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Abstract 11 

The Marine Strategy Framework Directive (MSFD) uses an indicator-based approach for ecosystem assessment; 12 

indicators of the state of ecosystem components ('state indicators') are used to determine whether, or not, these 13 

ecosystem components are at ‘Good Environmental Status’ relative to prevailing oceanographic conditions. Here, it 14 

is illustrated that metrics of change in plankton communities frequently provide indications of changing prevailing 15 

oceanographic conditions. Plankton indicators can therefore provide useful diagnostic information when interpreting 16 

results and determining assessment outcomes for analyses of state indicators across the food web. They can also 17 

perform a strategic role in assessing these state indicators by influencing target setting and management measures. 18 

In addition to their primary role of assessing the state of pelagic habitats against direct anthropogenic pressures, 19 

plankton community indicators can therefore also fulfil an important 'surveillance' role for other state indicators 20 

used to formally assess biodiversity status under the MSFD. 21 
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1 Introduction 22 

An ecosystem-based approach is increasingly adopted for the management of marine ecosystems [1, 2]. Whilst 23 

previous management strategies focused on key species and habitats, they neglected the interactions and linkages 24 

between ecosystem components, as well as between ecological and social systems [3, 4]. Ecosystem-based 25 

management on the other hand, considers humans as part of the ecosystem, and aims to manage the impact of 26 

multiple anthropogenic activities to achieve a healthy ecosystem state with a sustained flow of ecosystem services to 27 

humans [4, 5].The EU Marine Strategy Framework Directive (MSFD) takes an ecosystem approach to the 28 

management of European seas, supported by Integrated Ecosystem Assessments, where indicators are required to 29 

synthesize scientific information and formally assess progress towards the overall ecosystem objective of ‘Good 30 

Environmental Status’ (GES) [6, 7]. Out of the 11 qualitative descriptors that comprise the MSFD[8], the descriptors , 31 

‘Biodiversity’, ‘Food webs’ and ‘Sea Floor Integrity’, describe ecosystem state.[9] 32 

As a directive concerning direct, manageable anthropogenic pressures on the marine environment, the development 33 

of MSFD biodiversity state indicators for formal assessment initially focused on indicators with clear pressure-state 34 

relationships and associations with defined thresholds and targets.  An example is a fish stock size controlled by 35 

levels of fishing pressure [10, 11]. These state indicators can follow an ‘Activity’-‘Pressure’-‘State’-‘Response’ (APSR) 36 

framework of marine management, where a human activity applies a defined pressure on the system. This pressure 37 

causes a change in the state of the indicator, which can trigger a management response [12]. However, Shephard, 38 

Greenstreet, Piet, Rindorf and Dickey-Collas [12] argue that a separate class of indicators called ‘surveillance 39 

indicators’, where the links to defined anthropogenic pressures are not well understood and where target setting is 40 

difficult, can also contribute to ecosystem assessments under the MSFD. Surveillance indicators do not have a direct 41 

influence on the formal assessment of Good Environmental Status, but their ‘surveillance’ can provide information 42 

on wider ecosystem impacts of anthropogenic pressures as well as changing environmental conditions. Therefore, 43 

surveillance indicators can also result in triggering management action when pre-defined bounds are passed.  44 

Indicators that describe the structure and functioning of plankton communities have been developed to formally 45 

assess the state of ‘pelagic habitats’ within the MSFD. These include indicators of bulk properties such as primary 46 

production as well as indicators of change in plankton functional groups [13]. Plankton indicator change may be 47 
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driven by a multitude of direct anthropogenic pressures, most notably eutrophication resulting from anthropogenic 48 

nutrient pollution [14]. The assessment of these MSFD plankton indicators, therefore, can directly contribute to the 49 

design of the programme of management measures needed to ensure marine ecosystems are in Good 50 

