knowledge of hydrodynamics 

and bathimetry, as well as metal concenfrations and water flow data of high temporal 

resolution. This information is not available at present for the Huelva Ria. Therefore, 

fluxes from Huelva RIa to the Gulf of Cadiz were estimated foUowfrig a model suggested 

by Boyle et al (1974). The calculations were based on the assumption that a given 
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dissolved metal concentration behaves conservatively at high salinity. The extrapolation of 

the linear metal/salinity relationship at high salinity to zero salinity, the theoretical net 

riverine end-member metal concentration of the system can be foxmd. The annual net 

dissolved fluxes of Zn, Cu, N i and Co from Huelva Ria were calculated by multiplying the 

net riverine dissolved metal concentration with the combhied mean .seasonal flow rates of 

the Rio Thito and Rio Odiel (see Section 4.6.3). 

Zinc, Cu, N i and Co were removed firom solution in the lower Huelva Ria and at 

S > 30 and pH > 5.0. Metal/salinity relationships in the lower Huelva Ria (see Section 

4.6.2.4) and hi discrete samples form the Gulf of Cadiz analysed by a colleague (Morley, 

personal communication) were broadly conservative. Close examination of the data 

indicated that the removal of Zn, Cu, N i and Co duruig the four surveys was largely 

complete at p H values above 6.5 during the TOROS 1 survey and above 7.5 during the 

remaining surveys. In order to find the zero-salinity metal concentration, the metal-salinity 

relationships hi samples taken downstieam fiom the confluence hi Huelva Ria that had pH 

values greater that those given above were calculated. A sea water end-member 

representative for the Gulf of Cadiz outside the Huelva metal plume (20 n M Zn, 5 n M Cu, 

3 n M N i and 0.8 n M Co) was included. Lmear relationships for Zn, Cu, N i and Co are 

given in Table 4.13, whereby the'intercept with the y-axis signifies the extiapolated net 

metal concentiations in the zero-salinity end-member. The presence of a relatively large 

extiapolation error cannot be excluded. 

This simple exteapolation approach to flux calculations has serious limitations. It is 

based on the hypothesis that the system is one dimensional and at a steady state, which is 

not necessarily correct for the dynamic Huelva Ria. Furthermore, seasonally changing 

geochemical or biogeochemical processes that affect the metal concentiation in the water 

are not described in any way and are only taken accoimt of indirectly by the observations 
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used for the calculations. Only instantaneous fluxes are considered and therefore, the end-

member approach cannot be used as a predictive tool. In spite of these limitations, the 

zero-end-member approach is still behig used (Webb et al 1997; Chiffoleau et al 1994). 

In addition, the uncertainties arising jBrom the question of representativeness of the metal 

data and the variability of the river flow apply as discussed in Section 4.6.3. 

The results (Table 4.14) mdicate that a high proportion of Cu and Zn (75 and 63%, 

respectively) and about half of Co (49%) was removed j&om solution within the estuary, 

while N i remained largely in the dissolved phase (22% removal). The removal from 

solution was most pronounced in the autunm/winter surveys and lowest during summer. 

High metal levels reported for sediments of the lower estuary (Table 4.9) indicate that a 

proportion of the metals lost from solution are at least temporarily retained within the 

estuary. The export of particulate metals from the estuary at times of average river flow 

probably constitutes only a nunor fraction of the total flux (ca. 10% for Zn, Morley, 

personal communication). However, particulate material mobilised and flushed out of the 

estuary imder flood conditions could be a major source of metal contamination to the 

coastal sea. The accumulation of metal rich sedunent orighiatuig in Huelva Ria on the shelf 

and slope of tiie Gulf of Cadiz has been reported by Palanques et al (1995). 

High-resolution monitoring of dissolved Cu and N i in the Gulf of Cadiz (Chapter 5) 

covered the Guadalquivfr plume area durhig TOROS 2 and 4 surveys. Significant Imear 

relationships between salinity and dissolved Cu and N i cdncenfrations were observed in 

surface waters, while Zn was removed from solution in the river plume area. From the 

linear relationships, the zero-salinity end-member for Cu and N i m the Guadalquivfr river 

was calculated as described above (410 n M and 210 n M Cu, 135 n M and 220 n M N i for 

TOROS 2 and 4, respectively). 
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Table 4.13 - Metal/salinity relationships in the lower Huelva Ria and to an sea water 
end-member of 20 nM Zn, 5 nM Cu, 3 nM Ni and 0.8 nM Co. The intercept with the y-
axis is the extrapolated net metal concentration (pM) in the zero-salinity end-member. 
Survey Zn Cu Ni Co 

TOROS1 -US+ 390 -2.7S + 100 -0.084S + 3.2 -0.19S + 7.2 

TOROS 2 -5.0S + 180 -1.4S + 51 -0.099S + 3.6 -0.19S + 6.8 

TOROS 3 -2.1S + 80 -0.22S + 8.2 -0.036S + 1.4 -0.099S + 3.7 

TOROS 4 -1.6S + 59 -0.55S + 20 -0.18S + 6.4 -0.054 + 2.0 

Table 4.14 - Annual combined gross fluxes fi-om the Rio Tinto and 
Rio Odiel to the estuary and annual net dissolved fluxes of Zn, Cu, 
Ni and Co from Huelva Ria to the Gulf of Cadiz. The estimation 
procedure is described in the text. 

Gross Flux (t a"') Net Flux (t a"') Removal (%) 

Zn 9900 3700 63 

Cu 3400 850 75 

Ni 77 68 22 

Co 180 86 49 

Table 4.15 - Net dissolved metal fluxes from European estuaries. 

(ta-') Zn(ta') Cu(ta-') Ni(ta-') Co(ta-') 

Seme, low discharge' 91 - 128 15 - 22 18-22 0.73 -1.5 

Humber estuarj^ 11-46 4.0 - 14 6.2 - 20 0.37-1.1 

Irish Seâ  - 38-51 - -
Rhone estuary'' - 107 74 4 

' Seine estuary, English Channel (Chiffoleau et al. 1994). 
^ Humber (North Sea), winter, spring and summer surveys (Morris and Allen, 1993). 
^ Irish Sea, total riverine input (Williams et al 1998 and references therein). 

Rhone input to the Gulf of Lion, Western Mediterranean Sea (Guieu et al 1991 and references 
therein). 
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Using the mean annual river discharge (164 m^ s"̂ ), a very rough estimate of the 

metal discharge from the Guadalquivfr estuary was made. The results (65 - 1301 a"̂  Cu and 

41 - 671 a"̂  Ni) show that the Guadalquivfr is a minor contributor to the dissolved Cu load 

of the Gulf of Cadiz, compared with the Huelva system, while the input of N i from both 

rivers are of a similar magnitude. Comparisons with other estuaries (Table 4.15) show that 

the Huelva system is a major source of dissolved metals to European coastal waters. 

4.7 CONCLUSIONS 

Total dissolved metal concenfrations and estuarme master variables, which had 

been collated during four surveys hi the Rio Tinto, Rio Odiel and thefr estuary, as well as 

work pubhshed about comparable systems were examined in order to define and 

understand the metal geochemistry in the Tinto/Odiel system. Dissolved concenfrations of 

Fe, A l , Mn , Zn, Cu, N i , Co, Cd, Pb and U in the Rio Tinto and Rio Odiel reached levels 

comparable to the most polluted natural water courses reported in the literature. The main 

source of these metals (except U) was acid mhie drahiage, which was generated m the 

metalliferous mining area of the Iberian Pyrite Belt. The process of metal sulphide 

oxidation also resulted in high sulphate concenfrations and low pH values hi the rivers, 

which maintained metals m solution and encouraged acidophilic micro-organisms to thrive 

and possibly be an unportant driving force in the redox cycles of fron, manganese and 

sulphur. 

The seasonal differences in riverine pollution load were tentatively linked vwth the 

cycle of dry summers (accretion of metal-rich sediments and solution), wet autumns 

(enhanced leaching and flushing of A M D into rivers) and whiter floods (dilution of A M D 

and removal of accumulated ochre from the river bed). However, the kinetic effect of 

seasonal changes hi light intensity and temperature changes on abiotic and biotic redox 
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cycling cannot be excluded as factors for seasonal variability, and this would be an 

interesting area of further investigation hi this system. 

In the estuary of the Rio Tinto, very low pH values were maintained by acidic 

industrial discharges untU the second half of 1998. The combination of sediment re

suspension, low pH and high levels of organic matter derived from a cellulose factory 

created conditions that favoured the remobilisation of metals from solid phases during the 

early stages of mixmg with sea water. Otherwise, the behaviour of Fe, Mn , Zn, Cu, N i , Co 

and Cd ha the Ri'a del Tinto and Ria del Odiel was found to be largely conservative up to 

mid- or high salinities. Removal of frace metals from solution occurred hi Huelva Ria only 

when pH values reached 4 to 5. The behaviour of dissolved metals was dominated by pH 

in this system. 

The estuarine distribution of Pb and U was in confrast to that of Fe, Mn, Zn, Cu, N i , 

Co and Cd. Dissolved Pb concenfrations decreased rapidly in the upper Ria del Tuito, 

which was atfributed to its lunited solubility and high affinity for the particulate phase. The 

estuarine disfribution of U and to a lesser extent of Pb was dommated by wastes from the 

fertiliser mdusfry, with dissolved and particulate U and Pb inputs entering the upper 

Huelva Ria, and leachate and erosion of phosphogypsum entered the lower Ria del Tinto. 

Both metals appeared to be frapped within the estuary, so that under average discharge 

conditions a comparatively small fraction of U and Pb wil l be exported to the coastal zone. 

Rough approximations of dissolved Zn, Cu, N i and Co fluxes from the river to the 

estuary and from the estuary to the Gulf of Cadiz were calculated, however, the necessary 

assumptions infroduced a high uncertahity to the results. Nevertheless, the comparison 

with annual global riverine metal fluxes after Marthi and Meybeck (1979) indicated that 

the Rio Tinto and Rio Odiel carry metal loads of local and global importance. Estuarine 

flux estimations showed that a considerable proportion of dissolved Zn and Cu, but less N i 
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and Co were removed from solution within the estuary. The dissolved metal discharge 

from Huelva Ria was found to be high, compared to some of the major estuarine sources of 

Zn, Cu, N i and Co to European coastal waters. The deposition of metal-rich fine sediment 

from the Huelva system on the shelf and slope of the Gulf of Cadiz suggest that particulate 

metals are only temporarily retained. The particulate metal export from Huelva Ria could 

be an important source of contamination to the coastal zone, especially during winter flood 

conditions. 
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acid mine drainage using a continuously-stirred tank reactor. Appl.Geochem. 13, 
509-520. 

Klinkhammer, G.P. and Pahner, M.R. (1991) Uranium m the oceans: where it goes and 
why. Geochimica et Cosmochimica Acta 55,1799-1806. 

Kraepiel, A . M . L . , Chiffoleau, L-F. , Martm, J.-F. and Morel, F . M . M . (1997) Geochemistiry 
of frace metals in the Gfronde estuary. Geochimica et Cosmochimica Acta 61, 
1421-1436. 

Krauskopf, K . B . and Bfrd, D.K. (1995) Introduction to geochemistry, 3 edn. New York: 
McGraw-Hill, Inc. 

Kremling, K . (1985) The distribution of cadmium, nickel, manganese and aluminium in 
surface waters of the open Atlantic and European shelf area. Deep Sea Res. 32, 
531-555. 

Lane, A . , Prandle, D., Harrison, A.J . , Jones, P.D. and Jarvis, C.J. (1997) Measuring fluxes 
in tidal estuaries: sensitivity to instrumental and associated data analyses. 
Estuarine, Coastal and Shelf Science 45,433-451. 

Leblanc, M . , Benothman, D., Elbaz-Poulichet, F., Luck, J .M., Carvajal, D., Gonzalez-
Martmez, A.J . , Grande-Gil, J.A., Ruiz de Ahnodovar, G. and Saez-Ramos, R. 
(1995) Rio Tinto (Spain), an acidic river from the oldest and most important 
mining areas of Westem Europe: Preliminary data on metal fluxes. In: Pasava, 
Kribek and Zak, (Eds.) Mineral Deposits, pp. 669-670. Rotterdam: Balkema. 

Lee, C. and Henrichs, S.M. (1993) How the nature of dissolved organic matter might 
affect the analsis of dissolved organic carbon. Mar.Chem. 41,105-120. 

Leistel, J .M., Marcoux, E., Deschamps, Y . and Joubert, M . (1998a) Antithetic behaviom-
of gold in the volcanogenic massive sulphide deposits of the Iberian Pyrite Belt. 
Mineralium Deposita 33, 82-97. 

238 



Leistel, J .M. , Marcoux, E., Thieblemont, D., Quesada, C , Sanchez, A. , Almodovar, G.R., 
Pascual, E. and Saez, R. (1998b) The volcanic-hosted massive sulphide deposits of 
the Iberian Pyrite Belt. Mineralium Deposita 33 ,2-30 

Luque, C.J., Castellanos, E . M . , Castillo, J .M. , Gonzalez, M . , Gonzales-Vilches, C. and 
Figueroa, M . E . (1999) Metals in Halophytes of a Contaminated Estuary (Odiel 
Saltmarshes, SW Spam). Mar.Poll.Bull 38,49-51. 

Luther, G.W., HI, Shellenbarger, P.A. and Brendel, P.J. (1996) Dissolved organic Fe(III) 
and Fe(II) complexes in salt marsh porewaters. Geochimica et Cosmochimica Acta 
60,951-960. 

Maeda, M . and Whidom, H.L. (1982) Behaviour of uranivmi in two estuaries of the south
eastern United States. Mar.Chem. 11,427-436. 

Mantoura, R.F.C. and Woodward, E.M.S. (1983) Conservative behaviour of riverme 
dissolved organic carbon in the Sevem Estuary: chemical and geochemical 
implications. Geochimica et Cosmochimica Acta 47,1293-1309. 

Martm, J . -M. and Meybeck, M . (1979) Elemental Mass-Balance of Material Carried by 
Major World Rivers. Mar.Chem. 7,173-206. 

Martin, J . -M. and Whitfield, M . (1983) The significance of the river input of chemical 
elements to the ocean. In: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D. and 
Goldberg, E.D., (Eds.) Trace metals in sea water, pp. 265-269. New York: 
Plenum Press, Ltd. 

Martmez-Aguirre, A . and Garcia-Leon, M . (1996) 210Pb Distribution in Riverwaters and 
Sediments near Phosphate Fertilizer Factories. Applied Radiation and Isotopes 47, 
599-602. 

Marthiez-Aguirre, A . and Garcia-Leon, M . (1997) Radioactive hnpact of Phosphate Ore 
Processing in a Wet Marshland in Southwestem Spain. Journal of Environment 
and Radioactivity 34,45-57. 

Martinez-Aguirre, A . , Garcia-Leon, M . and Ivanovich, M . (1994a) Identification and 
Effects of Anthropogenic Emissions of U and Th on the Composition of Sediments 
in a River/Estuarine System in Southem Spain. Journal of Environment and 
Radioactivity 23,231-248. 

Marthiez-Aguirre, A . , Garcia-Leon, M . and Ivanovich, M . (1994b) U and Th Distribution 
in Solution and Suspended Matter fiom Rivers Affected by the Phosphate Rock 
Processing in Southwestem Spain. Nuclear Instruments andMethods in Physics 
Research A 339,287-293. 

McCarty, D.K. , Moore, J.N. and Marcus, W.A. (1998) Mineralogy and ttace element 
association m an acid mine drainage iron oxide precipitate; comparison of selective 
exttactions. Appl.Geochem. 13,165-176. 

Medio Ambiiente Seccion de Medio Ambiente, (Ed.) (1998) Ejecucion del plan de policia 
de aguas del litoral Andaluz. Informe del ano 1997, Sevilla: E.S.I.I. de Sevilla. 
Dpto. Ingen. Quimica y Ambiental. 

239 



Miles, C J . and Brezonik, P.L. (1981) Oxygen consumption in humic-colored waters by a 
photochemical ferrous-ferric catalytic cycle. Environmental Science & Technology 
15, 1089-1094. 

Miller, G.C., Lyons, W.B. and Davis, A . (1996) Understanding the water quality of pit 
lakes. Environmental Science & Technology/News 30,118A-123A. 

Millward, G.E., Allen, J.I., Morris, A .W. and Turner, A . (1996) Distributions and fluxes 
of non-detrital particulate Fe, Mn, Cu, Zn in the Hxmiber coastal zone, U .K . 
Cont.Shelf.Res. 16,967-993. 

Millward, G.E. and Marsh, J.G. (1986) Dissolved Arsenic Behaviour in Estuaries 
Receiving Acid Mine Wastes. In: Lester, J.N.e.a., (Ed.) Proceedings of the 
International Conference on Chemicals in the Environment, pp. 470-476. London: 
Selper Ltd. 

Millward, G.E. and Turner, A . (1995) Trace metals in estuaries. In: Salbu, B . and 
Steinnes, E., (Eds.) Trace elements in natural waters, pp. 223-245. London: CRC 
Press. 

Morales, J.A. (1998a). Excursion to the mming area of Riotinto during the 2nd annual 
ELOISE Scientific Conference, October 1998, Huelva, Spam. 

Morales, J.A. Morales, J.A. and Borrego-Flores, J., (Eds.) (1998b) General characteristics 
of the Tinto river, pp.4-6. Huelva: Universidad de Huelva. 

Morales, J.A. (1999a). 5th scientific TOROS meetmg, April 1999, Grenada, Spam. 

Morales, J. A . Hydrology of the Tinto and Odiel rivers and Huelva estuary, south-west 
Spain. (1999) Intemet Communication. 

Morales, J. A . , Borrego-Flores, J., Lopez, M . , and Gonzalez Martinez, A . Cruise reports 
and data from TOROS field experiments. (1999) Intemet Commimication. 

Morris, A . W . and Allen, I. (1993) Behaviour and flux of contammant metals in the north 
sea. Contract No PECD7/7/362, Plymouth Marine Laboratories. 

Morris, A .W. , Bale, A . J . and Howland, R.J .M. (1982) The dynamics of estuarine 
manganese cyclmg. Estuarine, Coastal and Shelf Science 14,175-192. 

Morris, A .W. , Bale, A.J . , Howland, R.J .M., Millward, G.E., Ackroyd, D.R., Loring, D .H. 
and Rantala, R.T.T. (1986) Sediment mobility and its contribution to trace metal 
cycling and retention in a macrotidal estuary. Water Science and Technology 18, 
111-119. 

Nelson, C.H. and Lamothe, P.J. (1993) Heavy Metal Anomalies in the Tuito and Odiel 
River and Estuary System, Spain. Estuaries 16,496-511. 

Niemela, S.I., Sivela, C , Luoma, T. and Tuovinen, O.H. (1994) Maximum temperature 
Ihnits for acidophilic, mesophilic bacteria in biological leaching systems. Applied 
and Environmental Microbiology 60,3444-3446. 

Noike, T., Nakamura, K . and Matsumoto, J. (1983) Oxidation of ferrous iron by 
acidophilic iron-oxidizmg bacteria fiom a stieam receiving acid mine drainage. 
Water Research 17,21-27. 

240 

http://Cont.Shelf.Res


Palanques, A . , Diaz, J.I. and Farran, M . (1995) Contamination of Heavy Metals in the 
Suspended and Surface Sediment of the Gulf of Cadiz (Spam): the Role of Sources, 
Currents, Pathways and Sinks. Oceanologica Acta 18,469-477. 

Parkman, R.H. , Curtis, C D . and Vaughan, D.J. (1996) Metal fixation and mobilisation hi 
the sediments of the Afon Goch estuary - Dulas Bay, Anglesey. Applied 
Geochemistry, 11,203 - 210. 

Paucot, H . and WoUast, R. (1997) Transport and transformation of trace metals hi the 
Scheldt estuary. Mar.Chem. 58,229-244. 

Perianez, R., Abril , J .M. and Garcia-Leon, M . (1996) Modelling the Suspended Matter 
Distribution in an Estuarine System. Application to the Odiel River in Southwest 
Spam. Ecological Modelling 87,169-179. 

Pons, J .M. and Morales, J.A. Morales, J.A. and Borrego-Flores, J., (Eds.) (1998) The 
source zone. Rio Thito mines in the setting of tiie Iberian Pyrite Belt. pp.7-I4. 
Huelva: Universidad de Huelva. 

Pronk, J.T. and Johnson, B.D. (1992) Oxidation and reduction of iron by acidophilic 
bacteria. Geomicrobiology Journal 10,153-171. 

Regnier, P. and Steefel, C I . (1999) A high resolution estimate of the hiorganic nitiogen 
flux firom the Scheldt estuary to the coastal North Sea during a nitiogen-limited 
algal bloom, sprhig 1995. Geochimica et Cosmochimica Acta 63, 1359-1374. 

Rodwell, M.J . and Folland, C K . (1999) Oceanic forcing of the winterthne North Atiantic 
Oscillation and European clhnate. Nature 398,320-323. 

Rosman, K.J.R., Chishohn, W., Hong, S., Candelone, J.-P. and Boution, C F . (1997) Lead 
from Carthaginian and Roman Spanish mines isotopically identified in Greenland 
ice dated from 600 B.C. to 300 A . D . Environmental Science & Technology 31, 
3413-3416. 

Salomons, W. (1995) Envfronmental impact of metals derived from mining activities: 
processes, predictions, prevention. Journal of Geochemical Exploration 52, 5-23. 

Sandmo, A . and Bnmo, J. (1992) The solubility of (U02)3(P04)2.4H20(s) and tiie 
formation of U(VI) phosphate complexes: their influence in uranium speciation hi 
natural waters. Geochimica et Cosmochimica Acta 56,4135-4145. 

SherreU, R.M..and Ross, J .M. (1999) Temporal variability of frace metals hi New Jersey 
Pinelands sfreams: Relationships to discharge and pH. Geochimica et 
Cosmochimica Acta 63,3321-3336. 

Shiller, A . M . and Boyle, E .A. (1991) Trace elements in the Mississippi River Delta 
outflow region: Behavior at high discharge. Geochimica et Cosmochimica Acta 
55, 3241-3251. 

Sholkovitz, E.R. (1978) The flocculation of dissolved Fe, Mn , A l , Cu, N i , Co and Cd 
during estuarine mixing. Earth and Planetary Science Letters 41,77-86. 

Simpson, S.L., Apte, S .C and Batiey, G.E. (1998) Effect of short-term resuspension 
events on frace metal speciation in polluted anoxic sedhnents. Environmental 
Science & Technology 32,620-625. 

241 



Stenner, R.D. and Nickless, G. (1975) Heavy metals in organisms of the Atlantic coast of 
S.W. Spain and Portugal. Mar.Poll.Bull. 6, 89-92. 

Strauss, G.K., Madel, J. and Alonso, F.F. (1977) Exploration practice for strata-bound 
volcanogenic sulphide deposits in the Spanish-Portuguese pyrite belt. In: Klenun 
and Schemder, H.J., (Eds.) Time- and strata-bound ore deposits, pp. 55-93. 
Berlin: Springer Verlag. 

Stromberg, B . and Banwart, S. (1994) Kinetic modelling of geochemical processes at the 
Aitik ming waste rock site m northem Sweden. Appl. Geochem. 9, 595 

Stromberg, B . and Banwart, S.A. (1999) Experimental study of acidity-consuming 
processes in mining waste rock: some mfluences of mineralogy and particle size. 
Appl.Geochem. 14,1-16. 

Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry-Chemical equilibria and rates in 
natural waters, 3 edn. New York: John Wiley & Sons. 

Sugimura, Y . and Suzuki, Y . (1988) A high-temperature catalytic oxidation method for 
the determmation of non-volatile dissolved organic carbon in seawater by dhect 
injection of a liquid sample. Mar.Chem. 24, 105-131. 

Sulzberger, B . and Laubscher, H . (1995) Reactivity of Various Types of Iron(III) 
(hydr)oxides Towards Light-mduced Dissolution. Mar.Chem. 50, 103-115. 

Taylor, S.R. (1964) The abimdance of chemical elements hi the continental crust. 
Geochimica et Cosmochimica Acta 28,1273-1285. 

Thombum, J.A. (1990) The Industrial Archaeology of Rio Tmto and the Iberian Pyrite 
Beh. Bulletin ofthe Peak District Mines Historical Society 11, 97-108. 

Thornton, I. (1996) Impacts of mining on the enviromnent; some local, regional and 
global issues. Appl.Geochem. 11,355-361. 

Tuovinen, O.H., Bhatti, T .M. , Bigham, J .M. and Hallberg, K . B . (1994) Oxidative 
dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. 
Applied and Environmental Microbiology 60,3268-3274. 

Turekian, K . K . (1977) The fate of metals in the ocean. Geochimica et Cosmochimica 
Acta 41,1139-1144. 

Van Geen, A . , Adkhis, J.F., Boyle, E.A., Nelson, C.H. and Palanques, A . (1997) A 120 yr 
record of widespread contamination firom mining of the Iberian pyrite belt. 
Geology 25,291-294. 

Webb, B.W., Phillips, J .M., Walling, D.E., Littlewod, I.G., Watts, C D . and Leeks, G.J.L. 
(1997) Load estimation methodologies for British rivers and tiieir relevance to the 
LOIS RACS(R) programme. The Science ofthe Total Environment 194/195, 379-
389. 

Webster, J.G., Swedlund, P.J. and Webster, K.S. (1998) Trace metal adsorption onto an 
acid mme drahiage iron (III) oxy hydroxy sulfate. Environmental Science & 
Technology 32,1361-1368. 

242 



Williams, M.R. , Millward, G.E., Nimmo, M . and Fones, G. (1998) Fluxes of Cu, Pb and 
M n to the north-eastern Irish Sea: the importance of sedimental and atmospheric 
mputs. Mar.Poll.Bull 36,366-375. 

WilHams, P.J.I.B., Bauer, J., Benner, R., Hegeman, J., Ittekkot, V . , Miller, A . , Norrman, 
B. , Suzuki, Y . , Wangersky, P.J. and McCarthy, M . (1993) DOC subgroup report. 
Mar.Chem. 41,11-21. 

Windom, H . , Smith Jr, R., Rawlmson, C , Hungspreugs, M . , Dharmvanij, S. and 
Wattayakom, G. (1988) Trace metal transport in a tropical estuary. Mar.Chem. 
24,293-305. 

Winland, R.L. , Traina, S.J. and Bigham, J .M. (1991) Chemical composition of ochreous 
precipitates from Ohio coal mine drainage. Journal of Environmental Quality 20, 
460. 

Wollast,R. and Duinker,J.C. (1982) General methodology and sampling sfrategy for 
studies on the behaviour of chemicals in estuaries. Thalassia Jugosl. 18,471-491. 

Yeats, P.A. and Loring, D .H. (1991) Dissolved and particulate metal distributions in the 
St. Lawrence estuary. Canadian Journal of Earth Sciences 28,729-742. 

Yu, Y.S . , Bailey, G.W. and Xianchan, J. (1996) AppUcation of a lumped, nonlhiear 
kinetics model to metal sorption on humic substances. Journal of Environmental 
Quality 25, 552-561. 

Zwolsman, J.J.G., Berger, G.W. and Van Eck, G.T .M. (1993) Sedunent accumulation 
rates, historical input, postdepositional mobility and retention of major elements 
and frace metals hi salt marsh sediments of the Scheldt estuary, SW Netherlands. 
Mar.Chem. 44,73-94. 

Zwolsman, J.J.G., Van Eck, B . T . M . and Van der Weijden, C.H. (1997) Geochemisfry of 
dissolved frace metals (cadmium, copper, zinc) in the Scheldt estuary, southwestem 
Netherlands: hnpact of seasonal variability. Geochimica et Cosmochimica Acta 
61,1635-1652. 

Zwolsman, J.J.G. and Van Eck, G.T.M. (1993) Dissolved and particulate frace metal 
geochemistry hi the Scheldt estuary, S.W. Netherlands (water column and 
sediments). Netherlands Journal of Aquatic Ecology 27,287-300. 

243 



Chapter 5 

Dissolved Zn, Cu, Ni and Co in the Gulf of Cadiz 

5.1 ABSTRACT 

Continental shelf seas are often enriched with trace metals, compared to the open 

ocean. In the Gulf of Cadiz, the enrichment of the water colunm and shelf sediment with 

Zn, Cu and other metals has been mainly attributed to inputs from mining activities and 

industrial discharges. The cfrculation patterns of surface water masses west of Gibraltar 

give rise to the fransport of metal contammation from the Gulf of Cadiz into the 

Mediterranean Sea (van Geen et al. 1997). In this chapter, the sources, distribution and 

fransport of dissolved Zn, Cu, N i and Co in the Gulf of Cadiz are discussed. 

On-line measurements of total dissolved Zn, Cu and N i in surface waters of the 

Gulf of Cadiz during TOROS surveys provided an extensive data set with a high spatial 

resolution. Detailed surveys of the plume areas of the Huelva and Guadalquivir estuaries 

revealed the intensity, variability and dispersion of the metal contammation. In the Huelva 

RIa plume, concentiations of 19 - 800 n M Zn, 15 - 330 n M Cu and 2 - 31 n M N i were 

measured, compared to 22 - 150 n M Zn, 7.5 - 71 n M Cu and 2.3 - 18 n M N i off the 

Guadalquivfr estuary. Additional sources of Zn, Cu and N i in the north-westem Gulf of 

Cadiz were attiibuted to the Guadiana estuary or to metal hiputs along the southem Portu

guese coast. Metal contanunation from the Guadiana, Huelva and Guadalquivfr estuaries 

was enfrained and fransported south-easterly, most probably into the Mediterranean Sea. 

Compared to North Atiantic surface water, the outer area of tiie Gulf of Cadiz was enriched 

witii Zn (factor 3.6 - 14), Cu (factor 2.5 - 6.5) and Co (factor 1.8 - 8.8), while N i varied 

from enriched m June 1997 (factor 2.3) to depleted m October 1998 (factor 0.51 - 0.8). 
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5 . 2 INTRODUCTION 

Coastal seas are important transition zones between oceanic and terrestrial 

environments, where the concentration and physico-chemical form of trace metals may 

undergo modification by biogeochemical processes. When compared to the open ocean, 

shelf waters are usually enriched with dissolved trace metals. For example on the European 

Shelf around the British Isles, A l , Cd, Co, Cu, M n and N i concentrations are enhanced 

largely as a result of anthropogenic activities (Hydes and Kremling, 1993). Mechanisms of 

metal input into the ocean margins include the upwelling of deep oceanic water (e.g. Cd 

and N i , Sanudo-Wilhehny and Flegal, 1996), the remobihsation fiom shelf sediment (e.g. 

Cu and Co, Sanudo-Wilhehny and Flegal, 1996; Cu and Pb, Wilhams et al. 1998; Fe and 

Mn, Tappin et al. 1993), aeoHan deposition (e.g. A l , Cd, Co, Cr, Cu, Fe, Mn, N i , Pb and 

Zn, Guieu et al. 1997), the dumping of waste and fluvial discharges (e.g. Jarvie et al 

1997; Laslett, 1995; Martin and Whitfield, 1983). 

Like estuaries, coastal zones are important ecosystems and highly productive, 

whereby the uptake by primary producers and regeneration in the water column may play 

important roles m tiie behaviour and cycling of metals (e.g. Cu, Zn, N i , Cd and Pb, Tappin 

et al 1993, and references therein). The adsorption onto fine particles and subsequent 

formation and deposition of particle aggregates is a major removal mechanism for metals 

fiom the water column hi estuarhie and coastal mixing zones (Jackson and Burger, 1998; 

Gibbs, 1986; Salomons and Forstiier, 1983; Turekian, 1977). Hereby, tiie supply of fresh 

particles in coastal waters enhances the surface area available for sorption processes. The 

partitioning of a metal between the solid and solute phase may vary widely vwtii seasonal 

differences in the character of suspended particulate matter, especially with respect to the 

proportion of biogenic material (Tappin et al. 1995). In addition to the magnitude of the 
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supply and biogeochemical processes, local circulation patterns are important in 

determiiiing the distribution of dissolved metals in the coastal zone. 

A detailed understanding of biogeochemical processes and transport mechanisms, 

which affect the distribution of pollutants hi coastal waters, sedunent and biota, is 

desirable, not least because of the ecological and socio-economic importance of estuaries 

and shelf seas. The enrichment of the Gulf of Cadiz with trace metals has implications 

reaching beyond the local scale, as water from the Spanish Shelf is enfrained m the 

Atlantic uiflux to the Mediterranean Sea (van Geen et al. 1988). Within the TOROS 

project, high resolution measurements of dissolved concenfrations of Zn, Cu and N i were 

carried out with the aim to investigate the spatial development and dispersal of the main 

estuarine metal plumes. The surveys were carried out at different tidal stages and seasons, 

in order to assess the temporal variability of metal concenfrations in the Gulf of Cadiz. 

5.3 T H E GULF OF Caoiz 

The Gulf of Cadiz encompasses the sea area between the Portuguese coast at Faro 

and the enfrance to the Sfrait of Gibraltar (Figure 5.1). The shelf slopes gently from the 

coast to a depth of approximately 100 m, and the continental slope is formed by a rapid 

mcrease in water depth to more than 500 m. Canyons cut across the slope in north-east to 

south-westerly dfrection. With a mean tidal ampUtude of 2.5 m, the Gulf of Cadiz is a 

mesotidal coastal sea. The tidal wave progresses from east to west (Borrego et al 1997), 

while surface currents flow in the opposite dfrection (Brown et al 1995). 
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Figure 5.1 - Tlie main rivers draining into the Gulf of Cadiz are the Guadiana and Guadalquivir 
with respect to water discharge volume, and the Rio Tinto and Rio Odiel and with respect to metal 
fluxes. Isobaths are drawn at 100 m and 500 m depth (after Palanques et al. 1995 and Ochoa and 
Bray, 1991). 
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Evaporation exceeds precipitation in the Mediterranean basin. As a result, there is a 

transport of surface water from the Atlantic Ocean (S ~ 36.2) hito tihie Mediterranean Sea 

through the Sfrait of Gibraltar. It has been suggested that the Atlantic influx consists of a 

mixture of North Atlantic Surface Water (NASW), North Atlantic Cenfral Water (NACW) 

and Gulf of Cadiz Water (GCW, 15 - 55%) (Palanques et al. 1995 and references therein; 

van Geen et al. 1991). The Mediterranean outflow of deep water (S ~ 37.7) is a current 

driven by the density gradient between the Mediterranean and Atlantic deep water masses. 

It crosses a sill (ca. 300 m depth) at Gibraltar, is redirected to the north by a ridge, follows 

tbie conthiental slope of the Gulf of Cadiz to the west and can be detected at a depth of 

1200 m at Cape St. Vincent on the south-westem comer of the Iberian Peninsular (Ochoa 

and Bray, 1991 and references therein). 

The Atlantic surface and Mediterranean deep currents and upwelling of N A C W at 

the shelf determine the water cfrculation and influence the sediment dynamic on the shelf 

and slope ofthe Gulf of Cadiz (Palanques et al. 1995; van Geen and Boyle, 1990). Van 

Geen et al (1988) identified the Gulf of Cadiz as a source for dissolved Zn, Cu and Cd to 

surface waters of the Alboran Sea, east of the Gibraltar, by investigating the fransport of 

contaminants. Subsequent studies have shown that the Tinto and Odiel rivers, which are 

affected by acid mine drainage and industiial discharges into their estuary, were major 

contributors to the concenfrations of dissolved Zn, Cu and Cd (Leblanc et al 1995) and 

particulate Fe, Mn , N i , Co, Pb, T i and Cr (Palanques et al 1995; Nelson and Lamotiie, 

1993) to tiie Gulf of Cadiz. 

Palanques et al (1995) found that estuarhie suspended particulate matter (SPM) 

entermg the Gulf of Cadiz is deposited partially hi form of aggregates, while fighter 

particles are enttained by the south-eastem Atiantic surface current. Settluig of such 

particles may result m thefr re-orientation and dispersion by the Mediterranean outflow 
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towards the north-westem slope, h i a comparison between metal concentrations in 

suspended particulate matter (SPM) in the plume zones of the Guadiana, Huelva and 

Guadalquivh: estuaries. Nelson and Lamothe (1993) found the highest S P M levels of Cu 

(470 - 620 mg kg'^), Pb (910 - 1050 mg kg'^), Cr (250 - 300 mg kg^), Co (45 - 78 mg kg^), 

Fe (4.8 - 4.6%) and M n (2080 - 2530 mg kg"') associated with the Huelva system. 

Particulate Zn concentrations (257 - 370 mg kg'') were sunilar on the shelf outside the 

Huelva and Guadalquivir estuaries. 

The distribution of particulate metals in the Gulf of Cadiz corresponded to the east

ward transport of contaminants with the prevailing current. Metal-enriched silt and clay 

deposits of estuarine origin have been found on the shelf between the 30 m and 100 m 

isobath, and in calmer zones of the submarine canyons along the continental slope 

(Palanques et al. 1995). Enrichments of Fe (4.3%), Co (19 mg kg"'), N i (36.6 mg kg"') and 

C r ( 3 0 m g k g ' ) were highest on the contmental slope (factor 8.6, 6.1, 7.0 and 5.3 for Fe, 

Co, N i and Cr, respectively), compared to offshore locations. This was attributed to 

advective and diffusive transport of contaminated SPM firom estuaries and the dmnping of 

industrial wastes fiom metal processing facihties in the Huelva industrial zone. Exceptions 

were Pb (154 mg kg"') and Cu (158 mg kg"'), which were most enriched (factor 4.1 for Pb 

and 12.3 for Cu) hi the fine sedhnent outside the Huelva and Guadiana estuaries, 

respectively (Palanques et al. 1995). The data indicated that the Guadalquivhr and 

Guadiana rivers may contribute noticeably to the metal load m this coastal area. The highly 

contammated sedunents of the Gulf of Cadiz are a potential secondary source of metal 

pollution to the overlying water column. 
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5.4 METHODS 

5 . 4 . 1 REAGENTS A N D EQUIPMENT 

The quality, preparation and purification of de-ionised water (MQ), reagents (HCl, 

HNO3, NH3, methanol, Oxme, D M G , A P D C , Borate, HEPES) and metal standard 

solutions have been described in Chapter 2. 

Mixed reagents and metal standards (Zn, Cu, N i and Co) for the on-line 

voltammetric analysis were prepared on a daily basis fiom the appropriate stock solutions 

of HEPES, Borate, Oxme and D M G and metal stock solutions as described m Chapter 3. 

Materials and cleaning procedures applied to tubing, containers and filter 

membranes used for sampluig, filtiation and storage of water samples from the Gulf of 

Cadiz have been described in Chapter 3. 

5 . 4 . 2 INSTRUMENTATION 

The instrumentation used for the measurement of physico-chemical parameters 

(conductivity, temperature and pH) during coastal surveys onboard the small vessels 

Popeye and Cirry Tres (TOROS 1 and 3, respectively) and the Spanish oceanographic 

vessel B/0 Garcia del Cid (TOROS 2 and 4) has been described in Chapter 3. 

A detailed accoimt of the fully automated voltanmietric metal analyser used 

onboard ship for the on-line determinations of dissolved Zn, Cu, N i and Co concentiations 

m surface waters was given hi Chapter 3. Voltammetry as a method of metal analysis has 

been discussed in Chapter 2. 
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5 . 4 . 3 SA M P L I N G PR O T O C O L 

The dates, vessels used and metals analysed on-lme during the four TOROS 

surveys are given hi Table 5.1. 

On-line trace metal analysis was carried out using square wave adsorptive cathodic 

stripping voltammetry (AdCSV) for the simultaneous determmation of Zn and Cu (System 

I) and N i and Co (System II) as described in Chapter 3. Discrete samples were taken for 

speciation studies (Chapter 6), but were also used to compare analytical results with total 

metal concentrations analysed using on-line methods. Methods of sampling and sample 

treatment and analysis for on-line and discrete methods have been detailed in Chapter 3. 

During the ship-board tidal cycle studies (TCs) at anchor stations in or off the 

mouth of Huelva Ria, discrete samples were taken at hourly intervals, using the same 

methods of sampling and sample processing as during coastal surveys. 

The survey area hi the Gulf of Cadiz was restricted to an area encompassed by a 

radius of between 20 and 40 km off Mazagon during TOROS 1 and 3 surveys, when small 

vessels {Popeye and Cirry Tres) were used. Surveys carried out onboard B/0 Garcia del 

Cid (TOROS 2 and 4) covered the shelf and slope area m the G d f of Cadiz between the 

Guadalquivir in the east and the Guadiana m the west Figure 5.2 - Figure 5.5 show tihe 

locations of samples taken using on-line methods for the analysis of Cu and Zn, and 

stations where discrete samples were taken for comparisons with on-lhie analysis. 
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Table 5.1 - Details of on-line determination of total dissolved Zn, Cu, Ni and Co and discrete 
samples taken at the mouth of Huelva Ria (Mazagon) and m the Gulf of Cadiz. TC - tidal cycle 
study, GdC - B/0 Garcia del Cid. (Me) - metal was below limit of detection for simultaneous 
analysis during parts of the survey. The locations of sampling stations in the Gulf of Cadiz are 
given in Figure 5.2 - Figure 5.5, locations of TCs are given in Chapter 4, Figure 4.9. 
TOROS 1, Nov '96 .Day Sample ID: TOR-96-11- Vessel Remark 

Coastal Survey 21 34-38 Popeye Zn,Cu,Ni,(Co) 

Coastal Survey 24 39-43 Popeye Zn, Cu,Ni,(Co) 

Coastal Survey 25 65-68 Popeye Zn,Cu,Ni,(Co) 

TOROS 2, Jun '97 Day Sample ID: TOR-97-06- Vessel Remark 

Coastal Survey 10 E23 GdC Cu, (Zn), Ni 

Coastal Survey 11 D19,C11 GdC Cu, (Zn), Ni 

Coastal Survey 12 C16,B7, B9,G41 GdC Cu, (Zn), Ni 

Coastal Survey 13 GdC Cu, (Zn), Ni 

Coastal Survey 14 GdC Cu,(Zn),Ni 

Coastal Sxuvey 16 GdC Cu, (Zn), Ni, (Co) 

Coastal Survey 17 GdC Cu,(Zn),Ni, (Co) 

TOROS 3, Apr'98 Day Sample ID: TOR-98-04- Vessel Remark 

TC, Mazagon 21 MZ1-MZ12 Chirry Tres Cu, Zn, Ni , Co 

Coastal Survey 22 MZ13-MZ17 Chirry Tres Cu, Zn, Ni , Co 

Coastal Survey 23 MZ18-MZ23 Chirry Tres Cu, Zn, Ni , Co 

TOROS 4, Oct. '98 Day Sample ID: TOR-98-10- Vessel Remark 

Coastal Survey 11 A1-A4 GdC Cu, Zn, Ni 

Coastal Survey 12 ' A5, C4 - C6, D7 GdC Cu, Zn, Ni 

Coastal Survey 13 D6-D5, E5-E7 ,F8-F6 GdC Cu, Zn, Ni 

Coastal Survey 14 • G6 GdC Cu, Zn, Ni 

Coastal Stuvey 15 GdC Cu,Zn,Ni 

Coastal Survey 15 GdC Cu, Zn, Ni 

TC, Mazagon 19/20 G47/MZ 1 -13 GdC Cu, Zn, Ni, Co 
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Figure 5.2 - TOROS 1: Locations of on-line (•) and discrete samples (number) 
in the Gulf of Cadiz in November 1996.-
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Figure 5.3 - TOROS 2: Locations of on-line (•) and discrete samples (number) 
in the Gulf of Cadiz between 10 and 14 June 1997. 
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Figure 5.4 - TOROS 3: Locations of on-line (•) and discrete samples (number) 
in the Gulf of Cadiz in April 1998. 
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Figure 5.5 - TOROS 4: Locations of on-line, samples between 10 and 14 October (left) and 15 and 
19 October 1998 (right) in the Gulf of Cadiz. 
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5 . 4 . 4 D A T A T R E A T M E N T 

In order to generate surface contour plots firom high spatial resolution on-line 

measurements of salinity, temperature and dissolved metal concentiations, the PC-based 

surface mapping system Surfer(Win32) (Version 6.01, Golden Software, Inc.) was used. 

The hiterpolation between data pomts was carried out with Kriguig as the griddmg method. 

A linear variogram model was selected without anisotiopic radius. The error variance was 

set at 1% of the semivariance (given hi Surfer by default scale C), and this allowed the 

smoothing of contours and alleviated the nugget effect. This tieatinent of the data is a 

simplification which was deemed acceptable, as the generated contour plots are mtended 

only to aid the visualisation of the data. The author is aware that a more rigorous data 

tieatment is necessary i f the interpolated data is used for predictions and modelling 

purposes. The techniques necessary to generate an experimental variogram in order to 

determme the suitable variogram model for geostatistical data tieatment are discussed hi 

specific textbooks (e.g. Burrough and McDonnel, 1998; Isaaks and Srivastavia, 1989). 

5.5 RESULTS 

Results fiom on-line and discrete measurements of metals hi the Gulf of Cadiz 

were not corrected for tidal excursion, which has to be considered when interpreting the 

contour plots. With the exception of estuarine metal plume areas, the dissolved 

concentiation of Co in the Gulf of Cadiz was close to the Ihnit of detection for the 

automated combhied determination of N i and Co (LODwi = 0.21 n M and LODco = 0.33 

nM, see Chapter 3). Because of the patchy coverage of Co data in the Gulf of Cadiz, results 

for this metal are not presented in the form of contour plots, with the exception of the first 

survey. 
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5 . 5 . 1 T O R O S 1 : NO V E M B E R 1 9 9 6 

Figure 5.6 sliows the distributions of salinity and total dissolved Zn, Cu, N i and Co 

concentrations in the Gulf of Cadiz in November 1996. The salkdty contour plot was 

generated from calibrated conductivity measurements in discrete samples. The area to the 

south of Huelva Ria (from station 34 to 38, Figure 5.2) was covered on 21 November 

1996, and the eastern (from station 39 to 43) and westem (from station 65 to 68) areas 

were surveyed on the 24 and 25 November, respectively. 

Compared to the salmity in the cenfre of the Gulf of Cadiz (S > 36.0) the salinity 

distribution shows areas of lower salinity associated with the Huelva Ria system (S < 35.0) 

and the Guadalquivfr estuary (S < 34.6) m the eastem comer ofthe surveyed area. 

Total dissolved metal concenfrations in the proximity of Huelva Ria were 130 - 800 

n M Zn, 44 - 330 n M Cu, 5.4 - 31 n M N i and 4.7 - 8.2 n M Co. Higher concenfrations of N i 

(up to 43 nM) were measured to the west of the low salinity area. The metal concenfrations 

hi the salinity minimum at the eastem boundary of the surveyed area were 150 n M Zn, 

71 n M Cu, 18 n M N i and 1.3 n M Co. The lowest dissolved concenfrations were observed 

aroimd the discrete sampling stations 40, 41 and 35 (Figure 5.2, < 25 n M Zn, < 15 n M Cu, 

< 4.5 n M N i and < 0.50 n M Co), whereas the contour calculations gave the lowest 

concenfrations in the centie of the survey area, where the salinity was highest. 
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Figure 5.6 - TOROS 1: Contour plot of salinity and total dissolved Zn, Cu, Ni and Co 
concentradons in surface water of tiie Gulf of Cadiz close to the mouth of Huelva Ria during 
November 1996. Plots of Zn, Cu and Ni were generated from on-line measurements, and Co from 
concentradons in discrete samples. 
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5 . 5 . 2 T O R O S 2 : J U N E 1 9 9 7 

The surface distributions of salinity and total dissolved Zn, Cu and N i in the Gulf of 

Cadiz between 10 and 14 June 1997 are given in Figure 5.7. The survey started in the 

southeast and meandered between coast and offshore boundaries to the north-west of the 

surveyed area. The salinity contour plot was generated from high resolution measurements 

(5 - 30 s intervals) by the ship's conductivity system, whereby one value every five minutes 

was used. 

Low salinity regions were observed in the north (S < 36.0) and east (S < 35.2) of 

the survey area, and these were probably associated with the estuaries of the Guadiana in 

the northwest, the Huelva system in the north and the Guadalquivfr in the east. In the 

cenfre and towards the offshore margin of the Gulf of Cadiz the salhiity was above 36.2 

(maximum: 36.5). 

The surface distribution contours of Cu and N i were generated from ca. 250 on-line 

voltammetric measurements. For technical reasons, on-line Zn measurements were patchy 

and restricted to the first three days of the survey (130 data points). On-line measurements 

of Zn failed in the area around the mouth of Huelva Ria and the north-westem region of 

the surveyed area, and therefore, the boundary for the hiterpolation calculation was 

restricted (Figure 5.7). 

A tongue of elevated dissolved metal concentiations (> 30 n M Zn, > 20 n M Cu 

and > 10 n M Ni) extended from the Guadalquivfr estuary. Less pronounced were Cu and 

N i in the plumes associated with the Huelva estuary (> 15 n M Cu and > 4 n M Ni). 

However, on subsequent surveys designed to assess the tidal variability of the Huelva 

metal plume, up to 80 n M Cu (but only 5 n M Ni) were measured ca. 12 km southeast of 

the estuary's mouth (see Chapter 3). 
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The surface concentration of Zn in the north of the surveyed area was above 20 nM. 

Zmc concentrations in discrete samples taken at 10 m depth by Morley (unpubhshed data) 

to the north of the area covered by on-line measurements for Zn showed concentrations 

between 45 - 125 n M in the plume of Huelva Ria and more than 30 n M Zn in the 

northwest. 

Dissolved metal concentrations decreased towards the Atlantic margin of the Gulf 

of Cadiz, where levels below 3 n M Zn, 4 n M Cu and 3 n M N i were reached, and 

concentrations below 0.2 n M Co were measured in discrete samples. 

5 . 5 . 3 T O R O S 3 : A P R I L 1 9 9 8 

Salinity contours for the April survey (Figure 5.8) were generated from calibrated 

conductivity measurements, which were taken at approximately five minutes intervals in 

the discard water ftom the tangential filtration system. The area to the east of Huelva Ria 

was covered on 22 April 1998 and the area to the west on the following day. Areas of low 

salhiity were observed to the southeast (S < 34.2) and to the west (S < 34.4) of Huelva Ria, 

and an additional pocket (S < 34.2) was located at the westem fringe of the survey area. 

The surface distribution plots for dissolved metal concentiations were generated 

fiom on-line measurements of Zn and Cu (ca. 50) and N i (ca. 30) taken during the two-day 

survey. Metal concentiations were elevated in the Huelva Ria plume to the southeast of the 

estuary's moutii (< 300 n M Zn, < 30 n M Cu and < 10 n M N i , and up to 22 n M Co ha 

discrete samples) and in the north-westem corner of tiie surveyed area (108 n M Zn, 25 n M 

Cu and 5.1 r iM Ni) . The lowest metal concentiations observed during this survey were 9.4 

nM Zn, 4.4 n M Cu and 2.3 n M N i , and 0.23 .nM hi tiie discrete sample M Z 14 (Figure 5.4). 
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Figure 5.8 - TOROS 3: Contour plot of salinity and total dissolved Zn, 
Cu and Ni concentrations in surface water of the Gulf of Cadiz close 
to the mouth of Huelva Ria in April 1998. 
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5 . 5 . 4 T O R O S 4 : O C T O B E R 1 9 9 8 

The surface distributions of salinity and total dissolved Zn, Cu and N i 

concentrations in the Gulf of Cadiz between 11 and 15 October 1998 (plots on the left) and 

between 15 and 19 October (plots on the right), are given in Figure 5.9. The first part of the 

survey started in the southeast and meandered between the coast and offshore boundaries 

to the northwest of the surveyed area (Figure 5.5, left plot). The second part began in the 

west and followed an irregular pattern, whereby the focus was on the metal plumes of 

Huelva Ria and the Guadalquivir and the inshore area between the two estuaries (Figure 

5.5, right plot). The salinity contour plot was generated as described for the TOROS 2 

survey. Dissolved metal contours were based on high resolution on-line measurements of 

Zn and Cu (ca. 220 and 190 data points for first and second part, respectively) and N i (ca. 

320 and 270 data pomts). 

Areas of low salinity (< 36.0) associated with the Guadiana in the west, Huelva Ria 

hi the north and the Guadalquivir in the east of the Gulf of Cadiz were observed during 

both parts of the October survey. In surface waters of the central and offshore areas of the 

Gulf of Cadiz the salinity was greater than 36.2, with maxima above 36.6. 

A distinct tongue of elevated Zn and Cu concentrations (22 - 50 n M Zn, 7.5 - 11 

n M Cu and 2.3-3.3 n M Ni) extending from the Guadalquivfr was observed during the first 

part ofthe survey, when a smaller plume of similar intensity (19-57 n M Zn, 6.3 - 9.4 n M 

Cu and 1.9 - 2.5 n M Ni) was associated with the Huelva system. During a tidal cycle study 

fiom an anchor point approximately 4 km outside Huelva RIa (data see Appendix 2) not 

shown) dissolved concenfrations of 21 - 140 n M Zn, 11 - 69 n M Cu, 1.8 - 4.0 n M N i and 

0.8 - 4.4 n M Co were measured on-line over a period of 13 hours. 
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Figure 5.9 - TOROS 4: Contour plot of salinity and total dissolved Zn, Cu and Ni concentrations in 
surface water of the Gulf of Cadiz. The left and right plot of each pair was created from on-line 
measurements between 11 and 14, and 15 and 19 October 1998, respectively. Sampling points are 
given in Figure 5.5. Note the different scales for the two Cu plots. 
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Figure 5.9 - continued. 
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The second part of the survey took the cruise track closer inshore (minimum depth 

10 m). High concentrations of Zn (18 - 90 nM) and Cu (6.3 - 48 nM) and elevated N i 

levels (2.0 - 6.0 nM) were measured along the shorelme throughout the second part, 

resulting in the steep concentration gradient between Huelva Rfa and the Guadalquivir 

plume on the contour plots. Concentrations at offshore locations in the Gulf of Cadiz were 

< 11 n M Zn, < 6.5 n M Cu and < 2.0 n M N i , and Co concentrations in discrete samples 

were below 0.1 nM. 

5 . 5 . 5 CO M P A R I S O N OF O N - L I N E WITH D ISCRETE MEASUREMENTS 

Table 5.2 compares on-line measurements of dissolved Zn, Cu and N i in surface 

waters with results from the analysis of discrete samples ushig voltammetric methods. 

Considerable discrepancies are apparent, especially for measurements taken in the 

estuarine metal plume. 
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Table 5.2 - Comparison of results from on-line and discrete measurements of total dissolved Zn, Cu-
and N i for samples from the Gulf of Cadiz. At some stations samples from different depths were 
analysed to illustrate the highly variable nature of the Huelva Ria metal plume. OL - on-line 
measurements; D - metal analysis in discrete samples; all values in nM; standard deviation of on-
line analysis < 10%; sample stations see Figure 5.2 - Figure 5.4. 
TOR-96-11- OLZn DZn OLCu D C u O L N i D N i 

40 0.5 m 33.1 45.7 ±3.84 26.2 29.8 ± 1.24 2.76 8.29 ± 0.54 

10 m 23.0 ± 1.22 24.4 ±2.18 9.26 ± 0.59 

28 m 24.2 ±1.13 7.84 ± 0.42 10.5 ± 0.32 

41 0.5 m 70.1 163 ± 6.60 22.4 23.8 ± 1.35 7.32 7.60 ± 0.27 

10m 63.4 ±7.50 30.9 ± 2.01 8.39 + 0.55 

22 m 74.1 ±2.55 29.9 ± 0.55 8.54 ±0.38 

37 128 137 ± 5.52 25.2 37.0 ±1.71 7.45 • 5.38 ±0.46 

38 732 374 ± 27.0 57.9 89.3 ±4.87 - 18.5 ±0.59 
42 211 282 ± 17.4 29.0 77.8 ±2.82 10.1 10.2 ±0.35 

43 257 391 ±27.4 42.7 72.5 ± 2.53 12.5 14.8 ± 0.39 

66 - 300 ±15.5 124 58.8 ± 1.88 30.7 11.1 ±0.92 

TOR-97-06- OLZn DZn OLCu •DCu O L N i D N i 

E23 3.04 2.71 ±0.31 3.33 2.21 ± 0.62 2.86 2.80 ± 0.27 

D19 4.74 5.23 ± 0.50 5.51 3.49 ±0.18 3.44 2.80 ± 0.27 

C l l 6.07 6.44 ± 0.28 4.70 1.52 ± 0.03 3.89 2.43 ±0.61 

C16 - 46.2 ± 0.98 13.5 30.8 ± 0.54 10.2 4.59 ± 0.28 

B7 - 40.9 ± 1.30 8.08 13.7 ±0.39 5.16 3.57 ±0.32 

B9 5.02 4.65 ± 0.40 6.38 4.04 ± 0.28 2.76 2.11 ±0.23 

G41 15.9 25.6 ± 2.05 6.17 12.6 ± 1.39 3.47 3.57 ±0.32 

TOR-98-04- OLCu D C u O L N i D N i 

MZ13 17.1 66.0 ± 0.37 - -
MZ14 6.0 7.81 ±0.07 2.56 2.64 ± 0.35 

MZ15 12.1 41.7 ±0.56 3.03 2.90 + 0.15 

MZ16 19.0 106 ±8.0 - 10.6 + 0.90 

MZ17 33.7 97.7 ± 6.0 8.67 10.6+1.65 

MZ18 14.1 10.5 ±0.91 2.79 2.41 ±0.07 

MZ19 10.8 7.54 ±0.14 2.45 2.32 ± 0.06 

MZ20 19.0 16.2 ±0.10 2.80 2.66 ± 0.03 

MZ21 14.0 38.3 ± 1.42 3.04 3.03 ±0.10 

MZ22 22.7 49.3 ±3.11 3.16 5.83 ± 0.32 

MZ23 52.1 90.7 ±1.06 9.16 10.7 ±0.14 
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5.6 DISCUSSION 

5 . 6 . 1 A N A L Y T I C A L PERFORMANCE 

When comparing metal concentrations measured on-line with those measured in 

discrete samples (Table 5.2), differences of more than 100% occurred in some cases, while 

for others the values agreed within 10%. The accuracy and precision of the dn-lme metal 

monitor (Chapter 3) proved satisfactory, as did the analytical performance of voltammetric 

analysis in discrete samples (Chapter 2). Therefore, it is unlikely that analytical error was 

the reason for the observed discrepancies. Metal concentiations analysed in discrete 

samples were not consistently higher than values measured on-line. This excludes the 

contamination of discrete samples by the sampling container, ship's exhaust fumes, 

sampling handling or storage as a major source of error. 

A n alternative explanation for the observed concentiation discrepancies lies in 

differences inherent hi the sampling methods. On-line samples were pumped from a depth 

of 2 - 4 m firom KIPPER-1 (Chapter 3), which was deployed from the side of the vessel. 

Discrete samples were taken v̂ dth Niskin bottles mounted on a rosette from the stem of the 

BfO Garcia del Cid (TOROS 2 and 4), or witii manual sampling equipment from the bows 

or side of small coastal vessels (TOROS 1 and 3). Differences did not only occur in the 

exact sampling position (ship's drift while on station), but also hi sampling depth. The 

minimum sampling depth with the rosette was 5 -10 m, and samples were taken manually 

just below the surface (ca. 0.5 m to 2 m). Depth profiles taken during the TOROS 1 survey 

(Table 5.2) show hnportant concenttation gradients witii depth for discrete samples, 

especially at high concenttations within the metal plume. Therefore, the large discrepan

cies observed between on-line and discrete metal concenttations in coastal surveys may 

have been predominantly the result of the mhomogeneous nature of the water body. 
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5 . 6 . 2 SALINITY DISTRIBUTION IN T H E G U L F OF C a o i z 

The saHnity observed m the central and outer Gulf of Cadiz (S > 36.2) was similar 

for each survey and has been observed previously in this sea area (Ochoa and Bray, 1991). 

The excess of evaporation over precipitation in this arid region leads to high surface 

salhiities, compared to North Atlantic waters at higher latitudes (S < 36, Brown et al. 

1995). Low-salinity zones were observed during all four surveys, and these were 

associated with the river systems draining hito the Gulf of Cadiz, the Guadiana (possibly 

combined with the Rio Piedras), the Huelva Ria and the Guadalquivh (Figure 5.1). During 

the surveys, the river plumes were passed at different tidal stages, which may account for 

the difference in the intensity and extent of the low salinity plumes between surveys. No 

correction was made for tidal excursion, so that low salinity zones (and metal plumes) may 

have been displaced from their origin at the time of sampling. Conflicting surface currents 

(tidal wave and prevailhig current. Section 5.3) are likely to cause local circulation pattems 

which change throughout the tidal cycle. Such cfrculation may provide an explanation for 

the temporary dislocation of the low salmity zone associated with the Huelva system to the 

west of the estuary's mouth during the first three surveys (Figure 5.2 - Figure 5.4). 

The low salhiity signal associated with the Huelva system was less intense and 

covered a smaller area, compared to those of the Guadalquivfr and Guadiana. This can be 

explained with the lower fresh water flux of the Rio Thito and Rio Odiel (long-term 

combhied mean annual flow 18 m^ s''), compared to the Guadalquivfr (164 m^ s'') and 

Guadiana (79 m^ s"') (Palanques et al. 1995; Borrego-Flores, 1992). 
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5 . 6 . 3 D ISSOLVED Z N , C U , N I A N D C O IN T H E G U L F OF C a o i z 

The distributions of dissolved Zn, Cu, N i and Co in the Gulf of Cadiz showed the 

influence of riverine metal sources and the transport with the prevailing currents. Areas of 

elevated dissolved metal concentrations approximately overlapped with, the low salhuty 

zoiies in the coastal area, and this identified the Guadiana, Huelva Ria and Guadalquivir as 

major sources of trace metals to the coastal zone. The large tongues of elevated dissolved 

Zn and Cu concentrations extending from the Guadalquivfr during the second and fourth 

surveys (Figure 5.7 and Figure 5.9) were not congruent witii the observed sahnity 

distribution. This may be explained by the different sampling depth for conductivity (water 

pumped from an inlet m the hull of the ship, see Chapter 3) and frace metal measurements 

(KIPPER-1). In this case, it is possible that the KIPPER-1 sampled the low-salinity surface 

plume ofthe Guadalquivfr estuary, while the conductivity was measured in water that had 

undergone more intense mixmg from a greater depth. In addition, the sedhnent in the Gulf 

of Cadiz is a potential diagenetic source of metals to the water column (Section 5.3), and 

sedhnentary inputs of Zn and Cu will cause erihanced dissolved concentiations witiiout a 

salmity signal. 

The importance of Huelva RIa as source of metals to the Gulf of Cadiz was 

established in Chapter 4. The observed metal concenfrations in the Huelva Ria plume area 

were highest in November 1996 and lowest in October 1998, with intermediate 

concenfrations during the spring and summer surveys. Tidal cycle studies at the mouth of 

the estuary (Chapter 4 and Section 5.5.4) and high resolution on-lme measurements hi 

estuarine discharge areas have shown that the intensity of the metal plume is highly 

dependent on the state of the tide. Therefore, the inter-survey variability hi metal discharge 
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from Huelva RJa into the Gulf of Cadiz can be more accurately assessed from estuarine 

surveys (Chapter 4). 

Dissolved concentrations of Zn and Cu in the Huelva Ria plume reported by van 

Geen et al. (1997) were shnilar to those observed during TOROS surveys (Table 5.3 and 

Table 5.4), while the maximum N i concentration given by van Geen was higher (factor 2) 

than that observed in the present work. 

The concentration of dissolved Zn, Cu and Co in the-Huelva Ria plume was several 

fold higher than levels reported in literature for the plumes of major European rivers, 

hicludmg the Humber, Mersey, Rhine/Scheldt and the Rhone (Table 5.4). The range of N i 

concentrations encoimtered in Huelva Ria and Guadalquivh plume during TOROS surveys 

were similar to those reported for coastal regions of the North Sea and the Gulf of Lyons. 

The high degree of contamination ofthe Huelva Ria plume with Zn and Cu resulted firom 

the high metal flux fiom the Tinto/Odiel rivers, compared to other major European rivers 

(see Chapter 4). 

The transport of dissolved Zn, Cu and N i fiom the mouth of the estuary in an 

easterly direction was evident from the results of high resolution measurements (Figure 5.6 

- Figure 5.9). The mfluence of prevailhig west-east surface currents on the metal plume 

was most distinct during the autumn/wmter surveys (TOROS 1 and-4, second part), when 

inshore surveys (minimum depth 5 m and 10 m, respectively) were undertaken. Dissolved 

Zn, Cu and N i were fransported from Huelva RIa along the shoreline towards the 

Guadalquivfr estuary and beyond. This confirms the previous suggestions that metal 

contamination from the north of the Gulf of Cadiz is tiansported eastward and into the 

Mediterranean Sea (van Geen et al. 1997). 
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Table 5.3 - Dissolved concentrations of Zn, Cu and Ni measured during quarterly surveys by the 
Medio Ambiente (1998) at the mouth of the Guadiana, Rio Piedras, Punto Umbria, Huelva Ria and 
Guadalquivir. The range of concentrations encountered at the mouth of Huelva Ria during TOROS 
surveys is given in the lower part of the table. 
Estuary Zn(nM) Cu(nM) Ni(nM) Co (nM) 

Rio Piedras 140 47 17 
Guadiana 110 -250 32 -47 17 -51 

Guadalquivir 

Huelva Ria 

230 -290 32 -47 34 -51 Guadalquivir 

Huelva Ria 400- 9800 110- 520 17- 140 

Huelva Ria (TOROS) 54- 3650 23- 340 4 -41 1.7-97 

Table 5.4 - Dissolved metal concentrations in surface waters ofthe Gulf of Cadiz and European 
coastal seas reported in literature. Al l concentrations in nM, unless otherwise stated in the footnote. 
Location Zn Cu N i Co 

Huelva Ria phime' <3060 <290 <90 

Guadalquivir plume'̂  40-200 <21 <6 

Gulf of Cadiz EM^ 12 5.8 3.0 

North Atlantic"* < 0.5-0.8 0.85 -1.5 1.7-2.5 0.037 - 0.057 

Humber Bay, North Seâ  27 13 20 <0.17 

Central North Seâ  2.9-28 1.6-2.9 1.0-6.1 <0.45 

Scheldt/Rhine Bay'^ 5-30 2.5 - 10 5-(>10) 0.2-0.8 

English Channel^ 1.9-18 1.3-5.3 3.0-4.2 < 0.02 - 0.24 

Liverpool Bay, Irish Seâ  11-54 8-18 7.0-16 

Gulf of Lyons* 2.0 -14 1.5-6.5 

Outer Gulf of Cadiz (TOROS) 2.9-11 2.7 - 7.7 1.5-5.7 < 0.1-0.5 

' Surface water collected 3 km south of Huelva Ria mouth, concentration in. nmol kg"' (van Geen et al. 
1997). 
^ Concentration in mnol kg'' (van Geen et al. 1997; van Geen et al. 1991). 
^ Shelf end-member concentration at S = 36.28 for the Gulf of Cadiz after van Geen et al. (1991), 
concentrations in nmol kg''. 
" North Atlantic Surface Water (Morley a/. 1997; Landing era/. 1995; Morley a/. 1993; Kremling and 
Pohl, 1989; van Geen et al. 1988; Bruland and Franks, 1983). 
^ Coastal and central North Sea, salinity between 33.140 (Humber Bay) and 35.005 (central North Sea) 
(Tappin et al. 1995), r̂anges estimated from graphs. 
* Range observed in samples from the centre of the English Channel between the mid-channel and the 
opening to the Atlantic Ocean (Tappin et ai 1993). 
' Concentration in surface water the eastem Irish Sea, including the Mersey river plume ca. 15 km off the 
estuary's mouth (Achterberg and van den Berg, 1996). 
^ Rhone plume in the Gulf of Lyons, Mediterranean Sea, values estimated from graph at chlorinity > 21 g 1"' 
(Elbaz-Poulichet et al. 1996). 
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The second part ofthe TOROS 4 survey mdicated the transport of Zn and N i from a 

more westerly location towards Huelva Ria. Salinity distributions and the location of 

dissolved Zn (TOROS 3 and 4), Cu (TOROS 1 and 3) and N i (TOROS 1, 3 and 4) plumes 

to the west of Huelva Ria pointed towards the Guadiana or Rio Piedras as sources of these 

metals to the coastal zone. Elevated metal concenfrations have been reported by the Medio 

Ambiente (1998) for both estuaries (Table 5.3). Because of its higher water discharge the 

Guadiana probably had a greater influence on the water quality in the Gulf of Cadiz,' 

compared to the Rio Piedras. Van Geen et al. reported dissolved Zn concenfrations of up to 

100 nmol kg"' in surface waters along the southem Portuguese coast. The eastward 

fransport of metal-enriched coastal water with the Atlantic surface current may be an 

alternative (or additional) explanation for the elevated Zn concenfrations observed in the 

north-westem Gulf of Cadiz. 

The dissolved metal plume in the eastem Gulf of Cadiz can be attributed to the 

Guadalquivir estuary, which contributes the greatest amount of fresh water to this coastal 

zone and carries elevated dissolved concenfrations of Zn, Cu and N i from industrial and 

mining sources (Table 5.3). Contour plots and concenfrations reported for the Guadalquivfr 

suggest that this estuary may be a greater source of dissolved N i to the Gulf of Cadiz, 

compared to Huelva Ria. However, rough flux estimates based on linear metal-salmity 

relationships in the Gulf of Cadiz hidicate that both estuaries have a N i flux of shnilar 

magnitude (ca. 40 - 701 a"' N i , see Chapter 4). 

The Iberian Pyrite Belt is enriched in Zn and Cu (among others, see Chapter 4), for 

which the Huelva system appears to be the main source in the Gulf of Cadiz. Nickel is not 

particularly eiuiched in the local geology, so that urban or industrial effluents are the likely 

source of N i in the Guadalquivfr. Contour plots indicate that the dissolved concenfrations 

of Cu and N i in the Guadalquivir plume were higher in November 1996, compared to the 
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subsequent TOROS surveys and levels reported in literature (Table 5.4). This illustrates a 

high level of variability in the metal flux from this river, and further investigations are 

required in order to assess more accurately the importance of metal discharges from the 

Guadalquivir estuary, compared to the Huelva system. 

The summer (TOROS 2) and autumn (TOROS 4) surveys supplied data on metal 

concentrations in the outer Gulf of Cadiz. The concentration range of Zn and Cu 

encountered south of a hue drawn between 37.2° N , 7.5° W and 36.0° N , 6.2° W (Figure 

5.7 and Figure 5.9) were shnilar during both surveys (TOROS 2: 2.9 - 9.2 n M Zn and 2.8 -

7.7 n M Cu, TOROS 4: 3.8 -11 n M Zn and 2.7 - 6.5 n M Cu. The concentration of N i m the 

outer Gulf of Cadiz was significantly lower hi October 1998 (1.1 - 2.0 nM), compared to 

June 1997 (2.6 - 5.7 nM). This may be explauied with the reduced dissolved N i 

concentration in the lower Huelva Ria m October (1.8 - 4.0 nM) compared to June (8.0 - 13 

nM). Concentrations in the Guadalquivir plume (Figure 5.7 and Figure 5.9) suggested a 

similar reduction of N i discharge from this river. Levels of dissolved Zn, Cu and N i 

estimated as shelf end-member at S = 36.28 by van Geen et al. (1991) (Table 5.4) were at 

the upper limit of the range observed for the outer part of the surveyed area during the 

TOROS surveys. 

In the outer Gulf of Cadiz, dissolved concentrations of Cu, N i and Co were in a 

shnilar range to those reported for other European shelf waters, for example the central 

North Sea and the English Channel (Table 5.4). A n exception may be Zn, which had lower 

maximum values in the Gulf of Cadiz. Compared to typical dissolved surface water 

concentrations in the North Atlantic Ocean (Table 5.4, upper Ihnit), the observed 

concentration ranges in the outer Gulf of Cadiz represent an enrichment by factor 3.6 - 14 

for Zn and 1.8 to 5.1 for Cu. Nickel in surface waters was depleted during the October 

survey (factor 0.51 - 0.8) and up to 2.3 times enriched during the June survey. From the 
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limited amount of data available firom the analysis of Co in discrete samples, the 

eiuichment of surface water in the outer Gulf of Cadiz was estimated to be 1.8 - 8.8 times 

above the North Atlantic. 

There was no relationship between salinity and Zn, Cu or N i for the complete set of 

data hi the Gulf of Cadiz during any survey. This may be partially explained with the low 

fiesh water discharge fiom the Huelva system, where conservative behaviour of Zn, Cu, N i 

and Co was observed in tiie lower estuary (Chapter 4). The salmity range in the Huelva Ria 

plume was small and metal concentiations were too high for an overall linear relationship 

to be detected in the Gulf of Cadiz. In addition, the distribution of dissolved Zn, Cu and N i 

in the Gulf of Cadiz may have been influenced by factors, other than mixing. Possible 

processes include the removal of dissolved metals by adsorption to particles or through 

uptake by phytoplankton, and the addition of dissolved metals to the water column through 

the remobihsation from the metal-rich sediment of the Gulf of Cadiz. High levels of 

particulate Cu, Pb, Co, Cr, Fe, M n and Zn concenfrations in the Gulf of Cadiz were 

reported by Nelson and Lamothe (1993), whereby the fine character of the particles 

suggested an estuarine origin. The removal of Zn, Cu, N i and Co from solution at mid-

salfrdties and conservative behaviour at S > 35 in Huelva Ria, and the linear metal-salinity 

relationship of Cu and N i in the Guadalquivfr plume (Chapter 4) suggest that at the thne of 

tiie TOROS surveys, sorption of these metals to particles was largely completed witiihi tiie 

estuarhie envfronment. This is supported by van Geen et al. (1991), who found linear 

salinity relationships for dissolved Cu, N i and Cd in the Gulf of Cadiz in a data set that 

excluded the immediate Huelva RIa plume. However, tiie depletion of surface waters m the 

Gulf of Cadiz witii N i , compared to N A S W , mdicates that removal of this metal takes 

place within the shelf sea. 
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High concentrations of Fe, Zn, Cu, N i , Co, Pb and Fe found m shelf sedhnent (van 

Geen et al. 1997; Palanques et al. 1995; Nelson and Lamothe, 1993) identify it as potential 

diagenetic source of metals to the water column (see Section 5.3). However, the 

importance of remobilisation from sediments in this coastal area has, so far, not been 

investigated. 

5.7 CONCLUSIONS 

The on-line monitoring of dissolved Zn, Cu and N i in the Gulf of Cadiz provided 

data on the intensity, extent and fransport of estuarine metal plmnes at a high spatial 

resolution. The Huelva Ria metal plume was characterised by a sfrong variability hi 

estuarhie metal discharge during tidal cycles and between the seasons. Most intense was 

the contamination with Zn and Cu, followed by Co and N i . The estuarme plume did not 

extend far into the Gulf of Cadiz, but was predominantly fransported eastward along the 

shore with the prevailing current. Dissolved metal concenfrations in the Guadalquivfr 

estuary were generally lower, compared to the Huelva system. However, the higher fresh 

water discharge of the Guadalquivfr resulted hi a metal plume that, at times, projected far 

into the Gulf of Cadiz and that contributed noticeably to the contammation of coastal 

waters with dissolved Zn, Cu and N i . The Guadiana estuary was identified as a source of 

metal hiputs, which may be of a similar order of magnitude as the Guadalquivfr. 

Furthermore, there was evidence that Zn contamination reported in literature may be 

fransported uito the Gulf of Cadiz from Portuguese coastal waters. The data corroborated 

previous reports of a cfrculation pattern that facilitates the ttansport of metal contamination 

along the shore from the westem to the eastem bovmdaries of the Gulf of Cadiz and hito 

the Mediterranean Sea. Mixing of coastal metal pollution with North Atlantic water 

resulted in the enrichment of the outer areas of the Gulf of Cadiz with dissolved metals 
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associated with the mining industry (Zn, Cu and Co up to 14, 5.1 and 8.8 times, 

respectively), while N i was at tunes depleted (enrichment 0.51 - 2.3 times). 

The exploitation of results from the high resolution measurements for tiansport 

modelling of pollutants is planned hi collaboration with TOROS research partners. 
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Chapter 6 

Dissolved Metal Speciation 

6 . 1 ABSTRACT 

In order to elucidate some of the processes that lead to the observed metal .• 

distribution in the Huelva system, thermodynamic equilibrium calculations were carried 

out for the Rio Thito, Rio Odiel and their estuaries. Furthermore, the dissolved speciation 

of Cu in Huelva RIa and the Gulf of Cadiz was studied usmg voltammetric methods with 

ligand competition, and the concentration and stability constants of Cu complexing organic 

ligands were determined. 

Thermodynamic calculations of the hiorganic speciation offered explanations for 

the behaviour of metals in the Rio Tinto, Rio Odiel and then: estuary. The hiorganic 

speciation of Fe and A l in the firesh water end-member was dominated by sulphate 

complexation, and this remained so in the estuary up to a salmity of about 20. The low pH 

(< 4) in this system subdued the formation of iron hydroxide species, which would explain 

the absence of colloidal material and the conservative behaviour of trace metals in this part 

of the estuary. At higher pH (8.2) and salinity (36.5) hi Huelva RIa, hydroxide species 

domhiated the hiorganic speciation of Fe (100% Fe(0H)4", Fe(0H)2 aq and Fe(0H)2) and 

A l (99.9% A1(0H)4' and A1(0H)2 aq). Under these conditions, the removal of Zn, Cu, N i 

and Co was observedm the estuary, indicating co-removal with Fe and A l floes. 

Results fi-om electrochemical speciation studies showed that the fraction of 

organically complexed Cu decreased from over 80% in the Gulf of Cadiz to less than 50% 

m Huelva Ria. Copper was predommantly labile (> 90%) in estuarine samples -with a total 

279 





concentration in excess of 2 Cu. Organic ligand concentrations (CL) increased with 

total dissolved Cu (CUT) from coastal to estuarhie waters ( C L = 5.3 - 199 n M , Cuy = 3.6 -

254 nM), and ligands were found to be saturated with Cu in Huelva Ria. The relationship 

between total and labile Cu, copper complexing organic ligand and free cupric ion 

concenfrations indicated that subtle changes hi pH value affected the toxicity of Cu in the 

system. Equilibrium calculations showed that the cupric ion concenfration in Huelva Ria 

may reach levels that are toxic to some species of phytoplankton. 

6 . 2 INTRODUCTION 

The speciation of metals in natural envfronments is of great unportance, because it 

is the species of a metal that determine its reactivity and toxicity. Most speciation 

techniques are operational hi character, beginning with the filfration of the sample, during 

which the partitiordng between particulate and dissolved fractions is achieved. The 

commonly used filfration pore size (0.45 |j,m or 0.4 pm) is convenient but arbifrary. It does 

not allow a distmction between truly dissolved and colloidal phases, the latter of which has 

a high affinity for some metals (Muller, 1996; Horowitz et al. 1996). On the other hand, 

colloid separation methods (e.g. cross-flow filfration) are more cumbersome and prohibit 

the processing of large numbers of samples, and the chosen method has to be appropriate 

to fulfil the aims of the investigation. 

Analytical techniques that allow the accurate determination of individual inorganic 

and organic metal species in a sample are not available. For this reason thermodynamic 

equilibrium calculation metiiods have been developed to facilitate the evaluation of the 

inorganic speciation of metals m marine and estuarine waters (Tumer et al. 1981; Dickson 
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and Whitfield, 1981). Such calculations are based on equilibrium constants, the 

determination of which has been an area of intense research, but still, some conflicts and 

uncertainties remam (Byrne and Miller, 1985). The time scales of inorganic reactions (e.g. 

substitution, dissociation, addition, rearrangement and election transfer) span a wide range, 

fiom fiactions of seconds to days and years (Burgess, 1992). Therefore, when usmg the 

equilibrium approach, one has to be aware of its Ihuitations. The assumption of 

equilibrium is not always valid, especially in highly dynamic estuarine envhronments,-

where metals undergo important removal and remobilisation processes between dissolved, 

colloidal, particiilate and sedimentary phases. 

Dissolved metal speciation in natural water is rarely exclusively inorganic. Great 

disparities between the calculated hiorganic equilibrium speciation and observed speciation 

in waters contahiing metal complexing hgands, have been observed. The speciation of Cu 

m natural waters has been studied most mtensely, whereby commonly a high proportion of 

the dissolved Cu concentiation was found complexed by stiong organic ligands (van den 

Berg and Donat, 1992; Sunda and Huntsman, 1991; Coale and Bruland, 1990). 

Copper is of primary interest in polluted aquatic systems because of its role as 

micro-nutrient and its toxicity to marine flora and fauna (Apte et al. 1990), In open ocean 

and coastal surface waters, total dissolved Cu concentiations are typically in the high p M 

to mid n M range (Achterberg et al. 1999; Coale and Bruland, 1988; Bruland and Franks, 

1983b; Martin and Meybeck, 1979). Toxicity studies have shown that the cupric ion is tiie 

biologically available species and therefore its activity is related to toxic effects hi 

estuarine and marine algae, cyanobacteria and macroalgae (Gledhill et al. 1997 and 

references therein; Anderson and Morel, 1978). Experiments have shown that Cu toxicity 

(to algae) can be ameliorated by the addition of hydrophilic metal chelators or other micro-

nutiients (e.g. M n and Fe), mdicating that Cu competitively inhibits enzyme-systems 
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requiring other metals (Coale and Bruland, 1988 and references therein). Hereby, the 

reduction of Cu toxicity stems firom the formation of complexes that cannot traverse the 

cell membranes of organisms or are too stable to dissociate at the cell membrane (Apte et 

al. 1995; Buffle, 1988). 

The complexation of Cu by inorganic and organic ligands has been shown to 

influence not only the biological availability and toxicity of the metal but also its particle 

reactivity and. hence its biogeochemical behaviour and dissolved (istribution (Coale and 

Bruland,. 1988; van den Berg, 1982). A variety of techniques have been used to study 

complexation of Cu with strong organic Hgands, including A S V (Coale and Bruland, 1988; 

Kramer and Dumker, 1984), AdCSV (van den Berg and Donat, 1992), chemiluminescence 

with ligand competition (Sunda and Huntsman, 1991), equilibration with M n 0 2 (van den 

Berg, 1982), and hgand exchange (Sunda and Hanson, 1987; Moffett and Zika, 1987; 

Donat et al. 1986). Generally, results of these studies have mdicated that Cu speciation in 

estuarine and marine waters is dominated by stiong complexation, and that Cu complexing 

ligands have stability constants hi the region of lO ' - lO'^'^ (Moffett, 1995; Donat and van 

den Berg, 1992; Coale and Bruland, 1988; Sunda and Hanson, 1987). 

Comparisons between speciation studies m UV-kradiated and untteated waters 

have shown that the Cu complexing ligands were susceptible to photo-oxidation and this 

confirmed tiieir predominantly organic nature (Gledhill and van den Berg, 1994; Sunda 

and Hanson, 1987). The range of detected stability constants indicates the presence of 

different classes of organic ligands and a natural variability between samples, but also 

reflects the variability m detection whidows of the speciation methods applied. In many 

studies two classes of ligands have been detected (Li and L2), whereby L i is characterised 

by high conditional stability constants and low concentiations (logK'cuLi > 12, low n M 

range), while L2 has been foimd at higher concenttations (low to high n M range) and forms 
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Cu complexes with lower stability constant GogK'cuL2 < H ) (Moffett et al. 1990; Coale 

and Bruland, 1988; Simda and Hanson, 1987). However, the number of organic Cu ligand 

classes reported is most likely the result of fitting limited experimental data to a model, 

rather than an accurate representation of the complexation properties of natural organic 

matter. Nevertheless, the classification of Cu complexing ligands is usefiti when 

comparing sets of data. 

The free cupric ion activity in near-surface marine and coastal waters is relatively 

constant (lO"''* - 10"'̂  M) as a consequence of the complexation of dissolved Cu with 

stiong organic iigands (Sunda and Huntsman, 1995; Coale and Bruland, 1990). The highest 

concenfrations of sfrong organic ligands have been found in near-surface waters, which has 

led to the suggestion that the compounds are of biological origin and susceptible to 

photochemical decomposition (Moffett et al. 1990). Moffett and Brand (1996) found 

evidence for the production of a Cu chelator (logKcuL ~ 13) by the cyanobacterium 

Synechococcus sp. in response to Cu sttess. The suggestion was made that this compound, 

and possibly similar chelators produced by other algae and bacteria, may have an 

ecological role hi regulating the biological availability of Cu hi the water colunm. 

The auns of the work presented in this chapter were to deepen our understandmg of 

the metal biogeochemistry of the Huelva system and to find explanations for observed 

metal behaviour. The morganic equilibrium speciation of Fe, A l , Mn, Zn, Cu, N i , Co, Cd 

and U in the Rio Tinto, Rio Odiel and their estuaries was calculated. The dissolved 

speciation of Cu(II) was studied by determinfrig the electiochemically labile Cu concentia

tion. Ligand tittations were carried out in surface samples from the Gulf of Cadiz and 

Huelva Ria using adsorptive cathodic stripping voltammetry. The degree of organic 

complexation and the free cupric ion concenfration were calculated and the results used to 

esthnate the cupric ion concenfration at high metal concenfrations. 
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6.3 METHODS 

6 . 3 . 1 REAGENTS A N D EQUIPMENT 

The preparation and use of reagents for voltammetric analysis of dissolved total and 

labile Cu has been described in Chapter 2. Reagents used for the analysis of total dissolved 

Fe, A l , Mn , Zn, Cu, N i , Co, Cd and U usmg ICP methods have been hsted in Chapter 3. 

Materials of equipment used for samplmg, filtration and storage of water samples and the 

cleaning procedures applied have been described hi Chapter 3. 

6 . 3 . 2 INSTRUMENTATION 

Field instruments used for the in-situ measurement of pH, Eh, temperature, 

dissolved oxygen and conductivity have been described in Chapter 3. The histrumentation 

used for the analysis of dissolved metals usmg voitammetry has been described in Chapter 

2 and for the use of ICP-MS and ICP-AES has been described in Chapter 3. 

6 . 3 . 3 SA M P L I N G PR O T O C O L 

Samples for voltammetric speciation measurements were taken during filtration as 

sub-samples of discrete samples from estuarine transects in Huelva Ria and the Gulf of 

Cadiz during all four TOROS surveys. A summary of samples m which speciation 

measurements were carried out is given in Table 6.1 in chronological order. The sampling 

stations hi Huelva Ria are presented m Chapter 4, and locations hi the Gulf of Cadiz are 

given in Chapter 5 and Section 6.4.2.3. 
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Table 6.1 - Discrete samples taken in Huelva Ria and the Gulf of Cadiz for voltammetric speciation 
measurements. Sample locations and mode of sampling are given in Chapter 4 for the estuary and 
in Chapter 5 and Section 6.4.2.3 for the Gulf of Cadiz. Analytical treatment: ASV - analysis of 
labile' metal concentrations using anodic stripping voltammetry, AdCSV - analysis of'labile' metal 
concentrations using adsorptive cathodic stripping voltammetry, LT - titration with tropolone for 
the determination of Cu complexing organic ligand concentrations. TC - tidal cycle study. 
TOROS 1, Nov '96 Day Sample ID: TOR-96-11- Analytical Sample Treatment 

Transect Huelva Ria 20 13-17 labile Cu: AdCSV 

Transect Huelva Ria 20 25-33 labile Cu: AdCSV 

Coastal Survey 21 34-38 labile Cu: AdCSV 
Coastal Survey 24 39-43 labile Cu: AdCSV 

Transect Huelva Ria 25 44-50 labile Cu: AdCSV 

Transect Huelva Ria 25 50-64 labile Cu: AdCSV 

Coastal Survey 25 65-68 labile Cu: AdCSV 

TOROS 2, Jun '97 Day Sample ID: TOR-97-06- Analytical Sample Treatment 

TC, La Rabida 6 7-19 labile Cu: ASV 

Transect Huelva Ria 15 HRl-HR13,G47bis labile Cu: ASV 

Transect Huelva Ria 18 HRlbis-HR13bis,G47tris labile Cu: ASV 

TOROS 3, Apr '98 Day Sample ID: TOR-98-04- Analytical Sample Treatment 

TC, Club Nautico 16 C N l - CN13 labile Cu: ASV 

TC, Ma/agon 21 MZ1-MZ12 labile Cu: AdCSV, DP, some LT 

Coastal Survey 22 MZ13-MZ17 labile Cu: AdCSV, DP, some LT 
Coastal Survey 23 MZ18-MZ23 labile Cu: AdCSV, DP, some LT 

Transect Huelva Ria 24 HRI-HRIO labile Cu: ASV 

TOROS 4, Oct. '98 Day Sample ID: TOR-98-10- Analytical Sample Treatment 

. Coastal Survey 11 A l , A3, A4 labile Cu: AdCSV, some LT 
Coastal Survey 12 A5, C6, labile Cu: AdCSV 
Coastal Survey 13 E5-E7,F8-F6 labile Cu: AdCSV, some LT 
Coastal Survey 14 G6 labile Cu: AdCSV 

Transect Huelva Rfa 16 HR13-HR7,HR3-HR1 labile Cu: AdCSV, some LT 

Confluence 16 G48/96, G48/97 labile Cu: AdCSV 

TC, Mazagon 19/20 G47/MZ 1 - 13 labile Cu: AdCSV, some LT 
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6 . 3 . 4 S A M P L E T R E A T M E N T 

Samples taken for speciation studies were filtered in the same way as discrete 

samples for total dissolved metal determination (see Chapter 4). Filtered samples for the 

determination of electrochemically labile fraction of dissolved Cu were stored refrigerated, 

awaithig elecfrochemical speciation analysis, which was carried out within 48 hours of 

sample collection at a laboratory in the University.of Huelva (TOROS 1 and 3), or within 

24 hours m tiie laboratory onboard B/0 Garcia del Cid (TOROS 2 and 4). During TOROS 

3 and 4, sub-samples destmed for the determination of copper complexhig organic Hgand 

concenfrations from Huelva RIa and the Gulf of Cadiz were frozen immediately after 

filfration and were mahitained frozen during transport to the U K ushig dry ice. 

6 . 3 . 5 A N A L Y T I C A L M E T H O D S 

Theory, analytical procedures and analytical performance for the measurement of 

elecfrochemically labile Cu and the determhiation of Cu coraplexmg organic Hgand 

concenfrations have been described in detail hi Chapter 2. Table 6.1 summarises the 

analytical freatment applied to each sample. The detection wmdow of the elecfrochemical 

speciation methods has been estimated in Chapter 2, and the results are summarised as 

follows: 

• A d C S V labile Cu determination (0.2 m M Tropolone, HEPES pH 7.8): 

loga'cuTrop = 3.17 - 2.87 at S = 15 - 25 and loga'cuXrop = 2.87 - 2.64 at S = 25 - 37. 

• Cu complexing ligand tifrations (0.3 m M Tropolone, HEPES pH 7.8): 

loga'cuTrop = 3.0 - 2.95 at S = 33.5 - 36.1. 
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• A S V labile Cu determinations (HEPES pH 7.8): 

logaeu- = 0.55 - 1.06 at S = 32 - 35 and logacu- = 1.06 -1.20 at S = 35 - 36.5. 

It follows that AdCSV and A S V labile Cu concentrations are not directly 

comparable, because the analytical detection windows of the methods were different. 

6 . 3 . 6 E Q U I L I B R I U M S P E C I A T I O N M O D E L L I N G USING M I N E Q L + 

6 . 3 . 6 . 1 D i s s o l v e d I n o r g a n i c M e t a l S p e c i a t i o n 

Thermodynamic equilibrium calculations were carried out in order to explore the 

changes in inorganic speciation of dissolved metals along the pH and salinity gradient 

between the fresh water and sea water end-members in the Tinto/Odiel system. 

Calculations were carried out ushig the program MINEQL+ (version 3.01a) (Schecher and 

McAvoy, 1994). The program calculates the thermodynamic equilibrium speciation of 

constituents, using the Debye-Hiickel equation to calculate activity coefficients for ionic 

strength corrections to stability constants. Where available, the enthalpy change of 

reactions were used for temperature corrections made to stability constants. 

In natural waters tine equilibrium is often not achieved, especially when the 

reaction rates of redox and dissolved metal-ligand interactions are slow, compared to the 

rate of physical and cheniical changes in the system. In addition, biological activity has an 

impact on the inorganic chemistry in aquatic environments. Therefore, thermodynamic 

calculations do not always reflect the metal speciation that would be observed i f direct 

measurements were possible in the field. Moreover, speciation calculations are sensitive to 

the magnitude ofthe stability constants used, especially for equilibria with ligands present 

hi high concentiations (Pan and Susak, 1991). Stability constants given hi literature vary 

between autiiors by fractions of or whole log units. 
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The selection of equilibria and their logK values are of prime importance in 

determining the speciation of elements m thermodynamic calculations. Equations of the 

main equilibria considered are listed in Table 6.2. 

The stability constants provided within the MINEQL+ software (predominantly 

derived from Turner et al. 1981) were used, except for logKcuHcos = 1-8, iogKcu(co3)2 = 

10.6 (Byrne and Miller, 1985), and logKcu(OH)2 = -16.2 (Stumm and Morgan, 1996). 

For the calculations, the pH was fixed at values observed in the field: The major ion 

composition in fiesh water end-members was taken from measurements in discrete 

samples taken during all four surveys (Table 6.3). 

Thermodynamic calculations for the estuary were carried out ushig values obtained 

durhig the first TOROS survey (November 1996, Table 6.4). This survey was selected 

because the range of salmity and pH values observed in the estuary was greater, compared 

to the following surveys. Estuarine major ion concenfrations were calculated for the 

appropriate ionic stiength using an ion pairing model by van den Berg, except for sulphate, 

which was measured by Elbaz-Poulichet (see Chapter 4). Dissolved metal concenfrations 

used m the calculations were largely analysed by the autiior, and some values have been 

provided by TOROS colleagues. Calculations for fresh water endmembers were carried out 

for all four surveys: Concenfrations of a number of constituents for some surveys were 

estimated from values determined for other TOROS surveys. Details of data sources are 

given m Table 6.3 and Table 6.4. 

Following from field observations of dissolved oxygen and redox potential, fully 

oxic conditions were assumed for riverine and estuarine waters and ps was not considered 

in the model, fron was assumed to be present as Fe(III). The stability of individual species 

and oxidation states of an element under certain conditions is hidicated in Eh-pH diagrams 

(e.g. Garrels and Christ, 1965; Stiimm and Morgan, 1996). The p H values (< 4.0) and 

288 





redox potential (Eh ~ 500 mV) observed in the Rio Tinto, Rio Odiel and thehr upper 

estuary describe boundary conditions between Fe(II) and Fe(III) (Figure 7.23, Garrels and 

Christ, 1965). This is consistent with the observations made by Elbaz-Pouhchet et al. 

(2000), who reported the presence of both oxidation states m the firesh water end-member 

ofthe Rio Tinto with a ratio of Fe(ni):Fe(II) = 10. 

Under the conditions mentioned above (oxidising and acidic), species of Mn(II) are 

more stable in solution, compared to its higher oxidation states (Figures 7.28, Garrels and 

Christ, 1965). Cobalt is not stable in the trivalent form within tiie stability boundaries of 

water, unless extiemely oxidising conditions prevail at alkaline pH values (Coffey and 

Jickells, 1995; Pan and Susak, 1991). Under oxidismg conditions, uranium is stable m the 

U(VI) oxidation state, as soluble complexes of tiie uranyl ion (JJOi^, e.g. [U02(C03)3]'*' in 

sea water) (Klinkhammer and Pahner, 1991). Considermg this, in the equilibrium 

calculations, Co and M n were included in their bivalent form, and uranium was 

represented by XJOi*. 