Environmental Status under the MSFD, should a change in the plankton indicators be detected during assessment, 51 

and linked to direct anthropogenic pressure. 52 

Plankton dynamics, however, are largely driven by climate [15], particularly at the regional scale which is the focus of 53 

the MSFD. Consequently, both climate variability and anthropogenic climate change can cause widespread changes 54 

in the plankton [16] which are likely to manifest through changes in plankton indicators. The MSFD [8] refers to 55 

these drivers of change as ‘prevailing conditions’ and mandates that “the quality and occurrence of habitats and the 56 

distribution and abundance of species are in line with prevailing physiographic, geographic and climatic conditions”. 57 

Changes in the plankton driven by climate change and environmental variability, therefore, would be considered in 58 

line with Good Environmental Status, with no management impetus through the MSFD.  59 

Because plankton are sensitive to changes in climatic and physical oceanographic conditions however, and have 60 

been shown to amplify weak climatic signals [17], they can be useful indicators for large scale changes in prevailing 61 

conditions. For example, indicators of variability in volume of Atlantic inflow into the North Sea,  a key forcing 62 

variable for the North Sea ecosystem, can be derived from zooplankton communities [18]. Furthermore, due to the 63 

key role of phytoplankton as primary producers in the marine food web, and the key role of zooplankton as prey for 64 

higher trophic levels such as fish, climate-induced changes in plankton themselves may be considered as prevailing 65 

conditions for other biodiversity components [19]. In this way, in addition to their use in directly assessing for Good 66 

Environmental Status, plankton indicators can also be considered surveillance indicators, reflecting change in 67 

prevailing conditions that can aid in the interpretation of formal biodiversity indicator assessments. Plankton 68 

indicators can therefore have an additional ‘surveillance role’ even when the plankton indicator changes are not 69 

linked to direct anthropogenic pressures.  70 

The surveillance role of plankton indicators is not limited to the formally assessed MSFD plankton indicators 71 

however, and can extend to the wider climate change trends identified from time-series datasets that aren’t 72 

formally assessed within the MSFD. For example a trend for the replacement of Calanus finmarchicus by its 73 
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congeneric warmer-water species Calanus helgolandicus was identified in the North Atlantic and is an indicator of 74 

climate change [20]. Similarly, changes in the phenology of phytoplankton bloom dynamics, linked to the efficiency 75 

of energy transfer from phytoplankton to higher trophic levels, have been identified and attributed to climate 76 

change [21]. These trends are not formally assessed within the MSFD, but are derived from the same time-series 77 

datasets as the assessed MSFD plankton indicators, providing useful supplementary information with no additional 78 

monitoring effort.  79 

Here, the surveillance indicator framework presented by Shephard, Greenstreet, Piet, Rindorf and Dickey-Collas [12] 80 

is used to demonstrate the utility of plankton indicators in the surveillance role of informing on changing prevailing 81 

conditions. This framework illustrates how surveillance indicators can add contextual information to formal state 82 

indicator assessments within the MSFD, aiding in assessment interpretation. Specifically, here the contextual 83 

information gained from the surveillance of plankton indicators is classified as  ‘diagnostic’, which helps diagnose the 84 

drivers of changes within the ecosystem, and ‘strategic’ which aids in setting targets and management measures for 85 

Good Environmental Status.  86 

 

1.1 The surveillance indicator framework 87 

The surveillance indicator framework described by Shephard et al. (2015) provides a conceptual tool for integrating 88 

changes in prevailing conditions into the formal biodiversity indicator assessment process. Due to their lack of clear 89 

pressure-state relationships, surveillance indicators cannot follow directly an Activity-Pressure-State-Response 90 

framework. Therefore, Shephard et al. modified the traditional APSR framework to include surveillance indicators 91 

(Figure 1). A key feature of their surveillance indicator framework is that there are no GES targets for surveillance 92 

indicators. Instead, when a surveillance indicator moves outside of a defined bound, new research is triggered as the 93 

potential implication of this indicator change may not be clear. This research focuses on addressing whether the 94 

change in surveillance indicators means that the targets and management measures for associated assessed 95 

indicators need to be re-evaluated. Precautionary management may be implemented as a result of surveillance 96 

indicator change, in respect to the management responses to changes in associated formally assessed indicators. 97 
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Figure 1. The ‘surveillance indicator’ framework used here. Diagram adapted from Shephard, Greenstreet, Piet, 98 