The aim of these equilibrium calculations was to model the dissolved inorganic 

speciation hi the rivers and estuary based on the dissolved total metal concentiations found 

hi the field. Therefore, solid species were not considered. 
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Table 6.2 - Equilibrium equations for the main metal species considered in thermodynamic 
calculations witih MINEQL+. Unless stated otherwise, equilibrimn constants for these reactions 
were used as provided with the program and their values are given with the calculation results in 
the following section. 
Element Equation 
Ca, Cd, Co, Cu, Mg, Mn, Ni, Pb, Zn M2* + H20 = MOir '+Hr 
Cu M^^ + 2H2O = M(0H)2 + 2H^ 
Cd,Pb 2M^* + H2O = MjiOHf + 
Fe M^^ + H20 = M0rf* + i r 
Fe M^* + 2H2O = M(0H)2'' + 2lt 
Fe 2M^^ + 2H2O = M2(OH)2''" + 2 i r 
Fe,Al M^"" + 3H2O = M(0H)3 aq + SH" 
Fe ,Al M^* + 4H2O = M(0H)4- + 4 i r 
Fe 3M'* + 4H2O = M3(OH)4'* + 4 i r 

Cd,Zn M^"" + H2O + cr = MOHCl aq + IT 

Na M ' + C03' = MC03" 
Ca, Cd, Co", Cu, Mg, Ni , Pb, Zn M^^ + C03' = MC03aq 
Cu', Ni, Pb, Zn, UO2 M2* + 2C03- = M(C03)2^" 
Cd, UO2 M^* + 3C03' = M(C03)3''" 

Na M ' + HC03- = MHC03aq 
Ca, Cd, Co", Cu, Mg, Mn, Ni, Pb, Zn M^'" + HC03- = MHC03* 

Na M" + S04^' = MS04* 

Ca, Cd, Co, Cu, Mg, Mn, Ni , Pb, Zn, UO2 M2'' + S04^- = MS04aq 
Cd,Ni,Pb,Zn M2* + 2S042- = M(S04)2^' 
Fe,Al M^'- + S04^- = MS04* 
Fe ,Al M^* + 2S04 -̂ = M(S04)2" 

Cd M^* + P04^- = MP04-

Ca, Cu, Mg, Mn, Zn, UO2 M^* + HP04̂ " = MEDP04aq 
UO2 M^* + 2HP04^" = M(HP04)2^' 

Cd, Co, Cu, Mn, Ni , Pb, Zn, UO2 M-*+cr=Mcf 
Cd,Cu, Mn,Ni,Pb,Zn M-* + 2Cr = MCl2aq ' 
Cd, Cu, Mn, Pb, Zn M^'" + 3Cr = MCl3-
Fe M^*+cr=McP 
Fe M^^ + 2Cr = MCl2* 
Fe M^* + 3Cr = MCl3aq 
Cd,Mg,Pb,Zn,U02 M 2 * + F = M F * 
Cd, Mg, Pb, Zn, UO2 M^* + 2F" = MF2aq 
Pb, Zn, UO2 M2* + 3 F = MF3-
Fe, A l M^* + F = MF^'' 
Fe ,Al M^* + 2F = MF2* 
Fe, A l M^^ + 3F = MF3aq 
Fe, A l M^* + 4F = MF4" 
^ Added to the Mineql+ data base from (Pan and Susak, 1991), calculated from data 

presented in (Byrne etal. 1988). 
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Table 6.3 - TOROS 1-4: Metals and major ion concentrations used in equilibrium speciation 
calculations for fresh water end-members (N - Niebla, G - Gibraleon, T l - T4 - TOROS 1 - 4 
surveys). Anion and cation concentrations are given in mol 1"'. 
Sample T l 1(N) T l 2 (G) T2(N1) T2(G1) T3(N1) T3(G1) T4(N1) T4 (Gl) 

pH 2.47 2.84 2.21 3.00 2.56 3.2 2.26 2.83 

T(°C) 19 19 19.5 18 19 18 21 21 

cr 8.7E-4' 7.1E-4' l . lE-3' 5.OE-4' 8.2E-4' 1.4E-4' 8.7E-4'̂  7.1E-4'" 

F 5.0E-5^ 5.OE-52 5.OE-52 5.0E-5^ 5.0E-5^ 5.OE-52 5.0E-5^ 5.0E-5^ 
r 4.1E-5^ 3.3E-5^ 4.1E-5 '̂' 3.3E-5^" 4.1E-5̂ =' 3.3E-5 '̂' 4.1E-5̂ =' 3.3E-5^" 
Na* 1.3E-6̂ ^ 4.4E-7''̂  1.3E-6'' 4.4E-7* 1.3E-6'" 4.4E-7''̂  LSE-e"^ 4.4E-7''" 
Ca^* 1.8E-3^ 2.7E-3^ 1.8E-3^ 2.7E-3^ 1.8E-3^ 2.7E-3^ 1.8E-3^ 2.7E-3^ 
Mg^* 3.4E-3^' 3.6E-3^ 3.4E-3^ 3.6E-3^ 3.4E-3^ 3.6E-3^ 3.4E-3^ 3.6E-3^ 
so/- 2.7E-2' 1.2E-2' 8.6E-3' 5.5E-3' 2.3E-2' 6.IE-3' 2.7E-2' 1.2E-2' 
P04̂ - 1.4E-5' 7.5E-6' 8.4E-10^ 1.4E-9* 8.4E-10 '̂ 1.4E-9 '̂ 1.4E-5'' 7.5E-6'' 

003̂ - 1.2E-5' 1.2E-5' 1.2E-5'' 1.2E-5^ 1.2E-5' 1.2E-5' 1.2E-5' 1.2E-5' 
Mn̂ -̂  I.7E-4 2.0E-4 l.lE-4 7.2E-5 7.30E-5 1.9E-4 7.8E-4 4.0E-4 
Fe^* l.lE-2 9.1E-4 1.7E-3* 3.9E-5* 1.2E-3' 3.9E-5' 1.3E-2' l . l lE-3^ 

Zn'^ 6.1E-4 3.6E-4 3.0E-4 1.4E-4 3.6E-4 1.9E-4 2.6E-3 4.2E-4 

Cv?' 4.6E-4 1.4E-4 1.2E-4 5.1E-5 1.7E-4 7.2E-5 8.6E-4 7.4E-5 

Ni^* 4.7E-6 4.6E-6 1.8E-6 1.5E-6 1.2E-6 2.0E-6 1.7E-5 3.6E-6 

Co^" 9.6E-6 7.6E-6 3.7E-6 2.4E-6 6.4E-6 4.7E-6 3.9E-5 8.5E-6 
Cd^* 1.4E-6 6.0E-7 7.8E-7 4.3E-7 7.9E-7 4.2E-7 6.0E-6 6.7E-7 
Pb̂ * 3.1E-6 2.3E-7 3.1E-6 2.8E-7 5.0E-7 1.3E-6 6.3E-7 9.3E-4 

UO2'" 3.0E-8 2.5E-8 2.9E-8 1.8E-8 l.lE-8 1.8E-8 7.2E-8 2.3E-8 

' Provided by F. Elbaz-Poulichet, University of Montpellier II. 
Assumed to be similar as measured for TOROS 1 by F. Elbaz-Poulichet. 

^ Estimated from (Medio Ambiente, 1998). 
^ Provided by M . Lopez, University of Huelva. 

Assumed to be similar as measured for TOROS 1 survey by M . Lopez. 
" Measured by D. Henon, University of Plymoudi. 

Assumed to be similar as measured for TOROS 2 by D. Henon, University of Plymouth. 
' Provided by A. Cruzado, C.S.I.C. Blanes. 
'^Assumed to be similar as measured for TOROS 1 by A. Cruzado, C.S.I.C. Blanes. 
^ Provided by M . Lopez, University of Huelva. 

Assumed to be similar as measured for TOROS 2 by M . Lopez, University of Huelva. 
' Calculated from Kco2xPco2 = 10"'''^x3.5E-04 (atmospheric pressure); fixed solids: Pco2(g) = 21.66. 
* Provided byN. Morley, Southampton Oceanography Centre. 
' Assumed to be 20% higher than in the samples of the TOROS 1 survey. 
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Table 6.4 - TOROS 1: Metals and major ion concentrations used in equilibrium speciation 
calculations for fresh water end-members (N - Niebla, G - Gibraleon) and estuarine waters (TR -
Ria del Tinto , OR - Ria del Odiel, HR - Huelva Ria, S - salinity). A l l anion and cation 

Sample T l 1(N) T l 2 (G) TRS5 0RS5 TRS20 ORS20 TRS30 HR S36.5 
Salinity 0 0 5 5 20 20 30 36.5 

pH 2.47 2.84 2.43 3.21 2.54 4.3 3.09 8.2 

T(°C) 19 19 19 19 19 19 19 19 

cr 8.7E-4' 7.IE-4' 7.8E-2 7.8E-2 3.1E-1 3.1E-1 4.7E-1 5.7E-1 

F 5.0E-5^ 5.0E-5^ 5.0E-5^ 5.0E-5^ 3.OE-42 5.0E-5^ 7.4E-42 3.0E-4^ 

4.1E-5^ 3.3E-5^ 1.5E-3 1.5E-3 5.8E-3 5.8E-3 • 8.7E-3 l.lE-2 

Na* 1.3E-6'* 4.4E-7* 6.7E-2 6.7E-2 2.7E-1 2.7E-1 4.0E-1 4.9E-1 
Ca^* 1.8E-3^ 2.7E-3^ 3.3E-3 4.2E-3 5.9E-3 5.9E-3 8.8E-3 l.lE-2 

Mg^* 3.4E-3^ 3.6E-3^ l.lE-2 l.lE-2 3.0E-2 3.0E-2 4.6E-2 5.6E-2 

S04^- 2.7E-2' 1.2E-2' 5.1E-2 1.4E-2 6.2E-2 2.4E-2 5.4E-2 2.5E-2 

P04'- 1.4E-5' 7.5E-6' 2.3E-4 2.3E-6' 2.0E-4 3.0E-6"' 1.3E-4 5.5E-6'° 

COs -̂ 1.2E-5^ 1.2E-5^ 1.2E-5^ 1.2E-5^ 1.2E-5* 6.6E-5* 1.2E-5^ 1.3E-3* 

Fe^* l. lE-2 9.1E-4 1.8E-2 3.9E-4 2.8E-3 l.OE-4 1.9E-4 I.OE-7' 

Al^* 3.6E-3 2.3E-3 5.4E-3 1.7E-3 1.7E-3 6.9E-4 5.0E-4 1.3E-7 

Mn^* 1.7E-4 2.0E-4 3.1E-4 1.7E-4 l.OE-4 8.2E-5 8.3E-8 4.0E-6 

Zn^* 6.1E-4 3.6E-4 1.9E-3 2.1E-4 3.8E-4 8.8E-5 8.7E-5 1.6E-6 

Cu^* 4.6E-4 1.4E-4 7.7E-4 8.9E-5 2.1E-4 4.3E-5 4.6E-5 2.8E-6 

Ni^* 4.7E-6 4.6E-6 6.9E-6 3.2E-6 2.6E-6 1.6E-6 9.3E-7 2.1E-7 

Co^* 9.6E-6 7.6E-6 1.8E-5 5.5E-6 5.4E-6 2.6E-6 1.4E-6 2.8E-7 

Cd^* 1.4E-6 6.0E-7 3.2E-6 4.4E-7 l.OE-6 2.6E-7 3.0E-7 8.4E-8 

Pb^* 3.1E-6 2.3E-7 1.9E-7 2.9E-7 1.2E-7 6.0E-8 4.9E-8 l.OE-8 

UO2'* 3.0E-8 2.5E-8 l.lE-8 2.2E-8 2.8E-7 7.7E-9 8.3E-8 6.0E-9 

' Provided by F. Elbaz-Poulichet, University of Montpellier II. 
' Estimated from (Medio Ambiente, 1998). 
^ Provided by M . Lopez, University of Huelva. 
" Assumed to be similar as measured for TOROS 2 by D. Henon, University of Plymouth. 

Provided by A. Cruzado, C.S.LC. Blanes. 
* CalculatedfiroinKco2xPco2 = 10'''*'x3.5E-04 (atmosphericpressure); fixed solids: Pco2(g) = 21.66. 
^ Assumed to be similar as measured for TOROS 2 by A. Cruzado, C.S.LC. Blanes. 
* Alkalinity measured in samples of similar pH and salinity during TOROS 2 survey by V. Herzl, 
University of Plymouth, expressed as [COi^']. 

^ Estimated value. 
'° Estimated from values measured during TOROS 2 and 4 surveys by A. Cruzado, C.S.I.C. Blanes. 
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6 . 3 . 6 . 2 I n o r g a n i c M e t a l S p e c i a t i o n I n c l u d i n g D i s s o l v e d S o l i d s 

In order to assess the solubiHty of metals at high concentrations in the upper estuary 

and to test whether equilibrium calculations were an appropriate approach for the 

prediction of speciation hi this system, the formation of dissolved solids was permitted in 

one set of calculations. In this case, the saturation with solids formed from dissolved 

species was indicated in the modelling results by the 'solids saturation index': 

SI = l o g ^ (6.1), 

where Q is the ion activity product and Ks is the solubility constant ofthe solid at 

the specified temperature. Hereby, SI = 0 signifies the equilibrium of solid and dissolved 

phases, while SI < 0 and SI > 0 hidicate under- and over-saturation of the solution with the 

solute species, respectively. 

6 . 3 . 6 . 3 D i s s o l v e d C u S p e c i a t i o n I n c l u d i n g O r g a n i c L i g a n d s 

In order to assess the toxicity of Cu in the waters of Huelva Ria and the Gulf of 

Cadiz, the cupric ion concenfration was calculated, whereby data obtained from ligand 

tifrations (see Section 6.4.3) was used in tiiermodynamic calculations with MINEQL+. A 

bivalent Cu complexing ligand (L^") was hifroduced into the calculations, which was 

characterised by the value of the conditional stability constant of the Cu-ligand complex 

(logK'cuL)- For the calculations, major ion concenfrations were calculated according to the 

salhiity of the respective sample, and the pH values were used as measured m the field (pH 

8.3 for T4 M Z samples). 
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Values for logK'cuL were determined at pH 7.8 and at ambient temperature (ca. 

22°C) with ligand titrations. According to Byme et al. (1988) the speciation of Cu is 

influenced by the pH and temperature of the system. Compensations for temperature are 

made within Mineql+, using A H , and as this value is not available for the CuL complex, 

thermodynamic calculations were carried out at 22°C (a water temperature that occurs 

naturally in Huelva Ria durhig summer months). The adjustment of logK'cuL to pH 8.3 was 

made following the procedure suggested by Gledhill and van den Berg (1994) for iron 

speciation and applied by Achterberg et. al. (1997) for Cu. The assumptions' are made that 

one proton is exchanged for one Cu ion on the ligand L , that proton competition is 

important at the considered pH and that the effect of a single proton is predominant over 

the effects of major ions (e.g. Ca^* and Mg^"^. From these assumptions it can be esthnated 

that an mcrease in pH value by 0.5 wil l result m an mcrease of logK'cuL by 0.5. Although 

this esthnate mcreases the uncertainty m the calculations, it is probably a reasonable 

approach when considering that Cu is not strongly hydrolysed and pH and temperature 

changes have a lesser effect on its speciation when compared -with Fe or A l 0 y m e et al 

1988). This is supported by a direct relationship between p H and logK'cuiz (the conditional 

stability constant of class 2 ligands) found emphically by Anderson et al (1984). 

6.4 RESULTS 

6 . 4 . 1 INORGANIC EQUILIBRIUM SPECIATION OF Fe, Al," M n , Z n , C u , N i , 

C o , C d , Pb A N D U 

Rio Tinto and Rio Odiel 

The calculated dissolved inorganic speciation of metals at Niebla and Gibraleon is 

presented in Table 6.5. In the Rio Tuito, free hydrated ions (M""^ and aqueous metal 

sulphates ( M S O 4 aq) dominated the inorganic speciation of Mn , Zn, Cu, N i , Co, Cd and 
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Pb. The variations in metal speciation between surveys mirrored the pH values, whereby 

the fraction of free ions was higher at lower pH values in the water. Also present were 

M(S04)2^" species fox Zn, Cd and Pb, and M C f for Cd and Pb. The speciation of Fe was 

dominated by FeS04"^ and Fe(S04)2', while Fe^* and hydroxide complexes constituted' 

minor fractions. The inorganic speciation of Mn, Zn, Cu, N i , Co, Cd and Pb in the Rio 

Odiel was shnilar to that calculated for the Rio Tinto, with high proportions of free 

hydrated ions and aqueous metal sulphates. The calculation resuhs showed' higher 

proportions of metal sulphates for surveys with higher sulphate concentiations in the water. 

M(S04)2^' species for Zn, Cd and Pb, as well as C d C ^ were present. Sulphate was the 

main species calculated for dissolved Fe, and as m the Rio Tinto Fe(S04)2', hydroxide 

complexes and Fe^~ were also present. 

friitially, calculations for simplified solutions had been carried out, whereby the pH, 

temperature, major anion and cation concentiations for the Rio Tinto and Rio Odiel were 

taken from the TOROS 1 survey (Table 6.4), and the speciation of Fe, A l , Mn , Zn, Cu, N i , 

Co, Cd and Pb was calculated separately. Compared to the speciation calculated for the 

'full' solution (Table 6.5), the speciation calculations for individual metals resulted m lower 

free ionic and higher metal-sulphate fractions (e.g. Zn: 18.1% Zn^" ,̂ 10.7%> Zn(S04)2^' and 

71.2% ZnS04 aq). This can be attributed to the reduced competition for the formation of 

metal-sulphate complexes in the solution containing a lower total metal concentiation. 

Similar calculations were carried out for individual metals at S = 36.5, and the results did 

not show any important differences to the results of calculations that included all frace 

metals simultaneously. This can be explained by the dominance of sea water related 

species (metal complexes with hydroxide, chloride and carbonate) and the excess of these 

hgands witii respect to tiie combined total dissolved metal concentiation involved. 
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Table 6.5 - TOROS 1 - 4: Thermodynamic equilibrium calculations for river water using 
MINEQL+. The fraction (%) of each metal species with respect to its total dissolved metal 
concentration (Table 6.3) is given for four surveys in the Rio Tinto at Niebla (N) and Rio Odiel at 
Gibraleon (G). Empty cells: % total < 1. 

Rio Tinto Rio Odiel 

Species LogK T I N T 2 N T 3 N T 4 N T l G T2G T3G T4G 

Fe^* 0 1.9 6.8 1.2 16.3 2.2 4.3 3.2 2.2 
FeOH-* -2.35 2.5 5.1 1.9 13.4 7.0 18.4 21.4 6.2 
Fe(0H)2* -5.67 1.2 2.3 9.3 17.1 2.1 
Fe2(OH)2'* -3.15 5.7 
FeSO/ 3.86 80.7 83.2 15.1 61.3 77.1 63.9 54.3 77.5 
Fe(S04)2- 5.35 14.4 4.3 •20.9 11.3 4.1 4.0 12.0 

Mn^* 0 50.5 77.7 39.8 91.7 55.4 74.2 71.4 54.3 
MnS04 aq 2.23 49.4 22.0 60.1 8.0 44.4 25.6 28.6 45.5 

Zn^* 0 42.3 72.4 31.7 89.5 47.5 68.1 64.8 46.2 
Zn(S04)2'- 3.28 2.7 4.8 2.0 2.2 
ZnS04 aq 2.35 54.9 27.1 63.4 10.4 50.4 31.3 34.5 51.5 

Cu^* 0 46.8 75.2 36.3 90.7 51.8 71.2 68.2 50.5 
C U S O 4 aq 2.29 53.1 24.6 63.6 9.2 48.2 28.7 31.8 49.4 

Ni^* 0 48.2 76.2 37.6 91.1 53.2 72.4 69.4 52 
NiS04 aq 2.27 51.7 23.6 62.2 8.7 46.7 27.5 30.5 47.9 

Co^* 0 35.3 65.4 26.1 85.8 39.9 60.3 56.8 38.6 
C0SO4 2.5 64.6 34.4 73.8 14 60.0 39.6 43.1 61.3 

Cd^* 0 35.7 63.4 26.2 82.4 40.7 61.3 59 39.5 
c d c r 1.97 2.9 6.5 2 5.6 2.7 2.9 2.6 
Cd(S04)2'- 3.5 3.8 6.6 2.9 1.1 3.2 
CdS04 aq 2.44 57.6 29.5 65.1 11.9 53.7 35.1 39.1 54.8 

Pb^* 0 22.8 50.4 15.9 75.9 26.6 45.5 42.2 25.5 
PbCF 1.53 1.9 1.9 
PbS04 aq 2.75 74.3 47.2 79.9 22.1 71 53.1 56.9 72.0 
Pb(S04)2-- 3.47 2.3 3.7 1.8 1.9 
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Ria del Tinto 

For the Ria del Tinto the equilibrium calculations were carried out with values from 

the November 1996 survey (TOROS 1, Table 6.4). Results for the dissolved speciation of 

Fe, Mn, Zn, Cu, N i , Co, Cd, Pb and U02 '̂*' are given in Table 6.6. The hiorganic speciation 

of Mn, Zn, Cu, N i , Co, Cd and Pb at S = 0 was dommated by aqueous sulphates (49 -

74%) and free hydrated ions (23 - 51%). The bivalent metals Fe and A l occurred mahily as 

M S O / and M(S04)2', witii mmor free ion concenfrations (1.9% Fe^* and 10.9% A l ^ " ^ . At 

low salinity (S = 5), the fraction of free hydrated ions hicreased initially for Fe, Mn, Zn, 

Cu, N i , Co and Pb. Further increases in salinity resulted in progressive complexation of 

these metals by chloride, forming mainly M C p and MCt and otiier chloro species of Fe, 

N i , Cd and Pb. In the lower Ria del Tinto a large fraction of A l was complexed with 

fluoride (53% AIF3 aq), and FeF "̂̂  was hnportant m tiie speciation of Fe (15%). 

The speciation of uranyl in the Rio Tinto was dominated by sulphate (61.6% 

U O 2 S O 4 aq and 10.3% U02(S04)2^') and tiie free ion hi solution (24.8% U02^^. The 

combined proportion of these three species decreased to less tiian 5% hi the estuary of the 

Rio Tmto, where between 87% (S = 5) and 98.3% (S = 30) of tiie total uranyl 

concenfration was present as U02(HP04)2^'. 
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Table 6.6 - TOROS 1: Thermodynamic equilibrium calculations using MINEQL+ for the Rio Tinto 
(Tl 1 (N)) and three points in die Ria del Tinto at S = 5 (metal maximum), S = 20 (mid estuaiy) 
and S = 30 (lower estuary). Metal concentrations are given in Table 6.4. Empty cells: % total < 1. 

T11(N) TRS5 TRS20 TRS30 

Name LogK %Total LogK %Total LogK %Total LogK %Total 

Fe^* 0 1.9 0 12.3 0 11.2 0 8.9 
FeOtf* -2.35 2.5 -2.85 4.6 -2.93 4.6 -2.94 12.6 
FeOHz* -5.67 - - - -6.56 3.7 
Fe2(OH)2'* -3.15 - -3.15 2.8 - -
FeCl2* 2.13 - - 0.68 5.2 • 0.64 8.7 
FeGp 1.4 - 0.63 4.1 0.52 11.6 0.50 13.4 
FeF^* 6.2 - - - 5.27 15.1 
FeF2* 10.8 - - - 9.24 1.3 
FeSO/ 3.86 80.7 2.34 61.3 2.12 51.6 2.07 29.4 
Fe(S04)2- 5.35 14.4 3.32 13.5 3.02 14.7 2.97 6.3 

Al^* 0 10.9 0 50.3 0 41.6 0 4.4 
AlF^* 7.01 - - 6.14 15.9 6.12 53.1 
AIF2* 12.8 - - - 11.0 34.0 
AIF3 aq 17.0 - - - 15.2 5.4 
AISO4'" 2.99 61.4 1.24 32.3 1.24 24.9 1.20 1.9 
A1(S04)2- 4.88 27.6 2.55 17.4 2.55 17.3 2.49 1.1 

Mn^* 0 50.5 0 67.9 0 56.9 0 55.0 
MnCr 0.61 - 0.10 6.6 0.03 18.8 0.01 26.5 
MnCl2 aq 0.04 - - - -0.85 1.7 
MnS04 aq 2.23 49.4 1.21 25.4 1.06 23.3 1.04 16.4 

Zn^* 0 42.3 0 60.8 0 52.3 0 54.5 
ZnCls" 0.36 - - - -0.54 1.6 
z n c r 0.31 - - -0=27 8.8 -0.28 13.3 
ZnClj aq 0.32 - - -0.55 1.4 -0.57 3.2 
Zn(S04)2'- 3.28 2.7 2.26 5.9 2.12 8.5 2.09 5.1 
ZnS04 aq 2.35 54.9 1.33 30.1 1.19 28.4 1.16 21.6 

Cu^* 0 46.8 0 67.5 0 60.6 0 62.0 
CuClz aq 016 - - - -0.89 1.8 
CuCf 0.3 -0.21 3.2 -0.28 9.9 -0.30 14.7 
C U S O 4 aq 2.29 53.1 1.28 29.3 1.13 28.8 1.10 21.5 

Ni^* 0 48.2 0 67.6 0 56.4 0 53.1 
NiCl* 0.4 - -0.11 4.0 -0.18 11.6 -0.20 15.9 
NiCl2 aq 0.96 - - 0.09 6.7 0.07 13.7 
NiS04 aq 2.27 51.7 1.25 27.7 1.10 25.3 L08 17.4 

Co^* 0 35.3 0 56.3 0 49.4 0 51.6 
CoCf 0.5 - -0.01 4.3 -0.08 12.8 -0.10 19.5 
C0SO4 2.5 64.6 1.48 39.4 1.34 37.9 1.31 28.9 
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Table 6.6 - continued. 

T l 1 (N) TR S5 TR S20 TR S30 
Name LogK %Total LogK %Total LogK %Total LogK %TotaI 

Cd^* 0 35.7 0 22.6 0 6.5 0 3.8 
CdCf 1.97 2.9 1.46 50.6 1.39 49.5 1.38 42.2 
CdCV 2.34 - 1.58 0.0 1.47 5.8 1.45 11.0 
CdClj aq 2.58 - 1.82 8.8 1.71 32.2 1.69 40.7 
Cd(S04)2'- 3.5 3.8 2.48 3.6 2.34 1.8 
CdS04 aq 2.44 57.6 1.43 13.9 1.28 4.4 1.25 1.9 

Pb'* 0 22.8 0 30.5 0 15.5 0 11.4 
PbCl2 aq 1.78 - 1.02 1.9 0.91 12.3 0.89 19.5 
Pbcr 1.53 - 1.03 24.9 0.95 43.4 0.94 46.3 
PbCls" 1.67 - - 0.79 2.9 0.77 7.0 
PbCL,'- 1.33 - - - 0.73 3.0 
PbS04 aq 2.75 74.3 1.73 38.0 1.59 21.1 1.56 11.3 
Pb(S04)2'- 3.47 2.3 2.45 4.6 2.31 3.9 2.28 1.6 

UO2'* 0 24.8 0 4.3 0 3.1 . 

UO2HPO4 aq 20.9 1.2 19.1 1.1 -
U02(HP04)2'- 43.2 1.7 40.6 87.5 40.2 89.3 40.2 98.3 
UO2SO4 aq 2.63 61.6 1.61 4.0 1.47 3.1 _ 

U02(S04)2-' 4.09 10,3 3.07 2.6 2.93 3.1 
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Riadel Odiel and Huelva Ria 

For the Rio Odiel and its estuary (TOROS 1, Table 6.4), the results from 

thermodynamic equilibrium calculations of dissolved Fe, A l , M n , Zi i , Cu, N i , Co, Cd, Pb 

and U are given in Table 6.7. The inorganic speciation of Mn , Zn, Cu, N i , Co, Cd and Pb 

at S = 0 -was similar to that in the Rio Tinto, dominated by aqueous sulphates (44 - 71%) 

and free hydrated ions (27 - 55%), while Fe occurred mainly as F e S O / and Fe(S04)2' (77 

and 11%, respectively). At low salhiity (S = 5), the fraction of free hydrated ions increased 

initially for Fe, A1-, Mn, Zn, Cu, N i , Co and Pb. Further increases in salinity resulted in 

progressive complexation of metals by chloride (important for Cd, Pb and Mn), carbonate 

(important for Cu, N i , Pb and Zn) and/or hydroxide (Fe and Al) . 

A t sea water salinity, the inorganic speciation of M n and Co was similar to that at S 

= 5 (M""^, M C r and MSO4 aq), while important fransformations had taken place for Fe and 

A l (M(0H)4" and M ( 0 H ) 3 aq), Zn (Zn^^ ZnOHCl aq, ZnCOs aq, Zn(C03)2^" and ZnS04 

aq), Cu and Pb ( M C O 3 aq and M(C03)2^'), N i (NiC03.aq) and Cd (CdCl2 aq, C d C f and 

CdCls"). Similar to results for the Rio Tinto the dissolved speciation of mranyl in the Rio 

Odiel was dommated by sulphates (57.2% UO2SO4 aq and 7.83% U02(S04)2^") and the 

free ion in solution (28.1% U02^'^. At low sahnity (S = 5), the free ionic fraction became 

more important (56.3% U02^'^, and at S = 20 uranyl was almost entfrely complexed by 

phosphate (93.4% U02(HP04)2^')- Under near sea water conditions dissolved uranyl was 

complexed by carbonate (95.6% ^ 2 ( 0 0 3 ) 3 ' ' " ) . 
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Table 6.7 - TOROS 1: Thermodynamic equilibrium calculations using MINEQL+ for the Rio Odiel 
(Tl 2 (G)) and three points in the Ria del Odiel and Huelva Ria at S = 5 (metal maximum), S = 20 
(lower Ria del Odiel) and S = 36.5 (lower estuary). Metal concentrations are given in Table 6.4. 
Empty cells: % total < 1. 

T12(G) 0RS5 ORS20 HRS36.5 

Name LogK %Total LogK %TotaI LogK %Total LogK %Total 

Fe^* 0 2.2 0 12.4 _ 

FeOH'* -2.35 7.0 -2.81 30.9 -2.94 16.5 -
FeOHs* -5.67 2.3 -6.37 13.9 -6.56 80.0 -6.56 11.5 
Fe2(OH)2'* -3.15 - -3.15 2.2 -
Fe(0H)3 aq -13.6 - - - -14.49 21.4 
Fe(0H)4- -21.6 - - - -22.19 67.1 
FeCP 1.4 - 0.69 4.8 - -
FeS04* 3.86 77.1 2.46 31.8 2.07 1.3 -
Fe(S04)2- 5.35 11.3 3.48 3.0 - -

Al^* 0 13.7 0 68.4 0 73.8 -
AlOH'* -10.1 - - -5.75 2.6 -
A1(0H)3 aq -16 - - - -16.9 12.8 
A1(0H)4- -23.7 - - - -24.2 87.1 
AISO4* 2.99 63.0 1.59 25.1 1.24 18.1 -
A1(S04)2- 4.88 23.2 3.01 6.3 2.55 5.1 -

Mn'* 0 55.4 0 77.9 0 55.0 0 53.5 
M n C f 0.61 - 0.14 8.4 0.01 21.8 0.02 31.6 
MnCl2 aq 0.04 - - - -0.85 2.5 
MnS04 aq 2.23 44.4 1.29 13.6 1.04 10.8 1.04 11.3 

Zn'* 0 47.5 0 76.5 0 69.1 0 26.0 
ZnOHCl aq -7.48 - - - -8.07 19.9 
ZnOH" -9.16 - - - -9.46 1.4 
Zn(0H)2 aq -16.9 - - - -17.19 4.2 
ZnHCOj* 12.4- - - - 11.22 1.1 
ZnCU" 0.36 - - - -0.53 1.4 
ZnCl* 0.31 - -0.15 4.2 -0.28 11.6 -0.28 7.8 
ZnCl2 aq • 0.32 - - -0.57 1.9 -0.56 2.3 
ZnCOs aq 5.3 - - - 4.12 14.1 
Zn(C03)2'- 9.63 - - - 8.45 12.6 
Zn(S04)2'- 3.28 2.0 2.34 1.3 2.09 1.8 2.10 1.2 
ZnS04 aq 2.35 50.4 1.41 17.7 1.16 14.8 1.17 7.2 

Cu'* 0 51.8 0 79.6 0 73.4 0 4.6 
CuOH" -8 - - - -8.30 3.7 
Cu(0H)2 aq -16.24 - - -16.54 3.4 
CuCl* 0.3 - -0.17 4.2 -0.30 11.9 -0.29 1.4 
CUCO3 aq 6.73 - - - 5.55 68.1 
Cu(C03)2'- 10.51 - - - 9.33 17.1 
CUSO4 aq 2.29 48.2 1.36 16.1 1.10 13.8 1.11 1.1 
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Table 6.7 - continued. 

T12(G) 0RS5 ORS20 HRS36.5 
Name LogK %Total LogK %Total LogK %Total LogK %Total 

N i ' * 0 53.2 0 78.8 0 53.1 0 4.2 
N i c r 0.4 - -0.07 5.2 -0.20 15.9 -0.19 1.5 
NiClz aq 0.96 - - 0.07 13.7 0.07 1.6 
Ni(C03)2'- 10.11 - - - 8.93 6.2 
NiCOs aq 6.87 - - - 5.69 85.2 
NiS04 aq 2.27 46.7 1.33 15.1 1.08 17.4 -

Co'* 0 39.9 0 70.8 0 51.6 0 52.3 
CoOH* -9.2 - - - -9.50 2.6. 
CoCl* 0.5 - 0.03 5.9 -0.10 19.5 -0.09 24.2 
C0SO4 aq 2.5 60.0 1.56 23.2 1.31 28.9 1.32 20.6 

Cd'* 0 40.7 0 23.4 0 3.8 0 2.6 
CdOHCl aq -7.47 - - - -8.06 2.1 
CdCI* 1.97 2.7 1.50 58.0 1.38 42.2 1.38 36.0 
CdCV 2.34 - - 1.45 11.0 1.45 13.9 
CdClz aq 2.58 - 1.88 10.7 1.69 40.7 1.69 42.4 
CdCOs aq 5.4 - - - 4.22 1.8 
Cd(S04)2'- 3.5 2.9 - - -
CdS04 aq 2.44 53.7 1.51 6.7 1.25 1.9 -

Pb'* 0 26.6 0 38.5 0 11.4 0 1.5 
PbOH" -7.71 - - - -8.01 2.4 
PbCl'aq 1.78 - 1.08 2.8 0.89 19.5 0.90 3.9 
PbCl* 1.53 - 1.07 35.0 0.94 46.3 0.94 7.6 
PbClj- 1.67 - - 0.77 7.0 0.78 1.7 
PbCl4'- 1.33 - - 0.73 3.0 -
PbCOj aq 7.24 - - - 6.06 72.6 
Pb(C03)2'- 10.64 - - - 9.46 7.6 
PbS04 aq 2.75 7.1.0 1.81 22.5 1.56 11.3 1.57 1.1 
Pb(S04)2'- 3.47 1.8 2.53 1.1 2.28 1.6 -

UO2'* 0 28.1 0 56.3 0 3.3 
U 0 2 c r 0.2 - -0.26 2.4 - _ 

U02(C03)3'- 21.5 - - - 21.5 95.6 
U02(C03)2'- 17 - - - 15.8 4.2 
U O 2 H P O 4 aq 20.9 2.1 19.2 1.2 _ 

U02(HP04)2'- 43.2 4.5 40.8 5.9 40.2 93.4 _ 

UO2SO4 aq 2.63 57.2 1.7 26.7 1.47 1.3 _ 

U02(S04)2-' 4.09 7.8 3.16 7.2 _ 
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6 . 4 . 2 COPPER SPECIATION STUDIES 

6 . 4 . 2 . 1 H u e l v a R ia T r a n s e c t s 

Total dissolved and labile concentrations of Cu were analysed in discrete samples 

from Huelva RJa during all four surveys. The results are given in Table 6.8, together with 

the percent fraction of the labile Cu concenfrations with respect to the total. The widest 

range of salmity and pH was covered m November (S = 14 - 36.9 and pH 6.29 - 8.61), and 

the lowest in October (S = 36.1 - 36.6 and pH 7.76 - 8.01). High water temperatures were 

observed m June (22.2 - 25.2°C, day fransect) and lower ones m April (16.3 - 20.5°C, day 

fransect) and October (18.4 - 21.0°C, night fransect). The DOC concenfrations m Huelva 

Ria were shnilar during the surveys (mean: 0.20, 0.29 and 0.25 m M for June, April and 

October, respectively), with a slightiy higher maxhnimi encountered in October (0.38 m M 

DOC), compared to June and April (0.30 and 0.33 m M DOC, respectively). 

In November 1996, the total dissolved metal concenfrations observed were 0.18 -

7.7 p M Cu. The proportion of AdCSV-labile Cu in Huelva RIa was high (64 - 100%, 

median 97%), witii the exception of one sample in the lower estuary (36%). Overall, the 

labile fraction decreased with increasing pH and decreasing total Cu concenfration. 

In Jime 1997, total dissolved Cu concenfrations in Huelva Ria were lower (0.19 -

3.1 j i M Cu), compared to November 1996. Concenfrations were lower still hi April 1998 

(TOROS 3, 170 - 820 n M Cu) and October 1998 (TOROS 4, 30 - 520 n M Cu). However, 

when comparing Cu concenfrations at equal salinity or pH between the surveys, total Cu 

concenfrations were highest in June. The A S V labile Cu fraction in was 52 - 100% (median 

74%) and 46 - 92% (median 70%) of the total dissolved concenfration hi June and April, 

respectively, and AdCSV labile Cu was between 28 and 64% (median 55%) hi October. 
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Table 6.8 - Total dissolved and ASV or AdCSV labile Cu concentrations in Huelva Ria. TOR-yy-
mm: Sample label, D: distance from Mazagon, CUL: labile dissolved Cu concentration, Cuj: Total 
dissolved concentration, CUL %: proportion of labile dissolved fraction in percent (values > 100% 
resulted from the mean numerical value of CUL > Cup within the error of the measurement, and can 
be interpreted as fully labile). Errors: SPM and DOC < 12%, metal determinations < 10%. Blank 
cells: no reliable data. The term 'labile' was defined in Chapter 2, Section 2.4. 
TOR-96-11 D 

km 
S pH CUL 

pM 
CUT 
pM 

CUL 
% 

29 19.1 35.4 6.56 6.1 '6.0 101 
51 18.4 14.0 6.29 6.0 6.0 100 
50 17.7 26.9 6.42 6.1 6.6 93 
30 17.6 35.3 6.90 5.2 6.2 84 
49 16.1 30.1 6.40 5.6 5.9 96 
54 14.7 32.1 6.42 7.5 7.7 97 
45 12.4 16.6 6.12 6.4 6.0 107 
56 12.2 31.9 6.47 3.9 3.6 107 
57 11.7 33.2 6.69 3.1 2.9 106 
58 10.6 33.4 6.77 2.2 2.1 101 
59 9.5 33.1 6.92 1.5 1.5 100 
60 8.8 32.9 7.18 0.73 0.84 87 
61 7.5 34.4 7.51 0.40 0.56 72 
62 5.0 34.4 7.99 0.17 0.27 64 
63 4.0 34.5 8.18 0.08 0.21 36 
64 1.7 35.1 8.19 0.15 0.18 86 

TOR-97-06 D S pH T DOC CUL CUT CUL 
km °C mM pM pM % 

H R l 20.3 34.2 6.99 25.2 0.25 1.6 3.1 52 
HR2 19.7 33.6 7.08 0.25 1.8 2.2 79 
HR3 18.5 34.8 7.08 24.3 0.30 1.9 2.3 82 
HR4 16.6 34.9 7.43 24.4 0.17 1.4 1.9 73 
HR5 15.0 34.9 7.41 22.4 0.18 1.5 2.5 61 
HR6 13.7 34.0 7.10 25.0 0.23 1.8 3.1 58 
HR7 12.7 34.9 7.22 23.8 0.20 3.1 
HR8 11.2 35.3 7.51 22.9 0.14 1.1 1.4 77 
HR9 9.8 34.9 7.48 23.3 0.18 1.1 1.8 61 
HRIO 7.6 34.9 -7.40 24.8 0.22 2.3 2.2 103 
H R U 5.7 35.0 7,57 23.6 0.17 1.3 1.7 76 
HR12 4.0 34.5 7.59 24.2 0.20 1.2 1.6 72 
HR13 1.5 36.0 7.88 22.2 0.09 0.19 
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Table 6.8 - continued. 

TOR-98-04 D S pH T DOCmM CUL CUT CUL 
km °C pM pM % 

HRIO 18.5 34.0 7.93 20.5 0.24 0.49 0.68 72 
HR9 17.3 34.3 7.88 20.3 0.29 0.41 0.56 74 
HR8 15.9 34.8 7.82 19.4 0.29 0.46 0.64 71 
HR7 13.6 34.5 7.90 19.7 0.33 0.38 0.82 46 
HR6 12.4 34.6 8.02 19.4 0.30 0.39 0.63 62 
HR5 10.5 35.7 7.98 19.6 0.29 0.25 0.59 43 
HR4 8.7 34.9 8.07 18.9 0.27 0.32 0.45 71 
HR3 6.6 34.9 7.94 18.0 0.31 0.24 0.35 68 
HR2 3.9 35.1 8.11 17.6 0.29 0.19 . 0.44 44 
H R l 1.5 37.0 8.15 16.3 0.27 0.15 0.17 92 

TOR-98-10 D S pH T DOCmM CUL CUT CUL 
km °C pM pM % 

H R l 20.4 36.6 7.82 20.9 0.38 0.26 0.51 50 
HR2 19.7 36.6 7.84 21.0 0.35 0.24 0.52 46 
HR3 18.8 36.6 7.82 20.9 0.35 0.14 0.50 28 
D48-a 15.3 36.1 0.19 0.32 59 
D48-b 15.2 36.2 0.19 0.31 61 
HR7 12.2 36.2 7.81 19.8 0.27 0.18 0.35 53 
HR8 11.3 36.2 7.79 19.2 0.24 0.19 0.36 53 
HR9 9.8 36.2 7.76 18.9 0.23 0.17 0.29 60 
HRIO 7.8 36.1 18.5 0.20 0.09 0.16 57 
H R l l 5.9 36.1 18.2 0.19 0.06 0.10 64 
HR12 4.1 36.1 8.01 18.4 0.17 0.03 0.05 58 
HR13 1.5 36.1 7.99 18.7 0.15 0.02 0.03 53 

305 



6 . 4 . 2 . 2 T i d a l C y c l e S t u d i e s 

The total and labile concentrations of Cu determined in discrete samples taken 

during tidal cycle studies (TCs) are presented as time series in Figure 6.1: Club Nautico at 

the confluence of Ria del Thito with Huelva Ria (TOROS 3), Figure 6.2: mouth of the 

estuary (TOROS 3) and Figure 6.3: four kilometres outside the estuary in the Gulf of Cadiz 

(TOROS 4). The locations of these TCs are given in Chapter 4, Figure 4.9. 

At the confluence (Club Nautico, Figure 6.1), low water was marked by distmct 

minima of salinity (32.7) and p H (7.35) and maxhna of total and labile Cu concentrations 

(1.63 and 1.13 [iM, respectively). The mean DOC concentration (data not shown) durhig 

the TC was 250 f iM C, with a maxhnum of 353 p M C occurring shortly after low water 

and values between 200 and 260 joM C during the remainder of the survey time. 

Little variation in salioity (35.02 - 36.69, Cruzado and Velasquez, 1999) and pH 

(8.19 - 8.33) was observed durmg the T C at the mouth of tihe estuary (Figure 6.2). DOC 

varied between 128 and 177 p M C, witih the lowest concentration near high water. This 

was also the case for total and labile Cu (91.2 and 63.4 n M , respectively) concentrations. 

Dissolved metal peaks coincided with tihe lowest pH and salinity values at the beginning of 

the TC (CUT = 338 nM) and near low water (CUT = 229 nM). 

During tihe coastal TC (Figure 6.3) the salinity (36.2 - 36.3) remamed almost 

constant and little variation was observed for DOC (147 - 181 | i M C). Maxima of total 

dissolved and labile Cu (68.5 and 50.4 n M , respectively) occurred approximately one hour 

ahead of low water and metal minima were observed near high water (CUT = 10.7 nM). 
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GMT 

Figure 6.1 - TOROS 3: Salinity, pH, DOC and total dissolved and labile Cu concentrations in 
discrete samples taken during a tidal cycle study firom a jetty off Club Nautico near the confluence 
of the two estuarine branches (location CN see Chapter 4, Figure 4.9). CUT and CUL - total 
dissolved and labile Cu concentration, respectively, % L - labile Cu fraction in percent of the total. 
Low water at Mazagon was at 11:49 h GMT and high water at 18:09h GMT. 
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Figure 6.2 - TOROS 3: Salinity, pH, COC and total dissolved and labile Cu concentrations in 
discrete samples taken during a tidal cycle onboard Ciny Tres anchored in the mouth of the estuary 
(location T3 M Z see Chapter 4, Figure 4.9). Salinity from (Cruzado and Velasquez,1999). CUT and 
CUb - total dissolved and labile Cu concentration, respectively, % L - labile Cu fraction in percent 
of the total. High water at Mazagon was at 11:51 h GMT and low water at 17:58h GMT. 
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Figure 6.3 - TOROS 4: Salinity, DOC and total dissolved and labile Cu concentrations in discrete 
samples taken during a tidal cycle onboard B/0 Garcia del Cid anchored in the mouth of the 
estuary (location T4 MZ see Chapter 4, Figure 4.9). Cux and CUL - total dissolved and labile Cu 
concentration, respectively, % L - labile Cu fraction in percent of the total. Low water at Mazagon 
was at 21:52 h GMT and high water at 3:59h GMT. 
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6 . 4 . 2 . 3 C o p p e r S p e c i a t i o n i n t h e G u l f o f C a d i z 

In the Gulf of Cadiz, an important fraction of dissolved Cu was present hi an 

electrochemically non-labile form (Figure 6.4 and Figure 6.5). Total Cu concenfrations 

decreased with increasing distance from the influence of the estuarine discharge (Chapter 

5), from a maxhnum of 70 - 340 n M Cu at Mazagon (all surveys) to values below 4 n M Cu 

offshore in the Gulf of Cadiz. During surveys with vessels allowing sampling at 5 m depth 

(TOROS 1 and 3), elevated frace metal concenfrations have been observed close hishore to 

the east of Mazagon (Chapter 5). 

hi November 1996 (TOROS 1, Figure 6.4 A) , the labile Cu fraction m mshore 

samples was between 43 and 97%, while offshore samples had lower proportions of labile 

Cu (12 - 65%). The labile Cu fraction m April (12 - 79%, Figure'6.4 B) was highest at 

Mazagon and to the south of Huelva Ria. In October, the proportion of labile Cu (29 -

88%, Figure 6.5) exhibited no distuict pattern m the Gulf of Cadiz. 

Dissolved organic carbon concenttations between 123 and 343 JJM C were 

observed in coastal waters in April 1998. 
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Figure 6.4 - TOROS 1 and 3: Total and AdCSV labile dissolved Cu concentration in the Gulf of 
Cadiz, A: November 1996, B: April 1998. The open and closed circles indicate the magnitude of 
the total and labile concentration, respectively (see legends). The numbers next to the sample 
stations show the size of the labile fraction in percent of the total. 
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Figure 6.5 - TOROS 4: Total and AdCSV labile dissolved Cu concentrations in the Gulf of Cadiz, 
October 1998. The open .and closed circles indicate the magnitude of the total and labile 
concentration, respectively (see legend). The numbers next to the sample stations show the size of 
the labile fraction in percent ofthe total. 
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6 . 4 . 3 L I G A N D T ITRATIONS 

Ligand titrations carried out, in samples from Huelva Ria and at the mouth of the 

estuary showed saturation of the tifrated Ugands with Cu, while samples from the Gulf of 

Cadiz had a buffering capacity for added Cu. Examples of the tifration results and data 

fransformation for exfreme cases are illusfrated in Figure 6.6. hi the case of ligand 

saturation, the current response increased linearly with the added Cu (Figure 6.6, A) . A 

capacity to complex Cu was uidicated by a fransition from a shallow slope of the current 

response (ip) at the beginnhig of the tifration to a steeper slope towards the saturation point 

(Figure 6.6, C). The ligands were frilly tifrated when the calculated (from the sensitivity) 

current response and the titiation graph had equal slopes (Figure 6.6, A and C, dashed and 

sohd Ihies, respectively), which was achieved for all samples. Data fransfonnation 

(Chapter 2) yielded linear relationships of the form CUL /CUL = mCuL + b for all samples, 

mdicating that only one class of Cu complexing organic ligands was detected by the 

method appUed (CUL and CUT are the labile and total Cu concenfrations, respectively, and 

the non-labile Cu concentiation is CuL = CUT - CUL). The mtercept (b) was small (< 10% 

of maximum Cui/CuL value) compared to the uncertauity of the method (Chapter 2). 

Titiations were carried out to determine the concentiation of Cu complexhig 

organic Hgands and thefr stability constants in Huelva Ria and the Gulf of Cadiz, and tiie 

results are given in Table 6.9 together with sample salhiity, pH {in-situ), DOC, total 

dissolved, labile and free ionic Cu concenfrations (expressed ad pCu^"^ = -log[Cu^'^). 

Ranges of total Cu and ligand concenfrations at each sample location are hidicated m 

Figure 6.7. The samples used for ligand titiations had near to sea water salinities (35.8 -

36.3) and pH values (7.76 - 8.36). DOC concenfrations were between 123 joM C in the 

Gulf of Cadiz and 230 j iM C hi tiie estiiary. 
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Table 6.9 - Results from ligand titrations carried out with [Tropolone] = 
and CUL - total dissolved and AdCSV labile Cu concentration; CL 
forming Cu complexes with the conditional stability constant logK 'cuL; 

= 0.3mMandpH = 7.8.CuT 
- concentration of ligands 
pCu'* = -10g[Cu'*], l O g O c u L 

Location S pH 
f i e l d 

DOC 
pM 

CUT 
nM 

CUL 
nM 

pCu'* CL 
nM 

logK 'cuL l o g O C c u L 

Estuary 

T4HR9 36.2 7.76 230 254 70 8.4 199 11.5 1.7 

Mazagon 

T 3 M Z 4 36.1 8.23 128 87 45 8.6 48 11.2 1.3 

T 3 M Z 7 36.4 8.21 162 152 61 8.4 95 11.5 1.4 

T3MZ10 35.9 8.33 157 200 82 8.3 126 11.3 1.4 

T 4 M Z 3 36.2 - 159 46 17 9.0 32 11.6 1.5 

T 4 M Z 7 36.2 - 153 9.1 2.6 11.2 12 11.7 3.2 

Gulf of Cadiz 

T3MZ16 35.8 8.36 162 93 25 9.0 80 11.6 2.0 

T3MZ21 36.0 8.30 123 37 1.6 11.1 38 12.6 3.7 

T4A1 36.3 - - 3.6 0.5 12.7 5.3 12.3 3.5 

T4E5 36.2 - - 4.7 1.6 11.7 8.0 11.8 3.3 

T4F7 36.1 - - 7.2 3.2 11.3 10 11.7 3.2 

87-200 {48-126} 

93 {80} 
- 37.0 -

O 

A 
CL not saturated 
CL saturated 

\ - 36.5 -

- 36.0 -

B 

-7.00 -6.50 

7.2 {10} a 

4.7 {8.0}O 

254 {199} 
— 9.1-46 {12-32} 

3.6 {6.3} O 

-7.00 -6.50 

Figure 6.7 - Locations of samples taken for ligand titrations during TOROS 3 (A) and TOROS 4 
(B). Numbers indicate ranges of total dissolved Cu and strong ligand concentrations {bold} in nM. 
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Dissolved Cu concentrations and the concentration of ligands that form Cu 

complexes with a stability constant of logK'cuL = 11-2 ^ 12.6 (in the following called 

'strong ligands' for short) were high m the estuary (T4 H R 9: CUT = 254 n M , CL = 199 nM) 

and decreased with the Cu concentration towards the outer Gulf of Cadiz (T4 A l : CUT = 

3.6 n M , CL = 13 nM). The stability constants of the determined CiiL complexes ranged 

between logK'cuL = 11.3 and 12.6. The stability ofthe complexes of Cu with L (as 

expressed with the a-coefficient) ranged from logocuL = 1-3 to 3.7. The free Ugand 

concenfration requfred for the calculation of logOcuL (see Chapter 2, Equation 2.14) was 

calculated according to the method described in (van den Berg and Donat, 1992), using 

mass balances for the metal and ligand concenfrations. The distmction between total and 

free ligand concenfration was hnportant because the hgand concenfrations was 

approximately equal or lower than CUT in all tifrated samples. Samples in which CUT > CL 

had lower a-coefficients ( logacuL < 2) and higher free hydrated ion concenfrations (pCu^* 

< 9), compared to samples in which CUT < CL ( logacuL > 3 and pCu^"^ > 11). In the latter 

group, 25% - 42% of the ligand L was not complexed with Cu. The concenttation of the 

free ligand (L' in %) was calculated ushig MINEQL+ and also foUowmg tiie method 

suggested in (van den Berg and Donat, 1992), whereby results from both methods agreed. 

6 . 5 DISCUSSION 

6 . 5 . 1 D ISSOLVED INORGANIC M E T A L SPECIATION 

The high proportion of free hydrated ions and metal sulphates calculated for the 

fresh water end-members is hidicative of a typical A M D system dominated by low pH and 

high sulphate concenttations. In the estuarme mixing zone of the Ria del Tinto, the fron 

speciation remained dominated by sulphate up to S = 20, although chloro complexes and 

Fê "̂  gained in hnportance with increasing salinity (Table 6.6). Discharges from phospho-
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gypsum deposits in the lower RIa del Tmto (Chapter 4) resulted m elevated fluoride 

concentrations (350 - 740 [M, Medio Ambiente, 1998).. As a result, A l and Fe formed 

complexes with F in the high salinity (S = 30), low pH (3.09), region of the lower Ria del 

Tinto. No such complexes were formed at near-sea water pH values in Huelva Ria. Iron 

hydroxide species remamed below 5% of the total at S < 20, and no hydroxide species of 

A l were formed accordmg to the equihbrium calculations. This may partially explam the 

absence of colloidal material hi the Ria del Tinto mixing zone and that removal of trace 

metals from solution with coagulathig fron floes is not an important process in this area of 

the estuary (Chapter 4). 

h i tiie Ria del Odiel, the formation of Fe hydroxides (30.9% FeOH^"" and 13.9% 

FeOH2* at S = 5, 80% FeOH2'*' at S = 20) may have been mduced by the higher p H values 

and the lower sulphate concenfration, compared to the Rfa del Tmto. Under sea water 

conditions (S = 36.5, pH = 8.2), the dissolved equilibrium speciation of Fe and A l was 

dommated by MOH4" (67% and 87.1%, respectively. Table 6.7). The predommant 

complexation of bivalent metals by hydroxide (M(0H)2, M(0H)3 and M(0H)4) has been 

shown to be typical for sea water solutions (Chapman et al. 1996; Tumer et al. 1981; 

Dyrssen and Wedborg, 1980). Floes formed from Fe, A l or M n hydroxides have a high 

capacity for the scavengmg metals and other cations. The equilibrium calculations 

suggested that in the Tinto/Odiel system conditions for floe formation were met only at 

near-sea water p H and salinity. Under such conditions the loss of Zn, Cu, N i and Co from 

solution was observed hi Huelva RIa (Chapter 4), mdicathig that tiie co-removal of these 

metals with Fe or A l hydroxide flocs may have been an important process. 

The inorganic speciation of dissolved Mn, Zn, Cu, N i , Co, Cd and Pb were similar 

m tiie Ria del Tinto at S < 30 and Ria del Odiel at S < 20 and reflected tiie influence of low 

pH and high sulphate concenfrations of A M D affected waters. With hicreashig salmity the 
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fraction of aqueous metal sulphates decreased hi favour of chloro complexes, which were 

especially hnportant for Cd and Pb. fri comparison to the fresh water, the free ionic fraction 

hicreased in the estuary for Fe, A l , Mn, Zn, Cu, N i and Co, and m parallel the proportions 

of metal sulphates decreased. The reduced complexation of these metals in the estuary was 

caused by competition from the increasing concenfrations of major sea water cations (e.g. 

Ca, M g and Na), which were increasingly complexed by sulphate. 

At higher p H and alkalinity (expressed as COs^') the complexation of dissolved Cu, 

N i , Pb and Zn by carbonate became hnportant m Huelva Ria. Cadmium remahied largely 

complexed by chloride (> 90%) and tiie speciation of M n and Co did not change greatiy 

between the low pH/low salinity envfronment and sea water conditions. This behaviour 

was expected, because pH has a greater uifluence on the speciation of metals which are 

predominantiy complexed witii carbonate, compared to weakly complexed metals (e.g. M n 

and Co) (Byme et al. 1988). The speciation of uranyl m the estuary was characterised by 

the fransition from tiie cation HOi* and aqueous sulphate to the anion U02(HP04)2̂ ". 

The calculated speciation of Fe, A l , Mn, Zn, Cu, N i , Co, Cd, Pb and U02̂ * at S = 

36.5 agreed largely witii the expected sea water speciation of these metals (Stumm and 

Morgan, 1996; Pan and Susak, 1991; Byme et al. 1988; Bruland, 1983a; Tumer et al. 

1981), although metal concentiations in Huelva Ria were higher by several orders of 

magnitude. Discrepancies from literature values, for example the large predicted carbonate 

associations with Zn, N i and Pb in Huelva Ria, have been tiie result of the use of different 

stability constants for the calculations. 

Thermodynamic calculations allowing dissolved solids to form in the fresh water 

end-member of the Rio Tinto at Niebla for TOROS 1 concentrations (Table 6.4) resulted in 

the formation of dissolved haematite and jurbanite sohds (100% Fe as Fe203; 39% A l as 

A I O H S O 4 at pH = 2.47). The negative saturation mdices indicated that tiie solution had not 
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reached saturation with respect to these solids. There was no predicted formation of solids 

for Zn, Cu, Pb and Mn, and hence the dissolved speciation of these metals remained 

largely as those shown in Table 6.6. hi subsequent calculations the salinity and major ion 

concentrations were adjusted to S = 5 and pH = 3.42, S = 20 and p H = 2.54, and S = 30 and 

p H = 3.09 (values see Table 6.4). The speciation of Fe changed firom 100% haematite (S = 

0) to 100% FeOH^* (S = 30). The speciation of A l changed ftom 2.7% A l ^ ^ 31% A I S O / , 

28% A1(S04)2' and 39% jurbanite (S = 0) to 27% Al^* , 18% A1S04'', 14% A1(S04)2" and 

39% diaspore (A10(0H) (S = 5) to 46% A l ^ ^ 31% A1S04'' and 23% A1(S04)2' at S = 30. 

Thus equilibrium calculations suggest the formation of dissolved Fe and A l solids m the 

estuary. The negative saturation hidices of these solids was consistent with field 

observations, which did not hidicate the removal of Fe and A l from solution in this salinity 

range (Chapter 4). For Mn , Zn, Cu, N i , Co, Cd and Pb the consideration of dissolved solids 

hi the equilibrium calculations did not influence the composition of tiie predicted dissolved 

speciation and no solids were formed. This leads to the conclusion that equilibrium 

calculations may be a reasonable approach to mvestigate the dissolved hiorganic speciation 

of Mn , Zn, Cu, N i , Co, Cd and Pb at low pH in the Thito/Odiel system. In the case of Fe 

and A l , the difference between mclusion and exclusion of solids hi the calculation indicates 

non-equilibrium m the dissolved phase (e.g. slow reaction rates and biological activity). 

The equihbrium calculations of hiorganic metal speciation have shown that m the 

absence of organic ligands a large proportion of dissolved Zn, Mn , Cu, Co and N i will be 

present in thefr most toxic, the free ionic, form in regions of the estuary which are 

biologically highly productive (lower Ria del Thito, Huelva RIa). However, the dissolved 

organic matter and chlorophyll observed in the estuary (Chapter 4) implied the possible 

presence of metal complexing organic Hgands hi tiie water. The complexation of ttace 

metals by organic ligands reduces the concenttation of free hydrated metals and weakly 
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complexed species (e.g. hydroxo and cMoro complexes) in solution, thus reducing their 

biological availability and toxicity. 

6 . 5 . 2 D ISSOLVED COPPER SPECIATION IN H U E L V A R I A 

A clear trend in the speciation of dissolved Cu was detected hi Huelva Ria in 

November 1996, when a wide range of pH, salhiity and dissolved Cu concentrations was 

observed in samples collected along two transects. In the upper Huelva Ria nearly all 

dissolved Cu was present hi electrochemically labile forms, while non-labile Cu species 

gained in importance towards the mouth of the estuary (Table 6.8) and with increasmg 

distance from Huelva Ria in the Gulf of Cadiz (Figure 6.4 A) . 

Dissolved Cu concenfrations between 5.9 and 7.7 p M were observed at S = 14 -

36.9 m the upper Huelva Ria. The high proportion of labile Cu hi this area ofthe estuary 

suggests that the Cu concenfration in the water greatly exceeded the capacity of organic 

matter to form sfrong (non-labile to the applied method) complexes with Cu. This was 

supported with results from ligand tifrations carried out hi samples from the TOROS 3 and 

4, which showed that hi Huelva Ria the total Cu concenfration (CUT) was higher than the 

concenttation of sfrong ligands (CL). Once sfrong Cu complexing ligands were saturated, 

any additional Cu resulted in tiie uicrease of elecfrochemically labile species only, and as a 

result the labile Cu concenfration was largely determined by the magnitude of CUT. A t 

lower Cu levels hi coastal waters (CUT < 40 nM), CL exceeded CUT and as a result an 

hnportant fraction of dissolved Cu became non-labile. 
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Figure 6.8 - Relationship between labile and total Cu concentrations (A - E) and non-labile and 
total Cu concentrations (F - G). Least squares regression was calculated for speciation data from all 
surveys and included estuarine transects, tidal cycles and coastal samples. (A) and (F): complete 
concentration range, (B) and (G): CUT < 30 nM, (C) and (H): CUT = 30 - 200 nM, (D) and (I): CUT = 
200 nM - 1 pM, (E) and (J): CUT =1-7 \iM. Linear relationships are statistically significant at 1% 
confidence level for (A) - (E) and (G). (F) is statistically significant, but this may be the result of 
the wide concentration range covered. 
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The dhnmishmg hnportance of the labile Cu fraction at CUT < 1 in the middle 

reaches of Huelva Ria in November indicates that the labile Cu concenfration (CUL) and CL 

were within the same order of magnitude. This may also have been the case durhig the 

following surveys, when important non-labile Cu concenfrations were observed in Huelva 

Ri'a at CUT < 2 fiM (Table 6.8). Estuarine Hgand concenfrations detemuned for the surveys 

m April and October 1998 (CL ~ 100 - 2 0 0 nM, Table 6.9), support this argument. 

The fransition from predommantly labile Cu in the estuary to more non-labile Cu in 

coastal waters is also evident m Figure 6.8. A sfrong Ihiear relationship between labile and 

total dissolved Cu concenfrations is evident in Figure 6.8 (A), whereby the full range of 

concentiations m all samples used for speciation studies was included. The relationship 

between labile and total Cu was weaker at lower tiian at higher Cu concenfrations. This is 

illusfrated m Figure 6.8 (B) - (E), for which tiie data was split into several concenfration 

ranges. The slope of tiie least squares regression of CUL versus CUT shows a decrease in the 

average labile fraction from 8 3 % (CUT = 1 - 7 pM) m Huelva Ria to 51% (CUT < 3 0 nM) m 

tiie Gulf of Cadiz. 

A statistically significant relationship between non-labile and total dissolved Cu 

was found at low Cu concentiations (CUT < 3 0 nM, Figure 6.8, G) only. This supports the 

suggestion that hi coastal waters the non-labile Cu concenfration was partially determined 

by the total dissolved Cu concentiation, while m tiie Huelva Ria CUL increased linearly 

with CUT above the point of ligand saturation. 

6 . 5 . 3 DIFFERENCES IN C U SPECIATION BETWEEN SURVEYS 

In comparison to the clear frend observed during the first survey (November), the 

speciation data was more scattered (with respect to the labile fraction, and labile and total 

Cu concenfrations) durhig the foUowmg surveys. Estuaries are naturally highly dynamic 
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ehviromnents, in which physical and chemical parameters may change more rapidly than 

the thne needed to establish chemical eqmlibrium. hi Huelva Ria, riverine, industrial and 

municipal discharges, exchange with polluted sediments and primary productivity are 

additional sources of variation for pH, temperature, DOC, S P M and dissolved metal 

concentrations (Chapter 4). Therefore, disequilibrium at the time of sampling may have 

added uncertainty to the measurement of labile Cu, especially because changes in the 

chemical equilibrium may have taken place during the'logistically necessary delay between 

collection and processmg of discrete samples. 

A higher proportion of Cu was complexed by strong ligands m Huelva Ria in June 

1997, April and October 1998, compared to November 1996 (Table 6.8). As discussed 

previously, A S V and AdCSV labile Cu concentrations are not directly comparable and 

therefore the differences hi the labile fraction may have been partially an artefact of the 

analytical methods used. Compared to the A S V method, the detection wmdow of the 

AdCSV method (used in November and October) is such that Cu complexes with 

somewhat higher stability constants may be mcluded m labile measurements. The different 

detection windows may have contributed to the lower labile fraction observed hi Apri l and 

June (ASV), compared to November. However, differences in the speciation results for the 

upper Huelva Ria were observed between November (CUT > 6 pM Cu) and October (CUT < 

260 nM Cu, both AdCSV), while the speciation of Cu at concenfrations below 200 n M in 

samples from the November and October surveys were similar. This mdicates that the total 

concenfration was a cmcial factor hifluencing the speciation of C u i n this system. 

Lower total dissolved Cu concenfrations were encoimtered during the fransects in 

June, April and October (maxhnum 2.3 j iM, 490 n M and 260 n M Cu, respectively) 

compared to November (maximum 7.7 [M Cu). A plot of CUT (Figure 6.9) versus salinity 

(A) and pH (B) iUusfrates that similar Cu concenfrations were encountered at equal salinity 
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or equal pH during all surveys. The differences hi CUT were predominantly the result of the 

salmity and pH ranges covered durhig the surveys, rather than the magnitude of riverine 

metal discharge. Figure 6.9 (C - F) clarifies this by showing the autumn/winter and 

spring/summer surveys separately. As suggested, at CUT < 1 [iM the concentrations of 

strong hgands and total dissolved Cu were in the same order of magnitude. As a result, the 

complexation of Cu with strong ligands was noticeable m the diminished labile Cu 

fractions measured. 

h i June, CUT and CUL were higher at equal salinity, compared to concenfrations in 

April (Figure 6.9, E) and higher at equal pH, compared to concenfrations in November 

(Figure 6.9, B) (significant difference of means in both cases at 1% confidence level), hi 

addition. Figure 6.9 (G) shows that a lower proportion of Cu was labile at equal total 

concenfrations in June, compared to November, although the riverine metal input to the 

estuary in June was the lowest of all surveys (Chapter 4). 

Any seasonal influence on Cu speciation caimot be assessed from speciation results 

only, as these were not dfrectiy comparable (see Section 6.3.5). However, chlorophyll 

measurements carried out by the research partners from C.S.LC. during all TOROS 

surveys (Cruzado et al. 1999; Cruzado and Velasquez, 1999; Cruzado et al 1998) 

indicate a possible link between the level of primary productivity and the proportion of 

non-labile Cu in Huelva Ria. Chlorophyll levels in the estuary were higher in June 1997 

(total chlorophyll maxhnum C M T = 55.8 \ig \-\ April 1998 ( C MT = 45.6 |ig 1'̂ ), and 

October 1998 (CWT = 53.8 pg T^), when higher non-labile Cu fractions were observed, 

compared to November ( C U T = 12.4 pg \ ' \ when Cu was mostly labile. The chlorophyll 

maxima in Huelva Ria occurred in the vicinity of the fertiliser factories in the upper 

estuary and around the confluence with the nutiient-rich Ria del Tinto. 
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Figure 6.9 - TOROS 1 - 4: Results from Cu speciation studies for all four surveys (Tl : November 
1996, T2: June 1997, T3: April 1998, T4: October 1998). A and B: Total and labile dissolved Cu 
for all surveys plotted vs. salinity and pH, respectively; C and D: Total and labile Cu concentration 
during autumn/winter surveys; E and F: Total and labile Cu concentration during spring/summer 
surveys; G: Labile Cu fraction versus total Cu concentration for all surveys. Open symbols refer to 
the ASV (T2 and T3) or AdCSV (Tl and T4) labile dissolved Cu fraction, closed symbols to total 
dissolved Cu concentrations. 
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Marine algae and cyanobacteria are known to produce organic compounds capable 

of complexing Cu (Gledbill et al. 1997; Sunda and Huntsman, 1995; Sunda and Huntsman, 

1991; Coale and Bruland, 1988), and therefore may contribute hnportantly to the pool of 

Cu complexing sttong hgands in times of high primary productivity. Moffet et al (1990) 

observed that the complexation of Cu in Sargasso Sea was greatest at maximimi 

chlorophyll concentrations. Gordon et al (1996) showed that the concentration of copper 

complexing hgands isolated from estuarine water (immobihsed metal affinity 

chromatography) varied seasonally with picoplankton abundance. In other cases, however, 

no clear relationship between plankton, metal and ligand concentiations was observed 

(Plavsic et al 1990). 

The evidence suggests that the speciation of dissolved Cu m Huelva Ria was 

mfluenced by a combmation of total Cu concentiation, stiong hgand concentiation and pH. 

The degree of complexation and total dissolved Cu concentiation may be interdependent. It 

has been suggested that the complexation of Cu by steong ligands reduces the rate of Cu 

removal firom solution by competition with adsorption onto particles, and thus maintams 

higher dissolved Cu concentiations than in the absence of organic ligands (van den Berg et 

al 1990 and 1987; Plavsic et al 1982). Lackmg data fiom ligand titiations for June 1997, 

it can only be assumed that the high total dissolved Cu concentiations observed during this 

survey may have been linked to a seasonally elevated concentiation of Cu complexing 

organic ligands during the summer. 

6 . 5 . 4 CO M P A R I S O N WITH C U SPECIATION IN O T H E R C O A S T A L SYSTEMS 

The degree of Cu complexation with natural organic ligands was lower in the Gulf 

of Cadiz (< 88%, Figure 6.4 and Figure 6.5) and Huelva Ria (0 - 64%, Table 6.8), 

compared to results fiom most Cu speciation studies reported hi literature for marine, 
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coastal and estuarine waters (> 90%). More than 99% Cu was calculated to be organically 

complexed using data from hgand titrations (ASV) ofthe north Pacific Ocean (Coale and 

Bruland, 1990). In estuarine and shelf waters (Cuj = 5 - 3 8 nM), Sunda and Huntsman 

(1991) found > 99% organically complexed (chemiluminescence and hgand competition 

witii EDTA), while m tiie frish Sea, tiiis fraction was > 95% Cu (CUT = 7 - 27 nM, 

AdCSV) (Nimmo et al. 1989; van den Berg, 1984b). Shnilar observations were made by 

Apte et al. (1990) hi the Humber estuary: Van den Berg and Donat (1992) carried out 

hgand tifrations spaniung a wide range of competition sfrengflis usmg AdCSV. They found 

that Cu was fiiUy complexed by dissolved organic material in sea water and argued that a 

minimum of two different competition sfrengths have to be used in ligand determinations 

to fiiUy characterise the Cu complexation. 

In apparent confradiction to tiiis, Cu in South San Francisco Bay was found to be 

only to 80 - 92% organically complexed (Cui = 45 -48 nM, A S V , AdCSV) (Donat et al 

1994). However, the given explanation is in Ime with van den Berg and Donat (1992), 

suggesting a two-ligand model for organic complexation of Cu, whereby the stionger 

ligand (Li) was present at concentiations below that of Cu. As a result ca. 27% and 65% 

Cu was complexed by L i and L2, respectively. Accordhig to the autiiors, the saturation of 

L i and the predommant complexation of Cu with weaker hgands La resulted hi a more 

labile organic Cu pool and an overall reduction of the degree of organic complexation. In 

the Tamar estuary less tiian 50% Cu was complexed by organic ligands (van den Berg et 

al 1990), and this was partially atfributed to the high competition sfrength used for the 

ligand tifrations (AdCSV with oxine, acuAL = 8.35 at S = 34), which was shnilar to tiie 

determined OCUL at all salinities. Only very sfrong CuL complexes were detected with this 

method, and at CUT = 16 - 300 n M it was likely, that a proportion of dissolved Cu was 

complexed by weaker ligands, which remained undetected. 
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Only one class of ligands was detected in liie Gulf of Cadiz, but this does not 

preclude the existence of ligands with a-coefficients outside the detection window of the 

ligand titration method. Very weak ligands (logK'cuL « 11) would not have been detected 

in the titrations, while during labile measurements Cu complexes with such ligands would 

have dissociated and the released Cu measured as labile Cu. Further experiments would be 

required to estabhsh whether or not a weaker class of ligands exists at sufficient 

concentrations to influence the Cu speciation in this way. 

In Huelva RIa and its plmne, the non-labile Cu fraction (0 - 64%) was lower than 

outside the estuary's influence in the Gulf of Cadiz (45 - 88%). This can be explained by 

the complete saturation of all organic hgand classes in Huelva Ria and subsequent 

complexation of additional Cu by inorganic ligands. In this sense, the Huelva system 

differs from other metal-rich estuaries (e.g. the Tamar estuary), because the reduction of 

the non-labile (organic) fraction of Cu to less than 1% was caused by the extieme metal 

concenfrations in the system, rather than artefacts ofthe method. 

6 . 5 . 5 COPPER C O M P L E X A T I O N BY S T R O N G L IGANDS 

The results from hgand tifrations have a level of uncertainty attached to them. 

Limitations steimning from the operational character of this speciation method and sources 

of errors resultiing frorn the sample preservation have been discussed hi Chapter 2 and hi 

earlier sections of this Chapter. In addition, the saturation of L by Cu m some samples 

resulted in an excess of free Cu in the sample, which increased with the added Cu during 

the tifration. Tifrations were carried out at one analytical competition sfrength only, and 

only one class of hgands was detected. As the presence of at least two classes of ligands in 

natural estuarine and coastal waters has been commonly reported, it is possible that excess 

free Cu may have been complexed by undetected hgands. In this case the calculated cupric 
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ion concentration would be an overestimation. Further uncertainty was introduced because 

the a-coefficient of the CuL complex was below the lower limit of detection (detection 

wmdow - 10^- l O l assuming approximately one decade on either side of a c u A L , van den 

Berg and Donat, 1992) in samples with ligand saturation. 

Notwithstanding the discussed limitations, it is the extreme gradient of physical and 

chemical parameters, Cu and ligand concentrations between Huelva Ria and the outer Gulf 

of Cadiz, that allows tihe interpretation of results from tihe hgand tifrations. 

The conditional stability constants of the detected ligand class were logK'cuL =11.2 

- 11.7 hi estuarhie samples and logK'cuL = 11.6 - 12.6 hi coastal samples. These values 

were intermittent between the sttong and weak organic ligand classes often reported in 

literature (logK'cuLi > 12 and logK'cuu < H , respectively) (Mofifett, 1995; van den Berg 

and Donat, 1992; Coale and Bruland, 1988; Sunda and Hanson, 1987). The relatively 

narrow range of stability constants and thefr magnitude are the result of the competition 

sttength selected for the method, which placed the detection wmdow at approxhnately 

loga'cuTrop = 3.0 ± 1.0. It may also indicate a common origin of the organic hgands 

detected in the system. 

The range of ligand concentiations determmed m tihe Gulf of Cadiz (CL = 5.3 - 80 

nM, CUT = 3.6 - 93 nM) and Huelva Ria (CL = 87 - 254 n M , CUT = 48 - 200 nM) were 

similar to those found in other coastal and estuarine envfronments affected by a similar 

degree of metal pollution (Table 6.10). 
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Table 6.10 - Concentrations and stability constants of Cu complexing strong ligands determined by 
different methods in estuarine and marine waters, nr - not reported; na - not applicable; CLj -
strong Cu complexing ligand; CL2 - less strong Cu complexing ligand. 
Location log pH CUT C L I CL2 logK'cuLi logK'cuLZ 

acuAL nM nM 

NE Pacific' na m 0.582 > 1.21 6.53 >10.7 8.58 
CN1519' 3.12 8.35 3.2 21 - 12.2 -
CN1519' 4.85 8.35 3.2 4.0 - 14.2 -
CN1519' 6.36 8.35 3.2 1.2 - 15.6 -
Sta2^ nr 7.7 1.2 3.7 - 11.9 -
Sch9* nr 7.7 10.7 16 - 13.4 -
Sch6* nr 7.7 152 203 - 13.0 -
N B ' na 8.0 27 50 100 12.4 10.1 
Peru^ na 8.2 3.7 3.8 75 12.3 9.2 
Tamar* 2.48 7.7 30-110 140 - 500 - 9.1 - 10.1 -
Humber' see' 8.0 11-123 20-410 - >10 -
' Surface water m tiie NE Pacific, ASV (Coale and Bruland, 1988). 
' North Sea, AdCSV ligand competition witii 0.324 mM Tropolone, 0.83 pM (a) and 4.71 pM (b) 

Oxine (van den Berg and Donat, 1992). 
^ Pacific Ocean, AdCSV ligand competition witii 0.2 mM benzoylaceton (Mofifett, 1995). 
" Scheldt estuary, AdCSV ligand competition with 0.2 mM catechol (van den Berg et al. 1987). 
^ Narragansett Bay (1) and Peruvian coast, SEP-PAK C-18 with cupric ion calibration (Sunda and 
Hanson, 1987). 
* Tamar estuary, various salinities, AdCSV ligand competition with 25 pM catechol, logK'cuL 
estunated from graph, acuAL given for sea water salinity (van den Berg et al. 1986; van den Berg, 
1984). 
' Humber estuary, various salinities, AdCSV ligand competition with 1.0 - 2500 pM catechol, 
corresponding to log OCUAL = 1-7 - 7.2 (Apte et al 1990). 
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Ligand concentrations of several hundred ILM are not uncommon in estuaries (Apte 

et al. 1990; Sunda and Hanson, 1987; van den Berg et al. 1987; van den Berg, 1984a), 

while in coastal and marine waters much lower ligand concentrations have been reported, 

especially for ligand class L i with logK'cuLi ^ H (Moffett, 1995; van den Berg and Donat, 

1992; Coale and Bruland, 1988; Sunda and Hanson, 1987). A shnilar trend to that found hi 

the Huelva system was observed hi the Hum.ber estuary, where the total ligand 

concentrations (logK'cuL > 10) decreased from over 250 n M (S < 5) to less than 50 n M (S > 

30) (Apte era/. 1990). 

The concentration of strong ligands m the Gulf of Cadiz was similar or just above 

the level of Cu in solution, and shnilar observations have been made for class 1 hgands in 

other estuarhie and coastal environments (Moffett, 1995; van den Berg and Donat, 1992; 

Sunda and Hanson, 1987). 

The highest concentrations have been reported for class 2 hgands (logK'cuL2 < 11), 

which have not been found saturated with Cu (Hirose, 1994 and references therehi). In 

Huelva Ria, where hgand concentrations were high, conditional stability constants were 

somewhat lower, compared to those m the Gulf of Cadiz. Saturation of class 1 Ugands 

(logK'cuLi > 12) has been observed previously, however, in such cases a complexing 

capacity for Cu was available in class 2 hgands (Table 6.10). The complete saturation of 

all detected ligands hi Huelva Ria appears to be a rare case, and this is because of the high 

level of metal pollution in this system. The presence and available complexhig capacity of 

a weaker Ugand class (logK'cuL < 10) would be an interesting area of further investigation. 
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6 . 5 . 6 ESTIMATION OF C U COMPLEXATION IN UPPER H U E L V A R I A 

The concentration of strong ligands was higher m the estuary, compared to coastal 

waters (Figure 6.7, Table 6.9). However, the strong relationship between labile and total 

Cu at CUT > 1 M M (Figure 6.8, E) indicates that there was an upper limit to the 

concentration of stiong Cu complexing ligands. In order to project the Cu speciation to Cu 

concentrations above the linear range of the analytical speciation method, equilibrium 

calculations that included a strong hgand L ^ * (logK'cuL = 11-7, CL = 500 nM) were carried 

out with Mineql+. For this, the major ion concentiations were taken for S = 36.5 (Table 

6.4), the pH was fixed at 8.3 and the Cu concentiation was altered between CUT = 200nM 

and 6.0 pM m 50 steps. The value of logK'cuL was corrected to pH 8.3 as described in 

Section 6.3.6.3 (logK'cuL = 12.2 at pH 8.3). The results ofthe calculations (Figure 6.10, A) 

show that at CUT < CL additional Cu was predominantly complexed by the ligand L . 

Beyond the saturation pomt of L (at CUT ^ CL) additional Cu was complexed by inorganic 

ligands, whereby the electrochemically labile Cu(0H)2 aq (logK'cuom ~ -17.6 at pH = 8.3 

and S = 36.5) became the dominant species. Donat et al. (1994) came to similar 

conclusions when modelling the Cu speciation for water from South San Francisco Bay. 

For Huelva Ria, the concenfrations of Cu(0H)2 aq, CuCOs and Cu^"^ were predicted to be 

5.3 j iM, 130 n M and 13 n M , respectively, at the end ofthe titiation (CUT = 6 pM). 

Specific to the November survey were mildly acid pH values in samples of high 

salinity (Table 6.8). Figure 6.10 (B) shows the results of thermodynamic calculations 

carried out as described for Figure 6.10 (A), but with additional titiation of pH (changed 

from 8.3 to 6.0) and according change of logK'cuL (changed from 12.2 - 9.9, see above) m 

50 steps. 
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OE+00 1E-06 2E-06 3E-06 4E-06 5E-06 6E-06 
Total Cu (M) 

Figure .6.10 - Equilibrium calculation (Mineql+) of the Cu speciation in Huelva Ria imder 
incorporation of a Cu complexing divalent ligand QJ', CL = 500 nM, log KCUL = 11.7 at pH 7.8). 
( A ) - Cu titration with CUT = 200 nM - 6.0 ]M (50 steps), the y-axis was expanded and Cu(0H)2 aq 
continued to a concentration of 5.3 pM in linear relationship with CUT; (B) - Cu titration as for ( A ) 
and additional pH titration with pH ^ 8.3 - 6.0 and logK'CuL = 12.2 - 9.9 in 50 steps (see text). 
Species with concentrations below 10'̂  M are not shown. 
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As a result of the decreasing pH value, ligand saturation occurred at CUT = 792 n M 

(pH 8.01), compared to CUT = 555 n M (pH 8.3) in example (A). The concentration of 

Cu(0H)2 aq hicreased initially and after ligand saturation reached a peak at aroimd pH 7.4. 

Further decreases in pH values resulted in a decline of Cu(0H)2 aq concentrations, 

whereby Cu^*, C u C f and CUSO4 aq reached 3.5 pM, 1.2 p M and 480 n M , respectively. A 

maxhnum in CuCOs was attained at pH 7 (520 nM), which declined to 114 n M at tihe end 

of the modelled titration. 

The comparison of the two scenarios illustrates the importance of p H for the 

speciation of Cu. A t pH values below 7 and extreme ligand saturation, parallels to the Cu 

speciation in the absence of L can be found (Section 6.5.1, c.f. results for S = 30 hi Ria del 

Tmto). Thermodynamic calculations showed that below ligand saturation the complexation 

of Cu by the hgand L mahitains low cupric ion concentrations (pCu^^ > 12 ) at pH 8.3. 

Witih shghtiiy lower pH values (8.01) in scenario B , values of pCu^"^ < 9 were reached 

below ligand saturation. The implications for the toxicity of Cu in the system are discussed 

in Section 6.5.7. 

6 . 5 . 7 B IOLOGICAL L INK WITH C U SPECIATION 

Followmg from tihe close relationship between the concenfrations of dissolved Cu 

and Cu complexing organic ligands in sea water, Moffett (1995) suggested a regulatory 

dependence between CUT and CL . Phytoplankton and cyanobacteria take up cupric ions as 

essential nutrient, and produce and release Cu complexing chelators with high stability 

constants (logK'cuL ~ 13, Moffett and Brand, 1996; Moffett et al. 1990). Upon photo-

degradation and decay of the chelates the cupric ions are released back into solution. 

Experiments have shown that m this way, some estuarine and marine plankton species may 

partake in the regulation of free cupric ion concenfrations m near-surface waters (Gledhill 

334 





et al. 1997 and references therein; Moffett, 1995; Sunda and Huntsman,. 1995; Coale and 

Bruland, 1988). Other potential sources of organic ligands in estuarine systems include 

decaying organisms, uiflux of humic material, sewage effluent and industrial discharges. 

In the absence of organic ligands the speciation of Cu would be solely hiorganic, 

resulting in an equilibrium concentration of free Cu^* in the region of 0.1 - 2 n M (pCû "*" = 

10 - 8.7) in coastal waters (Moffett er al. 1997). Such concenttations would be toxic to a 

variety of aquatic organisms, however, to different degrees (Table 6.11). For example, the 

reproductive rates of most cyanobacteria are reduced at pCu^"^ < 12, while eucaryotic algae 

show generally normal growth at pCu^"^ > 11 (Brand et al. 1986, reported in Coale and 

Bruland, 1988). As a result, eucaryotic algae may have a competitive advantage over 

cyanobacteria in waters with high cupric ion concentiations. 

The complexation of Cu witii natural organic ligands reduces the cupric ion 

concenttation to fafrly constant levels of around pCu^"^ ~ 14 - 13 in near-surface marine 

waters (Sunda and Huntsman, 1995; Coale ^ d Bruland, 1990). It has been suggested tiiat 

the ubiquitous marine cyanobacterium Synechococcus produces exfracellular chelators in 

response to Cu sfress as a detoxification mechanism (Moffett and Brand, 1996), thus 

decreasing the toxic species of Cu to a tolerable level. Other species of picoplankton have 

been shown to produce Cu chelators with lower stability constants (by 2 - 3 log units), 

compared to class I ligands (Moffett et al. 1990 and references therein; Gledhill et al. 

1997 and references therehi). 

The cupric ion concenttation determined from ligand tifrations ranged between 

pCu^* = 12.7 -11.3 m tiie Gulf of Cadiz, pCu^"" = 11.2 - 9.0 m tiie Huelva Ri'a plume and 

up to pCu^* = 8.3 m Huelva Ria. 
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Table 6.11 - Effect of cupric ion activity on marine algae. No effect - above this pCu * no effect 

Organism Effects No effect Sub-lethal 
studied pCu'* pCu'* 

Gonyaulax tamarensis^ motility, carbon uptake >11 <9.7 
Nannochloris atomus^ 50% growth inhibition <9.3 

Thalassiosira pseudonanc^ 100% growth inhibition <8.4 
T. pseudonanct 50% growth inhibition <9.3 
Skeletonema costatun^ growth inhibition >8.5 

Synechococcus^ growth inhibition <11.4 
' Dinoflagellate (Anderson and Morel, 1978). 
' Green algae, data from Sunda and Guillard (1976) reported in Anderson and Morel (1978). 
^ Diatom, estuarine strain, data from Sunda and Guillard (1976) reported in Anderson and Morel 
(1978). 

Diatom, open ocean strain (Anderson and Morel, 1978). 
^ Diatom, data from Morel et al (1978) reported in Anderson and Morel (1978). 
* Cyanobacterium, data from Brand et al (1986) reported in Moffett (1995). 
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A shift in the phytoplankton community structure in the Huelva system, compared 

to other estuarine environments was evident from work carried out by Velasquez (Cruzado 

et al. 1998). In Jmie 1997, no marine or estuarine diatoms species were identified in the 

upper Ria del Tinto, and in the mid- and lower Ria del Tinto, only tolerant species were 

fr)und (e.g. Skeletonema costatum, cf. Table 6.11). This species became more abundant in 

Huelva Ria. Less tolerant species (Thalassiosira sp.) were identified in the lower part of 

the estuary, possibly washed in from coastal regions. Most abundant were chlorophyceae, 

cryptophyceae and nanoflagellates hi the most polluted part of the upper estuary. The 

diversity of plankton species and their abundance hicreased with dimmishing metal 

concenfrations in the lower Huelva RIa. 

The existence of Skeletonema costatum m waters containing cupric concenfrations 

with reported sub-lethal effects (Table 6.11) suggests that a process of adaptation has 

increased the tolerance of some organisms to the contamination in the Huelva system. The 

bioaccumulation and development of tolerance to otherwise toxic levels of Zn, Cu and Pb 

hi halophytes (e.g. Zostera noltii, Spartina ssp.) of the Odiel salt marshes (Luque, et al. 

1999) shows that this process is not restricted to planktonic primary producers. 

Adverse effects on plankton species and community structure have been observed 

in other systems with elevated Cu concentiations. Coinciding with a 1000-fold increase hi 

the cupric ion concenfration, the cell density of cyanobacteria decreased 20-f6ld and 

growth ceased hi Eel Pond and Falmouth Inner Harbour (Cape Cod), compared to coastal 

concenfrations (Moffett et al. 1997). The sharp increase in cupric ion concenttation was 

attributed to the saturation of class 1 ligands by anthropogenic Cu (~ 30 - 55 riM). Changes 

in ecosystem diversity and development of tolerance to increased levels of Cu have been 

observed in higher plants (e.g. macroalgae) and animals (e.g. crustaceans) In other metal 
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contaminated systems (He et al. 1998; Bryan and Langston, 1992; Bryan and Gibbs, 1983; 

Bryan era/. 1980). 

No detailed ecological study has been pubUshed for the Huelva system. However, 

from the limited Cu speciation data available from the presented work, it can be concluded 

that the long-term contamination of the estuary with AMD-related frace metals had a 

profound hnpact on the species diversity and community structure in this system. The 

development of tolerance to Cu and other metals present at elevated concenfrations in the 

local biota has important implications for the accmnulation of metals in the food chahi, 

which could pose a health risk to the hmnan population. 

6.6 CONCLUSIONS 

Thermodynamic calculations have shown that the inorganic speciation of Fe, A l , 

Mn , Zn, Cu, N i , Co, Cd and U m tiie Rio Thito and Rio Odiel was sfrongly influenced by 

the sulphate-domfriated, low pH envfronment typical for A M D affected waters. During 

estuaruie mixing, the p H value remahied low in the Ria del Tinto and was gradually 

neufralised in the Ria del Odiel and Huelva Ria (Chapter 4). The calculations showed that 

hardly any Fe and A l hydroxides were formed at pH < 4. This partially accounted for the 

absence of colloids and the conservative behaviour of metals up to high salhiities and near-

neufral pH values. The sunilarity in the inorganic speciation of Fe, A l , Mn, Zn, Cu, N i , Co 

and Cd at low pH explahied tiiefr congruent behaviour observed in the Ria del Thito and 

Ria del Odiel. The sfrength of the A M D signal m tiie rivers, combined with acid industrial 

discharges in the estuary determined the speciation of metals and hence thefr geochemical 

behaviour in this estuarine system. 
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Huelva Ria has a high nutrient status and is a productive estuary. As observed in 

other estuarine systems, the concentration of Cu complexing organic ligands was higher 

within Huelva Ria than in adjacent coastal waters. Speciation stadies and ligand titrations 

suggested that ligand concentrations in the high n M range occurred in Huelva Ria, 

whereby these ligand are fully saturated with Cu. Speciation calculations showed that 

shght (downward) shifts of pH values would result in a large proportion of excess Cu to be 

present as cupric ion. The four surveys showed that the Rio Tinto and Rio Odiel are a 

variable source of metals and acidity, and therefore toxicity levels may change 

dramatically between seasons. In the Gulf of Cadiz dissolved Cu concentrations were 

below tihe hgand concentrations. Copper was strongly complexed to more than 80%, which 

reduced the cupric ion concentration to sub-toxic levels. 

Free cupric ions are the most toxic form of this metal and comparisons witih 

literature indicated that concentrations causing sub-letihal effects were reached in Huelva 

Ria. The presence of a small selection of primary producers hi this estuarine environment 

shows a high level of adaptation to long-term metal contamination, which is not 

uncommon. However, tolerance to high levels of Cu - and other metals at toxic levels -

metal may induce biological accumulation in the food chain, which is an important 

consideration for the health of local population. 
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Chapter 7 

Conclusions and Future Work 

7.1 CONCLUSIONS 

The spatially compact Tinto/Odiel system presented a unique opportunity to study 

the biogeochemistry of dissolved trace metals fiom their origin m the metalliferous minmg 

district of the Iberian Pyrite Belt to theu entrainment by Atlantic surface currents in the 

Gulf of Cadiz. A multidisciplmary approach to estuarhie and marine science was of 

particular importance m order to understand the behaviour of metals in this complex 

system. The participation withm the TOROS project allowed tihe author to benefit fiom tihe 

expertise of colleagues workmg m many disciplmes, including geology, hydrology, 

sedimentology, biology, chemistry, geochemistry and oceanography, as well as remote 

sensmg, modellmg and data management. Several questions remain unanswered, most 

hnportantly tihe interaction of metals between the dissolved and particulate phase. The 

autiior is awaithig the completion of studies on suspended particulate matter carried out by 

a colleague, working hi parallel witii TOROS, witih anticipation. 

The geology and geography of their catchment have determmed tihe character of tihe 

Rio Thito and Rio Odiel smce historic thnes, and especially throughout tihe last several 

thousand years, when tihe massive metal sulphide deposits in the Iberian Pyrite Belt have 

been exploited by mining. The cycle of dry summers and flash floods during autumn and 

winter was identified as the most likely cause for the sttong seasonal character of the 

variations hi river water quality. Physical, cheniical and microbiological weathering of 

natural deposits and mine tailings generated a metal-rich and acidic leachate (acid mine 

drainage, A M D ) , which entered the headwaters of tihe two rivers. The rate of weatiiermg 
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and erosion, and the transport of leachate and mineral grains depend on the availability of 

moisture, and the kinetics of redox reactions and biological activity is partially determhied 

by temperature. Seasonal investigations of river systems affected by A M D are still rare. 

Although only four surveys were carried out and no flood-event was sampled directly, the 

presented work improved our understanding ofthe cycHcal nature of A M D geochemistry 

in arid climates. 

The level of contanunation with dissolved Fe, A l , Mn, Zn, Cu, N i , Co, Cd, Pb and 

U observed in the Rio Tinto and Rio Odiel was comparable with the most polluted water 

courses on a global scale. Discharge-weighted dissolved metals fluxes calculated for the 

riverine end-members were important not only locally, but also in comparison with the 

world's major rivers. Annual metal fluxes to the estuary were 99001 Zn, 45001 Mn, 34001 

Cu, 180 t Co, 77 t N i , 671 Pb, 34 t Cd and 1.9 t U , whereby the contribution was higher 

during the wet, compared to the dry seasons. 

Thousands of years of contamination resulted m the development of a specialised 

ecosystem, in which acidophilic micro-organisms and yeasts thrive. Although equihbrium 

calculations showed that the free cupric ion are likely to exceed concenfrations that are 

toxic to many marine organisms, a number of algae and margmal plants have adapted to 

the sttess of pH and high metal concenttations. 

The catchment geology provides little buffering capacity, and as a consequence the 

p H ia the rivers was mahitained at values below three. Although dissolved metal 

concenttations were very high, thermodynamic equilibrium calculations mdicated that 

none of the formed hiorganic species reached saturation. The high solubility of inorganic 

metal species hi A M D (mainly free hydrated ions and metal sulphates) imphed that abiotic 

processes cannot account for the observed loss of Fe, A l , Mn, Zn, Cu, N i , Co, Cd and Pb 

from solution along the lengtii of the Rio Tinto and Rio Odiel. This led to tiie suggestion 
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that the precipitation of solid Fe and M n phases was mediated by acidophile micro

organisms. Further removal of metals from solution may have been facilitated through 

scavenging by fresh precipitates and concretion onto existing solids. 

The metal geochemistry in the estuary was determined by seasonally variable 

riverine hiputs, industiial discharges, and the changes of salinity, pH and water movement 

throughout the tidal cycle. The neufralisation of pH was slow m tiie Riadel Tinto and Ria 

del Odiel. "While effluent from phosphogypsum deposits remained unrestricted, very low 

pH values were mahitamed tbroughout the Ria del Tinto (pH < 3 up to S = 30). 

fri the upper Ria del Tinto mixing zone, the increase in the dissolved concenfrations 

of Fe, A l , M n , Zn, Cu, N i , Co and Cd was atfributed to the tidal re-suspension of particles, 

dissolution from reducing sediments and leaching from particles at the prevailing low pH. 

The input of organic-rich industrial effluent hi this part of the estuary may have caused 

local anoxia, thus favouring reducing conditions. A n exception was Pb, which was 

removed rapidly from solution at low salinity due to its high particle affinity. Effluent from 

the phosphogypsum deposits infroduced U and phosphate into the lower Ria del Tinto, 

where maxhna of both were observed. Phosphate was also released from the fertihser 

industiy into the upper parts of Huelva Ria, and as a result, the estuary was highly 

productive and phytoplankton blooms were observed during the summer survey. 

Dissolved metals behaved largely conservatively in the mid- and lower Ria del 

Tinto and in tiie Ria del Odiel. Removal of Zn, Cu, N i and Co from solution was observed 

m waters where the pH value exceeded five at salinities > 30. This stiidy highlighted the 

importance of p H for the partitioning of tiace metals between the sohd and dissolved phase 

hi estuaries receiving large quantities of A M D . 

Results from speciation studies indicated the presence of a seasonal signal to the 

removal of Cu in Huelva Ria. Although the metal flux from the rivers was lowest in June, 
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dissolved metal concentrations observed in the lower Huelva Ria at equal salinity were 

higher diiring summer, compared to the other seasons. Concentrations of Cu complexing 

organic ligands in the estuary reached high values (up to 200 nM) in the lower Huelva Ria, 

and Cu speciation studies showed that a higher proportion of Cu was strongly complexed 

in June (median: 26%), compared to the winter survey (median: 3%). The available data 

indicated that the removal of Cu from solution was reduced by complexation with organic 

hgauds, and although direct evidence is lacking, the concenfration of these organic hgands 

may have been enhanced during and after seasonal phytoplaiikton blooms. 

The hypothesis m pubhshed work of a toxicity-regulating aspect to the release of 

Cu complexing organic ligands by some phytoplankton species was supported by the 

sfrong linear relationship between the concenfrations of total dissolved Cu and stiong Cu 

complexing ligands observed in samples from the Gulf of Cadiz and Huelva Ria. In coastal 

water with total Cu concentiations below ca. 35 nM, the hgand concenfration exceeded 

that of Cu, and equilibrium calculations showed that the level of free Cu in solution 

remahied below toxic concenfrations. At higher total Cu concenfrations hi Huelva Ria, the 

complexhig capacity of stiong Kgands was exceeded, although the concenfration of sfrong 

ligands was higher in tiie estuary than in coastal waters. Thermodynamic speciation 

calculations mcorporating an organic ligand showed the preferential complexation of Cu 

by the organic ligand. Beyond the point of ligand saturation the cupric ion concenfration 

mcreased rapidly with the total dissolved Cu concenfration. The resulthig toxic cupric ion 

concenfrations hnply that plankton and marsh plants growing m the RIa del Tinto and Ria 

del Odiel underwent a high level of adaptation. Pubhshed work on A M D systems 

commonly focussed on inorganic metal speciation. The inclusion of organic complexation 

offered valuable insights into the biogeochemical behaviour of Cu and its potential toxicity 

in this highly contaminated and highly productive estuarhie system, and provided the basis 

for more detailed future research. 
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The removal of Zn, Cu, N i and Co from solution was essentially complete at pH 

values above 7.5, so that the net dissolved metal flux from the estuary could be estimated 

using exfrapolation to a virtual riverine end-member. The calculations indicated the 

removal of 63% Zn, 75% Cu, 22% N i and 49% Co from solution witiun the estuary. The 

annual export of dissolved metals from Huelva Rfa was calculated to be 3700 t Zn, 850 t 

Cu, 68 t N i and 861 Co, which identified this estuary as the mahi contributor of dissolved 

Zn and Cu to the Gulf of Cadiz, and an important metal source to European coastal waters. 

However, a large error was hivolved in all flux calculations for this system. 

h i the Gulf of Cadiz, on-lhie measurements of dissolved Zn, Cu and N i showed 

metal plumes associated with the Tuito/Odiel system, and witii the two major rivers (m 

terms of water discharge) m the area, tiie Guadiana and Guadalquivfr. The intensity, extent 

and fransport of metal plumes were sfrongly dependent on tidal movement. The near-real 

thne measurement of metal concenteation proved an invaluable tool for the detailed and 

interactive examination ofthe plvune development, and the on-lhie work carried out in the 

Huelva system has contributed to pubhcations (see Appendix). 

Surveys in shallow waters allowed tiie frackmg of metal plumes from the northem 

shore of the Gulf of Cadiz to the east and south-east and towards the Steait of Gibraltar. 

This long-shore movement was tiie result of the well-documented enfrainment of Gulf of 

Cadiz water with the Atiantic surface current that flows into the westem Mediterranean 

Sea. Because of this surface circulation partem, the highest concentiations of dissolved Zn, 

Cu and N i were observed along the shore. Concenfrations decreased towards the outer 

regions of the Gulf of Cadiz, where the enrichment with respect to dissolved 

concenfrations m North Atiantic surface waters was factor 3.6-14 for Zn, 2.5 - 6.5 for Cu 

and 1.8 - 8.8 for Co. Although less restiicted by land than tiie Irish Sea or North Sea, the 
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circulation pattern and high input of metals from riverine sources makes the Gulf of Cadiz 

one of the most metal contaminated sea areas hi Europe. 

7 . 2 FUTURE W O R K 

This study has provided the base for a better understanding of metal behaviour in 

A M D affected coastal systems. Several areas of research have been addressed by partners 

in the TOROS project and researchers working in parallel with it. This included a detailed 

study of nutrient and chlorophyll distribution, metal concentrations m suspended 

particulate matter (including kinetic mixmg experhnents), metal concentrations m 

dissolved and particulate matter throughout the water colunm m the Gulf of Cadiz and the 

modellhig of contaminant transport. Joiut pubhcations are planned for the near future. 