Rindorf and Dickey-Collas [12]. Assessed indicator (blue) change is detected. If indicator moves to being not in GES 99 

(NGES), a management measure is considered, based on the pressure-state relationship of the assessed indicator 100 

with a direct pressure. Surveillance indicators (red, bottom) are monitored simultaneously to the assessed indicator, 101 

and surveillance indicator change is detected when the surveillance indicator moves out of predefined bounds (not 102 

within bounds: NWB). This surveillance indicator change triggers research targeted at the pressure-state 103 

relationships and GES targets of associated assessed indicators (blue, top).  104 

When applying plankton to this surveillance indicator framework, time-series data can be used for setting 105 

surveillance bounds [12, 22], for example based on past ranges of indicator values, or using past variability to 106 

categorize different magnitudes of change . This is because long term time-series aid in contextualising any indicator 107 

changes identified, in terms of the indicated changes in prevailing conditions. An example is the use of time-series 108 

data in the detection of regime shifts, such as the 1980s climate-driven regime shift detected in Continuous Plankton 109 

Recorder survey data that caused widespread changes in both phytoplankton and zooplankton 110 

communities ,coinciding with changes across the wider food web [23-25]. Time series data can also aid in identifying 111 

whether observed changes are the continuation of longer term trends by identifying any existing trajectories of 112 

indicator change [26]. 113 
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Often, however, the strength of coupling between hydro-climatic variation, plankton, and other food web 114 

components may not be clear and instead obscured by natural variability. Thus, covariation between a plankton 115 

indicator and assessed indicators at higher trophic levels would not be sufficient to trigger precautionary 116 

management alone within the framework. Furthermore, the use of correlations to derive links between 117 

environmental variation and higher trophic levels has been criticised [27]. Instead, within the framework, any 118 

covariation identified would highlight questions that could be considered when interpreting the results of formal 119 

state indicator assessments, often requiring further research and analysis. Examples of how information on 120 

prevailing conditions gained through plankton surveillance provides evidence for the interpretation of formal 121 

biodiversity indicator assessments are given below.  122 

2 Diagnostic role in identifying drivers of change in formally assessed biodiversity indicators 123 

A key challenge in assessing any biodiversity state indicator within the Marine Strategy Framework Directive is in the 124 

attribution of observed indicator changes to either direct anthropogenic pressure or prevailing conditions [28], thus 125 

‘diagnosing’ the cause of indicator change (Figure 2) [29]. Within pelagic habitats, it is established that an 126 

understanding of climate-driven plankton trends is essential for disentangling any effect of direct pressures from 127 

wider climatic influences [30]. For example, an indicator for phytoplankton community structure using functional 128 

groups is formally assessed at the OSPAR level [31] . This indicator may reveal changes in phytoplankton community 129 

structure as a result of human pressures, such as, for example, the effects of anthropogenic nutrient loading altering 130 

the proportions of dinoflagellates and diatoms within phytoplankton communities [14]. Phytoplankton community 131 

structure, however, is also influenced by climate. For example, the CPR survey reveals multi-decadal range changes 132 

in multiple phytoplankton taxa in response to climate change. These responses to climate are not uniform across 133 

taxa, with some taxa tracking northward movements of thermoclines closer than others, causing restructuring of 134 

phytoplankton communities [32]. Understanding the climate contribution to changes in plankton communities, 135 

therefore, helps diagnose the drivers of change in the assessed MSFD plankton indicators (Fig 3A).  136 

As well as performing this diagnostic role in the interpretation of formally assessed pelagic habitat indicators 137 

however, plankton surveillance information can also be useful for interpreting changes in assessed indicators within 138 

other habitats and trophic levels. Similarly to plankton, MSFD indicators from these other components may be 139 
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driven by both direct anthropogenic pressures as well as changes in prevailing conditions, requiring a degree of 140 

attribution of the different drivers when interpreting indicator change. Plankton indicator surveillance could inform 141 

on changes in prevailing conditions affecting these assessed indicators, and therefore help diagnose when changes 142 

are not driven by direct anthropogenic pressures alone.  For example, under the MSFD, benthic habitat condition is 143 

assessed at the OSPAR level for the ‘Biodiversity’ and ‘Seafloor integrity’ descriptors [33]. Multi-metric indices are 144 

used to compare the condition of benthic habitat communities over intensity gradients of different anthropogenic 145 

pressures, resulting from a range of human activities including bottom-trawling and sediment extraction allowing for 146 

the determination of the degree to which the pressures causes change in benthic condition [33].   147 

Benthic communities, however, are also impacted by large scale climate variability, and regime shifts detected in 148 

plankton communities have coincided with changes in the benthos [34]. Changes in the abundance of the larval 149 

stages of different benthic invertebrate groups (meroplankton) in relation to climate have also been detected from 150 

plankton time-series surveys [35]. Furthermore, particularly in coastal regions, there is often tight benthic-pelagic 151 

coupling as phytoplankton production is the main source of organic supply to benthic faunal communities [36]. 152 

Phytoplankton bloom dynamics may therefore control benthic community structure by influencing food availability 153 

and levels of environmental hypoxia [37]. Clare, Spencer, Robinson and Frid [38] showed that abrupt shifts in the 154 

temporal trends of large and long-lived taxa within a benthic community time-series were attributed to increased 155 

detrital input from pelagic primary production. Increasing frequency of Harmful Algal Bloom events as a result of 156 

climate change [39, 40] may also influence benthic communities through selectively impacting both larval and post-157 

larval survival of benthic invertebrates [41] .  As the MSFD benthic condition assessment is based on quantifying 158 

pressure state relationships, changes in benthic state indicators influenced by changes in prevailing conditions may 159 

result in the influence of direct pressures being misinterpreted [42]. The surveillance of plankton indicators including 160 

bulk primary productivity and HAB dynamics (Fig 3B), can therefore aid in the interpretation of the assessment of 161 

benthic habitat condition. 162 
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Figure 2. Schematic diagram of the diagnostic role for plankton surveillance information. Change in the state of a 

formally assessed biodiversity state indicator can be influenced by both direct anthropogenic pressures and prevailing 

conditions. Plankton surveillance can aid in understanding the relative influence of prevailing conditions. 

 

 

 

Figure 3. Examples of the diagnostic role of plankton surveillance information in MSFD implementation using the 163 

surveillance indicator framework from Shephard, Greenstreet, Piet, Rindorf and Dickey-Collas [12]. A) The role of 164 

plankton surveillance information in diagnosing drivers of change in pelagic habitat MSFD indicators. Here, range 165 
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shift indicators (bottom, red) trigger research targeted at the pressure-state relationship between phytoplankton GES 166 

indicator and eutrophication pressure (top, blue)- ‘Is change in plankton GES indicator driven by climate induced 167 

range shifts?’ B) The potential role of plankton surveillance information in diagnosing the drivers of change in 168 

assessed indicators within other habitats and ecosystem components. Here, surveillance of phytoplankton indicators 169 

(red), trigger research targeted at the benthic pressure-state relationship, and therefore assessment of GES, between 170 

benthic community composition and anthropogenic benthic disturbance (blue)- ‘Is change in benthic condition 171 

indicator influenced by climate?’ 172 

 

3 Strategic role in influencing targets and management measures for formally assessed biodiversity 173 

indicators 174 

 

In addition to diagnosing the drivers of change in MSFD biodiversity indicators during formal assessments, plankton 175 

surveillance information could contribute to the determination of GES targets (Figure 4). For example, an indicator 176 

for recovery in the population abundance of sensitive fish species has been developed for formal assessment at the 177 