Further research is needed in order to calculate dissolved and particulate metal 

fluxes from the Huelva system in a more accurate maimer. Hereby, the study of dissolved 

and particulate metal discharge during major flood-events is of particular importance. A 

long-term approach hi co-operation with local authorities could elucidate pattems in 

seasonal and aimual variability. Such a set of data could be used for predictive modelling 

and would provide the base line for future remediation programmes. 

The specific role of acidophile micro-organisms in the cycling of metals hi this 

system is of interest to a more detailed study of seasonal variability, and the possible 

utihsation of micro-organisms for remediation purposes. 

The adaptation of flora and fauna to high levels of metal contamination and low 

pH values demands further investigation. Adapted organisms may accumulate high levels 

of metals, thus infroducing them hito tiie food chain. The reaction of algae to metal sfresses 

and the role of algal exudates are still poorly understood. The exfreme nature ofthe Huelva 
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system may provide an opportunity to study liigUy adapted organisms in order to improve 

our knowledge about the rate of metal uptake, the level of metal storage and the 

detoxification mechanisms in biota. 

The effect of pH on the inorganic and organic speciation of metals was evident 

fiom the observations made. Further research is needed in order to elucidate the effect of 

pH variations on the organic complexation of Cu and other metals. In this context the 

effect on the conditional stability constant for metal-ligand complexes are of particular 

interest. The separation of different classes of ligands, i f present, by using several detection 

whidows could provide information about differences in the sources of ligands between the 

estuary and coastal sea. The characterisation of organic ligands would be desirable, but 

may not be achieved in the near future. 
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8 . 1 APPENDIX 1 : PUBLISHED MATERIALS 

Reprints of photocopies of Author's copies of the following publications are 

mcluded: 

Achterberg, E.P., Braungardt, C. and Whitworth, D.J. Electrochemical monitor for near 
re^-time determination of dissolved trace metals hi marine waters. Chemical 
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Achterberg, E.P. and Braungardt, C. (1999a) Strippmg voltammetry for tihe determination 
of trace metal speciation and in-situ measurements of trace metal distributions in 
marme waters. Anal.Chim.Acta 400,381-397. 

Achterberg, E.P., Braungardt, C , Morley, N . H . , Elbaz-Poulichet, F. and Lebianc, M . 
(1999b) Impact of Los Frailes mine spill on riverine, estuarine and coastal waters 
in soutihem Spain. Water Research 33,3387-3394. 
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of dissolved Cu and N i in the Gulf of Cadiz, soutih-west Spain. Anal. Chim. Acta 
377, 205-215. 

Elbaz-Poulichet, F., Dupuy, C , Cruzado, A . , Velasquez, Z., Achterberg, E.P. and 
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Water Research, in press. 
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and Braungardt, C.B. (1999) Trace metal and nutrient distribution in an extremely 
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8 . 2 APPENDIX 2 : D A T A 

A C D - R O M is attached to this thesis, containing the raw data used in this thesis. 

The names of files are largely self-explanatory, and their contents are described in a M S 

Word 97 file, 'read me.doc'. 

a copy of this CD-ROM is accessible via the Author: 

Charlotte Braungardt (cbraungardt@plymouth.ac.uk) 

and via the director of studies: 

Eric P. Achterberg (eachterberg@plymouth.ac.uk) 

current address: 

University of Plymouth 

Department of Environmental Sciences 

Drake Circus 

Plymouth PL4 8AA 

UK 
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10. ELECTROCHEMICAL MONITOR FOR NEAR 
REAL-TIME DETERMINATION OF DISSOLVED 

TRACE METALS I N MARINE WATERS 

ERIC P. ACHTERBERG, CHARLOTTE BRAUNGARDT 
and DAVID J. WHITWORTH 
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10.1 INTRODUCTION 

Measurements of chemical constituents in marine waters present many chal
lenges as a result of the distinctive composition of seawater, the large temporal 
and spatial variabilities in marine systems and the problematic accessibility of 
study areas. With an increasing global environmental awareness, there is now a 
greater demand for instrumentation that can be used for chemical marine 
monitoring. The most used chemical marine sensor systems today are based 
upon electrochemical principles and are for the determination of oxygen and 
pH. However, electrochemical methods have also been developed for the 
determination of trace metals in seawater. Monitoring of trace metals in marine 
systems is important for overseeing the health of our seas. For example, mon
itoring programmes for trace metals and other chemical constituents in the 
North Adantic and Arctic Oceans (including the North Sea) have been inter
nationally agreed in the Oslo-Paris conventions (Ospar). Ospar represents 15 
European countries which have coastlines on or riyers discharging into the 
north-east Adantic. 

The concentrations of dissolved metals in unpolluted oceanic waters are gen
erally very low, typically at nanomolar (10~^mol I~̂ ) levels or less. Copper, Zn 
and Ni, for example, occur at levels of between 0.5 and 5 x 10"^ moles in 
waters of the Adantic Ocean (Bruland and Franks, 1983; Buckley and van den 
Berg, 1986; Jickells and Burton, 1988; Kremling and Pohl, 1989), whilst the 
concentrations of these metals are approximately ten times higher in coastal 
waters of the Irish sea and North Sea (Tappin et al., 1995; Achterberg and van 
den Berg, 1996). Levels of dissolved Cu, Zn and Ni in some mine polluted 
estuarine systems in southem Spain (Huelva) and south-west England 
(Restronguet Creek) can however reach levels of 10"^ to 10"^ mol 1~* (Leblanc 
et al., 1995; Bryan and Langston, 1992; Rijstenbil et al., 1991). DiJBferent 
approaches are taken to monitor metals in the marine environment. The US 
Mussel Watch programme utilises mussels which are collected in coastal areas 
(Lauenstein et al., 1990; Larsen, 1992; Stephenson and Leonard, 1994). 
The programme has been successful in highlighting pollution hot-spots, by 
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determining metals (and other pollutants) in the mussel tissue. As mussels are 
filter feeders, the pollutant levels in mussels largely reflect the levels in sus
pended particulate matter and not in the dissolved phase (by definition the 
dissolved phase passes through a 0.4-0.45 pm membrane filter and the particu
late phase is retained). The pollutant levels in mussels provide a piaure about 
perturbation in their enviroimient over a longer period, and can therefore be 
used to check the health of that environment. A picture of historical pollution 
levels in marine systems can also be .obtained firom determinations of pollutants 
in sediments. Metal levels at different depth in the sediments can be related to 
historical time periods, but care must be taken that processes like bioturbation 
and metal mobility through redox processes have not disturbed the vertical metal 
profiles. A great deal of progress has been made in recent years in using beha
vioural and fiinctional responses of organisms to pollutants (including metals and 
xenobiotic organic compounds) in natural waters (Baldwin and Kramer, 1994). 
The use of such bio-indicators provide a near-instantaneous feed-back on toxic 
pollutant levels in the water. However, more work will need to be done with 
respect to the selectivity and sensitivity of these methods. 

The most reliable methods for monitoring dissolved trace metal concentrations 
in the marine environment still involve chemical determinations. These analyses 
provide information on the dissolved form of metals which, for example, may 
aSea the level of growth of phytoplankton and bacteria in the sea. Dissolved 
metal monitoring can also identify metal containing waste discharges into marine 
waters. Traditionally, sea water samples are collected in a discrete manner. From 
a survey vessel discrete surfece water samples can be obtained using a pump with 
a bottom-weighted hose, and in deeper waters with the use of samplers (e.g. 
Go-Flo or Niskin botdes) which are attached to a hydrowire and lowered in the 
sea with the use of a winch. The samples are usually filtered on-board ship and 
subsequendy analysed in a land-based laboratory. Commonly used laboratory 
techniques for dissolved trace metal analysis in sea water include Graphite Fur
nace Atomic Absorption Spectrometry (GFAAS) and Inductively Coupled Plasma 
Mass Spectrometry (ICP-MS) (after solid-phase extraction for trace metal pre
concentration and matrix removal), chronopotentiometry, colorimetry, chemi
luminescence and stripping voltammetry. This approach of laboratory based 
analyses of discrete samples is time-consuming and therefore expensive. Only a 
limited number of samples can be collected using discrete sampling techniques 
and as a result important changes in water quality may be missed. Trace metal 
levels in estuarine, coastal and oceanic waters are often low. Inadequate sampling 
and sample treatment techniques have for a long time prevented the un-
contaminated collection and analysis of sea water samples. Sample contamination 
may arise fi-om components, of the sampling gear and fi-om sample handling 
operations. Concentrations of elements like Ni, Cu, Zn and Fe which were 
determined in sea water samples collected prior to the mid-seventies and 
sometimes early eighties were therefore in many cases affected by sample con
tamination. Nowadays, the use of PTFE coated samplers, fi-ee of intemal metal 
components, and with as few external metal components as possible, gready 





-229 -1A1W-1 ia»am 

DETERMINATION OF DISSOLVED TRACE METALS IN MARINE WATERS 229 

improves contamination-free sample collection. Improved understanding of 
post-sampling contamination has resulted in the introduction of ultra-trace 
working practices (Morley etal., 1988). Sample botdes (preferably High Density 
Polyethylene; HDPE), filters and filtration equipment are add cleaned prior to 
use, and all sample handling is performed in a dean environment (dass-100 
laminar flow hood in a dean room) (Howard and Statham, 1993). These pre
cautions against sample contamination are essential in order to obtain high 
quality trace metal data, but greatiy reduce the number of samples that can be 
processed by a research worker. 

10.2 ELECTROCHEMICAL TECHNIQUES: POTENTIOMETRY 

pH is the most commonly measured chemical parameter in natural waters and 
knowledge of pH is necessary for the understanding of spedation of trace ele
ments in these waters. The determination of pH is most ofi;en performed using 
potentiometry, whereby the potential over an electrode pair is measured without 
current flow. A reference electrode (Ag/AgCl or calomel) and ion-selective elec
trode (glass electrode) are used for this purpose. Potentiometry is also used for 
the determination of trace metals in natural waters using metal-selective solid 
state electrodes. Such electrodes are available for Cu, Ag, Pb and Cd and 
determine the activity of the metals in solution. The metal-selective electrodes 
incorporate membranes fabricated from insoluble crystalline materials and these 
contiain the metal ion for which the electrode is selective. The application of the 
electrodes is hampered by poor sensitivity and accuracy: metal-selective elec
trodes usually exhibit a non-Nemstian behaviour at analyte concentrations below 
10"'mol r^. Another major drawback for application of metal-selective elec
trodes to oceanography is that serious interferences are often produced by the 
major ions in seawater. 

10.3 ELECTROCHEMICAL TECHNIQUES: STRIPPING VOLTAMMETRY 

The most suitable electrochemical methods for the determination of low levels of 
trace metals in sea water make use of stripping techniques: anodic and adsorptive 
cathodic stripping voltammetry (ASV and ACSV, respectively). Important 
advances have been made during the past 20 years in the application of stripping 
voltammetry to marine trace metal measurements. The strength of stripping 
voltammetry is in its extremely low detection limits (lO'^^-lO"''mol 1"̂ ). 
Analytical developments have resulted in our ability to determine a wide range of 
trace metals in seawater (over 20 metals indudirig: Co, Cu, V, U, Fe, etc.; van den 
Berg, 1989; 1991), and the instrumentation has been computerised and made 
portable. 

The basic voltammetric equipment for marine applications consists of a voltam
metric analyser, a three-electrode cell (working electrode, reference electrode 
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and cotinter electrode) and a computer for automated measurements and data 
acquisition. Modem voltammetric analysers are simple, low-cost and able to 
perform a range of scan forms. The reference electrode is often a Ag/AgCl 
electrode and the counter electrode may be a platinum wire or a carbon rod. The 
most popular working electrode for environmental trace metal analysis is a 
hanging mercury drop working electrode (HMDE), but glassy carbon and carbon 
fibre electrodes on which a mercury film is plated are also used in stripping 
voltammetry. The advantage of an HMDE is that with the formation of each new 
drop, a new electrode surface is produced, which is important for unattended 
trace metal monitoring activities. The drops generated by modem-mercury drop 
electrodes are very small (e.g. VA Stand 663 firom Metrohm (Switzerland) pro
duces drops with an area of 0.52 mm^), and safe storage and recycling of the used 
mercury will ensure minimal environmental and health risks. 

Anodic stripping voltammetry has been applied successfiilly for trace mea
surements of Cu, Cd, Pb and Zn in seawater. Other elements can be determined 
using this technique, but their seawater concentrations are too low for ASV, or 
the analysis is-hampered by interferences. A deposition, or pre-concentration, 
step is carried out under conditions of forced convection (e.g. solution stirrmg or 
flow). The deposition potential should be ca. 0.3-0.4 V more negative than the 
reduction potential of the metal. During the deposition step of an ASV analysis, 
metal ions are collected in the mercury drop by reduction (to metallic state) and 
amalgamation with the mercury (see equation 10.1). 

Mn+- l -ne -4 -Hg^M(Hg) (10.1) 

Only a small fi-action of the metal is actually being deposited during the 
deposition step. The sensitivity of ASV is improved by using a mercury film 
rather than a mercury drop electrode because the smaller volume of the mercury 
film results in a greater concentration factor of the metals collected into the 
mercury. The deposition is followed by a voltammetric scan towards more pos
itive potentials during which the metal in the mercury is oxidised and the current 
produced is determined. The resultant current potential stripping voltammo-
gram provides quantitative information: the height of the peak is proportional to 
die metal concentration; and' also qualitative information: the potential of the 
peak is an indication for the metal analysed. Different scan forms are being 
applied during the measurement of trace metals in seawater to improve the sensit
ivity of the methods. The most basic scan form is linear sweep, but pulse-voltam
metric waveforms (e.g. differential pulse and square wave) are more useful as they 
efifectivdy correct for background current contributions. The limit of detection for 
ASV analysis of Cu and Cd in seawater is typically 10"'^' and 10~'° mbl 1"̂ , 
respectively. Depending on the encountered trace metal levels in a marine system, 
ASV allows for simultaneous determination of more than one metal. 

Adsorptive cathodic stripping voltammetry makes use of a specific ligand (L), 
which is added to the water sample and forms an adsorptive complex with the 
trace metal(s) under investigation (equation 10.2). 
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Mn+ + z L - > M L (10.2) 

M L - V M L (adsorbed) ' (10.3) 

M L (adsorbed) + e" M(n-1)"^ + zL (10.4) 

A pH buffer is used to control the pH of the sample as the formation of the metal-
' ACSV ligand is pH dependent. Generally, ACSV is carried out at a hanging mer

cury drop electrode. A minute fraction of the metal-ligand complex is adsorbed 
on the surface ofthe mercury drop (equation 10.3) and a potential scan is carried 
out. The adsorption step is carried out at a carefiilly controlled potential as it 
determines the adsorption efiSdency. In most cases, aii adsorption potential is 
chosen which is slighdy more positive (ca. 0.1 V or more) than the reduction 
potential of the metal-ligand complex. The scan direction is towards more 
negative potentials and the resulting current is determined (see Figure 10.1). 

2001 1 

0 I 1 1 1 1 1 1 
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 

potential (V) 

Figure 10.1 VoItammeUric scan of dissolved Cu in seawater. Oxine (0.15 mM) was used as 
the ACSV ligand, Hepes (10 mM) was used as pH buflFer (pH 7.7). Voltammetric condi
tions were: 20 s deposition at -1V, 8 s equilibration at -0.25 V and 200 Hz square wave 
scan towards more negative potentials. Scan A is for sample, and scan B is for sample plus 
standard addition (5 x 10"̂  mol 1~' final concentration). 
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The reduction current is the result ofthe reduction of a reducible group on the 
ligand or of the metal itself in the adsorbed complex (equation 10.4). The scan 
forms applied during ACSV include linear sweep, but fast pulse-voltammetric 
waveforms (e.g. differential pulse and square wave) are also used if the reduction 
of the metal-ligahd complex is electrochemically reversible. The limit of detection 
of ACSV for metals .is typically on the order of 10~^-10~ '̂ moll"^. Even lower 
metal concentrations (down to 10"'^ raol 1~̂  for Pt, Ti , Co) can be determined by 
using a catalyst in order to enhance the reduction current Multi-elemental ACSV 
methods have been developed recendy (Colombo and van. den Berg, 1997), 
whereby with the use of mixed ACSV ligands up to 6 trace metals (Cu, Pb, Cd, 
Ni, Co and Zn).can be determined simultaneously in coastal and estuarine waters. 
Voltammetric trace metal analysis commonly makes use of the standard addition 
method for the quantification of metal concentrations in water samples. 

Voltammetric techniques have the advantage that they allow determination of 
trace metals direcdy in sea water, without a separate pre-concentration step. 
Alkali metals in seawater do not interfere with trace metal determinations, but 
actually increase the sensitivity. In addition, the high sensitivity and selectivity 
allow the determination of trace metal spedation (Aditerberg and van den Berg, 
1994a). Speciation analysis involves the determination of difierent physico-
chemical forms of trace metals. In the case of AGS V, ligand competition is used 
for spedation measurements whereby the added ACSV ligand competes for trace 
metals with naturally occurring ligands (Figure 10.2). The competition conditions 
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Figure 10.2 Depth profile of dissolved Ni spedation in the Gulf of Cadiz (November, 
1996), determined using ACSV. Labile and total Ni were determined using DMG 
(dimethylglyoxime, ACSV ligand) concentrations of 2 x IQ-̂  and 2x10-^ moll"', 
respectively. Labile Ni was determined at sea, whereas total Ni (after UV-digestion of the 
samples) was analysed in the laboratory. Largest difference between total and labile Ni was 
observed in the surface waters and can probably be attributed to presence of enhanced Ni 
complexing organic matter, produced by primary producers. 
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can be carefully manipulated by choosing a suitable ACSV ligand (with known 
conditional stability constants for the metal under investigation) and an appro
priate ACSV ligand concentration. For example, ACSV .ligands used for specia
tion measurements of Cu in seawater include Tropolone, Salicylaldoxime and 
Oxine, with Tropolone being the weakest Cu complexing ACSV ligand and 
Oxine the strongest. Metal spedation is becoming more important because of the 
recognition that data on total dissolved metal concentrations does not yield suf-
fident information about the toxidty, bioavailability and geochemical behaviour 
of trace metals in natural waters. For many metals (induding Cu, Zn, Cd and Ni) 
the free aqueous form is reported to be the most bioavailable and toxic (Tessier 
and Tumer, 1995), but only a few analytical techniques (induding stripping 
voltammetry and cherqiluminescence) are sensitive enough to determine labile/ 
free aqueous metal fractions in sea water. It is important for metal spedation 
measurements to be performed as soon as possible upon sampling, as chemical 
equilibria are readily disturbed during sample storage. The application of in-siiu 
(induding ship-board) techniques is therefore required. 

10.4 SHIP-BOARD VOLTAMMETRIC TECHNIQUES 

In recent years there has been a move towards trace metal analysis on-board 
ship. This approach not only reduces the risk of sample contamination, but often 
also results in a higher sample through-put and hence an increased amount of 
environmental data. Analytical instramentation for ship-board use will preferably 
need to have a limited weight and size, in other words be portable. This pre-
dudes the use of GFAAS and ICP-MS techniques, because the instmmentation is 
bulky. In addition, instrumentation for GFAAS and ICP-MS is very sensitive to 
the constant vibrations caused by the ship's engines. Electrochemical techniques 
often make use of portable instmmentation. The purchase and mnning costs of 
such instmmentation are much lower than for GFAAS and ICP-MS, and make 
the electrochemical techniques very suitable for field monitoring of dissolved 
trace metals. Most methods for dissolved trace metal analysis using voltammetry 
can be operated in an automated batch or flow-analysis mode. In this case sample 
and reagent transport and metal standard additions are performed using pumps. 
The application of computers in such systems allows fully automated sample and 
reagent transport, standard additions, metal analysis, data acquisition and 
treatment (Achterberg and van den Berg, 1994a). The automated batch or flow-
analysis approach not only reduces the risk of sample contandnation and 
increases the sample through-put, it also enhances the quality of the data by the 
fully computerised operation. As pointed out before, mercury drop electrodes 
are commonly used and have the advantage over other types of electrodes that a 
fresh electrode surface is formed each time a new drop is made. It is our 
experience that this type of electrode behaves very well at sea. Even during force 
10 storms on the Beaufort scale, or on ships with strong engine vibrations, the 
mercury drops do not dislodge during the collection or scanning steps. With the 
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Figure 10.3 Diagram of automated voltammetric system with dotted lines representing 
electrical connections and solid lines representing sample and reagent flows. HMDE: 
hanging drop mercury electrode. 

use of fast scan forms (e.g. square wave at 300 Hz) any movement of the vessel 
goes unnoticed during the voltammetric scan and high quality scans are 
obtained. 

An example of an automated voltammetric metal monitor which is used for 
both land-based laboratory and near real-time in-siiu analysis of trace metals is 
shown in Figure 10.3. The monitor comprises of an pAutolab voltammetric 
analyser (EcoChemie, The Netherlands) and a Metrohm hanging mercury drop 
electrode (VA Stand 663, Switzerland). The sample and reagent transport is 
performed using peristaltic pumps and metal standard additions are made to the 
voltammetric cell using a syringe pump (Cavro). Three-way inert Teflon® valves 
(Cole-Parmer) are used to fill and empty a sample loop (ca. 10 ml). The vol
tammeter and peripheral instruments are controlled using a portable PC. All 
tubing used in the voltammetric system is made of Teflon®, with the exception of 
pump tubing, which is Santoprene®. On-line filtration of the seawater is per
formed using a tangential flow filtration system (Figure 10.4). A membrane filter 
(0.45 nm pore size, 47 mm diameter) is placed in the filter holder and sample is 
obtained at a rate of a few ml min"^ A filter can be used for a prolonged period 
of time, even in turbid estuaries, because the filtration system is self-cleansing. 
Particulate material is constandy removed from the filter by a pronounced cross-
filter sea water flow (up to ca. 2-3 Imin"^). An on-line UV-digestion unit (Figure 
10.4) is used for the break-down of surfactants and natural metal-complexing 
organic ligands (Achterberg and van den Berg, 1994b). The surfactants need to 
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To metal 
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Fan 
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Figure 10.4 Diagram of on-line tangential flow filtration system and on-line UV-digestion 
system. 

be removed because they may interfere with the voltammetric analysis by fouling 
the working electrode surface. Metal-complexing ligands occur naturally in sea 
water and are thought to be released by phytoplankton (algal exudates), Ijacteria 
(e.g. siderophores), but also include breakdown products of marine organisms 
(e.g. porphyrins) and humic substances fi-om land-run off. The complexation of 
metals by the natural ligands reduces the electrochemically labile metal con
centration and hence the voltammetric signal, and their destruction releases the 
metals and results in the determination of total dissolved metal concentrations. 
The UV-digestion unit contains a medium pressure mercury vapour lamp (100 
to 400 W lamps are used) and a quartz glass coil (inner diameter 1 mm, length 
3-4 m) and is cooled using a fen (Figure 10.4). The optimal temperature for UV-
digestion of organic compounds is ca. 70-80 °C. 

The voltammetric system presented in Figure 10.3 operates in an automated 
batch-mode, with the analysis of 10 ml aliquots at a rate of one complete mea
surement every ca. 10-20 min. Each sample is fully calibrated, resulting in high 
quality data required for biogeochemical and pollution studies. The use of a 
lower calibration fi-equency would increase the sample through-put, but may 
pose problems in coastal and estuarine waters where important variations in the 
sample matrix would result in pronounced changes in the sensitivity of the vol
tammetric analysis. Dedicated soft-ware was produced for the voltammetric 
system for data acquisition, treatment and storage. The soft-ware is self-decisive 
and intelligent: it is able to reject failed scans, to perform additional scans when 
reqiaired and to make additional metal standard addition in case the initial peak 
increase was insufi5cient. The software capabilities have resulted in stand-done 
monitoring system, allowing unattended 24 h operation. Table 10.1 shows the 
sequence of operation for an automated trace metal analysis using the system 
outlined above. 





- 2 3 4 - 3 1 J . 1 W 9 - S 0 5 P M 

236 ERIC P. ACHTERBERG a al. 

Table 1.0.1 Operational sequence for automated voltammetric metal measurements. 
Valve 1 and 2 are positioned before and after the sample loop, respecdvely (see Figure 
10.3). 

10.5 UNDERWAY PUMPING 

A very recent development in marine trace metal studies is the application of 
analytical monitoring equipment on-board ship for near real-time measurements 
of surface waters using voltammetry (Achterberg and van den Berg, 1996). This 
new methodology uses underway pumping as a means of sample collection and 
thereby obviates the need for the vessel to halt for the collection of discrete 
samples. Near real-time dissolved trace metal determinations may be performed 
using on-line voltammetry. Sample contamination is prevented by eliminating 
contact of the sea water with metal components by using inert materials (e.g. 
Teflon®, Polyvinyl Chloride, Polyethylene). An effective underway pumping 
system can be designed using a peristaltic or Teflon®-bellows pump and a long 
(20-60 m) and strong Polyethylene or Polyvinyl Chloride hose. The hose is hung 
overboard and attached to a "fish" (torpedo-like structure, KIPPER-1) which is 
towed firom a strong cable attached to a winch (Figure 10.5). The design and 
weight (ca. 40 kg) ensures that KIPPER-1 stays at a constant depth (ca. 3-4 m) 
even at speeds over 10 knots. KIPPER-1 is made of solid carbon steel with an inlet 
at the fi-ont and a hole through the middle for the sampling hose. The fish is 
coated with a non-metallic epoxy-based paint. All the tubing used is rapidly 
equifibrated with the sea water as it is automatically and continuously rinsed 
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Figure 10.5 Schematic drawing showing the underway pumping system with KIPPER-1, 
the path of the sample through on-line jBltration, on-line UV-digestion and to the metal 
monitor in the ship's laboratory. 

during sample collecdon. This underway method of sampling is therefore largely 
self-cleansing. The fish should be positioned away, below and forward ofthe ship, 
so that the water is collected without contact with the ship's huU. Ship's hulls are 
known to release trace metals, espedally afi;er treatment with metal based paints 
to reduce attachment of barnades and plankton. 

Advantages of this method of underway sampling indude a minimization of 
changes in chemical spedation of trace metals in sea water due to rapid analysis 
upon sampling, and a reduced risk of sample contamination. This monitoring 
approach results in enhanced saLmplingfirequendes and is therefore an important 
tool for biogeochemical and pollution studies in marine systems which require 
high-resolution measurements. The data can, for example, be used in numerical 
computer models for modelling metal distributions and behaviour in marine sys
tems. The near real-time analysis also provides the opportunity for an interactive 
sampling campaign, because the results of the measurements are direcdy avail
able and can be evaluated on-board ship whilst the vessel is steaming. 

10.6 OPEN OCEAN APPLICATION OF THE AUTOMATED VOLTAMMETRIC 
METAL MONITOR; NI IN THE ATLANTIC OCEAN 

The low concentrations of trace metals in open ocean waters require very sens
itive monitoring instrumentation. For dissolved Ni, the lowest levels (nanomolar 
or subnanomolar) occur in the surfece waters, as a result of biological removal. 
The low inputs of trace metals to the open ocean and the effectiveness of the 
removal mechanisms result in rather uruform surfece ocean concentrations for 
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.Ni (and also for e.g. Cu, Cd and Zn). As a result of these processes, the variation 
in concentrations of Ni and many other trace metals is therefore not as large in 
surfece waters of the open ocean, compared with coastal waters. Figure 10.6 
shows results of near real-time determinations of Ni in the Adantic Ocean. The 
automated voltammetric instrumentation was used on-board RRS Discovery 
during an OMEX (Ocean Margin Exchange) cruise in the Adantic shelf and 
Channel region in August/September 1995. OMEX investigates fluxes of trace 
metals, nutrients an organic compounds over the Atlantic shelf waters. The 
automated metal monitor used during the OMEX cruise is similar to the system 
displayed in Figure 10.3. Surfece sea water was pumped up with the use of a 
Teflon®-beUows pump from the fish which was positioned at a depth of 3-4 m. 
The seawater. was not subjected to on-line filtration and UV-digestion and 
therefore "electrochemically-labile" Ni was determined. However, because the 
added chelating ligand (DMG) that was used forms a very strong complex with Ni 
and the organic matter and suspended particle concentrations were low in these 
waters, the observed labile concentrations were most likely dose to the total 
dissolved Ni concentrations. 

Each data point in Figure 10.6 is individually calibrated, resulting in high 
quality data. A simultaneous determination of Ni and Cu was performed on the 
Atlantic Ocean (Cu data not presented here). Only a fi:-action of the measurements 
performed during the 3 week cruise are presented here. The results show low Ni 
concentrations (between 1.2 and 2.5 x 10"^ mol 1"̂ ) in the Adantic Ocean, with 
oscillating Ni levels due to the vessel repeatedly crossing the shelf break towards 
open Adantic waters (decease in Ni) or towards shelf waters (mcrease in Ni). 
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Figure 10.6 Labile Ni concentrations versus time in surfece waters of the Atlantic shelf 
region between southem Ireland and western France (OMEX cruise, September 1995). 
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A further increase in Ni concentration was observed (to ca. 4.5 x 10"̂  mol 1"') as 
the vessel steamed into the English Channel towards Southampton. This increase 
in the concentration of Ni can be attributed to mixing of dean Adantic waters with 
waters from the Nordi Sea and riverine and atmospheric inputs into coastal waters 
in the vicinity ofthe British mainland. The gap in the graph (between ca. 5000 and 
7000 min) is caused by a break in monitoring activities due to a hurricane. 

10.7 COASTAL WATER AJPPLICATION OF THE.AUTOMATED 
VOLTAMMETRIC METAL MONITOR; CU IN THE GULF OF CADIZ 

High population density and industrialization in coastal areas have generated 
demand on marine resources, and have resulted in pollutant inputs into coastal 
waters. Sources of metals to coastal environments indude effluents from, indus
try, mining and ore processing activities, as well as the dumping of sewage sludge 
and industrial wastes at sea. Metal concentrations in coastal waters are variable as 
a result of the changing strength of point and difiuse sources, and seasonal 
variations in metal removal mechanisms. Tidal movement and currents influence 
local as well as long-range metal distributions at sea. 

The strong variability in coastal waters reqmres a high spatial and temporal 
resolution in the design ofsampling strategies. The movement of currents and tides 
has to be considered in order to avoid sampling a moving parcel of water repeatedly 
at adjacent sampling stations. Seasonal variations may affect not only biological and 
geochemical processes but also the direction and strength of prevailing and wind-
induced currents. Data sets acquired during separate cruises can only be compared 
with each other if tidal movement and salinity distributions are taken into account. 

Traditionally, a large number of discrete samples are taken and processed 
during coastal surveys, but such studies are expensive and time-consuming and 
can be viewed as "snap-shot" exerdses. Ship-time and other economic con
siderations frequendy limit the number of discrete samples that can be taken. 
The application to coastal monitoring of automated, near real-time ship-board 
monitors for metal analysis in surface waters addresses some of the challenges 
encountered in coastal sampling: (a) high spatial resolution can be achieved at 
slow steaming speeds, (b) calibrated measurements can span a wide concentra
tion range, (c) predous steaming time between sampling stations is utilised, and 
(d) the sdentist on duty has the opportunity to perform other tasks while over
seeing the correct functioning of the metal monitor. The use of the automated 
voltammetric instrumentation is illustrated by its application in coastal waters of 
the Gulf of Cadiz, south-west Spain. The research is part ofthe TOROS project, 
which is an European Union fianded ELOISE project and investigates metal 
fluxes in the Gulf of Cadiz. The shelf waters of the Gulf of Cadiz are enriched in 
dissolved metals, espedally Cu, Zn, Pb and Cd. Studies conducted in the small, 
but strongly polluted Tinto and Odiel rivers have indicated that these rivers are 
important sources of metals to the coastal waters (Van Geen et al., 1991; 1997; 
Leblanc et al., 1995). The Tinto and Odiel rivers are characterised by low and 
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seasonal variable water discharge (combined annual average 15m ŝ" )̂, and 
fresh water metal loads of up to 11 x IQ-'mol Fe, 6.1 x 10"*mol 1"̂  Zn, 
4.6 X 10-̂  mol Cu and low pH values (pH 2.5-3) (data from November '96). 

Figure 10.7 illustrates the advantages of high-resolution monitoring for this 
coastal system. Discrete samples (denoted by stars) were taken in the Gulf of Cadiz 
between the coast and the 500 m isobath on a grid of approximately 10-15 km. 
Discrete sampling was performed using a modified Niskin samplers on a CTD 
rosette. The continuous underway sampling approach resulted in a much better 
coverage of the coastal area compared with discrete sampling. The underway 
pumping system operated almost continuously during steaming and station time 
for 10 days. The ship's speed was 8 knots, and the resolution of the automated 
on-line metal analyses of surfece samples was between 3.3 and 4.5 km. The dis
tribution of dissolved Cu in Figure 10.8 shows enhanced metal levels in the 
coastal region between the mouths of the Huelva (15 x 10"̂  mol 1"' Gu) and the 
Guadalquivir (20 x 10"̂  mol 1"̂  Cu) estuaries. The data used in this plot were 
obtained during the first 4 days of the cruise in June 1997, and have not been 
corrected for tidal movement. A decrease in Cu concentrations with increasing 
distance from the coast was observed. This can be explained by the mixing of 
metal-polluted estuarine with cleaner Atiantic waters. 

In Figure 10.9, four separate surveys on successive days in June 1997 are 
shown, and the size of .the station markers is proportional to the dissolved Cu 
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Figure 10.7 Discrete and on-line sarnpling during a four day survey in the Gulf of Cadiz, 
Spain (June 1997). 
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Figure 10.8 Contour plot of dissolved Cu in surface waters of the Gulf of Cadiz; auto
mated on-line analysis during four day survey (June 1997). 
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concentration measured. During the 4 days the ship's motion was not inter
rupted for discrete sampling exercises and sampling and analysis were carried 
out continuously at a speed of 4 knots. This resulted in high resolution data with 
a distance between sampling points of ca. 1.5-2.5 km, dearly showing the tidally 
dependent development of the Huelva estuarine plume. On day 15, elevated 
dissolved Cu concentrations (60-76 x 10"̂  mol 1"') were measured two to three 
hours after lojv water (LW) in an area to the south-east of the Huelva estuary. 
One day later (day 16), around the time of high water (HW), Cu concentrations 
between 13 and 14 x 10"̂  mol 1~' were observed in this area. A steep increase in 
dissolved Cu concentrations to levels above 200 x 10"̂  mol 1~' was observed 
during both days upon returning to the estuary about one hour ahead of LW. On 
day 17, the research vessel remained anchored at the mouth ofthe estuary for a 
2.5 hour period, and left this position at the time of LW. Dissolved Cu levels 
increased during this period from 79 to 139 x 10"̂  mol T^. On the subsequent 
semidrde around the estuary's mouth (radius approximately 10-12 km), elev
ated Cu levels were observed to the south-east (68-85 x 10"̂  mol 1"' Cu) and 
south (90 X 10"̂  mol 1"' Cu), with a decreasing trend to the west of the estuary. 
The three short surveys show the variability in the development of the metal 
plume in the Gulf of Cadiz and therefore, the data illustrates the value of high-
resolution ship-board metal monitoring in tidally influenced waters. 

10.8 APPLICATION OF AN AUTOMATED METAL MONITOR TO AN 
ESTUARINE ENVIRONMENT; NI IN THE TAMAR 

Estuaries are highly reactive zones, where fluvial discharges mix with sea water 
and dissolved elements interact with organic material and partides in the water 
column. Thus constituents in river water undergo chemical and physical trans
formations during tidal mixing, and as a consequence only a limited proportion of 
trace metals carried by river water reach the open ocean. Enhanced concentra
tions of dissolved trace metals occur in many estuaries and are attributed to inputs 
from natural and anthropogenic sources. The concentration of dissolved trace 
metals is subject to large temporal and spatial variations as a result of variability in 
the extent of run-offj biological activity, tidal movement and anthropogenic dis
charges. An understanding of the fate of trace metals in estuaries is important for 
an evaluation of their impact on estuarine organisms, and fluxes into the oceans. 

The study of trace metals in estuaries is complicated by the strong physico-
chemical gradients (salinity, major ions, pH and turbidity) and high variability in 
trace metal concentration noticed in these, systems. Large changes in water 
matrix chemistry present challenges which impair the performance of most 
analytical techniques. A typical style of surveying in estuaries involves sampling 
along an axial transect of an estuary. This is undertaken using a vessel which 
travels along the centre of an estuary from one water end-member to another 
e.g. from coastal marine water past the tidal limit to fresh river water (or vice 
versa). Discrete samples are collected by manually submerging sample botties for 
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obtaining surfece water, by using a peristaltic pump with a bottom weighted hose 
or GQ-JIO or Niskin samplers for deeper samples. Salinity is generally accepted as 
the main index of mixing of sea water with river waters. A higher sampling 
jfrequency is usually adopted in the upper estuary where large salinity gradients 
occur and where variations in trace metal concentrations are more pronounced. 
Measurements of estuarine master variables (salinity, pH, dissolved oxygen and' 
temperature) are usually carried out at the time of sampling using portable 
meters and probes, this procedure allows an interactive sampling campaign. 
Analysis of the samples is then undertaken upon return to a laboratory, the time 
between sampling and analysis could be in the order of days which may com
promise the integrity ofthe water samples. 

A very suitable approach for trace metal studies in estuarine environments 
involves the application of automated metal monitors, yielding high temporal 
resolution measurements.of trace metals. Figure 10.10 shows the instrumental 
set-up utilised for automated analysis of total dissolved Ni by ACSV during a tidal 
cyde study carried out on the Tamar estuary, south-west England. TThie vol
tammetric metal monitor was transported in and operated from a regular 
medium sized town van, and powered by a 5 kW, 220-240 V portable generator. 
Surfece water samples were collected using a float deployed in the estuarine 
channel. The float was attached to an anchor by a two" metre nylon rope and a 
PVG hose was attached to the float and submerged to a depth of ca. 50 cm. Water 
was continuously pumped using a peristaltic pump (flow ca. 0.5-21 min~ )̂ and 
on-line tangential filtration and UV-digestion was applied as described pre
viously. A tidal cyde study describes a sampling style where samples are collected 
from a single geographiol location on the estuary, and the changes in physico-
chemical conditions observed over the tidal cyde (ca. 13 hours) are particular to 
water nuxing driven by tidal behaviour. This type of study may yield valuable 
information on biogeochemical processes occurring in the estuary, espedaUy in 
estuaries with large salimty gradients. The main advantages of this approach 
indude the ease of transportation and deployment of instrumentation and the 
relatively low costs of the studies compared with ship-board sampling exerdses. 

Van 

Figure 10.10 Monitoring set-up employed during tidal cyde study in the Tamar estuary. 
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Figure 10.11 Results of tidal cyde study in the Tamar (July 1997), showing dissolved Ni 
concentrations from in-situ and laboratory analysis. 

Figure 10.11 shows the results qf automated total dissolved Ni measurements 
obtained from the in-siiu application ofthe metal monitor on a bank of the Tamar 
Estuary July 1997). Figure 10.11 also shows values for total dissolved Ni obtained 
in discrete water samples collected from the estuary during the same study and 
analysed in the University laboratory. Quality of trace metal analysis in the 
laboratory was verified using certified reference materials. The in-siiu and 
laboratory obtained data are within analytical uncertainty of each other, which 
demonstrates the high quafity of the in-siiu measurements. An important 
advantage of the in-situ monitoring approach indudes the larger number of data 
points obtained during the automated study: 32 .automated measurements 
compared with 10 discrete measurements. This allows a more thorough geo
chemical interpretation of the data. The trace metal measurements are presented 
in Figure 10.12, with complementary salinity and suspended particulate material 
(SPM) data. Salinity was obtained from condiictivity measurements and SPM 
concentrations were obtained from weight of material collected on pre-weighed 
0.45 \im membrane filters. Enhanced total dissolved Ni and SPM concentrations 
were observed at low salimties'(up to 148 nM of Ni at a salinity of ~1) and low Ni 
and SPM concentrations were found at high safinities (23 nM of Ni at a safinity 
of ~24). Dilution of river water with enhanced Ni concentrations, with Ni depleted 
seawater therefore seems to be an important process determining the Ni beha
viour in this estuarine system. 

10.9 CONCLUSIONS AND FUTURE OF AUTOMATED MONITORING 

The extremely low detection limits, coupled with its multi-element and spedation 
capabilities, high accuracy, modest cost and suitabifity to ship-board and flow 
analysis, have made stripping voltammetry an important technique for marine 





-245 -1A19W- l i29AM 

DETERMINATION OF DISSOLVED TRACE METALS IN MARINE WATERS 245 

Time (GMT) 

Figure 10.12 Results of tidal qrcle study in the Tamar (July 1997), showing in-situ 
measured dissolved Ni concentrations with salinity and SPM (suspended particulate 
matter) data. 

trace metkl monitoring. The voltammetric trace metal monitor as described in 
this chapter, has been applied to different marine systems, ranging from 
unpolluted open ocean waters to metal polluted estuarine systems. The high 
resolution, high quality data obtained using the monitor are valuable for pollu
tion control purposes, but also for biogeochemical modelling exercises. The 
automated voltammetric system, with on-line filtration and UV-digestion has 
recendy been improved by incorporation of an on-lme CTpH meter, for auto
mated conductivity, temperature and pH measurements, complimenting the 
trace metal data. This low-cost approach of simultaneous automated data col
lection results in high quality data-sets which allow better interpretation of the 
chemical speciation in marine systems. The fiilly automated systems used on the 
Adantic shelf, Tamar and Gulf of Cadiz perform ca. 3-6 fiiUy calibrated metal 
determinations per hour. This number can be increased by using a flow cell fitted 
to an hanging mercury drop electrode. Up to 50-60 trace metal determinations 
per hour can then be performed,, with caUbration by switching to reagent with 
added metal standard at regular intervals (typically after 300 metal determina
tions) (Colombo and van den Berg, 1997). This approach is however less suitable 
for estuarine and near-cpastal waters, where strong variations in salinity and 
dissolved organic matter concentrations will result in large changes in the sens
itivity of the metal determination. 

The trend in automated trace metal determinations is towards in-situ deploy
ment of analytical mstrumentation, with underwater appfication of sensors. This 
approach not only fiirther reduces the risk of sample contamination, but also 
potentially leads to an improved way of trace metal speciation measurements 
as the in-situ analysis results in a minimal disturbance of the chemical equilibria. 
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The in-sUu application of a hanging mercury drop electrode in a Swiss lake has 
been reported recendy (de Vitre et al., 1991; Terder and Buffle, 1993). These 
workers used differential pulse ASV for the automated determination of Cu, Pb, 
and Cd in Swiss lakes. A novel in-situ voltammetric profiling system reported by 
Belmont a/. (1996) makes use of a agarose membrane covered mercury plated' 
Iridium-based micro-electrode for the determination of "ASV labile" Cu, Cd, Pb-
and Zn in firesh and marine waters. This system employs a coating on the elec
trode surface, and the difiiision of trace metals through this coating forms the 
time limiting step of the analysis, resulting in a measurement fi-equency of 2 h~'. 
Wang el al. (1995) have reported the remote analysis of labile Cu in an estuarine 
system (San Diego Bay) using stripping potentiometry with a gold fibre electrode. 
This method has a reported limit of detection of ca. 5 nM, and is therefore 
suitable for estuarine and coastal waters with enhanced metal levels, but not for 
unpolluted ocean waters. 
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Abstract 

Progress in marine chemistry has been driven by improved sampling and sample handling techniques, and developments 
in analytical chemistry. Consequently, during the last 20 years our understanding of marine trace metal biogeochemistry has 
improved a great deal. Stripping voltammetric techniques (anodic stripping voltammetry and adsorptive cathodic stripping 
voltammetry) have made an important contribution to this understanding. The selectivity and extremely low detecdon limits 
have made stripping voltammetry a widely used technique foruace metal speciation and trace metal distribution measurements 
in seawater. Stripping voltammetry is very suitable for ship-board and in-situ applicauons because of the portability, low cost 
and capability for automation of the voltammetric instrumentation. Future developments in stripping voltammetry can be 
expected in the field of stand-alone submersible voltammetric analysers, capable of continuous trace metal measurements. 
Future applications of stripping voltammetry can be found in the interactions between trace metal speciation and growth and 
the functioning of organisms in pristine and metal polluted marine waters. ©1999 Elsevier Science B.V. All rights reserved. 

Keywords: In-situ measurements; Trace metals: Voltammetry: Anodic stripping voltammetry; Adsorptive cathodic stripping voltammetry: 
Seawater; Monitor; Metal speciation 

1. Introduction 

Electrochemical techniques typically used by ma
rine chemists for seawater analyses include potentiom
etry (pH) and amperometry (dissolved oxygen). Elec
trochemical techniques are also suitable for the deter
mination of trace metals in seawater and voltammetry 
is the most common method. In seawater, trace met
als often occur at low concenU-ations (<10~̂  M) and 
in case these concentrations are below the detection 
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limit of the technique used, a preconcentration step is 
required prior to analysis. Moreover, the preconcentra
tion step isolates the metal from the matrix and thereby 
enhances the selectivity of the analysis. Voltammetry 
is based on the measurement of a current response as a 
function of the potential applied to an elecuochemical 
cell. In stripping voltammeUy a preconcentration step 
is combined with a stripping step, thereby enhancing 
sensitivity and selectivity. During the preconcenuration 
step, the u-ace metal of interest is collected onto or in 
a working electrode and during the stripping step the 
collected metal is oxidised or reduced back into solu
tion [1]. The sttipping voltammeuic techniques suit
able for the determinadon of ultra-low levels of trace 
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metals in seawater include anodic stripping voltamme
try (ASV) and adsorptive cathodtc stripping voltam
metry (AdCSV). 

Important advances have been made during the past 
25 years in the application of stripping voltamme
try to marine trace metal measurements. The strength 
of stripping voltammetry is in its extremely low de
tection limits (10~'°-10~'- M), its multi-element and 
speciation capabilities and its suitability for on-line, 
ship-board and in-situ applications [1]. Analytical de
velopments have resulted in our ability to determine a 
wide range of trace metals in seawater (over 20 met
als) [2,3], and the instrumentation has been comput
erised, automated and become portable. 

2. Voltammetric instrumentation 

The basic voltammetric instrumentation for seawa
ter analysis consists of a voltammetric analyser, a 
three-elecU-ode cell (working electrode, reference elec
trode and counter electrode) and a computer for au
tomated measurements and data acquisition. Modem 
voltammetric analysers are simple, low-cost and able 
to perform a range of scan forms. The Ag/AgCI/KCl 
reference elecUode is commonly used and the counter 
electrode may be a platinum wire or a carbon rod. 
The most popular working electrodes for environmen
tal trace metal analysis are the hanging mercury drop 
elecu-ode (HMDE) and the mercury film electrode 
(MFE). The automatic HMDE and the rotating Hg 
coated electrodes are particularly suitable for stripping 
voltammetry. 

The advantage of an HMDE is its reliability. With 
the formation of each new drop, a new electrode sur
face is produced, which is important for unattended 
trace metal monitoring activities. The drops generated 
by modem Hg drop electrodes are very small (e.g. 
VA Stand 663 from Metrohm (Switzeriand) produces 
drops with an area of 0.52 mm̂ ), and safe storage and 
recycling of the used Hg will ensure minimal environ
mental risks. 

The MFE may be formed by in-situ plating of Hg on 
glassy carbon [4], or by preliminary deposition. The 
MFE is robust and has an excellent sensitivity due to a 
high surface area to volume ratio [4]. Hg is commonly 
plated on glassy carbon electrodes, but gold [5], irid- -
ium [6,7], graphite pencil [8] and carbon fibre [9] have 

also been u.sed. The application of semi-pettneable 
protective membranes to cover the MFE in order to 
prevent diffusion of interfering compounds (e.g. sur
factants) towards the electrode surface has been re
ported. Cellulose acetate [10], agarose [11] and Nafion 
[ 12] have been used as membranes on MFE and work 
by size-exclusion and/or electric repulsion. 

Non-Hg elecuodes, for example made from gold 
[13] or various carbon substrates have also been used, 
for electrochemical measurements in natural waters. 
Such solid electrodes are suitable for the determina
tion of Cu, Hg and Pb, and elements which have oxi
dation potentials more positive than Hg (e.g. Ag, Au. 
Se and Te) [1]. The surface of these electrodes is of
ten poorly defined and the capacitance current [14] 
is higher than for Hg electrodes. Consequently, the 
voltammetric analysis of trace metals with solid elec
trodes is less sensitive and reproducible compared with 
HMDE or MFE. However, the attractions of Hg-free 
electrodes for electrochemical trace metal measure
ments have resulted in research efforts in this field. Re
cent developments include circuit-board printed gold 
elecUodes for Pb analysis [15] and the application of 
gold fibre microelectrodes for the determination of Cu, 
Hg, Pb and Se in water [13]. 

In recent years much progress has been made in the 
field of microelectrodes. Such electrodes have a size 
< 10 |jLm and may have a bare or Hg coated surface. 
Microelectrodes have a reduced capacitance current 
and an excellent signal to noise ratio and these char
acteristics allow subnanomolar trace metal analysis 
[6,16]. Furthermore, they offer enhanced deposition 
efficiency because of increased mass transport, which 
is the result of diffusion. Measurements using micro
electrodes can therefore be performed in quiescent so
lutions, which is attractive for in-situ deployments in 
natural waters. Successful applications of trace metal 
determinations in natural waters have been reported 
for gold microelecUrodes [13], Hg plated carbon fibre 
microelecttodes [17] and Hg plated iridium microelec
trodes [6,18,19]. 

3. Anodic stripping voltammetry 

ASV is an established and widely used voltammet
ric technique. Most applications of ASV have been 
reported with the use of HMDE or MFE, and the 
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technique has been applied successfully for trace mea
surements of Cu, Cd, Pb and Zn in seawater [20]. 
ASV is suitable for the determination of other ele
ments (e.g. In, TI), however, their seawater concentra
tions are commonly too low, or the analysis is ham
pered by interferences. 

During ASV analysis, a deposition, or preconcentra
tion, step is carried out under conditions of forced con
vection, which may include solution stirring or flow 
(microelectrodes need no forced convection). The de
position potential should be ca. 0.3-0.4 V more nega
tive than the reduction potential of the metal. During 
the deposition step metal ions are collected in the Hg 
by reduction (to a metallic state) and amalgamation 
with the Hg (see Eq. (1)). Only a small fraction of the 
metal is actually being deposited during the deposition 
step. 

M"+ + «e- + Hg^ M(Hg) (1) 

The sensitivity of ASV is improved by using a Hg film 
rather than a Hg drop electrode because the smaller 
volume of the Hg film results in a greater concentra
tion factor of the metals collected into the Hg. The 
deposition is followed by a voltammetric scan towards 
more positive potentials during which the metal in the 
Hg is oxidised and the current produced is determined. 
The resultant current-potential stripping voltammo-
gram provides (a) quantitative information: the height 
of the peak is proportional to the metal concentration; 
and (b) qualitative information: the potential of the 
peak is an indication for the metal analysed. Quan
tification of metal concentrations in samples during 
voltammetric analysis (both ASV and AdCSV) is com
monly by use of the standard addition method. This is 
the prefeaed method as the sensitivity of the stripping 
voltammetric analysis may vary between samples of 
different ionic strength and containing different con
centrations of surfactants and natural trace metal com
plexing organic ligands. 

Different scan forms have been applied during 
the ASV measurement of trace metals in seawater 
to improve the sensitivity of the methods. The most 
basic scan form for a MFE is linear sweep, but 
pulse-voltammetric waveforms (e.g. differential pulse 
and square wave) are commonly used for HMDE 
and are more useful as they effectively correct for 
background current contributions. The limit of detec
tion for ASV analysis of Cu and Cd in seawater is 

3 8 3 

typically I0~" and 10""'M, respectively. Depend
ing on the encountered trace metal levels in a marine 
system. ASV allows for simultaneous determination 
of more than one metal. 

4. Adsorptive cathodic stripping voltammetry 

AdCSV is a very sensitive technique for the analysis 
of numerous trace metals which cannot be determined 
in seawater using conventional electrolytic stripping 
procedures. AdCSV makes use of a specific added 
ligand (AL), which is added to the water sample and 
forms an adsorptive complex with the trace metal(s) 
under investigation (Eq. (2)). 

yM"" + zAL"- ^ Mv(AL)i-"~""' (2) 

M,.(AL)1™-'"" ^ Mj.(AL)l-"'-̂ "" adsorbed (3) 

Mv(AL)l"'"""'adsorbed + e" 
^ vM"'-"+-FzAL"'- (4) 

A pH buffer is used to control the pH of the sample, 
as the formation of the metal-AdCSV ligand complex 
is pH dependent. Generally, AdCSV is carried out us
ing a HMDE. A minute fraction of the metal-ligand 
complex is adsorbed on the surface of the Hg drop 
(Eq. (3)) and a potential scan is carried out. The ad
sorption step is carried out at a carefully controlled 
potential as it determines the adsorption efficiency. In 
most cases, an adsorption potential is chosen which 
is slightly more positive (ca. 0.1 V or more) than the 
reduction potential of the metal-ligand complex. The 
scan direction is towards more negative potentials and 
the resulting current is measured (see Fig. 1). The cur
rent produced is the result of the reduction of a re
ducible group on the ligand or of the metal itself in 
the adsorbed complex (Eq. (4)). The scan forms ap
plied during AdCSV include linear sweep, but fast 
pulse-voltammetric waveforms (e.g. differential pulse 
and square wave) are also used if the reduction of the 
metal-ligand complex is electrochemically reversible. 
The advantages of fast scan forms include compen
sation against the capacitance current contribution, a 
reduction of interferences from dissolved oxygen and 
an improved speed of analysis. 
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Table I 
AdCSV methods for direct determination of trace elements in seawatcr 

Element Complexing iigand Detection limit (nM) Reference 

Al I,2-Dihydroxyantraquinone-3-sulfonic acid (DASA) 1 (I06I 
As Pyrrolidine Dithiocarbamate (PDC) 3 [621 
Co Dimethylglyoxime (DMG); Nioxime with nitrite as catalyst 0.1: 0.003 [21.1071 
Cr Diethylenetriaminepentaacetic acid (DTPA) with nitrate as catalyst 0.05 (411 
Cu 8-Hydroxyquinoline (oxine): Salicylaldoxime (SA) 0.2: O.l [65.66] 
Fe Catechol: I-Nitroso-2-Naphthol (N-N) 0.2;-. 0.1 (108.1091 
Mo 2,5-dichloro-3,6-dihydroxy-l,4-benzoquinone: Mandelic acid with chlorate as catalyst 0.2: 0.002 (23,1101 
Ni DMG O.I [107] 
Pt Formazone 0.0004 [22! 
Sb Catechol 0.6 mil 
Se Cu(l)2Se 0.01 [II2I 
Sn Tropolone 0.05 (1131 
T I Mandelic acid with chlorate as catalyst 0.007 (231 
U Mordant Blue; oxine in presence of EDTA 1; 0.2 (114.1151 
V Catechol with bromate as catalyst 0.07 (1161 
Zn Ammonium Pyrrolidine Dithiocarbamate (APDC) 0.07 (1171 

200 

0 ' ' ' • • • ' 
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 

potential (V) 

Fig. 1. Voltaitunetric scan of dissolved Cu in seawater. Oxine 
(0.15 mM) was used as the AdCSV ligand and HEPES (lOmM) as 
pH buffer (pH 7.8). Voltammetric conditions were: 20 s deposition 
at — 1 V, 8 s equilibration at — 0.25 V and 200 Hz square wave 
scan towards more negative potentials. Scan A is for a seawater 
sample, and scan B is for the sample plus standard addition 
(5 X 10"' M, final concentration). 

The adsorptive accumulation approach results in 
a very effective preconcentration with short adsorp
tion times, allowing fast and exUremely sensitive trace 
metal measurements. The limit of detection of Ad
CSV for Urace metals is typically on the order of 
10~'-10~" M. Even lower metal concentrations can 

be determined by enhancing the reduction current cat-
alytically (IQ-'^M for Co [21], Pt [22] and Ti [23]). 
AdCSV methods have been developed and applied 
during the last 20 years for a wide range of trace met
als in seawater. Table 1 Usts AdCSV methods for di
rect determination of ttace metals in seawater, together 
with their limit of detection. Table 1 is not intended 
as a complete Ust, neither does it cover all elements 
for which AdCSV methods are available, nor does it 
include all reported AdCSV ligands. The organic lig
ands in Table 1 contain N and O donor groups (e.g. 
DMG and oxine), in addition to S donors (e.g. APDC). 
To be suitable for AdCSV, ligands are required to have 
two properties: (a) the ability to form a complex with 
the element of interest, and (b) electroactivity (i.e. ca
pability to adsorb onto die surface of the HMDE). 
Many of the ligands shown in Table 1 have aromatic 
ring smictures. DMG is an exception, but forms a ring 
suucture on chelation with Nî "*" [2]. The adsorption 
of the ligands is affected by the deposition potential 
and it therefore appears that the presence of electro
static and Tf-electron interactions are significant for 
the adsorption process [2]. 

In many cases, AdCSV has been utilised as a 
single-element method. However, multi-element Ad
CSV methods for HMDE have been developed re
cently [24], whereby with the use of mixed AdCSV 
ligands up to 6 trace metals (Cu, Pb, Cd, Ni, Co and 
Zn) can be determined simultaneously in coastal and 
estuarine waters. 
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5. Measurements of total dissolved trace metals 
in seawater 

The largest problem associated with trace metal 
studies in the marine environment is the contam
ination of samples during the stages of sampling, 
filtration, storage, sample preparation and analysis. 
This contamination problem has long hampered ma
rine trace metal studies, and consequently dissolved 
trace metal data published before the end of the 
1970s can be regarded as suspect. The introduction 
of strict clean working practices [25,26] gave rise 
to high quality trace metal data, and resulted in an 
improved understanding of oceanic trace metal dis
tributions and processes. Clean working practices 
at sea include the use of acid cleaned samplers for 
contamination-free collection of discrete seawater 
samples. The samplers (Go-Flo or Niskin) typically 
have a volume of 10-201 and are made from PVC 
with a Teflon inner lining and a PTFE tap and silicone 
seals (instead of rubber). Upon sampling, the sea
water is filtered using acid-cleaned membrane filters 
(typical 0.4fj.m polycarbonate, 47 mm diameter) fit
ted into acid-cleaned filtration units (made from FEP, 
polysulfone or polyethylene), and subsequently stored 
in acid-cleaned high density polyethylene (HDPE) 
sample bottles. Acid cleaning of HDPE sample bot
tles can be performed by overnight cleaning with hot 
detergent, followed by a 1-week soak in 6M HCl 
(AnalaR grade, Merck) and subsequently a I-week 
soak in 2M HNO3 (AnalaR grade, Merck). In be
tween the soaks, the bottles are rinsed with copious 
amounts of de-ionised water. Prior to use, the bottles 
are filled with de-ionised water, acidified to pH 2 with 
quartz-distilled acid and stored in two re-sealable 
polyethylene bags. Filtered discrete seawater samples 
are acidified with ultra-clean quartz-distilled acid [27], 
prior to ship-board or land-based analysis (typically 
samples are acidified to pH 2 in case of subsequent 
voltammetric analysis). All sample handling should 
take place in a class-100 laminar flow hood, which 
is ideally situated in a clean container (supplied with 
particle-free clean air). 

A widely used analytical technique for the anal
ysis of trace metals in seawater is graphite furnace 
atomic absorption spectrometry (GFAAS) after sol
vent extraction (e.g. [28]). The extraction proce
dure may involve the use of metal complexation 

using DDDC/APCD . (Dipyrrolidine Dithiocarba-
mate/Ammonium Pyrrolidine Dithiocarbamate) and 
extraction of the metal complex into chloroform, often 
followed by back extraction into nitric acid. This pro
cess not only removes compounds from the .seawater 
matrix which interfere with the analysis (e.g. Ca, Mg, 
Cl, Na), but also results in preconcentration of the 
analyte under investigation. The use of solid-phase 
preconcentration techniques (e.g. Chelex column 
[29]) prior to GFAAS analysis has also been reported, 
and allows automation of the analytical method using 
a flow analysis approach. Multi-element techniques, 
such as ICP-AES and ICP-MS (inductively coupled 
plasma atomic emission and mass spectrometry, re
spectively) have a high potential for total dissolved 
trace metal analysis in seawater. In recent publica
tions, the developments of ICP-AES [30] and ICP-MS 
[31,32] methods have been reported for analysis of 
trace metals in seawater after solid phase extraction. 
Application of such methods by the marine chemistry 
research community is, however, not yet common. 

Stripping voltammetric techniques do not have the 
multi-element capabilities of ICP-AES/ICP-MS, but 
have the advantage of allowing determinations di
rectly in seawater, as preconcentratiori is performed 
in the voltammetric cell itself. Alkali metals present 
in seawater do not interfere with trace metal deter
minations, but in many cases actually increase the 
sensitivity of the voltammetric methods because of 
their role as electrolyte. The reduction in the sample 
handling minimises the risk of sample contamination 
and allows automation of the instrumentation. A com
mon treatment of acidified samples is the application 
of UV-digestion prior to total dissolved trace metal 
analysis by stripping voltammetry [33]. The UV light 
breaks down surfactants, which could interfere with 
the analysis by adsorbing onto the HMDE or MFE 
during the preconcentration step and therefore, hinder 
the passage to the electrode of metal cations (ASV) 
or of metal-AdCSV ligand complexes. In addition, 
the UV-digestion breaks down metal-complexing or
ganic ligands, which occur naturally in seawater. Fig. 
2 shows a home-built UV-digestion unit with a 400 W 
medium pressure Hg vapour lamp (Photochemical 
Reactors). The UV-digestion is performed on dis
crete samples (ca. 30 ml) placed in quartz tubes with 
a Teflon screw cap. A UV-digestion period of 3 h is 
sufficient [33] to achieve the breakdown of interfering 
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Fig. 2. Drawing of an UV-digcstion system for breakdown of 
dissolved organic compounds in natural waters. 

copper (nM) 
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Fig. 3. Depth profile of total dissolved Cu in the Northeast Atlantic 
Ocean (RRS Challenger cruise 1991). 

organic substances in acidified samples. In order to 
aid the breakdown, 10 mM H2O2 (final concenû tion) 
is added to the sample prior to UV-digestion. The UV 
unit is air-cooled using a fan, resulting in a sample 
temperature during digestion of ca. 70°C. 

Fig. 3 shows a depth profile of total dissolved Cu 
in the Northeast Atlantic Ocean (station 11; position: 
45 25.44 N and 20 0.31 W) collected durihg the 
RRS Challenger cruise CH76/9I. The sample collec
tion, filtration, storage and analysis were undertaken 
using ultra-clean working practices. Total dissolved 
Cu in the oceanic samples was determined after 
UV-digestion, using AdCSV with Tropolone (0.4 mM, 
final concentration) as complexing ligand and 
HEPES (A -̂hydroxyethylpiperazine-A/'-2'-ethanesul-
phonic acid) as pH buffer (0.01 M final concentration; 

3 7 . 0 -

3 6 . 5 -

Cr (nM) 
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Fig. 4. Contour plot of total dissolved Cr in the Gulf of Cadiz. 

pH 7.77) [34]. Certified reference material (CRM; 
NASS-2 open ocean seawater) was analysed to verify 
the accuracy of the AdCSV method. Dissolved Cu at 
station 11 showed lowest concentrations (ca. 1.6 nM) 
in the.surface ocean, and an increase in concentration 
(to ca. 3.5 nM) with depth [35]. This behaviour is 
typical for Cu in the open ocean, as it is taken up as 
a micro-nuuient by phytoplankton in the surface wa
ters and released in deeper waters upon sinking and 
degradation of the phytoplankton cells [36]. 

AdCSV has shown advantages over GFAAS meth
ods for the analysis of Cr, U and V in seawater. These 
metals occur in oxygenated seawater mainly as nega
tively charged metal oxides and carbonates (Cr04^~, 
[U02(C03)3]'*~, V02(OH)3^-). Commonly used pre
concentration/matrix removal methods for these trace 
metals are often cumbersome (e.g. Co-APDC copre-
cipitation of Cr and V [37]) and the GFAAS methods 
for U and V are not very sensitive. Consequently, few 
studies have been reported on the behaviour of these 
metals in seawater. Sensitive AdCSV methods for Cr, 
U and V in seawater are available (see Table 1). Appli
cations of these methods include a study of dissolved 
Cr distribution in English coastal waters [38], U in the 
Tamar estuary [39] and V in the Mediterranean [40]. 
Fig. 4 shows a surface contour plot of the disuibution 
of total dissolved Cr in the Gulf of Cadiz (southwest 
Spain). Discrete samples were obtained from a depth 
of ca. 5 m using modified Niskins and filtered on-board 
ship (B/O Garcia del Cid; TOROS IV survey, Octo
ber 1998). Total dissolved Cr was analysed in the lab
oratory in Plymouth, using DTPA as AdCSV ligand. 
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acetate as the pH buffer (pH 5.2) and nitrate as redox 
catalyst (final concentrations 2.5, 50, and 500 mM, re
spectively) [41]. Prior to analysis, samples were sub
jected to UV-digestion (3 h) to break down interfering 
surfactants and convert any Cr(III) present to Cr(VI) 
[33]. Total dissolved Cr concentrations in the surface 
waters Gulf of Cadiz ranged between 1.6 and 2.9 nM 
and were lower than in Westem Mediterranean surface 
waters (between ca. 2.5 and 4nM [42]), but compa
rable to levels observed in the surface waters around 
England (between ca. 1 and 2.5 nM) [38]). As a result 
of the higher suspended particulate matter concentra
tions in coastal waters compared with open ocean wa
ters, the particle scavenging of dissolved Cr is prob
ably more effective at reducing Cr concentrations in 
the coastal seas [38]. 

6. Trace metal speciation studies 

The high sensitivity and selectivity of stripping 
voltammetry make this technique veiy suitable for 
trace metal speciation studies. Speciation analysis in
volves the determination of different physico-chemical 
forms of trace metals. Metal speciation studies have 
become important because of the recognition that total 
dissolved metal concentrations do not yield sufficient 
information about the toxicity, bioavailability and geo
chemical behaviour of trace metals in natural waters. 
Many metals are essential for growth and metabolism 
of organisms, and these are termed micro-nutrients 
(e.g. Co, Cu, Fe and Zn). Growth limitation may occur 
when concentrations of micro-nutrients become too 
low (e.g. in the case of the dinoflagellate Gonyaulax 
tamarensis [Cu2+]<3x 10"'̂  M) [43]. On the other 
hand, enhanced concentrations of metals may cause 
toxic effects (G. tamarensis at [Cu2+]>2.5 x 10"'° M) 
[44]. For many metals (including Cu, Zn, Cd and Ni) 
the free aqueous ions have been reported to be the 
most bioavailable and toxic, because of their ability to 
pass through the cell membrane of phytoplankton and 
macro algae [45,46]. In contrast, metals complexed 
by organic ligands (e.g. humic acids, fulvic acids, 
EDTA and NTA) are not able to pass cell membranes, 
and the presence of such ligands in natural waters 
reduces the availability of metals to organisms. 

Only a few analytical techniques (including strip
ping voltammetry and chemiluminescence [47]) are 

chromium (nM) 
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0 

Fig. 5. Depth profiles of total dissolved Cr. Cr(V[) and Cr(III) at 
station 7 in the Westem Mediterranean (37.5"N. lO'E) analysed 
on-board ship within 24 h upon sampling (FS Valdivia cruise. 
1992). 

sensitive enough to determine labile/free aqueous 
metal fractions in natural waters. Trace metal spe
ciation measurements need to be performed as soon 
as possible upon sampling, as the chemical equi
libria in natural waters are readily disturbed during 
sample storage. The application of in-situ (including 
ship-board) techniques is therefore, preferred. 

A great number of Urace metal speciation studies 
in marine waters utilising snipping voltammetry have 
been reported during the last decade [39,42,48-61]. 
Stripping voltammeuy has been used to investigate 
(A) redox speciation, (B) the fraction of organically 
complexed metal, and (C) concentration of naturally 
present metal complexing organic ligands. 

(A) AdCSV has been used to determine the different 
redox species of As [62], Fe [63] and Cr [42] in ma
rine waters. The thermodynamically stable form of Cr 
in oxygenated seawater is Cr(VI) (as Cr04-"). How
ever, significant amounts of Cr(III) have been found 
in natural oxygenated waters. Fig. 5 shows depth pro
files of dissolved Cr species in the Westem Mediter
ranean [42]. Total dissolved Cr (comprising of Cr(III) 
and Cr(VI)) was determined after UV-digestion of the 
seawater, and dissolved Cr(VI) after selective removal 
of Cr(ni) from seawater using Lichrosorb Si 60 silica 
(Merck) [42]. Dissolved Cr(lll) was determined as the 
difference between total dissolved Cr and Cr(VI). To
tal dissolved Cr concentrations ranged between 3 and 
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4nM, with somewhat lower Cr(VI) concentrations. 
Dissolved Cr(III) concentrations ranged between 0.5 
and 1.5 nM. with maximum concentrations in the sur
face layer, this maximum has been attributed to pho
tochemical reduction of Cr(VI) to Cr(III) [42]. 

(B) Dissolved inorganic/organic speciation mea
surements in seawater may be performed using ASV 
and AdCSV. The ASV method measures the equi
librium concentrations of free metal ions and labile 
metal complexes that dissociate to free metal ions 
during the analytical timescale of the measurement. 
ASV therefore, determines inorganic trace metals 
(i.e. free metal ions and inorganic complexes) and 
may include a fraction of relatively labile organic 
complexes. Ligand competition is used for speciation 
measurements by AdCSV, whereby the added ligand 
competes for trace metals with naturally occurring 
metal-complexing ligands. This method determines 
inorganic and weakly complexed trace metals. The 
competition conditions, or detection windows [64], 
can be carefully controlled by choosing a suitable 
AdCSV ligand (with known conditional stability 
constants for the metal under investigation) at an ap
propriate concentration. For example, AdCSV ligands 
used for speciation measurements of Cu in natural 
waters include Tropolone [34], Salicylaldoxime [65] 
and oxine [66], with Tropolone being the weakest Cu 
complexing AdCSV ligand and oxine the strongest. 
The ligand competition approach is used to determine 
labile trace metal fractions, and also to determine the 
concentration of natural metal complexing ligands 
with their conditional stability constants (see (C)). 
An example of the former approach is presented in 
Fig. 6, which shows depth profiles of labile and total 
dissolved Ni in the Gulf of Cadiz (TOROS I survey, 
November 1996). Dissolved labile Ni was determined 
within 48 h upon sampling in a land-based laboratory. 
The filtered seawater samples were allowed to equi
librate (in FEP bottles, 30 ml) for a period of 12 h 
after addition of DMG (final concentration 20 fiM) 
and HEPES buffer (final concentration 10 mM, pH 
7.77). Total dissolved Ni was determined in Plymouth 
after UV-digestion of acidified samples. The largest 
difference between total and labile Ni was observed -
in the surface waters, where the non-labile Ni fraction 
ranged between 373 and 72% of the total. The high 
proportion of non-labile Ni in the surface waters can 
most likely be attributed to presence of enhanced con-
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Fig. 6. Depth profiles of labile and total dissolved Ni in the Gulf 
of Cadiz. Dissolved labile Ni was determined within 48 h upon 
sampling. Total dissolved Ni was determined in the laboratory in 
Plymouth, after UV-digestion of acidified samples. 

centrations of Ni complexing organic matter. Little is 
known about the nature of metal complexing organic 
matter, but it is thought to include algal exudates and 
breakdown products of phytoplankton cells. 

(C) Metal titrations are used to determine the con
centration of natural metal complexing ligarids (L) and 
their conditional stability constants (A^ML)- For this 
purpose, a seawater sample is divided into typically 10 
sub-samples (in polystyrene or FEP vials), to which 
increasing amounts of metal are added. After addition 
of the AdCSV ligand and a pH buffer, an equilibra
tion period of typically 12h is applied. Subsequently, 
the labile metal concentrations are measured in the 
sub-samples. Linear [67,68] or non-linear [69] data 
transformation allow the determination of L and I^ML< 

in addition to the free aqueous metal concentration. 
The natural ligand concentration (L) and i^ML pro
vide information about the capacity of natural waters 
to buffer additional inputs of metals, and the binding 
strength of L for the metal under investigation, respec
tively. The free aqueous metal concenU-ation, which 
is calculated from L and FCML^ provides information 
about the possible biological effects of the metal. 

The natural ligands determined using the AdCSV 
method with ligand cornpetition are operationally de
fined. The detection window for titrations is described 
using the a coefficient of the complex formed between 
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Fig. 7. Dcptli profile of the concentration of natural Cu complexing 
ligands and fluore.icence in the Northeast Atlantic Ocean (48'''N, 
20°W). Seawater samples were equilibrated in FEP bottles (30 ml) 
after addition of Cu in the presence of Tropolone and borate buffer 
(final concentrations 0.4 and 10 mM. respectively). 

the added AdCSV ligand and the metal under the spe
cific experimental conditions [64]. The or coefficient 
is the ratio between the metal concentration which is 
complexed by a particular ligand or group of ligands 
over the free metal concentration [70] and can be de
fined by 

« ' M ( A L ) „ = E ^ ' M ( A L ) „ [ A L ] " (5) 

where K'Mt,M.)„ is the conditional stability constant 
for the /ith complex between the metal and added 
ligand and [AL] is the added ligand concentration. 
Ligand competition techniques optimally detect nat
ural ligands that are within plus or minus one-order 
of magnitude of the detection window [71]. If the 
metal-natural ligand complexes have a coefficients 
that are outside this range of detection, errors in the 
determination of the conditional stability constant are 
encountered. 

Fig. 7 shows a depth profile of concentrations of 
natural Cu complexing ligands in the Northeast At
lantic Ocean determined using automated AdCSV 
[72] on-board ship [35]. The depth profile of natural 
Cu complexing ligands showed a close similarity with 
in-situ determined fluorescence, which is a measure
ment of the chlorophyll and phaeopigment concentra
tions. The maximum ligand concSitration coincided 

with a maximum in fluorescence, indicating that the 
ligands observed in the Atlantic were derived from 
primary producers. The conditional stability constants 
of the Cu complexing natural ligands ranged between 
12 and 13 (log values), at the detection window used 
(log orcuTrop = 3.29). The calculated free cupric ion 
concentrations [Cu-"*"] ranged between 7 x 10"'"* and 
2.5xl0~'^M, indicating that [Cu-] was neither 

• bio-limiting nor toxic. 
The AdCSV method has also been used to deter

mine the organic complexation of Fe in seawater. In 
some cases, nearly the whole (99%)'dissolved Fe pool 
in seawater has been reported to be bound by strong Fe 
complexing organic ligands (L) (̂ :'FeL>10'̂ ) [73-75]. 
The strong complexation significantly reduces the con
centration of free iron ions [74], which are thought 
to be available for uptake by phytoplankton in seawa
ter. The interest in dissolved Fe and its speciation in 
oceanic waters has been caused by the proposed hy
pothesis that Fe is limiting primary productivity in cer
tain remote parts of the worlds' ocean which exhibit 
high concenU-ations of macro-nutrients (N, P), but low 
chlorophyll levels [76]. The sensitivity and speciation 
capabilities make AdCSV a suitable technique to in
vestigate the concentration and conditional stability 
constants of the Fe complexing natural ligands. 

7. Ship-board trace metal measurements 

The need for monitoring of metals in marine envi
ronments is well established. In the case of the UK, 
the requirements have been specified by the Paris con
vention and European Union Directives. Although ex
isting laboratory-based techniques are powerful, the 
sample handling/processing stages prior to analysis 
are time consuming and carry a risk of sample con
tamination. There is a need for rapid and automated 
ship-board trace metal monitors which produce high 
quality data at a high resolution. The use of analytical 
insuumentation at sea places special demands on the 
instmmentation with respect to automation, portabil
ity and robustness. 

Suitable techniques for ship-board dissolved trace 
metal analysis include colorimetry, chemilumines
cence and snipping voltammetry. These techniques 
can be operated in a flow-analysis mode, whereby 
sample and reagent transport (including- any sample 
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Fig. 8. Manifold of an automated voltammetric system for ship-board analysis of trace metals. Sample pick-up could be from sample 
changer, or pumped seawaler supply. 

preconcentration, interference and matrix removal) 
and analysis of the trace metals is performed on-line 
with a minimum risk of sample contamination. The 
on-line approach allows ready automation of the anal
ysis with computerised sample and reagent transport, 
and computer-controlled data acquisition. Ship-board 
application of colorimetric methods includes the de
termination of Mn in hydrothermal plume samples 
[77] and in Atlantic shelf waters [78]. Reported 
ship-board application of chemiluminescence includes 
the analysis of dissolved Cu in the Pacific Ocean [79], 
Mn in the Pacific Ocean [80], Fe in the East China 
Sea [81], the Atlantic Ocean [82] and the Southem 
Ocean [83]. The colorimetric and chemiluminescence 
flow-analysis methods conunonly make use of solid 
state preconcentration/matrix removal procedures. 
By contrast, stripping voltammeUy does not require 
a matrix removal step and allows for the determi
nation of a wider range of metals. Fig. 8 presents a 
manifold of a voltammetric system which has been 
used on-board ships in an automated batch-mode. 
Aliquots of 10 ml can be analysed at a rate of one 
complete measurement every ca. 10-20 min [72]. 
Each sample is fully calibrated, resultingin high qual
ity data required for biogeochemical and pollution 
studies. 

8. Near real-time trace metal analysis 

A recent development in marine trace metal studies 
is the application of analytical monitoring insuu
mentation on-board ship for near real-time measure
ments of surface waters using AdCSV with a HMDE 
[38,84,85]. This approach uses underway pumping as 
a means of sample collection and thereby obviates 
the need for the vessel to halt for the collection of 
discrete samples. Sample contamination is prevented 
by eliminating contact of the seawater with metal 
components by using inert materials (e.g. Teflon®, 
Polyvinyl Chloride, Polyethylene). An effective un
derway pumping system can be designed using a peri
staltic or Teflon®-bellows pump and a long (20-60 m) 
and strong Polyethylene or Polyvinyl Chloride hose. 
The hose is hung overboard and attached to a 'fish' 
(torpedo-like stmcture, KIPPER-1) which is towed 
from a strong cable attached to a winch (Fig. 9). The 
design and weight (ca. 40 kg) ensures that KIPPER-1 
stays at a constant depth (ca. 3-4 m) even at speeds 
over 10 knots. KIPPER-1 is made from solid carbon 
steel with an inlet at the front and a hole through 
the centre for the sampling hose. The fish is coated 
with a noii-metallic epoxy-based paint. All hiBing 
used is rapidly equilibrated with the seawater as it is 
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Fig. 9. Drawing of ship-board continuous undenvay sampling and analysis system. 

Fig. 10. Contour plot of total dissolved Zn in the Gulf of Cadiz, 
determined on-board ship using automated AdCSV with continu
ous underway sampling. 

automatically and continuously rinsed during sample 
collection. Equally, on-line filtration and UV-digestion 
is carried out continuously prior to analysis. A tan
gential filtration unit is used, and the UV-digestion 
unit has a 400 W medium pressure Hg vapour lamp 
surrounded by a ca. 3.5 m long quartz coil (1 mm i.d.) 
[85]. 

Fig. 10 illustrates, with the example of Zn, the ad
vantages of high-resolution monitoring in the coastal 
waters of the Gulf of Cadiz (TOROS IV survey, Oc

tober 1998, B/0 Garcia del Cid). The continuous un
derway sampling and analysis approach resulted in an 
extensive coverage of the coastal area. The automated 
voltammetric instrumentation operated largely unat
tended and almost continuously on-board ship during 
steaming and station time. Dissolved Zn and Cu con
centrations were analysed simultaneously, using a 
mixed reagent of ligand and buffer (oxine, 0.02 mM; 
HEPES, 0.01 M, final concentrations). At a ship's 
speed of 8 knots, and a rate of 4-5 measurements 
per hour, the spatial resolution between samples dur
ing automated on-line metal analyses was between 
3.3 and 4.5 km. The distribution of dissolved Zn in 
Fig. 10 shows enhanced metal levels in the coastal 
region in the form of plumes extending from the pol
luted Huelva estuary (northwest in Fig. 10,50-65 nM 
Zn) and the Guadalquivir estuary (east in Fig. 10, 
30-40 nM Zn). Elevated concentrations between these 
estuaries indicate the transport of water along the 
shore in a south-easterly direction. The decrease in Zn 
concentrations with increasing distance from the coast 
can be explained by the mixing of metal-polluted 
estuarine water with cleaner Atlantic waters. 

Field applications of automated voltammetric mon
itors have also been reported for estuarine studies [86). 
Estuaries.are highly reactive zones, where fluvial dis
charges mix with seawater and dissolved elements in
teract with organic material and particles in the water 
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Fig. II. Set-up for estuarine trace metal monitoring with continuous sample collection and automated AdCSV trace metal analysis. 
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Fig, 12. On-line continuous dissolved total Ni measurements in the Huelva estuary during a tidal cycle (April 1998). Discrete measurements 
were performed in the laboratory in Plymouth by AdCSV (after UV-digestion). 

column. Fig. .11 shows the instmmental set-up utilised 
for automated analysis of total dissolved Ni by Ad
CSV during a tidal cycle study carried out in the lower 
Huelva estuary, (TOROS III survey, April 1998). The 
voltammetric metal monitor was operated from a van, 
and powered by a portable generator. Surface water 
samples were collected in the estuarine channel using 
a braided PVC sampling hose which was submerged 
at. a depth of ca. 0.5 m below the surface by a float and 
an anchor. Fig. 12 shows the results of a tidal cycle 
study, during which total dissolved Ni measurements 
were obtained with the automated metal monitor. At 

high salinity (5=37), total dissolved Ni concentrations 
ranged between 75 and 145 nM, while at low water 
(S=34), total dissolved Ni peaked at around 200 nM. 
Therefore, dilution of river water with enhanced Ni 
concentrations, by seawater depleted in Ni, was an im
portant process determining the Ni behaviour in this 
estuarine system. Important advantages of the in-situ 
monitoring approach include the reduced risk of sam
ple contamination, consistency in sample position, and 
the larger number of data points obtained during the 
automated study: 41 automated measurements com
pared with 13 discrete measurements. 
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The Strong variability in coastal and estuarine wa
ters requires high spatial and temporal resolution in 
the design of sampling strategies. This monitoring ap
proach results in enhanced sampling frequencies and 
is therefore, an important tool for biogeochemical and 
pollution studies. The data can, for example, be used 
in numerical computer models for modelling of metal 
distributions and behaviour in estuaries and coastal 
waters. The near real-time analysis also provides the 
opportunity for an interactive sampling campaign, be
cause the results of the measurements are directly 
available and can be evaluated on-board ship whilst 
the vessel is steaming. 

Recent developments in HMDE design include a 
flow-cell, which has been incorporated into an auto
mated voltammetric system, and resulted in a measure
ment frequency of 60 h~' for total dissolved Co with a 
limit of detection of 5.4 pM [87.88]. This voltammet
ric monitor utilises on-line de-oxygenation with nitro
gen or sulphite and semi-permeable tubing to remove 
interfering oxygen, and calibration of the analysis is 
performed at ca. 4 h intervals [89]. Application of the 
design for total dissolved Cu and Co monitoring of 
surface waters in the Westem North Sea resulted in 
ca. 15000 data points for each metal over a 2-week 
period [90]. Calibration of the AdCSV method at 4h 
intervals is suitable for marine waters which are re
moved from riverine inputs. Changes in salinity and 
surfactant concentrations may alter the sensitivity of 
the method and therefore, estuarine and near-coastal 
studies require calibration of individual samples using 
the standard addition method. 

9. Conclusions and future developments 

The selectivity, extremely low detection limits for 
more than 20 elements, high accuracy, modest cost 
and suitability to flow analysis, have made stripping 
voltammetry an important technique for total dissolved 
trace metal studies and trace metal speciation analysis. 
The future importance of stripping voltammetry will 
most likely be found in trace metal monitoring and 
metal speciation studies. 

Still little is known about the interaction between 
metal ions and organisms, and current knowledge is 
largely based on laboratory experiments. The capabil
ity of stripping voltammetry to determine concenUa-

tions of metal complexing ligand.s, their conditional 
stability constants and the free aqueou.s metal ion con
centrations is important for growth limitation studies 
in open ocean waters where micro-nutrients (e.g. Fc. 
Co, Zn and Cu) may be deficient [911. and for tox
icity studies in metal polluted waters [92]. Much ef
fort is currently devoted to Fe redox speciation studies 
in seawater [63,93] and investigations into Fe com
plexing natural ligands in Fe deficient oceanic wa
ters [55,75,94,95]. The very low concentrations of Fe 
and its chemical speciation in these remote oceanic 
regions are of significance for phytoplankton growth 
and consequently atmosphere-ocean COj exchange. 
Recently attention has al.so turned towards the role of 
Zn with respect to oceanic phytoplankton growth [961. 
and stripping voltammetry has been used to establish a 
link between phytoplankton growth and free aqueous 
Zn ions. 

Further applications of stripping voltammetry can 
be expected in metal polluted marine waters. Algae 
in such environments have been reported to produce 
metal-chelating compounds, phytochelatins [97,98]. 
Phytochelatins are polypeptides with thiol groups and 
are thought to reduce metal toxicity inside algal cells. 
These compounds can be determined using HPLC 
[99]. An investigation in a coastal water reported that 
phytochelatin concentrations showed a positive rela
tionship with the free cupric ion concentration (as de
termined with AdCSV), and not with total dissolved 
Cu [100]. The combination of HPLC and AdCSV 
therefore, forms a powerful tool for investigations into 
biochemical effects of trace metals on organisms. 

Trace metal speciation studies in natural waters pro
vide an important insight into the geochemical be
haviour of trace metals. Total dissolved metal mea
surements give an overall picture of metal removal 
or supply in natural waters, but speciation measure
ments can aid our understanding of the processes in
volved. Studies (using AdCSV) in the authors' labo
ratory into trace metal sorption kinetics involving dis
solved and particulate phases in estuarine waters have 
shown that organically bound Cu species were more 
particle reactive than organically bound Ni species 
[101]. Furthermore, the implications of trace metal 
complexation by colloidal fractions in seawater have 
become apparent with the emergence of novel filtration 
techniques. For example, stripping voltammeUy (ASV 
using a MFE) used in conjunction with cross-flow 
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Fig. 13. (a) Drawing of the VIP system, consisting of a voltanimetric probe (bottom pan), an Ocean seven 301 probe for measurements 
of chemical and physical parameters (top part) and a sampling pump: (b) drawing of the flow-through voltammetric cell; (c) dnnving of 
the gel coated and Hg plated Ir microelectrode (with permission from Idronaut). 

ultrafiltration, have shown that Zn and Cd were associ
ated with much smaller organic compounds (<I kDa) 
than Cu (1-8 kDa) [60]. Such observations have sig
nificant implications for estuarine pollutant transport 
processes and can be used to improve estuarine con
taminant models. 

This paper has illusU-ated the usefulness of near-real 
time ship-board voltammetric monitoring of trace 
metals in surface waters. The trend in automated 
trace metal measurements is towards in-situ deploy
ment of miniaturised analytical instmmentation, with 
submersible continuous application of sensors. This 
approach not only further reduces the risk of sam
ple contamination, but also potentially leads to an 

improved way of U-ace metal speciation measuretnents 
as the in-situ analysis results in a minimal disturbance 
of the chemical equilibria. The limited availability of 
reliable commercially available voltammetric sensors 
and problems caused by fouling of the sensor-surface 
has hampered long-term submersible applications. 
However, in recent years important progress has been 
made and different designs of submersible voltam
metric systems have been reported. A submersible 
probe using a sessile Hg drop electrode and allow
ing in-situ ASV measurements of trace elements in 
the water column of lake Bret has been described 
[102,103]. The submersible application of solid 
electrodes is however, jjreferable because of their 
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robustness. Fig. 13 shows the voltammetric in-situ 
profiling (VIP) sy.stem, which has been successfully 
applied in freshwater and seawater for the ASV de
termination of Cu, Pb, Cd, Zn and Mn [104,105]. The 
VIP uses a flow-cell with a Hg-plated Ir microelec
trode (single or array) [18,19]. The microelectrode is 
covered with an agarose gel to prevent fouling of its 
surface [11]. The probe can be used for measurements 
down to 500 m in seawater and is able to determine 
trace metals with sub-nanomolar detection limits in 
the presence of oxygen. The time limiting step of 
the analysis is the diffusion of trace metal species 
through the protective gel, and the measurement fre
quency is ca. 3-4h~'. Only 'truly dissolved' (i.e. 
mobile species smaller than a few nanometers) trace 
metal species pass through the agarose membrane. 
Consequently, speciation studies can be conducted by 
additional sampling and analysis of total dissolved 
trace metals in discrete samples. One of the few other 
applications of a submersible electrochemical sensor 
in seawater has been reported by Wang et al. [13]. 
These workers successfully applied a sensor with a 
bare Au fibre electrode in contaminated coastal waters 
for die determination of Cu and Pb utilising stripping 
potentiometry. The remote sensor has a reported limit 
of detection of ca. 5 nM for labile Cu, and is therefore 
suitable for estuarine and coastal waters with enhanced 
metal levels, but not for unpolluted ocean waters. 

Submersible electrochemical sensors are very suit
able for automated real-time analysis of trace metals in 
natural waters. Unattended high resolution measure
ments will allow the monitors to be used for detailed 
biogeochemical studies and as early warning systems 
for metal pollution events. The submersible sensors 
have to be mgged and reliable and therefore, make 
use of solid electrodes. Bare Au and Hg plated Ir fi
bre microelectrodes have shown to work successfully, 
but further developments in electrode technology will 
be required to improve the sensitivity of the non-Hg 
electrodes and to widen the range of trace metals that 
can be determined using microelectrodes in seawater 
at the required low concentrations. 
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.Abstract On April 25. 1998. a spill al the Los Frailes mine in southern Spain resulted in a very high 
input of meials (including Ag. As. Cd. Cu. Fe. Pb, T l and Zn) into the river Guadiamar, Calculations 
indicate that the discharges into the Guadiaraar of Cu (51001), Pb (24.7001). Zn (26.2001) and Ag 
(138 I. based on mud only) were higher than the annual production by the Los Frailes mine for Ag and 
Pb. and ca. two times less for Cu and Zn, For many metals, the increase in concentration in the 
aflccted river (Guadiamar). 2 days after the initial discharge, was by several orders of magnitude. How
ever. 6 months after the incident, no evidence of the spill could be observed in the plume of the river 
(Guadalquivir) which discharged the mine waters into the coastal waters of the Gulf of Cadiz, This ob
servation can possibly be explained by low rainfall, natural metal removal processes in the river and 
cstuarine environments and by human interventions, © '999 Elsevier Science Ltd, All rights reserved 

Key mirds—mine spill, metal pollution, Los Frailes. Guadiamar. Guadalquivir. Gulf of Cadiz 

PII: 30043-1354(99)00282-1 

INTRODUCTION 

The retaining dam of a tailing reservoir at the Los 

Frailes mine in Andalucia (southern Spain; Fig. 1) 

collapsed on Apr i l 25. 1998, resulting in a 60 m 

breach in the reservoir wall. The failure released 5-

7 X 10*̂  m-" of acid sludge and water (pH 2) into the 

river Guadiamar (van Geen and Chase, 1998). 

During the 18 days following the spill, an estimated 

26 t of dead fish was removed from the rivers (Pain 

cl al., 1998). The released sulphide sludge formed a 

layer up to ca. 1.5 m thick covering 4000-5000 ha 

of the river bed and flood plains, including agricul

tural land, of the Guadiamar up to 40 km down

stream (Medio Anibiente, I998t). Contamination of 

the Doiiana Park ("worlds' biosphere reserve" of 

U N E S C O , 45 km south of the mine) was prevented 

by diverting the acidic waters. 

The Los Frailes mine (owned by Boliden Apirsa 

S.L.) has an annual production of approximately 

65 t A g (I t= 1000 kg), 13,800 t C u , 18,000 t Pb and 

*Author to whom all correspondence should be addressed. 
(Tel,: +44-1752-233-036: fax: +44-1752-233035]; 
e-mail: eachtorbcrg(a'plym.ac,uk, 

tMedio Ambientc (1998) Aznalcollar mining spill, Internet 
Communication, htlp://www,cma,junla-andalucia,es/ 
aznalcollar/idxaznalcollar.htm. 

47,800 t Zn , The average grade of the rnassive poly-
metallic sulphide ore at Los Frailes is 62 g f ' A g 
(Leistel ei aL 1998b). 0.1-4 gt~ ' A u (Leistel el at., 
1998a). 0.34% Cu (Leistel el a!.. 1998b), 2.25% Pb 
(Leistel et ah. 1998b) and 3.92% Zn (Leistel et aL, 
1998b). The ores also contain important amounts 
of As , H g and T l (Almodovar ei al., 1998). The 
mine has been worked since 1997 with waste ma
terial collected in a tailing reservoir retained by an 
earth/rock dam. The failure of the dam resulted in 
a loss of ca. 20% of tailings from the reservoir. We 
visited the area affected by the incident before 
(Apri l 20, 1998) and after (April 27 and October 
15, 1998) the dam failure, and performed extensive 
trace metal monitoring surveys in the G u l f o f Cadiz 
in June 1997 and October 1998. 

METHODS 

River sampling was performed using clean methods 
(plastic gloves were worn) either from the banks or from 
bridges. Samples were initially taken into acid-cleaned 
high density polyethylene (Ht)PE) bottles. The samples 
were filtered (polycarbonate filters, Nuclepore 0.4-/(m por
osity) within 4 h of sampling, and were then acidified lo 
pH 1.5 using nilric acid. Marine surface water samples 
were obtained either by discrete sampling using modified 
Niskin bottles attached to a C T D rosette (Morley ct al.. 
1988) (As and Mn: with analysis using discrete laboratory 
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Fig. 1. Map showing Donana Parle, rivers, mines and sampling locations in southern Spain. The diver
sion of the Guadiamar waters into the Guadalquivir following the mine spill is indicated on the map. 

methods, sec below) with similar filtration and sample 
preservation to the above, or by continuous underway 
sampling from a depth of ca. 3-4 m below the sea-surface 
(Cu and Zn; with analysis using high resolution on-line 
ship-board methods, see below). Mud samples were 
obtained from the Guadiamar on April 27. The mud was 
subjected to a total digestion using Aqua Rcgia [mixture 
of concentrated HNOj (three parts) and HCl (one part)) 
and H F (Rantala and Loring, 1985) or concentrated 
HNOj . In addition, an extraction using 1 M HCl was per
formed in order to release weakly bound, non-detrital, 
trace metals (Millward el al., 1996) from the sludge. This 
digest provides an estimation of the availability of metals 
to organisms by mimicking their digestive conditions 
(Bryan and Langston, 1992), and yields results which cor
relate-well with the biologically availability of particulate 
trace metals (Luoma, 1983). 

Conductivity and pH of the river water were determined 
using field instrumentation ( H A N N A model HI-9635 con
ductivity meter; H A N N A model HI 9025 pH meter). 
Anions were determined using capillary ion analysis 
(Waters, USA), according to Waters (1996). Dissolved Mn 

in discrete seawater samples was determined using 
GFAAS (graphite furnace atomic absorption spectrometry 
(Perkin Elmer llOOb), after solvent extraction using 
APDC/DDDC; Morley et al.. 1997), Total dissolved inor
ganic As in discrete seawater samples was determined after 
a prereduction involving potassium iodide in the presence 
of ascorbic acid. Arsenic was determined using a hydride 
generation system coupled to an ICP-MS (inductively 
coupled plasma mass spectrometry; VG-Plasmaquad). Tliis 
method is similar to that described by Andreae (1977), but 
has been modified according to Branch et al. (1991). Total 
dissolved Cu and Zn concentrations in the continuous 
underway samples were determined on-board ship using 
automated adsorptive cathodic stripping voltammetry 
(ACSV). The analysis-was performed using square wave 
ACSV in the presence of 8-hydroxyquinoIine (2 x I0~* M) 
and HEPES pH buffer (AZ-hydroxyethylpiperazine-Af-r-
elhanesulphonic acid, pH 7.78; O.OI M), employing an 
automated voltammetric trace metal monitor with an 
/lAutolab voltammeter (Ecochemie) and hanging mercury 
drop electrode (VA 663 Stand, Meirohm), according lo 
Braungardt et al. (1998), This approach provides near-real 
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lime continuous high-resolution dissolved trace metal 
measurements (Achlerbcrg « al.. 1999). 

Metal concentrations in discrete fresh water samples 
and in digested mud were determined using a range of 
analytical techniques, including ICP-MS (PlasmaQuad 
PQ2+ Turbo. VG Elemental). ACSV. Flame AAS 
(atomic absorption speclroniclry. with Deuterium back
ground correction: Pye Unicam) and ICP-AES (inductively 
coupled plasma atomic emission spectrometry; Varian 
Liberty 200). All trace metal determinations were verified 
by analyses of certified reference materials and by dupli
cation of analyses between liiboratorics where possible 
(Elbaz-Poulichet ei al.. 1999). 

RESULTS AND DISCUSSION 

The sulphide mud discharged by the Los Frailes 
mine (sampled from the Guadiamar approximately 
10 km downstream of the mine) had a high Fe con
centration (36%; see Table 1) and consisted mainly 
of very fined grained pyrite {ca. 80%). The elements 
present in the highest concentrations in the mud 
(Fe, Z n , Pb and Cu) were those which also have the 
highest content in the sulphide ores mined in the 
region (Table 1); accessory metals born by pyrite 
(As and Tl) or Zn sulphides (Cd, H g and Tl) were 
also abundant. The remaining elements belong to 
gangue minerals such as quartz, sericite ( A l - S i - K ) 
or barite (BaSOj). Metals in the mud (Table I) 
were enriched by one to three orders of magnitude 
compared to averaged crustal rocks as indicated by 
the enrichment factor (except A l , Ba, Cr , M g , M n , 
N i , Sr and V). The quantity of the metal released 
by 1 M H C l was less than ca. 45% of the total, 
except for Pb (95%) and U (75%), indicating that a 
significant portion of metals were contained in the 
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refractory fractions of the mud. However, because 
of the high metal concentrations in the mud. inges
tion would most likely have caused adverse effects 
to organisms. 

Dissolved trace metal concentrations and p H in 
samples taken from the Guadalquivir at site 3. 
prior to the incident (April 20. 1998) and in the 
Guadiamar (April 27, 1998) at site I upstream of 
the Los Frailes mine showed no signature of acid 
mine drainage ( A M D ) contamination. In particular, 
the Guadiamar at site 1 can be classed as a rela
tively pristine river (Table 2) when compared with 
other systems (Martin et a!.. 1993). Metal levels in 
the Guadiamar increased dramatically following the 
failure of the tailings dam. For many metals, the 
increase was by several orders of magnitude at site 
2, when compared to the up.streani sampling site I 
(e.g. Co 1.5 X lO"* times, Tl 900 times, Zn 1.5 x lO ' 
times). In addition, the dissolved concentrations for 
most elements observed at site 2 (April 27, 1998) 
were similar (Fe, M n and Pb) or higher than those 
found in the Rio Tinto (site 5). The Rio Tinto 
drains the Iberian Pyrite Belt (IPB) and is strongly 
affected by A M D (Van Gecn ei a!.. 1997; Elbaz-
Poulichet ei al., 1999). The plug of acidic mine tail
ings was prevented from entering the Donana park 
by closure of water inlets between the Guadiamar 
and the park, and was diverted into the 
Guadalquivir at 20 km from its mouth. A n increase 
in metal concentrations, particularly C u and Z n . 
was observed upstream of the input in the 
Guadalquivir at site 3 (April 27. 1998), and suggests 
that the tidal movement of the Guadalquivir had 
transported metals upstream towards Seville. 