OSPAR level [43]. However, the influence of changing prevailing oceanographic conditions on population growth is 178 

required to determine the scope for population recovery [43]. Changes in plankton indicators can track trends in 179 

physical oceanographic conditions that may affect recovery, and changes in plankton community composition and 180 

phenology may affect fish recruitment independently of the size of the spawning stock biomass [44]. For example, 181 

directly after the 1980s plankton regime shift North Sea cod populations fell to historically low levels and showed 182 

weak signs of recovery [45]. Furthermore, a regime shift that occurred in the North Sea in the early 2000s was 183 

suggested as the leading candidate mechanism to explain the low herring recruitment observed between 2002 and 184 

2007, with plankton shifts providing more explanatory power than the effects of physical variables alone [46]. 185 

Although the linking of fish recruitment dynamics to environmental variability is challenging [47], surveillance of 186 

plankton indicators  provides information on any influence of plankton on fish recovery potential [48]. 187 

The method for assessing GES in respect to fish population recovery is outlined by [49]. First, targets for a given 188 

indicator are set at the individual species level, based on the indicator metric falling in the upper 25 percentile of all 189 

values in the species’ reference period. These species-level indicator assessments are then aggregated to the 190 
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community level by comparing the number of different species achieving their target for the given indicator. 191 

Therefore, changes in prevailing conditions that affect the recovery potential of stocks, despite a reduction in 192 

anthropogenic pressure, may mean the GES targets may no longer be realistic. Instead, the permitted range in which 193 

individual species metrics can fall may need to be increased, or the number of species required to be in GES at the 194 

community level may need to be reduced [50]. In this way, plankton indicator surveillance can contribute to the 195 

setting of realistic targets for the assessment of fish state indicators [51] (Figure 5A).   196 

As well as affecting the feasibility of reaching a specified state target, changes in prevailing conditions detected 197 

through plankton surveillance may alter the sensitivity of an ecosystem component to a specified anthropogenic 198 

pressure, thus affecting the amount of pressure that will cause an assessed biodiversity indicator to move away from 199 

Good Environmental Status. (Figure 4)For example, indicators of seabird population size and breeding success are 200 

formally assessed at the OSPAR level within the MSFD [52, 53]and are useful indicators of the food web 201 

repercussions of direct pressures targeted at the lower levels of the food web, such as fishing pressure on forage fish 202 

prey [54, 55]. For effective ecosystem-based management, management of forage fish exploitation must account for 203 

the need to sustain top predators and as forage fish biomass and productivity is highly variable, the setting of 204 

acceptable fishing levels must remain adaptive [56, 57]. With a reduction in the recruitment success of key forage 205 

fish species such as sandeel predicted under climate change [58], reducing fishing pressure on forage fish through 206 

precautionary management measures may be needed to maintain Good Environmental Status of seabirds under 207 

future climate conditions [59].  208 

Forage fish abundance and growth has been linked to phytoplankton production [60] and zooplankton community 209 

composition through changes in the distribution of copepods indicating both changes in physical oceanographic 210 

conditions and influencing recruitment and growth [61 {Clausen, 2017 #333]}. There can also be direct trophic links 211 

between zooplankton and seabirds, especially in the non-breeding season [62, 63]. In these ways, climate-driven 212 

plankton shifts may place an additional ‘unmanageable’ pressure on seabirds, influencing the outcome of seabird 213 

state indicator assessments, and could therefore indicate relevant prevailing conditions when setting management 214 

measures (Fig. 5B). Within MSFD assessment cycles, management of direct pressures could be altered to take into 215 

account trends in climatic (non-manageable) drivers [64], informed by plankton surveillance. In this way, although 216 

the drivers of climate induced changes cannot be addressed by the MSFD, adaptive management of direct pressures 217 



11 
 
could increase the likelihood of an indicator remaining in Good Environmental Status in relation to manageable 218 

pressures, as well as help increase the resilience of the ecosystem component to climate change [65-67].  219 

 

 

 

 

 

 

 

Figure 4.  Schematic diagram of the ‘strategic’ role for plankton surveillance information. Targets, and associated 

management measures for a formally assessed state indicator can be adapted to changing prevailing conditions. 