Table I. Total digest performed using Aqua Regia/HF. or concentrated HNO.,. Enrichment factors have been calculated for sludge (total 
digest) compared with average crusial rock (from Martin and Whitfield. 1983). Data for Los Frailes sulphide ore from Leisiel ci al. 

(1998b). nd means not determined and na not available 

Element Sludge (ng g"') (total) Enrichment factor Sludge (pgg-')( l M H Q ) Los Frailes sulphide ore (jig g"') 

Ag 50t 715 nd 62 
Al 9720 0,14 I2I0 30O0O* 
As 6IO0t 772 nd 4000 
Au O.It 10 nd 0.1 
Ba 123 0.28 29 na 
Cd 55.7 279 IS 6,9 
Co 47.7 3,7 5.2 100 
Cr 50.7 0.71 13 8' 
Cu 1850 58 685 3400 
Fc 358000 10.2 14400 420000 
Hg ISt 750t : nd na 
Mg 2480 0.15 590 na 
Mn 645 0.90 285 400 
Ni 25.4 0,52 3 12 
Pb 8963 560 8500 22500 
Rb 6144t 768t nd na 
Sn 22t II nd na 
Sr 5,7t 0.015t nd na 
Tl I03t 206t nd na 
U 79 26,3 59.7 na 
V 26.2 0,27 3.2 60' 
Zn 7623 60 3190 39200 
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Following Ihe tailings release, the sulphate con
centration at site 2 (."51 mM) was ca. 300 limes 
higher than upstream (site 1). The very high sul
phate concentrations were however rroi ac
companied by a low pH (6,07, .site 2), despite the 
reported low acidity of the tailings (pH 2). The 
acidity of the tailings was bufiered by the alkaline 
Guadiamar river water. The rivers in the area under 
investigation flow through regions of carbonate ge
ology (Albaiges el al., 1987) and arc slightly alka
line (pH ca. 7-8), This influenced the pH of the 
Guadiamar downstream of the tailing discharges, 
and also had pronounced eflects on the metal spe
ciation. Both of these properties influence the bioa
vailability and toxicity of the metals (Campbell, 
1995). Speciation calculations using M I N E Q L + 
3.01a (Schecher and McAvoy , 1994) indicated that 
Ba, C d . T l . Pb and Rb were present in their free 
ionic form (100%) in the Guadiamar water at site 2 
(Apri l 27. 1998). Free ionic forms were also import
ant for Co, C u , N i and Zn (Table 3). The free ionic 
forms of many metals are assumed to be the toxic 
species, because of their ability to transfer through 
cell membranes of organisms and affect cell func
tioning (Campbell, 1995). 

Upon oxidation of the pyriie in the mud. S 
becomes very mobile and can be used to index the 
relative mobility of the metals (van Geen ei al., 
1997). The ratios of mud to river water (site 2, 
Apr i l 27) composition normalised to sulphur show 
clusters of metals in four categories (Table 4): (a) 
C d . Co and Zn were enriched in the mud and poss
ibly more mobile than S (index > 5); (b) Ba and T l 
were enriched in the mud and of comparable mobi
lity to S (index range 0.1-5); (c) As, C u , Fe. Pb, Rb 
and U were enriched in the mud, but highly im-

Table .1. Results of thermodynamic speciation calculations for the 
Guadiiiniar at site 2 (April 27). Calculalions were performed using 
M I N E Q L + 3.01a. pH 6.07. and assuming typical major ion and 
alkaliniiy values for the region (total carbonate alkalinity 4.6 mM 
ill site I. October 1998). Metal species denoted with asterix (*) arc 
solid phases because their solubility constants have been exceeded 

Metal species Fractions (%) 

Zn- • 
ZnHCO, ' 
Zn(S04)5-
Z11SO4 Aq 
•ZnCO.,.. I H 3 O 

C u - ' 
CuHCO.r 
CuCO., Aq 
CUSO4 Aq 

JMi - -
N i H C O / 
N iCO, Aq 
NiSOj Aq 

a.--
CoSOj Aq 
• C u C O , 

39 
2.9 
S.I 

37.1 
11.8 

42.6 
12.8 
8.1 

35.4 

46.7 
4.1 

12.2 
36.8 

23.7 
31.6 
44,6 
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Tabic 4. Mobilisaiion of nicials rchilivi: 10 S: S cumciil of mud or46% w;is assumed. Estimation of i l i c lotiil ainoiiiu iif mcuils Uischafgal 
b y Ihc Los Fniilcs .•ipill into Ihc Guadiamar walcrslicil. It was assumed thai the Lo.s (•"railcs mud had a density of 2,5 x in ' g 1 •'. .Also 
presented is the eslimiued toul annual amount melals discharged b y Rio Tinlo into its csluary (an annual mean ivaier How of .1 m ' 

was assumed lor Rio Timo (Elbaz-I'oulichcl cl til.. 1999). nd means nol determined 

Mobilisalion relalive to S Total csiiniaied discharge (t) Total ostimaled discharge (la ') Rio Tinn 

S03- 1 
Ag - 1.18 nd 
As 0.002 16.800 1.4 
Ba 0.11 .V19 nd 
Cd 5.2 168 8.3 
Co 9.4 153 21 
Cu 0.02 5100 728 
Fe 0.025 985.000 6500 
Mn 10.5 2100 570 
Ni 15.2 89 10 
Pb 0.007 24.700 60 
Rb 0.001 16,900 0.3 
Sr 27.6 23.5 16 
Tl 0.27 285 0.9 
U 0.005 217 0.6 
Zn 13.8 26.200 1800 

mobile (index < 0.1); (d) iVIn. N i and Sr were not 
enriched in the mud but enriched in the river 
(index > 5). These results agree well with similar cal
culations Tor the Tinto river (van Geen ei cd., 1997), 
with the exception of As , C u and Fe. These el
ements were all enriched in the sulphide ores found 
in the Tinto watershed, but As and Fe showed a 
mobility similar to S (index 0.46 and 0,61. respect
ively) and C u was more mobile than S (index 3.6) 
(van Geen et al., 1997), These differences indicate 
that the oxidation of the sulphides in the Los 
Frailes tailings mud in the Guadiamar system was 
not as advanced when compared with the Tinto 
watershed. It can be inferred that further oxidation 
of the Los Frailes muds will have resulted in the 
release of As , Fe and Cu to the overlying waters. 

In absence of direct measurements, an estimate o f 
the total amount of metal discharged by the spill 
into the Guadiamar watershed can only be made 
subject to a number of assumptions. The mining 
company reportedf that the amount of material in 
the discharged mine tailings was ca. 4 x lO* and I.! 
X 10* m \ for the dissolved and particulate phases, 
respectively. The contribution of the acidic tailing 
waters to the Guadiamar can be estimated using the 
alkaline character o f the river. The total carbonate 
alkalinity for a typical sample upstream of the Los 
Frailes mine (site 1) was 4.6 m M (pH 7.77), and at 
that. p H we can assume that bicarbonate is Ihe-
dominant species. The pH observed at site 2 on 
Apr i l 27 (pH 6.07) would suggest that the system 
was very close to the pK\ value of the airbonate 
system (pA:,=6.14, 20°C, / = 10"^) (Stumm and 
Morgan, 1996), indicating that half of the total car
bonate had been titrated to carbonic acid by the 
acidic mine waters (confirmed by M I N E Q L + cal
culations). Assuming the pH of the tailing water 

JBoliden reports second quarter results (1998). Internet 
communication, hltp:/'www,newswire.ca/rclcases/ 
august 1998/12/c 1846.html, 

was 2, then ca. 20% of the Guadiamar consisted of 
water from the tailing dam. Table 4 shows the esti
mated metal discharges from the Los Frailes tailing 
dam. The calculations indicate that the discharges 
into the watershed of the Guadiamar of C u 
(5.100 t), Pb (24,700 t), Zn (26,200 t) and A g (138 t. 
based on mud only) were higher than the annual 
production by the Los Frailes mine for A g and Pb 
and ca. two times less for C u and Z n . The esti
mated metal discharges were considerably higher 
than the annual flux of dissolved metals delivered 
by the R io Tinto to its estuary (Table 4). 

In October 1998, we observed a decrease in dis
solved concentration of several orders of magnitude 
for most metals at site 2, when compared with 
A p r i l 27, 1998 (Table 2). Although most of the mud 
had been removed from agricultural fields and 
floodplains with the use of bulldozers, the higher 
metal levels at site 2 in October compared with site 
I (Apr i l 27) were most likely due to supply by the 
contaminated river sediments. A t the mouth of the 
Guadalquivir (site 4) M n and Z n levels were some
what higher in October, compared with Apr i l (prior 
to dam failure) despite a possible higher dilution of 
the river water with seawater as indicated by the 
higher conductivity. The enhanced metal levels at 
sites 2 and 4 in October indicate that the legacy of 
the mining spill was affecting the rivers and estuar
ine waters. 

Results from surface water trace metal monitor
ing exercises for dissolved As , C u , M n and Zn in 
the coastal waters of the G u l f o f Cadiz did nol 
show enhanced metal concentrations in the plume 
of the Guadalquivir in the aftermath of the Los 
FraileY spill (June 1997 compared with October 
1998; Fig . 2a-d). Dissolved As , C u , M n and Zn in 
the plume showed concentrations of ca. 20, 15, 35 
and 30 n M , respectively, in both June 1997 and 
October 1998. A lack of obviously enhanced metal 
concentrations in the Guadalquivir plume (Fig, 2) 
suggests that the land-based run-off of metals from 
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Los Frailcs was of iiltic importance for the near 
coaslal waters in October 1998. It is possible that 
this is in part the result of near drought conditions 
in the summer-autumn of 1998. which are likely to 
have prevented the physical mobilisation of the 
sediments and to have slowed down chemical 
weathering of the sulphide rich muds. 

The monitoring exerci.se showed higher dissolved 
Zn concentrations (Fig. 2d) in the G u l f of Cadiz 
away from the Guadalquivir plume in October 1998 
compared with June 1997. This enrichment may be 
due to release of Zn from sediments deposited in 
this coastal area following the mine spill. However, 
the net residual currents in the G u l f of Cadiz are in 
an easterly direction (van Geen el w/.. 1991). 
Therefore, a sedimentary source directly linked to 
the Los Frailes spill can only be used to explain 
enhanced Zn levels in the eastern part of the G u l f 
of Cadiz and does not explain enhanced Zn concen
trations in areas to the west and south-west of the 
Guadalquivir plume in October 1998. Further invcs-

crbcrjj c/ iil. 

ligations will be required to study the importance 
of trace metal release by sediments and .soa.soiitil 
changes in metal concentrations in the Gul f of 
Cadiz. 

Although no obvious trace metal enrichment in 
the coastal waters was observed as a result of the 
mine spill, the waters of the Gul f o f Cadiz have 
higher trace metal levels than those reported for 
other coastal areas, e.g. British Isles (Achterberg ei 
ill.. 1999). This trace metal enrichment can be 
explained by the high inputs from the rivers drain
ing the IPB. The main core of the metal enriched 
water extends out as far as about the 50 m depth 
contour throughout the water column, with some 
evidence of recycling from the sediments. The Rio 
Odiel and Tinio have been implicated as major 
metal sources for the G u l f of Cadiz (van Geen ci 
III.. 1991: van Geen el al., 1997). Moreover, Fig. 2 
shows that the Guadalquivir also fortiis an 
important source of trace metals for the Gul f of 
Cadiz. 

I 1 36.0 r V 
-7.00 -6.50 -7.00 -6.50 

r 1 i ' i 1 •- 1— 
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Fig. 2(a) and (b). 
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Fig. 2. Contour plots showing results from total dissolved trace metal measurements in the Gulf of 
Cadiz. As and Mn data (in nM) were obtained from samples collected using discrete sampling methods. 
Cu and Zn measurements (in nM) were performed on-board ship using continuous underway sampling 
with high-resolution trace metal monitoring techniques. Water depth in the coastal region varied from 

1-2 m depth in-shore, to ca. 500 m off-shore. 

CONCLUSIONS 

The rivers which draiti the mines of the Iberian 
Pyrite Belt have discharged large amounts of metals 
into the G u l f of Cadiz over an extremely long 
period. This study reveals that the collapse of the 
tailing reservoir at Los Frailes has not impacted, up 
to October 1998, the chemistry of As , Cu , M n and 
Zn [also Cr , Fe, N i and V (not presented)] in "the 
coastal waters. The melals did not show obviously 
enhanced concentrations in the plume of the 
Guadalquivir in October 1998 compared with June 
1997. This lack of significant impact on the coastal 
waters is probably in part the result o f human, inter
vention and natural removal processes, but is also 
likely to be related to climatic conditions in the 
region. The mechanical removal o f the mud was 
apparently efficient in preventing contamination 
reaching the coastal region; the metal precipitation 
processes due to alkaline character of the water 
were important for Co and Zn (Table 3) and have 
been enhanced by the addition of lime to the A M D 

from Los Frailes; finally estuarine processes invol
ving Fe flocculation and metal-co-precipitation 
(Johnson, 1986; Featherstone and O'Grady, 1997) 
have acted to trap metals in the sediments. 
Nevertheless the Guadiamar and Guadalquivir 
remain contaminated rivers as a result the failure of 
the tailings dam and the potential eflects on the 
Dofiana park necessitate continuous monitoring 
and complementary investigations. 
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Abstract 

Geochemical processes in estuarine and coastal waters often occur on temporally and spatially small scales, resulting in 
variability of metal speciation and dissolved concentrations. Thus, surveys, which are aimed to improve our understanding of 
metal behaviour in such systems, benefit from high-resolution, interactive sampling campaigns. The present paper discusses a 
high-resolution approach to coastal monitoring, with the application of an automated voltammetric metal analyser for on-line 
measurements of dissolved trace metals in the Gulf of Cadiz, south-west Spain. This coastal sea receives metal-rich inputs 
from a metalliferous mining area, mainly via the Huelva estuary. On-line measurements of dissolved Cu, Zn, N i and Co were 
carried out on-board ship during an eight-day sampling campaign in die study area in June 1997. A pumping system operated 
continuously underway and provided sampled water from a depth of ca. 4 m. Total dissolved metal concentradons measured 
on-line in the Gulf of Cadiz ranged between <5 n M Cu (<3 n M Ni) ca. 50 km off-shore and 60-90 n M Cu (5-13 n M Ni) in the 
vicinity of the Huelva estuary. The survey revealed steep gradients and strong tidal variability in the dissolved metal plume 
extending from the Huelva estuaiy into the Gulf of Cadiz. Further on-line measurements were carried out with the automatic 
metal monitor from the bank of the Odiel estuary over a full tidal cycle, at dissolved metal concentrations in the ( i M range. 
The application confirmed the suitability of the automated metal monitor for coastal sampling, and demonstrated its 
adaptability to a wide range of environmental conditions in the dynamic waters of estuaries and coastal seas. The near-real 
time acquisition of dissolved metal concentrations at high resolution enabled an interactive sampling campaign and therefore 
the close investigation of tidal variability in the development of the Huelva estuary metal plume. © 1998 Elsevier Science 
B.V. A l l rights reserved. 

Keywords: Trace metal momtoring; Voltametty; Dissolved Cu; Dissolved Ni; In-situ analysis: Coastal waters 

1. Introduction 

In many parts of the world, estuaries and coastal 
seas are under strong environmental pressure, espe
cially when situated in densely populated and indus-

•Corresponding author. Tel.: +44-1752-233000; fax: +44-1752-
233035; e-mail: eachterberg@plym.ac.uk 

trialised regions. As a result of a growing global 
environmental awareness and the introduction of 
new environmental laws, a better understanding of 
biogeochemical processes affecting aquatic pollutant 
behaviour is required. For this reason, an increased 
effort is made to monitor physical and chemical 
parameters iii Tnarine systems. Coastal waters 
are highly dynamic and complex systems which are 

0003-2670/98/S - see front matter © 1998 Elsevier Science B.V. All rights reserved. 
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characterised by steep physical and chemical gradi
ents, both on temporal and spatial scales. A series of 
processes act upon the chemical speciation of pollu
tants, and hence, their relative associations with dis
solved, colloidal and particulate phases in the water 
column. For example, important factors influencing 
dissolved trace metal concentrations in estuarine and 
coastal waters include fresh water inputs, pH, redox 
conditions, tidal mixing and re-suspension, formation 
of colloids, precipitation, sorption, biological cycling 
and'organic complexation [1-3]. 

The dynamic nature of coastal waters requires high 
resolution monitoring, if small scale processes are to 
be understood. In the marine analytical field, the 
application of in situ automated monitoring techni
ques is becoming more common, as such methods 
allow the analysis of closely spaced samples at a 
higher frequency than traditional discrete sampling 
strategies (e.g. [4,5]). Electrochemical methods are 
well established and commonly used for the monitor
ing of pH (potentiometry) and dissolved oxygen 
(amperometry) in natural waters. Adsorptive stripping 
voltammetry is an electrochemical technique which 
has been developed during the last decades for the 
analysis of trace metals in natural waters. One of the 
earliest voltammetric ship-board trace metal analysers 
was constructed by Clavell and Zirino [6] in 1977. 
Since then, robust, reliable and relatively cheap on
line automated voltammetric metal monitoring sys
tems with good accuracy and precision have been 
developed and applied [7-12]. 

The current paper discusses the advantages of an 
on-line high-resolution monitoring approach for the 
determination of dissolved metals in the Gulf of Cadiz, 
south-west Spain. This coastal system receives metal-
rich waters from rivers which rise in an important 
mining area and flow through industrialised zones. As 
a consequence of the enhanced metal inputs and tidal 
water movements, high spatial and temporal variabil
ity of dissolved metal concentrations occurs in the 
estuarine and coastal waters. In order to gain a better 
understanding of the complex biogeochemical pro
cesses affecting the metal behaviour and the varia
bility in dissolved metal concentrations, a high 
resolution in situ on-line monitoring strategy was 
the preferred option over discrete sample collection 
followed by land-based laboratory analysis of the trace 
metals. 

In order to meet the analytical challenges of on-line 
dissolved metal analysis in samples with changing 
salinity and metal concentrations (nM to nM), adsorp
tive cathodic stripping voltammetric (ACSV) methods 
were chosen. This approach proved valuable in the 
study area, which receives high inputs of organic 
compounds, acids and metals, and, as a result, has 
complex and constantly changing sample matrices. A 
modification of the fully automated on-line voltam
metric metal monitoring system described by Achter
berg and Van den Berg [7,8] was used for the near real
time high-resolution analysis of surface waters from 
the river bank and on-board ship. The system provided 
measurements of total dissolved Cu, Zn, Ni and Co 
with a sampling frequency of about 15-20 min. This 
approach reduced the risk of sample contamination 
and facilitated an interactive sampling campaign. 
Sample was obtained directly from the sea or estuary 
using a continuous pumping system. On-line sample 
pre-treatment was performed whereby the sample was 
filtered and UV-digested to supply the metal monitor 
with particle-free and organic-free surface seawater 
sample. Subsequently, the treated sample was ana
lysed automatically in an ACSV batch mode. Hence, 
ACSV methods allowed the direct determination of 
dissolved trace metals in aqueous samples, without 
laboratory-based pre-concentration or matrix removal 
steps, as are required prior to analysis of saline 
samples using ICP-MS (inductively coupled 
plasma-mass spectroscopy) or GFAAS (graphite fur
nace atomic absorption spectroscopy) methods. 

2. Study area 

Spanish shelf waters and sediments in the Gulf of 
Cadiz (Fig. 1) have been reported to be enriched with 
trace metals, especially Cu, Zn and Cd [13,14]. Sev
eral papers have recently suggested the Tintp and 
Odiel rivers as a possible source for metals to the 
Gulf of Cadiz [14-17]. Water from this sea area is 
entrained by the. flow of Atlantic water through the 
Straits of Gibraltar. This has raised some concern with 
respect to a possible enrichment of the Westem Med
iterranean Sea with trace metals originating in the Gulf 
of Cadiz [13,18]. The research presented in this paper 
forms part of the Tinto Odiel River Ocean Study 
(TOROS), which investigFtes biogeochemical fluxes 
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Fig. 1. Location of the Iberian Pyrite Belt and the Tinto/Odiel 
rivers in the south-west of Spain. The inset shows the confluence of 
the two estuaries at the city of Huelva (hatched). 

of metal pollution in the Tinto/Odiel estuarine system 
and the Gulf of Cadiz. 

The Rio Tinto and Rio Odiel are two small rivers 
(83 and 128 km in length, respectively), which drain a 
combined catchment area of about 3400 km̂  in one of 
the most impoitant metal sulphide mineralisation 
regions in the world, the Iberian Pyrite Belt [16] 
(Fig. 1). The massive sulphide ore bodies in the Pyrite 
Belt are rich in metals, especially Zn, Pb and Cu, with 
traces of Cd, Ag and Au. This area has been mined for 
Cu and precious metals since Phoenician times [19], 
leaving a legacy of large quantities of slag and pro
cessed ore. Today, sulphide ores are extracted mainly 
for the production of sulphuric acid. 

The Tinto and Odiel rivers have low average dis
charge volumes (annual mean 3 and 15m"'s~', 
respectively), with a large seasonal variation [20]. 
As a result of weathering and anthropogenic inputs, 
the fresh water of the Tinto and Odiel rivers is 
extremely low in pH (pH 2-3.5) and high in metal 
concentrations (e.g. 340-460 nMCu, 1.6-̂ .9 nMNi 
and 1.7-10.9 mM Fe, unpublished data from Novem
ber 1996 and June 1997), The two rivers join in a 
common estuary at the city of Huelva, which is an 
important industrial centre in the south-west of Spain 
(inset in Fig. 1). Among~the industries which dis
charge effluents into the estuary are paper and ferti
liser plants, ore roasting facilities, titanium dioxide 

and copper production plants, oil refineries and sew
age works. 

3. Methods 

3.1. Reagents and analytical methods 

De-ionised water was obtained from a Milli-Q 
system (MQ, > 18 Mfl, Millipore). Hydrochloric acid 
(HCl), ammonia (NH3) and ethanol of Analar grade 
(Merck) were purified by distillation in a sub-boiling 
quartz still. An aqueous HEPES pH buffer stock 
solution (I M pH 7.8) was prepared from /V-hydro-
xyethylpiperazine-A'-2-ethanesulphonic acid (Merck) 
in MQ. Oxine stock solution (0.1 M) was prepared 
from 8-hydroxyquinoline (Merck) in MQ. DMG solu
tion (0.1 M) was prepared from dimethylglyoxime 
(Merck) in ethanol. Mixed reagents for the on-line 
voltammetric analysis were prepared on a daily basis 
from the stock solutions of HEPES and the appropriate 
ACSV ligand. Total dissolved Cu and Zn were deter
mined simultaneously in the presence of oxine 
(2xlO-^M) and HEPES (O.OIM), and the mixed 
reagent for Ni and Co analysis contained DMG 
(2x10"'* M) and HEPES (0.01 M) (all final concen
trations in voltanmietric cell). Addition of 250̂ 1 of 
mixed reagent to 10 ml samples in the voltammetric 
cell gave the required ACSV ligand concentrations 
and pH 7.8 (method adapted from [9]). Mixed stan
dards for Cu/Zn and Ni/Co (Spectrosol, Merck) were 
prepared in a range of concentrations (10"'', 10"̂ , 
10"̂  M) and acidified with HCl (0.1%. v/v). The 
standard with the appropriate metal concentration 
was used according to the dissolved metal levels 
encountered in the sampling area. 

On-line trace metal analysis was carried out using 
square wave ACSV. A full description of the principles 
of ACSV is given elsewhere [21-23]. Prior to analysis, 
the sample was purged for 200 s with oxygen-free 
nitrogen (Air Liquide) to avoid electrochemical inter
ference from dissolved oxygen. In-between cathodic 
scans, the purge was repeated for a short time (15 s). 
The wide range of dissolved metal concentrations in 
the Huelva estuary and Gulf of Cadiz required the 
adaptation of analytical parameters to the encountered 
waters. Topical instrumental parameters for the ana
lysis of relatively pristine water in the outer Gulf of 
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Table 1 
Typical parameters for square wave cathodic stripping voltammetry during ship-board analysis of total dissolved Cu and Ni in surface waters 
of the Gulf of Cadiz (nM range) and in the mid-Odiel estuary (nM range) (values in brackets refer to the simultaneously analysed metal (i.e. 
Zn with Cu, and Co with Ni)) 

Voltammetric parameter Cu (Zn) Ni (Co) Cu (Zn) Ni (Co) 
concentration range (<20 nM) (<20 nM) (1-4 (7) nM) (0.5-1 (2)pM) 

Deposition potential (V) - 0 . 5 - 0 . 8 - 0 . 5 - 0 . 9 7 
Deposition time (s) 40 4 0 0 2 
Stirrer setting (max. 6) 5 5 0 1 
Scan frequency (Hz) 100 100 5 0 50 
Initial potential (V) - 0 . 2 - 0 . 8 - 0 . 2 - 0 . 8 
Rnal potential (V) - 1 . 3 - 1 . 2 - 1 . 3 - 1 . 2 
Step potential (mV) 2.4 2.4 4.9 4.9 
Modulation amplitude (mV) 25 25 10 10 
Reduction potential (V) - 0 . 4 5 ( - 1 . 0 2 ) - 0 . 9 7 ( -1 .04) - 0 . 4 5 ( - 1 . 0 2 ) - 0 . 9 7 ( -1 .04) 
Limit of detection (LOD) 0.48 nM 0.21 nM _ 
Linear range 25 nM 20 nM 4 ( 7 ) M M 1 (2)nM 
R' for linear range 0.99 0.99 0.99 0.99 

CatJiz and highly polluted estuarine water are given in 
Table 1. 

Discrete estuarine samples, taken in parallel with 
on-line analysis, were acidified (HCl, 0.1% v/v) in 
Spain, and analysed in the laboratory in Plymouth by 
ICP-MS (PlasmaQuad PQ̂ "*" Turbo, VG Elemental, 
Winsford, Cheshire). The samples were 50 times 
diluted using MQ prior to analysis, and acidified with 

HNO3 (Aristar, Merck). Indium was used as intemal 
standard to compensate for instrumental fluctuations. 

3.2. In situ monitoring instrumentation 

A schematic diagram of the automated metal mon
itoring system is shown in Fig. 2. Continuous sam
pling was carried out underway using a torpedo-

Underway pumping, 
continuous sample 

pre-treatment 

Filler j h 

UV 
digestion 

KIPPER -1 

Automated voltammetric metal monitor 
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N2(1bar) 
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MQ Water 
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Motor 
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Fig. 2. Detailed diagram of the continuous underway pumping systeiii and sample pre-treatment (left box), linked to the computer conu-olled. 
automated voltammetric metal monitor operating in batch mode (right box). 
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shaped fish (KIPPER-1). which was designed and 
constructed from mild steel at the University of Ply
mouth. A braided tube (PVC) was inserted into a bore 
that lead from the front of KIPPER-1. through its 
centre and out at the holding ring. The braided tube 
contained the sample pick-up tube (I.d. 8 mm. PVC), 
leading to the peristaltic sample pump which was 
positioned in the ship's laboratory. The design and 
weight (ca. 40 kg) of KIPPER-1 ensured that the 
sampling hose pointed forward and was kept at a 
constant depth (ca. 3-4 m) at speeds between 1 and 
12 knots. KIPPER-1 was coated with metal-free 
epoxy-based paint (International Paint) and was 
deployed from a winch, away from the ship's hull 
to avoid the sampling of water which had been in 
contact with the hull. The braided tubing was attached 
to the lower part of the winch cable, which was taped 
in order to prevent contamination. Continuous pump
ing of large volumes of seawater (1—2 1 min"') flushed 
the pick-up tubing and allowed equilibration of the 
material (PVC) with the metal levels in the sampled 
water [10]. From the peristaltic sampling pump a 
Teflon* tube (i.d. 0.6 mm) lead to the continuous 
two-step on-line sample pre-treatment (filtration and 
UV-digestion) and further to the automated metal 
monitor (Fig. 2). 

The on-line filtration was carried out with a cross-
flow filtration unit made from an adapted Swinnex 
filter holder (47 mm diameter cellulose nitrate mem
brane filter, 0.45 urn pore size, Whatman, USA). 
Filtration was followed by the on-line UV-digestion 
of dissolved organic matter. This step was necessary 
for the breakdown of surfactants and natural metal-
complexing organic ligands, which may interfere with 
the voltammetric analysis of total dissolved metals [9]. 
The UV-digestion unit contained a medium pressure 
mercury vapour lamp (400 W, Photochemical Reac
tors) surrounded by a quartz glass coil (i.d. I.O mm, 
length ca. 3.5 m), and the system was cooled by a fan 
to ca. 70''C. The sample cooled to ambient tempera
ture during its transfer from the UV-digestion unit to 
the voltammetric cell. 

The pre-treated sample was conveyed to a sample 
loop (9.90 ml) by a peristaltic pump, which formed 
part of a custom-built automated sample and reagent 
transport system. This unit also delivered reagents to 
the voltammetric cell and rinsed it with MQ after a 
ineasuring cycle was completed. The sample loop was 

enclosed by two inert three-way valves (Teflon", 
Cole-Parmer), which were set in a" position that 
allowed flushing and filling of the loop with sample 
water before analysis. The valves were actuated to 
empty the contents of the sample loop into the vol
tammetric cell by means of nitrogen gas (oxygen free 
N2, I bar). Teflon'-' tubing was used throughout the 
monitor, with the exception of the pump tubing, which 
was Santoprene'̂ '. 

The voltammetric system comprised of a Metrohm 
hanging mercuiy drop electrode (VA Stand 663, Swit
zerland), which was connected to a Autolab voltam
metric analyser (EcoChemie, Netheriands). Metal 
standard additions for the intemal calibration of each 
measurement were made to the voltammetric cell 
using a syringe pump (Cavro). The voltammeter 
and all peripheral components of the metal monitor 
were controlled using a portable PC (Compaq 386SX). 
Dedicated software carried out peak evaluation, data 
acquisition and storage. The software was self-deci
sive, thus rejected sub-quality scans with a standard 
deviation above a pre-set value of eight percent, and 
initiated additional scans. The software also initiated 
further standard additions, if the increase in peak 
height as a consequence of the first standard addition 
was insufficient (i.e. less than 100%). 

The risk of contamination during on-line analysis 
was reduced by acid-cleaning of all sample tubing 
(pumping of ca. 5 15% HCl (Analar, Merck), followed 
by MQ) and the sample transport system in the metal 
monitor (pumping of 500 ml 1% HCl, followed by 
MQ) before and between individual parts of the 
survey. Cross-contamination between samples was 
minimised by careful planning of the cruise track. 
Reagents were handled on a clean bench under a 
laminar flow hood in the ship's laboratory. The ana
lysis of each sample batch was individually calibrated 
by means of internal standard additions. This approach 
took account of changing sample matrices (e.g. as a 
result of salinity variations) which may result in 
changes in the method sensitivity. 

3.3. Sampling 

In June 1997, two fully automated metal monitors 
were almost continuously in operation for a period of 
eight days on board the Spanish research vessel Gar
cia del did. On-line high resolution measurements of 
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dissolved metals were performed during estuarine 
transects and coastal surveys. During the surveys, 
two automated voltammetric metal monitors were 
used for the simultaneous analysis of Zn and Cu 
(system 1), and Ni and Co (system 2). However, only 
Cu and Ni data from the cruise in the coastal waters of 
the Gulf of Cadiz in June 1997 will be presented in this 
paper. Samples were analysed in batches of ca. 10 ml, 
at a rate of one measuring cycle every 15-20 min. 

In addition to the ship-board measurements, on-line 
metal analyses at one point in the Odiel estuaiy (near 
Huelva bridge) were carried out to record a time-series 
of metal concentrations over a full tidal cycle (dura
tion 13 h). This study was carried out from a mobile 
laboratory positioned on the bank of the estuary, using 
a 240 V petrol generator for the supply of power. The 
continuous sample pick-up was anchored some dis
tance from the shore. Parallel to the on-line monitor
ing, discrete samples were taken from the shore at 
lower resolution (houriy intervals), and these were 
used, among other purposes, for inter-comparison 
with results from the automated on-line analysis. 

4. Results and discussion 

4.1. Analytical performance 

The analysis of a reagent blank in MQ batches gave 
concentrations of 0.46±0.16nM Cu (n=5) and 
0.04±0.02 nM Ni (n=4). For the determination of 
the limits of detection (LOD), seawater (Gulf of 
Cadiz) was analysed in batches, using ACSV with 
the voltammetric parameters for \h& concentration 
range <20 nM, as listed in Table I. The seawater 
concentrations were 2.61 ±0.16 nM (LOD=0.48 nM) 
for Cu (n=5) and 2.88±0.07 nM (LOD=0.21 nM) for 
Ni (/f=4) (Table I), where the LOD was calculated as 
three times the standard deviation. Further reduction 
of the LOD can be achieved, when required, by 
increasing the deposition time. The maximum dis
solved metal concentrations that could be analysed 
with ACSV without sample dilution, were determined 
using the parameters listed in Table 1 for the jaM 
concentration range. By lowering the stirring rate 
during deposition, decreasing the deposition time, 
and altering the scanning parameters and deposition 
potential in order to. lower the sensitivity, the linear 

Table 2 -
Analysis of UV-irradiale<l reference materials (CASS-3 and SLEW 
2) by ACSV in batches of 10 ml (confidence intervals refer to -k 
SD of the sample mean) 

n ACSV result 
(nM) 

Cenified 
(nM) 

Recovery 
(%) 

CASS-3 
Cu . 4 8.17±1.05 8.14±0.98 100 
Ni 6 6.48±0.40 6 .58±t .06 99 

SLEW-2 
Cu 4 22.2±2.54 25.49±t .73 87 
Ni 3 12.7±1.05 12.07±0.92 t05 

range was extended to 4 and 1 jiM for Cu and Ni 
respectively. The linear ranges were verified in labora 
tory experiments, resulting in regression coefficient: 
(least square) of /?-=0.99 for Cu and R-=Q.99 for Ni 
In the field, parameters were changed interactivel) 
according to the metal concenurations encountered 
The accuracy of the applied analytical methodolog} 
was verified by the analysis of certified reference 
materials (SLEW-2 and CASS-3). Good recoverie: 
(>87%) during discrete batch analysis were eviden 
(Table 2). The reproducibility of on-line analysis witl 
the automated metal monitor was determined in fil
tered, UV-irradiated and acidified (HCl, pH 2) sea
water, which was sampled in the vicinity of Plymouth, 
and contained Cu and Ni at concentrations similar tc 
levels observed in the coastal waters of the Gulf ol 
Cadiz. Several aliquots of this water were analysed ir 
automated on-line mode for Cu and Ni. In order tc 
adjust the pH of the acidified aliquots, NH3 was added 
to the voltammetric cell with the mixed reagent. The 
relative standard deviation in this experiment was 
5.9% for Cu (23.2±1.38 nM, «=16) and 7.4% foi 
Ni (10.4±0.77 nM, n=\3). 

4.2. Environmental data 

Results from automated on-line analysis for total 
dissolved Cu during the estuarine tidal cycle study in 
the Odiel compared well with concentrations deter
mined in discrete samples collected in parallel from 
the bank of the Odiel estuary (June 1997). The 
extreme conditions with respect to metal concentra
tions and sample matrices,..encountered during the 
tidal cycle study, made the manual dilution of samples 
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12:00 • 14:00 
Time (GMT) 

16:00 18:00 

Fig. 3. Time series of conductivity, pH and dissolved Cu over a tidal cycle in the mid-Odiel estuary at Huelva bridge. The lower part shows 
on-line voltammetric measurements of Cu from the river bank and results from ICP-MS analysis of discrete samples, taken parallel at hourly 
intervals. Error bars refer to a typical error of ±Z% between repeated scans during on-line analysis (ACSV), and to standard deviation of 
sample replicates during discrete analysis (ICP-MS). LW and HW: low and high water at Mazagon harbour (situated at the mouth of Huelva 
estuary). , 

during parts of the automated on-line analysis neces
sary. Results from automated tidal cycle study are 
presented in Fig. 3 and show that total dissolved Cu 
concentrations increased steeply during ebb tide and 
reached a maximum of 121 \i.M, coinciding with a 
minimum conductivity and low pH (pH 3.5). 

By comparing the two sets of data in Fig. 3, it is 
apparent that on-line high resolution monitoring pro
vided the position (time) and concentration of the Cu 
maximum, while the discrete sample analysis failed to 
fully resolve the tidal variability during the monitored 
period. From the close agreetnent between discrete 
and on-line data, it follows that contamination from 
carry-over between samples during on-line measure
ments was minimal. Because the two sets of data 
resulted from the analysis of different samples, and 
not sub-samples of one another, the results are not 
directly statistically comparable. However, this inter
comparison showed that the on-line monitoring pro
duced good quality data in extreme sampling matrices 
and over a wide range of metal concentrations. 

During the first part ofthe coastal survey, the Garcia 
del Cid cruised for a period-of four days between the 

coast line and the 500 m depth contour in the Gulf of 
Cadiz. During this period, a total of 52 separate 
discrete depth profiles were obtained, for which the 
vessel had to halt at each sampling station. Also during 
this period, continuous underway sampling was car
ried out and the voltanunetric metal monitor operated 
almost continuously on-board ship. About 250 mea
surements of dissolved Cu and Ni in the surface waters 
were performed during steaming and while the vessel 
was on station. Fig. 4 compares the high resolution 
achieved with on-line monitoring (3.5-4.5 km 
between measurements along the cruise track), with 
the spacing of discrete sampling stations (ca. 10-
15 km). This graph shows the much higher sampling 
frequency obtained using the automated monitoring 
approach, resulting in a better spatial resolution. 

The total dissolved Cu and Ni concentrations in 
surface waters of the Gulf of Cadiz are shown in 
Figs. 5 and 6, in the form of contour plots. The metal 
distribution data have not been corrected for tidal 
movement, as, at present, no detailed information 
on currents is available for the study area. Enhanced 
metal levels were observed around-the mouths of the 
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Rg. 4. Comparison between the resolution of discrete sampling 
stations (stars) and on-line automated measurements (circles) of Cu 
in the Gulf of Cadiz. June 1997. 

T 1 1 1 1 • 1—• 
.7.40 -7.20 -7.00 .6.80 -6.60 -6.40 W 

Rg. 5. Total dissolved Cu (nM) distribution in the Gulf of Cadiz, 
June 1997. The contour plots were created from ca. 250 on-line 
measurements, performed on-line during four days of steaming 
with the Garcia del Cid (see Fig. 4). 

^ Huelva estuary 

GuadalquivK 
^ estuary 

20 k m nM Ni 

\ ^ 

\ 
-7.40 -7.20 -7.00 .6.80 .6 60 -6.40 W 

Fig. 6. Total dissolved Ni (nM) distribution in the Gulf of Cadiz. 
June 1997. The contour plots were created from ca. 250 on-line 
measurements, performed on-line during four days of steaming 
with the Garcia del Cid. 

Huelva (15 nM Cu, 5 nM Ni) and the Guadalquivir 
(20 nM Cu, 15 nM Ni) estuaries. Metal concentrations 
decreased with increasing distance from the coast to 
levels below 5 nM Cu and 3 nM Ni at the sea-ward 
limit of the sampling area. This decrease can be 
explained by the mixing of metal-polluted estuarine 
with more pristine North Atlantic waters, which typi
cally has concentrations of 1-1.5 nM Cu and 1.8-
2.5 nM Ni in surface waters [24-27]. The difference 
between the enrichment of Cu (ca. 3-5 times) and Ni 
(ca. 1-2 times) in the outer Gulf of Cadiz, calculated 
with respect to typical off-shore concentrations for the 
Atlantic Ocean may be related to the strong enrich
ment of Cu, and the absence of Ni enrichment in the. 
geology of the Iberian Pyrite Belt. Dissolved metal 
concentrations measured during this survey are com
parable to those published by Van Geen et al. [13], 
who reported typical dissolved metal concentrations 
over die Spanish shelf in the region of 6.6 nmol kg"' 
Cu and 3.4 nmol kg"' Ni, and levels of 8-21 nmol 
kg"' Cu and 3-6 nmol kg"' Ni some 40 km to the 
south-west of the Guadalquivir estuary. 

The waters of the Guadalquivir river and estuary 
have been reported to carry a lower metal load! 
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Rg. 7. Salinity distribution in the Gulf of Cadiz, June 1997. 
Measurements were undenaken with ship-board instrumentation 
operating in parallel with the on-line metal monitor. 

(9.5-16 nmol kg"' Cu and 21-79 nmol kg' Ni. [13]), 
than the concentrations found at the mouth of the 
Huelva estuary (50-600 nM Cu and 7.5-290 nM Ni, 
unpublished data from November 1996 and June 
1997). However, the metal signal from the Guadal
quivir river at the time of sampling extended farther 

into the Gulf of Cadiz than the Huelva river pltune 
(Figs. 5 and 6). This compares well with the salinity 
distribution for the same period (Fig. 7), which shows 
an extended area of low salinity off the Guadalquivir 
estuary, while the fresh water discharge from the 
Huelva river had only a minor influence on the surface 
salinity in the Gulf of Cadiz. Therefore, the more 
distinct Guadalquivir metal plume,, compared with 
that from the Huelva, can most likely be explained 
by the higher discharge volume of the Guadalquivir 
(annual mean: Guadalquivir 79m-̂ s~', Huelva 
ISm^s"' [14,20]). 

The second part of the coastal survey in June 1997 
was dedicated to the investigation of the development 
and the tidal variability of the Huelva estuary metal 
plume. During this part of the survey, a spatial resolu
tion of 1.5-2 km for the on-line metal measurements 
was achieved by lowering the cruise speed from eight 
to four knots, and the ship steamed continuously 
without stopping for discrete sampling. 

Fig. 8 shows dissolved Cu concentrations along a 
similar cruise track, followed during two consecutive 
days. On day 15, 2.5 h after low water (LW), con
centrations of 60-80 nM Cu were measured to the 
south-east of the Huelva estuary. One day later, con
centrations were considerably lower (13-14 nM Cu) 
when the same area was sampled around the time of 
high water (HW). On both days, Cu concentrations 
increased steeply upon returning to the estuary, 
whereby Cu levels were higher on day 15 at LW 

j§k^ day 15 

0 o 2 > o „ ;t.2.5h 

X o O / 

day 16 

^ ' " ' ^ N s ^ LV/-2h 

LW CV^^^ 

o o ^ "o \ HW 
\ o ° 0 +1h 

"k Start point for on-line measurements 

Legend: o lO Q S O 0 1 0 0 ( ^ 200 ^ ^ ^ ^ ^ 300nM Cu 

Rg. 8. On-line ship-board measurements of total dissolved Cu in the plume of the Huelva estuary during two consecutive days. The size of 
circles relates to the concentration; direction of the cruise track is indicated by arrows. The star denotes the first measurement of each day. On 
day 15 (16) the survey began 2.5 h after LW (1 h before LW) and took 10 h (12.5 h). LW. HW-low and high water at Mazagon harbour. 
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{>500 nM), than on day 16, when the vessel returned 
2 h ahead of LW (>200 nM). 

The observed variations in metal concentrations 
illustrate the importance of tidal movement for the 
timing of near-shore coastal surveys, and the value of 
on-line high-resolution monitoring. Observed metal 
concentrations close to the Huelva river mouth at the 
beginning of the survey (Figs. 5 and 6) and on day 16 
suggested this estuary to be a minor contributor of Cu 
and Ni to the Gulf of Cadiz. However, the analysis 
during day 15 (and day 18, data not presented here) 
showed that highly contaminated water enters the Gulf 
of Cadiz from the Huelva river around the time of low 
water. The combination of low riverine water dis
charges with high metal concentrations caused small 
salinity changes in the vicinity of the Huelva estuary to 
be accompanied by marked gradients in dissolved 
metals, which were highly variable with tidal move
ment. Monitoring exercises performed over a period of 
several days and during different states of the tide are 
therefore required for the investigation of estuarine 
plumes, especially in coastal areas receiving low 
volume discharges, which contain high contaminant 
concentrations. During a survey in April 1998, high 
resolution on-line monitoring of Cu, Ni, Zn and Co 
was carried out on-board ship, while anchored in the 
mouth of the Huelva estuary over a full tidal cycle. 
Results from this study provided important data for the 
calculation of metal fluxes from this estuarine system 
to the coastal sea, and will be reported elsewhere. 

Reported metal anomalies in fine sediment around 
the Huelva estuary suggested that metals were 
removed from solution within the estuarine mixing 
zone and were settled rapidly in the form of metal 
bearing flocs around the mouth of the Huelva estuary 
[14]. This process may also contribute to the limited 
spatial reach of the Huelva dissolved metal plume. 

5. Conclusions 

On-line analysis of total dissolved Cu and Ni was 
performed with a fully automated voltammetric metal 
monitor in the Gulf of Cadiz. The survey provided 
high resolution data, which revealed areas of elevated 
dissolved- metal concentration associated with dis
charges from the Huelva and Guadalquivir estuaries. 
The application of the underway pumping system in 

combination with near-real time metal analysis 
enabled the close investigation of tidal variations in 
the Huelva estuary plume. The data collected during 
on-line analysis highlighted the importance of a high-
resolution approach to contaminant monitoring at 
different states of the tide. Especially in highly 
dynamic coastal systems, the undertaking of a single 
survey would only provide a snap-shot of the state of 
the coastal environment and may therefore result in 
erroneous conclusions to be drawn. 

In coastal and estuarine waters, the ACSV analysis 
proved to be highly suited for the changing sample 
matrix and the wide concentration range encountered 
during the survey. Comparisons between on-line and 
discrete samples showed the high quality of the 
acquired data, with no important carry-over between 
samples during the tidal cycle study, which was 
performed in a strongly contaminated part of the Odiel 
estuary. Careful planning of the sampling succession 
and intermediate acid-cleaning of the underway sam
pling system was important in order to reduce the risk 
of cross-contamination and enable the move from 
areas of high to those of low dissolved metal con
centrations. The near-real time acquisition of data 
facilitated an interactive sampling campaign, which 
was of particular value in this complex system with 
small salinity changes and strong metal concentration 
gradients. Further advantages of the on-line measure
ment of dissolved metals in coastal areas with the 
automated voltammetric metal monitor over discrete 
sampling include the virtually effortless acquisition of 
high-resolution data, while contamination during sam
ple handling is avoided, and the need for discrete 
analysis can be reduced to a few control samples. 
Moreover, dissolved metal speciation measurements 
can be performed with ACSV methods [8,21,28,29], 
because the technique allows the determination of 
different physico-chemical forms of dissolved trace 
metals. Trace metal speciation studies were carried out 
on seawater and samples from the lower estuary, and a 
series of experiments with suspended particulate mat
ter was carried out by fellow researchers. These results 
will be reported elsewhere. 

Future analytical developments will involve the 
interfacing of on-line conductivity, temperature and 
salinity measurements to the metal monitor, which 
will aid the interpretation of the contaminant studies. 
In addition, the connection of a GPS (global position-
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ing .system) is in process, which will allow the envir
onmental data to be linked in real-time mode to the 
position of the vessel. 
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Abstract—Inorganic arsenic and phosphate distributions have been studied in the acidic mi.'<ing zone of 
thcTinto river in November 1996, June 1997. and April 1998. This mixing zone receives high inputs of 
As, ?0i~ and Fe in relation with acid mine drainage and run-off from phosphogypsum waste. In the 
early stage of mixing the dissolution of detritic Fe phases (pyrite and oxides) releases Fe and As to 
water. This process is counterbalanced by removal due to precipitation of Fe-oxides and Fe-organic 
complexes and algae fixation. In autumn, the amount of algae is negligible and a release of As. Fe and 
?0i~ to the dissolved phase was observed. As a consequence, high As and P O j " concentrations are 
registered in the water (up to 43 nM for As and 330 /iM for POj"), In spring, the removal dominates 
in relation with high algae productivity. As a result As and P04~ are depleted in the dissolved phase in 
spring compared to autumn and high concentrations of As (up to 1530 pg g~' and 700 pz e"' in June 
and in April, respectively) were observed in the suspended particulate matter. In autumn dissolved As 
is correlated with Fe whilst in spring As behaves in a similar way as P O A " , C 2000 Elsevier Science 
Ltd. All rights reserved 

Key words—arsenic, phosphate, iron, biogeochemistry, acidic estuary, algae 

I 

INTRODUCTION 

Arsenic and phosphorus are both group V A el
ements and are therefore chemically similar. 
Phosphate ( P O i " ) is an essential nutrient for organ
isms and the uptake of arsenate (As04~) as a sub
stitute for phosphate has been observed for 
phytoplankton. However, the P /As ratio in phyto
plankton is about 10-fold higher than the ratio in 
their ambient environment, demonstrating that 
these organisms take up P preferentially (Morris et 
al., 1984). This process, well documented for the 
open ocean (Andreae, 1979), has been also reported 
for P-enriched estuaries (Froelich et al., 1985). The 
removal of A s in such estuaries is balanced by a 
release of this element following biomethylauon 
and the estuarine profile of As remains near conser
vative, as is the case in unpolluted estuaries 
(Carpenter et al., 1978). In contrast, anthropogeni-
cally perturbed estuaries often display high As con
centrations at points in the estuarine profile 

•Author to whom all correspondence should be addressed. 
Fax: +33-4-67-146774; e-mail: elbaz@dstu.umv-
montp2.fr 

(Andreae et al., 1983), resulting in a deviation from 
conservative As behavior. Removal of As and 
P04~ from the water column also takes place by 
scavenging involving Fe on surface active suspended 
matter (Kitts e/ al., 1994). As and ?0l~ are there
fore involved in a multiplicity of reaction pathways, 
the respecdve importance of each depends on sev
eral factors, which all would require an environ
ment case study to elucidate. 