Plantkon surveillance information can inform appropriate target setting and management measures.  
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Figure 5. Examples of the strategic role of plankton surveillance information in MSFD implementation using the 220 

surveillance indicator framework from Shephard, Greenstreet, Piet, Rindorf and Dickey-Collas [12]. A) The potential 221 

role of plankton surveillance information in setting targets for other components and descriptors. Here, plankton 222 

indicator surveillance (red) triggers research around the target representing GES for the recovery of sensitive fish 223 

communities (blue)- ‘Is the current GES target still achievable under the new climate conditions?’ .This research could 224 

lead to the adjustment of GES state targets. B) The potential role of plankton surveillance information in influencing 225 

the programme of measures. Here, plankton indicator changes linked to prevailing conditions (bottom, red) trigger 226 

research targeted at the pressure-state relationship between forage fish fisheries and seabird breeding success (top, 227 

blue)- ‘Is the current threshold level of fishing still sustainable, considering the changed prey landscape?’ This 228 

research could lead to more precautionary management measures being implemented.  229 

4 Summary and conclusions 230 
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In this paper, we have illustrated a surveillance role of plankton indicators within the Marine Strategy Framework 231 

Directive in addition to their primary role in formally assessing pelagic habitats for influences of direct anthropogenic 232 

pressures. Plankton indicators are useful early-warning indicators of physical hydro-climatic changes and can 233 

therefore inform on changes in the underlying prevailing conditions in which MSFD biodiversity indicators are 234 

formally assessed. Furthermore, changes in plankton can be important prevailing conditions to consider themselves. 235 

The importance of including biotic ecosystem drivers, such as changes in plankton, within marine monitoring 236 

programmes has been acknowledged by the Framework for Ocean Observing (FOO) with the development of 237 

‘ecosystem Essential Ocean Variables (eEOVs)’, which are defined biological or ecological quantities derived from 238 

field observations [68]. The surveillance indicator framework presented by Shephard, Greenstreet, Piet, Rindorf and 239 

Dickey-Collas [12], is a useful tool in translating this established monitoring need into the MSFD implementation 240 

process.  241 

This surveillance of plankton indicators provides two, newly-defined, types of contextual information for the 242 

assessment of biodiversity within the MSFD. ‘Diagnostic’ plankton surveillance information can help disentangle the 243 

influence of direct anthropogenic pressure from the influence of prevailing conditions, both within pelagic habitats, 244 

and within other habitats and ecosystem components. On the other hand, plankton surveillance information can 245 

have a ‘strategic’ role by indicating when the climate influence on the ecosystem may mean targets and 246 

management measures need to be altered. Due to the highly variable nature of coupling between changes in the 247 

plankton and changes in the wider marine ecosystem, both diagnostic and strategic roles of plankton surveillance 248 

information are based on the triggering of targeted research questions for consideration during assessments, 249 

following the observation of a change in plankton indicators and the detection of trends, thereby making an 250 

important evidence contribution to allow the implementation of the MSFD to be adaptive under climate change [69]. 251 

Currently, changes in plankton communities linked to climate are considered as being aligned with Good 252 

Environmental Status, as the changes are linked to natural variations or exogenous pressures. Limiting the 253 

application of these climate-driven indicator changes in this way however, is not using monitoring effort efficiently, 254 

when plankton indicators are also useful in a wider surveillance role. Progressing this surveillance role for plankton 255 

indicators requires further work on understanding ecosystem interactions between plankton and other formally 256 

assessed biodiversity components, as well as the consequences of changes in climatic and oceanographic conditions 257 
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on both plankton indicators and the wider foodweb. This in turn requires further collaboration between scientists 258 

working on these different components. Ultimately, the maintenance of long-term plankton time series therefore 259 

has multiple applications for ecosystem-based management of European seas within the Marine Strategy 260 

Framework Directive.  261 

 262 
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