This paper describes the distribuuon of inorganic 
A s and P04~ concentrations along the salinity gra
dient of the Tinto estuary (southern Spain). This 
estuary is marked by extremely high As and PO4" 
concentradons and a high biological productivity. 
Seasonal variations of A s and P04~ concentrations 
are discussed with regards to biological and physi-
cocheim'cal parameters. 

STUDY AREA 

The Tinto estuary (Fig. I) is a partial to well 
mixed estuary with a maximum tidal amplitude 
of about 3 m. The upper limit of saline intrusion 

1 

http://www.elsevier.com/loeatc/watres
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is located between the stations SR and TRIO in 
the Tinto river (Fig. | ) . 

The Tinto estuary is a site of major industrial 
activities. The fertilizer industry treats imported 
phosphate ore and generates large amounts of 
phosphogypsum wastes which are dumped on the 
northern bank of the estuary. The phosphogyp
sum wastes (about lO ' " kg) cover an area of ap
proximately 4.10^ m- (Travesi et al., 1997). The 
wastes contain high quantities of As (personal com
munication, R . M . Canto) and contribute/ to the 
input of dissolved and particulate material to the 
estuary (Elbaz-Poulichet el al., 1999). 

The Tinto river drains the Tinto miniiig dis
trict situated in the Iberian Pyrite Belt, one of 
the largest massive sulfide deposits in the world 
(Leistel el al.. 1998). In addition to Zn , Cu and 
Pb, the deposit contains significant amount of As 
and traces of A u and A g . Former mining acuvi-
ties of the gossan (the upper oxidized part of 
the deposit) and present day mining of the sulfi-
dic zone- ha / left enormous quantities of As-rich 
Fe-hydroxides and pyrite slag. As a result of ero
sion processes, detrital pyrite and Fe-hydroxides 
are abundant in the sediments throughout the 
Tinto estuary. The drainage of pyrite wastes 
releases large amounts of metals and sulfuric 
acid into the river (Elbaz-Poulichet and Leblanc. 
1996; Nelson and Lamothe, 1993: Van Geen ei 
al., 1997; Van Geen and Chase, 1998). 

The mean water discharges of Tinto river is 3 m ' 
s~'. However important variations are observed 
(Borrego-Flores, 1992), with low discharges gener

ally during summer and high river discharges in 
winter (December-February) after important but 
aleatory rain events. 

M.ATERI.A1.S .A.ND M E T H O D S 

Sainpliitg 

Three surveys were carried out for this study: 
November 1996. June 1997 and April 1998. They corre
spond with periods of contrasting primary productivity: 
low in November, high in June and moderate in April. 
The position of sampling stations is reported in Fig. 1. 
Samples were taken by hand, using clean sampling pro
cedures, from a small boat with reference to salinity. 

Sample prclrcaiiiieiit and analy.K.'S 

Eh and pH were measured in the field laboratory 
(Huelva) immediately upon sampling. Chloride concen
trations were calculated from Na" concentrations assum
ing Na*/Cr = 0.56 in seawater with a salinity of 35%o 
(Riley and Chester. 1971) or determined directly using 
Capillary Ion Analysis. 

Samples for nutrients (POl". NO5. NOJ) were immedi
ately deep-frozen after filtration using Millipore filters 
(0,45 fttn: Teflon). Analytical determinations were carried 
out by automatic segmented flow techniques according to 
Whitledgc el al. (I98l). 

Samples for chlorophyll a, b. c determinations, were fil
tered through 47-mm G F / F filters and chilled between col
lection and analysis. The phytoplankton pigments were 
determined using a spectrometric technique, following 
extraction with 5 ml acetone during 24 h. The resulting 
suspension was centrifuged and the absorbance of the 
supernatant was obtained at 750. 664, 667 and 630 nm. 

Samples for dissolved organic carbon (DOC) were fil
tered on G F F glass fiber filters and analyzed using a high 
temperature oxidation technique. 

Water samples for total dissolved Fe and As analysis 





Tsible I. Dissolved nmriems, iusenic, iron, dissolved orBiiiilc carbon (DOC) and supporting pinaiueiers in Tiiuo esliiary 

Stiiiions" c r pH Ell soj- poj- Total Fe Fell Pel 11 
(B r') (V) (mM) (/<M) (niM) (;iM) (niM) 

0.03 2.47 27,1 14 13 
1.90 2.43 51.0 233 20 
6.5!) 2.46 65.4 10 
9.58 2.45 71.7 ,328 6 

lo.jy 2.47 64.3 278 3 
13.08 2.50 61,4 177 
13.76 2.66 62.2 65 0.36 
15.53 2.59 59,9 184 0.32 
\6A4 2.86 50.9 112 0.19 
16.33 3,09 54,0 127 
17.71 2.68 57.4 90 

2,55 45 
0.04 2.55 0,58 8.6 1,69 
0.50 2.60 0.54 9.6 2,23 
4.25 2.40 0,50 22.5 2,37 
6.09 2.40 0.45 19,4 26 1,96 
9.37 2.50 0.48 33.0 23 1,27 

13.23 2.55 0.46 35,5 147 0,39 
13.51 2.55 0.'I6 36.2 120 0,40 
14.65 2.65 0,41 35.9 278 0.27 
16.32 3.00 0.40 36.0 274- 0.12 
16.91 3.40 0.44 36.5 243 0.02 
17.80 5.40 0.54 37.0 II 0.0001 
5.97 5.20 0.22 27.9 II 1,01 

0.03 2.56 0.55 23 1.23 no 1,12 
0.68 2,61 0.54 17 6,85 1,26 242 1.01 
1.70 2,65 0.54 16 10,22 1.27 217 1.05 
4.45 2.78 0.53 17 5.80 1.17 193 0,98 
6.36 2.85 0.52 19 3.07 0,93 189 0,74 
8.43 3.04 0.50 20 K.OI 0.41 171 0,25 
8.68 3,80 0.49 2.45 0.43 183 0.25 

18.73 6.27 0.25 28 74.74 
0.25 

15.58 5,72 0.33 27 0.95 
15.75 6,37 0.37 26 1,14 
19,04 6.55 0.36 25 38,45 

total As 
(/iM) 

Aslll 
(nM) 

AsV 
(nM) 

NOr 
(/IM") 

N0.r 
(/iM) 

DOC 
(mg I-') 

Toliil clilorophyll 
(/'g I"') 

Cliloropliyl|.:i 

November 1996 

June 1997 

April 1998 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

TRO'' 
NI 
SR 

TRIO 
TR9 
TR7 
TR5 
TR5 
TR4 
TR3 
TR2 
TRl 
TR8'-' 

NI 
TRIO 
TR9 
TR8 
TR7 
TR6 
TR5 
TR4 
tR3 
TR2 
TRl 

29.2 
42.7 
22.6 
1,1.8 
12 
8.55 
4,89 
8,40 
4,19 
4.25 
3.84 

0.20 
0,23 
0.75 
0.62 
0.64 
0.24 
0.20 
0.37 
0.32 
1.19 
1,11 
0.54 

1.75 2.24 1.75 
0.15 0.86 0.15 2.49 99.8 3.28 
0,12 1.06 0.12 1.88 98,8 4.46 
0.61 0.39 0.051 94.4 4,69 
0.07 1.90 0.058 1.84 82.2 4.22 
0.03 1.17 0.033 0.56 90.7 4.31 
6,4E.05 1,06 0.063 0.40 75.8 4.47 
6,0E-04 5.15 0.592 1.04 19.3 3.56 
3,IE.05 2.55 0.028 0.05 ,58.3 4.19 
2.6E.05 2.51 0.023 0.72 58.6 3.64 
3.5E-04 3.03 0.347 1.08 12.9 4.62 

0.43 
2..19 

10.06 
8..12 
8.98 
7.97 
6.75 
4.71 
8.86 

14.00 
10.41 

0.010 0.645 1.5 

.1.73 
0.030 3.85 10 6.85 
0.033 3.96 15.85 285 
0.035 3,67 24.60 455 
0.023 5.60 15,70 384 
0.017 3.95 19,59 387 
0.023 3,59 8.83 328 
0.023 3,42 8.41 323 
0.025 4,62 9.50 348 
0.022 2,84 3.82 247 
0.030 3.45 80.00 188 

3.31 
10.59 
9.06 

32.65 
63.32 
45.119 
55.88 

132.78 
51.62 
47.54 

0.15 
2.12 
5,93 
5.8! 
5.10 
5.70 
4.11 
4.11 
4.1! 
4.11 
4. II 

4.11 

209 
.142 
275 
279 
235 
241 
255 
186 
139 

2,40 
5.79 
5.77 

22 
41 
32 
39 
90 
44 
32 

T3 

3 
O 

• a zr 
o 

''Sample tiikeii in the mining area, 
"Saniplc tiikcft in the elllueni of the paper fabric. 
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were filtered through 0.2 îin P V D F filters (Millipore). and 
acidified to l?o<i with concentrated HNOj (Merle 
Suprapur). Samples Tor dissolved As(I[I) determinations 
were not acidified, but deep-frozen and analyzed within 
less than one week after sampling. This procedure yields 
good results for this speciation analysis (Seyler and 
Martin. 1989). 

For dissolved Fe(II) determinations, filtered samples 
were buflfcred to pH 4.5 with an ammonium acetate/acetic 
acid bufter in the field, and Fe(I!) comple.xed by adding 
2.5 ml of a 0.5% (w/w) phenantroline solution to 25 ml of 
samples (Rodier ei al.. 1996). Analyses were undertaken in 
the laboratory by colorimetry. Total dissolved Fe was 
determined by Flame Atomic Absorption Spectrometry. 
Dissolved Fe(ni) was calculated as the difference between 
total dissolved Fe and Fe(It). 

Total dissolved inorganic As was measured after a pre-

0 S 10 15 20 

C l - (g.1-1) 

Fig. 2. pH. chlorophyll-a. Dissolved Organic Cai 
(DOC) and Nitrate-!-Nitrite as a function of C P . 

reduction involving potassium iodide in the presence of 
ascorbic acid. For dissolved As(IIl) determinations, the 
pH was adjusted to 4.8 using an acetic acid-sodium acet
ate buffer. Arsenic was determined using a hydride gener
ation system coupled to an ICP-MS (VG-Plasmaquad). 
This method is similar to that described by Andreae 
(1977). but has been modified according to Branch ei al. 
(1991). 

The suspended particulate matter (SPM) collected on 
the 0.2 urn P V D F filters was dried at 105=C and digested 
in sealed Teflon PFA vials with concentrated, hot (105"C) 
HNOj. The analysis of Fe and inorganic As for the 
digested samples were carried out as just described for 
water. 

The Reference Materials for Trace Metals. National 
Research Council of Canada: NASS-4 (seawater) and 
SLRS-3 (river water) were used to evaluate precision and 
accuracy of the methods. For total dissolved As. measured 
values on 10 replicate analyses (15.3 ± 1.5 nM for NASS-4 
and 9.1+0.1 nM for SLRS-3) agreed well with the rec
ommended values (16.6 ± 1.2 nM for NASS-4 and 9.6 ± 
0.7 nM for SLRS-3). Detection limits were 1 nM for 
As(in) and 1.5 nM for total As. 

Mixing e.yperinwnK 

The mixing experiments were carried out during June 
survey. They were performed as comparison with pro
cesses taking place in the water column of the Tinto mix
ing zone. Unfiltered river water from station SR and 
seawater from a near shore station in the Gulf of Cadiz 
were mixed in different proportions. After 1 h. the samples 
were filtered, acidified and analyzed for Fe and As in a 
similar way as the field samples. 

PRESENTATION O F T H E DATA 

Main chemical and biological characieristics 
(Table I) 

The p H remains rather constant (pH=2.5) in the 
river end-member during the three surveys, but 
shows a seasonal variauon in the estuary (Fig. 2a). 
In A p r i l , the increase of p H in the mixing zone co
incides with an increase in C F content from 8.43 to 
19 g r ' (Fig. 2). In November and June, subtle 
variations were observed: the first stage of mixing 
between river and seawater ( C P < 6.1 g P ' ) was 
marked by a slight p H decrease (Table 1) followed 
by a slight increase. 

The seasonal difference^ in p H with distance 
along the river-estuary transect was mainly due to 
variable input of acidic phosphogypsum effluents 
(pH 1.5). This input, which occurs in the vicinity of 
station T R 4 (Fig. lb), was important enough at 
times to keep the p H down in the lower mixing 
zone. This effect was observed in November, when 
the p H did not exceed the value of 3 in this part of 
the estuary. In Apr i l the p H profile, similar to that 
obtained from the mixing experiments (Fig. 2a), 
suggested a negligible input of acidic effluents. 

Eh data, available only for June and A p r i l , range 
between 0.400-0.450 V and 0.248-0.554 V , respect
ively, indicating oxic conditions in the water col
umn. The chlorophyll-a concentrations (Fig. 2b) 
showj^ the highest values (maximum: 342 fig P ' ) in 
June and the lowest (<9.86 /ig P ' ) in November. 
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In Apr i l , intermediate values (maximum: 90 ftg 1"') 
are observed in the mixing zone. The seasonal 
differences show that algae productivity is especially 
important during late spring and summer periods. 
Main algae species, observed in the Tinto mixing 
zone, are chlorophyceae. However a few diatoms 
and chryptophyceae are also present (Table 2). 

Dissolved organic carbon displays seasonal vari
ations (Fig. 2c) with enhanced concentrations in 
June (3.7 mg 1"' < D O C < 24.6 mg r') and com
paratively low concentrations in Apr i l ( D O C < 
4.69 mg P ' ) . In June, D O C was correlated with 
chlorophyll, suggesting a contribution to D O C 
from algae exudates or breakdown products during 
high primary productivity. Dissolved oxidized nitro
gen ( D O N : N 0 . r - ^ N 0 7 ) was depleted in June 
(Fig. 2d). This is probably related to the important 
algae production. 

Dissolved Fe concentrations exhibit seasonal vari
ation (Fig. 3a-c). with a maximum value of 18 m M 
and 13 m M in November and A p r i l , respectively. 
The water discharges were relatively constant 
during the three sampling exercises and therefore 
cannot account for the observed variations in Fe 
concentrations. When plotted against chlorinity, an 
increase in dissolved Fe can be observed in the 
early stages o f mixing ( C P < 4.26 g P ' ) ; a similar 
behavior was found for several other melals (Elbaz-
Poulichet et al., 1999). This increase reflects a 
release of Fe to water. A t higher chlorinity ^oncon-
ifwtkm^, Fe concentrations decrease in a rather con
servative manner as a result of simple dilution- o f 
river water with sea water, and do not exhibit the 

extetisive removal observed in many other estuaries 
(e.g. Boyle ei aL 1977). 

Arsenic and phosphate iit the dissolved phase 

Highest concentrations of As were registered 
during November (ca 45 / ( M ; Fig. 3a), and a strong 
positive correlation between dissolved As and Fe 
appears (r = 0.999, P = 0.01). 

In June and A p r i l , concentrations of dissolved As 
were lower than in November, and no correlation 
with Fe was observed. The trend^ (Fig. 3e and 0 
was marked by a maximum at station T R 4 near the 
confluence of the Tinto and a small tributary drain
ing the phosphogypsum wastes. A removal of As 
was clearly apparent in the chlorinity range defined 
by the As maximum and the river reference station. 

P O j " is introduced mainly in the mixing zone by 
phosphogypsum waste and its concentration 
remains relatively low (45 /uM). In June and A p r i l , 
a maximum P 0 4 ~ concentration was observed in 
the vicinity of T R 4 (Fig. 3e and (). Compared to 
the Redfield ratio ( N / P = 16). the value o f N / P was 
lower than 0.25 throughout the mixing zone in 
June, reflecting N-limiting conditions. In Apr i l , the 
N / P ratio reached a value of 60, and potential N -
limitation was occuring only downstream of station 
T R 3 . In June and A p r i l , dissolved P 0 ^ ~ and As 
showed a similar behavior (Fig. 3e and 0- In open 
oceanic waters, a strong correlation has been 
observed between P and As (e.g. Andreae, 1979; 
Cutter and Cutter, 1995) and httue been attributed 
to a nutrient-like behavior of As which is taken up 
by algae in a similar manner as P 0 4 ~ . The distri-

Table 2. SPM. Paniculate Fe. As concentrations and phyioplankton in the Tinlo esiuary 

Stations SPM Fe (mg g"') As Chlorophyceae Cryptophyceae Diatomophyceae 
(mgr' 0<gg-') - (cells./nil) (cell/ml) (cell/ml) 

April 1998 

TRO^ 9200 
NI IS 212 165 
SR 39 160 320 

TRIO 199 2S3 1470 
TR9 253 260 1530 211.000 
TR7 209 236 1320 41,600 
TR6 186 3t 90 485.000 
TR5 172 61 190 605,000 
TR4 138 29 135 337.000 
TR3 81 62 275 401,000 
TR2 64 486,000 
T R l 62 26 215 377.000 
TRS"" 46 404,000 

NI 4 555 2 
TRIO 155 101 135 
TR9 163 142 225 
TR8 239 150 260 
TR7 68 164 305 
TR6 147 132 455 
TRS 18 105 370 
TR4 55 74 500 
TR3 120 145 700 
TR2 128 98 555 
T R l 36 46 325 

•"Sample taken in the mining area. 
"Sample taken in the etfluent of the paper fabric. 





W R 2703[B] (00/0) [ A U T O 9/2/00]—V4-(NS)—pp 1-9 

Fnincoise Elbaz-Poulichet ei al. 6 

bution of P O i " in November was difierent frotn 
June and A p r i l , with the presence of two maximums 
(Fig. 3d): the highest maximum in concentration 
upstream and the smallest one near the phospho-
gypsum waste effluents. 

Distribution of Fe and As in the suspended panicu
late mailer (Table 2) 

In June and A p r i l , the decrease of particulate Fe 
during the early stages of mixing (Fig. 4a and 
Table 2), corresponded with the on-set of dissolved 
Fe mobilization (Fig. 3). A t somewhat higher 
chlorinity values (1-5 g r' C P ) an increase in par
ticulate Fe is observed, especially in June, reflecting 
iron precipitation. In high salinity zone (CI" > 10 g 
r'), the relative depletion of particulate Fe (Fig. 4a) 
can best be explained by dilution of the S P M 
because of the abundance of algae. 

In June, particulate As concentrations increased 
during the first stage of mixing (Fig. 4a) and dis
played maximum concentrations (I533J at chlori-

A 

0 5 10 15 20 

CI- (g.1-1) 

nities between 4.26 and 9.37 g 1"'. before decfeasing 
to 90-275 /(g a" ' dry weight at CI" > 13 a 1"'. The 
distribution of particulate As in the mixing zone 
therefore coincided strongly with Fe. This has been 
previously observed in the Humber Plume and 
attributed to As adsorption on Fe-hydroxides 
(Millward el aL 1997). 

In A p r i l , particulate As concentrations showed 
increasing concentrations with chlorinity, until 
700 /ig g~' dry weight for Cr= 15.58 g 1"'. fol
lowed by a rapid decrease. This behavior differs 
from that of Fe but coincides strongly with that of 
chlorophyll (Fig. 4b). 

DISCUSSION 

In the Tinto mixing zone, the distribution of As . 
Fe and P O a " is affected by the presence of two 
different sources: acid mine drainage generating Fe 
and As forms a primary source, whereas run-off 

0 5 10 15 20 

cr (g.1-1) 

Fig. 3. Dissolved Fe ( » ) , dissolved As (•), dissolved Phosphate (Q) as a function of Cl . Uranium (•) 
reported on Fig. 3d are from Elbaz-Poulichet ei al. (1999). 
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from phosphogypsum waste introducing POi~ and 
As to the Tinto constitutes a secondary source. 

The relationships between dissolved As and Fe in 
iNovember (Fig. 3a) and that between particulate 
As and particulate Fe in June (Fig. 4a) outline the 
importance of Fe in interpreting the behavior of As 
in the Tinto system. Fe solid phases are important 
geochemical carriers of As and may contribute to 
the removal of dissolved As (Kitts et al., 1994). 
According to E h and p H data the dominant Fe 
species in the. river end-member should be Fe(II). 
However, Fe(II) and Fe(III) determinations 
(Table I) demonstrate that the two species co-exist 
in the dissolved phase with Fe(IlI) being the domi
nant species (Fe(III)/Fe(II)= 10 at the station N I ) . 
This result is corroborated by the orange-yellow 
color of the Tinto river, and implies that thermo
dynamic equilibrium is not achieved because of 
spatial, temporal and kinetic effects that condnually 
perturb the local environment as demonstrated else
where in acidic sulfate waters (Bigham et al., 1996). 
The Fe(III) formation starts in the tailing waters 
through bacterial oxidation of Fe(II) by T . Ferro
oxidans at p H close to 2.5 (Salomons, 1995). 

The data reported in F ig , 3 and 4 suggest that 
dissolved and particulate Fe are subjected to both 

2000 JUNE 1997 

• As • Fe 

300 

•200 

• 100 

CO 

I 
E> 
rs 

'en 

J . 
i 

e i 600-

c i 

400-

200-

APRIL 1998 

• As 
A Chl-a 

"100 

•80 c i 

-60 
a 

">> 

•40 
" c . 
o 
u 

_ o 

•20 6 

t-0 
20 

Fig. 4, (a) Arsenic and iron as a function of C i " 
pended particulate matter. (June 1997 survey); (b) 
in suspended particulate matter and chlorophyll 

function of CI" (April 1998 survey). 

in sus-
Arsenic 
a as a 

release and removal processes. At C I " < 10 g 1" , a 
release of Fe is apparent from the Fig. 3a-c, The 
two Fe species (Fe(ll) and Fe(III)) are involved in 
the processes (Table 1), as well as M n , C u , N i , Z n 
(Elbaz-Poulichet et al.. 1999), The release of these 
fnetals to the water phase and the presence of abun
dant corroded detrital pyrite in the sediments of the 
river bed and tidal marshes suggests an origin from 
pyrite dissolution according to the classical reac
tion: 

8H2O-I-FeS:(s)-f- 14Fe^+ 

= 2SOi"-H5Fe--*--l-I6H+ (1) 

This reaction results in an increase of [H ' ' ] , and 
may explain the slight decrease of p H during the 
early steps of mixing in November and June 
(Table I), In Apr i l , the relatively low amount of Fe 
in the river indicates a limited release of Fe from 
the sediments and the decrease of pH is not detect
able. A n additional release of dissolved Fe may be 
attributed to the dissolution of detrital Fe-oxides in 
the vicinity of the paper factory; the effluent input 
into the river results in a reduction fsf the dissolved 
oxygen concentration (Elbaz-Poulichet et al., 1999), 
probably due to the oxydation of the organic mat
ter which is important ( D O C = 80 mg 1"') in the 
effluent (sample T R 8 , Table 1). 

Removal of Fe with increasing salinity has been 
reported for many estuaries (Boyle el al., 1977), and 
is also observed in our mixing experiments (Fig, 5), 
But in the Tinto mixing zone, the removal of Fe is 
swamped by a release process operadng in the low 
chlorinity region and the balance is in favor of dis-
soluuon even in June where high D O C concen-
trauons may enhance, in low p H waters (pH 2,5), 
the Fe precipitation as humic complexes (Luther et 
al., 1996). 

In A p r i l and June, As and PO4" showed a simi
lar behavior (Fig. 3e and 0. suggesting that the 
same removal processes control their distribudons. 

c 

Fig. 5. Iron and arsenic as a function of C P in riverwater/ 
seawater mixing experiments (June 1997 survey). 





W R 2703[B] (00/0) [ A U T O 9/2/00]—V4-(NS)—pp 1-9 

Francoise Elbaz-Poulichct ei al. 

The concentration of As(IlI) was negligible (Table I) 
during that period and the stable As species, as pre
dicted from Eh-pH data, was the hydrolyzed form 
of As ( H A s O j " ) , which shares with the hydrolyzed 
form of P ( H P O j " ) similar chemical behavior. In 
Apr i l , the correlation between particulate As and 
chlorophyll (Fig. 4b) suggests uptake of arsenate by 
algae or adsorption on cell walls. The uptake pro
cess, has been reported for ?0\~ in acidic mine 
drainage (Tate et al., 1995), and has been also pro
posed for As in the P-rich Charlotte estuary 

• (Froelich et al., 1985) and in the Humber Plume 
(Millward ei al., 1997). In the Tinto mixing zone, 
the P/As ratio in water (lOO^Js similar (Fig. 6) to 
the removal ratio (Ct-Coj(p5^/^Ct-Co)As (see cap
tion of F ig . 6 for explanatiiJii). This suggests that 
algae do not discriminate between As and P. If the 
process is uptake and not sorption on wall cells, the 
difference with other estuaries where discrimination 
is observed may possibly be explained by differences 
in algae species as proposed by Sanders (1985). 

In June, a positive correlation was apparent 
between chlorophyll and dissolved As disappear
ance from the dissolved phase but no correlation 
was observed between chlorophyll and particulate 
As . This suggests that fixation (uptake or adsorp
tion on wall cells) by algae is not the only process 
determining As behavior. The correlation between 
As and Fe in S P M , clearly, indicates a co-precipi
tation of As with Fe. Compared to A p r i l , the co-
precipitation process was enhanced by the high Fe 
conceiitrations (Fig. 3b) and probably by the 
enhanced D O C concentrations (Fig. 2c) which gen-

200 

3 

o 
(J 

150-

100-

June 1997 
April 1998 

(Ct-Co)A, (HM) 

Fig. 6. (Ct-CoUoJvs (Ct-Co )A, . Ct is the theoretical dis
solved concentrkiSn of As or P04~ established from the 
theoretical mixing line between NI and TR4 in June (Fig. 
3e) and TRIO and TR4 in April (Fig. 30- Co is the 

observed concentration. 

erally increases the floculation of Fe dolloids 
(Sholkovitz, 1978), 

The removal processes explain why the As con
centrations in the nearshore waters of the G u l f of 
Cadiz remain fairly low (21-24 n M . Morley ei al.. 
1999) compared to metals which are not taken up 
in the Tintp mixing zone (Elbaz-Poulichet ei al.. 
1998). 

In November, dissolved As behaves in a similar 
way as Fe (Fig. 3a), and is subjected to release at 
low chlorinity and probably co-precipitation further 
down the estuary. During this period, the release is 
probably enhanced by the abundance of Fe (see Eq, 
1) in the river end-member but algae fixation is not 
involved. The balance is in favor of the release 
(Fig. 3a) which is important enough to mask the 
phosphogypsum source. Inversely, in June and 
Apr i l , the balance for As is in favor of removal as 
it is also the case for PO4". However the POi~ 
concentrations in November (Fig. 3d) remained 
high throughout the estuary and deserved special 
attention. The R E E distribution (Elbaz-Poulichet 
and Dupuy, 1999) reveals that inputs from phos
phogypsum wastes occur both under dissolved and 
paruculate phasj^. This observation may explain the 
P04~ distribution: the first peak concentration at 
C r = l 5 g r' is possibly related to the release of 
soluble P 0 4 ~ , whereas the second peak at C l ~ = 8 g 
r' reflects a subsequent dissolution of POl~ from 
phosphogypsum S P M . Uranium, which has its 
source only in phosphogypsum, displays a similar 
distribution (Fig. 3d), with two maximum in con
centrations (Elbaz-Poulichet el al., 1999). POl~ is 
subjected to co-precipitation with Fe-oxides, but 
this removal process is probably of less importance 
than the source inputs. 

CONCLUSION 

This study demonstrates that As and P04~ distri
butions are seasonally variable in the acidic water 
of the Tinto mixing zone. The differences are re
lated to a transfer from dissolved to particulate 
phase operating in this system. During spring 1997 
and 1998, the fixation by algae coniplemented the 
co-precipitation with Fe, During late autumn 1996, 
the removal was negligible and was balanced by the 
release o f As and P04~ from detrital pyrite and 
phosphogypsum, respectively. In spring, when the 
removal was the dominant process, As showed a 
similar behavior compared with P04~; otherwise, it 
behaved as Fe in autumn. 

Finally, the dissolved inorganic As , transported 
in the estuary was about three times more import
ant in autumn compared to spring. The discrepancy 
is mainly due to the phytoplankton production 
which largely contributes to As and P04~ removal 
in spring. During this season, the As content of 
S P M can reach 1530 ng g~' dry weight. 

These removal processes limit As concentrauons 

S 
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to 21-24 n M in the G u l f of Cadiz but the sedimen
tary stock which is continuously dredged and dis
posed on the edge of the Odiel natural park is 
highly toxic and could constitute an important sec
ondary As source. 
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1. Introduction 

The Tinto and Odiel rivers (South Western, 
Spain) drain the Iberian Î rite Belt, which is one 
of the largest sulphide deposits in the world and 
contains more than 1700 Mt of sulphides (Leistel 
et al., 1998). This predommantly Zn-Cu-Pb min
eralisation, has been worked continuously since 
the Phoenician and Roman eras (Rothenberg and 
Blanco Freijero, 1980), leaving enormous quanti
ties of pyrite wastes and slags. As a consequence 
of the production of sulftirlc acid by drainage of 
those wastes, the pH of the two rivers remains 
low and relatively constant pH (approx. 2.5 in the 
Tinto and 3 In the Odiel) throughout the year 
over a distance of 100 km from the mining area 
down to the estuary (Nelson and Lamothe, 1993; 
Elbaz-Poulichet and Leblanc, 1996; van Geen et 
al., 1997). 

High metal concentrations have been reported 
in the riverme end-member (Elbaz-Poulichet and 
Leblanc, 1996; van Geen et al., 1997), in the 
sediments of their common estuary (Perez et al., 
1991; Nelson and Lamothe, 1993) and in the 
coastal shelf sediments of the Gulf of Cadiz (van 
Geen et al., 1997). Although knowledge of dis
solved metal distribution in the estuarine zone is 
needed to estimate the impact that those rivers 
will have on the highly productive region of the 
Gulf of Cadiz, scarce U data (Martinez-Aguirre 
et al., 1994) have been reported. 

Moreover, the Gulf of Cadiz where important 
metal enrichments in waters have been reported 
(van Geen et al., 1988, 1991), provides up to 20% 
of the Atlantic inflow into the Gibraltar Strait 
and thus contributes significantly to the contami
nation of the Westem Mediterranean sea in gen
eral and to the Alboran sea, in particular, which 
is also a region of intensive fishing activity. 

In order to evaluate budgets for the trace metal , 
transfer from the mineralisation zone to the Gulf 
of Cadiz, the present study investigates the 
processes that control metal behaviours in the 
Tinto and Odiel mixing zones and in their com
mon estuary: the Ria of Huelva. This system is 
characterized by extreme pH conditions (< 3) also 
provides an unique opportunity to improve our 

understanding of metal cycling in this particular 
case. 

Data on sulphate, silicate, nitrate and phos
phate and dissolved trace elements (Fe, Mn, Al, 
Cu, Cdi Zn and U) are presented. 

2. Study area 

The Tinto and Odiel (83 and 128 km in length, 
respectively), have similar drainage basin areas 
(approx. 1680 km )̂. The mean water discharges 
of the Odiel and the Tinto rivers are 15 m-* s~' 
and 3 m-' s~', respectively. However, important 
variations are observed (Borrego-Flores, 1992) 
with low discharges generally during summer and 
high river discharges in winter (December, Jan
uary and February) after important rain events. 
Mining activity is still active in the Tinto catch
ment. Less intensive mining occurs in the Odiel 
catchment (Nelson and Lamothe, 1993) where, in 
addition, a dam has been built, trapping sedi
ments and acid mine wastes from ore processing 
plants. 

The estuary can be described as a well to 
partially mixed estuary with a maximum tidal 
amplitude of approximately 3 m. The upstream 
limit of saline intrusion is located at the east of 
San Juan Del Puerto on the Tinto river and 
upstream of Station 18 on the river Odiel (Fig. 1). 
The turbidity maximum occurs between Stations 3 
and 11 in the Tinto and between Station 23 and 
29 in the Odiel. The tidal zones include 
salt-marsh areas, which are particularly well de
veloped on the right bank of the Odiel river. The 
two rivers meet at the town of Huelva and form a 
ria (outer estuary) extending over approximately 
15 km, the westem bank of the ria being partly a 
natural spit. 

The estuarine zones of the two rivers are sites 
of major industrial activities. On the east bank of 
the Odiel, phosphate-based fertiliser, pyrite roast
ing and copper smelting plants are present 
between Stations 29 and the confluence (Fig. 1). 
Approximately 8 million m̂  of liquid effluents are 
discharged into the Odiel each year, containing 
approximately 4.10* kg of phosphogypsum 
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Fig. 1. Sketch map of Huelva Ria. The Tinto and Odicl river meet in a common estuaiy at Huclva (outer estuary). 

(Travesi et al., 1997). On the Rio Tinto, there is a 
paper mill at Moguer (Station 5), which processes 
eucalyptus wood from local sources. Large waste 
deposits of phosphogypsum exist on the northem 
bank of the Tinto near the junction of the two 
rivers (Stations 9-12). The thickness of the de
posits is 4-6 m and their total surface covers 
approximatively 4.10* m̂ . It is estimated that 10'" 
kg of phosphogypsum have been deposited 
(Travesi et al., 1997). These wastes are drained by 
a small tributary which also carries the effluents 
from the sewage treatment plant of the town of 
Huelva. Pyrite deposits are found at the junction 
of the two rivers. Furthermore, on the eastern 
bank of the outer estuaiy the industrial area 
mcludes an oil refinery downstream. 

3. Material and methods 

3.1. Sampling 

The location of the sampling stations are re
ported in Fig. 1. Water samples were collected in 
November 1996 during normal low water dis
charge. Samples were taken by hand from the 
river banks and from a small boat in the estuary. 
In the coastal area, a bottom-weighted polyethy
lene hose was lowered into the water column and 
samples were drawn into large polyethylene Nal
gene containers (101) using a vacuum hand pump. 

For metals, bottles were previously acid cleaned 
accordmg to the procedure currently used in the 
different laboratories involved. 
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3.2. Determinations of nutrients and major 
physicochemical parameters 

For phosphate and silica determinations, the 
samples were filtered through Millipore Teflon 
filters and immediately deep-frozen. Analysis was 
carried out in the C.EA.-Blanes by auto
matic segmented flow techniques according to 
Whitledge et al. (1981). 

Sulphate was carried out, after filtration 
through PVDF (0.2 /xm) Millipore filters, by Cap
illary Ion Analysis (CLA) at Laboratoire Geoflu-
ides-Bassins-Eaux (GBE). Na* was determined, 
after passing through 0.4 p,m Nuclepore filters, by 
Flame Atomic Absorption Spectrophotometry at 
Southampton Oceanography Center (SOC). Chlo
ride concentrations were calculated firom Na"̂  
concentrations assuming NaVCl~=0.56 in sea
water having a salinity of 35 ppt (Riley and 
Chester, 1971). Determinations of pH were un
dertaken in the field laboratory (Huelva) immedi
ately after sampling. The salinity at Stations 38 
and 40 (Fig. 1) in the Gulf of Cadiz, was calcu
lated from conductivity measurements. 

3.3. Metal determinations 

Analyses of dissolved metals after filtration on 
0.4 ;u,m Nuclepore filters were carried out at SOC 
and at GBE according to the scheme presented in 
Table 1. In order to prevent contamination risks, 
two sets of filtration units were used: one for the 
highly contaminated rivers and estuarine samples, 
the other for the coastal waters. When Cathodic 
Stripping Voltammetry (CSV) was used for Cu 
and Ni determinations, the analytical instrumen
tation was thoroughly cleaned using diluted HCl 
after analysis of the highly contaminated waters. 
Determinations of instrumental and reagent 
blanks were performed to check the effectiveness 
of the cleaning routine. Blank values were below 
2 nM for Cu and 1 nM for Ni. 

The analyses by diflferent techniques in the 
three laboratories, show a good agreement as 

indicated by the values obtained on the certified 
river (CASS-2, CASS-3, SLRS-2) and seawater 
(NASS-4) reference materials from Canadian Na
tional Research Center (Table 1). 

4. Results and Discussion 

4.1. Variations of pH, sulphate, nitrate, phosphate 
and silica (Fig. 2) 

The low pH registered all along the Tinto (= 
2.5) and Odiel (=2.8) rivers overlap with those 
reported by Nelson and Lamothe (1993), Elbaz-
Poulichet and Leblanc (1996) and van Geen et al. 
(1997). These low values which remain fairly con
stant at all times of the year, result from acid 
mine drainage and are due to the oxidation of 
pyrite (FeSz), with a consequent production of 
sulphuric acid. While neutralisation occurs rapidly 
in the Odiel mixing zone (Fig. 2), pH values 
remained low in the mixing zone of the Tinto in 
relation with the runoff from phosphogypsum 
wastes which release hydrofluordric and phospho
ric acid. The F content, low in the river (< 1 mg 
l~^X increases up to 7-15 mg 1~' in the vicinity of 
the phosphogypsum wastes (Medio Ambiente, 
1998). 

In relation to salinity (Fig. 2), nutrients behave 
differently according to the rivers and display 
generally non-linear relationships with chloride. 
Such an evolution cannot result simply from dilu
tion and/or absorption effects due to seawater 
input and it clearly implies additional sources. 
Some of them may be easily recognised: this is 
true for sulphate and phosphate which are re
leased in the Odiel river by phosphate fertiliser 
factories and in the Tinto river by the wastes 
generated by these factories. 

In both rivers the maximum of dissolved silica 
occurs at chlorinity between 12 and 19 g 1"'. This 
silica maximum could be due to inputs from phos
phogypsum wastes or associated with the pres
ence of diatoms which are abundant (Perez et al., 
1997) in the outer estua .̂ In the Tinto and in the 
Odiel mixing zone, a few living diatoms are still 
observed but scanning electron microscopy obser
vations show an increasing number of broken 





Table 1 
Analysis of dissolved metal concentrations 

Laboratoiy Filtration Metals Location of Method Certified Measured value Recommended value 
samples reference (mean± lo - ) (mean± Icr) 
analysed material 

SOC 0.4 fim Nuclepore Cu, Cd, Zn, River and mixing F A A S " , GFAAS " 
(Southampton Polycarbonate filters Mn, Fe, A l zone 
Oceanography 
Center) 
UP 0.45 /xm Whatman Cu, Ni, Cd, River mixing zone, ICP-AES' CASS-3 Cu: 8.17 ± 0.55 nM Cu: 8.14 ± 0.98 nM 
(University of Cellulose nitrate Zn, A l , U , As outer estuaiy. Gulf ICP-MS " Ni: 6.68 ± 0.53 nM Ni; 6.58 ± 1.06 nM 
Plymouth) filters • of Cadiz CSV 

Ni; 6.58 ± 1.06 nM 

G B E 0.4 PVDF Millipore Mn, As, U River, mixing ICP-MS" SLRS-2 U(SLRS2): 0.187 ± 0.016 nM U(SLRS2): 0.205 ± 0.008 nM 
(Geofluides, filters zone, outer estuary, NASS-4 U(NASS-4): 12.02 ± 0.18 nM U(NASS4): 11.3 ± 0.50 nM 
Bassins, Eau) Gulf of Cadiz As(NASS-4): 16.8 ± 1.3 nM 

'PASS; Flame Atomic Absorption Spectrometry was used at SOC for the analysis of Cu, Cd, Zn and high Fe samples. 
GFAAS: Graphite Furnace Atomic Absorption Spectrometry (with matrix modification and standard additions) was used at SOC for A l and low Fe samples in the 

river and mixing zone. 
° ICP-AES; Inductively-Coupled Plasma Atomic Emission Spectrometry was used at the UP for the analysis of Fe, Cu, As, Zn in river and mixing zone. 
•"iCT-MS: Inductively Coupled Plasma-Mass Spectrometry was used in the UPl to analyse Mn, U , Cu, Cd, U , Zn and A l in river and mixing zone. 
In the |GBE laboratoiy Cu, Mn analysis in river and mbdng zone and U analysis throughout the study area were also performed by ICP-MS. For dissolved As, an 
hydride generation system was coupled to the ICP-MS (method similar to that of Branch et al., 1991). This technique involves a pre-reduction step with KI in order to 
obtain total dissolved As concentrations. 
'CSV (Cathodic Stripping Voltammetry) was used by UP for the determination of total dissolved Ni and Cu and for speeiation measurements. The voltammetric 
determinations were performed, using a micro-Autrolab voltammeter (Ecochimie) with a Hanging Mercury Drop Electrode (Metrohm, 663 V A Stand). The buffer 
used throughout was 0.01 M HEPES (pH 7.7) 
In order to destroy naturally occurring metal complexing organic ligands, samples for total dissolved Cu and Ni determination were subject to U V digestion after 
acidification to pH 2. Total metals were detennined, in the presence of Hepes buffer, in separate aliquots with 2 x 10"' M oxine (CTu) or 2 X 10"^ M dimethyl 
glyoxime (DMG) (Ni), as described by Philar ct al. (1981) and van den Berg (1986). 

I 
5 
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Fig. 2. Variations of pH, sulfate and major nutrients as a function of chloride content. Symbols: • Odiel mbdng zone; 
mfadng zone; O Outer estuary; and x Gulf of Cadiz. 

Tinto 

diatom tests which totally disappear at Station 6. 
The subsequent decomposition of biogenic silica 
may explain the observed maxima. 

In the Odiel river, nitrate (Fig. 2) can be con
sidered as almost.conservative. Its distribution is 
more complex in the Tinto river: this anion in
creases in the early stage of mixing with the 

highest value encountered at Station 3, where the 
effluent discharges from a paper factory occur. In 
this station. Total Organic Carbon increases from 
3 to 42 mg r ' , arid probably undergoes a remin-
eralisation, inducing an increase of nitrate in so
lution. This mineralisation is favoured by the 
abundant presence of bacteria (C. Courties, pet--
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river, where less intensive mining occurs (Nelson 
and Lamothe, 1993), dissolved metals (excepted 
Mn and Ni) have lower concentrations (Table 2b, 
Station 2). The similarity of Mn and Ni content in 
the two rivers, may indicate that these elements 
are influenced by the dissolution by low pH wa
ters of rock minerals containing them all along 
the rivers rather than by the mining activities. 

4.2.2. Mixing zone 
Similar to nitrate, Fe, Mn, Al, Cu, Cd and Zn 

contents also increase between the Stations 1 and 
3 in the Tinto river (Figs. 2 and 3). The increase is 
unlikely to be an artefact as it has been observed 

Table 2 
pH, chlorinity and dissolved metals in river water and mixing zone (November 1996) 

Station Cr(gr') pH FeCjzM) Mn(; iM) CU(AIM) CM(nM) As(nM) U(nM) Zn(/xM) Al(mM) Ni(nM) 

(a) pH, chlorinity and dissolved metals in the Tinto river and mfadng zone 
I 0.031 2.47 10.89 186 448 1382 29253 50 669 3.55 4697 
3 1.9 2.43 18.28 347 745 3216 42747 131 1776 5.44 6915 
4 659 2.46 9.17 193 430 1895 22653 195 1049 3.59 4421 
5 9.58 2.45 4.09 140 291 1205 13867 283 596 2.27 2978 
6 10.39 2.47 3.05 123 255 1041 12009 292 500 1.97 2655 
7 13.08 2.5 2.23 72 139 907 8561 242 405 1.66 2349 
8 13.76 2.66 0.59 49 82 557 4892 176 217 0.96 1496 
9 15.53 2.59 0.64 54 94 609 8375 245 240 1.05 1654 

10 16.44 2.86 0.23 33 52 368 4195 104 132 0.62 1121 
11 16.33 3.09 0.19 24 37 306 4252 75 109 0.50 925 
12 17.71 2.68 0.12 23 34 256 • 3844 65 86 0.39 696 

sonal communication). Under normal pH condi
tions, a similar mechanism has been suggested by 
Windom et al. (1988) to explain maxima of nitrate 
concentration in organic rich tropical estuaries. 

4.2. Metal distribution (Table 2a, b). 

4.2.1. Rivers 
In the Tinto river, dissolved metals have high 

concentrations (Table 2a, Station 1) with values 
similar to those previously reported (Nelson and 
Lamothe, 1993; Elbaz-Poulichet and Leblanc, 
1996 and van Geen et al., 1997); they are also 
representative of the whole system. In the Odiel 

(b) pH, chlorinity and dissolved metal concentrations in the Odiel river, mixing zone, the surface samples ofthe outer estuary 
2 0.03 2.84 910 215 136.7 868 369 30.9 356 2.637 4646 

18 1.96 3.09 477 179 98.4 671 51 21.3 242 1.655 3796 
19 2.69 3.13 457 174 94.8 702 67 19.0 229 1.637 3535 
20 1.28 3.21 393 161 89.9 632 - 52 18.8 212 3217 
21 9.06 3.96 190 73 41.7 300 0 11.6 124 2112 
22 10.23 4.2 120 63 32.6 255 47 7.7 92 0.768 1664 
23 15.09 5.28 55 38 153 191 34 1.9 60 0.256 1147 
27 17.49 6.43 19 6.3 161 522 1.3 34 0.058 369 
29 17.49 6.56 17 5.4 201 911 3.1 27 0.071 311 
31 19.04 6.92 10 3.9 163 1355 4.0 19 0.156 208 
32 18.11 8.26 11 ;4.6 171 1396 4.8 18 0.076 390 
13 18.42 8.2 8 3.0 146 1285 6.1 16 0.012 210 
14 18.73 7J4 5 1.57 122 1161 9.4 7 0.065 140 
IS 19.35 7.8 0.223 671 12.4 2 0.005 61 
16 19.51 8.1 0.103 146 13.1 1 0.003 17.01 
17 19.35 8.04 0.071 86 13.4 0.002 7.52 
69 19.35 8.26 147 11.6 
38 19.35 8.26 148 12.5 
40 19.35 8.26 0.298 34 11.9 8.29 
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by each laboratory team which have collected 
their own samples at the same stations. The input 
of organic-rich effluents from the paper factory 
favours oxygen consumption and thus a decrease 
of pH. Even if this decrease remains small, be
cause of the low pH of the river water, dissolution 
of kon oxyhydroxydes still present in the sedi
ments occurs and hence an increase of soluble Fe 
content. The Fe-oxide phases, which result from 
erosion of the upper oxidized horizon in the min

eralisation zone are transported downstream dur
ing flood events. The simultaneous increase of 
other metals, including Mn, results from the dis
solution of the iron phase where they are trapped 
as suggested by the significant correlation between 
Fe and the following metals Mn, Al, Cu, Cd and 
Zn (Fig. 4). Downstream Station 3 in the Tinto, 
the decrease of metal concentrations results from 
dilution by seawater. In the Odiel mixing zone, 
metals (e.g. Fe and Mn, Fig. 3) are removed from 
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Fig. 3. Relationship between dissolved metal concentrations and Mn in the mbdng zone. 
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Fig. 4. Dissolved metal concentrations as function of chloride content. Variations of pH, sulfate and major nutrients as a fiinction 
of chloride content. Symbols: O Odiel mbdng zone; • Tinto mbdng zone; O Outer estuaty; and X Gulf of Cadiz. 





82 F. Elbaz-Poulichet el al. / The Science of Ihe Total Etivironment 227 (1999) 73-83 

the river water in relation to higher pH, but the 
removal process is relatively inhibited compared 
to normal estuaries (e.g. Boyle and Edmond, 1977; 
Sanudo-Wilhelmy et al., 1996). This is due to the 
high solubility of Fe hydroxides in low pH waters. 

Dissolved U shows a concentration maximum 
in the Tinto estuary (Fig. 3), with a distribution 
similar to that of phosphate which reflects the 
high U content (11 /x.g g"' dry wt.) of the phos
phogypsum. In the Odiel river, U concentrations 
show a minimum value (1.3 nM) at a chlorinity 
Cl = 17.5 g !"', then increase to reach 13.4 nM in 
the Ria, a value which is slightly higher than the 
value observed in the Gulf of Cadiz at Station 40 
(11.9 nM), typical of normal oceanic waters 
(Martin and Whitfield, 1983). This distribution 
indicates a removal of dissolved U. This dissolved 
U is trapped by the organic-rich sediments during 
the tidal transport of Odiel river water through 
the neutral pH marshes of the Odiel regional 
park. The same mechanism has been suggested by 
Martinez-Aguirre and Garcia-Leon (1997) to ex
plain the high activity of '̂"Po, ^ ' O p b and ^"Ra 
which are derived from phosphate ore processing 
and phosphogypsum deposits in the sediments of 
the marshes. Thus most of the U introduced in 
the estuary is retained in the marsh system as 
suggested by Church et al. (1996) — it is not 
exported to the Gulf of Cadiz. 

5. Conclusion 

This study confirms high metal contents in the 
Tinto and Odiel rivers and indicates an addition-
nal inputs of sulphate, phosphate and U due to 
the industrial activities. Moreover the industrial 
activities modify the physicochemical conditions 
in the Tinto and favour the release in solution of 
metals and nitrate which were previously im
mobilized in the sediments. Silica increases in the 
acidic mixing zone probably in relation with disso
lution of biogenic silica from diatoms. In the 
mixing zone removal processes are inefficient in 
the Tinto and are relatively weak in Odiel result
ing in export of dissolved metal to the Gulf of 
Cadiz, the exception is U which is-trapped in the 
marshes. 

In this context the industrial activity drastically 
contributes to enhance the pollution generated by: 
mining activity. 
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